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Abstract

Over the last few years, network science has proved to be useful in mod-
eling a variety of complex systems, composed of a large number of intercon-
nected units. The intricate pattern of interactions often allows the system to
achieve complex tasks, such as synchronization or collective motions. In this
regard, the interplay between network structure and dynamics has long been
recognized as a cornerstone of network science. Among dynamical processes,
random walks are undoubtedly among the most studied stochastic processes.
While traditionally, the random walkers are assumed to be independent, this
assumption breaks down if nodes are endowed with a finite carrying capacity,
a feature shared by many real-life systems. Recently, a class of nonlinear dif-
fusion processes accounting for the finite carrying capacities of the nodes was
introduced. The stationary nodes densities were shown to be nonlinearly cor-
related with the nodes degrees, allowing to uncover the network structure by
performing a few measurements of the stationary density at the level of a sin-
gle arbitrary node and by solving an inverse problem. In this work, we extend
this class of nonlinear diffusion processes to the case of multigraphs, in which
links between nodes carry distinct attributes. Assuming the knowledge of the
pattern of interactions associated with one type of links, we show how the
degree distribution of the whole multigraph can be reconstructed. The effec-
tiveness of the reconstruction algorithm is demonstrated through simulations
on various multigraph topologies.

1 Introduction

We are surrounded by networks [1, 2]. Physics [4], economy [5], biology [6] and
sociology [7], are few but relevant research domains that can be studied in the
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vast realm of network science. Notwithstanding the differences and the pecu-
liarities of each domain, scholars have been able to provide a transversal and
unified description of those networked systems in which individual units (e.g.,
chemicals, bits of information, nutrients) belonging to a certain population may
move across network nodes by using the intricate web of available links, the latter
defining the structure of a complex network. Those processes eventually give rise
to the emergence of self-organized complex patterns [3, 8–10], the latter depend-
ing on the network architecture. Hence, the bridge between network structure
and dynamics can be explored by studying the evolution of simple processes; a
stereotypical example is provided by a random walk, i.e., a simple model of dif-
fusion, where basic units jump from node to node according to some microscopic
rules and using available links.

Random walks play a central role in different fields of science [11–13]; once
dealing with networks, a central research theme is devoted to studying the re-
lation between patterns of diffusion and network structure [14], with relevant
applications to centrality measures related to walkers density [17, 21], e.g., Page
rank, or community detection methods based on time of visit, e.g., Markov sta-
bility [18–20]. In those applications, walkers are assumed to be independent from
each other, a condition that can be safely assumed to hold true once no competi-
tion for the available space is at play. To overcome this limitation, a novel class of
nonlinear diffusion processes on networks has been recently studied, accounting
for the finite carrying capacities of nodes [22, 23]. Such processes incorporate the
limited available space within the nodes, a feature of most real-life networks. Take
for instance the case of an ecological network in which nodes would model local
habitat patches. The latter certainly cannot accommodate for an infinite number
of individuals due to competition for limited resources. In other words, setting a
constraint on the maximal number of agents allowed to sit on a node, naturally
induces correlations between the random walkers. As a consequence, the station-
ary node densities are no longer simply proportional to the node degree [24]. In
some cases though, an explicit expression for the stationary density can still be
worked out and thus, by taking advantage of the mass conservation, the degree
distribution of a graph can be inferred from a few measurements performed at
a single arbitrarily selected node [23]. An other approach based on an ensemble
of reactive walkers performing linear diffusion was considered in [25]. The latter
work has some similarities with the present one. Indeed, both rely on the use
of nonlinear random walks to infer the structure of the underlying network, by
performing measurements on a single node (or family of nodes). They however
also show relevant differences. First of all, the random walk in [25] is driven by
the standard random walk Laplace operator, defined on a simple network, while
in the present case, a new nonlinear operator is used on a multigraph. Finally, in
this work we develop a solution at the nodes level while in [25] authors used the
heterogeneous mean-field assumption [26–28].

The purpose of this work is to extend the approach introduced in [23] to the
case of multigraph networks, where two nodes can be connected by several links,
each one associated with a different attribute. Examples include air transport
networks in which air routes (links) between airports (nodes) carry as attribute
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the name of the operating company, or social networks in which individuals
(nodes) interact through several platforms (links). Assuming a finite set of distinct
attributes, the corresponding non-simple networks can be represented as edge-
coloured multigraphs - multigraphs for short -, each color mapped bijectively to
a given value of the attribute.

In several relevant applications, the network structure is only partially known.
This might be the case of social networks in which only a fraction of relationships
is available or protein-protein interaction networks in which the identification of
interactions is costly [29]. Methods able to uncover the network structure from
partial knowledge result thus important. With this regard, link prediction has
attracted increasing attention these last years. The purpose of link prediction
is to compute the likelihood of a link between two nodes, based on observed
links and nodes’ attributes. The latter might be structural properties such as their
degree or external information, such as age or hobby if nodes refer to individuals.
Various algorithms have been designed for performing link prediction, among
which similarity-based algorithms and probabilistic models [15, 16]. Some other
models take advantage of the interplay between network structure and dynamics.
In particular, random walks allow for the identification of central nodes and the
detection of communities, groups of nodes more tightly connected among them
than with nodes outside the community [20].

In this work, we restrict our attention to multigraphs with two distinct at-
tributes, i.e., two colors. We first extend the theory of non-linear diffusion process
considered in [22, 23] to the case of multigraphs, by assuming nodes of the latter
to be endowed with a limiting carrying capacity. We explicitly determined the
stationary node density and by using the fact that the latter at the level of a single
node depends on the degree distribution of the whole multigraph, we are able to
extend the reconstruction scheme proposed in [23] to the case of multigraphs. We
investigate various multigraph topologies, assessing in each case, the accuracy of
the reconstruction procedure. More precisely we consider multigraphs where the
known and unknown layers are selected among an Erdős-Rényi graph, a Watts-
Strogatz network or a scale-free one; then we reconstruct the first and second
degree momenta of the unknown layer and we compare them with the ground
truth as a function of the main model parameter, i.e., the probability to have a
link among two nodes in the Erdős-Rényi graph, the rewiring probability in the
case of Watts-Strogatz and the power law exponent for the scale-free case. As a
general conclusion we can assert that with local and partial information we are
able to reconstruct quite well the degree probability distribution and the degree
momenta, the first momentum being generally closer to the right value than the
second momentum. We can also claim that our results do not suggest any strong
impact of the known layer on the reconstruction of the second, let us however
stress that this can be a consequence of the made assumption of absence of corre-
lations among node degrees. In the case the unknown network is an Erdős-Rényi
graph we observe a degradation of the results as it becomes more sparse and in
particular nodes with degree zero appear. This observation is also confirmed in
the study of the real mutligraphs we carried out, where one network possesses
nodes with zero degree, the whole multigraph being still connected thanks to the
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second network.
Moreover, still starting from the exact formula for the stationary node density

we proposed a second method to reconstruct node degree momenta based on
the assumption of diluted walkers density. The method requires less information
than the previous one and still, it is able to reconstruct the first two momenta
with a quite good precision.

