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ABSTRACT

The increasing worldwide energy demand as well as the environmental con-
cerns related to traditional energy sources, presses the urgency of the explo-
ration of sustainable alternatives. This thesis investigates the potential of ther-
moelectric energy, focusing on conducting polymer–based composites. Tradi-
tional thermoelectric materials, while efficient, face limitations such as toxicity
and limited availability. Conducting polymers offer a promising solution due
to their good electrical conductivity, low thermal conductivity, and modula-
ble Seebeck coefficient associated with their flexibility and processability. By
forming composites with materials like carbon nanotubes and graphene, their
thermoelectric performance can be significantly enhanced. Surface treatment
and functionalization play a crucial role in optimizing composite properties
by monitoring the interaction of the fillers with the polymer matrix, offering
avenues for improving TE efficiency. Through a comprehensive exploration,
material synthesis, and their performance evaluation, this research contributes
to advancing thermoelectric technology and paving the way for sustainable
energy solutions.

The thesis manuscript begins with an exploration of the global energy in-
vestment and the environmental impacts associated with traditional energy
sources, highlighting the imperative for sustainable alternatives. It explores the
principles of thermoelectricity, the Seebeck and Peltier effects, which govern
thermoelectric energy. Furthermore, it provides a detailed review of traditional
thermoelectric materials and their limitations, setting the stage for the investi-
gation of conducting polymers as viable alternatives.

The research methodology involves the synthesis and characterization of
conducting polymer–based composites, with a focus on surface treatment and
functionalization techniques to enhance thermoelectric performance. Various
composites, including those incorporating graphene, carbon nanotubes, and
metal oxides (bismuth oxide or nickel oxide) nanoparticles, are synthesized
and evaluated for their thermoelectric properties. The influence of surface
modifications on composite morphology, charge transport, and thermoelectric
parameters is systematically studied.

The findings reveal significant improvements in thermoelectric efficiency
achieved through surface treatment and composite formation. Functional-
ization of graphene and carbon nanotubes enhances their compatibility with
polymer matrices, leading to improved dispersion and interfacial bonding. This
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ABSTRACT

results in enhanced electrical conductivity, reduced thermal conductivity, and
ultimately, increased thermoelectric efficiency. Moreover, the incorporation of
metal oxides (bismuth oxide or nickel oxide) nanoparticles leads to a remark-
able enhancement of the power factor, highlighting the potential for hybrid
composites in thermoelectric applications.

The findings of this research not only enhance our fundamental under-
standing but also provide valuable practical insights for the development of
sustainable energy technologies. By addressing the challenges in designing and
optimizing thermoelectric materials, this work advances thermoelectric tech-
nology, which has significant implications for waste heat recovery, renewable
energy generation, and environmental sustainability.

Keywords: thermoelectricity, conducting polymers, graphene, carbon nan-
otubes, surface treatment, functionalization, metal oxides nanoparticles
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RÉSUMÉ

La demande croissante en énergie, associée aux préoccupations environnemen-
tales mondiales liées aux sources d’énergie traditionnelles, souligne l’urgence
d’explorer des alternatives durables. Cette thèse examine le potentiel de la
conversion d’énergie thermique en électrique, en se concentrant sur les com-
posites à base de polymères conducteurs. Les matériaux thermoélectriques
traditionnels, bien qu’efficaces, sont confrontés à des défis de surmonter leurs
inconvénients tels que la toxicité et la disponibilité limitée. Les polymères
conducteurs offrent une solution prometteuse en raison de leurs propriétés
modulables (conductivité électrique, effet Seebeck et conductivité thermique)
associées à leur flexibilité. En formant des composites avec des matériaux tels
que les nanotubes de carbone et le graphène dotés de propriétés de conduc-
tivité électrique et thermique, leur performance thermoélectrique peut être
considérablement améliorée. Le traitement de surface et la fonctionnalisation
jouent un rôle crucial dans l’optimisation des propriétés des composites, offrant
des voies pour améliorer leur efficacité. À travers une exploration approfondie,
une synthèse des matériaux et une caractérisation des performances, cette
recherche contribue à faire progresser la technologie thermoélectrique, ouvrant
la voie à des solutions énergétiques durables.

La thèse commence par une exploration de l’investissement énergétique
mondial et des impacts environnementaux associés aux sources d’énergie tra-
ditionnelles, mettant en évidence l’impératif de rechercher des alternatives
durables. Elle explore les principes de la thermoélectricité, les effets Seebeck
et Peltier, qui régissent la conversion d’énergie thermoélectrique. De plus, elle
offre une revue détaillée des matériaux thermoélectriques traditionnels et de
leurs limitations, préparant le terrain pour l’étude des polymères conducteurs
en tant qu’alternatives viables.

La méthodologie de recherche implique la synthèse et la caractérisation
de composites à base de polymères conducteurs, en mettant l’accent sur les
techniques de traitement de surface et de fonctionnalisation pour améliorer les
performances thermoélectriques. Divers composites, y compris ceux incorpo-
rant du graphène, des nanotubes de carbone et des nanoparticules d’oxydes
métalliques (oxyde de bismuth ou oxyde de nickel), sont synthétisés et évalués
pour leurs propriétés thermoélectriques. L’influence des modifications de sur-
face sur la morphologie des composites, le transport de charge et les paramètres
thermoélectriques est étudiée de manière systématique.
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Les résultats révèlent des améliorations significatives, par rapport aux matéri-
aux préparés et ceux rapportés dans la littérature, de l’efficacité thermoélec-
trique obtenues grâce au traitement de surface et à la formation de composites.
La fonctionnalisation du graphène et des nanotubes de carbone améliore leur
compatibilité avec les matrices polymériques, conduisant à une dispersion
et une liaison interfaciale améliorées. Cela se traduit par une conductivité
électrique accrue, une conductivité thermique réduite et, finalement, une effi-
cacité thermoélectrique plus élevée. De plus, l’incorporation de nanoparticules
d’oxydes métalliques (oxyde de bismuth ou oxyde de nickel) démontre une
amélioration remarquable du facteur de puissance, mettant en évidence le
potentiel des composites hybrides dans les applications thermoélectriques.

Les conclusions de cette recherche améliorent non seulement notre com-
préhension fondamentale, mais fournissent également des perspectives pra-
tiques précieuses pour le développement de technologies énergétiques durables.
En abordant les défis de la conception et de l’optimisation des matériaux ther-
moélectriques, ce travail fait progresser la technologie thermoélectrique, ce qui
a des implications significatives pour la récupération de la chaleur perdue, la
génération d’énergie renouvelable et la durabilité environnementale.

Mots clés: thermoélectricité, polymères conducteurs, graphène, carbone nan-
otube, traitement de surface, fonctionnalisation, nanoparticules d’oxydes mé-
talliques
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INTRODUCTION

The global energy demand is continuously increasing, driven by industrial
growth and technological advancements. Traditional energy sources, such as
fossil fuels, have served as a global energy supply for over a century. These
sources, including coal, oil, and natural gas, are not only finite but also con-
tribute significantly to environmental pollution and climate change. The com-
bustion of fossil fuels releases large amounts of carbon dioxide (CO2) and other
greenhouse gases into the atmosphere, leading to global warming and climatic
changes [1].

Additionally, the extraction, transportation, and utilization of fossil fuels are
associated with several environmental and ecological issues, such as habitat
destruction, oil spills, and air and water pollution. These problems press the
urgent need for a transition to cleaner and more sustainable energy sources.
Renewable energy technologies, such as solar, wind, and hydroelectric power,
have shown promise in reducing dependence on fossil fuels. However, these
technologies face challenges related to energy storage, efficiency, and reliability,
particularly in regions with variable weather conditions [2].

Therefore, there is a pressing need to explore and develop alternative energy
sources and conversion technologies that are sustainable and environmentally
friendly. One such promising technology is thermoelectricity [3], which can
directly convert waste heat into electrical energy, thereby improving overall en-
ergy efficiency [4]. Thermoelectric devices have the potential to harness waste
heat from various sources, such as industrial processes, automotive exhaust
systems, and even human body heat, converting it into useful electrical power.
This not only enhances energy utilization but also contributes to environmental
conservation [5].
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CHAPTER 1. INTRODUCTION

Thermoelectricity, a technology that directly converts heat into electrical
energy and vice versa, offers a promising solution for energy conversion. The
thermoelectric effect, which encompasses the Seebeck and Peltier effects, en-
ables this direct conversion. Thermoelectric materials can generate electricity
from temperature gradients, making them useful for waste heat recovery and
renewable energy applications [6].

The Seebeck effect refers to the generation of an electric voltage when there
is a temperature difference across a material. Conversely, the Peltier effect
involves the absorption or emission of heat when an electric current passes
through a junction of two different materials [7]. These principles form the basis
of thermoelectric devices, which can function as both power generators and
coolers. However, the efficiency of thermoelectric materials is determined by
the dimensionless figure of merit, ZT, which depends on the Seebeck coefficient
(S), electrical conductivity (σ), and thermal conductivity (κ), ZT = (S2 ·σ/κ) ·T

Traditional thermoelectric materials, such as bismuth telluride (Bi2Te3),
have demonstrated high efficiencies. However, their widespread application
is hindered by several challenges, including high cost, toxicity, and limited
availability of constituent elements. These limitations necessitate the develop-
ment of new, sustainable materials with comparable or superior thermoelectric
performance [8–10].

Bismuth telluride and its alloys have been the materials of choice for com-
mercial thermoelectric applications due to their relatively high ZT values at
room temperature. However, their environmental and health hazards, pose
significant challenges. Moreover, these materials often require complex and
expensive fabrication processes, limiting their scalability and practical deploy-
ment. Therefore, there is a strong impetus to explore alternative materials that
are abundant, non–toxic, and cost–effective [11].

Conducting polymers have emerged as promising candidates for thermo-
electric applications due to their properties. These materials are flexible, light-
weight, and offer the potential for low–cost, large–scale production. Moreover,
the electrical and thermal properties of conducting polymers can be tuned
through chemical modifications and composite formation [12].

Polymers like polypyrrole (PPy), polyaniline (PANi), and poly(3,4–ethylene-
dioxythiophene) (PEDOT) have shown potential in thermoelectric applications
due to their intrinsic electrical conductivity and processability. These poly-
mers can be synthesized through relatively simple chemical or electrochemical
methods, making them attractive for scalable production. Furthermore, their
mechanical flexibility and low thermal conductivity are advantageous for appli-
cations where weight and flexibility are critical, such as in wearable electronics
and flexible thermoelectric generators[13, 14].
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Chapter 1. Introduction

The thermoelectric performance of conducting polymers can be signifi-
cantly enhanced by forming composites with other materials, such as carbon
nanotubes, graphene, and inorganic nanoparticles [15–17]. These compos-
ites leverage the synergistic effects of their constituents, leading to improved
electrical conductivity, thermal stability, and overall thermoelectric efficiency.
A critical aspect of this enhancement is the influence of surface treatments
and functionalization, which can drastically alter the interfacial properties and,
consequently, the thermoelectric performance of the composites [18–20].

Surface treatment and functionalization play a pivotal role in optimizing the
properties of conducting polymer composites. By modifying the surface chem-
istry of materials like graphene and multi–walled carbon nanotubes (MWCNTs),
it is possible to enhance their compatibility with polymer matrices, improve
charge carrier mobility, and tailor the thermal and electrical conductivities of
the composites.

Surface treatments techniques such as coating with functional groups can
create active sites on the surface of carbon–based materials, facilitating better
dispersion within the polymer matrix and improving interfacial bonding. This
leads to enhanced electrical pathways and reduced thermal conductivity, which
are crucial for efficient thermoelectric materials.

Functionalization is introducing functional groups (e.g., carboxyl, amine,
thiol) onto the surface of graphene and MWCNTs can significantly improve their
processability. Functionalization can also modulate the electronic structure of
the composites, enhancing the Seebeck coefficient and overall power factor of
the thermoelectric material.

For example, functionalizing MWCNTs with carboxyl groups (–COOH) or
amine groups (–NH2) can improve their dispersion in the polymer matrix, lead-
ing to a more homogeneous composite with enhanced thermoelectric prop-
erties. Similarly, surface treatment of graphene nanoplatelets can increase
the number of active sites available for interaction with the polymer, thereby
improving the composite’s overall performance.

This thesis aims to explore the development of conducting polymer–based
composites for thermoelectricity, with a focus on the impact of surface treat-
ments by functionalization and decoration with nanoparticles. The primary
objectives are to synthesize and characterize novel composites, investigate
their thermoelectric properties, and optimize their performance for practical
applications. Special emphasis is placed on understanding the role of surface
treatments and functionalization in enhancing the thermoelectric efficiency of
these composites.
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CHAPTER 1. INTRODUCTION

The thesis is divided into three main parts to guide the reader through this
research.

Part One: Background. Part one lays the foundation by providing essential
background information to understand the research context and it contains
two chapters (2 and 3). Chapter two offers an exploration into the generali-
ties, principles, and practical applications of thermoelectricity. Chapter three
presents a comprehensive review of various thermoelectric materials, shedding
light on their properties and the challenges they present.

Part Two: Research Contributions. Part two presents the primary contri-
butions of this research and it is subdivided into four chapters (4, 5, 6, and
7). Chapter four explores the impact of surface–treated graphene as a filler
and different synthesis methods on the thermoelectric properties of ternary
composites made from PPy and PEDOT or PEDOT:PSS. In chapter five, the
focus shifts to examining how various functional groups (benzoic acid, benzene
tricarboxylic acid, hydroxyl, carboxyl, amino, and thiol) grafted onto MWCNTs
influence the thermoelectric performance of PPy–MWCNTs nanocomposites.
Chapter six aims to improve the thermoelectric conversion efficiency of organic
materials by developing a hybrid organic–inorganic material and investigates
the influence of decorating MWCNTs and graphene nanoplatelets with bismuth
oxide nanoparticles on the thermoelectric power factor of PPy–based nanocom-
posites, unraveling new avenues for enhanced materials. Lastly, chapter seven
provides a detailed exploration of strategic design methodologies for achieving
enhanced thermoelectric materials, employing nickel oxide–decorated MWC-
NTs wrapped with polypyrrole nanotubes.

Part Three: Closing Remarks. Part three serves as conclusion and final
reflection on the thesis, containing two chapters (8 and 9). Chapter eight offers
a cross–chapter examination, wrapping the various thermoelectric strategies
explored throughout the thesis. Finally, chapter nine concludes the thesis by
summarizing the key findings and offering insightful suggestions for future
research directions.

The successful development of efficient conducting polymer–based ther-
moelectric composites could provide a sustainable and cost–effective solution
for waste heat recovery and renewable energy generation. This research has
the potential to contribute significantly to the advancement of thermoelectric
technology and its practical applications in various industries.
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CHAPTER 2. THERMOELECTRICITY: GENERALITIES, PRINCIPLES AND

APPLICATIONS

Thermoelectricity, covered in this chapter, is a very interesting field that con-
nects physics, materials science, and engineering. It consists on the conversion
of heat gradients into electrical power and, conversely, the conversion of electri-
cal power into heat, with such applications as power generation and cooling
systems. In this introductory chapter, we learn the principles and applications
of thermoelectricity.

2.1 Fundamentals of Thermoelectricity

We begin the chapter with the basic ideas underlying all thermoelectric (TE)
phenomena. In this respect, the chapter provides an understanding of heat–to–
electricity conversion and thermoelectric transport phenomena.

2.1.1 Seebeck Effect

The principle of TE energy conversion is based on the fundamental TE effects
discovered by Thomas Johann Seebeck in 1821, which can be better explained
using the thermocouple scheme shown in Figure 2.1. The Seebeck effect is the
physical basis of TE power generation devices [21]. One key feature of this effect
is the Seebeck coefficient (S), which is also known as thermopower (α). The
Seebeck coefficient provides a measure of the electromotive force developed
across the ends of a thermocouple subjected to a temperature gradient [22].
In simpler terms, it is similar to a circuit containing two different conductors,
or semiconductors, labeled as Material A and Material B. When the junctions
of A and B are at dissimilar temperatures, T and T + ∆T respectively, an open
circuit electromotive force V is obtained [4, 23]. Therefore, as one end of the
thermocouple is hot and the other is cool, it can cause a flow of an electric
current due to the frontal voltage difference ∆V.

Figure 2.1: Schematic representation of the Seebeck effect in a thermocouple.
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2.1.1. Seebeck Effect

Subjecting a metal to a temperature gradient ∆T results in the establishment
of an energy gradient across it due to the average energy of electrons on the hot-
ter region necessarily exceeding that of the cooler region as heat is transferred
from the former to the latter. The force driven by this energy gradient ensures
the diffusion of electrons from the hot side to the cold side, Figure 2.2. Due to
the temperature difference, the negative majority of carriers gather in the cooler
region while the positive majority of carriers accumulate in the hotter area. As a
result of this thermally–induced electron diffusion, Figure 2.2a, the hot region
becomes positively charged compared to the opposite end of the conductor.

Figure 2.2: An overview of how temperature differences affect electron distri-
bution from hot to cold, a) N–type material, b) P–type material and c) Seebeck
effect (when N– and P–type materials are connected).

Conventionally in physics, the voltage difference known as ∆V (V) and
generated by temperature difference ∆T (K) is quantified as the measure of
the electrical potential observed on the colder side subtracted from that of the
warmer side. The sign of the Seebeck coefficient (VK–1) (Equation 2.1) depends
on the type of primary charge carriers in the material: the main charge carriers
are either electrons or holes.

S = –
∆V

∆T
(2.1)

The Seebeck coefficient exhibits a direct correlated relationship to the type
of charge carriers within the given material, being negative when electrons are
the majority carriers as in N–type substrates as depicted in Figure 2.2a, yet posi-
tive when holes predominantly conduct as in the case of P–type substrates as
shown in Figure 2.2b. P– and N–type semiconductors are usually used together
in practical devices (Figure 2.2c) since they have Seebeck coefficients of oppo-
site signs that add onto each other across the TE module. The negative sign
indicates that the voltage generated is opposite in direction to the temperature
gradient.
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APPLICATIONS

2.1.2 Peltier Effect

This fundamental TE phenomenon appears at the junction where two unlike
materials meet whenever an electric current passes through, known as the
Peltier effect. It is named after the French physicist Jean Charles Athanase
Peltier, who discovered it in 1834 [24]. The Peltier effect is the basis for many TE
refrigeration devices [21].

When an electrical current is passed through the junction of two materials
with different Seebeck coefficients (which generate a voltage in response to a
temperature gradient), the Peltier effect causes heat to either be absorbed or
released at the junction. The direction of heat transfer depends on the direction
of the electric current and the materials involved. If the direction of the electric
current aligns with the direction of the Seebeck effect, the junction absorbs heat
from the outside. Conversely, if the current flows in the opposite direction, the
junction releases heat to the outside [25, 26].

Similarly, to the Seebeck coefficient, the Peltier coefficient (Π, V or JC–1) is
defined as the coefficient of the thermal current (Q, J) to the electrical current
(I, C), given by Equation 2.2.

Q =Π · I (2.2)

Due to the flow of electrons across the junction resulting in a redistribution
of energy levels within the constituent substances, a transfer of thermal energy
occurs as a consequence. In other words, the electrical current induces a flow
of charge carriers (electrons or holes), which, in turn, affects the thermal energy
distribution at the junction, Figure 2.3.

Figure 2.3: Peltier effect: refrigeration mode.
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2.1.3 Thomson Effect

The Thomson effect, also known as the Thomson heat, is a TE phenomenon
related to the transport of heat in a conductive material subjected to an electrical
current and a temperature gradient. Named after the Scottish physicist William
Thomson, who first described it in 1854, the Thomson effect occurs when
an electric current flows through a homogeneous conductor that also has a
temperature gradient along its length [27, 28].

In simple terms, the Thomson effect describes the generation or absorption
of heat along a conductor due to the combined influence of electrical current
and temperature gradient. The direction of heat transfer depends on the ma-
terial’s Thomson coefficient (Θ), which is a measure of the material’s ability to
generate or absorb heat [13].

The mathematical expression for the Thomson effect (QTh, W) can be given
by Equation 2.3, which is related to the Thomson coefficient (Θ, WA–1K–1), the
electrical current (I, A), and the temperature gradient (T, K) along the conduc-
tor’s length [29].

QTh = –Θ · I · ∆T (2.3)

2.2 Properties and Performance Metrics of TE Materials

In this section, we explore the key material properties, such as electrical conduc-
tivity, Seebeck coefficient, and thermal conductivity, which dictate the efficiency
of thermoelectric conversion as well as the performance metrics of TE materials
such as figure of merit and power factor.

2.2.1 Electrical Conductivity

Electrical conductivity (σ) is a crucial feature in TE materials as it determines
their ability to transport electric current, which is essential for efficient TE
energy conversion. In semiconductors, electrical conductivity comes from the
movement of charge carriers (electrons or holes) through the material. Organic,
carbon–based, semiconductors have similar behavior but unique properties
compared to inorganic semiconductors [30].

At absolute zero temperature, semiconductors behave as insulators because
their valence band is fully occupied, and their conduction band is empty, creat-
ing a bandgap between them [21, 31], Figure 2.4.

However, when sufficient energy is provided, electrons can be excited from
the valence band to the conduction band, leaving behind holes in the valence
band. These excited electrons and holes are referred to as charge carriers and
contribute to electrical conductivity [32].
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Figure 2.4: Band gap in insulators, semiconductors, and conductors.

