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Abstract
Synchronization has received a lot of attention from the scientific community for systems evolving
on static networks or higher-order structures, such as hypergraphs and simplicial complexes. In
many relevant real-world applications, the latter are not static but do evolve in time, in this work we
thus discuss the impact of the time-varying nature of higher-order structures in the emergence of
global synchronization. To achieve this goal, we extend the master stability formalism to account, in
a general way, for the additional contributions arising from the time evolution of the higher-order
structure supporting the dynamical systems. The theory is successfully challenged against two
illustrative examples, the Stuart–Landau nonlinear oscillator and the Lorenz chaotic oscillator.

1. Introduction

In the realm of complex systems, synchronization refers to the intriguing ability of coupled nonlinear
oscillators to self-organize and exhibit a collective unison behavior without the need for a central
controller [1, 2]. This phenomenon, observed in a wide range of human-made and natural systems [3],
continues to inspire scientists seeking to unravel its underlying mechanisms.

To study synchronization, network science has proved to be a powerful and effective framework. Here,
the interconnected nonlinear oscillators are represented as nodes, while their interactions are depicted as
links [4]. However, the classical static network representation has its limitation in modeling many empirical
systems, such as social networks [5], brain networks [6, 7], where the connections among individual basic
units are adaptable enough to be considered to evolve through time. Therefore, the framework of networks
has been generalized as to include time-varying networks [8, 9], whose connections vary with time. Scholars
have thus studied synchronization on time-varying networks [10–12] and generalizations such as multilayer
networks [13].

Another intrinsic limitation of networks is due to their capability to only model pairwise interactions. To
go beyond this issue, scholars have brought to the fore the relevance of higher-order structures, which
surpass the traditional network setting that models the interactions between individual basic units only
through pairwise links [14–18]. By considering the simultaneous interactions of many agents, higher-order
structures, namely hypergraphs [19] and simplicial complexes [20], offer a more comprehensive
understanding of complex systems. These higher-order structures have been proven to produce novel features
in various dynamical processes, including consensus [21, 22], random walks [23, 24], pattern formation [14,
25, 26], synchronization [14, 27–32], social contagion and epidemics [33, 34]. Nevertheless, the suggested
framework is not sufficiently general to describe systems with many-body interactions that vary with time.
As an example, group interactions in social systems have time-varying nature as the interactions among
teammates are not always active but rather change throughout time [35]. Some early works have begun to
investigate the time-varying aspect of many-body interactions in various dynamical processes. For instance,
time-varying group interactions have been demonstrated to influence the convergence period of consensus
dynamics [22] and to predict the onset of endemic state in epidemic spreading [34].

© 2024 The Author(s). Published by IOP Publishing Ltd
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The present work is motivated by these recent research directions, and it aims to take one step further by
considering the impact of time-varying higher-order structures in the synchronization of nonlinear
oscillators. In this context, a preliminary effort has been reported in [36], where authors have investigated
synchronization in time-varying simplicial complexes but limited to the fast switching case [37, 38] among
distinct static simplicial configurations; namely the time scale of the simplicial evolution is exceedingly fast
compared to that of the underlying dynamical system. In contrast, in the present work, we allow the
higher-order structures to evolve in time without any constraint, thus removing any limitations on the
imposed time evolution of the higher-order structure. We present the results in the framework of
hypergraphs, but they hold true also for simplicial complexes, whenever we do not impose any assumption
of regularity of the topology for the hypergraph, as we will show in the following.

Under such broad assumptions, we develop a theory to determine the conditions ensuring the stability of
a globally synchronized state that generalizes the master stability function (MSF) [39] along two directions:
we allow for higher-order structures and we let them to evolve in time. The generalized framework hereby
presented, assumes that the coupling functions cancel out when the dynamics of individual oscillators are
identical; let us observe that this is a necessary condition that must be met for the coupled system to have a
global synchronous solution, namely to ensure the existence of a synchronous manifold, and it has been
largely used in the literature across various domains. Let us recall that the general strategy to prove the
existence of global synchronization relies on the study of the linear (non-autonomous) system obtained by
linearizing the dynamics close to the homogeneous reference solution. Such system has (generally) a very
large dimension and thus to simplify its analysis one can recur to the MSF by projecting on the eigenbasis of
a suitable operator, often the Laplace matrix responsible for the diffusive-like coupling. In the case of
time-varying higher-order structures, the eigenvectors also depend on time and thus they contribute to an
‘extra term’ to the MSF [12]. Anticipating on the following, we will show that the latter contribution can
substantially modify the system behavior and neglecting it would determine wrong conclusions about
synchronization. We present our results by using coupled Stuart–Landau (SL) oscillators and the
paradigmatic Lorenz system; in a first phase we used a small toy time-varying hypergraph to allow us to
emphasize the novelty of the proposed method without adding unnecessary complications, then we
employed generic time-varying higher-order structures made of 100 and 200 nodes. The presented results
support the claim that temporality in group interactions can induce synchronization earlier as compared to
the static group interactions. Furthermore, our results also reveal that the combined effect of adequate
temporality and strong enough group interactions can induce desynchronization in time-varying
higher-order structures.

2. The model

Let us consider am-dimensional dynamical system,m ∈ N, whose time evolution is described by the
following ordinary differential equation

d⃗x

dt
= f⃗ (⃗x) , (1)

where x⃗ ∈ Rm denotes the system state vector and f⃗ : Rm → Rm some smooth nonlinear function. Let us
assume moreover that system (1) exhibits an oscillatory behavior, being the latter periodic or irregular; we
are thus considering the framework of generic nonlinear oscillators. Assume to have n identical copies of
system (1) coupled by a symmetric higher-order structure; namely, we allow the nonlinear oscillators to
interact in couples, as well as in triplets, quadruplets, and so on, up to interactions among D+ 1 units. We
can thus describe the time evolution of the state vector of the ith unit by

˙⃗xi = f⃗(x⃗i)+
D∑

d=1

qd

n∑
j1,...,jd=1

A(d)
ij1...jd

(t) g⃗(d)
(⃗
xi, x⃗j1 , . . . , x⃗jd

)
, (2)

where for d= 1, . . . ,D, qd > 0 denotes the coupling strength, g⃗(d) : R(d+1)m → Rm the nonlinear coupling

function and A(d)(t) the tensor encoding which units are interacting together. More precisely A(d)
ij1...jd

(t)> 0 if
the units i, j1, . . . , jd do interact at time t, observe indeed that such tensor depends on time, namely the
intensity of the coupling as well which units are coupled, do change in time. Finally, we assume the

time-varying interaction to be symmetric, namely if A(d)
ij1...jd

(t) = w> 0, then A(d)
π(ij1...jd)

(t) = w for any
permutation π of the indexes i, j1, . . . , jd. Let us emphasize that we consider the number of nodes to be fixed,
only the interactions change in time; one could relax this assumption by considering to have a sufficiently
large reservoir of nodes, from which the core of the system can recruit new nodes or deposit unused nodes.

2
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Let us fix a periodic reference solution, s⃗(t), of system (1). We are interested in determining the
conditions under which the orbit (⃗s(t), . . . ,⃗ s(t))⊤ is a solution of the coupled system (2), and moreover it is
stable, namely any orbit whose initial conditions are sufficiently close to the reference solution will converge
to the latter and thus the n units globally synchronize, i.e. they behave at unison. A necessary condition is
that the coupling functions vanish once evaluated on such orbit, i.e. g⃗(d)(⃗s, . . . ,⃗ s) = 0, for d= 1, . . . ,D. This
assumption is known in the literature as non-invasive condition.

