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ABSTRACT 

 

Brucella spp are intracellular bacteria that cause brucellosis, one of the most common 

zoonoses in the world. Given the serious medical consequences of this disease, a safe and 

effective human vaccine is urgently needed. Efforts to develop this vaccine have been 

hampered by our lack of understanding of what constitutes a protective memory response 

against Brucella. Here, we characterize the cells and signaling pathways implicated in the 

generation of a protective immune memory response following the injection of heat-killed 

(HK) or live Brucella melitensis 16M. Using a panel of genetically-deficient mice, we 

demonstrated that both the Brucella-specific humoral response and CD4+ Th1 cells must act 

together to induce a fully protective immune response in the spleen after a secondary B.

melitensis infection. Humoral protective immunity is induced by the inoculation of both HK 

and live bacteria and its development does not require T cells, MyD88/IL-12p35 signaling 

pathways or an activation-induced deaminase-mediated isotype switch. In striking contrast, 

the presence of memory IFN-�-producing CD4+ Th1 cells requires the administration of live 

bacteria and functional MyD88/IL-12p35 pathways. In summary, our work identifies several 

immune markers closely associated with protective immune memory and could help to define 

a rational strategy to obtain an effective human vaccine against brucellosis. 
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INTRODUCTION 

Brucella (�-proteobacteria) are small, non-motile, non-spore-forming, facultative 

intracellular Gram-negative coccobacilli that infect humans as well as domestic (cattle, sheep, 

swine, camels, etc.) and wild-type (deer, bison, etc.) mammals. Animal infection leads to 

abortion in pregnant females and orchitis and epididymitis in males, resulting in infertility (1, 

2). Human brucellosis is a zoonotic infection transmitted through ingestion, inhalation, or 

contact with conjunctiva or skin lesions (3). Although it is rarely fatal, it is a severe and 

debilitating chronic disease without prolonged antibiotic treatment (4, 5). Despite significant 

progress, the incidence of human brucellosis remains very high in endemic areas, with more 

than 500,000 new human cases reported annually (6), and this number is considered to be 

largely underestimated (7). In addition, Brucella species are considered as potential biological 

warfare agents and have been “weaponized” by several governments (8). Since Brucella are 

classed as category B threat agents (8), their use in bioterrorist attacks must be taken seriously 

and response plans should be designed.  

As the complete eradication of Brucella would be unpractical due to its presence in a 

large range of wild mammals (9, 10) and because antibiotic treatment is costly and patients 

frequently suffer from resurgence of the bacteria (11), vaccination remains the only rational 

strategy to confer protection to populations living in endemic countries. Unfortunately, there 

is currently no available vaccine against human brucellosis as all commercially available 

animal vaccines are based on live attenuated strains of Brucella (B. melitensis Rev.1, B. 

abortus S19, B. abortus RB51) (12, 13) that cause disease in humans. Little real progress in 

the field of Brucella vaccination has been reported in recent decades. One clear cause seems 

be the empirical nature of research on the Brucella vaccine. Indeed, the vast majority of 
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publications report only the protective ability of candidate vaccines, limiting their analysis to 

present CFU counts in the spleen after challenge (14, 15). Evaluations of the ability of 

vaccines to induce IFN-� producing cells, detected in vitro after re-stimulation, and/or a 

humoral response are also often reported (16-18). Rare studies (19-22) have tried to 

characterize the nature of the protective immune response induced by vaccination and thus 

identify potential protective immune markers for the development of a rational strategy to 

select candidate vaccines. These markers cannot be deduced from studies of the primary 

immune response against Brucella, because, as shown in other infectious models (23-29), 

primary and secondary immune responses frequently implicate different classes of effectors. 

Live vaccines are widely accepted to be superior to inactivated vaccines for protection 

against brucellosis (19, 30, 31), suggesting that the localization and persistence of Brucella 

antigens are key factors in the development of protective immunity. However, there is no 

consensual explanation for this fundamental difference. The use of heat-killed (HK) 

preparations of Brucella as adjuvants to induce a Th1 response has been described by some 

authors (32-35) while others have demonstrated that HK Brucella failed to induce the 

desirable Th1 protective response (19, 31). Transfer experiments suggest that antibodies, 

CD4+ and CD8+ T cells could be protective (20-22, 36, 37), but these results are subject to 

multiple interpretations in the context of a chronic infection due to the half-life of the 

transferred antibodies and cells. The fact that both cell-mediated immunity and antibodies 

have been reported to independently protect mice against brucellosis may explain why a 

broad collection of immunogens have been described to elicit a protective response, with 

sometimes substantial variability in the protocol used (38). 

To increase our understanding of the nature of protective mechanisms induced by live 

vaccines, we developed an original model to compare and analyze in detail the level of 

protection in the blood and spleen induced by the intraperitoneal (i.p.) injection of heat-killed 
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(HK) and live virulent strains of B. melitensis 16M. The protection levels and elicited immune 

responses were characterized in several compartments (blood, peritoneal cavity and spleen) 

and at different times after the i.p. challenge with live B. melitensis. In this model, we 

observed that both HK and live vaccines induce drastic early control of bacteria dissemination 

in the blood, but that only live vaccines mediate late complete elimination of bacteria in the 

spleen. Using mice rendered genetically deficient for key elements of the immune response, 

we tried to identify the lymphocyte populations and signaling pathways associated with these 

early and late protections. Our results demonstrate that specific antibodies are critical for both 

protection levels and that their development does not require MyD88/IL-12 signaling 

pathways, CD4+ T cells or even an activation-induced deaminase (AID)-mediated class 

switch. However, MyD88/IL-12 signaling pathways and IFN-�-producing CD4+ T cells are 

needed to eradicate the bacteria from the spleen. On the whole, these results identify potential 

preliminary markers of protective immune response against B. melitensis and could thus help 

to develop a rational strategy to identify protective live vaccines against human brucellosis. 
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MATERIALS AND METHODS 

Ethics Statement

The animal handling and procedures of this study complied with current European 

legislation (directive 86/609/EEC) and the corresponding Belgian law “Arrêté royal relatif à 

la protection des animaux d'expérience du 6 avril 2010 publié le 14 mai 2010". The complete 

protocol was reviewed and approved by the Animal Welfare Committee of the Facultés 

Universitaires Notre-Dame de la Paix (FUNDP, Belgium) (Permit Number: 05-558). 

 

Mice and reagents

MyD88�/� C57BL/6 mice (39) were obtained from Dr. S. Akira (Osaka University, 

Japan). IL-12p35�/� C57BL/6 mice (40) from Dr. B. Ryffel (University of Orleans, France). 