In order to tune electrical conductivity, doping is the process of adding
impurities (dopants) to a pure semiconductor so as to modify its electrical
properties and increase its conductivity. There are two main types of doping
[33, 34]:
N–type Doping: Introduces dopants with more valence electrons than the
semiconductor. This adds extra electrons (negative charge carriers) to the
conduction band (Figure 2.4), increasing conductivity.
P–type Doping: Introduces dopants with fewer valence electrons. This creates
holes (positive charge carriers) in the valence band (Figure 2.4), also enhancing
conductivity.

2.2.1.1 Key Factors Influencing Electrical Conductivity

The electrical conductivity of thermoelectric materials is influenced by several
key factors. Firstly, the density of charge carriers (n) significantly impacts
conductivity, as increasing the carrier concentration through methods such as
doping enhances conductivity by providing more charge carriers for current
flow. This relationship is described by Equation 2.4, where σ (Sm–1) represents
electric conductivity, n (m–3) is the carrier concentration, µ (m2V–1s–1) is the
carrier mobility, and e (1.602×10–19 C) is the charge of the electron.

σ = n· e· µ (2.4)

Carrier mobility (µ) quantifies how easily charge carriers can move through
the material when an electric field is applied, and higher carrier mobility results
in improved conductivity. Additionally, the electronic band structure of the
material is critical in determining conductivity, as the presence of bandgaps
and the position of energy levels affect carrier transport properties [32, 35].
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Defects and impurities (dopants) within the material can act as scattering cen-
ters, hindering the movement of charge carriers and reducing conductivity,
making the minimization of defects and control of impurity concentrations
essential for optimizing conductivity [36, 37]. Temperature also plays a role
in influencing the mobility of charge carriers and affecting conductivity; gen-
erally, higher temperatures lead to increased conductivity due to enhanced
carrier mobility [38, 39]. Furthermore, the arrangement and structure of the
material at the microscopic level, known as microstructure and morphology,
can impact conductivity by influencing charge carrier transport pathways and
interface properties [40]. Understanding and optimizing these factors are cru-
cial for designing TE materials with high electrical conductivity and overall
performance.

2.2.2 Seebeck Coefficient

The Seebeck coefficient (Equation 2.1), also known as the TE power or ther-
mopower, is a fundamental property of TE materials that characterizes their
ability to convert temperature differences into electrical voltage and vice versa.

2.2.2.1 Key Factors Influencing Seebeck Coefficient

The Seebeck coefficient (S) of a material, a crucial parameter in TE applications,
is primarily dictated by its electronic band structure. The Seebeck coefficient is
inversely proportional to the carrier concentration (n). In materials with high
carrier concentrations, such as metals, the Seebeck coefficient tends to be lower
due to increased electron–electron scattering, while in semiconductors with
lower carrier concentrations, the Seebeck coefficient is typically higher [41].
The Seebeck effect relies on the presence of a temperature gradient across the
material; a larger gradient leads to a higher voltage generated and thus increases
the Seebeck coefficient. The electronic band structure, including energy band
positions and the presence of bandgaps, also influences the Seebeck coefficient
[32]. Furthermore, lattice thermal conductivity (κ) indirectly affects the Seebeck
coefficient. Higher lattice thermal conductivity promotes increased phonon
transport, potentially reducing the temperature gradient and impacting the See-
beck coefficient [42]. Therefore, materials with low lattice thermal conductivity
are preferable for TE applications, ensuring efficient energy conversion.

13



CHAPTER 2. THERMOELECTRICITY: GENERALITIES, PRINCIPLES AND

APPLICATIONS

2.2.3 Thermal Conductivity

Thermal conductivity (κ, Wm–1K–1) is a measure of a material’s ability to con-
duct heat. It quantifies how efficiently heat is transferred through the material
when there is a temperature gradient. Mathematically, thermal conductivity
is the sum of two components (Equation 2.5): one associated with electron
conduction (κe), which correlates with charge carriers, and the other related to
phonon propagation and atomic vibrations (κp) [24, 43].

κ = κe +κp (2.5)

A material with high thermal conductivity transfers heat efficiently and has
a low–temperature gradient for a given amount of heat flow. In contrast, a
material with low thermal conductivity hinders heat transfer and exhibits a
higher temperature gradient under the same conditions [44].

2.2.3.1 Key Factors Influencing Thermal Conductivity

The thermal conductivity of materials is influenced by several key factors. Firstly,
the crystal structure and composition play a significant role [45], as the arrange-
ment of atoms in the material’s crystal lattice and its chemical composition
determine thermal conductivity. Crystalline materials typically exhibit higher
thermal conductivities compared to non–crystalline or amorphous materials
due to the more ordered atomic arrangement [46]. Additionally, thermal con-
ductivity may vary with temperature, with some materials showing temperature–
dependent behavior. Impurities, defects, and grain boundaries within the ma-
terial can scatter heat–carrying phonons, reducing thermal conductivity [43].
Moreover, material density is an important factor, as materials with higher
densities generally have higher thermal conductivities due to more efficient
phonon transport. Furthermore, some materials exhibit anisotropic thermal
conductivity [47], meaning that thermal conductivity varies with direction due
to differences in crystallographic structure.

2.3 Thermoelectric Efficiency

2.3.1 Figure of Merit

The optimal efficiency of an energy conversion process in a material is deter-
mined by the value of the dimensionless figure of merit (ZT) given by Equation
2.6 [8, 48–50]. This factor is directly proportional to temperature (T), electrical
conductivity (σ), and the square of the Seebeck coefficient (S2), while inversely
proportional to thermal conductivity (κ). A good TE material should have
high values of Seebeck coefficient and electrical conductivity, but low thermal
conductivity.

ZT =
σ · S2

κ
· T (2.6)
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2.3.2 Power Factor

The Power Factor (PF, Wm–1K–2) is the second key metric parameter that vali-
dates a TE material’s efficiency where the measurement of thermal conductivity
is difficult owing to the unavailability of equipment. It is defined as the product
of the square of the Seebeck coefficient (S2) and the electrical conductivity (σ)
of the material. Mathematically, the PF can be expressed as:

PF =σ · S2 (2.7)

2.4 Applications of Thermoelectricity

The versatility of TE devices extends across a wide spectrum of applications,
each leveraging the unique capabilities of TE materials. From waste heat re-
covery in industrial processes to portable power generation in remote environ-
ments, TE generators offer sustainable solutions for energy harvesting. Con-
versely, TE coolers find applications in electronic devices and refrigeration
systems offering compact and efficient thermal management solutions.

2.4.1 Waste Heat Recovery

Waste heat recovery using TE materials is a growing field of research aimed
at improving energy efficiency and sustainability. Thermoelectric generators
(TEGs) convert thermal energy into electrical energy. In industrial electronic
devices, waste heat is a complex problem in many electronic devices such as
central processing units (CPUs), integrated circuits, etc. The CPUs produce ther-
mal power in the range of 6–320 W and generate a huge amount of wasted heat
up to 110 ◦C [7]. This waste heat could be reused to supply other components
in the device to activate the cooling fan or recharge the battery [51], which will
lead to an increasing battery’s performance and lifetime [52], Figure 2.5a. More-
over, TEGs can be designed with high flexibility and excellent performance for
heat harvesting from the human body, with demonstrated capability to power
wearable electronics and sensors [53–55], Figure 2.5b.
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Figure 2.5: a) TEG used to recover wasted heat from a CPU to charge a battery,
b) Wearable TEG as a TE energy harvesting using body heat.

2.4.2 Medical Wearable Devices

Given that body heat represents a sustainable energy source, its utilization
holds the potential to power a wide array of emerging wearable and implanted
medical devices. These devices can be employed across diverse applications,
such as health monitoring and tracking systems, as well as sports and fitness
wearable devices [56, 57].

Figure 2.6: a) Wearable pulse sensor powered with a TEG, b) Biomedical hearing
aid powered with a TEG.
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2.4.3 Automobile Engines

More than two–thirds of the energy from fuel utilized by an automobile is
dissipated as waste heat into the surrounding environment. To enhance fuel
efficiency, TEGs can significantly improve the efficiency of internal combus-
tion engines by recovering waste heat from exhaust pipes and radiators [58].
Experimental studies have demonstrated the potential for TEGs to improve fuel
efficiency [59] and reduce environmental impact by generating electricity from
automobile exhaust gases [60].

Figure 2.7: Schematic representation of waste heat recovery in automobile
engines.

2.4.4 Renewable Energies

Solar photovoltaics constitutes one of the primary solar energy technologies.
Photovoltaic (PV) cells function by directly converting solar radiation into elec-
tricity. However, it is worth noting that only approximately 10–15% of the
absorbed solar radiation is effectively converted into electricity. The remaining
portion is either reflected into the ambient environment (resulting in heat loss)
or absorbed as heat, thereby elevating the operating temperature of the PV cell
and subsequently diminishing its conversion efficiency [61, 62].
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Therefore, integrating TE devices into PV modules would yield a hybrid
device with improved overall performance, Figure 2.8. This synergy arises from
the complementary nature of the two technologies (PV and TE) wherein the
advantage of the TE can be used to compensate for the disadvantage of the PV.
The TE devices can effectively serve a dual purpose: not only cooling the PV
module but also generating supplementary energy [63], thus interconnecting
photovoltaic and thermoelectric technology in a single structure improves
efficiency and reduces temperature–related performance issues in solar panels
[64].

Figure 2.8: Schematic representation of a PV/TEG system.

2.5 Conclusion

As we conclude this introductory chapter, we reflect on the vast potential of
thermoelectricity to address pressing challenges in energy sustainability. By
understanding the principles and applications of thermoelectricity, we set the
stage for further advancements in research and development. Moving forward,
let us explore the materials utilized in thermoelectric applications, exploring
their properties and potential in the upcoming chapter.
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CHAPTER 3. THERMOELECTRIC MATERIALS

3.1 General Introduction

Building on the foundation of the previous chapter, which describes the general
principles and applications of thermoelectricity, this chapter focuses specifically
on the variety of materials used in thermoelectric (TE) applications.

The use of TE materials to convert waste heat into usable electrical energy is
a significant advancement in improving energy sustainability and thermal man-
agement. This chapter focuses on TE materials, their properties, and methods
of synthesis, with a focus on conductive polymers and their composites.

By examining the properties and performance characteristics of these ma-
terials, we aim to provide insight into the ongoing research efforts and the
development of TE materials.

3.2 Thermoelectric Materials

To obtain a high figure of merit (ZT), both Seebeck coefficient (S) and electrical
conductivity (σ) must be large, while thermal conductivity (κ) must be mini-
mized [6]. The best materials satisfying these conditions are semiconductors,
Figure 3.1 [15, 65].

Figure 3.1: Thermoelectric properties according to changes in the carrier con-
centration.

Several studies [66–69] demonstrated that an efficient thermoelectric ma-
terial exhibits the behavior of a PGEC (Phonon–Glass and Electron–Crystal),
meaning it would have the thermal conductivity of glass and, conversely, the
electrical conductivity of a conductive material. On the basis of their chemi-
cal composition [5], TE materials are classified in three categories: inorganic
materials [11, 14, 70, 71], organic [30, 72–74], and hybrid materials [74–77].
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3.2.1 Inorganic Thermoelectric Materials

Inorganic thermoelectric materials are solid–state materials composed of ele-
ments from the periodic table such as bismuth (Bi), tellurium (Te), lead (Pb),
tin (Sn), selenium (Se), germanium (Ge), cobalt (Co) and nickel (Ni). These
elements are typically used in combination to form compounds with desirable
TE properties such as bismuth telluride (Bi2Te3) and lead telluride (PbTe) [78].
Inorganic TE materials are the classic and most widely used materials in the TE
industry, and they can be subdivided into three categories depending on the
temperature at the real application [11].

Near room temperature inorganic TE materials, which are extensively used
to harvest the human body energy. Bi2Te3–based alloys are the most notable
and widely used material in the TE industry and have been studied extensively
since the 1960s [9, 70, 79, 80] reaching a ZT of 1.

TE materials are commonly employed in medium temperature range (600 to
1000 K), concern applications in automotive and other industries, where waste
heat can be converted into electrical current directly from the engine (e.g., heat
pipes). PbTe–based materials are the best since they have a ZT of 1.2 [81].

High–temperature range (up to 1000 K) TE materials, involve applications
to harvest energy for space missions and exploration of outer space. Usually,
PbSnTe is used as p–legs and (GeTe)85(AgSbTe2)15 as n–legs. In the past, 18
SiGe–SiMo modules were mounted in a space–craft, the hot side operated at
1308 K and the cold ones at 566 K, the device provided 245 W of electrical power
[5].

Other inorganic TE materials were investigated; transition metal oxides show
potential for TE power harvesting due to their chemical and thermal stability at
high temperatures. Wide–bandgap semiconductor oxides such as ZnO, SnO2,
and In2O3 exhibit high power factors of 10–3 Wm–1K–2 to 10–4 Wm–1K–2 [82].

N–type ZnO doped with Ga to reduce thermal conductivity and Al to increase
electrical conductivity leading to Zn0.96Al0.02Ga0.02O material with a ZT of 0.47
at 1000 K [83]. P–type NiO doped with Li and Na exhibits TE PF of the order of
10–4 Wm–1K–2 at up to 1000 K [84]. Thin films based NiO were reported with S,
σ of 101 µVK–1 and 10–2 Sm–1, respectively at room temperature [85].

However, they often suffer from limitations such as high manufacturing
costs and rigidity, which restrict their applications, particularly in flexible and
wearable electronics.

These limitations can be overcome using organic materials such as conduct-
ing polymers (CPs), which will be discussed in the upcoming section.
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3.2.2 Organic Thermoelectric Materials

The most popular organic TE materials are polymers. These materials are well–
suited for flexible and lightweight TE applications conversely to inorganic TE
materials. Conducting polymers (CPs) are a class of organic polymers that
exhibit electrical conductivity. Unlike traditional insulating polymers, con-
ducting polymers have a delocalized π–electron system along their backbone,
which allows for the movement of charge carriers (electrons or holes) upon
doping or oxidation/reduction processes [86]. This electronic structure is re-
sponsible for their semiconducting or metallic behavior which offers several
advantages, including tunable electrical properties, in addition to their flexi-
bility and processability. These properties make CPs attractive candidates for
various applications, including organic electronics [87], energy storage [88] and
conversion devices [74], sensors [89] and in our concern TE materials.

3.2.2.1 Electronic Configuration

The concept of conjugated bonding is intimately related to the hybridization
state of carbon atoms, Figure 3.2. Carbon atoms can hybridize their orbitals
to form σ bonds. In conjugated systems, carbon atoms typically adopt sp2

hybridization, where one “s” orbital and two “p” orbitals combine to form three
σ bonds in a trigonal planar geometry. The remaining “p” orbital, perpendicular
to the plane of the σ bonds, is available for π bonding.

Figure 3.2: Hybridization of carbon atoms.
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The bond model describes the structure of conjugated polymers. Indeed,
the constituent units of a polymer possess discrete energy levels. As the effec-
tive conjugation length (number of monomers) increases, the energy levels of
molecular orbitals also increase. In the π bond, two carbon atoms share their
electrons. Quantum mechanics predicts the emergence of two molecular or-
bitals: a bonding orbital (π) and an anti–bonding orbital (π∗). For longer chains,
additional bonding and anti–bonding orbitals have slightly different energies.
As the chain length increases, the energy levels are no longer discrete and be-
come valence (π) and conduction (π∗) bands. The highest occupied molecular
orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the
polymer are separated by a band gap, whose width ranges from 1 to 4 eV and is
modulated by doping [90], as shown in Figure 3.3.

Figure 3.3: Energy levels changes according to chain length.

CPs have been investigated continuously, including polyaniline (PANi) [91–
94], poly(3,4–ethylenedioxythiophene) (PEDOT) [95–98], PEDOT:poly(styrene
sulfonate) (PEDOT:PSS) [99–102], polythiophene (PTh) [103] and polypyrrole
(PPy) [104–107], Figure 3.4.
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Figure 3.4: Chemical structure of common CPs.

In general, CPs possess a sequence of alternating single (σ) and double
(π) bonds, known as π–conjugation, which provide them with distinctive opti-
cal, electrochemical, and electrical properties. Moreover, it is known that the
key factors influencing the physical characteristics of CPs are their conjuga-
tion length, level of crystallinity, and interactions within and between polymer
chains. Figure 3.5 shows the electrical conductivity of essential CPs.

Figure 3.5: Electrical conductivity of some CPs.
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3.2.2.2 Doping and Dedoping

Electron conduction in conducting polymers relies on the creation of struc-
tural defects incorporated within the macromolecular chains, which manifest
as charge carriers (ions, polyions, radical ions, etc.). Doping is the process of
introducing charge carriers into the macromolecule, thus creating structural
defects that can move along the chains, facilitated by electronic conjugation,
to ensure conductivity. This doping can be achieved through oxidation (elec-
tron extraction) or reduction (electron injection) of polymer films [108–110].
There are two types of doping: positive (p–type) doping and negative (n–type)
doping. Conductivity increases with the level of doping in the polymer matrix.
Consequently, the polymer transitions from a neutral state to a conductive
state through doping and from a conductive state to a neutral state through
dedoping.

In electronic CPs, the charge carriers are essentially defects within the poly-
mer structure that possess an electrical charge. When these defects occur, they
create energy states within the electronic band structure of the polymer. Specif-
ically, these energy states are positioned between the conduction band, where
electrons are free to move and carry electrical current, and the valence band,
which represents the highest energy levels occupied by electrons. The presence
of these energy states facilitates the movement of charge carriers, enabling the
polymer to conduct electricity. Therefore, by introducing defects into the poly-
mer chain, conducting polymers can exhibit enhanced electrical conductivity
[111, 112]. Two types of defects can be distinguished: Polaron (or radical ion)
corresponding to a charged defect (Figure 3.6b) and bipolaron corresponding
to a double charged defect (Figure 3.6c) [86].

Figure 3.6: Electronic bands and chemical structures illustrating (a) undoped;
(b) polaron; (c) bipolaron; and (d) fully doped states of PPy.
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In the undoped state, PPy is an insulator with a large band gap of approx-
imately 3.16 eV. Upon oxidation, the band gap shifted to 2.26 eV for polaron
state and 1.76 eV for bipolaron state. The incorporation of ionic species follows
to ensure electroneutrality to counteract the imbalance that could be created as
regions of localized charge imbalance within the polymer.

3.2.2.3 Charge Transport Mechanism

Several studies [110, 113–116] to understand the charge transport mechanism
in CPs were reported. The charge transport mechanism between chains in a
polymer matrix is based on a microscopic level, on the overlap of various local
transport modes: within the conjugated chain (intra–chain), from one chain to
another (inter–chain), and from one fiber to another (inter–fiber). A schematic
representation of a random polymer is presented in Figure 3.7 to illustrate the
different charge transport mechanisms.

Figure 3.7: Schematic representation of charge transport mechanism within
random polymer chains.

For inter–chain and fiber charge transport, hopping and tunneling models
have been proposed by previous studies [117–120]. Charge carriers can move
from one delocalized state to another via tunnels, and charge transport occurs
through a random hopping mechanism of charge carriers between delocalized
states of adjacent centers in the polymer chain.

3.2.2.4 Synthesis of Conducting Polymers

The synthesis of conducting polymers involves several methods to produce ma-
terials with specific properties for various applications. One common approach
is chemical polymerization, where monomers are polymerized to form long
chains with conjugated structures. This process often involves oxidative or re-
ductive conditions to initiate polymerization and introduce charge carriers into
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the polymer backbone. The morphology of the polymer can be controlled by
varying the parameters of the process, such as monomer/oxidizing agent con-
centration, temperature, pH, and reaction time [121, 122]. Figure 3.8 illustrates
the chemical synthesis route of polypyrrole [123].

Figure 3.8: Chemical synthesis route of polypyrrole.

Another method that does not require an oxidizing chemical agent is the
electrochemical polymerization, which allows for precise control over the poly-
merization process by applying a potential to an electrode immersed in a
monomer solution. This method results in the synthesis of conducting polymers
with specific morphologies and properties which is an efficient approach for
depositing CPs on substrates, however, a high oxidation potential may lead to
over–oxidation of the polymer [121, 122]. Figure 3.9 depicts the electrochemical
synthesis mechanism of polypyrrole [124].

Figure 3.9: Electrochemical synthesis mechanism of polypyrrole.
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Moreover, in order to solve the over–oxidation problem, another synthe-
sis route was developed which is photo–polymerization where illumination is
needed and the process can be controlled simply by turning the light on or off
[121, 122]. Figure 3.10 shows a general presentation of photoinitiated polymer-
ization, The choice of λ (and thus hν) depends on the specific photoinitiator
being used, as different photoinitiators are activated by different wavelengths
of light, ultraviolet (UV) ∼365 nm, visible ∼450 nm and infrared (IR) ∼800 nm
[125, 126].

Figure 3.10: General representation of photo–polymerization route.

3.2.2.5 Ongoing Research in Organic Thermoelectric Materials

The field of polymer–based thermoelectric materials is making great progress,
driven by the need to improve their efficiency, stability, and scalability. Re-
searchers are exploring new polymer designs, better processing methods, and
gaining a deeper understanding of how these materials work. These efforts aim
to overcome challenges such as low efficiency, poor long–term stability, and
difficulties in large–scale production.