For the sake of pedagogy, we will hereby consider a particular case of non-invasive couplings and we will
refer the interested reader to appendix A for a general discussion. We are thus assuming the coupling
functions g⃗(d) to be diffusive-like, namely for each d there exists a function h⃗(d) : Rdm → Rm such that

g⃗(d)
(⃗
xi, x⃗j1 , . . . , x⃗jd

)
= h⃗(d)

(⃗
xj1 , . . . , x⃗jd

)
− h⃗(d) (⃗xi, . . . , x⃗i) . (3)

In this way we can straightforwardly ensure that the coupling term in equation (3) vanishes once evaluated
on the orbit (⃗s(t), . . . ,⃗ s(t))⊤, allowing thus to conclude that the latter is also a solution of the coupled system.
Stated differently there exists a synchronous manifold defined by x⃗1 = · · ·= x⃗n = s⃗.

To study the stability of the reference solution, let us now perturb the synchronous solution
(⃗s(t), . . . ,⃗ s(t))⊤ with a spatially heterogeneous term, meaning that ∀i ∈ {1, . . . ,n} we define x⃗i = s⃗+ δx⃗i.
Substituting the latter into equation (2) and expanding up to first order, we obtain

δ ˙⃗xi =
∂⃗f

∂x⃗i

∣∣∣⃗
s
δx⃗i +

D∑
d=1

qd

n∑
j1,...,jd=1

Bij1...jd (t)
d∑

ℓ=1

∂h⃗(d)

∂x⃗jℓ

∣∣∣
(⃗s,...,⃗s)

δx⃗jℓ , (4)

where

Bij1 (t) = A(1)
ij1

(t)− k(1)i (t)δij1 ,

Bij1j2 (t) = A(2)
ij1j2

(t)− 2k(2)i (t)δij1j2 , . . .

Bij1j2...jD (t) = A(D)
ij1j2...jD

(t)−D!k(D)i (t)δij1j2...jD ,

being δij1j2...jD the generalized multi-indexes Kronecker-δ, and the (time-varying) d-degree of node i is given
by

k(d)i (t) =
1

d!

n∑
j1,..,jd=1

A(d)
ij1...jd

(t) , (5)

which represents the number of hyperedges of order d incident to node i at time t. Observe that if A(d) is

weighted, then k(d)i (t) counts both the number and the weight, it is thus the generalization of the strength of
a node. Let us now define

k(d)ij (t) =
1

(d− 1)!

n∑
j1,...,jd−1

A(d)
ijj1...jd−1

(t) , (6)

namely the number of hyperedges of order d containing both nodes i and j at time t. Again, once A(d) is

weighted, then k(d)ij (t) generalizes the link strength. Let us observe that because of the invariance of A(d)

under index permutation, we can conclude that k(d)ij (t) = k(d)ji (t). Finally, we define the generalized
time-varying higher-order Laplacian matrix for the interaction of order d as

L(d)ij (t) =

{
−d!k(d)i (t) if i = j

(d− 1)!k(d)ij (t) if i ̸= j .
(7)

Observe that such a matrix is symmetric because of the assumption on the tensors A(d). Let us also notice the
difference in sign with respect to other notations sometimes used in the literature.

We can then rewrite equation (4) as follows

δ ˙⃗xi =
∂⃗f
∂x⃗i

∣∣∣⃗
s
δx⃗i +

∑D
d=1 qd

[∑n
j1=1

∂h⃗(d)

∂x⃗j1

∣∣∣
(⃗s,...,⃗s)

δx⃗j1
∑n

j2,...,jd=1Bij1...jd (t)+ . . .

+
∑n

jd=1
∂h⃗(d)

∂x⃗jd

∣∣∣
(⃗s,...,⃗s)

δx⃗jd
∑n

j1,...,jd−1=1Bij1...jd (t)

]

= ∂⃗f
∂x⃗i

∣∣∣⃗
s
δx⃗i +

∑D
d=1 qd

∑n
j=1 L

(d)
ij (t)

[
∂h⃗(d)

∂x⃗j1
+ · · ·+ ∂h⃗(d)

∂x⃗jd

]
(⃗s,...,⃗s)

δx⃗j ,

(8)

3
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where we used the fact the ∂h⃗(d)

∂x⃗j1
+ · · ·+ ∂h⃗(d)

∂x⃗jd
is independent from the indexes being the latter placeholders to

identify the variable with respect to which the derivative has to be done. Finally, by defining

Jf :=
∂⃗f

∂x⃗i

∣∣∣⃗
s(t)

and Jh(d) :=
d∑

ℓ=1

∂h⃗(d)

∂x⃗jℓ

∣∣∣
(⃗s(t),...,⃗s(t))

∀d ∈ {1, . . . ,D} ,

we can rewrite equation (8) in compact form

δ ˙⃗xi = Jfδx⃗i +
D∑

d=1

qd

n∑
j=1

L(d)ij (t) Jh(d)δx⃗j. (9)

This is a non-autonomous linear differential equation allowing to determine the stability of the perturbation
δx⃗i, for instance, by computing the largest Lyapunov exponent. To make some analytical progress in the
study of equation (9), we will consider in the following two main directions. First case, the functions h⃗(d)

satisfy the condition of natural coupling (see section 2.1), second case the higher-order structures exhibit
regular topologies (see section 2.2). The aim of each assumption is to disentangle the dependence of the
nonlinear coupling functions from the higher-order Laplace matrices and thus achieve a better
understanding of the problem under study.

2.1. Natural coupling
Let us assume the functions h⃗(d) to satisfy the condition of natural coupling, namely

h⃗(D) (⃗x, . . . , x⃗) = · · ·= h⃗(2) (⃗x, x⃗) = h⃗(1) (⃗x) , (10)

that implies Jh(1) = Jh(2) = · · ·= Jh(D) and it allows to eventually rewrite equation (9) as follows

δ ˙⃗xi = Jfδx⃗i +
n∑

j=1

Mij (t) Jh(1)δx⃗j, (11)

where

Mij (t) :=
D∑

d=1

qdL
(d)
ij (t) ∀i, j = 1, . . .n. (12)

Let us observe that the matrixM(t) is a Laplace matrix; it is non-positive definite (as each one of the
L(d)(t)matrices does for any d= 1, . . . ,D and any t> 0, and qd > 0), it admits µ(1) = 0 as eigenvalue
associated to the eigenvector ϕ(1) = 1√

N
(1, . . . ,1)⊤ because each L(d)(t) does the same and it is symmetric,

being L(d)(t) also symmetric for all d= 1, . . . ,D. So there exists an orthonormal time-varying eigenbasis,
ϕ(α)(t), α= 1, . . . ,n, forM(t) with associated eigenvalues µ(α) < 0 for α= 2, . . . ,n. The goal is to use those
eigenvectors to project (11) and thus to obtain the MSF; however, as we observed in the introduction,
because the eigenvectors vary in time we have to take into account their time dependence. To achieve this
goal we thus define [12] the n× n time dependent matrix c(t) that quantifies the projections of the time
derivatives of the eigenvectors onto the independent eigendirections, namely

dϕ⃗(α) (t)

dt
=
∑
β

cαβ (t) ϕ⃗
(β) (t) ∀α= 1, . . . ,n. (13)

By recalling the orthonormality condition(
ϕ⃗(α) (t)

)⊤
· ϕ⃗(β) (t) = δαβ ,

we can straightforwardly conclude that c is a real skew-symmetric matrix with a null first row and first
column, i.e. cαβ + cβα = 0 and c1α = 0.

Based on the above reasoning and to make one step further, we consider equation (11), and we project it

onto the eigendirections, namely we introduce δx⃗i =
∑

α δ
ˆ⃗xαϕ

(α)
i and recalling the definition of c we obtain

dδˆ⃗xβ
dt

=
∑
α

cβα (t)δˆ⃗xα +
[
Jf +µ(β) (t) Jh(1)

]
δˆ⃗xβ . (14)

4
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Let us observe that the latter formula and the following analysis differ from the one presented in [40] where
the perturbation is assumed to align onto a single mode, a hypothesis that ultimately translates in the
stationary of the Laplace eigenvectors that is c= 0. The same assumption is also at the root of the results
presented in [41]; indeed, commuting time-varying networks implies to deal with a constant eigenbasis. In
conclusion, equation (14) returns the more general description for the projection of the linearized dynamics
on a generic time-varying Laplace eigenbasis, and thus allowing us to draw general conclusions without
unnecessary simplifying assumptions. Let us observe that we did not introduce any assumption of the
time-varying hypergraph and in particular we did not impose that nodes belonging to a k-hyperedge
necessarily belong also to all k′-hyperedges, 1⩽ k ′ < k contained in the former, as it should be for a
simplicial complex. Namely the previous analysis applies to both hypergraphs and simplicial complexes.
Stated differently the adjacency tensors A(d)(t), with d= 1, . . . ,D are independent each other, condition that
will be no longer true in the case of regular topologies as we will show in the next section.