AID-/- C57BL/6 mice (41) from Dr. H Jacobs (The Netherlands Cancer Institute, The 

Netherlands). MHCII�/� C57BL/6 mice (42) from Jörg Reimann (University of Ulm, Ulm, 

Germany). RAG1�/� C57BL/6 mice (43) from Dr. S. Goriely (Université Libre de Bruxelles, 

Belgium). STAT6�/� BALB/c mice (44), MuMT�/� C57BL/6 mice (45) were purchased from 

The Jackson Laboratory (Bar Harbor, ME). Wild-type C57BL/6 and BALB/c mice were 

purchased from Harlan (Bicester, UK) and were used as controls. All wild-type and deficient 

mice used in this study were bred in the animal facility of the Gosselies campus of the 

Université Libre de Bruxelles (ULB, Belgium).  

B. melitensis strain 16M (Biotype1, ATCC 23456) was initially isolated from an 

infected goat and grown in biosafety level III laboratory facilities. Overnight cultures grown 

with shaking at 37°C in 2YT media (Luria-Bertani broth with double quantity of yeast 

extract) and then were washed twice in PBS (3500xg, 10 min.) before use for mice 

inoculation as previously described (46). When indicated, we used a strain of B. melitensis 
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16M stably expressing the mCherry protein (mCherry-Br), a previously-described rapidly 

maturing variant of the red fluorescent protein DsRed (47), under the control of the strong 

Brucella spp. Promoter, PsojA (48). Construction of the mCherry-Br strain has been 

described previously in detail (49). 

 To prepare heat-killed B. melitensis, bacteria from an overnight liquid culture in 2YT 

media were washed twice in PBS (3500xg, 10 min.) before heating at 80°C for 1 hour. To 

confirm the killing, an aliquot was plated onto 2YT medium. 

 

Mice immunization and challenge 

Mice were injected intra-peritoneally (i.p.) with 4x104 CFU of live or 108 CFU of 

heat-killed (HK) B. melitensis in 500 �l of PBS. Control animals were injected with the same 

volume of PBS. Infectious doses were validated by plating serial dilutions of inoculums. 3 

weeks after immunization, mice were given antibiotics for 3 weeks to clear the infection. 

After resting for an additional 3 weeks, they were challenged i.p. with either a low dose (105 

CFU) or a high dose of B. melitensis (5x107 CFU). At the selected time after challenge, mice 

were bled or sacrificed by cervical dislocation. Immediately after sacrifice, peritoneal or 

spleen cells were collected for bacterial count, flow cytometry and microscopic analyses. 

 

Antibiotic treatment 

Antibiotic treatment was administered to both immunized and control mice for 3 

weeks. The oral treatment was a combination of rifampicin (12 mg/kg) and streptomycin (450 

mg/kg) (adapted from (50)) prepared fresh daily and given in the drinking water. An 

additional i.p. treatment was given and consisted of 5 injections of streptomycin (300 mg/kg) 

throughout the 3 weeks of oral treatment (51). The mice were not in distress. To ensure that 
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the antibiotic treatment was effective, some mice from each group were sacrificed 1 week 

prior to the challenge and the CFU counts were evaluated in the spleen.  

 

Bacterial count 

Spleens were recovered in PBS/0.1% X-100 triton (Sigma). We performed successive 

serial dilutions in PBS to get the most accurate bacterial count and plated them onto 2YT 

medium. The CFU were counted after 4 days of culture at 37°C. For bacterial counts in the 

blood, 70 �l of blood was collected from the tail with heparinated capillaries at selected time 

points and diluted in PBS/0.1% X-100 triton (Sigma). Serial dilutions in PBS were performed 

and plated onto 2YT medium. The CFU were counted after 4 days of culture at 37°C. 

 

Cytofluorometric analysis 

As previously described (46), spleens were harvested, cut in very small pieces and 

incubated with a cocktail of DNAse I fraction IX (Sigma-Aldrich Chimie SARL, Lyon, 

France) (100 μg/ml) and 1.6 mg/ml of collagenase (400 Mandl U/ml) at 37°C for 30 min. 

After washing, spleen cells were filtered and first incubated in saturating doses of purified 

2.4G2 (anti-mouse Fc receptor, ATCC) in 200 �l PBS 0.2% BSA 0.02% NaN3 (FACS 

buffer) for 20 minutes on ice to prevent antibody binding to Fc receptor. 3-5x106 cells were 

stained on ice with various fluorescent mAb combinations in FACS buffer and further 

collected on a FACScalibur cytofluorometer (Becton Dickinson, BD). We purchased the 

following mAbs from BD Biosciences: Fluorescein (FITC)-coupled 145-2C11 (anti-CD3�), 

Phycoerythrin (PE)-coupled RM4-5 (anti-CD4), Phycoerythrin (PE)-coupled 53-6.7 (anti-

CD8�), Fluorescein (FITC)-coupled 53-2.1 (anti-CD90), Fluorescein (FITC)-coupled 7D4 

(anti-CD25), Fluorescein (FITC)-coupled H1.2F3 (anti-CD69), Biotin-coupled AL-21 (anti-

LY6C) and Fluorescein (FITC)-coupled avidin. The cells were analyzed on a FACScalibur 
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cytofluorometer. Cells were gated according to size and scatter to eliminate dead cells and 

debris from the analysis. 

Intracellular cytokine staining 

For the intracellular staining, after DNase-collagenase treatment, spleen cells were 

incubated for 4 h in RPMI 1640 (Gibco Laboratories) 10% FCS with 1 �l/ml Golgi Stop (BD 

Pharmingen) at 37°C, 5% CO2. The cells were washed with FACS buffer and stained for cell 

surface markers before fixation in PBS/1% PFA for 15-20 min on ice. These cells were then 

permeabilized for 30 min using a saponin-based buffer (10X Perm/Wash, BD Pharmingen in 

FACS buffer) and stained with allophycocyanin-coupled XMG1.2 (anti-IFN-g; BD 

Biosciences). After final fixation in PBS/1% PFA, cells were analyzed on a FACScalibur 

cytofluorometer. No signal was detectable with control isotypes. 