Organic thermoelectric materials, including conducting polymers, small
molecules, and carbon–based materials, offer unique advantages such as flexi-
bility, low cost, and solution processability. They are particularly well–suited for
applications requiring flexible and lightweight devices.

Nanostructured CPs are preferred in TE materials because their reduced
dimensionality enhances their properties such as the Seebeck coefficient and
decreases thermal conductivity. Research on the controlled synthesis of PPy
nanostructures [104, 127–129] aims to optimize their properties by systemati-
cally adjusting experimental parameters. The type of oxidant (e.g., ferric chlo-
ride, ammonium persulfate), its concentration, the polymerization time, and
the reaction medium (e.g., aqueous solutions, organic solvents) are all critical
factors. High oxidant concentrations and extended polymerization time gen-
erally produce smaller, more uniform, and highly conductive nanostructures,
while the choice of reaction medium influences solubility and stability.

28



3.2.2. Organic Thermoelectric Materials

Using PEDOT and PPy nanowires in blends, thermoelectric properties were
enhanced by 20% (19.4 µVK–1) regarding the Seebeck coefficient and 32% (18.2
µWm–1K–2) in PF compared to neat PEDOT without sacrificing softness and
flexibility, due to enhanced nanowire interfaces [130].

Compositing PEDOT:PSS with small nonpolar aromatic molecules such as
naphthalene and pyrene significantly enhances its Seebeck coefficient 45.5
µVK–1 and a ZT value of 0.27 [131]. In this context, the overlap between the
π–orbitals of the PEDOT chains and the π–orbitals of the aromatic molecules
(naphthalene or pyrene) likely facilitating better charge transport. While other
studies [132] report that post–treatments with common acids (H2SO4) and
bases (NaOH) could reach an optimal PEDOT:PSS films with a Seebeck coeffi-
cient of 39.2 µVK–1 and a conductivity of 2170 Scm–1 at room temperature, and
the corresponding power factor is 334 µWm–1K–2. These treatments influence
the polymer properties through modifying its morphology and oxidation level.

Another study [133] demonstrates the fabrication of PEDOT:PSS–PTh bi-
layered nanofilms on organic electrodes, resulting in stable and enhanced
thermoelectric performances reaching a PF of 1.57 µWm–1K–2.

Among several materials, 2D materials, such as graphene and related mate-
rials, show promise for thermoelectric applications due to their excellent trans-
port properties leading to significant power factor. Graphene nanoplatelets
(GNPs), carbon nanotubes (CNT), both single–walled (SWCNTs) and multi–
walled (MWCNTs) carbon nanotubes are potentially under investigation in
nanocomposites for TE applications. These materials have good electronic
properties despite the high thermal conductivity compared to conducting poly-
mers, good Seebeck coefficient, and surface area, which can lead to improved
charge transfer and, thus, TE performance. Individual CNTs are not so promis-
ing as a TE material with high ZT values because of their intrinsic high thermal
conductivity (2000–3000 Wm–1K–1) [134–138].

Introducing carbon–based materials to CPs matrix such as PPy is inves-
tigated in TE materials, PPy–MWCNTs composite synthesized using sodium
dodecyl sulfate (SDS) as surfactant and ferric chloride as an initiator, resulted
in a PF of 0.77 µWm–1K–2 and a ZT of 10–3 [139]. Core–shell nanocomposites
based on PPy–SWCNT were studied along with methyl orange (MO) as a sur-
factant and ferric chloride as an initiator [140]. The uniform coating and good
interaction between PPy polymer chains and walls of the SWCNT through π–π
stacking resulted in a PF and ZT of 360 µWm–1K–2 and 0.09, respectively. As a
result, incorporating SWCNTs results in better TE properties.

Ternary composites also have also been studied, as an example PEDOT:PSS–
PPy–Graphene composites show excellent TE performance, with a maximum
power factor of 82.22 µWm–1K–2, at room temperature and 70% PPy–Graphene
to PEDOT:PSS, attributed to its good crystallinity, while PEDOT:PSS–PPy–MWCNTs
films show optimal power factor of 55.28 µWm–1K–2 at only 5% PPy–MWCNT to
PEDOT:PSS [141], which indicates that PPy–MWCNT result in better TE proper-
ties in PEDOT:PSS than PPy–Graphene.
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The PPy–Graphene–PANi composite with 32 wt% graphene demonstrates
good electrical conductivity, Seebeck coefficient, and high thermoelectric power
factor, up to 52.5 µWm–1K–2 [142].

Binary and ternary composites are promising approaches, since CPs offer
good electrical conductivity and flexibility, while graphene and carbon nan-
otubes provide to the composite their electrical conductivity, thermal stability,
and mechanical strength. A higher Seebeck coefficient can be achieved through
optimized carrier concentration and mobility, and reduced thermal conduc-
tivity, leading to a high TE figure of merit (ZT). This synergistic effects lead to
better charge carrier mobility and overall stability, making these nanocompos-
ites efficient and suitable for diverse TE applications [14, 74, 143].

In summary, organic TE materials, with their flexibility, lightweight nature,
and ease of processing, have shown considerable potential in the field of energy
conversion. However, to further boost the performance and applicability of TE
materials, the focus is now shifting towards hybrid TE materials. These combine
the advantageous properties of both organic and inorganic components such as
bismuth telluride, lead telluride and metal oxides, offering a promising avenue
for achieving superior TE performance.

3.2.3 Thermoelectric Hybrid Materials

As mentioned above, hybrid materials increase TE materials versatility in vari-
ous applications. They are typically elaborated by combining conducting poly-
mers (CPs) with inorganic materials alone as bismuth or combined as bismuth
telluride, lead telluride and metal oxides.

Composition, nano/micro size, and the way of elaboration, all are critical
parameters that have to be optimized in hybrid TE materials. Smaller particles
have a higher surface area–to–volume ratio, which can enhance interactions at
the interfaces and improve overall material properties.

The main methods for preparing CPs–inorganic TE nanocomposites are
physical mixing (PANi–Bi [144], PANi–Bi0.5Sb1.5Te3 [145], PANi–SnO2 [146] and
PANi–CuBO2 [147]), solution mixing (PANi–Bi2Te3 [148] and Te–PEDOT:PSS
[149]) in situ oxidative polymerization/intercalation (PANi–PbTe [150] and PANi–
TiO2 [151]). All these composites exhibited enhanced TE properties due to
several factors. Inorganic materials typically have higher electrical conductiv-
ity, which improves the overall conductivity of the composite. They also help
optimize the Seebeck coefficient by adjusting carrier concentration and mo-
bility. Additionally, while maintaining the polymer’s low thermal conductivity,
inorganics can further reduce thermal conductivity by scattering phonons. Inor-
ganics also enhance the mechanical stability of the composite, making it more
durable. Synergistic effects at the interface between CPs and inorganics lead
to better charge transfer and reduced energy losses, resulting in more efficient
and robust TE materials [16, 152].
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A recent study [153] focused on compositing PPy with MWCNTs and metal
hydroxides, for instance, Sr(OH)2, Zn(OH)2, Ni(OH)2, and Co(OH)2. This ap-
proach aimed to tackle the agglomeration problems at the nanoscale of metal
oxides–CPs composites. The PF was approximately 0.2 µWm–1K–2 at room tem-
perature and the figure of merit for the nanocomposite incorporating Ni(OH)2

was 0.6×10–3. The observed enhancement was attributed to the strong interac-
tion between PPy and metal hydroxides, facilitated by π–π stacking between
the polymer chains and the metal hydroxides, as well as with MWCNTs.

Metal oxides have been also studied in the matter of hybrid composite with
organic CPs matrix. To cite an example, aluminum doped zinc oxide–PANi
hybrid was synthesized via sol–gel and in situ oxidative polymerization meth-
ods resulting in a simultaneous improvement in electrical conductivity which
is attributed to carrier mobility and Seebeck coefficient due to scattering of
low–energy carriers via energy–filtering effect leading to enhance the room
temperature figure of merit (ZT = 0.0035) [93]. The energy–filtering effect aims
to selectively allow high–energy charge carriers to pass through while scatter-
ing lower–energy carriers. This selective filtering is achieved at the interfaces
between different materials in the composite, such as between the CP and in-
organic nanoparticles. High–energy carriers have more energy and contribute
more effectively to electrical conductivity, thus enhancing the overall TE perfor-
mance of the material [154–156].

In conclusion, hybrid TE materials, which combine CPs and inorganic com-
ponents, exhibit enhanced performance due to improved electrical conductivity,
optimized Seebeck coefficient, and reduced thermal conductivity. The inter-
face interactions and effects play a crucial role and the synergy results in more
efficient, durable mechanical stability TE materials.

3.3 Characterization Techniques for Thermoelectric Ma-

terials

Characterization techniques are essential to evaluate the electrical, thermal,
and structural properties of materials by providing valuable insights into ther-
moelectric behavior.

Conductivity measurements are used to assess charge transport properties.
It is assessed with a Jandel four–probe instrument. This device measures the
resistivity (ρ) and resistance (R) of semiconductor materials, thin films, and
other conductive samples. It employs the four–point probe method, four equally
spaced and in contact with the material. Composite powders were cold pressed
at 7 tons into pellets using a hydraulic press (Specac) with 13 mm in diameter,
and a loading duration of about 20–30 s each (Appendix A for further details).

31



CHAPTER 3. THERMOELECTRIC MATERIALS

Seebeck coefficient is measured using a designed system to measure the
voltage generated in response to a temperature gradient across a material.
Herein, the system is made in the laboratory of macromolecular chemistry at
École Militaire Polytechnique in Algeria (Appendix B for further details).

Thermal conductivity is also a key parameter to calculate ZT of TE materials,
Hot–Disk instrument is widely used to measure it for its non–destructive nature.
Another device used in this thesis is conceptualized and carried out in the
laboratory of macromolecular chemistry at École Militaire Polytechnique in
Algeria (Appendix C).

Hall characterization is a useful technique used to determine various elec-
tronic properties of bulk semiconductors. This method involves measuring
the Hall voltage generated when a magnetic field is applied perpendicular to
the current flowing through a semiconductor sample. The Hall effect provides
valuable insights into carrier concentration (n), mobility (µ), and the type of
charge carriers in the material (holes or electrons). The measurments were
assessed by a Hall effect system type Ecopia HMS–5000.

Microscopy techniques, including scanning electron microscopy (SEM–
JEOL 7500–F) and transmission electron microscopy (TEM–TECNAI G2 20), are
used to assess material morphology and microstructure. Samples for TEM anal-
ysis were prepared by materials dispersion in ethanol and deposition of a drop
of suspension on a carbon–coated copper grid. The electrons are accelerated
with 80 kV voltage and 5 µA emission current. For SEM analysis, the microscope
operates at 15 kV at a working distance between the final lens of the electron
column and the sample surface of 4.2 mm.

The structural composition was determined using a Thermo–Fisher DXR 2
Raman spectrometer; excitation was at 532 nm from a He–Ne laser at room tem-
perature and a Perkin Elmer Fourier Transform InfraRed spectroscopy (FTIR) in
attenuated total reflection (ATR) mode in the wavenumber range 4000–600 cm–1

with a nominal resolution of 4 cm–1 over 50 scans. Powder X–Ray diffraction
(PXRD) is performed using PAN analytical XPert PRO Bragg–Brentano diffrac-
tometer with tube current of 30 mA and an operating voltage of 45 kV with
Cu Kα (λ = 1.5418 Å) in the 2θ range of 10–90◦. XPS spectra are recorded on
a Thermo Scientific K–Alpha spectrometer using monochromatized Al Kα ra-
diation (1486.6 eV) and the photoelectrons collected at 0◦ with respect to the
surface normal are analyzed using a hemispherical analyzer. The major peak of
core level spectra is calibrated with respect to C1s level fixed at 284.6 eV.

Thermal analysis techniques are used to study thermal properties and sta-
bility. Thermogravimetric analysis (TGA) measurements were performed on a
Perkin Elmer (STA 6000). The samples were heated at the rate of 10 ◦C/min in
nitrogen.
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3.4 Conclusion

In summary, this chapter provided an overview of thermoelectric materials,
covering both inorganic and organic materials and their properties as well as
synthesis methods. Organic TE materials, particularly CPs, show significant
promise for flexible and lightweight applications due to their tunable electrical
properties and ease of processing. However, their relatively low performance
limits their practical use. To enhance TE efficiency, hybrid TE materials have
been developed, combining the advantages of organic CPs with inorganic ma-
terials. These hybrids improve electrical conductivity and thermal stability
while maintaining the flexibility and processability of polymers. They appear as
promising materials for TE applications.
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CHAPTER 4. GRAPHENE SURFACE TREATMENT AND CONDUCTING

POLYMERS–BASED TERNARY COMPOSITE PREPARATION

4.1 General Introduction

The preceding investigations detailed in the literature chapter have unveiled
promising advancements in TE properties through the integration of graphene–
based materials into polymer matrices [142, 157, 158]. Functionalization pro-
cesses, such as oxidation and chemical modifications, have been pivotal in
fine–tuning the thermal and electronic properties of graphene, as evident from
studies elucidating the significant enhancement achieved in the figure of merit
(ZT) [159–162]. Furthermore, the integration of graphene derivatives like re-
duced graphene oxide (rGO) and functionalized graphene (FrGO)–into polymer
composites has exhibited a paradigm shift in achieving superior properties
[14, 163].

Noteworthy advancements have also emerged from ternary composites,
showcasing synergistic effects among constituent materials. Integrating PE-
DOT:PSS into composites, for instance, has demonstrated heightened electrical
conductivity [99]. The amalgamation of PPy and PEDOT or PEDOT:PSS presents
an opportunity for synergy, potentially elevating TE properties [164].

However, the methodologies employed in the preparation of ternary com-
posites have been primarily limited to in situ chemical oxidization followed by
physical mixing, with a lack of studies exploring simultaneous copolymerization
techniques [14]. This gap forms the crux of the current investigation, aiming to
compare the influence of surface treatment and preparation methods on the
TE properties of ternary composites.

In this pursuit, the current study [165] explores the enhancement of PPy’s
TE properties through the incorporation of PEDOT and PEDOT:PSS, alongside
with graphene and FrGO as fillers. A customized preparation methodology
is introduced, involving copolymerization on graphene and functionalized
reduced graphene oxide surfaces, serving as a departure from conventional
preparation techniques. Comparative analyses between copolymerization and
physical mixing of binary composites with a third component will provide
valuable insights into optimizing TE properties.

4.1.1 Publications

The content of this chapter is based on the following peer–reviewed scientific
publication "Reproduced with permission from Springer Nature":
Younes Bourenane Cherif, Nawel Matmat, Zakaria Bekkar Djelloul Sayah, Ahmed
Mekki, Jean-Félix Durastanti, and Zineb Mekhalif. Influence of graphene oxide
surface treatment by diazonium salts on thermoelectrical behavior of polypyrrole-
based composites. Journal of Materials Science: Materials in Electronics, 33
(18):14938–14950, June 2022. ISSN 1573-482X. doi: 10.1007/s10854-022-08410-7.
URL https://doi.org/10.1007/s10854-022-08410-7

This paper investigates a system “polymer1–filler–polymer2” where poly-
mer1 and polymer2 are PPy and PEDOT or PEDOT:PSS and graphene as
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4.1.2. Outline

it is or functionalized constitutes the introduced filler. Using optimized
formulations, six different ternary composites have been synthesized.
The aim is to elucidate the effect of the filler surface modifications as
well as the elaboration method of the composite on the thermoelectric
properties of the final material. First, the surface treatment of graphene
with diazonium salt compared to pristine graphene (Gr and FrGO) ap-
pears to play an essential role in dispersion in the composite, linking the
two matrices and reducing hopping barrier potential. All together leads
to an enhancement of TE properties of the final materials. Second, the
synthesis method is a crucial key providing different properties of any
material; herein, two methods were investigated between a direct mixing
of polymers and copolymerization (PPy–PEDOT, PPy–co–PEDOT). Simul-
taneous improvements in the electrical conductivity and the Seebeck
coefficient have been shown. Furthermore, among all composites, the
figure of merit (ZT) value of PPy–FrGO–PEDOT is the highest (240 times
higher than PPy) prepared by the mixing procedure. This evidences the
critical contribution of graphene oxide functionalized with the diazonium
salts in improving the polymer anchoring and distribution on the top of
this latter.

4.1.2 Outline

The organization of this chapter is as follows: Section 4.2 provides insights
into the used methodology and synthesis methods. Section 4.3 discusses the
obtained results of different characterizations. Finally, Section 4.4 concludes
the chapter by summarizing its key contributions.

4.2 Methodology

4.2.1 Materials

4–aminobenzoic acid (H2NC6H4CO2H, ≥ 99%), tetrafluoroboric acid (HBF4,
52%) and sodium nitrite (NaNO2, 97%) were purchased from Sigma–Aldrich
and used to synthesize 4–carboxybenzenediazonium tetrafluoroborate denoted
DS–COOH. For composites synthesis, monomers as pyrrole, EDOT, were pur-
chased from Sigma–Aldrich as well as PEDOT:PSS, and graphite (> 98%) and
the following chemicals: Dodecylbenzene sulfonic acid (DBSA, dopant, > 98%)
and iron chloride hexahydrate (FeCl3, oxidant, > 98%) were used to synthesis
PPy and PEDOT. Potassium permanganate (KMnO4, 98%), hydrogen peroxide
(H2O2, 30%), hydrochloric acid (HCl, 37%), phosphoric acid (H3PO4, 85%), and
sulfuric acid (H2SO4, 98%) were used in graphene oxide (GO) treatment. For
reducing GO, hydrazine monohydrate (NH2NH2.H2O, 60%) was used. Solvents
were of analytical grade: deionized water (DI), diethyl ether, methanol, acetone,
and N,N–dimethylformamide (DMF).
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4.2.2 Fillers Preparation

4.2.2.1 Synthesis of Diazonium Salt

Preceding the functionalization of graphene sheets, a diazonium salt (DS–
COOH) was meticulously prepared and isolated, rather than in–situ formed in
the presence of the materials intended for functionalization. It was synthesized
by dissolving 0.04 mol of 4–aminobenzoic acid in a solution containing 20 ml
of HBF4 and 70 ml of deionized water (DI) [166, 167]; and stirred at 0 ◦C for a
duration of 15 min. Subsequently, 3 g of NaNO2, dissolved in 10 ml of solution,
was gradually introduced into the mixture, and the reaction was left for 2 h. The
resulting product, observed as a white solid, was then filtered, washed with
diethyl ether, and stored at a temperature of 4 ◦C denoted as DS–COOH.

C7H7NO2 NaNO2 + H2O

15 min

4 °C

washing storing

Figure 4.1: Schematic experimental protocol of DS–COOH preparation.

4.2.2.2 Preparation of Graphene Surface

Graphite, which is a three–dimensional crystal structure consisting of many
layers of graphene stacked on top of each other. Each layer is weakly bonded to
the adjacent layers through van der Waals forces. Ultrasonication is a method
for exfoliating graphene from graphite. Initially, graphite is suspended in a
liquid medium (ethanol) to form a stable suspension. The suspension is then
subjected to ultrasonication to form graphene sheets. Secondly, graphene
oxide (GO) was synthesized following a modified version of the Hummer’s
method [159]. In a concise summary of the procedure, 0.255 g of graphene
powder were introduced into a mixture of H3PO4 and H2SO4 (3:27 ml) at room
temperature. Subsequently, 1.32 g of KMnO4 were gradually incorporated into
the mixture, which was then allowed to stand for 6 hours until a dark green color
appeared. The differentiation between the Hummer’s and modified Hummer’s
methods lies in the substitution of NaNO3 with H2SO4 and H3PO4, along with
doubling the amount of KMnO4. To eliminate excess KMnO4, 0.675 ml of H2O2

were meticulously added to the mixture, followed by an additional 10 min
reaction period and subsequent cooling. The resultant residue was subjected
to centrifugation at 5000 rpm for 7 min, using a solution consisting of 10 ml of
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HCl diluted in 30 ml of deionized water (DI). This centrifugation process was
repeated three times to ensure the removal of any unreacted reagents. The final
GO powder was obtained after drying at 90 ◦C for 24 h.

Graphite

H3PO4

H2SO4

KMNO4

H2O

HCl + H2O

6 h 10 min
5000 rpm
7 min
3 times

90 °C
24 h

Figure 4.2: Experimental protocol of GO preparation.

When graphene is in its oxidized state form (GO), it exhibits reduced reac-
tivity, mainly because of the presence of oxygen functional groups, resulting in
electrical insulation [168]. To restore conductivity and reactivity, it is necessary
to eliminate the oxygen and reinstate the double bonds in the carbon atoms of
the aromatic structure through a reduction process using hydrazine. The exact
procedure is as follows [169]: 0.1 g of GO was dispersed in 100 ml of DI under
sonication, then 1 ml (32.1 mmol) of NH2NH2.H2O was added and refluxed
at 100 ◦C for 24 h. The product was then filtered, washed with DI:methanol
(50:50), dried and denoted rGO.