In conclusion in this work we have thus strengthen the link existing between
network topology and dynamical systems defined on top of networks, by propos-
ing a model capable to infer global structural information from a multigraph with
a limited amount of information, e.g., knowing the degree distribution for a sin-
gle layer and measuring the random walk frequency of transit on a single node,
designing in this way further studies of links prediction.

The paper is organized as follows. In Section 2, we introduce the non-linear
diffusion process and derive the analytical formula for nodes’ stationary densi-
ties. In Section 3, we explain how the multigraph structure can be recovered as
the solution of an inverse problem based on the knowledge of the stationary node
density at a single arbitrary node. In Section 4, we test the algorithm on various
multigraph topologies and assess the robustness of the reconstruction. We then
conclude and give some perspectives in Section 5.

2 The model

In this section, we introduce the nonlinear diffusion process evolving on a multi-
graph. The derivation is obtained from a microscopic formulation of the dy-
namics and builds on previous works [22, 23]. We start by considering a set
V of Ω nodes and a set E of edges (see Fig. 1 for a cartoon example). Links be-
tween nodes are distinguished by some attribute A which we assume to take only
two distinct values, say A ∈ {1, 2}. We will denote by E1 (respectively E2) the
subset of edges associated with the attribute 1 (respectively 2). The multigraph
G = (V, E) is then obtained as the union of the two subgraphs G1 = (V, E1)
and G2 = (V, E2). The structure of each of the two subgraphs is encoded by two
adjacency matrices, A(1) and A(2), with A(ℓ)

ij = 1 if nodes i and j are connected
through a link with attribute A = ℓ.

Figure 1: Multigraph with two types of links, distinguished in plain magenta and
dashed black. The adjacency matrices A(1) and A(2) of the subgraphs G1 and G2
are indicated.
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Given some β ∈ (0, 1), we then assume a set of ⌊βNΩ⌋ agents, also named
walkers, to diffuse across the network under the constraint that at most N of them
are found simultaneously in any given node. The parameter β thus measures the
density of walkers within the network. The state of the system at time t may
be recorded as a vector n(t) := (n1(t), n2(t), · · · , nΩ(t))⊤ with 0 ≤ ni(t) ≤ N
being the number of walkers found in node i at time t. Denoting by IP(n, t) the
probability that the system is in state n at time t, the latter obeys the M-equation:

dIP(n, t)
dt

= ∑
n′ ̸=n

{
T(n|n′)IP(n′, t)− T(n′|n)IP(n, t)

}
, (1)

being T(n′|n) the transition probability from state n to state n′. As any node may
host from 0 to N agents at a given time, the terms T(n′|n) may be seen as the
entries of a huge matrix of size (N + 1)Ω. The matrix is essentially sparse as dur-
ing the infinitesimal time interval [t, t + dt], at most one random walker will have
moved from a node to one of its neighbors. Assuming the departure node, say i,
to contain ni walkers and the arrival node, say j, to contain nj (≤ N − 1) walkers,
the corresponding transition probability is written as T(ni − 1, nj + 1|ni, nj). To
write down the latter, let us first notice that the probability for the walker sitting
at node i to choose, among all the available connections incident to that node, a

link leading to node j, is given by
A(1)

ij +A(2)
ij

ki
, with ki = ∑j

{
A(1)

ij + A(2)
ij
}

the num-
ber of connections incident to node i, regardless of their corresponding attributes.
The probability for the walker to settle onto the arrival node is then modulated
by the available space within node j: the more crowded the node j, the less likely
the transition. Hence, the overall transition probability reads

T(ni − 1, nj + 1|ni, nj) =
A(1)

ij + A(2)
ij

ki

ni
N

g
(nj

N

)
, (2)

where the function g takes into account the available space within the arrival
node. Let us recall that the case of uncorrelated walkers is recovered with g(x) =
1. In contrast, we here impose g(1) = 0 to forbid a walker to hop onto a fully
occupied node. A common choice is to take g(x) = 1 − x. To make further
progress in the analytical treatment, we now assume the nodes carrying capacities
N to be large enough and introduce the continuous variable, also referred to
as “node density”, ρi(t) := limN→+∞

⟨ni(t)⟩
N , where ⟨·⟩ denotes the average over

stochastic realizations of the system. As shown in Appendix A, the time evolution
of nodes densities is governed by the following system of ordinary differential
equations.

dρi
dt

= ∑
j

ρj
A(1)

ji + A(2)
ji

k j
g(ρi)− ρi

A(1)
ij + A(2)

ij

ki
g(ρj)


= ∑

j

A(1)
ij + A(2)

ij

k j

{
ρjg(ρi)−

k j

ki
ρig(ρj)

}
,

(3)
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where the second equality has been obtained by exploiting the fact that the multi-
graph is undirected. Introducing the random walk Laplacian matrix L with ele-
ments

Lij =
A(1)

ij + A(2)
ij

k j
− δij (4)

allows to rewrite the system of ODEs in a compact form, namely

dρi
dt

= ∑
j

Lij

{
ρjg(ρi)−

k j

ki
ρig(ρj)

}
. (5)

The reconstruction scheme builds on the knowledge of the stationary node den-
sities ρ∗i [23]. The latter are solution of:

0 = ∑
j

Lij f j(i) ∀i = 1, · · · , Ω, (6)

where f j(i) = ρjg(ρi)−
kj
ki

ρig(ρj). It thus follows that the vector ( f1(i), · · · , fΩ(i))
should be proportional to the right eigenvector associated to the null eigenvalue1

of the random walk Laplacian L. This eigenvector is proportional to the degree
vector (k1, . . . , kΩ)⊤. Hence, we must have:

f j(i) = Cik j ∀i, j = 1, · · · , Ω, (7)

for some constant Ci. Considering the particular case j = i for which fi(i) = 0,
we conclude that Ci = 0 ∀i. As a consequence, the stationary node densities ρ∗i
are solution of:

ρ∗j g(ρ∗i )−
k j

ki
ρ∗i g(ρ∗j ) = 0 ∀i, j, (8)

Let us note that, apart from the trivial case β = 0 for which there is no walker
diffusing across the nodes, the stationary node densities are all positive, i.e., ρ∗i ̸=
0 ∀i. Indeed if node i had a zero stationary node density (ρ∗i = 0), then all the
other nodes should also have a zero stationary node density, which would imply
β = 0. For β > 0, one may thus rewrite Eq. (8) as follows

kig(ρ∗i )
ρ∗i

=
k jg(ρ∗j )

ρ∗j
∀i, j, (9)

from which the stationary node densities are found to satisfy

kig(ρ∗i ) = cρ∗i , (10)

for some constant c ≡ c(β) that is uniquely fixed by mass conservation, i.e.,
∑i ρ∗i = βΩ.

