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First: a brief publicity break :-)



The problem

Once more, the standard unconstrained nonconvex optimization
problem

min
x∈IRn

f (x)

where the objective function f is

I “sufficiently” smooth

I bounded below

Remarkable one can still say (hopefully) interesting things on this
subject!

In this talk: focus on the deterministic case, but . . .



Why OFFO?

Our target: robust algorithms for noisy functions/inexact arithmetic

For convergence, standard methods (TR, AR) requires an error on
function values which is the square (!) of that on the gradient
(e.g. Bellavia et al, 22)

⇒ Design algorithms that
do not evaluate the function

Adaptive gradient methods:
• Adagrad (Duchi et al, 2011)
•WNGrad (Wu, Ward, Bottou, 2018)

• Adam (Kingma, Ba, 2014)
A trust-region method:
• Adatr (Grapiglia, 2022)

⇒ Objective Function Free Optimization = OFFO



ASTR1 an adaptive trust-region algorithm
Step 0: Initialization. x0 is given. Set k = 0.

Step 1: Define the TR. Compute gk = g(xk) and define

∆i ,k =
|gi ,k |
wi ,k

where wi ,k ≥ ςi > 0 are weights.

Step 2: Hessian approximation. Select a symmetric Bk .

Step 3: GCP. Define
sLi ,k = −sgn(gi ,k)∆i ,k and sQk = γks

L
k

with

γk =

 min

[
1,
|gT

k sLk |
(sLk )TBks

L
k

]
if (sLk )TBks

L
k > 0,

1 otherwise.

Step 3: Step. Compute a step sk such that |si ,k | ≤ ∆i ,k (∀i) and

gT
k sk + 1

2
sTk Bksk ≤ gT

k sQk + 1
2
(sQk )TBks

Q
k

Step 5: New iterate. Set xk+1 = xk + sk , increment k, and go to
Step 1.



ASTR1: comments

I the objective function is not evaluated ⇒ OFFO . . . and thus
the TR radius cannot depend on ared/prered.

I large weights ⇒ short steps

I γk minimize the quadratic model between 0 and sLk

Suppose that f ∈ C 1, has Lipschitz gradient with constant L and
that ‖Bk‖ ≤ κB . Then

f (xk+1) ≤ f (xk)−
n∑

i=1

ςming
2
i ,j

2κBwi ,j
+ 1

2
(κB + L)

n∑
i=1

g2
i ,j

w2
i ,j

⇒ descent for large enough weights wi ,k



ASTR1 with ADAGRAD-like weights (1)
For given ς ∈ (0, 1], ϑ ∈ (0, 1] and µ ∈ (0, 1), define

wi ,k ∈

[
ϑ

(
ς +

k∑
`=0

g2
i ,`

)µ
,

(
ς +

k∑
`=0

g2
i ,`

)µ]

For ϑ = 1 and µ = 1
2
, wi ,k =

√
ς +

∑k
`=0 g

2
i ,` and

ASTR1 with ϑ = 1, µ = 1
2

and Bk = 0 is ADAGRAD

Suppose that f ∈ C 1, has Lipschitz gradient with constant L and
is bounded below. Then ASTR1 with ADAGRAD-like weights, µ ∈
(0, 1] and ‖Bk‖ uniformly bounded requires at most

O
(
ε−1
)

iterations to produce an iterate k such that average0,...,k ‖g`‖2 ≤ ε.



More on ASTR1
I Extends known results (e.g., Wu, Ward, Bottou, 2018)

I Allows the use of curvature information in an ADAGRAD-like
method (Barzilai-Borwein, LBFGS, quasi-Newton, . . . true
Hessian)

I The above bound is essentially sharp.