Graphene oxide (GO)

100 °C              24h

Reduced graphene oxide (GO)

Figure 4.3: Experimental protocol of reduction of graphene oxide.
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4.2.2.3 Graphene Functionalization

The functionalization process was in accordance with the procedure outlined
by Lomeda et al. [170], a 20 ml dispersion of reduced graphene oxide (rGO)
at a concentration of 1 mg/ml was combined with the previously prepared
DS–COOH solution, which had a concentration of 0.33 mmol/ml in the rGO
dispersion. This mixture was left to react for 1 h. Subsequently, the solution
was diluted with 100 ml of acetone, subjected to filtration, and washed three
times using a DI:acetone solution. The resulting powder was re–suspended in
dimethylformamide (DMF) to eliminate the excess of diazonium salt, washed
again with acetone, and then dried at 70 ◦C for 24 h.

Reduced graphene oxide (GO) Functionalized graphene (FrGO)

O OH

O OH

O OH

O OH

O OH

O OH

O OH

Figure 4.4: Functionalized graphene (FrGO).

4.2.3 Ternary Composites Preparation

To obtain different composites, PPy, PEDOT and PEDOT:PSS are used as matri-
ces while Gr, FrGO are used as fillers.

PPy–Gr, PEDOT and ternary composites (PPy–Gr–PEDOT, PPy–Gr–PEDOT:PSS,
PPy–FrGO–PEDOT, PPy–FrGO–PEDOT:PSS, PPy–co–PEDOT–Gr and PPy–co–
PEDOT–FrGO) were synthesized as shown in Figure 4.5. First, following the
procedure of Wang et al. [142], and optimizing the molar ratio between the
dopant and the monomer according to Bekkar et al. [171], chemical polymer-
ization of pyrrole in the presence of Gr and FrGO was achieved by sonicating 60
mg of Gr (or FrGO) in 50 ml of DI. Then 5 mmol of FeCl3 (oxidant) and 0.5 mmol
of DBSA (dopant) were added to the above solution and kept under stirring for
10 min. 5 mmol of pyrrole was then added dropwise to the previous mixture
and kept at 0 ◦C for 20 min. The resulting product was filtered, washed, and
dried at 70 ◦C. Denoted PPy–Gr and PPy–FrGO.

PEDOT was synthesized by introducing 3 ml of FeCl3 in a 50 ml flask, adding
0.45 ml of EDOT monomer and stirring the mixture for 24 h. The final product,
denoted PEDOT, was filtered, washed and dried at 65 ◦C [172].

To prepare ternary composites, two methods were adopted in this chapter.
Direct mixing in ethanol under sonication of already prepared PPy–Gr (or PPy–
FrGO) with PEDOT or PEDOT:PSS or copolymerization of pyrrole–EDOT in the
presence of Gr (or FrGO), Figure 4.5.
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O OH

O OH

O OH

O OH

O OH

O OH

O OH

FrGO

Gr

PyrroleDBSAFeCl3 PPy-Gr and PPy-FrGO

PEDOTFeCl3

EDOT

PPy-Gr-PEDOT or PEDOT:PSS
PPy-FrGO-PEDOT or PEDOT:PSS

PPy-Gr/PEDOT and PEDOT:PSS
PPy-FrGO/PEDOT and PEDOT:PSS

O OH
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O OH

O OH

O OH

FrGO

Gr

Pyrrole
PPy-co-PEDOT-Gr and 
PPy-co-PEDOT-FrGOEDOT FeCl3 + DBSA

Figure 4.5: Experimental protocol for synthesizing all ternary composites.

The copolymerization protocol was carried out according to Munusamy et al.
[173]. The filler, Gr or FrGO, was dispersed in DI under sonication and then an
equimolar amount of both pyrrole and EDOT was added to the above solution.
1:10 DBSA and 1:1 FeCl3 were added drop by drop to the mixture and left for 4
h at 0 ◦C. The resulting product was then washed, filtered, and dried at 70 ◦C,
denoted as PPy–co–PEDOT–Gr and PPy–co–PEDOT–FrGO.

4.3 Results and Discussion

4.3.1 Structural Characterization

Raman and Fourier Transformer InfraRed techniques were used to investigate
the structural behavior of the synthesized materials. The Raman spectra (Figure
4.6a) of the diazonium salt (DS–COOH), shows a peak at 1075 cm–1 attributed
to C–H in–plane bending for para– and mono–substituted benzenes coupled
with C–N stretching. The peaks at 1591 and both 1708 and 1732 cm–1 were
associated with C=C and C=O stretching, respectively. The peak at 2308 cm–1

is typical of the N=N stretching bond. All these observations are in coherence
with the literature [166].
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Figure 4.6: Raman and FTIR spectra of synthesized materials.

Regarding Gr, GO, rGO and FrGO, they were also characterized using Raman
spectroscopy. As shown in Figure 4.6b, typical peaks of G and D band character-
istic of graphitic materials were observed at 1561 and 1343 cm–1, respectively.
The D/G intensities ratio indicates structural modification of crude graphite
at different chemical treatment steps, for instance: oxidation, reduction and
functionalization with DS–COOH. The increased ratio from Gr to GO points
out the reduction of the in–plane sp2 sites, possibly due to extensive oxidation.
The rGO and FrGO exhibit a D/G intensity ratio higher compared to GO. This
change suggests a further decrease in the average size of sp2 domains upon
reduction and functionalization steps [169].

The comparative Raman spectra, Figure 4.6c, presents a comprehensive
analysis of all synthesized materials, offering an intricate view of their structural
characteristics. The distinctive peak patterns and spectral variations signify
diverse chemical compositions to each material. These spectra serve as a valu-
able tool for discerning and characterizing the vibrational modes and molecular
interactions within these materials. Here, the most intense peaks of polypyrrole
and PEDOT are shown in red color and black color, respectively.
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FTIR spectroscopy was used to further investigate the structural properties
of the ternary composites. The first set of samples is prepared by mechanical
mixing of PPy–Gr with PEDOT and PEDOT:PSS. Figure 4.6d shows FTIR spectra
of PPy–Gr, PEDOT and PPy–Gr–PEDOT. Typical peaks of PPy at 1537 and 1442
cm–1 are attributed to symmetric and antisymmetric stretching of the pyrrole
ring and stretching vibration of C–N+ of the polaronic structure appears at 1279
cm–1 [127, 174, 175]. The presence of PEDOT is evidenced by its characteristic
peaks at 1544, 1157, 1028 and 966 cm–1. The band between 1138 and 1048
cm–1 refers to bending vibrations of C–O–C group. The bands at 972, 832 and
674 cm–1 are characteristic of stretching vibrations of C–S–C in the thiophene
ring [176]. Characteristic bands of PPy–Gr–PEDOT:PSS and the aforementioned
bands are depicted in Figure 4.6e. The vibration band at 1034 cm–1 is due to
sulfone groups of the PSS, while the peak at 1548 cm–1 is typical of thiophene
C=C stretching [127].

The second set is prepared by the pyrrole and EDOT copolymerization on
the surface of Gr leading to PPy–co–PEDOT–Gr composite. Figure 4.6f shows
the corresponding FTIR peaks typical of PPy–co–PEDOT [177]. The structural
characterization does not show any difference between mechanical mixing and
copolymerization preparation methods.

To evidence the role of the functionalization, set of samples based on FrGO
was compared to Gr based ones. FTIR spectra (Figures 4.6g–i) show two peaks
at 1573 and 1442 cm–1 attributed to the quinoid ring [178], with intensities
significantly higher for FrGO composite. This presence of more quinoid units
could predict higher electrical conductivity for the FrGO–based composites.

4.3.2 Morphological Characterization

The SEM technique was employed to analyze the morphology of the prepared
materials, micrographs are displayed in Figure 4.7a–i. Here is a breakdown
of the observed characteristics: Pure PPy (Figure 4.7a) showcases a compact
morphology, appearing as dense and rough globules with non–uniform and
irregular structures within the grains. The binary composite PPy–Gr (Figure
4.7b) illustrates thick graphene sheets enveloped by PPy. This coverage inhibits
the aggregation of graphene sheets, promoting the formation of a homogeneous
PPy–Gr composite with a structured appearance [142]. The morphology of
PEDOT (Figure 4.7c) presents tightly compacted small particles, stacking atop
each other to form a continuous structure.

Moreover, ternary composites PPy–Gr–PEDOT and PPy–co–PEDOT–Gr (Fig-
ure 4.7d and e) manifest as assemblies of multiple microparticles with varied
sizes and shapes. In PPy–co–PEDOT–Gr, graphene occupies small cavities
within the copolymer, resulting in a slightly closed structure that challenges
granule differentiation.
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Figure 4.7: SEM micrographs of a) PPy, b) PPy–Gr, c) PEDOT, d) PPy–Gr–PEDOT,
e) PPy–co–PEDOT–Gr, f) PPy–FrGO, g) PPy–FrGO–PEDOT, h) PPy– co–PEDOT–
FrGO and i) PPy–FrGO–PEDOT:PSS.

The PPy–FrGO structure (Figure 4.7f) exhibits dispersion of small particles
surrounded by a solid matrix, a consequence of incorporating FrGO filler into
the PPy matrix. In Figure 4.7g, solid particle compaction forms a continuous
structure which may contribute to the higher thermoelectric (TE) performance
in the PPy–FrGO–PEDOT ternary composite. While PPy–co–PEDOT–FrGO (Fig-
ure 4.7h) displays an accumulation of grains with diverse geometries, represent-
ing the copolymer structure on the surface of FrGO. The PPy–FrGO–PEDOT:PSS
resulted in a compact structure (Figure 4.7i) compared with the previous ternary
composites which could be attributed to the presence of PSS.

These diverse morphological features across the different composites high-
light the role of filler incorporation, its functionalization and polymer interac-
tions, elucidating their influence on the resulting structure, crucial for achieving
specific material properties, especially in the realm of thermoelectric perfor-
mance.
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4.3.3 Thermoelectric Characterization

Thermoelectric characterization involves essential measurements like the Hall
effect, electrical conductivity, Seebeck coefficient, power factor, and ZT. These
parameters collectively define a material’s behavior and efficiency in converting
heat into electricity. The Hall effect reveals charge carrier properties under
a magnetic field, while conductivity measures the material’s electrical flow.
Seebeck coefficient relates temperature differences to voltage, crucial for under-
standing thermoelectric potential. The power factor balances conductivity and
Seebeck coefficient, reflecting a material’s power generation ability. Ultimately,
ZT summarizes a material’s thermoelectric efficiency, guiding the development
of better energy conversion materials for various applications.

In this section, the materials were coded according to Table 4.1 in order to
facilitate the graphical illustration.

Table 4.1: List of code given to each material for sake of clarity.

Pure or composite material Code Preparation method
PPy C1 Chemical polymerization
PPy–Gr C2 In–situ polymerization
PPy–Gr–PEDOT C3 Direct mixing
PPy–co–PEDOT–Gr C4 Copolymerization
PPy–Gr–PEDOT:PSS C5 Direct mixing
PPy-FrGO–PEDOT C6 Direct mixing
PPy–co–PEDOT–FrGO C7 Copolymerization
PPy–FrGO–PEDOT:PSS C8 Direct mixing

Hall Effect. The Hall effect provides valuable details about the nature, concen-
tration, and mobility of charge carriers. It examines parameters such as charge
density in both surface and volume, along with their mobility.

Hall coefficient is defined as RH = – 1
ne if charge carriers are electrons and

RH = + 1
pe if charge carriers are holes. Hall mobility which measures how fast

the charge carriers move under the influence of an electric field and a magnetic
field. It is calculated using the formula: µH = σ

ne which is related to the electrical
conductivity.

While the Hall effect and thermoelectric effects arise from different physical
principles, they both provide important insights into the electronic properties
of materials. The parameters characterizing the Hall effect (such as charge
carrier density and mobility) may influence the thermoelectric properties, and
vice versa. For example, the mobility of charge carriers affects both the Hall
coefficient and the electrical conductivity of the material.

Figure 4.8 display the outcomes from measurements of the Hall effect in
ternary composites (C3 to C8). The reduced mobility of charge carriers is a
consequence of the disorder in the composite’s morphology, which is closely
linked to the material’s structure [179].
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A noticeable enhancement in mobility and the Hall coefficient is evident in
FrGO–based composites (C6 to C8) compared to those based on Gr. This en-
hancement can be attributed to the alterations in morphology induced by the
presence of FrGO layers. This latter tends to create pathways along which charge
carriers, such as electrons, can travel with minimal resistance, contributing to
increased mobility. Furthermore, the positive sign of the Hall coefficient con-
firms the doping type (p), thereby indicating that the charge carriers within the
structure are positively charged holes (+).

Figure 4.8: Hall effect parameters of PPy–based ternary composites.

Electrical Conductivity. The composites were compressed into pellets to evalu-
ate their electrical conductivity using a four–point system (Appendix A). When
pure PPy is in–situ polymerized on the surface of graphene (C2), its electri-
cal conductivity is enhanced by a factor of 2 (16 Scm–1). Notably, superior
electrical conductivity is observed in FrGO–based materials compared to their
corresponding Gr–based ones across all ternary composites, indicating the
significance of the functionalization process.

Moreover, the electrical conductivity is influenced by the presence of either
a limited number of highly mobile electrons or numerous electrons with lower
mobility. The data presented in Figure 4.8 reveal that the inclusion of FrGO
leads to a lower electron density with higher mobility compared to Gr–based
materials. This higher mobility accelerates the movement of charge carriers,
thereby increasing the electrical conductivity of the composite [180, 181].
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Figure 4.9: TE performance of the pure PPy and the prepared composites.

Introducing PEDOT enhances the electrical conductivity of the ternary com-
posite (C3, C4 and C6, C7). Direct mixing (C3 and C6) appears to be a more
promising method than copolymerization (C4 and C7). This is attributed to the
effective dispersion of pure PEDOT through direct mixing, as opposed to PPy–
co–PEDOT, along with its inherent electrical properties which could attributed
to the increase of contact surfaces.

Seebeck Coefficient. The homemade instrument measured the Seebeck coeffi-
cient of pure PPy (Appendix B). Figure 4.9 showing a six–fold enhancement in
ternary composites, elevating it from 1.34 to 8 µVK–1. Remarkably, the FrGO–
based composites exhibited the highest values, highlighting the critical role
of functionalization [182]. Functional groups establish covalent bonds with
the graphene surface, influencing the local hybridized bonding (from sp2 to
sp3). This process reduces the charge carrier density (as seen in Figure 4.8) and
increases the Seebeck coefficient.

Moreover, the inclusion of PEDOT favors π–π interactions between PPy–Gr
and PEDOT, thereby augmenting both electrical conductivity and the Seebeck
coefficient [183]. While copolymerized composites also display a commendable
Seebeck coefficient, it tends to be lower than those achieved through direct
mixing. This discrepancy might arise from fewer interactions and restricted
mobility within copolymerized composites.
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Thermal Conductivity. The thermal conductivity evaluations were conducted
using the Hot Disk 2500S device, and the outcomes are visualized in Figure
4.9. Notably, all ternary composites exhibit low thermal conductivity, closely
resembling that of pure PPy. This characteristic proves advantageous for ther-
moelectric (TE) applications.

Power Factor and Figure of Merit. Figure 4.9 illustrates the power factor (PF)
and the figure of merit (ZT) for the various composites. Given the nearly un-
changed thermal conductivity, the highest ZT value is attained by the PPy–
FrGO–PEDOT ternary composite (6.51×10–4) prepared via the mixing route.
This value stands out significantly, being 240 times greater than that of pure PPy
(2.71×10–6).

These experiments underline the pivotal role of composite composition,
incorporating PPy and PEDOT as conducting polymers alongside functional-
ized graphene as a filler. Moreover, they emphasize how the chosen prepa-
ration method significantly impacts the resulting thermoelectric properties.
The intricate interplay between these components and the fabrication pro-
cess profoundly influences the final characteristics essential for thermoelectric
applications.

4.4 Conclusions

In this chapter, the experimental work involved the creation of ternary compos-
ites from polypyrrole (PPy) using a combination of mixing and copolymerization
methods. These composites aimed to enhance the thermoelectric (TE) proper-
ties of PPy by incorporating various fillers such as graphene (Gr), functionalized
graphene oxide (FrGO) or reinforcing the PPy matrix with other conducting
polymers such as poly(3,4–ethylenedioxythiophene) (PEDOT), and PEDOT:PSS.

To evaluate the characteristics of these ternary composites, multiple analyti-
cal techniques were employed. Scanning electron microscopy (SEM) provided
detailed images for visual inspection, allowing the examination of the surface
morphology and structural features. Raman spectroscopy was employed to
investigate the specific structures of graphene derivatives (Gr, GO, rGO, FrGO)
and the successful synthesis of 4–carboxybenzenediazonium tetrafluoroborate
(DS–COOH). Additionally, Fourier transform infrared (FTIR) spectroscopy was
utilized to analyze the chemical composition and bonding within the compos-
ites.

Among the synthesized composites, the PPy–FrGO–PEDOT composite pro-
duced through the mixing method exhibited the highest figure of merit (ZT)
value. Remarkably, this value was 240 times greater than that of the pristine
PPy. This substantial improvement underscores the critical role played by func-
tionalizing graphene oxide with diazonium salts. This functionalization process
significantly enhanced the adhesion and distribution of the polymer atop the
graphene oxide surface.
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Consequently, it promoted better charge mobility, thereby elevating the overall
conductivity of the composite and subsequently boosting its thermoelectric
properties.

The achievement in synthesizing and characterizing these ternary com-
posites opens up exciting possibilities for advancing materials with enhanced
thermoelectric properties. These advancements may pave the way for exploring
the impact of various functional groups on Multi–Walled Carbon Nanotubes
(MWCNTs) alongside with PPy, shedding light on their collective effect on ther-
moelectric properties. This forthcoming chapter delves into a detailed study fo-
cused on understanding how different functional groups attached to MWCNTs
influence the thermoelectric performance of the PPy–MWCNT nanocomposite.
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ANALYSIS

5.1 General Introduction

As the exploration into enhancing the thermoelectric properties within PPy–
based composites draws to a close, significant insights emerge from the previous
chapter. This chapter highlighted the profound impact of treating graphene ox-
ide with diazonium salts, shedding light on the conductivity and thermoelectric
behavior of these composites. Through meticulous exploration of preparation
methods and surface modifications in ternary composites, promising pathways
toward optimizing thermoelectric efficiencies have been unveiled.

Building upon these foundational insights, the subsequent chapter delves
deeper into another critical aspect shaping the thermoelectric properties of
PPy–based materials: the nature of surface functionalization groups in MWC-
NTs. Transitioning from the profound impact of graphene oxide modification,
this chapter aims to elucidate the intricate interplay between various func-
tionalization groups within MWCNTs and their consequential effects on the
thermoelectric power factor of PPy–MWCNTs nanocomposites.

In this pursuit, the focus extends beyond graphene derivatives to examine
the nuanced influence of distinct functionalization groups within MWCNTs
on the thermoelectric behavior of resulting nanocomposites. Through metic-
ulous analysis, this chapter role of surface functionalization of MWCNTs in
augmenting the thermoelectric performance of PPy–based nanocomposites.
By combining experimental exploration with insightful analyses, this chapter
aims to establish a comprehensive understanding of how different surface func-
tionalization groups within MWCNTs impact the thermoelectric power factor.
The shift in focus from graphene oxide surface treatment to the intricate in-
terplay of MWCNTs’ functionalization groups signifies an evolutionary step in
understanding and leveraging surface modifications to optimize thermoelectric
efficiencies within PPy–based materials.

Thus, this field of research [184] aims to establish a coherent progression
from the basic insights into changing graphene oxide to the intricate exami-
nation of MWCNTs’ surface functionalization. Together, these investigations
advance the quest for tailored thermoelectric materials crucial for sustainable
energy applications.

5.1.1 Publications

The content of this chapter is based on the following peer–reviewed scientific
publication "Reproduced with permission from Elsevier":
Younes Bourenane Cherif, Zineb Mekhalif, Ahmed Mekki, and Zakaria Bekkar
Djelloul Sayah. Effect of MWCNTs surface functionalization group nature on
the thermoelectric power factor of PPy/MWCNTs nanocomposites. Synthetic
Metals, 291:117196, December 2022. ISSN 0379-6779. doi: 10.1016/j.synthmet.2
022.117196. URL https://www.sciencedirect.com/science/article/pii/S0379677
922001904
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5.1.2. Outline

This research investigates the influence of distinct functional groups (ben-
zoic acid, benzene tricarboxylic acid, hydroxyl, carboxyl, amino, and thiol)
grafted into multi–walled carbon nanotubes (MWCNTs) on enhancing
the thermoelectric properties of PPy–MWCNTs nanocomposites. Initially,
the MWCNTs were either functionalized or remained unaltered. Subse-
quently, an in–situ oxidative polymerization of pyrrole occurred on the
functionalized MWCNTs to wrap them with polypyrrole. The findings
suggest that the functionalization process reduces electrical conductivity,
depending on the nature and density of the functional groups. Moreover,
it increases the Seebeck coefficient compared to PPy and PPy–purified–
MWCNTs nanocomposites. Notably, among the various chemical func-
tionalities explored, PPy–MWCNTs–SH exhibits the most promising out-
comes, showcasing the highest power factor (0.51 µWm–1K–2), marking
an eightfold enhancement compared to pure PPy (0.064 µWm–1K–2).