Immunofluorescence microscopy 

Spleens were fixed for 6 hour at 4°C in 2% paraformaldehyde (pH 7.4), washed in 

PBS, incubated overnight at 4°C in a 20% PBS-sucrose solution under shaking, and washed 

again in PBS. Tissues were embedded in the Tissue-Tek OCT compound (Sakura), frozen in 

liquid nitrogen, and cryostat sections (5�m) were prepared. Tissues sections were rehydrated 

in PBS, then incubated successively in a PBS solution containing 1% blocking reagent 

(Boeringer) (PBS-BR 1%) and in PBS-BR 1% containing any of the following mAbs or 

reagents: DAPI nucleic acid stain, Alexa Fluor 350 or 488 phalloidin (Molecular Probes), 

Alexa Fluor 647-coupled BM8 (anti-F4/80, Abcam). Slides were mounted in Fluoro-Gel 

medium (Electron Microscopy Sciences, Hatfield, PA). Labeled tissue sections were 

visualized with an Axiovert M200 inverted microscope (Zeiss, Iena, Germany) equipped with 

a high resolution monochrome camera (AxioCam HR, Zeiss). Images (1384x1036 pixels, 
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0.16μm/pixel) were acquired sequentially for each fluorochrome with A-Plan 10x/0.25 N.A. 

and LD-Plan-NeoFluar 63x/0.75 N.A. dry objectives and recorded as eight-bit grey-level 

*.zvi files. At least 3 slides per organ were analyzed from 3 different animals and the results 

are representative of 2 independent experiments.  

In vitro stimulation of peritoneal cells 

Mice were injected i.p. with 4x104 CFU of live or 108 CFU of heat-killed B. melitensis 

in 500 �l of PBS and treated with antibiotics as described above. Control animals were 

injected with the same volume of PBS. Peritoneal cells from naive or immunized mice were 

harvested 60 days later by washing the peritoneal cavity with 10 ml of cold RPMI 1640. Cells 

were centrifuged and then cultured in RPMI 1640 supplemented with 10% FCS, 1% L-

Glutamine, 1% Non Essential Amino Acids, 1% Pyruvate Sodium and 0.1% gentamycin, in 

6-well plates with 107 cells/well in a volume of 2 ml. For stimulation, a concentration of 

2x107 bacteria/ml of HK B. melitensis was used. Cells were then incubated for 7 hour at 37°C, 

5% CO2. After adding 1 �l/ml Golgi Stop (BD Pharmingen), the incubation was continued 

for an additional 13 hour at 37°C, 5% CO2. Cells were then washed and stained as described 

above. 

 

ELISA

Specific murine IgM, IgG1, IgG2a and IgG3 isotypes were determined by enzyme-

linked immunosorbent assay (ELISA). Polystyrene plates (Nunc 269620) were coated with 

heat-killed B. melitensis (107 CFU/ml). After incubation overnight at 4°C, plates were 

blocked for 2 hours at room temperature (RT) with 200 �l of PBS-3.65% casein. Then plates 

were incubated for 1 hour at room temperature with 50 �l of serial dilutions of the serum in 

PBS-3.5% casein. The sera from unimmunized mice were used as the negative control. After 
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4 washes with PBS, isotype-specific goat anti-mouse horseradish peroxidase conjugates were 

added (50 �l/well) at appropriate dilutions (�IgM from Sigma; LO-MG1-13 HRPO, LO-

MG2a-9 HRPO, LO-MG3-13 HRPO from LO-IMEX). After 1 hour of incubation at room 

temperature, plates were washed 4 times in PBS, and 100 �l of substrate solution (BD 

OptEiA) was added to each well. After 10 minutes of incubation at room temperature in the 

dark, the enzyme reaction was stopped by adding 25 �l/well of 2N H2SO4, and absorbance 

was measured at 450 nm. 

 

Statistical analysis 

We used a (Wilcoxon-) Mann-Whitney test provided by GraphPad Prism software to 

statistically analyze our results. Each group of deficient mice was compared to wild-type 

mice. We also compared each group with each other and displayed the results when required. 

Values of p < 0.05 were considered to represent a significant difference. *, **, *** denote 

p<0.05, p<0.01, p<0.001, respectively. 
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RESULTS 

Administration of both killed and live Brucella melitensis induces a protective memory 

state that limits bacteria dissemination in the blood, but only live-infected mice display a 

complete bacteria elimination in the spleen. 

 It is well documented that live vaccines induce better protection against Brucella 

infection compared to killed vaccines (19, 30, 31). However, the efficacy of these protocols is 

rarely compared in the same study and there is no precise or consensual explanation for this 

fundamental difference. To increase our understanding of this phenomenon, we performed 

here a detailed analysis of the protective state, including the humoral and cellular immune 

response induced by the injection of heat-killed (HK) or live fully virulent B. melitensis 16M 

in mice. In addition, as C57BL/6 and BALB/c mice have been reported to display different 

levels of resistance to Brucella infection (46, 52, 53) and are frequently used in Brucella 

vaccination studies (38), we performed our comparison in both strains of mice. 

 Mice were injected i.p. with PBS (the control, termed here "naive mice group”), 4x104 

CFU of live B. melitensis, a classical dose to infect the mice (38) (termed here "live-

immunized group") or 5x107 CFU of heat killed (HK) B. melitensis, a dose used by other 

investigators (34, 54)  (termed here "HK-immunized group"). In order to avoid the impact of 

persistent chronic infection in mice injected with live bacteria, all groups were treated 21 days 

post-injection with antibiotics (rifampicin and streptomycin) for 3 weeks and then left resting 

for at least 3 weeks before challenge with a high (5x107 CFU) or low (105 CFU) dose of live 

bacteria. See Figure S1.A for a detailed schematic representation of this protocol. As 

expected, antibiotic treatment completely eliminated Brucella in the spleens of wild-type mice 

after generally 8 days (Figure S1.B), but 3 weeks of treatment was necessary to eliminate 
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Brucella from the spleens of several deficient mice displaying high susceptibility to infection, 

such as MyD88-/- and Il-12p35-/- mice (data not shown). 

 All naive control mice injected with a high (5x107 CFU) dose of B. melitensis (termed 

here the “primo infected group”) displayed clearly detectable counts of bacteria in the blood 

after 3 hours (Figure 1.A). We used this blood persistence to quantify the ability of the 

immunized group to control early systemic dissemination of the bacteria. In striking contrast 

to naive mice, both the HK and live-immunized groups, when challenged with the same dose, 

displayed a drastic and highly similar reduction of CFU counts in the blood, with elimination 

of approximately 99.99% of bacteria from the blood. This demonstrated that both groups 

possess effector mechanisms able to rapidly limit the blood dissemination of Brucella. In 

agreement, these two groups also presented a significant reduction of CFU counts in the 

spleen at 1 day post-challenge compared to naive control mice (Figure 1.B). Histological 

analysis of spleen sections from infected mice challenged with a mCherry-expressing strain of 

B. melitensis showed that the bacteria are located in the same zone and cells in both the 

primo-infected and live-immunized groups of mice (Figure S2). As described in detail by our 

group in a previous study (49), these cells are mainly red pulp macrophages (F4/80+, Figure 

S2) and marginal zone macrophages (MOMA-1+, not shown). At 6 days post-challenge, the 

live-immunized group displayed highly-significant better control of the bacteria count in the 

spleen compared with the HK-immunized group. Similar results were obtained in BALB/c 

and C57BL/6 mice (Figures 1.A and 1.B). 