1Without loss of generality, we here assume the (undirected) multigraph to be connected. In that
case, the random walk Laplacian L has a single null eigenvalue. If the multigraph had multiple
disconnected components, there would be as many null eigenvalues as disconnected components and
the analysis should be applied separately to any of these components.
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3 Uncovering the network structure

Previous work has shown how the above presented nonlinear diffusion process
allows to uncover the degree distribution of the corresponding (unknown) graph
structure [23]. We now review and extend their approach by considering, for the
sake of pedagogy, the case of multigraphs with two types of links; let us however
observe that the method is general enough to deal with more than two attributes
for the links. More specifically, we will assume the subgraph associated with the
attribute A = 1 to be known and will aim at uncovering structural properties of
the subgraph associated with the other attribute A = 2, under the assumption
that the degree distributions of both subgraphs are uncorrelated. The approach
relies on an explicit expression of the stationary densities. From now on, we
assume g(x) = 1 − x. For such choice, the stationary node densities read

ρ∗i =
c(β)ki

1 + c(β)ki
. (11)

The mass conservation then implies

∑
i

c(β)ki
1 + c(β)ki

= βΩ, (12)

or, equivalently,

∑
k(1),k(2)

p
(

k(1), k(2)
) c(β)[k(1) + k(2)]

1 + c(β)[k(1) + k(2)]
= β, (13)

where p
(

k(1), k(2)
)

is the probability that a node will have k(1) links with at-

tribute A = 1 and k(2) links with attribute A = 2. The degree distributions of
the two subgraphs being uncorrelated, the joint probability distribution function
factorizes, i.e., p

(
k(1), k(2)

)
= p1(k(1))p2(k(2)), leading to:

∑
k(2)

(
∑
k(1)

p1(k(1))
c(β)[k(1) + k(2)]

1 + c(β)[k(1) + k(2)]

)
p2(k(2)) = β . (14)

The latter expression holds for any arbitrary fixed value of β. Consider thus
to perform M experiments (for some integer M) each one involving a different
number of agents, ⌊βi NΩ⌋, walking on the multigraph and assume to measure
for each experiment the asymptotic average number of walkers sitting on a ran-
domly chosen node (fixed once for all 2) and eventually obtain c(β) by using

2Let us observe that for each value of βi , one could in principle choose an arbitrary node to
measure ρ∗i , since from Eq. (11) it is clear that the constant c(βi) can be recovered if we know ρ∗i and
ki . However this would assume a larger knowledge of the network with respect to the case hereby
assumed where we only have access to the stationary node density of a given node, yet for distinct
values of β.
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Eq. (11). Recalling that the architecture of the network with attribute A = 1 is
known, we can define the matrix with known entries:

Fij = ∑
k(1)

p1(k(1))
c(βi)[k(1) + j]

1 + c(βi)[k(1) + j]
. (15)

Finally by introducing the vector β := (β1, β2, · · · , βM)⊤ and writing p2 :=
(p2(1), p2(2), · · · , p2(M))⊤ for the unknown degree distribution of the network
with attribute A = 2, we can rewrite (14) as

Fp2 = β, (16)

The probability distribution p2 can thus be obtained by solving the linear sys-
tem (16). Observe that inverting the matrix F is not recommended, since the
matrix F is close to singular. Rather, the solution will be obtained by a least
squares method, i.e., by minimizing the 2-norm ||Fp2 − β||2.

Before proceeding with the reconstruction of p2, let us for a moment come
back to the expression given in Eq. (14). At low densities, i.e., for β → 0, the
stationary node densities, ρ∗i , are close to 0. It follows, from Eq. (11), that the
constant c(β) admits the following expansion c(β) = c1β + c2β2 + c3β3 + O(β4)
as β → 0. Inserting the latter expression into (14) and gathering terms of the
same power in β, we deduce:

c1 =
1

⟨k1⟩+ ⟨k2⟩
,

c2 =
⟨k2

1⟩+ ⟨k2
2⟩+ 2⟨k1⟩⟨k2⟩(

⟨k1⟩+ ⟨k2⟩
)3 ,

c3 = 2

(
⟨k2

1⟩+ ⟨k2
2⟩+ 2⟨k1⟩⟨k2⟩

)2

(
⟨k1⟩+ ⟨k2⟩

)5 − ⟨k3
1⟩+ ⟨k3

2⟩+ 3⟨k2
1⟩⟨k2⟩+ 3⟨k1⟩⟨k2

2⟩(
⟨k1⟩+ ⟨k2⟩

)4 .

(17)

The latter expressions provide a direct way of obtaining the degree momenta
⟨km

2 ⟩ = ∑k(2) (k
(2))

m
p2(k(2)) of the unknown subgraph, given again the ones of the

known network. Indeed, for a given β, the knowledge of the stationary density of
a single (arbitrary) node allows to deduce the corresponding value of the constant
c(β). By varying β, we obtain a set of measurement points (βi, c(βi)), from which
the constants c1, c2, · · · can be deduced by interpolation. The latter constants
then allow to obtain the unknown momenta ⟨km

2 ⟩ = ∑k(2) (k
(2))

m
p2(k(2)), being

the momenta ⟨km
1 ⟩ = ∑k(1) (k

(1))
m

p1(k(1)) explicitly known.
We illustrate the procedure by considering a multigraph made of 100 nodes,

the known subgraph of which is an Erdős-Rényi graph, G1, with a probability
q1 = 0.15 of link connection and whose unknown subgraph is also an Erdős-Rényi
subgraph, this time with a probability q2 = 0.3 of link connection, of course this
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0.00 0.05 0.10 0.15 0.20
0.000

0.002

0.004
c( )

interpolation

Exact Interpolation Reconstruction

〈k2〉 29.72 29.72 (0 %) 29.72 (0 %)

〈k2
2〉 907 902 (0.55 %) 904 (0.22 %)

〈k3
2〉 28 382 25 475 (10.24 %) 28 100 (1.00 %)

Figure 2: Reconstruction of the degree momenta of an Erdős-Rényi subgraph G2
made of n = 100 nodes with a probability q2 = 0.3 of link connection. The known
subgraph is an Erdős-Rényi graph made of 100 nodes with probability q1 = 0.15
of link connection. (Left) Data points (βi, c(βi)) along with the cubic polynomial
interpolation. (Right) Comparison between the exact and reconstructed degree
momenta ⟨km

2 ⟩ of G2 (m = 1, 2, 3). The second column gives the exact values
of the degree momenta. The third column shows the values obtained from the
interpolation procedure, see (17) and the fourth column the results obtained by
solving the linear system (16) to obtain the degree distribution p2 and the degree
momenta. The relative errors are reported in parenthesis.

information will not be used in the reconstruction strategy. Fig. 2 (left) shows (in
blue) the data points (βi, c(βi)) obtained from Eq. (11) for 0 ≤ βi ≤ βmax = 0.2,
along with the cubic polynomial interpolation c1β + c2β2 + c3β3 (in dashed red).
From these coefficients, one can obtain the first moment degrees, as shown in
the Table provided in Fig. 2. These momenta are in close agreement with the
exact degree momenta provided in the second column (Exact). The following
two columns list the degree momenta obtained by solving the linear system (16)
(Interpolation) and the set of equations (17) (Reconstruction); the values in paren-
thesis are the relative errors. Let us conclude by observing that the coefficients of
the interpolating polynomial depend on the choice of βmax and so do the recon-
structed degree momenta (see Fig. 7 in Appendix B).