5.1.2 Outline

This chapter is structured as follows: Section 5.2 presents a detailed explanation
of the methodology and synthesis techniques employed. In Section 5.3, the
results derived from various characterizations are examined and discussed.
Finally, Section 5.4 encapsulates the chapter by presenting a summary of its
principal contributions.

5.2 Methodology

5.2.1 Materials

For crude MWCNTs purification, the thin MWCNTs (NC 7000, 0.1 – 10 µm,
Ø10 nm, > 95%) is purchased from Nanocyl SA, Belgium and NaOH (> 98%) is
purchased from Acros Organics. Functionalization process requires sodium
nitrite (NaNO2, 99.2%), 4–aminobenzoic acid (≥ 99%), 5–amino–1,2,3–benzene
tricarboxylic acid (97%) which were purchased from Fisher Scientific UK as
well as the perchloric acid (HClO4, 70%) from Aldrich. Pentane (99%) and
acetone (> 99%) are used for the washing process and are obtained from Chem–
Lab. Already functionalized MWCNTs are received from Nanocyl SA, Belgium
(MWCNTs–COOH, MWCNTs–NH2 and MWCNTs–SH). For nanocomposites
synthesis; pyrrole, sodium dodecylbenzene sulfonate (SDBS), ethanol and iron
chloride (FeCl3) are purchased from Sigma–Aldrich, Germany. All chemicals
are of analytical grade or higher purity.
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5.2.2 Fillers Preparation

Purification process. Prior to use crude MWCNTs, they were first purified using
basic treatment in order to not alter their structure and chemical composition
[185, 186]. MWCNTs were mixed with 500 ml of 12 M NaOH solution in a round–
bottomed flask, Figure 5.1. The mixture was then refluxed under constant
stirring at 170 ◦C for 12 h. The final product was washed with DI until pH ∼7,
dried at 60 ◦C and denoted as p–MWCNTs.

MWCNTs

12 M NaOH

12 h 170 °C
pH ~ 7 60 °C, purified MWCNTs

Purified 
MWCNTs

Diazonium 
salt precursor

Infra red 
treatment

1 h
MWCNTs-D1 MWCNTs-D3

MWCNTs

3:1 

H2SO4:HNO3

2 h 50 °C

O-MWCNTs

MWCNTs-NH2MWCNTs-COOH MWCNTs-SH

Purification process

Functionalization process

Oxidization process

No treatment

drying in airwashing process

HClO4 + NaNO2

washing process drying 

Figure 5.1: Experimental protocol of fillers preparation.

Functionalization process. Following the purification, post–treatment of p–
MWCNTs involving diazonium salt was accomplished according to previous
work [185], Figure 5.1. p–MWCNTs were mixed with a solution of diazonium salt
precursor (4–aminobenzoic acid or 5–amino–1,2,3–benzene tricarboxylic acid)
and put under sonication. Subsequently, perchloric acid and sodium nitrite
were added under stirring. The above mixture was after infrared irradiated for 1
h to favor the grafting process as carbonaceous materials can absorb these latter
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which result in electronic excitations [187]. Finally, the washing process was
carried out using both pentane and acetone and left drying at room temperature.
Both products monocarboxylic and tricarboxylic aryl functionalized MWCNTs
were denoted as MWCNTs–D1 and MWCNTs–D3, respectively.

Oxidization process. Separately, MWCNTs were dispersed in a mixture of 3:1 of
H2SO4 and HNO3 and refluxed at 50 ◦C for 2 h [188, 189]. The suspension was
left to cool down at room temperature and then diluted with DI, filtered and
washed, then left to dry in air. This latter was referred as O–MWCNTs.

Not treated. Additionally, other functionalized MWCNTs were used in this
study as received. Herein, MWCNTs–COOH, MWCNTs–NH2 and MWCNTs–SH
(Figure 5.1).

5.2.3 Nanocomposites Preparation

Binary nanocomposites (PPy–MWCNTs) were prepared as illustrated in Figure
5.2. Initially, SDBS (dopant) was dissolved in absolute ethanol and subsequently
diluted with DI. Purified or functionalized MWCNTs were dispersed in the
prepared mixture and stirred.
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Figure 5.2: Experimental setup for preparation of nanocomposites.
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Pyrrole was then added and left under magnetic stirring for 20 min. A crucial
40 min sonication process was followed to ensure the dispersion of MWCNTs
and pyrrole monomer, after which FeCl3 (oxidant) was added to initiate the
polymerization process which continued for 1 h. The resulting suspension was
stored at 0 ◦C for 1 h, washed with DI and ethanol, filtered and dried at 60 ◦C
for 2 days [139, 190]. Pure PPy was synthesized following the same protocol but
without the addition of MWCNTs.

5.3 Results and Discussion

5.3.1 Structural Characterization

Raman spectroscopy and Fourier–transform infrared (FTIR) techniques were
employed to analyze the structural characteristics of the synthesized materials.
To provide an insight into the structure of MWCNTs and the resulted binary
nanocomposites, Raman technique was used. Figure 5.3a shows the Raman
spectra of crude, purified and functionalized MWCNTs. All samples exhibit
three distinctive peaks: D, G and 2D. The D band, appearing at 1347 cm–1, is
attributed to sp3 hybridized carbon and structural defects.

Figure 5.3: Raman and FTIR spectra.
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Whereas the G band which occurs at 1588 cm–1 represents the vibration of sp2

carbon atoms and the 2D band, observed at 2688 cm–1, appears broadened due
to the presence of multiple layers within the nanotube structure [191, 192].

The preservation of the D and G bands following functionalization suggests
that the graphitic structure of carbon nanotubes remained intact, as there were
no shifts observed in these peaks after the functionalization process. Previous
studies [193–195] demonstrated that an increase in the D band intensity indi-
cates the shift from sp2 to sp3 hybridization on the sidewalls due to covalent
bonding of various functional groups. Table 5.1 displays the D to G band inten-
sity ratio showing notable alterations that indicate disruptions in the electron
delocalization along the nanotubes. These changes serve as evidence of differ-
ent degrees of functionalization in the MWCNTs [191, 196]. The reduction in
ID/IG post–purification indicates an improvement in the quality of MWCNTs,
likely achieved by removing carbonaceous impurities and metallic catalysts like
alumina. This supports the efficacy of the purification process. On the other
hand, the alteration of ID/IG due to functionalization demonstrates changes de-
pending on the degree of functionalization, revealing that the process maintains
the overall integrity of MWCNTs.

Table 5.1: ID/IG ratio of different MWCNTs.

Material
Crude

MWCNTs
p–

MWCNTs
MWCNTs

–D1
MWCNTs

–D3
O–

MWCNTs
MWCNTs
–COOH

MWCNTs
–NH2

MWCNTs
–SH

ID/IG 1.37 1.21 1.45 1.08 1.10 1.40 1.42 1.47

Figure 5.3b displays the Raman structural characteristics of both pure PPy
and binary nanocomposites. Two prominent broad bands were identified at
1564 and 1337 cm–1, attributed to MWCNTs (presence of D and G bands) and
the vibration modes of C–C and C=C within the PPy backbone ring [197]. The
existence of bipolaronic and polaronic structures in the synthesized PPy was
evidenced by the observed two weak peaks at 910 and 1080 cm–1 [197, 198].
Furthermore, a slight shift towards higher wavenumbers of the two band D
and G is probably due the role of functional groups on MWCNTs as a dopant
to the PPy backbone and the π–π interaction between the PPy and MWCNTs
[199]. Lower ratio values for all nanocomposites are observed compared to
functionalized MWCNTs; this may be due to the uniform coating of the surface
of MWCNTs with PPy chains, which results in a minor concentration of defects
on the MWCNTs surface [200].

FTIR analysis was extended to investigate the structural properties of chem-
ically modified MWCNTs, pure PPy, and their resulting nanocomposites. In
Figure 5.3c, distinct characteristic bands corresponding to polar functional
groups post–functionalization (MWCNTs–D1, MWCNTs–D3, and O–MWCNTs)
are depicted. The spectra reveal intense bands related to COOH groups, dis-
tinctive of carboxyl functional groups, on the surfaces of MWCNTs–D1 and
MWCNTs–D3 at 1730, 1380, and 1100 cm–1 [201, 202], along with bands of no-
tably lower intensity on O–MWCNTs indicative of C–OH and C–O functionalities.
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Additionally, the intense band at 1500 – 1600 cm–1 range is typical of benzene
ring vibrations present in MWCNTs–D1 and MWCNTs–D3 [203].

Pure PPy and the binary nanocomposites were also investigated using FTIR
spectroscopy. Figure 5.3d show the characteristic peaks of PPy and MWCNTs.
The fundamental ring vibration of PPy occurs at 1546 cm–1, while vibrations
associated with C–H plane, C–N stretching occur at 1310, 1045 cm–1 and 1184
cm–1, respectively. Observable changes in peak intensities, notably in PPy–
MWCNTs–D1 and PPy–MWCNTs–D3, along with a slight shift towards higher
wavenumbers, suggest interaction between NH groups in the PPy backbone
and surface groups of modified MWCNTs, in addition, the noncovalent π–π
bonds between these latter [204, 205].

Furthermore, research has established a correlation between the length of
conjugation in PPy chains and the ratio of intensities observed in the two bands
at 1546 and 1452 cm–1 in FTIR spectra [206]. As the conjugation length changes,
it affects the relative intensities of these bands, allowing for inference about
the polymer’s structural properties via FTIR analysis. Variations in intensity
indicate varied conjugation lengths among different samples. This relationship
strongly influences the material’s electrical conductivity since longer PPy chains
tend to demonstrate enhanced electrical conductivity.

5.3.2 Morphological Characterization

The TEM technique was utilized to examine the morphology structure of the
functionalized MWCNTs and the prepared binary nanocomposites. The ob-
tained images are depicted in Figure 5.4.

The analysis of the crude MWCNTs’ surface treatment, from purification
to aryl diazonium functionalization, revealed that the MWCNTs remained
undamaged, indicating the efficacy of the purification and functionalization
techniques. However, the surface of MWCNTs treated solely with oxidation
(O–MWCNTs) showed a slight alteration compared to those treated with aryl
diazonium [189].

Considering the synthesis conditions involving the oxidation of pyrrole
using FeCl3 and doping with SDBS in a mixture of water and ethanol as a co–
solvent, the resulting PPy particles exhibit a spherical shape [207], as depicted in
Figure 5.4. Their average diameter, estimated using Image J software, measures
around 68 nm.

The morphological analysis of all nanocomposites indicates complete cov-
erage of MWCNTs by PPy nanoparticles, as marked by arrows in the images of
PPy–MWCNTs–D1 and PPy–MWCNTs–D3. A distinct and uniform coating is
evident, although the presence of functionalized MWCNTs affects the growth of
PPy on their sidewalls, resulting in varying thicknesses.
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Figure 5.4: TEM images of surface treated MWCNTs, pure PPy, PPy–MWCNTs
nanocomposites and SEM top– and cross–sections of a PPy–MWCNTs–SH
pressed pellet.

Utilizing Image J software, the thickness of each nanocomposite layer was
measured, revealing discrepancies in diameters compared to MWCNTs (∼10
nm), PPy–p–MWCNTs (∼60 nm), PPy–MWCNTs–D1 (∼74 nm), PPy–MWCNTs–
D3 (∼33 nm), PPy–O–MWCNTs (∼53 nm), PPy–MWCNTs–COOH (∼38 nm),
PPy–MWCNTs–NH2 (∼66 nm), and PPy–MWCNTs–SH (∼30 nm).
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These variations can be attributed to several factors: the formation of mono-
layers, notably evident in PPy–MWCNTs–D1 and PPy–MWCNTs–D3, wherein
MWCNTs–D3 only can develop a single aryl layer while MWCNTs–D1 can evolve
multiple layers; the nature and concentration of functional groups along the
MWCNTs’ surface impacting the interfacial interactions (such as hydrogen
bonding, electrostatic forces and π–π stacking) between PPy and the func-
tionalized MWCNTs [19]. These interactions prove pivotal in binding PPy to
MWCNTs, facilitating uniform coatings. This simple and fast process highlights
the effectiveness of in–situ polymerization of PPy on functionalized MWCNTs.

SEM images of the top and cross–section view clearly show dense pellet
and a random distribution of a 1D nanocomposite structure. This random
orientation demonstrates no preferential orientation along or vertical to the
length of PPy–MWCNTs nanocomposite which validates the isotropy of the
pellets.

5.3.3 Thermogravimetric Characterization

In order to confirm the grafting rate of different functions on the surface of
MWCNTs, thermal gravimetric analysis (TGA) is performed. The weight loss
was studied as a function of temperature, Figure 5.5.

Figure 5.5: TGA curves of the chemically treated MWCNTs.
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The samples were exposed to a temperature range 25 – 900 ◦C with a 10
◦C/min rate under N2 gas. Crude MWCNTs showed a final weight loss of 27.2%,
while the purified MWCNTs exhibited a slightly higher weight loss of 27.5% due
to the purification process likely removed some impurities present in the crude
MWCNTs leading to a slightly higher weight loss. Both of them (Figures 5.5b
and 5.5c) exhibit one step weight loss.

However, aryl diazonium functionalized MWCNTs (Figure 5.5d and 5.5e)
show 3 steps weight loss. An initial decomposition which starts at 180 ◦C is due
to moisture loss, followed by another decomposition below 400 ◦C associated
with benzene mono– and tricarboxylic acid groups where the weight loss in
MWCNTs–D3 is 31.16% (Figure 5.5e) which is approximately 3 time of MWCNTs–
D1 (12.74%, Figure 5.5d) [208]. The final weight loss at 500 ◦C is attributed to
the start of the degradation of the graphitic structure of MWCNTs.

O–MWCNTs (Figure 5.5f) start decomposing before 200 ◦C and continue
until total decomposition which can be attributed to the presence of functional
groups from oxidization process.

The grafting percentage (GP) of the chemically treated MWCNTs was de-
termined using the Equation 5.1. Regarding the as received MWCNTs–COOH,
MWCNTs–NH2 and MWCNTs–SH the GP was given > 8%.

GP = (∆WFunctionalized MWCNTs –∆WCrude MWCNTs)×100% (5.1)

∆WFunctionalized MWCNTs and ∆WCrude MWCNTs are the percentage of weight
loss of chemically treated MWCNTs and crude MWCNTs, respectively.
It follows from the above equation, the percentage of functions on MWCNTs–D1
is about 4.7%, MWCNTs–D3 is about 21.4% and on O–MWCNTs is about 11.4%.

5.3.4 Thermoelectric Characterization

In this section, the materials were coded according to Table 5.2 in order to
facilitate the graphical illustration which presents the codes to each material or
composite material.

Table 5.2: List of code given to each material for sake of clarity.

Pure or composite material Code
PPy C1
PPy–p–MWCNTs C2
PPy–MWCNTs–D1 C3
PPy–MWCNTs–D3 C4
PPy–O–MWCNTs C5
PPy-MWCNTs–COOH C6
PPy–MWCNTs–NH2 C7
PPy–MWCNTs–SH C8
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Electrical Conductivity. The electrical conductivity of PPy is around 973 Sm–1

(Figure 5.6). MWCNTs’ electrical conductivity is strongly dependent on their pu-
rification and functionalization nature and degree. The purification enhances
the MWCNTs electrical conductivity from 455 Sm–1 to 833 Sm–1 which is in
agreement with the values reported in previous research [189], however it is
lower compared to other studies [209], this may be dependent on the MWCNTs
supplier and the procedure by which they were synthesized.

Figure 5.6: Thermoelectric properties of the synthesized materials.

The electrical conductivity of PPy–MWCNTs relies on both the conjugation
degree of PPy and the presence of MWCNTs. When PPy coats the MWCNTs, it
creates a nanocomposite (C2) with significantly enhanced electrical conduc-
tivity (3171.7 Sm–1) compared to their individual components. However, the
inclusion of functional groups reduces the mobility of charge carriers, dimin-
ishing the conductivity compared to C2 (Figure 5.6).

As a result, nanocomposites with fewer charge carriers but higher concen-
trations of functional groups on MWCNT surfaces exhibit reduced conductivity.
Additionally, the introduction of functional groups leads to sp2–sp3 carbon
hybridization, which depends on the degree of MWCNT functionalization, cre-
ating defects that increase resistance [210]. Furthermore, conductivity within
the PPy arises from both intramolecular conjugation and intermolecular contri-
butions due to π–π stacking between PPy chains and MWCNTs.
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However, TE performance does not depend merely on electrical conductivity.
As far as semiconductor materials are concerned, conductivity depends on the
efficiency of charge transfer within the material; in this case, it depends on
electrons in the π orbital, which can pass to the conductive bands and leave
holes in the valence band [211].

Seebeck Coefficient. As the functionalization of MWCNTs decreases the electri-
cal conductivity; it increases slightly the Seebeck coefficient. The highest values
(14 µVK–1) are obtained for C3 (PPy–MWCNTs–D1) and C8 (PPy–MWCNTs–
SH) as a consequence of the high density of –COOH and –SH functions at the
MWCNTs surface shown in Raman spectra by the highest intensity ratio (ID/IG).

The grafting method (–COOH linked directly to the nanotubes by oxidation
or via the aryl group) makes a difference in TE properties (electrical conductiv-
ity and Seebeck coefficient). Aryldiazonium functionalization provides more
functions at the surface (S of C3 is higher than C6). It also allows the control of
the –COOH densities (C3/C4) and the thickness of the aryl layer (monolayer or
multilayers).

As shown in Figure 5.6, the Seebeck coefficient exhibits different values
strongly related to the MWCNTs functional groups in the nanocomposites. S
values follow the following order, C8≃C3>C4>C6>C7>C5>C2. It is also related
to their density, and the interactions between the PPy chains and MWCNTs.

Power Factor. The PF values of the prepared nanocomposites are shown in
Figure 5.6. As PF is the square of S multiplied by σ, the PPy–MWCNTs–SH (C8)
has the highest value among all nanocomposites. Therefore, the classification
of TE properties has to be done considering both σ and S.

Figure 5.7 is a schematic presentation of the possible molecular interactions
between the MWCNTs surface and the PPy positively charged backbone due to
the oxidative polymerization.

Although not covalent, these interfacial interactions are sufficiently strong
to keep PPy anchored to the MWCNTs via the functions layer. We can dis-
tinguish electron acceptor groups in PPy–MWCNTs–D1, PPy–MWCNTs–D3,
PPy–O–MWCNTs, and PPy–MWCNTs–COOH, the nitrogen–containing electron–
donor groups in PPy–MWCNTs–NH2, and sulfur–containing electron–donor
groups in PPy–MWCNTs–SH. These interactions enhance the Seebeck coef-
ficient and mobility of charges providing PPy–MWCNTs–SH with the more
significant power factor of 0.51 µWm–1K–2 which is 8 times superior to pure PPy.
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Figure 5.7: Possible molecular interactions between polypyrrole backbone and
different MWCNTs.

5.4 Conclusions

The investigation of various functional groups on MWCNTs has revealed their
impact on enhancing the thermoelectric (TE) properties of PPy–MWCNTs
nanocomposites. These functionalized MWCNTs exhibit a nuanced influence,
reducing electrical conductivity based on the nature (electron donor/accep-
tor) and density of functional groups while concurrently elevating the Seebeck
coefficient compared to PPy–p–MWCNTs composites. Notably, both purified
and functionalized MWCNTs demonstrate an enhancement in TE performance
relative to pure PPy, with PPy–MWCNTs–SH emerging as the most promising
function, displaying the highest power factor.

The exploration of functionalized MWCNTs’ influence prompts the investi-
gation of a new avenue: the grafting of metal oxides onto the surface of these
modified graphitic materials to serve as fillers within the PPy matrix. These
upcoming chapters delve into the strategic incorporation of metal oxides onto
the surface of functionalized GNPs and MWCNTs, exploring their potential
for further optimizing TE properties through controlled density and improved
grafting methodologies, aiming to regulate electrical conductivity and enhance
overall TE performance.
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CHAPTER 6. EFFECT OF BI2O3 DECORATED MWCNTS AND GNPS ON TE
BEHAVIOR OF PPY–BASED NANOCOMPOSITES

6.1 General Introduction

Continuing our pursuit to enhance the thermoelectric properties of composite
materials; the preceding chapter investigated the influence of various function-
alized MWCNTs on the thermoelectric characteristics of PPy–based nanocom-
posites. The investigation of various functional groups on MWCNTs has re-
vealed their impact on enhancing the thermoelectric (TE) properties of PPy–
MWCNTs nanocomposites. Both purified and functionalized MWCNTs demon-
strate an enhancement in TE performance relative to pure PPy, with PPy–
MWCNTs–SH as the most promising function, displaying the highest power
factor.

Expanding upon these insights, this chapter explores a new trajectory in
composite design. Our focus pivots towards GNPs–Bi2O3–based PPy [212] and
MWCNTs–Bi2O3–based PPy nanocomposites [213], a kind of fusion of organic
and inorganic constituents, to open new avenues for enhanced thermoelectric
performance. Starting from conventional methodologies where metal oxide
nanoparticles are incorporated ex–situ, our new approach explores the in–
situ generation of Bi2O3 nanocrystals anchored onto functionalized GNPs and
MWCNTs surfaces.

The transition from exploring the nuanced effects of functionalized graphitic
materials to GNPs–Bi2O3– and MWCNTs–Bi2O3–based PPy nanocomposites
highlights a progressive continuum in our quest to engineer better thermo-
electric materials. This chapter aims to demonstrate the synergistic interplay
between organic and inorganic components, shedding light on the impact of
the fillers’ (MWCNTs, GNPs) functionalization and their decoration with Bi2O3

on the thermoelectric performance of these new nanocomposites.