 In order to investigate in greater detail the ability of the live and HK-immunized 

groups to develop complete bacterial clearance in the spleen over the long term, we also 

challenged these mice with a low and more classical dose (105 CFU) of B. melitensis (Figures 

2.A and 2.B). Kinetic analysis of the bacterial load in the spleen showed that mice handle the 

infection differently according to the immunization protocol used (Figure 2.A). In 
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approximately 80% of primo-infected C57BL/6 mice, bacteria escape the immune response 

and persist in the spleen until 50 days post-infection (Figure 2.B). In contrast, only 30% of 

C57BL/6 mice from the live-immunized group conserved detectable CFU counts in the spleen 

at 50 days post-infection. Surprisingly, this reduction was not observed in the live-immunized 

group of BALB/c mice or in the HK-immunized groups of both strains of mice (Figure 2.B). 

 On the whole, these results demonstrate that, though injections of killed or live 

bacteria greatly reduce the bacteria count disseminated by blood circulation after a challenge, 

only live bacteria induce a complete bacterial clearance in peripheral organs such as the 

spleen. We also observed that the strain of mice used to investigate this phenomenon is 

critical as C57BL/6 mice display bacterial clearance in the spleen, unlike BALB/c mice. In 

order to identify immune parameters associated with resistance to infection, we compared the 

development of humoral and cellular immune responses in both the HK- and live-immunized 

groups. 

 

Administration of killed or live Brucella melitensis induces specific circulating 

antibodies able to reduce the blood dissemination of Brucella infection. 

The presence of specific immunoglobulins (Ig) against Brucella antigens in the serum 

of the HK- and live-immunized groups of C57BL/6 mice was investigated by ELISA two 

days before challenge (Figure S3.A). The results showed that both groups displayed high 

levels of specific IgM, IgG1 and IgG3 antibodies (Abs) against Brucella antigens. It is 

interesting to note that Brucella-specific IgG2a were observed only in the live-immunized 

group.  

In order to determine the importance of these circulating Ig during a challenge with 

live Brucella, we compared the ability of live-immunized groups of wild-type, RAG1-/-, 

MuMT-/- (B cell-deficient) and AID-/- (deficient in isotype-switched Abs, B cells produce only 
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IgM) C57BL/6 mice to control Brucella. When challenged with a high dose (5x107 CFU) of 

B. melitensis, RAG1-/- and MuMT-/- mice appeared unable to control Brucella dissemination 

as demonstrated by much higher blood CFU counts detected at 3 hours and 3 days compared 

to wild-type and AID-/- live-immunized groups of mice (Figure 3.A). Following a low-dose 

challenge (105 CFU), we also observed that MuMT-/- mice displayed higher CFU counts in 

the spleen at 50 days (Figure 3.B) and a reduced frequency of these mice displayed a 

complete bacterial clearance (Figure 3.C) compared to wild-type and AID-/- mice. These 

results demonstrate that circulating antibodies are the main effectors limiting early 

dissemination of Brucella in the blood of live-immunized groups and suggest that this early 

control is also critical to the development of a bacterial clearance in the spleen. In addition, 

the ability of AID-/- mice to control blood dissemination and perform bacteria eradication in 

spleen strongly suggests that IgM alone can perform this task and IgG production is not 

strictly necessary. 

Injection of live but not killed Brucella melitensis induces the development of a CD4+ T 

cell memory population able to rapidly produce IFN-� in response to Brucella infection. 

 We and others (46, 53, 55-59) have shown that IFN-� is a key cytokine-regulating 

protective cellular immune response against primary Brucella infection. IFN-� is produced by 

Natural Killer (NK) cells, CD4+ T and CD8+ cells (46, 59) and is crucial for the development 

of inducing Nitric Oxide Synthase (iNOS) positive granulomas that limit B. melitensis 

infection in the spleen and the liver (49). Here, we analyzed by flow cytometry the phenotype 

of IFN-� producing cells at the site of infection, i.e. the peritoneal cavity, of HK- and live-

immunized groups of C57BL/6 mice challenged with low (105 CFU) doses of live B.

melitensis. IFN-�-producing cells were analyzed at 12, 24 and 48 hours post-challenge.  
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After challenge (105 CFU), in the absence of in vitro stimulation, an elevated 

frequency of IFN-� positive cells was detected at 12 hour in the peritoneal cell population 

from the live-immunized group (Figure 4.A-B) that progressively decrease at 24 and 48 hours 

(data not shown). In contrast, in the primo-infected or HK-immunized groups, only a very 

weak IFN-� signal was detected in the peritoneal cavity (Figure 4.A-C, and data not shown) 

during the first 48 hours. The specificity of the IFN-� signal was confirmed using IFN-�-/- 

C57BL/6 mice (data not shown). The majority of high IFN-� producers in the peritoneal 

cavity in the live-immunized group were CD4+ T cells since a mean of 68% of highly IFN-�-

positive cells were found to co-express CD3� and CD4 markers (Figure 4.C). These cells also 

expressed higher levels of CD25, CD69 (activation marker) and Ly-6C (memory T cells 

marker) (Figure 4D). When stimulated overnight in vitro with HK B. melitensis, only 

peritoneal cells from the live-immunized group displayed IFN-� producing CD4+ T cells. This 

demonstrates that this group contained Brucella-specific memory CD4+ T cells in the 

peritoneal cavity before challenge (Figure S4). As expected, the live-immunized group of 

BALB/c mice displayed a ten-fold reduction of the frequency of IFN-� positive peritoneal 

cells compared to C57BL/6 mice (Figure 5A-B). 

We also investigate the production of IFN-� in the spleen of C57BL/6 mice during the 

first 120 hours in all groups, but only the live-immunized group displays a very weak 

frequency of IFN-�+ CD4+ T cells (< 200 cells / 106 spleen cells) that progressively peak at 

48h, indicating a delayed response in this organ (data not shown).  

 On the whole, these data suggest that only injection of live B. melitensis induces high 

IFN-� producers CD4+ peripheral memory T cells able to rapidly react in vivo to i.p. 

inoculation of Brucella. 
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MHC-II and MyD88/IL-12 pathways are crucial for the development of bacterial 

eradication in the spleen of mice immunized with live Brucella melitensis. 