2.2. Regular topologies
An alternative approach to study equation (9) is to assume regular topologies [25], namely hypergraphs such
that L(d)(t) = αdL(1)(t), for d= 1, . . . ,D, with α1 = 1 and αd ∈ R+. The latter have been introduced in [25]
to propose simple structures allowing for the emergence of Turing patterns; observe that tetrahedra or
icosahedra are examples of regular topologies once we assume unweighted, i.e. binary, and static adjacency
tensors, the same holds true for the triangular lattice with periodic boundary conditions, i.e. a two-torus
paved with triangles. Let us also emphasize that such topologies should not be confused with the concept of
regular network or regular hypergraph, where, i.e. all nodes have the same degree. In the case of higher-order
structures, the adjective regular refers to the fact that higher-order Laplace matrices differ only by a
multiplicative factor and thus they are simultaneously diagonalizable.

By the very first property of regular topologies, equation (9) can be rewritten as

δ ˙⃗xi = Jfδx⃗i +
n∑

j=1

L(1)ij (t) Jĥδx⃗j, (15)

where

Jĥ :=
D∑

d=1

qdαdJh(d) , (16)

that results in a sort of weighted nonlinear coupling term. We can now make use of the existence of a
time-varying orthonormal basis of L(1)(t), namely ψ(α)(t), α= 2, . . . ,n, associated to eigenvalues Λ(α) < 0,

ψ(1)(t) = 1√
N
(1, . . . ,1)⊤ and Λ(1) = 0, to project δx⃗i onto the n eigendirections, δx⃗i =

∑
α δ

˜⃗xαψ
(α)
i . Because

the latter vary in time we have again an extra term in the MSF and we thus need to define a second n× n time
dependent matrix b(t) given by

dψ⃗(α) (t)

dt
=
∑
β

bαβ (t) ψ⃗
(β) (t) ∀α= 1, . . . ,n, (17)

that it is again real, skew-symmetric, with a null first row and first column, i.e. bαβ + bβα = 0 and b1α = 0,
because of the orthonormality condition of eigenvectors. By projecting equation (15) onto ψ(α)(t), we get

dδ˜⃗xβ
dt

=
∑
α

bβα (t)δ˜⃗xα +
[
Jf +Λ(β) (t) Jĥ

]
δ˜⃗xβ . (18)

Let us conclude by observing that the latter equation has the same structure of (14). Those equations
determine the generalization of the MSF to the case of time-varying higher-order structures. The time
variation signature of the topology is captured by the matrices c(t) or b(t) and the eigenvectors µ(α)(t) or
Λ(α)(t), while the dynamics (resp. the coupling) in the Jacobian Jf (resp. Jh(1) or Jĥ).

It is important to notice that as the eigenvalues µ(1) = 0, Λ(1) = 0 and the skew-symmetric matrices
c(t),b(t) have null first row and column, in analogy with the MSF approaches carried over static
networks [39] and higher-order structures [42], hence also in the case of time-varying higher-order
structures, we can decouple the MSF into two components. One component describes the movement along
the synchronous manifold, while the other component represents the evolution of different modes that are
transverse to the synchronous manifold. The MSF ultimately relies on the computation of the maximum
Lyapunov exponent (MLE) associated with the transverse modes and measures the exponential growth rate

5
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of a tiny perturbation in the transverse subspace. For the synchronous orbit to be stable, the MLE associated
to all transverse modes must be negative. Moreover, the MSF approaches applied to static networks and
higher-order structures can be simplified by examining the evolution of the perturbation along each
independent eigendirection associated with distinct eigenvalues of the Laplacian matrix. Let us observe that
this is not possible in the present because the matrices c(t) and b(t)mix the different modes and introduce a
complex interdependence among them, making it challenging to disentangle their individual contributions.
For this reason, one has to address numerically the problem [12].

To demonstrate the above introduced theory and emphasize the outcomes arising from the modified
MSF (14) and (18), we will present two key examples in the following sections. Indeed, we will utilize the SL
limit cycle oscillator and the chaotic Lorenz system as prototype dynamical systems anchored to each
individual node. To simplify the calculations, we assume that the hypergraph consists of only four nodes, five
links and two three-hyperedges, i.e. triangles, whose weights change in time (see appendix B for a detailed
presentation of this structure). Let us stress that despite the simple hypergraph, the proposed framework is
very general and can be applied to general time-varying hypergraphs. Observe on the other hand that the
regular topology assumption induces constraints among the adjacency tensors, A(d)(t), with d= 1, . . . ,D,
namely A(d)(t) = αdA(1)(t). The latter ultimately implies dealing with a simplicial complex because of the
presence of all k′-order connections, 1⩽ k ′ < k, among nodes once they belong to a given k-hypergraph.

3. Synchronization of SL oscillators coupled via time-varying higher-order networks

The aim of this section is to present an application of the theory above introduced. We decided to use the SL
model as a prototype example because it provides the normal form for a generic system close to a
supercritical Hopf-bifurcation and for this reason it has been largely used in the literature to study
synchronization.

An SL oscillator can be described by a complex amplitude w that evolves in time according to
ẇ= σw−β|w|2w, where σ = σℜ + iσℑ and β = βℜ + iβℑ are complex model parameters. The system
admits a limit cycle solution wLC(t) =

√
σℜ/βℜeiωt, where the frequency of the oscillation is given

ω = σℑ −βℑσℜ/βℜ; moreover the limit cycle is stable provided σℜ > 0 and βℜ > 0, conditions that we
hereby assume.

To proceed in the analysis, we couple together n identical SL oscillators, each one described by a complex
amplitude wj, with j = 1, . . .,n, anchored to the nodes of a time-varying hypergraph as prescribed in the
previous section, namely

dwj

dt
= σwj −βwj|wj|2 +

D∑
d=1

qd

n∑
j1,...,jd=1

A(d)
jj1...jd

(t) g⃗(d)
(
wj,wj1 , . . . ,wjd

)
. (19)

For the sake of simplicity, we restrict our analysis to pairwise and three-body interactions, namely D= 2 in
equation (19). We hereby present and discuss the SL synchronization under the diffusive-like coupling
hypothesis and by using two different assumptions: regular topology and natural coupling. The case of
non-invasive coupling will be presented in appendix A.1.

3.1. Diffusive-like and regular topology
Let us thus assume the existence of two functions h(1)(w) and h(2)(w1,w2) such that g(1) and g(2) do satisfy
the diffusive-like assumption, namely

g(1)
(
wj,wj1

)
= h(1)

(
wj1

)
− h(1)

(
wj

)
and

g(2)
(
wj,wj1 ,wj2

)
= h(2)

(
wj1 ,wj2

)
− h(2)

(
wj,wj

)
.

For the sake of definitiveness, let us fix

h(1) (w) = w and h(2) (w1,w2) = w1w2 , (20)

let us observe that the latter functions do not satisfy the condition for natural coupling, indeed
h(1)(w) = w ̸= w2 = h(2)(w,w).