6.1.1 Publications

The content of this chapter is based on the following peer–reviewed scientific
publication "Reproduced with permission from Springer Nature":
Younes Bourenane Cherif, Zineb Mekhalif, Ahmed Mekki, Zakaria Bekkar Djel-
loul Sayah, and Souleymen Rafai. Enhanced thermoelectric power factor of
PPy-based nanocomposites: effect of decorated graphene nanoplatelets by bis-
muth oxide nanoparticles. Journal of Materials Science, 58(11):4809–4823,
March 2023. ISSN 1573-4803. doi: 10.1007/s10853-023-08334-5. URL
https://doi.org/10.1007/s10853-023-08334-5

This study aims to develop a hybrid organic–inorganic material com-
prising polypyrrole (PPy), graphene nanoplatelets (GNPs), and bismuth
oxide nanoparticles (Bi2O3) to address the limitations in the thermoelec-
tric (TE) conversion efficiency of organic materials. GNPs were coated
with Bi2O3 nanoparticles through a straightforward method involving
infrared irradiation and diazonium chemistry. Various characterization
techniques—such as X–ray diffraction, transmission electron microscopy,
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6.1.2. Outline

Raman spectroscopy, Fourier transform infrared spectroscopy, and X–ray
photoelectron spectroscopy—were employed to assess the structural and
physical properties of the synthesized nanocomposites.
The study revealed an enhancement in the electrical conductivity (σ)
and Seebeck coefficient (S) of PPy–GNPs–Bi2O3 in comparison to pure
PPy making this nanocomposite as promising TE materials. This im-
provement was attributed to the π–π stacking interaction between PPy
chains and the GNPs’ surface. Additionally, Bi2O3 played a crucial role in
enhancing the TE behavior by improving charge transport and binding
both PPy and GNPs. At room temperature, the power factor exhibited an
11–fold increase (1 µWm–1K–2) compared to pure PPy. The potential for
further enhancement in TE performance at higher temperatures suggests
avenues for further exploration.

Younes Bourenane Cherif, Zineb Mekhalif, Ahmed Mekki, and Zakaria Bekkar
Djelloul Sayah. Effect of decorated MWCNTs by bismuth oxide nanoparticles on
the thermoelectric properties of polypyrrole–based nanocomposites. The 1st
International Conference on Renewable Materials and Energies ICRME2022
Ouargla, Algeria, October 2022, page 3. URL https://icrme2022.sciencesconf.o
rg/

This study investigates the fabrication of composite materials by merg-
ing polypyrrole (PPy) with multiwalled carbon nanotubes (MWCNTs)
and bismuth oxide nanoparticles (Bi2O3). PPy synthesis involved an
in–situ oxidative polymerization method using FeCl3 as an oxidant and
sodium dodecylbenzene sulfate (SDBS) as a dopant. MWCNTs–Bi2O3

were created by modifying MWCNTs and adding bismuth oxide parti-
cles. Nanocomposites of PPy–MWCNTs and PPy–MWCNTs–Bi2O3 were
synthesized and characterized using FTIR and TEM. Their thermoelec-
tric properties showed better performance in the power factor at room
temperature for PPy–MWCNTs–Bi2O3 compared to pure PPy and PPy–
MWCNTs composites.

6.1.2 Outline

This chapter is structured in three sections: Section 6.2 describes the methodol-
ogy, the synthesis procedures and the characterization techniques. Section 6.3
displays the outcomes and related discussions. Section 6.4 gives the essential
conclusions.
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CHAPTER 6. EFFECT OF BI2O3 DECORATED MWCNTS AND GNPS ON TE
BEHAVIOR OF PPY–BASED NANOCOMPOSITES

6.2 Methodology

6.2.1 Materials

MWCNTs were prepared according to similar procedures as described in Chap-
ter 5 (section § 5.2.2). GNPs (750 m2.g–1) were purchased from Sigma Aldrich.
Their functionalization process was done using 4–aminobenzoic acid (99%) as
an initiator for the corresponding diazonium derivative, sodium nitrite (NaNO2,
99.2%) and perchloric acid (HClO4, 70%), all were purchased from Fisher Sci-
entific UK. For nanocomposites syntheses, pyrrole, sodium dodecylbenzene
sulfonate (SDBS), ethanol, and iron chloride (FeCl3) were used. All the aqueous
solutions were prepared using ultra–pure milli–Q (18.2 MΩ).

6.2.2 Fillers Preparation

GNPs and MWCNTs fillers were prepared in three steps: first, functionalization
with appropriate diazonium salts bearing carboxylic acid functions, then their
impregnation with a bismuth precursors salt and then finally the calcination
step to create the bismuth oxide nanoparticles on the fillers surfaces.

6.2.2.1 Functionalization of GNPs and MWCNTs

The functionalization step was conducted on both GNPs and MWCNTs follow-
ing the procedures outlined in our previous studies (Chapter 5 § 5.2.2) [184]. In
brief, 0.2 g of GNPs (or MWCNTs) were mixed with 2.33 g of 4–aminobenzoic
acid, 1.15 g of sodium nitrite, and 1.74 ml of perchloric acid and 100 ml of water.
The resulting solution underwent 1 h of IR irradiation with constant magnetic
stirring, followed by cooling and filtration. The IR treatment is applied because
carbonaceous materials absorb infrared irradiation and efficiently convert elec-
tronic excitations into molecular vibration energies, generating heat. These
photo–adsorption and thermal properties are conducive to the grafting process
[187]. The covalently functionalized GNPs (or MWCNTs) with diazonium ben-
zoic acids were then washed with deionized water (DI) and acetone, dried at
room temperature, and designated as GNPs–D1 and MWCNTs–D1, Figure 6.1.

Figure 6.1: Functionalization pathway of GNPs and MWCNTs using Infrared
irradiation.
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6.2.2.2 Decoration of GNPs and MWCNTs with Bismuth Oxide
Nanoparticles

To decorate GNPs–D1 (or MWCNTs–D1) with Bi2O3 nanoparticles [71], 0.21 g of
ammonium bismuth citrate (ABC) was dissolved in 100 ml of water. GNPs–D1
(or MWCNTs–D1) powder (GNPs–D1 (or MWCNTs):ABC at 1:0.2) was introduced
into the solution, sonicated for 5 min, and then subjected to 2 h of IR irradi-
ation with constant magnetic stirring. The presence of acidic groups on the
surface of GNPs (or MWCNTs) resulted in deprotonation, producing negatively
charged ions that interact favorably with positively charged metal ions during
the impregnation step. The resulting material was filtered, washed with DI and
acetone, and subsequently calcined at 250 ◦C for 30 min in the air to convert
the attached chemicals into bismuth oxide. Further calcination at 350 °C under
argon gas flow for 30 minutes led to the development of a crystalline phase. The
resulting materials were denoted as GNPs–D1–Bi2O3 and MWCNTs–D1–Bi2O3,
Figure 6.2.
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Figure 6.2: Experimental protocol of GNPs and MWCNTs decoration with bis-
muth oxide nanoparticles.

6.2.3 Nanocomposites Preparation

The prepared nanocomposites based on PPy in–situ formed on the fillers are
denoted: PPy–GNPs, PPy–GNPs–D1, PPy–GNPs–D1–Bi2O3, PPy–MWCNTs, PPy–
MWCNTs–D1 and PPy–MWCNTs–D1–Bi2O3. They were synthesized through
the following procedure: At room temperature, 1.24 g of SDBS was dissolved
in 35 ml of absolute ethanol and then diluted to 140 ml with water. 0.2 g of the
prepared fillers were then introduced into the prepared mixture and allowed
to react for 20 min. To each solution, 1.04 ml of pyrrole monomer was added
and sonicated for 40 minutes. Following this, 56 ml of FeCl3 (4.54 g) dropwise
was added, stirred with a magnetic stirrer for 1 h, and stored at 0 ◦C for 1 h.
The filler–to–pyrrole ratio was maintained at 20%. Washing of the resulting
materials was carried out using deionized water (DI) and ethanol. Finally, the
synthesized materials were dried at 60 ◦C for a period of 2 days [139, 184]. The
proposed interactions between the fillers and the polymer are shown in Figure
6.3.
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Figure 6.3: Proposed interactions between fillers’ surface and polypyrrole
chains.

6.3 Results and Discussion

6.3.1 Structural Characterization

The structure of GNPs and MWCNTs before and after the various modifications
was analyzed using the P–XRD. As shown in Figure 6.4, GNPs, and MWCNTs
have similar structure presented as one intense peak (002) and two peaks with
lower intensities (100) (004) at 2θ = 26◦, 43◦, and 54◦, respectively [214, 215]. An
interlayer spacing (d–spacing) for GNPs is of value 3.43 Å was determined using
Bragg’s law (Equation 6.1) where λ = 0.154 nm is the wavelength of the X–ray
beam, θ is the diffraction angle (θ = 13◦).

2 · d· sinθ = λ (6.1)
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Figure 6.4: XRD patterns of a) GNPs, GNPs–D1, and GNPs–D1–Bi2O3, b) MWC-
NTs, MWCNTs–D1, and MWCNTs–D1–Bi2O3.

The functionalized fillers, GNPs–D1 (Figure 6.4a) and MWCNTs–D1 (Figure
6.4b) patterns show the structure of GNPs and MWCNTs, and additional broad
peaks similar to the XRD pattern of 4–aminobenzoic acid [216, 217] indicating
a crystalline–like structure of the grafted organic layer. Moreover, the function-
alization of GNPs is accompanied by a shift towards lower degrees (2θ = 25◦)
which indicates a larger interlayer spacing (3.56 Å) than that of GNPs.

The GNPs–D1–Bi2O3 (Figure 6.4a) pattern indicates the disappearance of
the diazonium salt peaks due to the decomposition of the aryl layer of monocar-
boxylic aryl diazonium functionalized GNPs by the annealing process. However,
distinct sharp peaks typical of the formation of a tetragonal β–phase bismuth
oxide nanocrystals on the GNPs surface space group: P–421c; space group num-
ber: 114; a (Å) = 7.743; b (Å) = 7.743; c (Å) = 5.631; α (◦) = 90.00; β (◦) = 90.00; γ
(◦) = 90.00 [189].

In case of MWCNTs–D1–Bi2O3 pattern (Figure 6.4b), broadening in certain
peaks may suggest structural defects indicating the amorphous structure on
the side wall of MWCNTs [218].

In case of GNPs, nanoparticle crystalline sizes ‘τ’ were obtained by apply-
ing the Scherrer equation (Equation 6.2) where K (0.9) is a constant and β is
the FWHM (full width at half maximum). The size of the crystalline particles
obtained from the most intense peak is 14.3 nm.

τ =
K· λ

β · cosθ
(6.2)

Henceforth, we will exclusively feature the results of GNPs–based nanocom-
posites rather than both GNPs– and MWCNTs–based nanocomposites. This
decision is grounded in the identical graphitic structures observed in Raman
and FTIR spectroscopies for both materials.
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Raman spectroscopy emerges as a robust tool for the analysis of carbon–
based materials, as illustrated in Figure 6.5, which depicts the Raman spectra
of GNPs–based materials (a) and nanocomposites (b). GNPs reveal distinctive
bands, specifically the D–band at ∼1346 cm–1 and the G–band at ∼1586 cm–1.
The D band is indicative of disorder defects within graphene sheets or nan-
otube lattice, while the G band mode corresponds to the stretching mode in
graphene or nanotube walls, prevalent in sp2 carbon materials. The intensity
ratio between these two bands serves as an indicator of defects, suggesting,
as shown in Figure 6.5, that GNPs–based materials exhibit fewer defects com-
pared to MWCNTs–based materials from our previous work [184]. Remarkably,
post–functionalization leads to an increased ID/IG ratio due to heightened sp3

content. Following annealing and Bi2O3 nanoparticles decoration, the ratio
decreases below pristine GNPs levels. This shift signifies that functionaliza-
tion induces sp2 to sp3 conversion, introducing defects, disrupting electron
delocalization. Conversely, annealing restores the sp2 structure, resulting in a
decreased ID/IG ratio.

Figure 6.5: a, b) Raman and c, d) FTIR spectra.

Raman analysis conducted on PPy and PPy–based nanocomposites (Figure
6.5b) revealed a spectrum with multiple Raman bands within the 620 to 1600
cm–1 range, consistent with previous research [219]. The distinctive bands of
pure PPy are visible at 1347 cm–1 and 1588 cm–1.
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Additionally, two weak peaks appear at 910 cm–1 and 1080 cm–1, corre-
sponding to the bipolaron and polaron structures within the PPy chain. Notably,
the ID/IG values of PPy–GNPs nanocomposites are nearly identical, emphasiz-
ing the highly effective hybridization between PPy and GNPs–based materials.
Meanwhile, these nanocomposites exhibit lower ID/IG values compared to
pure GNPs, implying that the introduction of PPy contributes to a reduction
in physical defects within GNPs–based materials, as inferred from the Raman
data.

The FTIR data depicted in Figures 6.5c and 6.5d demonstrate the chemical
composition of GNPs and PPy–based nanocomposites, respectively. Character-
istic bonds of GNPs are evident in the FTIR spectra, with a superficial band at
3300 cm–1 in functionalized GNPs. The spectral range from 1750 to 600 cm–1

affirms the functionalization of GNPs, showcasing the vibrations of COOH, C–
OH, and C–O. The disappearance of peaks in decorated GNPs is attributed to
thermal annealing, partially restoring the GNPs structure, and the influence of
anchored Bi2O3 nanoparticles confirmed with XRD.

All nanocomposites (Figure 6.5d) exhibit PPy’s distinctive bands, including
vibrations of the basic ring at 1540 cm–1, the C–H plane at 1305 and 1048 cm–1,
and C–N stretching at 1180 cm–1 [184]. Consequently, the TE performance can
be anticipated by calculating the intensity ratio between the two bands at 1544
and 1450 cm–1, inversely proportional to the length of PPy chain conjugation
[206]. Table 6.1 indicates that PPy–GNPs–D1 exhibits the lowest ratio value,
reflecting an extended conjugation chain, a result substantiated by subsequent
electrical conductivity measurements of the samples.

Table 6.1: Intensities ratio of 1544 cm–1 and 1450 cm–1 FTIR bands.

Sample PPy PPy–GNPs PPy–GNPs–D1 PPy–GNPs–D1–Bi2O3
I1544/1450 2.85 2.70 2.44 2.54

6.3.2 Morphological Characterization

The investigation of morphological structure through TEM analysis revealed
micrographs of different materials. Figure 6.6 showcases typical Bi2O3 particles
with an average diameter of 40 nm. Additionally, the successful synthesis and in–
situ generation of Bi2O3 onto both functionalized GNPs and MWCNTs surfaces
are depicted in Figure 6.6, highlighting the surfaces of GNPs and MWCNTs deco-
rated with Bi2O3 nanoparticles. These nanoparticles, highlighted in red circles,
exhibit a uniform distribution, with nanocrystals displaying a smaller size range
of 2–7 nm (mean size of 4 nm) and larger nanocrystals in the range of 10–60 nm
(mean size of 30 nm). The calculated size of the crystalline particles was deter-
mined to be 17 nm [(4 + 30)/ 2], closely matching the measurement from XRD
analysis (14.3 nm). Additionally, free–standing bismuth oxide nanoparticles
were observed in MWCNTs–Bi2O3.
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Figure 6.6: TEM images of Bi2O3 nanoparticles, GNPs–Bi2O3, MWCNTs–Bi2O3,
PPy, PPy–GNPs–Bi2O3 and PPy–MWCNTs–Bi2O3.

Utilizing water and ethanol as co–solvent and employing an in–situ oxidative
pyrrole method with FeCl3 as an oxidizer and SDBS as a dopant, TEM images
of the resulting PPy reveal a distinctive globular morphology with a spherical
shape of PPy particles. These particles developed on the GNPs–Bi2O3 sheets,
forming films; however, a few small blocks are aggregated between the GNPs
layers [220].

Furthermore, the in–situ polymerization on the GNPs–Bi2O3 surface played
a significant role in reducing the particle size of PPy in the PPy–GNPs–Bi2O3

nanocomposite compared to pure PPy. This reduction is attributed to the pres-
ence of Bi2O3 nanoparticles, acting as a secondary dopant to the PPy backbone.
Additionally, MWCNTs–Bi2O3 were uniformly coated with PPy as illustrated in
Figure 6.6 which enhances the interactions between PPy chains and MWCNTs–
Bi2O3.
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6.3.3 Chemical Characterization

X–ray Photoelectron Spectroscopy (XPS) is employed for analyzing the surface
atomic composition and chemical states of materials. Henceforth, we will
exclusively feature the results of GNPs–based nanocomposites rather than both
GNPs– and MWCNTs–based nanocomposites. This decision is grounded in
the identical graphitic structure for both materials. Figure 6.7a presents the
elemental composition of various GNPs samples and PPy in the corresponding
survey spectra. During XPS fitting, the primary peak in the core level spectra
was adjusted to the C1s level (284.6 eV). Thermo Avantage software was used
for the XPS peak fitting process.

Figure 6.7: XPS survey spectra and high–resolution C1s, N1s, and Bi4f core–
levels.

Following the functionalization process, an augmentation in oxygen content
is observed. Nitrogen presence is evident, attributed to the azo connection
in the GNPs–D1 sample. Post–treatment with ammonium bismuth citrate
and subsequent calcination reveal peaks corresponding to bismuth, with the
disappearance of the nitrogen peak indicating the removal of aryl connections.
In the case of PPy, the XPS spectra displays carbon, oxygen, nitrogen, and even
sulfur originating from the dopant.
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The successful functionalization is substantiated by a notable increase in
the intensity of the C–C sp3 peak, indicating structural defects on the GNPs’
surface due to covalent functionalization. Figures 6.7b, 6.7c, and 6.7d illustrate a
peak at 284.4 eV attributable to graphitic carbon sp2–hybridization and another
at 285.7 eV signifying sp3–hybridization characteristic of carbon. This suggests
the presence of structural defects in GNPs [185].

The concentration of sp2–hybridized carbon, as determined by XPS (Table
6.2), serves as an indicator of both graphitization and functionalization degrees.
In its pristine state, GNPs exhibited 64% sp2–hybridized carbon. However, upon
functionalization, this percentage decreased to 46%, implying that functional-
ization leads to a reduction in sp2–hybridized carbon content. This reduction
suggests a higher defect density in the lattice structure of GNPs [221].

Table 6.2: Oxygen and sp2–carbon concentrations, as determined by XPS.

Sample sp2–carbon [%] Oxygen [%]
GNPs 64.56 13.14
GNPs–D1 46.02 18.21

Additionally, peaks corresponding to different carbon–oxygen bonds are
identified in the XPS spectra. Carbon attached to single oxygen bonds (C–O),
carbon linked to oxygen double bonds (C=O), and carbon associated with two
oxygen atoms (O–C=O) appear at 286.5, 287.7, and 288.5 eV, respectively [185].

In the high–resolution XPS spectra of bismuth oxide within GNPs–D1–Bi2O3

(Figure 6.7e), a doublet is observed. Peaks at 159.2 and 164.5 eV, separated by
5.3 eV, are assigned to Bi 4f7/2 and Bi 4f5/2, indicating the Bi3+ oxidation state
in the Bi2O3 form [222]. Figure 6.7f illustrates the deconvoluted N1s spectra of
pure PPy. The major peak at 399.5 eV is attributed to neutral amine nitrogen
(N–H). Additionally, higher binding energy components at 400.8 and 401.9 eV
correspond to positively charged nitrogen (–N+) polaron and (=N+) bipolaron,
respectively. The lower binding energy component at 397.7 eV is associated with
imine nitrogen (–N=) [223]. As demonstrated by Gence et al. [224], the ratios of
–N+/N can be utilized to quantify the doping level of PPy, here estimated at 26%.

6.3.4 Thermoelectric Characterization

In this section, the materials were coded according to Table 6.3 in order to
facilitate the graphical illustration.

Table 6.3 presents the codes of each material or composite material to
facilitate the data analysis.
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Table 6.3: List of code given to each material for the sake of clarity.

Pure or composite material Code
PPy C1
PPy–MWCNTs C2
PPy–GNPs C3
PPy–MWCNTs–D1 C4
PPy–GNPs–D1 C5
PPy–MWCNTs–Bi2O3 C6
PPy–GNPs–Bi2O3 C7

In the specific case of a PPy, GNP (or MWCNTs), and Bi2O3 nanocomposite:s Bridging interactions could involve Bi3+ ions or surface oxygen atoms in
Bi2O3 connecting PPy and GNPs (or MWCNTs).s π–π stacking would occur between the PPy and GNPs (or MWCNTs),
contributing to their electronic synergy.s Hydrogen bonding might further stabilize the matrix, particularly with
oxygen–containing groups on GNPs (or MWCNTs) or Bi2O3 interacting
with PPy.

Figure 6.8: Different interactions between PPy, GNP (or MWCNTs), and Bi2O3.