4 Impact of the network structure

We mentioned in the previous section that the sought degree distribution p2(k(2))
can be found as the solution of a linear problem and that it could be obtained
by minimizing the 2-norm ||Fp2 − β||2. The purpose of this section is to show
the effectiveness of the proposed strategy and to investigate how the accuracy
of the reconstruction procedure is influenced by the topologies of the known
and unknown subgraphs. To this aim, we will consider three distinct subgraph
topologies, namely, Erdős-Rényi, scale-free and Watts-Strogatz. We further report
in Appendix C the results obtained for a bimodal degree distribution. In each
case, we will compute the degree distribution by means of a mean-square method.
The accuracy of the reconstruction will be assessed by the (relative) error made on
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the first two momenta of the degree distribution, i.e., ⟨k2⟩ and ⟨k2
2⟩. This choice

is motivated by the fact that the first two momenta of the degree distribution
already provide crucial information on the interplay between network structure
and dynamics. For instance, the epidemic threshold λc of the SIS model occurs,
in the mean-field limit, at λc = ⟨k⟩/⟨k2⟩.

4.1 Reconstruction of an Erdős-Rényi subgraph

In this subsection, we assume the unknown subgraph G2 to be given by an Erdős-
Rényi graph of Ω = 250 nodes and probability q2 of connection among nodes,
and we are interested in investigating the impact of the known topology of sub-
graph G1 on the quality of the reconstruction. We first consider the case where G1
is also an Erdős-Rényi graph of Ω = 250 nodes and probability q1 of links con-
nection. The top panel of the first column of Fig. 3 provides the relative error (all
the relative errors will be expressed in percent and in log10 scale for better visual-
ization) made on the estimated average degree ⟨k2⟩ of the unknown subgraph G2.
Similarly, the bottom panel of the same column provides the relative error for the
second moment, ⟨k2

2⟩. Those errors are computed for a large interval of values
of the probabilities q1 and q2 used to build the Erdős-Rényi graphs. In practice,
for each pair of parameters (q1, q2), we sampled 10 multigraphs and computed
for each of them the relative error made on the reconstructed degree momenta.
The relative errors, obtained for each replica, were then averaged 3. In the middle
panel, we show, for a specific couple (q1, q2) of links connection probabilities, the
reconstructed degree distribution (blue symbols) and the comparison with the
exact one (red symbols).

We then repeat the same experiment in the case where G1 is a Wattz-Strogatz
graph (second column) and eventually in the case it has a scale-free degree dis-
tribution with exponent γ1 (third column). We here briefly comment on the pro-
cedure used to generate these subgraphs. The Watts-Strogatz graph is obtained
by starting with a regular ring lattice of N nodes, with each node connected to its
k nearest neighbors. With probability τ1, each edge (u, v) of the initially regular
graph is replaced by a new edge (u, w) where the node w is chosen at random
among all the nodes (distinct) from v [33]. In all the analyses shown here, the
parameters N = 250 and k = 32 are fixed while we vary the parameter τ1 to
investigate the impact of the link rewiring on the accuracy of the reconstruction
scheme. The scale-free graphs were generated according to the Simon model [30]
which allows to build connected graphs with a power-law degree distribution
p(k) ∼ 1/kγ1 with γ1 ≥ 2 .

The numerical results reported in Fig. 3 suggest that the reconstruction of the
first moment is better than for the second one and the goodness of the reconstruc-
tion increases with q2, i.e., the larger the connectivity of the unknown graph, the
better are the results. When G1 is a Watts-Strogatz graph (second column), the

3Let us note that one could in principle first average the reconstructed degree momenta and then
compute the relative error. However as we are interested in quantifying the quality of a single re-
construction, we decided to first compute the relative error and then average the latter over the set of
replicas.
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Reconstruction ER from ER      Reconstruction ER from WS Reconstruction ER from SF

Figure 3: Reconstruction of an Erdős-Rényi (ER) subgraph G2 with Ω = 250
nodes and probability q2 of links connection. (First column) The known subgraph
G1 is an Erdős-Rényi graph with Ω = 250 nodes and probability q1 of links
connection. The relative error (in log10) made on the average degree ⟨k2⟩ and
second moment ⟨k2

2⟩ are reported on the first and third rows. For each panel the
data were averaged over 10 independent replicas. The central panel shows, for
some specific values of the parameters q1 and q2 the reconstructed distribution
compared with the exact one. (Second column) Reconstruction of G2 by using a
Watts-Strogatz (WS) graph G1 with probability τ1 of link rewiring, starting from a
ring topology in which each node is connected to its 32 nearest neighbors. (Third
column) Reconstruction of G2 by using a graph G1 with a scale-free (SF) degree
distribution with exponent γ1, i.e., p1(k(1)) ∼ 1/[k(1)]γ1 .

reconstruction works better when the randomness of the network is increased,
i.e., when the links rewiring parameter τ1 is increased. In all the three cases,
the results suggest that the impact of the known graph G1, as measured by q1,
µ1 or γ1, are quite limited. The middle panels confirm such claim, indeed the
reconstructed probability distribution reproduces the main feature of the exact
distribution, in particular it is centered around the right value, i.e., the average
degree, but the widths are a bit narrower than the true ones.
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4.2 Reconstruction of a scale-free graph

We now turn our attention to the reconstruction of a scale-free graph with Ω =
250 nodes and exponent γ2. Results are reported in Fig. 4. The reconstruction of a
scale-free graph from the knowledge of an Erdős-Rényi graph or a Watts-Strogatz
graph is quite independent of the involved parameters q1, γ2 and τ1, as measured
by the relative errors made on ⟨k2⟩ and ⟨k2

2⟩ (see first and second columns). The
reconstruction of a scale-free graph from a scale-free graph (third column) is best
achieved for large values of γ1 and low values of γ2. Overall, the results suggest
that the reconstruction works better when the known graph G1 is an Erdős-Rényi
graph or a Watts-Strogatz graph.