 In order to confirm the link between complete bacteria clearing in the spleen and the 

presence of IFN-�-producing CD4+ memory T cells observed in the live-immunized group, 

we analyzed the impact of the absence of CD4+ T cells or IFN-�-inducing pathways using 

several genetically-deficient mouse strains. Live-immunized groups of wild-type, MyD88-/-, 

IL-12p35-/- and MHC-II-/- C57BL/6 mice were challenged with high (5x107 CFU) or low (105 

CFU) doses of live B. melitensis and their ability to control Brucella dissemination in the 

blood and confer protective immunity in the spleen was assessed (Figure 6). 

 MyD88, IL-12p35 and MHC-II deficiencies do not impair the ability of live-

immunized groups to display lower Brucella CFU counts in the blood following a high-dose 

challenge compared to naive infected mice (Figure 6.A). A comparative analysis of the 

humoral immune response in these deficient mice was performed two days before challenge 

and showed that all groups displayed high levels of Brucella-specific IgM but extremely 

variable levels of different Brucella-specific IgG isotypes (Figure S3.B). In particular, MHC-

II-/- mice presented very low levels of Brucella-specific IgG1, IgG2a and IgG3. These results 

demonstrate that MyD88/IL-12p35 signaling pathways are not implicated in the early control 

of Brucella dissemination. They also suggest that, as previously observed with AID-/- mice 

(figure 3.A), specific IgM alone could suffice to perform this task. 

 In striking contrast, we observed that MyD88, IL-12p35 and MHC-II deficiencies 

strongly impacted the ability of live-immunized groups to eliminate Brucella from the spleen 

after a low-dose challenge (Figure 6.B-C). Impaired protective immunity in the spleen of 

various deficient mouse strains was found to be associated with a drastic reduction of IFN-�-

producing cells at 12 hours post-challenge in the peritoneal cavity (Figure 7). 
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 Finally, as BALB/c mice displayed reduced IFN-� production in both the peritoneal 

cavity and the spleen (Figure 5) and impaired protective immunity in the spleen (Figure 2.A-

B), we analyzed the impact of IL-4/IL-13 receptor signaling pathways neutralization in the 

live-immunized group of BALB/c mice. Despite similar frequencies of IFN-� producing cells 

in the peritoneal cavity at the time point tested (Figure 8.A-B), the live-immunized group of 

STAT-6-/- mice displayed lower CFU counts (Figure 8.C) and significantly better elimination 

of B. melitensis in the spleen (Figure 8.D) compared to wild-type mice. This suggests that 

protective immunity in the spleen is negatively affected by IL-4/IL-13 signaling in BALB/c 

mice. 
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DISCUSSION 

 

Brucellae seem perfectly well adapted to their mammalian hosts. They furtively infect 

mammals, causing only minor inflammation, modify the vesicular environment of phagocytic 

cells to safely grow intracellularly and disseminate in all tissues (60). However, though 

Brucella infection remains largely silent, brucellosis induces potentially serious complications 

over the long term (3, 4, 61). As antibiotic-treated patients frequently display bacteria 

resurgence (11, 62), the development of a safe protective vaccine remains the only realistic 

strategy to protect exposed populations. Empirical research has failed to develop a safe 

protective vaccine for humans (13, 63) and, despite a plethora of publications on the murine 

model of brucellosis, our understanding of the secondary immune response against Brucella is 

currently very poor. Immune markers used to determine the efficacy of vaccination are 

commonly based on the primary immune response against Brucella. However, it has been 

often observed in several other infectious models (23-29) that the primary and secondary 

responses do not necessarily use same classes of effector mechanisms. In a recent study (59) 

using a large panel of genetically-deficient mice, we attempted to clearly identify the effector 

cells and signaling pathways implicated in the primary immune response against B. melitensis 

infection. We showed that IFN-�-producing CD4+ Th1 cells play a crucial role in the control 

of bacteria, but that a deficiency in CD8+ T cell, B cell, Th2 and Th17 responses does not 

qualitatively affect the course of the infection. We also demonstrated that Th1 induction 

requires functional TLR9/MyD88/IL-12p35 signaling pathways (46, 49, 59). In the present 

study, we have developed an original model to characterize the effector mechanisms involved 

in the control of a secondary infection by B. melitensis. Mice were injected with HK or live 

virulent Brucella melitensis 16M and were treated with antibiotics after 21 days. After a 

resting phase, the mice were challenged with the same living bacteria. Protection was 
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analyzed at two distinct levels. Early protection was measured by the ability of the immune 

response to reduce dissemination of the bacteria by the blood stream. The late immune 

protection was scored by the frequency of animals that were not able to completely eradicate 

bacteria from their spleen at 50 days post-challenge. The spleen was chosen as the control 

organ because Brucella has been shown to persist for long periods of time (up to 100 days) in 

this organ (64). In our model, the absence of bacteria in the spleen has been always correlated 

with complete elimination of bacteria in the liver (data not shown). However, a reservoir in 

other tissues cannot be formally excluded. 

Control of intracellular pathogens such as bacteria and protozoa usually requires CD4+ 

T cell-, IFN-�- and/or tumor necrosis factor (TNF)-dependent activation of macrophages. This 

leads to an upregulation of antimicrobial effector mechanisms, including the acidification of 

phagolysosomes and the expression of inducible nitric oxide synthase (iNOS, NOS2 (65)). 

Although antibodies are frequently regarded as irrelevant for the control of intracellular 

bacteria and protozoa, more recent studies demonstrate that they may contribute both to 

development of the disease as well as to its control (66). Antibody-mediated aggravation of 

infections with intracellular pathogens might be due to Fc-receptor-mediated facilitation of 

entry of the pathogen into the host cell or to macrophage deactivation conveyed by inhibitory 

Fc receptors (67-69). Conversely, antibody-dependent control of intracellular microbes may 

result from antibody binding to the pathogen during intermittent extracellular phases, leading 

to opsonization and classical complement activation (70). 

In our model, we observed that humoral immunity is necessary for full protection 

upon secondary infection (see Table 1). Circulating specific antibodies are crucial to control 

the early dissemination of Brucella by the blood stream following challenge by intraperitoneal 

injection. They are also critical for the development of sterilizing immunity in the spleen at 50 

days post-challenge. Thus, though B cells appear to be dispensable (59) or even detrimental 
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(71, 72) during primary infection, they play an important positive role in the control of 

secondary infection. Surprisingly, our results demonstrate that CD4+ T cells, MyD88/IL-

12p35 signaling pathways and even the AID-mediated class switch are dispensable to obtain 

protective circulating antibodies. No other isotype seems to play a crucial role as deficiency in 

CD4+ T cells, MyD88 and IL-12p35 affects various IgG isotypes, but does not reduce the 

early control of infection. Interestingly, Brucella-specific IgM are maintained in the absence 

of chronic infection, as antibiotic-treated mice remained protected for 3 months against a 

challenge infection (data not shown). IgM-mediated immunity is usually considered to be 

short-lived and only effective during the early stages of infection. Our findings indicate that 

IgM may be of greater utility during chronic bacterial infections than previously thought. 