Also possible with the “divergent” weights

wi ,k ∈ [vi ,k(k + 1)ν , vi ,k(k + 1)µ]

for 0 < ν ≤ µ < 1 and

vi ,k = max
0,...,k

|gi ,`| or vi ,k = average
0,...,k

|gi ,`|

Slightly weaker (sharp) complexity result



Some results on the small noiseless OPM problems

Method πalgo ρalgo
adagbfgs3 0.75 69.75
sdba (using f ) 0.73 68.91
adagH 0.72 69.75
adagrad 0.69 73.11
maxg 0.66 66.39
adagbb 0.63 64.71
adam 0.54 30.25

Performance and reliability statistics for deterministic OFFO and
steepest descent algorithms on small OPM problems (ε = 10−6)



The impact of noise

ρalgo/relative noise level
algo 0% 5% 15% 25% 50%

adagH 83.19 84.96 84.20 84.71 82.18
adagbfgs3 78.15 80.50 80.50 80.84 80.18
adagrad 77.31 80.50 80.25 80.17 80.17
adagbb 75.69 80.08 80.17 79.58 79.41
maxg 74.79 74.37 75.55 78.15 78.07
adam 40.34 35.55 36.30 44.03 45.80
sdba 81.51 30.92 31.85 34.87 29.58

Reliability of OFFO algorithms and steepest descent as a function
of the level of relative Gaussian noise (ε = 10−3)



OFFO and multilevel optimization: context

Statistical machine learning for solving PDE’s

Key ingredients:

I an approximation set, typically a nonlinear Neural Network
(NN) architecture

I a sampling technique of the space and time domains

I ”training” = minimization of a loss encoding the PDE (or the
underlying physics) ⇒ Physically Informed Neural Networks
(PINNs) See [Raissi, Perdikaris, Karniadakis, 2017]

Single level convergence theory exists (e.g. [Shin, Darbon, Karniadakis,

2020]) and involves

I the universality property of NN,

I statistical sampling,

I ability of numerical optimizers (ADAM, SGD,...) to reach an
approximate global optimum of nonconvex function



OFFO and multilevel optimization: idea(s) (1)

New algorithm:

I assume a hierarchy of (smooth) models h`(x)
(from fine to coarse)

I ensure first-order model coherence between levels
by adding a linear term if necessary (cfr FAS))

I an OFFO trust-region based algorithm
at each level `: (approx) minimize a quadratic model

gT
`,ks + 1

2
sTH`,ks

in B`,k = {s at level ` |‖s‖ ≤ ∆`,k}
I (no evaluation of f (x) ⇒ accept all iterates)



OFFO and multilevel optimization: idea(s) (2)

I at each level ` compute s`,k by
I either using a Taylor approximation of the model at level `

(standard OFFO step), or
I use the OFFO algorithm to minimize the lower level model

h`−1 with the TR at level ` (recursivity)

I only use lower level if lower-level gradient is not too small wrt
upper-level one

I when using lower level, ensure the trust-region radius has a
suitable size (a bit technical)



OFFO and multilevel optimization: algorithm and results

Note:

I Detailed algorithm does not fit on slide, but. . .

I Subsumes most existing (first-order) OFFO methods in the
single level case

I allows use of second-order information (LBFGS,... or even
true Hessian)

Result:

I complexity is O(ε−2) (optimal for single level case)

I first-order version works well in experiments
(stochastic context, momentum, resnets, . . .
see (Gratton, Kopaničáková,T., 2023))

More can be said about PINN’s (Gratton, Mercier, Riccetti, T., 2024)



An example



Towards second-order criticality

Use a trust-region mechanism for second-order criticality?

At xk , let

Tf ,2(xk , d) = f (xk) + g(x)Tk d + 1
2
dTH(xk)d .

and the second-order criticality measure

φδf ,2(xk) = max
‖d‖≤δ

−
(
g(xk)Td + 1

2
dTH(xk)d

)
= max
‖d‖≤δ

∆qk(d)

Define:

xk is ε-second-order critical if φδf ,2(xk) ≤ ε

Idea: Use φδf ,2(xk) to define weights for the trust-region



ASTR2: a TR OFFO method for 2nd-order criticality
Step 0: Initialization. Given: x0 and algo constants. Set k = 0.