Let us assume to deal with regular topology, namely L(2) = α2L(1). Hence following equation (16) we can
define Jĥ = q1Jh(1) + q2α2Jh(2) . Let us perturb the limit cycle solution wLC(t) =

√
σℜ/βℜeiωt by defining

6
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wj =WLC(1+ ρj)eiθj , where ρj and θj are real and small functions for all j. A straightforward computation
allows to write the time evolution of ρj and θj once we restrict ourselves to consider only linear terms

d

dt

(
ρj
θj

)
=

(
−2σℜ 0

−2βℑ
σℜ
βℜ

0

)(
ρj
θj

)
+
∑
ℓ

L(1)jℓ

[(
q1,ℜ −q1,ℑ
q1,ℑ q1,ℜ

)
+ 2α2

√
σℜ
βℜ

(
cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

)(
q2,ℜ −q2,ℑ
q2,ℑ q2,ℜ

)](
ρℓ
θℓ

)
, (21)

where ω = σℑ −βℑσℜ/βℜ is the frequency of the reference limit cycle solution.
By exploiting the eigenvectors ψ(α)(t) and eigenvalues Λ(α)(t) of L(1)(t) to project the perturbation ρj

and θj we obtain:

d

dt

(
ρβ
θβ

)
=
∑
α

bβα

(
ρα
θα

)
+

{(
−2σℜ 0

−2βℑ
σℜ
βℜ

0

)
+Λ(β)

[(
q1,ℜ −q1,ℑ
q1,ℑ q1,ℜ

)
+ 2α2

√
σℜ
βℜ

(
cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

)(
q2,ℜ −q2,ℑ
q2,ℑ q2,ℜ

)]}(
ρβ
θβ

)
, (22)

where the matrix b has been defined in equation (17), ρj =
∑

β ρβψ
(β)
j (t) is the sough projection and

similarly for θβ .
As already mentioned, for the sake of definiteness and to focus on the impact of the time-varying

topology, we hereby consider a simple higher-order network structure composed of n= 4 nodes, five links
and two triangles with one link shared between both triangles. The number of nodes is thus fixed in time
whereas the weight of the links and of the triangular face evolve in time. More precisely we consider the

weights of the triangular faces to be given by A(2)
π(123)(t) = f(t) and A(2)

π(234)(t) = g(t), where f (t) and g(t) are

generic positive smooth functions and π(ijk) denotes any permutation of the indexes ijk. Whereas, the
weights of the links, namely the pairwise adjacency matrix, are assumed to be given by

A(1) (t) =


0 f(t) f(t) 0
f(t) 0 f(t)+ g(t) g(t)
f(t) f(t)+ g(t) 0 g(t)
0 g(t) g(t) 0

 . (23)

This provides us a regular hypergraph satisfying the relation L(2)(t) = α2L(1)(t) with α2 = 1 (see appendix B
for a detailed derivation). One can show that the Laplacian of the hypergraph possesses time-dependent
eigenvalues and eigenvectors which are orthogonal each other and also to the constant eigenvector
ψ(1) ∼ (1, . . . ,1)⊤ corresponding to the zero eigenvalue. Consequently using the relation (17), we can obtain
the skew symmetric projection matrix b such that all the entries of b are zero except b34 =−b43 (we refer the
interested reader to appendix B for a comprehensive derivation of the above matrix).

To realize how time-varying regular structure affects the global synchronization phenomenon, we fix,
without loss of generality, the functions determining the evolution of edges and triangular faces such that
f(t) = 1+ [sin(Ωt)]2 and g(t) = 1+ [cos(Ωt)]2. With this consideration, the case Ω= 0 corresponds to the
static higher-order network structure and Ω> 0 signifies the time-varying case. Figure B2 and the
accompanying supplementary movie show the time evolution of the hypergraph structures for Ω= 2.0.

Under all these assumptions, equation (22) determines a time periodic linear system whose stability can
be determined by using Floquet theory. In order to illustrate our results, we let q1,ℑ and q2,ℑ to freely vary in
the range [−1.5,1.5] and [−2.5,2.5], while keeping fixed to generic values the remaining parameters, and we
compute the Floquet eigenvalue with the largest real part, corresponding thus to the MLE of equation (22),
as a function of q1,ℑ and q2,ℑ. The corresponding results are shown in figure 1 for Ω= 0 (panel (a)) and
Ω= 2 (panel (b)). By a direct inspection, one can clearly conclude that the parameters region associated with
a negative MLE (black region), i.e. to the stability of the SL limit cycle and thus to global synchronization, is
larger for Ω> 0 than for Ω= 0 in the regime of relatively smaller triadic coupling strength, i.e. q2,ℑ small
enough. However, for larger values of the latter, islands of positive MLE (yellow region) emerge for Ω= 2,
i.e. for the time-varying higher-order structure.

To study the combined effect of both coupling strengths q1 and q2, we set q1 = ϵ1q1,0 and q2 = ϵ2q2,0, and
we compute the MLE as a function of ϵ1 and ϵ2, having fixed without loss of generality q1,0 = 0.1− 0.5i and
q2,0 = 0.1+ 0.5i. The corresponding results are presented in figure 2 for static (Ω= 0, panel (a)) and
time-varying (Ω= 2, panel (b)) higher-order structure. We can again conclude that the region of parameters
corresponding to global synchronization (black region) is larger in the case of time-varying hypergraph than

7
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Figure 1. Synchronization on time-varying regular higher-order network of coupled SL oscillators. We report the MLE as a
function of q1,ℑ and q2,ℑ for two different values ofΩ,Ω= 0 (panel (a)) and Ω= 2 (panel (b)), by using a color code, we
determine the region of stability (black) and the region of instability (yellow). The remaining parameters have been fixed at the
values α2 = 1, σ = 1.0+ 4.3i, β = 1.0+ 1.1i, q1,ℜ = 0.1, q2,ℜ = 0.1.

Figure 2. Synchronization on time-varying regular higher-order network of coupled SL oscillators. The MLE is reported as a
function of ϵ1 and ϵ2 for two different values ofΩ,Ω= 0 (panel (a)) andΩ= 2 (panel (b)). The color code represents the values
of the MLE, negative values (black) while positive values (yellow). The remaining parameters have been fixed at the values α2 = 1,
σ = 1.0+ 4.3i, β = 1.0+ 1.1i, q1,0 = 0.1− 0.5i, q2,0 = 0.1+ 0.5i.

Figure 3. Synchronization domains. We show the MLE in the plane (Ω, ϵ1) (panel (a)) for ϵ2 = 0.5 and in the plane (Ω, ϵ2)
(panel (b)) for ϵ1 = 0.5. We can observe that in both panels, the critical value of coupling strengths ϵ̂j(Ω) to achieve
synchronization is smaller forΩ> 0 than forΩ= 0. The remaining parameters are kept fixed at the values α2 = 1,
σ = 1.0+ 4.3i, β = 1.0+ 1.1i, q1,0 = 0.1− 0.5i, q2,0 = 0.1+ 0.5i.

in the static case when the strength of triadic interactions is small enough. Conversely, when the strength of
triadic interactions increases, the region of parameters supporting global synchronization contracts in the
time-varying hypergraph case as opposed to the static counterpart.

Our last analysis concerns the relation between the frequency Ω and the size of the coupling parameters
ϵ1, ϵ2, still assuming q1 = ϵ1q1,0 and q2 = ϵ2q2,0, on the onset of synchronization. In figure 3 we report the
MLE in the plane (Ω, ϵ1) for a fixed value of ϵ2 (panel (a)), and in the plane (Ω, ϵ2) for a fixed value of ϵ1
(panel (b)). Let us observe that the synchronization can be easily achieved the smaller the value ϵj, j = 1,2,
for which the MLE is negative, having fixed Ω. Let us thus define ϵ̂1(Ω) =min{ϵ > 0 :MSF(ϵ,ϵ2,Ω)< 0},
for fixed ϵ2, and similarly ϵ̂2(Ω). The results of figure 3 clearly show that ϵ̂1(Ω)< ϵ̂1(0)∼ 1.2 and
ϵ̂2(Ω)< ϵ̂2(0)∼ 0.72 and thus support our claim that time-varying structures allow to achieve
synchronization easier. However, for larger values of Ω, one can observe that the global synchronization is

8
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Figure 4. Time series of the signalℜwi for a suitable choice of coupling parameters ϵ1 = 1.3 and ϵ2 = 0.5. In (a), we setΩ= 0
while Ω= 2 in panel (b). The other parameters values are the same as in figure 2, i.e. α2 = 1, σ = 1.0+ 4.3i, β = 1.0+ 1.1i,
q1,0 = 0.1− 0.5i, q2,0 = 0.1+ 0.5i.