Reconstruction SF from ER      Reconstruction SF from WS Reconstruction SF from SF

Figure 4: Reconstruction of a subgraph G2 with scale-free degree distribution
with exponent γ2 and Ω = 250 nodes. (First column) The known subgraph G1 is
an Erdős-Rényi graph with Ω = 250 nodes and probability q1 of link connection.
The relative error (in log10) made on the average degree ⟨k2⟩ and second moment
⟨k2

2⟩ are reported on the first and third rows (averaged over 10 independent con-
figurations). The central panel shows the reconstructed distribution, for specific
values of the parameters γ2 and q1, averaged over several configurations, and the
exact one. (Second column) Same with G1 a Watts-Strogatz graph. (Third column)
Same with G1 a scale-free network with exponent γ1, i.e., p1(k(1)) ∼ 1/[k(1)]γ1 .

12



4.3 Reconstruction of a Watts-Strogatz graph

We finally consider the reconstruction of a Watts-Strogatz graph G2. As men-
tioned previously, the graph is obtained by starting with a regular ring lattice
of N = 250 nodes, in which each node is connected to its 32 nearest neighbors
and by rewiring the edges with some probability τ2. As in the previous sections,
we consider the known subgraph G1 to be chosen among an Erdős-Rényi graph,
a Watts-Strogatz graph and a scale-free graph. The accuracy of the reconstruc-
tion is relatively independent from the known graph, see Fig. 5. When G1 is a
Watts-Strogatz graph (second column), the accuracy decreases for low values of
the links rewiring parameters, i.e., when the underlying subgraphs are almost
regular.

4.4 Application to the reconstruction of a real multigraph

In this subsection, we test the reconstruction algorithm on a real multigraph
describing the relationships between the members of a corporate law partner-
ship [34, 35]. Two additional examples are provided in App. E. The dataset used
in the following contains 71 nodes (i.e., members) and 2223 links. There are three
kinds of links [34]:

• Co-work links between two members indicate that they worked together.

• Advice links connect two members if one of the two consulted the other for
some professional advice.

• Friendship links between two members indicate that the two of them have
socialized outside work.

Links in the multigraph carry an orientation. We here discard this information
and assume the links to be undirected. As the reconstruction algorithm intro-
duced previously considers two subgraphs, i.e., the known subgraph G1 and
the unknown one G2, we grouped the co-work and advice links (which can be
viewed as professional links). We then proceed with the reconstruction of the de-
gree distribution of the professional links, assuming the subgraph of friendship
relationships to be known. The reconstructed degree distribution is shown in Fig.
6 (Left) and is found to be in close agreement with the exact one. We then reverse
the roles and apply the algorithm to the reconstruction of the degree distribution
of the friendship links, under the knowledge of the subgraph of the professional
links, see Fig. 6 (Right). The reconstruction is less accurate, due to the low den-
sity of the subgraph we aimed at reconstructing. In particular, a non-negligible
fraction of the nodes have no friendship connections (such nodes have degree
k(2) = 0, but the network is still connected thanks to the links of the other kind).
The algorithm is able to predict the presence of such nodes although the esti-
mate (≈ 0.3) overestimates the exact value (≈ 0.2). We further investigate in App.
D the impact of the density of the unknown subgraph on the accuracy of the
reconstruction. Observe that the method hereby used relies on the assumption
of absence of correlations among the degree distributions on each subgraph; in
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Reconstruction WS from ER      Reconstruction WS from WS Reconstruction WS from SF

Figure 5: Reconstruction of a Watts-Strogatz graph G2 with Ω = 250 nodes, aver-
age connectivity k = 32 and probability τ2 of links rewiring. (First column) The
known subgraph G1 is an Erdős-Rényi graph with Ω = 250 nodes and probabil-
ity q1 of link connection. The relative error (in log10) made on the average degree
⟨k2⟩ and second moment ⟨k2

2⟩ are reported on the first and third rows (averaged
over 10 independent configurations). The central panel shows, for specific values
of the parameters τ2 and q1, the reconstructed distribution, averaged over several
configurations, and compared with the exact one. (Second column) Same with
G1 a Watts-Strogatz graph, with average connectivity k = 32 and probability τ1 of
links rewiring. (Third column) Same with G1 a scale-free network with exponent
γ1, i.e., p1(k(1)) ∼ 1/[k(1)]γ1 .

App. F we studied the impact of correlations by using a synthetic network and
we observed a strong impact especially in the case the degree distributions are
anti-correlated, i.e., the degree distribution is disassortative. Let us note that the
degree momenta of the unknown subgraph can also be obtained by measuring
the constant c(β) for small β, and by using Eq. (17). For the reconstruction of
the degree distribution of the advice and co-work links, the procedure yields4

4We used an interpolation of degree 5, i.e., c(β) = ∑5
j=1 cj β

j, with the constants cj estimated from
the measurement points (βi , c(βi)) with βi sampled on the interval [0, 0.02] by increment of 0.001.
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the estimate ⟨k2⟩ ≈ 25.8 and ⟨k2
2⟩ ≈ 733, to be compared with the exact values

⟨k2⟩ = 25.6 and ⟨k2
2⟩ = 728. For the reconstruction of the degree distribution of

the friendship links, we obtain ⟨k2⟩ ≈ 2.82 and ⟨k2
2⟩ ≈ 20.5, while the exact values

are given by ⟨k2⟩ = 2.82 and ⟨k2
2⟩ = 15.3.
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Figure 6: Application to a real corporate law partnership multigraph. Recon-
struction of the degree distribution of professional links (co-work and advice
links) from the knowledge of the friendship links (Left) and the other way around
(Right).

5 Conclusion

We here studied a non-linear diffusion process on top of multigraphs, where pairs
of nodes can be connected by different types of links. The process was derived
from a microscopic description modelling the dispersal of a set of agents under
limiting node carrying capacities. As for the case of simple graphs, the station-
ary node densities show a nonlinear dependence on the node degrees. From the
explicit knowledge of the stationary node densities, we extended an existing al-
gorithm to reconstruct the degree distribution associated to a given type of links,
by assuming the pattern of the other types of interactions to be known. We first
applied the algorithm to the case of synthetic multigraphs, assessing in each case
the robustness of the reconstruction by measuring the relative errors on the first
two degree momenta. We then applied the algorithm to three real multigraphs;
this allowed us to benchmark the method on networks where the assumption
of uncorrelated nodes degree is no longer true and thus to study the impact of
assortativity on the results. We also considered a second method based on a di-
luted nonlinear random walk, i.e., once a smaller and smaller number of walkers
is allowed to travel across the multigraph links, in this way we have been able to
directly measure the first and second degree momenta without the need to com-
pute the degree distribution. This algorithm has been successfully tested both
on synthetic than empirical networks. Future work could include an extension
of the reconstruction algorithm to the case of multilayer networks in which there
are both interlayer and intralayer links.
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Appendices