Step 1: Compute derivatives. Compute gk and Hk , as well as φk

and φ̂k
def
= min[φδf ,2(xk), κ].

Step 2: Define the TR radii. For weights wL
k and wQ

k , set

∆L
k =
‖gk‖
wL
k

and ∆Q
k =

φ̂k

wQ
k

.

Step 3: Step computation. If ‖gk‖2 ≥ φ̂3
k , set sk = −gk/wL

k .
Otherwise, set sk such that

‖sk‖ ≤ ∆Q
k and ∆qk(sk) ≥ max

[
∆qCk ,∆qEk

]
where ∆qCk = maxα≥0,α‖gk‖≤∆Q

k
∆qk(−αgk) and

∆qEk =

{
maxα≥0,α≤∆Q

k
∆qk(αuk) if λmin[Hk ] < 0

0 if λmin[Hk ] ≥ 0
with

uTk Hkuk ≤ κλmin[Hk ], uTk gk ≤ 0 and ‖uk‖ = 1,

Step 4: New iterate. Define xk+1 = xk + sk , increment k and
return to Step 1.



Function decrease for ASTR2

Suppose that f ∈ C 2 and has Lipschitz continuous gradient and
Hessian. Then, if ‖gk‖2 ≥ φ̂3

k ,

fk+1 ≤ fk −
‖gk‖2

wL
k

+
L1

2

‖gk‖2

(wL
k )2

while, if ‖gk‖2 < φ̂3
k ,

fk+1 ≤ fk − κmin

[
1

2(1 + L1)
,

1

wQ
k

,
1

(wQ
k )2

]
φ̂3
k +

L2

6

φ̂3
k

(wQ
k )3

.

⇒ roles of wL
k and wQ

k complementary



Complexity of ASTR2 for ADAGRAD-like weights

When using

wL
k ∈

ϑ
ς +

k∑
`=0,`∈KL

‖g`‖2

µ

,

ς +
k∑

`=0,`∈KL

‖g`‖2

µ

wQ
k ∈

ϑ
ς +

k∑
`=0,`∈KQ

φ̂3
k

µ

,

ς +
k∑

`=0,`∈KQ

φ̂3
k

µ

Suppose that f ∈ C 2 with Lipschitz gradient and Hessian and is
bounded below. Then ASTR2 with the above weights and µ ∈ (0, 1]

requires at most O
(
ε−1
)

iterations to produce an iterate k such that

average0,...,k ‖g`‖2 ≤ ε and average0,...,k φ̂
3
` ≤ ε. [Essentially sharp!]



. . . and now for an OFFO regularization algorithm!

Consider now the more general

Tf ,p(x , s) = f (x) +

p∑
i=1

1

i !
∇i

x f (x)[s]i .

and the derived regularized model

mk(s) = Tf ,p(xk , s) +
σk

(p + 1)!
‖s‖p+1

We assume that ∇p
x f is globally Lipschitz.



The OFFAR algorithm

(again using generic κ)

Step 0: Initialization: x0, ν0 > 0, ε and constants. Set k = 0.

Step 1: Check for termination: Evaluate gk = ∇1
x f (xk) and

terminate if ‖gk‖ ≤ ε. Else, evaluate {∇i
x f (xk)}pi=2.

Step 2: Step calculation: If k = 0, set σ0 = µ0 = ν0. Else set

µk =
p!‖gk‖
‖sk−1‖p

− κσk−1 and σk ∈ [κνk ,max (νk , µk)] .

Then compute a step sk such that

mk(sk) < mk(0) and ‖∇1
sTf ,p(xk , sk)‖ ≤ κσk

p!
‖sk‖p.

Step 3: Updates. Set xk+1 = xk + sk and νk+1 = νk + νk‖sk‖p+1.
Increment k by one and go to Step 1.