Figure 5. Time series of the signalℜwi for a suitable choice of coupling parameters ϵ1 = 0.5 and ϵ2 = 2.0. In (a), we setΩ= 0
while Ω= 2 in panel (b). The other parameters values are the same as in figure 2, i.e. α2 = 1, σ = 1.0+ 4.3i, β = 1.0+ 1.1i,
q1,0 = 0.1− 0.5i, q2,0 = 0.1+ 0.5i.

forbidden when the strength of three-body coupling ϵ2 is relatively larger (see figure 3(b)). Thus figure 3
illustrates that achieving synchronization is more attainable when the higher-order couplings are not overly
intense. However, a noteworthy observation emerges: the interplay between a suitable level of higher-order
coupling and temporality has the potential to induce desynchronization in higher-order structures.

To complement our analysis, we performed numerical simulations of the SL defined on the simple four
nodes time-varying hypergraph. We selected (ϵ1, ϵ2) = (1.3,0.5) and the remaining parameters values as in
figure 2, we can thus conclude that for the chosen parameters, the MSF is positive if Ω= 0 and negative if
Ω= 2, hence the SL should globally synchronize on the time-varying hypergraph while it would not achieve
this state in the static case. Results of figure 4 confirm these conclusions; indeed, we can observe that (real
part of) the complex variable is in phase for all i in the case Ω= 2 (figure 4(b)), while this is not clearly the
case for Ω= 0 (figure 4(a)).

Furthermore, to support the analytical insights suggesting that large values of Ω and ϵ2 lead to
desynchronization in the time-varying higher-order structure, we conducted numerical simulations of the SL
model defined on the same four-node time-varying hypergraph. Specifically, we set (ϵ1, ϵ2) = (0.5,2.0) while
keeping the other parameter values as those used in figure 2. From the latter figure one can conclude that the
MSF is negative if Ω= 0 and positive if Ω= 2, hence the global synchronization is forbidden in the
time-varying scenario. The findings presented in figure 5 validate this conclusion. Specifically, in the scenario
where Ω= 0 (figure 5(a)), the time series exhibit a synchronized state, as evidenced by the in-phase behavior
of the real part of the complex variable across all nodes (i). On the contrary, this synchronized state is not
observed in the case of Ω= 2 (figure 5(b)), underscoring the influence of larger values of Ω and ϵ2 in
inducing desynchronization within the system.

The results obtained so far rely on the use of a small time-varying hypergraph composed by four nodes,
we claim however that their validity goes beyond this simple framework. To support this statement, we
studied generic random large hypergraphs obtained by using a slightly different approach than the presented
above. Indeed, we assume the Laplace eigenvalues to be constant and the time-derivative of the associated
eigenvectors projected on the eigenbasis to return a constant matrix b. Namely we generated 100 random
skew-symmetric matrices b (with zeros in their first row and column), we assigned random sets of
eigenvalues Λ(β) ⩽ 0 and we numerically solve equation (22) to compute the MSF for the corresponding
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Figure 6. Probability distribution function (PDF) of∆(b) = ϵ
(0)
1 (0)− ϵ

(0)
1 (b) for 100 different hypergraphs composed of 100

nodes (left panel) and 200 nodes (right panel). For all these results we keep the coupling strength ϵ2 fixed at ϵ2 = 1, and the
eigenvalues are randomly drawn from the interval [−10,0).

structures. Then we determined the smallest nontrivial zero of the MSF, denoted as ϵ(0)1 (b), while keeping the
other coupling strength ϵ2 fixed at a nominal value. For comparison, we computed the same quantity for a

null matrix (i.e. b= 0), representing a static hypergraph, denoted as ϵ(0)1 (0), while keeping the same random
eigenvalues.

Our claim is that synchronization can be achieved earlier in time-varying hypergraph, namely
synchronization emerges for a smaller value of the parameter, ϵ1 (once ϵ2 has been held fixed), stated

differently one should have∆(b) := ϵ
(0)
1 (0)− ϵ

(0)
1 (b)> 0. This is indeed what we show in the left panel of

figure 6 for the case of time-varying hypergraphs made by 100 nodes and on the right panel for 200 nodes. In
those figures we report the probability distribution of the values∆(b) for 100 hypergraphs build as described
above, and we can clearly appreciate that the probability to have∆(b)⩽ 0 is null. Our results support thus
the claim that the SL model defined on top of a temporal hypergraph consistently encompasses a broader
range of coupling strengths associated to synchronization, with respect to the scenario of a static hypergraph.
Furthermore, it is noteworthy that the minimum value of∆(b) for hypergraphs composed of 200 nodes is
comparably larger than the one for hypergraphs composed of 100 nodes, which underscores that SL
oscillators coupled with large stationary hypergraphs determine a more formidable challenge for
synchronization when compared to the case of time-varying hypergraphs.

3.2. Diffusive-like and natural coupling
The aim of this section is to replace the condition of regular topology with a condition of natural coupling
and consider again, a diffusive-like coupling. Let us thus consider now two functions h(1)(w) and
h(2)(w1,w2) satisfying the natural coupling assumption, namely

h(1) (w) = h(2) (w,w) .

For the sake of definitiveness, let us fix

h(1) (w) = w3 and h(2) (w1,w2) = w1 (w2)
2
. (24)

Consider again to perturb the limit cycle solution wLC(t) =
√
σℜ/βℜeiωt by defining

wj =WLC(1+ ρj)eiθj , where ρj and θj are real and small functions for all j. A straightforward computation
allows us to write the time evolution of ρj and θj as,

d

dt

(
ρj
θj

)
=

(
−2σℜ 0

−2βℑ
σℜ
βℜ

0

)(
ρj
θj

)
+ 3

σℜ
βℜ

∑
ℓ

Mjℓ

(
cos(2ωt) − sin(2ωt)
sin(2ωt) cos(2ωt)

)(
ρl
θl

)
, (25)

where ω = σℑ −βℑσℜ/βℜ is the frequency of the limit cycle solution andM is the matrix
q1L(1)(t)+ q2L(2)(t) (see equation (12)). Let us observe that in this case, the coupling parameters q1 and q2
should be real numbers if we want to deal with real Laplace matrices, hypothesis that we hereby assume to
hold true.
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Figure 7. Synchronization on time-varying higher-order network of coupled SL oscillators with diffusive-like natural coupling.
We report the MSF as a function of the eigenvalues µ(2) and µ(3) for two different choices ofΩ,Ω= 0 (panel (a)) andΩ= 2
(panel (b)) by using a color code, black is associated to negative values while positive ones are shown in yellow. We characterize
the range of the axes by considering the absolute values of the eigenvalues. The remaining parameters are kept fixed at
σ = 1.0+ 4.3i, β = 1.0+ 1.1i.