A Derivation of the ODE from the M-equation

The purpose of this appendix is to derive the system of ordinary differential
equations given in Eq. (3) and reproduced below:

dρi
dt

= ∑
j

ρj
A(1)

ji + A(2)
ji

k j
g(ρi)− ρi

A(1)
ij + A(2)

ij

ki
g(ρj)


= ∑

j

A(1)
ij + A(2)

ij

k j

{
ρjg(ρi)−

k j

ki
ρig(ρj)

}
,

(18)

from the M-equation

dIP(n, t)
dt

= ∑
n′ ̸=n

{
T(n|n′)IP(n′, t)− T(n′|n)IP(n, t)

}
, (19)

with transition rates

T(ni − 1, nj + 1|ni, nj) =
A(1)

ij + A(2)
ij

ki

ni
N

g
(nj

N

)
. (20)

We refer the reader to the main text for more details about the notations used.
The procedure used is quite standard, see e.g. [22]. We first recall that the av-
erage number of individuals found in node i at time t is given by ⟨ni(t)⟩ =
∑n ni(t)IP(n, t). As during an infinitesimal time interval, at most one random
walker will have moved, the states n and n′ will have identical components, ex-
cept for two of them, corresponding to the nodes involved in the transition. More
precisely, if the state before transition has components n = (n1, · · · , ni, · · · , nj, · · · , nΩ),
then after the transition, the new state will have components n′ = (n1, · · · , ni ±
1, · · · , nj ∓ 1, · · · , nΩ). We thus obtain:

d⟨ni(t)⟩
dt

=∑
ni

∑
j,nj

ni

[
− T(ni − 1, nj + 1|ni, nj)IP(ni, nj, t)

+ T(ni, nj|ni + 1, nj − 1)IP(ni + 1, nj − 1, t)
]

+∑
ni

∑
j,nj

ni

[
− T(ni + 1, nj − 1|ni, nj)IP(ni, nj, t)

+ T(ni, nj|ni − 1, nj + 1)IP(ni − 1, nj + 1, t)
]
.

(21)

In the above expression, T(ni − 1, nj + 1|ni, nj)IP(ni, nj, t) denotes the transition
rate associated to the jump of an agent from node i, containing initially ni agents,
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to node j, containing initially nj agents. The three other terms carry a similar
interpretation. Playing with the summation indices in Eq. (21) leads to the fol-
lowing expression:

d⟨ni(t)⟩
dt

= ∑
j

(
⟨T(ni + 1, nj − 1|ni, nj)⟩ − ⟨T(ni − 1, nj + 1|ni, nj)⟩

)

= ∑
j

(A(1)
ji + A(2)

ji

k j
⟨nj

N
g(

ni
N
)⟩ −

A(1)
ji + A(2)

ji

ki
⟨ni

N
g(

nj

N
)⟩
) (22)

Rescaling time t → tN and taking the limit N → +∞ allows to neglect the
correlations and leads to:

dρi
dt

= ∑
j

ρj
A(1)

ji + A(2)
ji

k j
g(ρi)− ρi

A(1)
ij + A(2)

ij

ki
g(ρj)

 , (23)

as stated in Eq. (3).

B Dependence of the degree momenta on the mass
parameter β

In this appendix, we comment on the impact that the mass parameter β has
on the reconstruction of the degree momenta, see Eq. (17). We recall that the
latter are obtained by first computing the constant c(β) for distinct values of β
in the interval [0, βmax] and then by extrapolating c(β) by a polynomial whose
coefficients allow to obtain the desired degree momenta. In Fig. 7, we compare,
as a function of βmax, the first and second degree momenta, as reconstructed from
Eq. (17), with their exact values. The agreement is very satisfactory except for
very low values of βmax.
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Figure 7: Reconstruction of the degree momenta of an Erdős-Rényi subgraph G2
made of n = 100 nodes with a probability q2 = 0.3 of link connection. The known
subgraph is an Erdős-Rényi graph made of 100 nodes with probability q1 = 0.15
of link connection. (Left panel) Comparison between the predicted and exact first
moment ⟨k2⟩, as obtained from the interpolation on the interval 0 ≤ βi ≤ βmax.
(Right panel) Same for the second moment ⟨k2

2⟩.
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C Reconstruction in the case of bimodal degree dis-
tribution

In this appendix, we investigate the accuracy of the reconstruction procedure
described in the main text when the subgraph G1 and/or the subgraph G2 has
(have) a bimodal degree distribution. To construct a subgraph G1 with bimodal
degree distribution, we proceed as follows. We first generate the sequence of
nodes’ degrees, with half of the nodes’ degrees sampled from a Gaussian distri-
bution 5 with mean µ = 35 and standard deviation σ = 10 , while the remaining
nodes degrees are sampled from a Gaussian distribution centered at µ1 with stan-
dard deviation σ = 10, being µ1 a varying parameter. Once the degree sequence
has been generated, the subgraph G1 is built by using the configuration model
with the previously generated sequence of nodes’ degrees. We delete self-loops
and multiple edges so that the adjacency matrix A(1) associated to the known
subgraph has binary entries 6.

In Fig. 8, we show the reconstruction of a graph G2 with bimodal degree dis-
tribution, for four distinct topologies of the known subgraph G1, namely, Erdős-
Rényi (ER), Watts-Strogatz (WS), scale-free (SF) and bimodal (Bim). The recon-
struction strategy works better when the known subgraph is an Erdős-Rényi,
Watts-Strogatz or a scale-free graph. In contrast, the exact and reconstructed
degree distributions deviate significantly when G1 has a bimodal degree distri-
bution (see fourth column) although the bimodality is still predicted.

Fig. 9 shows the accuracy of the reconstruction of a graph when the known
subgraph has bimodal degree distribution. The reconstruction works better if the
unknown subgraph is an Erdős-Rényi (first column) or a Watts-Strogatz (third
column).

5We here assume nodes’ degrees to be positive integers between 1 and Ω − 1, with Ω the number
of nodes. The numbers randomly sampled from the Gaussian distribution are thus rounded to their
nearest integer value and values outside the interval (1, Ω), if any, are rejected during the sampling
procedure.