Other researchers have also provided evidence for long-term IgM responses, although such 

reports are relatively rare (73). Similar results have been reported in experimental models of 

infection by intracellular bacteria such as Borrelia hermsii (74) and Ehrlichia muris (75). As 

T cell-independent activation of B cells is generally dependent on pattern recognition 

receptors (PRRs) (76), we can hypothesize that Brucella pathogen-associated molecular 

patterns (PAMPs) are implicated in the activation of Brucella-specific B cells and that PRRs 

recognizing these PAMPs may act by a MyD88-independent signaling pathway. Our 

observations that long-lived protective IgM responses can be generated in vivo by Brucella 

infection suggest that it may be feasible to target IgM production as part of vaccination 

strategies.  

Early protective immunity mediated by Brucella-specific circulating antibodies 

developed following inoculation of both HK and live bacteria. In striking contrast, 

development of late sterilizing immunity in the spleen required previous injection of live 

bacteria. This ultimate protection level is closely correlated with the presence of both 

circulating Brucella-specific antibodies and peritoneal Th1 CD4+ T cells able to quickly 
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produce high IFN-� counts after Brucella challenge (see Table 1). The absence of antibodies 

(MuMT-/- mice) or CD4+ T cells (MHC-II-/- mice) leads to persistence of the bacteria in the 

spleen, demonstrating that both effector mechanisms must act together to eradicate Brucella 

from peripheral tissues. HK Brucella administration fails to induce peritoneal CD4+ T cells 

able to produce high IFN-� counts after Brucella challenge, suggesting that the dynamics of 

intracellular infection are critical to induce this effector mechanism. Analysis of genetically-

deficient mice showed that the development of IFN-� producing CD4+ T cells is strictly 

dependent on MyD88/IL-12p35 signaling pathways. This result is not expected or predictable 

on the basis of previous studies. IFN-� and IRF1 deficient mice, but not RAG, IL-12 or 

MyD88 deficient mice, succumb to primary infection by Brucella (46, 55, 58, 59, 77, 78), 

suggesting that IFN-� can be induced at low level by MyD88/IL-12-independent pathways. 

Our results confirm the importance to use IL-12 inducing adjuvant in Brucella vaccination. 

Failure of HK Brucella immunization to induce IFN-� producing CD4+ T cells could explain 

the absence of IgG2a in the serum of the HK-immunized group, as the development of this 

isotype is well known to be dependent on IFN-� (79). 

Several past (21) and more recent studies (18, 80, 81) have proposed that CD4+ and 

CD8+ T cells can both play important role in the control of Brucella infection whereas other 

studies favors the implication of CD8+ (82-84) or CD4+ (85, 86) T cells. Interestingly, we 

observed that IFN-�-producing CD4+ T cells are not replaced by IFN-�-producing CD8+ T 

cells in the absence of MHC-II-dependent antigen-presenting pathways, as was previously 

observed during the Brucella primary response (59). This demonstrates that primary Brucella 

infection induces low-quality responding CD8+ T cells unable to participate in the secondary 

immune response. Several recent reports suggest that the failure of the immune system to 

maintain a CD8+ T cell response during chronic brucellosis results from bacterial evasion 

dependent on the virulence factor, TcpB (64), and show in vitro that Brucella induces 
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intracellular retention of the MHC-I down-modulating cytotoxic CD8+ T cell response (87). 

The identification of CD4+ T cells as key lymphocyte subsets is critical to determine which 

antigen presenting pathways (MHC-I or MHC-II) must be targeted by vaccination protocol.   

Several reports in the Mycobacterium tuberculosis model suggest that the ability of 

memory Th1 CD4+ T cells to fight intracellular bacteria could be dissociated from IFN-� 

production (88-91). As IFN-�-/- mice succumb rapidly to Brucella infection (55, 92), we have 

not been able to test this hypothesis in our Brucella model. However, we have shown 

previously that IFN-�-producing CD8+ T cells fail to protect mice during primary Brucella 

infection (59), suggesting that IFN-� production is not the only property of CD4+ T cells 

implicated in the control of Brucella. The nature of any such additional factors in our model 

has not yet been determined. Recent studies (23, 93) on the L. monocytogenes model suggest 

that the ability of T cells to regulate the local recruitment of innate effector cells can be 

crucial to the protective secondary response. Comparison of chemokine production by CD4+ 

and CD8+ T cells during brucellosis could provide interesting new areas of investigation. 

In this study, we were unable to confer sterilizing protection in the spleen of naive 

mice by the transfer of serum or peritoneal cells from the live-immunized group (data not 

shown). We hypothesize that this may have been due to the failure of the homing of the 

transferred CD4+ T cells or to the absence of other unidentified synergic cell populations. 

C57BL/6 and BALB/c mice are equally used in vaccination studies. However, the 

efficacy of vaccines is rarely compared with both mice strains in the same study. Our results 

demonstrate that, following HK or live immunization, C57BL/6 and BALB/c mice display a 

similar efficacy to control early dissemination of Brucella after challenge but differ 

significantly in their ability to develop a sterilizing immune response in the spleen. Unlike in 

C57BL/6 mice, the injection of live bacteria in BALB/c mice does not improve their capacity 

to eradicate bacteria from the spleen. This phenomenon could be correlated with the reduced 
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frequency of IFN-�-producing cells in the live-immunized group of BALB/C mice compared 

to C57BL/6 mice after challenge in the peritoneal cavity. These results are important in 

vaccination as results and conclusions could be affected by the choice of one mouse strain. 

It has been hypothesized (52) that IL-4 production in BALB/c mice reduces IFN-� 

production and adversely affects the protective immune response to Brucella. We have 

demonstrated previously that IL-4 receptor deficiency (59) or neutralization of IL-4/IL-13 

receptor signaling pathways with STAT-6 deficiency (data not shown) does not improve the 

ability of C57BL/6 and BALB/c mice to control primary Brucella infection. In this study, we 

observed that STAT-6 deficiency in the live-immunized group of BALB/c mice significantly 

increases the rate of Brucella elimination after secondary infection. Indeed, STAT-6-/- 

BALB/c mice display a level of control similar to wild-type C57BL/6 mice. This surprising 

result suggests that sterilizing immunity in the spleen is affected by IL-4/IL-13 in BALB/c 

mice. As IFN-�-producing cell frequency in the peritoneal cavity after challenge of STAT-6-/- 

BALB/c does not seem to be higher, we hypothesize that IL-4 and/or IL-13 could act on other 

unidentified crucial effector mechanisms. This interesting phenomenon suggests that 

neutralization of IL-4 could improve the efficacy of Brucella vaccination and requires further 

study.  