Complexity of OFFAR

I No objective function evaluation ⇒ OFFO

I The use of µk is optional: one could simply set µk = 0
without altering the theory. But it is important for
performance.

I The definition of µk promotes fast growth of the
regularization parameter up the problem’s Lispchitz constant

I The definition of σk helps to limit this growth once the value
of the Lipschitz constant has been reached.

I If p = 1, νk+1 = νk + νk‖sk‖2, recovering WNGrad (Wu, Ward,

Bottou, 2018)

Suppose that f ∈ Cp with ∇p
x f Lipschitz gradient, is bounded below

and is such that min‖d‖≤1∇i
x [d ]i ≥ κ for i = 2, . . . , p. Then OFFAR

(with suitable constants) requires at most O
(
ε
− p+1

p

)
iterations to

produce an iterate k such that ‖gk‖ ≤ ε.



More on OFFAR

I Same rate as ARp using function values (Birgin et al, 2016)

I For p = 2, same rate as ARC/AR2 (Cartis, Gould, T. 2011).
Optimal rate for second order methods

I Optimal rates for exact pth order methods (Carmon et al. 2019).

MOFFAR: If one requires that the step also satisfies

max
(
0,−λmin[∇2

sTf ,p(xk , sk)]
)
≤ κσk

(p − 1)!
‖sk‖p−1

Suppose that f ∈ Cp with ∇p
x f Lipschitz gradient, is bounded below

and is such that min‖d‖≤1∇i
x [d ]i ≥ κ for i = 2, . . . , p. Then MOF-

FAR (with suitable constants) requires at most O
(
ε
− p+1

p−1

)
iterations

to produce an iterate k such that ‖gk‖ ≤ ε and φ̂k ≤ ε.



Numerical illustration

For AR2 and two variants of OFFAR with p = 2, differing on how
aggressively µk forces growth in σk (b more aggressive than a)

AR2 OFFAR2a OFFAR2b

πalgo 0.99 0.78 0.83
ρalgo 97.48 81.51 88.24

Performance and reliability statistics on the small OPM problems
without noise

5% 15% 25% 50%

AR2 40.67 30.84 24.54 6.81
OFFAR2a 80.76 75.38 70.76 56.30
OFFAR2b 85.97 80.67 72.69 47.98

Reliability statistics ρalgo for 5%, 15%, 25% and 50% relative
random Gaussian noise (averaged on 10 runs)



Stochastic variants

Complexity bounds for first-order criticality (in expectation):

Algorithm type Compl.bound

ASTR1 trust-region O
(
ε−

1
2

(1−µ)
)

ASTR2 trust-region ??

STOFFAR adat. regularization O(ε−3/2)

STOFFAR = OFFAR +

Ek

[
‖∇i

x f (Xk)−∇i
x f (Xk)‖

p+1
p+1−i

]
≤ κD

m∑
i=1

‖Sk−i‖p+1 (i = 1, 2)



ASTR1 on CIFAR-10 with cifar10-nv (γ = 10−5)
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ASTR1 on CIFAR-10 with resnet18 (γ = 5.10−5)

0 20000 40000 60000 80000 100000
step

0.2

0.4

0.6

0.8

1.0

tra
in

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

0 20000 40000 60000 80000 100000
step

0.2

0.4

0.6

0.8

1.0

te
st

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9



STOFFAR
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Figure: Loss function and number of samples for SUSY and w8a



Conclusions

Computing the value of f is not necessary for (theoretical) fast con-
vergence

The use of curvature information is possible (and often beneficial)
in standard OFFO adaptive methods

OFFO creates some interesting challenges in convergence theory!

Extension of ASTR1 to problems with convex constraints available!

Complexity of stochastic variants (ASTR1, OFFAR) also analyzed

Thank you for your interest and patience . . . and good wind to Yurii!
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