Proceeding along the same ideas developed in the previous section, we invoke the eigenvectors, ϕ(α)(t),
eigenvalues, µ(α)(t), ofM(t), and the matrix c (see equation (13)), to project the perturbation ρj and θj on
the eigenbasis and thus rewrite the time variation of the perturbation as follows

d

dt

(
ρβ
θβ

)
=
∑
α

cβα

(
ρα
θα

)
+

[(
−2σℜ 0

−2βℑ
σℜ
βℜ

0

)
+ 3

σℜ
βℜ

µ(β)

(
cos(2ωt) − sin(2ωt)
sin(2ωt) cos(2ωt)

)](
ρβ
θβ

)
. (26)

Let us assume to deal with a hypergraph made by three nodes, three links and one three-hyperedge, i.e. a
triangular face, where links weights and face weight evolve in time. Consider then a time-independent
matrix c

c=

0 0 0
0 0 Ω
0 −Ω 0

 ,

for some Ω⩾ 0. The eigenvalue µ(1) = 0 of M determines the dynamics parallel to the synchronous
manifold. On the other hand, the equations obtained for µ(2) and µ(3) give the dynamics of transverse modes
to the synchronization manifold. Hence the MSF can be obtained by solving equation (26) and provides the
conditions for a global stable synchronous solution to exist. In figure 7, we show the level sets of the MSF as a
function of the eigenvalues µ(2) and µ(3) while keeping the remaining parameters in equation (26) fixed at
generic nominal values. In panel (a), we consider a static hypergraph, i.e. Ω= 0, while in panel (b) a
time-varying hypergraph, i.e. Ω= 2, negative values of MSF are reported in black and they correspond thus
to a global synchronous state, positive values of MSF are shown in yellow. One can clearly appreciate that in
the case of time-varying hypergraph, the MSF is negative for a much larger set of eigenvalues µ(2) and µ(3)

and thus the SL system can easily synchronize.

4. Synchronization of Lorenz systems nonlinearly coupled via time-varying
higher-order networks

The aim of this section is to show that the previously presented results hold true beyond the example of the
dynamical system shown above, i.e. the SL. We thus decide to propose an application of synchronization for
chaotic systems on a time-varying higher-order network. For the sake of definitiveness, we used the
paradigmatic chaotic Lorenz model for the evolution of individual nonlinear oscillators.

We consider again the scenario of regular topology with the toy model hypergraph structure composed of
n= 4 nodes, 5 links and two three-hyperedges, i.e. triangular faces previously described. Moreover for sake of
definitiveness we assume the x-variables to be coupled via a three-body term through a cubic nonlinear
function, while the y-variables are coupled by using the network structure, i.e. the links. The whole system
can thus be described by
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Figure 8. Synchronization on time-varying regular higher-order network of coupled Lorenz oscillators. We report the MSF as a
function of the coupling strengths, ϵ1 and ϵ2, for two different values ofΩ,Ω= 0 (panel (a)) andΩ= 2 (panel (b)), by using a
color code, where black dots stand for a negative MSF, i.e. global synchronization, while yellow dots for a positive MSF. The
remaining parameters are kept fixed at a1 = 10, a2 =

8
3
, a3 = 28.


ẋi = a1 (yi − xi)+ ϵ2

N∑
j=1

N∑
k=1

A(2)
ijk (t)

(
x2j xk − x3i

)
ẏi = xi (a3 − zi)− yi + ϵ1

N∑
j=1

A(1)
ij (t)

(
yj − yi

)
żi = xiyi − a2zi

, (27)

where the system parameters are kept fixed at a1 = 10, a2 =
8
3 , a3 = 28, for which individual nodes exhibits

chaotic trajectory. The pairwise and higher-order structures are related to each other by L(2) = α2L(1), with
α2 = 1 (see appendix B).

Let us thus select as reference solution s⃗(t) a chaotic orbit of the isolated Lorenz model and consider, as
previously done, the time evolution of a perturbation about such trajectory. Computations similar to those
above reported, allow to obtain a linear non-autonomous system ruling the evolution of the perturbation,
whose stability can be numerically inferred by computing the MLE, i.e. the MSF. We first considered the
impact of the coupling strength, ϵ1 and ϵ2 on synchronization by varying them freely over the range [0,1.5]
and [0,0.04]. Here we vary the three-body coupling small only within a smaller region as the system becomes
unbounded in presence of strong higher-order interactions. The corresponding results are reported in
figure 8 where we present the level sets of the MSF as a function of the above parameters by using a color
code: black dots refer to negative MSF while yellow dots to positive MSF. Panel (a) refers to a static
hypergraph, i.e. Ω= 0, while panel (b) to a time-varying one, i.e. Ω= 2, one can thus appreciate that the
latter setting allows a negative MSF for a larger range of parameters ϵ1 and ϵ2 and hence we can conclude that
time-varying hypergraph enhance synchronization also in the case of chaotic oscillators.

To emphasize the proposed framework, we realized numerical simulations involving the Lorenz system
coupled again with the simple four-nodes time-varying hypergraph. We chose the parameters
(ϵ1, ϵ2) = (0.4,0.01), while the other parameter values are provided in figure 8. The numerical results
presented in figure 8 lead us to the following conclusion: the region associated to a positive MSF,
i.e. desynchronization of the Lorenz system, is larger in the case Ω= 0 than for Ω= 2. Consequently, the
system is much prone to achieve global synchronization on the time-varying hypergraph then in the static
case. In figure 9 we report the evolution of the x-variable for each nodes as a function of time, such results
corroborate the previous claim. In particular, in the case where Ω= 2 (figure 9(b)), we observe that the
x-variable shown phase coherence across all nodes, whereas such regular behavior is not present for Ω= 0,
where the system does not any longer present an oscillatory behavior (figure 9(a)).

We conclude this analysis by studying again the relation between the frequency Ω and the size of the
coupling parameters ϵ1, ϵ2 on the onset of synchronization. In figure 10 we show the MSF in the plane (Ω, ϵ1)
for a fixed value of ϵ2 = 0.02 (panel (a)), and in the plane (Ω, ϵ2) for a fixed value of ϵ1 = 0.1 (panel (b)). By
using again ϵ̂1(Ω) =min{ϵ > 0 :MSF(ϵ,ϵ2,Ω)< 0}, for fixed ϵ2, and similarly ϵ̂2(Ω), we can conclude that
ϵ̂1(Ω)< ϵ̂1(0)∼ 0.98 and ϵ̂2(Ω)< ϵ̂2(0)∼ 0.028 and thus supporting again our claim that time-varying
structures allow to achieve synchronization easier.
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Figure 9. Time series of the signal xi for a suitable choice of coupling parameters ϵ1 = 0.4 and ϵ2 = 0.01. In panel (a), we set
Ω= 0 whileΩ= 2 in panel (b). The other parameters values are the same as in figure 8, i.e. α2 = 1, a1 = 10, a2 =

8
3
, a3 = 28.

Figure 10.We show the MSF in the plane (Ω, ϵ1) (panel (a)) for ϵ2 = 0.002) and in the plane (Ω, ϵ2) (panel (b)) for ϵ1 = 0.1). We
can observe that in both panels the critical value of coupling strengths ϵ̂j(Ω) to achieve synchronization is smaller forΩ> 0 than
forΩ= 0. This implies that synchronization can occur more easily on a time-varying higher-order structure than on a static one.

5. Conclusions

To sum up, we have here introduced and studied a generalized framework for the emergence of global
synchronization on time-varying higher-order networks and developed a theory for its stability without
imposing strong restrictions on the functional time evolution of the higher-order structure. We have
demonstrated that the latter can be examined by extending the MSF technique to the novel framework for
specific cases based either on the inter-node coupling scheme or on the topology of the higher-order
structure. Our findings reveal that the behavior of the higher-order network is translated into an extra matrix
term in the linearized system ruling the evolution of perturbation about the reference solutions; this matrix
changes over time and possesses skew symmetry. This matrix is derived from the time-dependent evolution
of the eigenvectors of the higher-order Laplacian. Additionally, the eigenvalues associated with these
eigenvectors can also vary over time and have an impact on shaping the evolution of the introduced
disturbance. We have validated the proposed theory on time-varying hypergraphs of coupled SL oscillators
and chaotic Lorenz systems, and the results obtained indicate that incorporating temporal aspects into group
interactions can facilitate synchronization in higher-order networks compared to static ones.

The framework and concepts presented in this study create opportunities for future research on the
impact of temporality in systems where time-varying group interactions have been observed but not yet
thoroughly explored due to the absence of a suitable mathematical setting. Importantly, the fact that our
theory does not require any restrictions on the time evolution of the underline structure could offer the
possibility to apply it for a diverse range of applications other than synchronization.