Though previous studies on Brucella vaccination have reported the importance of the 

induction of specific antibodies (21, 36, 37) and CD4+ T cells (19, 21, 37) in protection, our 

study is the first, to our knowledge, to (i) formally demonstrate by using genetically-deficient 

mice and without manipulation such as transfer experiments the complementary role played 

by both humoral immunity and Th1 CD4+ T cells in the clearance of Brucella during 

secondary infection and (ii) identify the signaling pathways implicated in the development of 

these effector mechanisms. These results could improve our ability to develop protective 

vaccines or therapeutic treatments against brucellosis. Our observations suggest that the 
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development of protective vaccines requires the selection of a vaccination protocol favoring 

humoral immunity, antigen presentation to CD4+ T cells, IL-12 production and absence of IL-

4. 

The great majority of vaccination studies analyzed the isotype induced by their 

vaccine candidate and discussed the interest of IFN-�/IL-12 dependent isotype in the control 

of Brucella infection. It is usually assumed that the induction by CD4+ T cells of the 

production of IgG2 antibodies from B cells is critical to control the course of murine and 

ovine B. melitensis infection (85, 94). In contrast, our results strongly suggest that the nature 

of isotype is not a critical parameter in vaccination. 

As functional Th1 CD4+ T cells only developed following the administration of live 

bacteria in our model, live vaccines seem to remain the easiest and most potent tools for the 

production of candidate protective vaccines. However, live-attenuated strains retain generally 

unacceptable levels of virulence for human vaccination. Gamma-irradiated Brucella do not 

divide but conserve metabolic activity and protect mice against virulent bacterial challenge 

without signs of residual virulence (95). Thus, inactivated, yet metabolically active, microbes 

could represent a promising strategy for safe vaccination against B. melitensis. 
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FIGURE LEGENDS 

 

Figure 1. Comparison of protective immunity induced by a high-dose challenge in 

C57BL/6 or BALB/c mice immunized previously with live or heat-killed (HK) B. 

melitensis. C57BL/6 and BALB/c WT mice were immunized i.p. either with live (4x104 

CFU, Live-immunized group) or HK bacteria (108 CFU, HK-immunized group), as indicated. 

All mice were treated with antibiotics as described in the Materials and Methods and then 

challenged with a high dose of live bacteria (5x107 CFU) and bled or sacrificed for spleen 

harvesting at the selected time. The data represent the CFU per ml of blood (A) or the CFU 

per gram of spleen (B). Grey bars represent the median. These results are representative of 

two independent experiments. Significant differences are denoted by an asterisk (*). *, **, 

*** denote p<0.05, p<0.01, p<0.001, respectively. 

 

Figure 2. Comparison of protective immunity induced by a low-dose challenge in 

C57BL/6 or BALB/c mice immunized previously with live or heat-killed (HK) B. 

melitensis. C57BL/6 and BALB/c WT mice were immunized i.p. either with live (4x104 

CFU, Live-immunized group) or HK bacteria (108 CFU, HK-immunized group). All mice 

were treated with antibiotics as described in the Materials and Methods and then were 

challenged with a low dose of bacteria (105 CFU) and sacrificed at the selected time. (A) The 

data represent the CFU per gram of spleen from one representative experiment. Grey bars 

represent the median The mean +/- SEM of the percentage of mice that are still positive for 

Brucella in the spleen 50 days post challenge is represented in (B). These data are pooled 

from at least two independent experiments. Significant differences are denoted by an asterisk 

(*). **, *** denote p<0.01, p<0.001, respectively. 
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Figure 3. Comparison of protection between wild-type, RAG1-/-, MuMT-/- and AID-/-

C57BL/6 mice immunized previously with live B. melitensis. Wild-type (WT), RAG1-/-, 

MuMT-/- and AID-/- C57BL/6 mice were immunized i.p. with live B. melitensis (4x104 CFU) 

and were treated with antibiotics as described in the Materials and Methods. A, Mice were 

challenged with a high dose of B. melitensis (5x107 CFU) and bled at the selected time. The 

data represent the CFU per ml of blood. B, C, Mice were challenged with a low dose of B. 

melitensis (105 CFU) and sacrificed 50 days post-challenge. (B) represents the CFU per gram 

of spleen. These data are representative of three independent experiments. Grey bars represent 

the median. (C) displays the mean +/- SEM of the percentage of mice that are still positive for 

B. melitensis in the spleen. These data are pooled from two independent experiments. 

Significant differences are denoted by an asterisk (*). *, **, *** denote p<0.05, p<0.01, 

p<0.001, respectively. “Pri” means primo group.

Figure 4. Comparison of IFN-�+ cell frequency after challenge in C57BL/6 mice 

immunized previously with live or HK B. melitensis. C57BL/6 mice were immunized i.p. 

either with live (4x104 CFU, Live-immunized group) or HK bacteria (108 CFU, HK-

immunized group). All mice were treated with antibiotics as described in the Materials and 

Methods and then were challenged with either a low dose (105 CFU) of live bacteria, as 

indicated, and sacrificed at the selected time. Peritoneal cells were collected and analyzed by 

flow cytometry. A, Cells were analyzed for Forward Size Scatter (FSC) versus IFN-� 

production. The figure shows representative dot plots from individual peritoneal cavities in 

each group. Numbers under the line of plots indicate the number of cells in gate R1 (blue) or 

gate R2 (red) out of 105 peritoneal cavity cells acquired. B, The graph represents the number 

of IFN-� positive cells per 105 peritoneal cells acquired in gate R1. Each data point represents 

the value obtained from an individual peritoneal cavity and the data are representative of two 
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independent experiments. Grey bars represent the median. Significant differences are denoted 

by an asterisk (*). **, *** denote p<0.01, p<0.001, respectively. C, Total (gate R1) and 

highly (gate R2) IFN-�-positive cells in Live-immun group were analyzed for CD3, CD4 and 

CD8� expression. Numbers next to the circles indicate the percentage of CD3+CD4+IFN-�+ T 

cells in gate R1 and R2. D, CD4+ (gate R3) or CD4+IFN-�+ peritoneal T cells (gate R4) were 

selected and analyzed for the expression of a panel of activation markers: CD90, CD25, CD69 

and LY6C. The data are represented for each group by the total Mean Fluorescence Intensity 

(mfi). The percentage of positive gated events is also shown for each marker. 