6As a consequence of the supression of self loops and multiple edges, the degree connectivity
of the resulting graph is slightly reduced and, in particular, the two peaks of the observed degree
distribution p2(k(2)) will be slightly shifted towards lower values of k(2). Let us however note that one
could still use the reconstruction algorithm presented in the main text in presence of multiple edges.
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Reconstruction Bim from ER      Reconstruction Bim from WS Reconstruction Bim from SF Reconstruction Bim from Bim

Figure 8: Reconstruction of a subgraph G2 with bimodal degree distribution (Bim)
centred at 35 and µ2 with variance 10 and Ω = 250 nodes. (First column) The
known subgraph G1 is an Erdős-Rényi graph with Ω = 250 nodes and probability
q1 of link connection. The relative error (in log10) made on the average degree
⟨k2⟩ and second moment ⟨k2

2⟩ are reported on the first and third rows (averaged
over 10 independent configurations). The central panel shows, for specific values
of the parameters µ2 and q1, the reconstructed distribution, averaged over several
configurations, and compared with the exact one. (Second column) Same with
G1 a Watts-Strogatz graph with probability τ1 of links rewiring. (Third column)
Same with G1 a scale-free network with exponent γ1, i.e., p1(k(1)) ∼ 1/[k(1)]γ1 .
(Fourth column) Same with G1 having a bimodal degree distribution centred at
35 and µ1, with variance 10.
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Reconstruction ER from Bim      Reconstruction SF from Bim Reconstruction WS from Bim

Figure 9: Reconstruction of a subgraph G2 when the known subgraph G1 has
bimodal degree distribution (Bim) centred at 35 and µ2 with variance 10 and
Ω = 250 nodes. (First column) The unknown subgraph G2 is an Erdős-Rényi
graph with Ω = 250 nodes and probability q2 of link connection. The relative
error (in log10) made on the average degree ⟨k2⟩ and second moment ⟨k2

2⟩ are re-
ported on the first and third rows (averaged over 10 independent configurations).
The central panel shows, for specific values of the parameters µ1 and q2, the
reconstructed distribution, averaged over several configurations, and compared
with the exact one. (Second column) Same with G2 a scale-free network with
exponent γ2, i.e., p2(k(2)) ∼ 1/[k(2)]γ1 . (Third column) Watts-Strogatz graph with
probability τ2 of links rewiring.
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D Reconstruction of low density networks

In this appendix, we investigate the accuracy of the reconstruction of low densely
connected subgraphs. To this goal, we construct synthetic multigraphs with G1
(known subgraph) and G2 (unknown subgraph) two Erdős-Rényi graphs with
probabilities q1 = 1 ≫ 1/Ω and q2 ∼ 1/Ω of link connections. In this way the
known subgraph is densely connected while the unknown subgraph is sparse,
i.e., the node degrees k(2) are low and possibly zero. In Fig. 10, we show the
relative errors on the average reconstructed degree momenta ⟨k2⟩ and ⟨k2

2⟩ as a
function of q2 with Ω = 100 nodes. Vertical bars indicate the standard deviations
deduced from 100 experiments. As can be seen from this Figure, the averaged
relative error and the standard deviations increase as the parameter q2 is reduced,
implying thus some limitation of the reconstruction method in presence of zero
degree nodes and low density of connections.

ε(rel)

Figure 10: Reconstruction of an Erdős-Rényi subgraph G2 of Ω = 100 nodes with
link connection q2 from the knowledge of an Erdős-Rényi subgraph G2 with link
connection q1 = 0.5. In the left panel we show the relative error ε(rel) on ⟨k2⟩ while
in the right panel the one for ⟨k2

2⟩. The data were averaged over 100 independent
replicas. Vertical bars represent the standard deviations.

E Reconstruction of real multigraphs

We further investigate in this Appendix the reconstruction of real multigraphs.
The first instance is a cooperation multigraph among students in a course [31].
Nodes correspond to students and links identify cooperation between them. Three
types of cooperation links were identified, whose attributes are denoted by Time,
Computer and Partners. Partners links connect pairs of students that submitted
their assignments together, computer links connect pairs of students that used
the same computer for their (online) assignments and Time links connect pairs of
students that had accessed the course’s website almost at the same time. We refer
the reader to [31] for more details about the procedure used to collect the data
and construct the multigraph. As there are fewer Computer links, we discard them
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and only focus on the Time and Partners links, dealing thus with a multigraph
with two attributes. Moreover, we restrict our attention to the largest connected
component7 of the resulting multigraph, shown in Fig. 11 (Left). The latter con-
tains 134 nodes and 242 links, of which 156 are Partners links and 86 are Time
links. We then proceed with the reconstruction of the degree distribution corre-
sponding to the Partners links, assuming the degree distribution of the Time links
to be known, see top right panel of Fig. 11. We then repeat the experiment for the
reconstruction of the degree distribution of the Time links, see bottom right panel
of Fig. 11. In the latter case, the reconstruction is less satisfactory. The discrep-
ancy observed might be the consequence of the correlation between the degree
sequences of both subgraphs. The Pearson correlation coefficient measuring the
correlation between both degree sequences is given by r ≈ −0.5, which indicates
a diassortative behavior: nodes with few Partners links tend to have more Time
links and vice versa. We further investigate in Appendix F the impact of degree-
degree correlations on the reconstruction accuracy. The degree momenta of the
unknown subgraph can also be inferred by measuring the constant c(β) for small
β, and by using Eq. (17). For the reconstruction of the degree distribution of the
Partners links, the procedure yields the estimate ⟨k2⟩ ≈ 2.33 and ⟨k2

2⟩ ≈ 5.17, to
be compared with the exact values ⟨k2⟩ = 2.33 and ⟨k2

2⟩ = 6.19. For the recon-
struction of the degree distribution of the Time links, we obtain ⟨k2⟩ ≈ 1.28 and
⟨k2

2⟩ ≈ 2.56 while the exact values are given by ⟨k2⟩ = 1.28 and ⟨k2
2⟩ = 3.58.

Figure 11: (Left) Cooperation multigraph. Blue links correspond to Time links
while red links identify Partners links. (Right) The top panel (resp. bottom)
gives the reconstruction of the degree distribution corresponding to the Partners
(resp. Time) links from the knowledge of the degree distribution of the Time (resp.
Partners) links.

The second instance is the European air transportation multigraph where
links’ attributes are commercial arilines [32]. We here restrict our attention to two

7There must exist a path joining any pair of nodes in the connected component.
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operating companies, namely Lufthansa and Ryanair. The multigraph is shown
in Fig. 12 (Left). It contains 198 nodes connected by 1690 links, of which 488 are
from the Lufthansa operating company and the others from Ryanair. As before,
we restrict our attention to the largest connected component. The top right panel
of Fig. 12 shows the reconstructed degree distribution corresponding to Ryanair’s
links, assuming the degree distribution for Lufthansa’s links to be known while
the bottom right panel shows the other way around. The discrepancy observed
between the exact and reconstructed degree distributions might in part be due
to the presence of low-degree nodes and the degree-degree correlations, see Ap-
pendices D and F. Again, the degree momenta of the unknown subgraph can be
inferred by measuring the constant c(β) for small β, and by using Eq. (17). For the
reconstruction of the degree distribution of Ryanair’s links, the procedure yields
the estimate ⟨k2⟩ ≈ 6.07 and ⟨k2

2⟩ ≈ 120, to be compared with the exact values
⟨k2⟩ = 6.07 and ⟨k2

2⟩ = 143. For the reconstruction of the degree distribution of
the Lufthansa links, we obtain ⟨k2⟩ ≈ 2.46 and ⟨k2

2⟩ ≈ 54.8 while the exact values
are given by ⟨k2⟩ = 2.46 and ⟨k2

2⟩ = 77.8.