Electrical Conductivity. The four–probe instrument was used to measure the
in–plan electrical conductivity of the samples, as depicted in Figure 6.9. The
results reveal that all nanocomposites exhibit a greater electrical conductivity
compared to pure PPy. This enhancement is ascribed to the effective dispersion
of MWCNTs and GNPs in PPy, facilitated by favorable interfacial interactions,
particularly through π–π stacking [184, 190, 225].

The interfacial interaction in 2D GNPs extends to both sides, unlike on MWC-
NTs where only the outer shell is implicated [184]. This distinction accounts
for the increased electrical conductivity observed in GNPs–based nanocompos-
ites (C3 compared to C2). While covalent functionalization of carbon–based
materials, demonstrated by the transformation of carbon’s hybridized state
[225].
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Figure 6.9: Thermoelectric properties of synthesized materials.

However, in GNPs–based nanocomposites (C5 compared to C4), this defi-
ciency appears to be compensated by the presence of π–π stacking and orbital
hybridization with the interfacing PPy backbone.

Furthermore, the incorporation of Bi2O3 nanoparticles onto MWCNTs and
GNPs (C6 and C7) holds the potential to enhance the electrical conductivity of
the nanocomposites. This improvement stems from both the inherent conduct-
ing characteristics of Bi2O3 nanoparticles and the annealing process applied
to MWCNTs and GNPs, facilitating the formation of the crystalline phase of
Bi2O3 nanoparticles on GNPs and amorphous phase on MWCNTs. The differ-
ence in conductivity between decorated GNPs (C7) and MWCNTs (C6) –based
nanocomposites can be attributed to this distinction in the crystalline phases
formed during the annealing process. This annealing process, in turn, serves
as another method to tune the TE performance of carbon–based materials. It
achieves this by altering the interfacial structure, increasing sp2 hybridized
bonds, and decreasing sp3 hybridized bonds simultaneously, thus influencing
the transport properties [226].

The slight decrease in conductivity observed in PPy–GNPs–D1–Bi2O3 (C7)
compared to PPy–GNPs–D1 (C5) can be attributed to the limited interaction
between GNPs and Bi2O3 nanoparticles since the primary factor influencing
electrical conductivity remains the structural integrity and distribution of GNPs
[227]. Poor dispersion is also responsible for decreasing electrical conductivity
[228]. This decrease can be attributed to the decoration of GNPs with Bi2O3

nanoparticles, which interrupts the uniform dispersion of GNPs.
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These conductivity findings align with the data extracted from FTIR, partic-
ularly the conjugation length inferred from the intensity ratio (Table 6.1). On
the other hand, an increase in conductivity in PPy–MWCNTs–D1–Bi2O3 (C6)
compared to PPy–MWCNTs–D1 (C4) is observed, which can be attributed to the
perfect coating of MWCNTs–D1–Bi2O3 by PPy, as seen in TEM images, thus a
good structural integrity resulting in an increased electrical conductivity.

Seebeck Coefficient. The in–plane Seebeck coefficient of the nanocomposites
was determined using a homemade setup, and the results at room temperature
are illustrated in Figure 6.9. The incorporation of MWCNTs and GNPs appears to
marginally decrease the Seebeck coefficient in the PPy–MWCNTs and PPy–GNPs
(C2 and C3) nanocomposites, possibly due to the untreated surface leading to
less hybridization between PPy and MWCNTs or GNPs surfaces. Conversely,
this effect is accentuated when using MWCNTs–D1, GNPs–D1 (C4, C5) and
MWCNTs–D1–Bi2O3, GNPs–D1–Bi2O3 (C6, C7), attributed to the surface func-
tionalities of MWCNTs–D1, GNPs–D1 and Bi2O3 nanoparticles, as well as their
intrinsic properties related to the Seebeck coefficient. The latter nanocompos-
ites exhibit the highest Seebeck coefficient among all nanocomposites. The
slight distinction between MWCNTs– and GNPs–based nanocomposites may
be attributed to the fact that MWCNTs are entirely coated by PPy, creating a uni-
form coverage. In contrast, TEM images reveal that in the case of GNPs, there are
some agglomerated spots. These agglomerations could influence the Seebeck
coefficient, as they potentially introduce non–uniformities in the nanocompos-
ite structure. The varying distribution of PPy on MWCNTs versus the presence
of agglomerates in GNPs may contribute to the observed differences in the
Seebeck coefficient between the two types of nanocomposites.

These findings can be summarized based on three key parameters: Doping
effect, where Bi2O3 acts as a dopant for PPy and MWCNTs or GNPs, serving as
a bridge to enhance charge transport and carrier dynamics [229]. Interfacial
effect, where the presence of Bi2O3 improves the interface between PPy and
MWCNTs or GNPs. Synergistic effect, where the combination of PPy and GNPs
or MWCNTs decorated Bi2O3 results in a synergistic effect, elevating the prop-
erties of the nanocomposites beyond the sum of their individual components.

Power Factor. Based on the electrical conductivity and Seebeck coefficient
results, the power factor of all samples was calculated, Figure 6.9, and a max-
imum value of 1 µWm–1K–2 was reached, attributed to PPy–GNPs–D1–Bi2O3

(C7) which is 11 folds that of pure PPy ∼0.087 µWm–1K–2, while PPy–MWCNTs–
D1–Bi2O3 (C6) has reached 0.843 µWm–1K–2. These results at room temper-
ature, given the low percentage of bismuth oxide (∼4%), is more important
than other values reported using the incorporation of nickel oxide nanoparti-
cles (0.435 µWm–1K–1 at 60 ◦C) [229] and even better than tellurium powder
(1.064 µWm–1K–2, 1 wt.% at a temperature difference of 100 ◦C) [230], or by
incorporating 5 wt.% of SWCNTs at 408 K (∼0.980 µWm–1K–2) [114].
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BEHAVIOR OF PPY–BASED NANOCOMPOSITES

6.4 Conclusions

The in–situ generation of Bi2O3 nanoparticles on the surface of GNPs and
MWCNTs marks a strategic advancement in enhancing the TE performance
of organic–based nanocomposites. The synthesis involved the formation of
Bi2O3 on GNPs or MWCNTs, followed by the in–situ polymerization of pyrrole
to yield GNPs–Bi2O3– or MWCNTs–Bi2O3–coated PPy nanocomposites. This
novel preparation method demonstrated a remarkable improvement in both
electrical conductivity (σ) and Seebeck coefficient (S) when compared to pure
PPy. The observed enhancement is attributed to the synergistic effects of π–π
stacking and orbital hybridization between the PPy backbone and both GNPs
and MWCNTs surfaces. Additionally, the introduced Bi2O3 nanoparticles play a
dual role by its intrinsic properties and acting as a bridge between PPy chains
and GNPs, thereby enhancing charge transport properties. As a result, the
surface decoration of graphitic fillers with Bi2O3 leads to an impressive 11–fold
increase in the power factor (PPy–GNPs–Bi2O3, 1 µWm–1K–2) compared to pure
PPy.

Building on the success of both PPy–GNPs–Bi2O3 and PPy–MWCNTs–Bi2O3

nanocomposites, the subsequent chapter delves into the exploration of a one–
dimensional nanocomposite. This new nanocomposite is based on PPy and
MWCNTs, further decorated with nickel oxide (NiO). The investigation into
this one–dimensional structure aims to leverage the unique characteristics of
MWCNTs and NiO, continuing the trajectory of enhancing thermoelectric per-
formance. This seamless transition maintains a coherent link, showcasing the
progressive development and optimization of polymer–based hybrid materials
for thermoelectric applications.
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CHAPTER 7. STRATEGIC DESIGN FOR ENHANCED THERMOELECTRICITY: NICKEL

OXIDE–DECORATED MWCNTS WRAPPED WITH POLYPYRROLE NANOTUBES

7.1 General Introduction

Transitioning from the trajectory explored in the previous chapter, where GNPs–
Bi2O3–based PPy and MWCNTs–Bi2O3–based PPy nanocomposites opened new
avenues for enhanced thermoelectric performance through in–situ generation
of metal oxide nanoparticles, our current focus shifts to an exploration of the
design of hybrid organic–inorganic thermoelectric materials.

In this chapter, our attention centers on the design of a PPy–MWCNTs–NiO
nanocomposite, continuing the trend of hybrid materials for improved thermo-
electric properties. The choice of polypyrrole (PPy) as the polymer matrix is
highlighted by its stability, compatibility, and easy synthesis. Additionally, the
commendable electrical conductivity of both MWCNTs and NiO enhances the
overall performance of the composite.

The inclusion of nickel oxide (NiO) is a key feature of this study, driven
by its good electrical conductivity and its status as a wide band–gap p–type
semiconductor. This strategic choice aims to enhance conductivity and improve
thermoelectric properties.

Like prior works (Chapter 6) the in–situ approach is also used as it has shown
a high efficiency compared to other approaches such as the mechanical mixing
to incorporate metal oxide nanoparticles. This customized methodology [231]
not only contributes to the evolving landscape of hybrid organic–inorganic
thermoelectric materials but also reflects a departure from conventional meth-
ods, offering a promising avenue for large–scale fabrication and waste heat
recovery. The chapter’s description progresses as a continuation of the explo-
ration towards advanced thermoelectric composites, now with a focus on the
synergistic integration of PPy, MWCNTs, and NiO in a meticulously designed
nanocomposite.

7.1.1 Publications

The content of this chapter is based on the following peer–reviewed scientific
publication "Reproduced with permission from Wiley":
Younes Bourenane Cherif, Zineb Mekhalif, Slimane Abdous, Linda Nedjar, Ahmed
Mekki, Zakaria Bekkar Djelloul Sayah, and Souleymen Rafai. Nickel Oxide Dec-
orated MWCNTs Wrapped Polypyrrole: One Dimensional Ternary Nanocom-
posites for Enhanced Thermoelectric Performance. ChemNanoMat, 10(3):
e202300486, 2024. ISSN 2199-692X. doi: 10.1002/cnma.202300486. URL
https://doi.org/10.1002/cnma.202300486

This study reports on a customized and revised approach to fabricate
“nickel oxide decorated MWCNTs wrapped PPy” nanocomposite with en-
hanced room–temperature TE properties. The nanocomposite is formed
through three steps: MWCNTs functionalization via diazonium salt graft-
ing of 5–amino–1,2,3–benzene tricarboxylic acid; in–situ generation on
their surfaces of NiO nanoparticles with a homogenous distribution; the
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7.1.2. Outline

chemical polymerization of pyrrole using methyl orange as templating
and dopant to wrap the MWCNTs–D3–NiO. Various techniques were used
as characterization tools, including XRD, TEM, FTIR, Raman, TGA, XPS,
and TE measurements. The PPy–MWCNTs–D3–NiO nanocomposite ex-
hibits significantly higher Seebeck coefficient, electrical conductivity,
and power factor than PPy and PPy–MWCNTs–D3. The achieved en-
hancement in TE properties (figure of merit, ZTPPy–MWCNTs–D3–NiO =
1.51×10–2) is attributed to the presence of NiO, which acts as a dopant
and improves the charge carrier density in the nanocomposite.

7.1.2 Outline

The organization of this chapter unfolds as follows: Section 7.2 explores the
applied methodology and synthesis techniques. In Section 7.3, we delve into the
discussion of results obtained from diverse characterizations. Finally, Section
7.4 concludes the chapter by summarizing its key contributions.

7.2 Methodology

7.2.1 Materials

To obtain PPy–MWCNTs–D3–NiO nanocomposite, MWCNTs were prepared
in the same way as explained in the previous chapters. The functionalization
process of MWCNTs involves the use of 5–amino–1,2,3–benzene tricarboxylic
acid (99%), sodium nitrite (NaNO2, 99.2%), perchloric acid (HClO4, 70%), all
acquired from Fisher Scientific UK. The generation of nickel oxide (NiO) requires
nickel (II) nitrate hexahydrate (NNH) salt precursor purchased from Sigma
Aldrich. For the synthesis of nanocomposites, pyrrole, methyl orange (MO),
ethanol, and iron chloride (FeCl3) were used, they were obtained from Sigma
Aldrich, Germany. All aqueous solutions were meticulously prepared using
ultra–pure milli–Q (18.2 MΩ).

7.2.2 Fillers Preparation

The followed method relies on in–situ processes as follow: Initially, MWCNTs are
functionalized with 5–amino–1,2,3–benzene tricarboxylic acid using diazonium
chemistry. This enhances their dispersion in the polymer matrix, modifies
their electronic properties, and facilitates the anchoring of NiO nanoparticles.
Subsequently, the MWCNTs–D3 are impregnated with a nickel precursor (nickel
(II) nitrate hexahydrate) thanks to the tricarboxylic functions introduced by the
grafted molecules. The ensuing step involves high–temperature calcination,
converting the nickel ions into NiO particles and resulting in the decoration of
the MWCNTs’ side wall with NiO nanoparticles.

85



CHAPTER 7. STRATEGIC DESIGN FOR ENHANCED THERMOELECTRICITY: NICKEL

OXIDE–DECORATED MWCNTS WRAPPED WITH POLYPYRROLE NANOTUBES

7.2.2.1 Functionalization of MWCNTs

The functionalization of MWCNTs was performed as reported in previous works
[184, 185]; briefly, a mixture of purified MWCNTs (0.2 g), 0.017 mol of both
5–amino–1,2,3–benzene tricarboxylic acid and sodium nitrite, 0.029 mol of per-
chloric acid and water (100 ml) was stirred and irradiated under IR irradiation
for 1 h. The resulting powder (MWCNTs–D3) was filtered, washed with acetone,
and dried in the oven at 60 ◦C for 12 h, Figure 7.1.

Figure 7.1: Functionalization pathway of MWCNTs using infrared irradiation.

7.2.2.2 Decoration of MWCNTs

The impregnation step was initiated by introducing the preceding prepared
fillers (MWCNTs–D3) into a 1 M solution of NNH. Subsequently, a 5 M solution
of NaOH (20 ml) was gradually added to the aforementioned mixture and stirred
for a duration of 1.5 h. Following the filtration process, the filtrate was dried
at 100 ◦C for 6 h. The subsequent calcination step, aimed at the formation of
nickel oxide, was conducted in a tube furnace at 450 ◦C for 3 h, Figure 7.2.
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Figure 7.2: Experimental protocol of MWCNTs decoration with nickel oxide
nanoparticles.

7.2.2.3 Nickel Oxide Nanoparticles

Following the same procedure (§7.2.2.2) but without MWCNTs, Ni(OH)2 green
powder was formed, and turned to black NiO nanocrystals after annealing at
450 ◦C [229].
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7.2.3 Nanocomposites Preparation

PPy was produced through a series of steps involving the dissolution of 0.85 g of
methyl orange (MO) in 25 ml of ethanol, followed by the addition of 75 ml of
water to the mixture. In this process, MO serves both as a dopant and a tem-
plate, guiding the growth of PPy by forming a complex with the PPy precursor
molecules. Subsequently, pyrrole was introduced in an optimized ratio with MO
(wt./wt.= 0.82) [232] and left under magnetic stirring for 30 min. FeCl3, acting as
an oxidant, was then gradually added to the solution, and the mixture was left
for 2 h. The resulting dispersions were left overnight, followed by filtration and
multiple washes with distilled water and ethanol to eliminate MO, unreacted
species, and excess ferric chloride. The resultant nanocomposites were dried at
60 ◦C for 2 days. The synthesis of PPy–MWCNTs–D3 nanocomposite followed
a similar procedure, where MWCNTs–D3 and MWCNTs–D3–NiO were added
before the introduction of pyrrole, Figure 7.3.

Figure 7.3: Synthesis routes of the nanocomposites.

7.3 Results and Discussion

This section presents the findings and discussions regarding the utilization of
NiO–decorated MWCNTs wrapped with PPy as a TE material. To validate the
functionalization and decoration of MWCNTs with NiO, X–ray diffraction (XRD),
thermogravimetric analysis (TGA), and X–ray photoelectron spectroscopy (XPS)
analyses are employed. The structural integrity, functional groups, and mor-
phological characteristics of the targeted nanocomposite PPy–MWCNTs–D3–
NiO are explored using Raman spectroscopy, Fourier transform infrared spec-
troscopy (FTIR), and transmission electron microscopy (TEM). Subsequently,
the thermoelectric properties, including electrical conductivity, Seebeck coeffi-
cient, and thermal conductivity, are assessed.
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7.3.1 Structural Characterization

Powder X–Ray Diffraction (XRD) was employed to investigate the crystal struc-
tures of MWCNTs, NiO nanoparticles, and MWCNTs–D3–NiO.

As illustrated in Figure 7.4, the diffraction pattern of MWCNTs (depicted by
the black curve) exhibits a distinct peak at 2θ = 26◦, corresponding to the (002)
plan with an interlayer spacing of 3.423 Å (as indicated by Equation 6.11) [233].
Additionally, three broader peaks at 2θ = 43◦, 54◦, and 79◦are observed, suggest-
ing the presence of disordered or amorphous structures within the MWCNTs
[234]. Bragg’s law, represented by Equation 6.1, defines the relationship be-
tween the wavelength (λ = 0.154 nm) of X–rays, the angle (θ = 13◦) between
the incident X–ray beam and the detector or sample, and the spacing between
atomic planes (d), also known as the interlayer distance.

Figure 7.4: XRD patterns of MWCNTs, reference and synthesized NiO and
MWCNTs–D3–NiO.

Nickel oxide particles were synthesized, and their XRD pattern (blue curve
in Figure 7.4) aligns with the characteristic peaks of NiO. Sharp peaks at 2θ =
37.48◦, 43.42◦, 62.97◦, 75.63◦, and 79.60◦correspond to the (111), (200), (220),
(311), and (222) planes, respectively. These values concord with the reference
sample (96–101–0096, garnet curve) provided by HighScore Plus software and
match previously reported works [235–237]. According to the Scherrer equation
(Equation 6.22), the estimated mean size of NiO nanoparticles is 14.6 nm.

12·d·sinθ = λ
2τ = K ·λ

β ·cosθ
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When MWCNTs were functionalized and in–situ modified to generate NiO
nanoparticles, the XRD peaks characteristic of both MWCNTs and NiO nanopar-
ticles are observed (red curve in Figure 7.4). This confirms the efficiency of
covalent functionalization of MWCNTs with tricarboxylic functions (MWCNTs–
D3), effectively trapping nickel ions that subsequently convert to NiO during
the calcination process.

In summary, XRD analysis has validated the crystal structures of MWCNTs,
NiO nanoparticles, and MWCNTs–D3–NiO. The successful functionalization of
MWCNTs and the conversion of trapped nickel ions into NiO are substantiated
by the presence of characteristic peaks in the XRD analysis of both MWCNTs
and NiO.

Moving beyond crystallography, Raman spectroscopy delves into the vibrational
modes of the materials, providing information about their molecular structures
and chemical compositions. In particular, Raman analysis can elucidate the
structural integrity of the PPy–MWCNTs–D3–NiO nanocomposite and reveal
any alterations in the carbon nanotube network due to functionalization and
the incorporation of NiO nanoparticles. The shift or intensity changes in Raman
peaks can offer insights into the interactions between the various components,
reflecting the success of the synthesis process.

In Figure 7.5a, two distinct peaks at 1570 cm–1 (G band) and 1351 cm–1

(D band) are evident, corresponding to the C=C stretching vibration and the
ring stretching mode of PPy, respectively. This assignment is consistent with
previous studies [238, 239]. Additionally, two peaks appear at 1040 and 953
cm–1, attributed to the polaron and bipolaron structures of the PPy backbone
[184]. Notably, these peaks exhibit higher intensity in PPy–MWCNTs–D3–NiO,
suggesting an increased presence of polarons and bipolarons in the composite
structure. The peak at 1231 cm–1, associated with the bipolaron structure,
exhibits a well–resolved nature in PPy–MWCNTs–D3–NiO, indicating enhanced
conductivity compared to PPy–MWCNTs–D3 nanocomposites [240].

Figure 7.5: a) Raman and b) FTIR spectra of the prepared materials.
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Furthermore, a noticeable peak shift from 1570 to 1556 cm–1 is observed,
attributed to various factors such as π–π interactions, electrostatic interactions,
and hydrogen bonding [241]. This shift provides valuable insights into the inter-
actions between PPy, MWCNTs–D3, and NiO in the nanocomposite structure.
These vibrational changes, especially the well–resolved bipolaron peak and
the shift in the G band, signify the unique structural features and improved
conductivity of PPy–MWCNTs–D3–NiO, highlighting its potential as a highly
conductive material.

The examination of the intensity ratio between the D band and G band
peaks in Raman analysis serves as a valuable indicator of changes in π–π conju-
gated defects within the composite materials. This ratio shifts from 0.61 in the
case of PPy to 0.58 and 0.40 for PPy–MWCNTs–D3 and PPy–MWCNTs–D3–NiO,
respectively. This shift strongly suggests a reduction in π–π conjugated defects,
indicating the development of a more ordered structure within the composites.

In summary, Raman analysis not only provides insights into the interactions
between PPy and MWCNTs–D3, both with and without NiO but also sheds
light on the nature of π–π interactions, electrostatic interactions, and hydrogen
bonding. Furthermore, the observed decline in the intensity ratio of the D
band to the G band signifies a diminishing presence of π–π conjugated defects,
confirming the establishment of a more organized structure in the composite
materials.