Data availability statement

The codes used in the simulations for this article is available openly on Github repository [43]. All other data
that support the findings of this study are included within the article.
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Appendix A. Non-invasive couplings

Here we will discuss the results corresponding to a slightly more general hypothesis for g⃗(d), namely to be
non-invasive, i.e.

g⃗(d) (⃗s, . . . ,⃗ s) = 0 ∀d= 1, . . . ,D, (A.1)

whose goal is again to guarantee that the coupling term in equation (3) vanishes once evaluated on the orbit
(⃗s(t), . . . ,⃗ s(t))⊤. Indeed by using again x⃗i = s⃗+ δx⃗i and expanding equation (3) up to the first order we get

δ ˙⃗xi = Jfδx⃗i +
D∑

d=1

qd

n∑
j1,...,jd=1

Bij1...jd (t)

[
∂g⃗(d)

∂x⃗i

∣∣∣
(⃗s,...,⃗s)

δx⃗i +
∂g⃗(d)

∂x⃗j1

∣∣∣
(⃗s,...,⃗s)

δx⃗j1 + . . .

+
∂g⃗(d)

∂x⃗jd

∣∣∣
(⃗s,...,⃗s)

δx⃗jd

]
; (A.2)

from equation (A.1) we can obtain

∂g⃗(d)

∂x⃗i

∣∣∣
(⃗s,...,⃗s)

+
∂g⃗(d)

∂x⃗j1

∣∣∣
(⃗s,...,⃗s)

+ · · ·+ ∂g⃗(d)

∂x⃗jd

∣∣∣
(⃗s,...,⃗s)

= 0,

and thus rewrite (A.2) as follows

δ ˙⃗xi = Jfδx⃗i +
D∑

d=1

qd

n∑
j1,...,jd=1

Bij1...jd (t)

[
∂g⃗(d)

∂x⃗j1

∣∣∣
(⃗s,...,⃗s)

(
δx⃗j1 − δx⃗i

)
+ . . .

+
∂g⃗(d)

∂x⃗jd

∣∣∣
(⃗s,...,⃗s)

(
δx⃗jd − δx⃗i

)]
. (A.3)

Recalling the definition of k(d)ij given in equation (6) we get

δ ˙⃗xi = Jfδx⃗i +
D∑

d=1

qd (d− 1)!

[ n∑
j1=1

k(d)ij1
(t)

∂g⃗(d)

∂x⃗j1

∣∣∣
(⃗s,...,⃗s)

(
δx⃗j1 − δx⃗i

)
+ . . .

+
n∑

jl=1

k(d)ijd
(t)

∂g⃗(d)

∂x⃗jd

∣∣∣
(⃗s,...,⃗s)

(
δx⃗jd − δx⃗i

)]
. (A.4)

By using the definition of the higher-order Laplace matrix (7) we eventually obtain

δ ˙⃗xi = Jfδx⃗i −
D∑

d=1

qd

n∑
j=1

L(d)ij (t)

[
∂g⃗(d)

∂x⃗j1

∣∣∣
(⃗s,...,⃗s)

+ · · ·+ ∂g⃗(d)

∂x⃗jd

∣∣∣
(⃗s,...,⃗s)

]
δx⃗j. (A.5)

Let us consider now a particular case of non-invasive function, we assume thus there exists a function
φ⃗ : Rm → Rm, such that φ⃗(0) = 0 and define

g(d)
(⃗
xi, x⃗j1 , . . . , x⃗jd

)
=

d∑
ℓ=1

φ⃗
(⃗
xi − x⃗jℓ

)
, (A.6)

then

∂g⃗(d)

∂x⃗jℓ
=−Jφ (0) ,

where Jφ(0) is the Jacobian of the function φ⃗ evaluated at 0. In conclusion (A.5) rewrites as follows

δ ˙⃗xi = Jfδx⃗i −
D∑

d=1

qd

n∑
j=1

L(d)ij (t)(−d) Jφ (0)δx⃗j = Jfδx⃗i +
n∑

j=1

Gij (t) Jφ (0)δx⃗j, (A.7)

where G(t) =
∑D

d=1 dqdL
(d)(t) can be considered as an effective time-varying simplicial complex or

hypergraph.
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Let us now observe that the effective matrix G(t) is a Laplace matrix; it is non-positive definite (as each
one of the L(d)(t) does for any d= 1, . . . ,D and any t> 0), it admits µ(1) = 0 as eigenvalue associated to the
eigenvector ϕ(1) = 1√

N
(1, . . . ,1)⊤ and it is symmetric. So there exist a orthonormal time-varying eigenbasis,

ϕ(α)(t), α= 1, . . . ,n, for G(t) with associated eigenvalues µ(α) ⩽ 0. Similar to before, we define the n× n
time dependent matrix c(t) that quantifies the projections of the time derivatives of the eigenvectors onto the
independent eigendirections, namely

dϕ⃗(α)

dt
(t) =

∑
β

cαβ (t) ϕ⃗
(β) (t) ∀α= 1, . . . ,n. (A.8)

By recalling the orthonormality condition
(
ϕ⃗(α)(t)

)⊤
· ϕ⃗(β)(t) = δαβ we can again straightforwardly

conclude that c is a real skew-symmetric matrix with a null first row and first column, i.e. cαβ + cβα = 0 and
c1α = 0.

Thereafter, we consider equation (A.7), and we project it onto the eigendirections, namely we introduce

δx⃗i =
∑

α δ
ˆ⃗xαϕ

(α)
i and recalling the definition of c we obtain

dδˆ⃗xβ
dt

=
∑
α

cβα (t)δˆ⃗xα +
[
Jf +µ(β) (t) Jφ (0)

]
δˆ⃗xβ . (A.9)

This is the required master stability function, from which we can obtain conditions for stability of the
synchronous solution.

A.1. Synchronization of Stuart–Landau oscillators with non-invasive coupling assumption
To validate the above results we again consider the SL oscillator with a particular case of non-invasive
coupling function, namely we assume to exist a real function φ such that φ(0) = 0, φ ′(0) ̸= 0 and

g(1) (w1,w2) = φ(w1 −w2) , and
g(2) (w1,w2,w3) = φ(w1 −w2)+φ(w1 −w3) .

(A.10)

By reasoning as before, we get

d

dt

(
ρj
θj

)
=

(
−2σℜ 0

−2βℑ
σℜ
βℜ

0

)(
ρj
θj

)
+φ ′ (0)

∑
ℓ

(
q1L

(1)
jℓ + q2L

(2)
jℓ

)(1 0
0 −1

)(
ρl
θl

)
. (A.11)

By using again the eigenvectors ϕ(α)(t), eigenvalues µ(α)(t) of G(t) and the matrix c (see equation (A.8)), we
can rewrite the previous formula as

d

dt

(
ρβ
θβ

)
=
∑

α cβα

(
ρα
θα

)
+

[(
−2σℜ 0

−2βℑ
σℜ
βℜ

0

)
+φ ′ (0)µ(β)

(
1 0
0 −1

)](
ρβ
θβ

)
. (A.12)

Figure A1 represent the result for the non-invasive coupling assumption. Here, we consider the non-invasive
function so that φ ′(0) = 1 and the skew-symmetric projection matrix c is considered constant throughout
the analysis as earlier. Here we show the level sets of the MSF as a function of the eigenvalues µ(2) and µ(3)

while keeping the remaining parameters in equation (A.12) fixed at generic nominal values. In panel (a), we
consider a static hypergraph, i.e. Ω= 0, while in the (b) panel, a time-varying hypergraph, i.e. Ω= 2,
negative values of MSF are reported in black, and they correspond thus to a global synchronous state,
positive values of MSF are shown in yellow; one can clearly appreciate that in the case of the time-varying
hypergraph, the MSF is negative for a much larger set of eigenvalues µ(2) and µ(3) and thus the SL system can
achieve synchronization more easily.
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Figure A1. Synchronization on time-varying higher-order network of coupled SL oscillators with non-invasive coupling
configuration. Region of synchrony and desynchrony are depicted by simultaneously varying µ(2) and µ(3) for two different
values ofΩ (a)Ω= 0, (b) Ω= 2, where the domain in black indicates the area of the stable synchronous solution. The range of
the axes is characterized by considering the absolute values of the eigenvalues. All the other values are kept fixed at σ = 1.0+ 4.3i,
β = 1.0+ 1.1i, φ ′(0) = 1.