Figure 5. IFN-�+ peritoneal or spleen cell frequency after challenge in C57BL/6 or 

BALB/c mice immunized previously with live B. melitensis. C57BL/6 and BALB/c mice 

were immunized i.p. with live B. melitensis (4x104 CFU, Live-immunized) and were treated 

with antibiotics as described in the Materials and Methods. A, B, Mice were then challenged 

with 105 CFU of B. melitensis and sacrificed at 12 hours post challenge. Peritoneal cells were 

collected and analyzed by flow cytometry. Cells were first analyzed for Forward Size Scatter 

(FSC) versus IFN-� production and then for cell surface markers. The data represent the 

number of IFN-� positive cells (A) or CD3+CD4+IFN-�+ T cells (B) per 105 peritoneal cells 

acquired. Each data point represents the value obtained from an individual spleen and the data 

are representative of two independent experiments. Grey bars represent the median. 

Significant differences are denoted by an asterisk (*). **, *** denote p<0.01, p<0.001, 

respectively. 

Figure 6. Comparison of protection in wild-type and deficient C57BL/6 mice immunized 

previously with live B. melitensis. Wild-type (WT), MyD88-/-, IL-12p35-/- and MHCII-/- 

C57BL/6 mice were immunized i.p. with live B. melitensis (4x104 CFU) and were treated 
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with antibiotics as described in the Materials and Methods. A, Mice were challenged with a 

high dose of B. melitensis (5x107 CFU) and bled at the selected time. The data represent the 

CFU per ml of blood. B, C, Mice were challenged with a low dose of B. melitensis (105 CFU) 

and sacrificed at 50 days post challenge. B, The data represent the CFU per gram of spleen 

and are representative of two independent experiments. Grey bars represent the median. The 

percentage of mice that are still positive for Brucella in the spleen at 50 days post challenge is 

represented in (C). These results are pooled from at least two independent experiments. 

Significant differences are denoted by an asterisk (*). *, **, *** denote p<0.05, p<0.01, 

p<0.001, respectively. “Pri” means primo group. 

Figure 7. Comparison of IFN-�+ cell frequency after challenge in wild-type and deficient 

C57BL/6 mice immunized previously with live B. melitensis. WT, MyD88-/-, IL-12p35-/- 

and MHCII-/- C57BL/6 mice were immunized i.p. with live B. melitensis (4x104 CFU) and 

were treated with antibiotics as described in the Materials and Methods. Mice were then 

challenged with a low dose of B. melitensis (105 CFU) and sacrificed at the selected time. 

Peritoneal cells were collected and analyzed by flow cytometry. Cells were first analyzed for 

Forward Size Scatter (FSC) versus IFN-� production and then for cell surface markers. The 

data represent (A) the number of IFN-� positive cells and (B) the number of CD3+CD4+IFN-

�+ T cells per 105 peritoneal cells acquired. Each data point represents the value obtained from 

an individual spleen and the data are representative of two independent experiments. Grey 

bars represent the median. Significant differences are denoted by an asterisk (*). *** denote 

p<0.001. “Pri” means primo group.

Figure 8. Comparison of protection and IFN-�+ cell frequency after challenge in wild-

type or STAT6-/- BALB/c mice immunized previously with live B. melitensis. Wild-type 
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(WT) and STAT6-/- BALB/c mice were immunized i.p. with live B. melitensis (4x104 CFU) 

and were treated with antibiotics as described in the Materials and Methods. Immunized 

C57BL/6 WT mice were used as the control. Mice were then challenged with a low dose of B.

melitensis (105 CFU) and sacrificed at the selected time. A, B, To characterize the elicited 

immune response, mice were sacrificed at 12 hours post-challenge and peritoneal cells were 

collected and analyzed by flow cytometry. Cells were first analyzed for Forward Size Scatter 

(FSC) versus IFN-� production and then for cell surface markers. The data represent (A) the 

number of IFN-� positive cells and (B) the number of CD3+CD4+IFN-�+ cells per 105 

peritoneal cells acquired. C, D, To estimate the elicited protection, mice were sacrificed at 50 

days post-challenge and the spleens were harvested. C, The data represent the CFU per gram 

of spleen and are representative of two independent experiments. Grey bars represent the 

median. The mean +/- SEM of the percentage of mice that are still positive for B. melitensis in 

the spleen is represented in (D). These results are pooled from two independent experiments. 

Significant differences are denoted by an asterisk (*). * denote p<0.05. “Pri” means primo 

group.
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Table 1. Impact of vaccination protocol and various immune deficiencies on the ability of immune system from C57BL/6 
mice to control B. melitensis challenge. 
 

C57BL/6 mice WT 
primo 

WT 
HK-immun 

WT 
Live-immun 

MuMT-/- 
Live-immun 

AID-/- 
Live-immun 

MyD88-/- 
Live-immun 

IL-12p35-/- 
Live-immun 

MHCII-/- 
Live-immun 

 
Circulating IgM 
 
Circulating IgG 
 
Control of bacteria dissemination in the blood 
 

 
- 
 
- 
 
- 

 
+++ 

 
++ 

 
+++ 

 
+++ 

 
+++ 

 
+++ 

 
- 
 
- 
 
- 

 
+++ 

 
- 
 

+++ 

 
++ 

 
++ 

 
+++ 

 
++++ 

 
+++ 

 
+++ 

 
++ 

 
- 
 

++ 

 
IFN-γ+ cells (peritoneal cavity) *  
 
IFN-γ+CD4+ T cells (peritoneal cavity) * 
 
% of mice displaying a complete bacteria 
elimination in the spleen ** 
 

 
- 
 
- 
 

19 

 
+ 
 

+ 
 

17 

 
+++ 

 
+++ 

 
69 

 
+++ 

 
+++ 

 
33 

 
+++ 

 
+++ 

 
80 

 
+ 
 

+ 
 

26 

 
+ 
 

+ 
 

28 

 
+  
 
- 
 
2 

 
 
* Data considered for IFN-γ production concern the analysis of peritoneal cells 12h after a low dose challenge (105 CFU of Brucella), without restimulation. IFN-γ production 
of MuMT-/- and AID-/- mice are in data not shown. 
**Numbers indicate the mean of the percentage of mice that are still positive for Brucella in the spleen 50 days post challenge. Mean was calculated with data from at least 
two independent experiments, each including a minimum of 10 mice. 
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