Figure 12: (Left) European air transportation multigraph. Links in blue (resp.
red) indicate flight routes operated by Lufthansa (resp. Ryanair) (Right) The top
panel (resp. bottom) gives the reconstruction of the degree distribution corre-
sponding to Ryanair’s (resp. Lufthansa’s) links from the knowledge of the degree
distribution of Lufthansa’s (resp. Ryanair’s) links.

F Impact of the degree-degree correlations on the re-
construction

The reconstruction procedure described in the main text assumes the degree dis-
tributions of the known and unknown subgraphs G1 and G2 to be uncorrelated.
This assumption allows to factorize the joint probability degree distribution func-
tion p(k(1), k(2)) = p1(k(1))p2(k(2)), from which the unknown degree distribution
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p2(k(2)) is recovered as the solution of a linear system, see Eq. (16). When the
nodes degrees of the known subgraph correlate with that of the unknown sub-
graph, factorizing the joint probability distribution is no longer exact; it is an
approximation that may induce some errors on the reconstruction outcomes. The
purpose of this Appendix is precisely to investigate that aspect. To quantify the
level of degree-degree correlations, we will use the Pearson correlation coefficient
r. For the case at hand, the latter coefficient is given by:

r =
⟨k1k2⟩ − ⟨k1⟩⟨k2⟩

σ1σ2
, (24)

where ⟨k1k2⟩ = ∑k(1),k(2) k(1)k(2)p(k(1), k(2)), ⟨k1⟩ = ∑k(1) k(1)p(k(1)) (and similarly
for ⟨k2⟩) and σ1, σ2 are the standard deviations associated to the nodes degrees of
G1 and G2.

To investigate the impact of degree-degree correlations on the reconstruction
accuracy, we construct correlated multigraphs with a prescribed Pearson correla-
tion coefficient r. The algorithm we used is similar to the one described in Section
VII. A. in [36]. We start by constructing two synthetic graphs G1 and G2 (from
some graph ensembles), each of which has Ω nodes, labelled 1, 2, · · · , Ω. Keeping
the graph structure of G1 fixed, the idea is to modify progressively the structure
of G2 so as to get closer and closer to the desired Pearson correlation coefficient.
In practice, the algorithm will stop when the observed Pearson correlation and
the target one differ by a quantity smaller than some tolerance threshold ϵ ≪ 1
set by the user.

We now describe in more details the algorithm. Suppose thus that we want
to generate a multigraph with a Pearson correlation coefficient r given above.
Starting with two random graphs G1 and G2, we compute the difference ∆r, in
absolute value, between the observed Pearson correlation coefficient and the one
we would like to obtain. If ∆r is less than the tolerance threshold ϵ, the algorithm
outputs the multigraph. Otherwise, we select a pair of nodes of G2 at random, say
i and j, and measure the new Pearson correlation coefficient we would obtain by
swapping the labels of both nodes, i.e., by permuting rows i and j and columns i
and j of the adjacency matrix A(2). If the operation would result in a smaller value
∆new

r compared to ∆r, it is accepted with probability 1. If not, namely, if ∆new
r >

∆r there is still a small probability e−(∆new
r −∆r)/λ to accept the modification, with

λ > 0 some parameter. We repeat the process until ∆r is smaller than ϵ. Let us
note that the graph structure of G1 is preserved throughout the process.

The above algorithm generates correlated multigraphs. In particular, positive
values of r indicate that high-degree nodes in G1 tend to be also high-degree
nodes in G2, while, in contrast, negative values of r imply the opposite phe-
nomenon, namely, high degree nodes in G1 have a greater probability to be low
degree nodes in G2.

We now apply the above algorithm to generate correlated multigraphs and
measure the relative errors made on the reconstructed degree momenta ⟨k2⟩ and
⟨k2

2⟩. We first assume the graphs G1 and G2 to be Barabási-Albert graphs of
Ω = 100 nodes. Figure 13 gives the relative errors made on the average degree
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⟨k2⟩ (left panel) and second degree moment ⟨k2
2⟩ (right panel), as a function of the

Pearson correlation coefficient r. As can be seen from the left panel, the relative
error made on ⟨k2⟩ is almost zero for positive values of the Pearson correlation
coefficient. For negative values of r, the smaller r the larger the relative error.
The right panel shows that the larger |r| and the larger the relative error. A sim-
ilar behavior is observed if the known and unknown subgraphs are Erdős-Rényi
graphs, see Fig. 14. Overall, these results suggest that degree-degree correlations
reduce the performance of the reconstruction process. Our intuition about those
results is the following. In the case of negatively correlated nodes degree it can
happen that if k(1) is small then k(2) is large and as well the opposite case, but
then the multigraph will have, on average, constant nodes degree, being each
degree the sum of a large and a small number, hence the matrix elements Fij
given by Eq. (15) will be quite similar each other rendering difficult to solve the
least-square problem. On the other hand if G1 and G2 have positive nodes degree
correlations, then the multigraph will have nodes with very high degree, associ-
ated to large k(1) and k(2), together with nodes with very low degree, associated
to small k(1) and k(2), the matrix elements Fij will thus be quite localized and the
least-square problem easier to be solved. This could thus explain the dependence
of the relative error on ⟨k2⟩; on the other hand we already observed that ⟨k2

2⟩
is more sensitive to the reconstruction process and thus deviations from the as-
sumption of independence among the distributions of k(1) and k(2) manifest into
a large relative error for any non zero r.

ε(rel)

Figure 13: Relative errors ε(rel) made on ⟨k2⟩ (left panel) and ⟨k2
2⟩ (right panel)

with G1 (known graph) and G2 (unknown graph) two Barabási-Albert subgraphs
of Ω = 100 nodes, constructed by preferential attachment: new nodes are added
to the graph and connect to 10 existing nodes. The degree sequences of both
subgraphs are correlated, with a Pearson correlation coefficient r (x-axis). Each
point was averaged over 10 independent replicas, with the standard deviations
reported by the vertical bars. The parameter λ was set to 0.0001 (see the text for
its meaning).
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ε(rel)

Figure 14: Relative errors ε(rel) made on ⟨k2⟩ (left panel) and ⟨k2
2⟩ (right panel)

with G1 (known graph) and G2 (unknown graph) two Erdős-Rényi subgraphs of
Ω = 100 nodes and probability q1 = 1/2 and q2 = 1/2 of link connection. The
degree sequences of both subgraphs are correlated, with a Pearson correlation
coefficient r (x-axis). Each point was averaged over 10 independent replicas, with
the standard deviations reported by the vertical bars. The parameter λ was set to
0.0001 (see the text for its meaning).
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