Appendix B. Construction of the toy example hypergraph

The goal of this section is to provide the details about the construction of the simple time-varying
hypergraph exhibiting a regular structure and used in the main text. Let us thus consider thus an hypergraph
composed by n= 4 nodes shared among two three-hyperedges whose ‘weight’ varies in time; consider also
the existence of four edges, also depending on time. More precisely let us assume the three-tensor encoding
the three-hyperedges are given by

A(2)
π(123) (t) = f(t) and A(2)

π(234) (t) = g(t) , (B.1)

where f (t) and g(t) are generic positive smooth functions and π(ijk) denotes any permutation of the indexes
ijk (see figure B1). Whereas, Whereas the weighted adjacency matrix describing the pairwise interactions, is
assumed to be given by

A(1) (t) =


0 f(t) f(t) 0
f(t) 0 f(t)+ g(t) g(t)
f(t) f(t)+ g(t) 0 g(t)
0 g(t) g(t) 0

 . (B.2)

By using the definitions equations (5) and (6) in the main text we can straightforwardly compute

k(2)ij (t) =


0 f(t) f(t) 0
f(t) 0 f(t)+ g(t) g(t)
f(t) f(t)+ g(t) 0 g(t)
0 g(t) g(t) 0

 and k(2)i (t) =
1

2


2f(t)

2f(t)+ 2g(t)
2f(t)+ 2g(t)

2g(t)

 , (B.3)

hence the second order Laplace matrix (see equation (7) in the main text) is given by

L(2) (t) =


−2f(t) f(t) f(t) 0
f(t) −2f(t)− 2g(t) f(t)+ g(t) g(t)
f(t) f(t)+ g(t) −2f(t)− 2g(t) g(t)
0 g(t) g(t) −2g(t)

 . (B.4)

From equation (B.2) it is straightforward to obtain the following Laplace matrix

L(1) (t) =


−2f(t) f(t) f(t) 0
f(t) −2f(t)− 2g(t) f(t)+ g(t) g(t)
f(t) f(t)+ g(t) −2f(t)− 2g(t) g(t)
0 g(t) g(t) −2g(t)

 , (B.5)

and thus conclude that

L(2) (t) = L(1) (t) , ∀t, (B.6)
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Figure B1. A simple time-varying hypergraph composed by n= 4 nodes, two three-hyperedges (represented by the red and blue
triangles) and five links (represented by the black lines).

namely the hypergraph shown in figure B1 is a regular structure. Let us observe that if we consider the same
structure but with unitary weights, i.e. by assuming a binary adjacency matrix and a binary three-tensor,
then the resulting static hypergraph will not be a regular structure. Indeed we can easily compute

L(1)bin (t) =


−2 1 1 0
1 −2 1 1
1 1 −2 1
0 1 1 −2

 and L(2)bin (t) =


−2 1 1 0
1 −4 2 1
1 2 −4 1
0 1 1 −2

 . (B.7)

Remark (a simpler hypergraph would be trivial). Let us observe that the previous example is in some sense
the smallest non trivial hypergraph one can construct with the above property. Indeed if we assume to have

only n= 3 nodes and a single hyperedge, namely A(2)
123(t) = f(t), then we will obtain

k(2)ij (t) =

 0 f(t) f(t)
f(t) 0 f(t)
f(t) f(t) 0

 and k(2)i (t) =
1

2

2f(t)
2f(t)
2f(t)

 , (B.8)

whose associated two-Laplace matrix is

L(2) (t) =

−2f(t) f(t) f(t)
f(t) −2f(t) f(t)
f(t) f(t) −2f(t)

= f(t)

−2 1 1
1 −2 1
1 1 −2

 , (B.9)

where in the last step we emphasized that the two-Laplace matrix is the product of a scalar function times a
constant matrix. In this case the time dependence can be factored out and the analysis will be very similar to
the case of constant hypergraph.

B.1. Computing the spectrum of the time-varying three-hypergraph
The aim of this section is to compute explicitly the spectrum of the toy example hypergraph presented in the
previous section. By using a symbolic manipulator one can easily compute the eigenvalues and eigenvectors
of the three-hypergraphs and thus obtain

Λ(1) = 0,Λ(2) =−3( f(t)+ g(t)) ,

Λ(3,4) =−3

2
( f(t)+ g(t))± 1

2

√
9 [f(t)]2 − 14f(t)g(t)+ 9 [g(t)]2, (B.10)

and

ψ(1) =
1

2


1
1
1
1

 ,ψ(2) =
1√
2


0
−1
1
0

 ,

ψ(3,4) =
1

4s3,4g(t)


6( f(t)− g(t))∓ 2

√
9 [f(t)]2 − 14f(t)g(t)+ 9 [g(t)]2

−(3f(t)− g(t))±
√

9 [f(t)]2 − 14f(t)g(t)+ 9 [g(t)]2

−(3f(t)− g(t))±
√

9 [f(t)]2 − 14f(t)g(t)+ 9 [g(t)]2

1

 .

(B.11)
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Figure B2. Temporal evolution of edges and three-hyperedge obtained for a particular value ofΩ= 2.

Let us observe that to increase the readability of the previous equation we did not explicitly wrote the
normalizing factor s3 (resp. s4 ) for ψ(3) (resp. ψ(4)). One can easily show that eigenvalues and eigenvectors
are real for all possible functions f (t) and g(t), and to prove that they are orthonormal and thus they form a
basis for R4 for all t.

A lengthy but straightforward calculation allows to obtain the matrix b (see equation (17) in the main
text) that describes the evolution of the derivatives of the eigenvectors on the eigenbasis. Because of the form
of the latter ones, we can show that all the entries of b are zero but b34 =−b43 that is given by

b34 =
N34

D34
, (B.12)

where

N34 = 864g4f ′ − 1344fg3f ′ − 864fg3g ′ − 864f 3gg ′ + 864f 2g2f ′ + 1344f 2g2g ′

+
√

9f 2 − 14fg+ 9g2
(
567f 3g ′ − 729f 3f ′ + 791g3f ′ − 729g3g ′ − 1899fg2f ′ + 1701f 2gf ′

+ 1477fg2g ′ − 1323f 2gg ′
)
+
(
9f 2 − 14fg+ 9g2

) 3
2 (81ff ′ − 63fg ′ − 63gf ′ + 81gg ′) , (B.13)

and

D34 = 2
(
27f 2 − 42f g+ 27g2 +(7g− 9f)

√
9f 2 − 14fg+ 9g2

) 3
2

×
√

27f 2 − 42fg+ 27g2 +(9f − 7g)
√

9f 2 − 14fg+ 9g2
√

9f 2 − 14fg+ 9g2, (B.14)

where for ease of reading we removed the explicit dependence on t and ′ denotes the first derivative with
respect to t.

The numerical studies performed in the main text has been realized by assuming f(t) = 1+ [sin(Ωt)]2

and g(t) = 1+ [cos(Ωt)]2, in this case the eigenvalues read

Λ(1) = 0,Λ(2) =−9,Λ(3,4) =−9

2
±

√
4cos(4Ωt)+ 13

2
, (B.15)

and the non-zero element of the matrix b is

b34 =
Ñ34

D̃34
, (B.16)

where Ñ34 = 24Ω sin(2tΩ)[cos(2tΩ)+ 3] and Ñ34 = 2
√
2[cos(2tΩ)+ 3][4cos(4tΩ)+ 13].

Figure B2 portrays the temporal evolution of the links and three-hyperedges weights. To better
understand the evolution of the hypergraph, we provide the graphical evolution of the hypergraph in the

accompanying supplementary movie, together with the time evolution of the weights of the links A(1)
ij (t) and

of the hyperedge A(2)
ijk (t).
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