In Figure 7.5b, distinct peaks characteristic of PPy are prominently displayed,
offering valuable insights into the molecular structure of PPy. Notably, the
vibrational modes associated with these peaks provide specific information
about various bonds within the PPy structure. The C–C ring vibration manifests
at 1543 cm–1, while the C–N ring vibrations are observed at 1456 cm–1 and 1159
cm–1, signifying the presence of carbon–carbon and carbon–nitrogen bonds in
PPy. Additionally, C–H vibrations, both in and out of the plane, are identified at
1300 cm–1 and 1030 cm–1, 889 cm–1, respectively. These vibrational signatures
contribute to the overall characterization of PPy’s molecular composition [165,
212, 238, 242, 243].

Furthermore, the characteristic vibration of the dopant (MO) is evident in
the N=N stretching mode at 1600 cm–1, allowing for the identification of the
dopant within the PPy structure [244]. Moreover, PPy–MWCNTs–D3 exhibits
heightened peak intensities in the 1600–900 cm–1 range compared to pure PPy,
indicating the incorporation of MWCNTs–D3. These enhanced peaks in this
region are primarily attributed to the vibrational modes associated with the
benzenetricarboxylic acid groups present in MWCNTs–D3, as highlighted in the
inset of Figure 7.5b. This observation underscores the successful integration of
MWCNTs–D3 into the PPy matrix, providing additional structural information
through vibrational modes associated with the introduced functional groups.
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7.3.2 Morphological Characterization

TEM analysis played a crucial role in evaluating the structure, morphology, and
dimensions of the synthesized materials. MWCNTs–D3 (Figure 7.6) exhibit a
morphology similar to pure MWCNTs, displaying a diameter ranging from 7 to
12 nm [184, 222]. This suggests the softness of the functionalization process,
preserving the length and integrity of the nanotubes.

Figure 7.6: TEM images of MWCNTs–D3, NiO nanoparticles, MWCNTs–D3–NiO,
PPy nanotubes, PPy–MWCNTs–D3 and PPy–MWCNTs–D3–NiO.

In Figure 7.6, NiO nanoparticles appear nearly spherical, with an average
size of 8.3 nm, closely aligning with XRD measurements (14.6 nm). MWCNTs–
D3–NiO clearly present NiO nanoparticles on the side walls of MWCNTs, ef-
fectively distributed and anchored, highlighting the efficacy of the synthesis
procedure, involving proper functionalization, an appropriate salt precursor,
and an optimized calcination temperature.
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Figure 7.6 also illustrates the TEM image of PPy, revealing a nanotubular
structure with a diameter ranging from 40 to 130 nm, a distinctive feature
induced by the use of methyl orange (MO) as a dopant [232, 238]. This nan-
otubular morphology holds promise for thermoelectric applications due to
its potential to enhance electron and hole movement, to minimize scattering
events, and to improve material conductivity [245]. The tubular structure also
offers a substantial surface area, promoting better environmental interaction
and thus enhanced thermoelectric performance.

The in–situ polymerization of pyrrole on functionalized and decorated
MWCNTs with NiO, utilizing MO as a dopant and FeCl3 as an oxidant, resulted
in a homogeneous structure of coated MWCNTs with PPy nanotubes (Figure
7.6). The observed diameter reduction, despite using the same polymerization
conditions as PPy alone, suggests the templating role of MWCNTs–D3 in the
growth of PPy.

In the presence of MWCNTs–D3–NiO, PPy nanotubes were found to coat
the entire decorated nanotubes, as demonstrated in Figure 7.6, where each
component is indicated with arrows (green: PPy, red: MWCNTs, and yellow:
NiO).

This TEM analysis has provided crucial insights into the structure, morphol-
ogy, and dimensions of the synthesized materials. It verified the preservation
of nanotube integrity in the functionalization process, the uniform distribu-
tion and anchoring of NiO nanoparticles on MWCNTs, and the templating role
of MWCNTs in the growth of PPy nanotubes in the nanocomposites. These
observations significantly contribute to the comprehension of the materials’
properties.

7.3.3 Thermogravemetric Characterization

Thermal gravimetric analysis was conducted to quantify the grafting amounts of
both organic molecules and inorganic nanoparticles. The thermo–gravimetric
(TG) curve, along with its differential curve (DTG), for NiO, MWCNTs, MWCNTs–
D3, and MWCNTs–D3–NiO is presented in Figures 7.7 (a, b, c, and d) respec-
tively.

In Figure 7.7a, a total weight loss of approximately 4.5% occurs within
the temperature range of 80–600 ◦C. The initial sharp peak below 100 ◦C is
attributed to the desorption of physically adsorbed water molecules. Subse-
quently, two broad peaks between 200–300 ◦C and 500–600 ◦C reflect the release
of excess oxygen, impurities, and the thermal decomposition of Ni(OH)2 to form
NiO. These observations agree with previous studies on NiO thermal behavior
[237, 246–248].

Figure 7.7b displays a singular sharp peak at around 740 ◦C, indicating the
degradation of the graphitic structure of MWCNTs, resulting in a maximum
weight loss of about 27.2%.
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Figure 7.7: TGA–DTG curves of a) MWCNTs, b) NiO nanoparticles, c) MWCNTs–
D3 and d) MWCNTs–D3–NiO.

Due to the thermal instability of introduced functional groups during the
functionalization process, their decomposition occurs below 400 ◦C. As shown
in Figure 7.7c, TGA and DTG curves of MWCNTs–D3 exhibit three decomposi-
tion peaks. The initial decomposition starts at 180 ◦C, attributed to moisture
loss [208], followed by another decomposition below 400 ◦C associated with
benzenetricarboxylic acid groups. The final weight loss at 500 ◦C is attributed to
the initiation of the degradation of the graphitic structure of MWCNTs, resulting
in a weight loss of 48.6%.

In Figure 7.7d, TGA–DTG curves of MWCNTs–D3–NiO reveal a late decom-
position around 500–600 ◦C due to the presence of NiO nanoparticles. No early
decomposition is observed compared to MWCNTs–D3, owing to the prior an-
nealing process, creating a crystalline phase of NiO on the side wall of MWCNTs
and destroying benzenetricarboxylic acid groups. This decomposition peak is
associated with both the degradation of NiO nanoparticles and the graphitic
structure of MWCNTs, resulting in a final weight loss of 43.4%.

The grafting percentage (GP) can be estimated using Equation 5.13 [249],
revealing a GP of approximately 21.4% for MWCNTs–D3, indicative of its early
decomposition compared to MWCNTs. For MWCNTs–D3–NiO, considering the
absence of benzenetricarboxylic acid groups post–calcination, the GP value is
calculated to be 16.2%. These findings shed light on the thermal properties and
grafting efficiencies of the synthesized materials.

3GP = (∆WFunctionalized MWCNTs –∆WCrude MWCNTs)×100%
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7.3.4 Chemical Characterization

XPS analysis was employed for assessing the chemical surface composition, as
depicted in Figure 7.8a. The survey spectrum of purified MWCNTs exhibits an
oxygen O1s peak at 531.9 eV with relatively low intensity in comparison to the
dominant C1s peak at 284.1 eV, mainly attributed to residual species.

Figure 7.8: XPS survey spectra and high–resolution C1s, N1s and Ni2p core–
levels.
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The grafting of benzenetricarboxylic acid groups onto the side wall of MWC-
NTs leads to a notable increase in the O1s peak, accompanied by the appearance
of a nitrogen (N1s) peak at 400 eV, characteristic of azo links. Additionally, this
latter peak is associated with grafting via –C–N=N–C– covalent bond.

MWCNTs–D3–NiO shows a significant reduction in the O1s peak and the
complete disappearance of the N1s peak due to the calcination process. This
process eliminates organic molecules, leaving NiO nanoparticles firmly at-
tached to the walls of MWCNTs.

The XPS atomic percentages of carbon, oxygen, nitrogen, and nickel for the
samples are detailed in Table 7.1. The oxygen content ranges from 1.33% for
MWCNTs to 27.9% and 3.81% after functionalization and calcination, respec-
tively. The nitrogen associated with the azo links (–C–N=N–C–) is present only
in MWCNTs–D3 at approximately 6.03%, while the nickel content in the NiO
nanoparticles is around 1.28%.

Table 7.1: Atomic % of the samples found from XPS analysis.

Sample C% O% N% Ni%
MWCNTs 98.67 1.33 – –
MWCNTs–D3 66.07 27.9 6.03 –
MWCNTs–D3–NiO 94.91 3.81 – 1.28

The XPS survey spectrum of PPy reveals the prominent presence of the pri-
mary constituents of the polymer, with carbon comprising 72.40% and nitrogen
13.66%. Additionally, lower–intensity elements such as chlorine (∼1.31%) from
the oxidant (FeCl3), sulfur (∼3.13%) from the MO dopant, and oxygen (9.49%)
are detected. This suggests the successful incorporation of the dopant with the
oxidant during the chemical synthesis of PPy.

The high–resolution C1s XPS spectra for all MWCNTs, MWCNTs–D3, and
MWCNTs–D3–NiO are depicted in Figures 7.6b, 7.6c, and 7.6d. Purified MWC-
NTs predominantly display sp2 carbon hybridization, characteristic of carbon
nanotubes, with residual functionalities represented by C–O (285.68 eV) and
C=O (268.78 eV) bonds. Figure 7.6c illustrates an increase in the sp3 peak due
to MWCNT functionalization, accompanied by C–O and C=O peaks. Notably,
the appearance of O–C=O (288.68 eV) with high intensity confirms the function-
alization of the MWCNTs’ side wall with benzene tricarboxylic groups.

The sp3 to sp2 intensity ratio, presented in Table 7.2, provides a quantitative
measure of the changes in carbon hybridization induced by functionalization
and decoration processes. This ratio serves as a useful metric for assessing
the extent of functionalization, the degree of graphitization, and the overall
structural integrity of carbon–based materials. A higher sp3 to sp2 intensity
ratio suggests an increase in the proportion of sp3 hybridized carbon atoms,
which could indicate functionalization or defects in the carbon structure.
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Table 7.2: sp3 to sp2 ratio.

Sample sp3 intensity sp2 intensity sp3/sp2 ratio
MWCNTs 5092.46 39388.31 0.13
MWCNTs–D3 1739.07 4158.45 0.42
MWCNTs–D3–NiO 5345.83 26771.82 0.20

Following calcination, there is a notable reduction in the carbon sp3 hy-
bridization peak, signifying the elimination of side wall functionalities and the
integration of nickel oxide nanoparticles (Figure 7.6d). This transformation
is confirmed by the high–resolution Ni2p spectra (Figure 7.6e), showing two
major peaks at 855.3 eV and 873.2 eV corresponding to Ni2p3/2 and Ni2p1/2,
respectively. Additionally, two satellite peaks at 861.8 eV and 879.1 eV indicate a
shake–up event in the NiO structure [250–252], commonly associated with Ni2+

in NiO compounds [253–255]. The presence of Ni3+ ions may be attributed to
an excess of oxygen, possibly in the form of NiOOH [256, 257].

In Figure 7.6f, the N1s high–resolution XPS spectra reveal the primary peak
of neutral amine nitrogen (N–H) at 399.5 eV. Higher binding energy components
at 401.2 eV and 402.8 eV are assigned to positively charged nitrogen, such as
–NH+ polaron and =NH+ bipolaron, respectively [212, 223]. The O1s spectrum
of PPy (Figure 7.6j) presents two deconvoluted peaks at 531 eV and 532.2 eV,
attributed to C=O, S=O, and C–O, S–O, reflecting the presence of sulfur in the
MO dopant structure [258].

XPS analysis provided insights into the surface composition of the samples.
MWCNTs displayed a low oxygen content, and nitrogen was introduced through
covalent grafting. Upon calcination, MWCNTs–D3–NiO showed reduced oxygen
and nitrogen peaks. In the case of PPy, carbon, nitrogen, and elements from
the dopant and oxidant were observed. High–resolution spectra confirmed
functionalization and the presence of NiO nanoparticles on MWCNTs–D3–NiO,
revealing characteristic peaks indicative of various bonding states.

7.3.5 Thermoelectric Characterization

Designing a high–performance thermoelectric material is a challenge as it re-
quires a delicate balance among key factors: a high Seebeck coefficient, high
electrical conductivity, and a low thermal conductivity. This complexity arises
from the complex relationships between these parameters. Achieving a bal-
ance is particularly challenging because achieving a high Seebeck coefficient
often correlates with lower electrical conductivity, while heightened electrical
conductivity tends to increase thermal conductivity.

The effectiveness of thermoelectric parameters is linked to the electronic
band structure, carrier concentration, and mobility. In ternary nanocomposites,
each constituent, such as PPy, MWCNTs, and NiO, can contribute differently to
these properties.
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For example, PPy, functioning as a conductive polymer matrix in the composite,
exhibits high electrical conductivity, playing a crucial role in facilitating charge
transport within the material. Moreover, PPy can be doped to further enhance
its electrical conductivity and adjust its charge carrier concentration.

Moreover, one–dimensional carbon nanostructures, MWCNTs, exhibit high
electrical conductivity and distinctive mechanical properties. In the context
of the composite, MWCNTs act as conductive fillers, forming a network that
facilitates the movement of charge carriers, such as electrons, throughout the
material. This network structure significantly enhances the overall electrical
conductivity of the composite.

In the ternary nanocomposite, NiO plays a pivotal role by acting as a bridge
between PPy and MWCNTs, as depicted in Figure 7.9. Serving as an interface
modifier, NiO contributes to the enhancement of interactions between PPy and
MWCNTs. The decoration of NiO nanoparticles on the surface of MWCNTs
forms a strong connection between the two components. This bridge–like struc-
ture allows efficient charge transfer and facilitates electron transport across
the composite through π–π and hydrogen bonding interactions, as illustrated
in Figure 7.9. The weight percentages of PPy, MWCNTs, and NiO within the
nanocomposite are critical, balancing their contributions is essential for achiev-
ing enhanced electrical conductivity and an improved Seebeck coefficient,
ultimately optimizing the thermoelectric performance.
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Figure 7.9: Schematic representation of the PPy, NiO and MWCNTs interactions
in the PPy–MWCNTs–D3–NiO nanocomposite.
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Electrical Conductivity. The electrical conductivity values, obtained through
a four–point probe technique and illustrated in Figure 7.10, highlight signifi-
cant insights. PPy in the form of nanotubes exhibits an impressive electrical
conductivity of ∼2160 Sm–1, higher than reported values for PPy with a spheri-
cal morphology (∼1000 Sm–1, previous chapters) [238, 259] and agreeing with
findings from other studies [232]. This difference is primarily attributed to the
morphology, influencing the packing arrangement and interconnectivity. The
more elongated shape of PPy nanotubes forms well–aligned structures, promot-
ing efficient charge transfer pathways and enhancing electrical conductivity.

Figure 7.10: Thermoelectric properties of the synthesized materials.

However, when PPy nanotubes are combined with MWCNTs–D3, the elec-
trical conductivity of the nanocomposite decreases to 1628 Sm–1. This change
is attributed to the presence of grafted benzenetricarboxylic acid groups on the
sidewall of MWCNTs, which hinders charge carriers, as reported in Chapter 5
§5.3.4. The PPy–MWCNTs–D3–NiO nanocomposite, on the other hand, exhibits
a substantially higher electrical conductivity (∼6923 Sm–1). This enhancement
is likely attributed to the role of NiO in the charge transport mechanism, creating
more interfaces between PPy nanotubes and MWCNTs. NiO acts as conduc-
tive pathways through which electrons can flow, thereby improving the overall
conductivity of the nanocomposite.
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Seebeck Coefficient. The Seebeck coefficient values, obtained using a home-
made setup (Appendix B), are depicted in Figure 7.10, providing valuable in-
sights into the thermoelectric performance. PPy nanotubes exhibit a Seebeck
coefficient of 17 µVK–1, aligning with reported values for PPy synthesized under
similar conditions [232]. This is notably higher than the Seebeck coefficient
reported for spherical PPy morphology (around 8–11 µVK–1).

Upon introducing MWCNTs–D3 to PPy, the resulting Seebeck coefficient
increases to ∼22 µVK–1. This enhancement can be attributed to the presence
of benzenetricarboxylic acid groups, which maintain the wrapping of PPy nan-
otubes around MWCNTs, improving the interaction between the PPy chains
and functionalized MWCNTs.

The incorporation of both MWCNTs and NiO nanoparticles in PPy signifi-
cantly improves the overall Seebeck coefficient to 29 µVK–1. This enhancement
can be explained by the fact that the resulting PPy is p–doped and can act
as an electron acceptor, allowing electrons to flow from MWCNTs–D3–NiO to
PPy. This electron transfer mechanism contributes to the increased Seebeck
coefficient in the composite.

Thermal Conductivity. The thermal conductivity (κ) results, presented in Fig-
ure 7.10 and detailed in Table 7.3, were determined using a homemade setup
(Appendix C) by applying a current (1.31 A) and measuring thermal conductance
(K), related to thermal conductivity by a linear equation (K = A +κ ·B). Inter-
estingly, all samples exhibit similar thermal conductivities, ∼0.116 Wm–1K–1.
This no change agrees with other reported values [259, 260] and suggests that
the incorporation of well–dispersed MWCNTs–D3 and MWCNTs–D3–NiO in
the PPy matrix, facilitated by the templating effect, results in an ordered one–
dimensional nanocomposite. The observed low κ is favorable for TE materials,
highlighting the potential of the synthesized materials in TE applications.

Table 7.3: Thermal conductance and conductivity of the prepared samples.

Sample ∆T (K) ∆V (V) K (WK–1)×10–3 κ (Wm–1K–1)
PPy 54.2 0.0315 0.761 0.1158
PPy–MWCNTs–D3 46.3 0.0352 0.996 0.1164
PPy–MWCNTs–D3–NiO 42.1 0.0209 0.650 0.1154

Power Factor and Figure of Merit. The power factor (PF) value, as illustrated
in Figure 7.10, demonstrates the promising thermoelectric characteristics of
the synthesized materials. PPy nanotubes exhibit a PF value of 0.62 µWm–1K–2,
higher than reported values for PPy with spherical particles (∼0.08 µWm–1K–2,
Chapter 6). The introduction of MWCNTs–D3 and MWCNTs–D3–NiO further
enhances the PF values to 0.79 µWm–1K–2 and 5.82 µWm–1K–2, respectively. The
highest PF observed in PPy–MWCNTs–D3–NiO is attributed to its high electrical
conductivity values and Seebeck coefficient, better than the PF values of the
other samples and being 9 times that of pure PPy.
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The calculated values of figures of merit, ZT, shown in Figure 7.10, further
highlight the superior thermoelectric performance of PPy–MWCNTs–D3–NiO.
With the highest ZT value of 1.51×10–2 observed at room temperature, it ex-
hibits better performance compared to PPy–MWCNTs–D3 (0.20×10–2) and PPy
(0.16×10–2) by 7.5 times and 9 times, respectively. These results highlight the
substantial potential of PPy–MWCNTs–D3–NiO as a highly efficient thermoelec-
tric material.

The combination of PPy’s nanotube morphology and the effective dispersion
and decoration of NiO on the MWCNTs sidewall has significantly boosted the
TE properties of the composite. The attained TE value suggests that TE perfor-
mance can be adjusted by modifying the morphology and precisely managing
the decoration process of metal oxides on MWCNTs. It is important to note that
the observed results at room temperature might see further improvements at
higher temperatures.

7.4 Conclusions

Given the limitations of organic thermoelectric materials, this approach in-
volved a customized and revised synthesis strategy to create a hybrid nanocom-
posite comprising PPy nanotubes, MWCNTs, and NiO nanoparticles. Lever-
aging the applicability of diazonium chemistry for surface functionalization,
this method successfully formed NiO nanoparticles on MWCNTs. The sequen-
tial process involved the in–situ generation of a diazonium derivative from
5–amino–1,2,3–benzene tricarboxylic acid to functionalize MWCNTs, followed
by nickel (II) nitrate hexahydrate (NNH) impregnation and material calcination
at 450 ◦C. The choice of the dopant molecule, methyl orange (MO), in the
chemical polymerization of pyrrole resulted in a tubular form. Comprehensive
structural, morphological, and thermal analyses were conducted, highlighting
the preservation of the nanotubular structure of the PPy backbone at all steps
of materials’ modification. This structure uniformly wrapped MWCNTs–D3–
NiO, promoting good dispersion and enhanced interfacial interactions between
the PPy backbone and MWCNTs. This strategic approach led to an enhanced
Seebeck coefficient (S) and electrical conductivity (σ), while maintaining low
thermal conductivity (κ). Consequently, the figure of merit (ZT) at room tem-
perature reached 1.51×10–2 for PPy–MWCNTs–D3–NiO, which is nine times
higher than that of PPy nanotubes.

As we move forward into the next chapter, we will bring together the find-
ings from all experimental chapters to facilitate a comprehensive comparison.
This collective analysis aims to provide a comprehensive understanding of the
diverse strategies employed and their respective impacts on thermoelectric
performance.

100



Part III

Closing Comments

101





C
H

A
P

T
E

R

8
UNRAVELING THERMOELECTRIC STRATEGIES:

A CROSS–CHAPTER EXAMINATION

103



CHAPTER 8. UNRAVELING THERMOELECTRIC STRATEGIES: A CROSS–CHAPTER

EXAMINATION

8.1 General Introduction

Building upon the foundation of previous chapters, this chapter explores a com-
prehensive examination of thermoelectric strategies, synthesizing insights from
across our scientific findings. Our aim is to unravel the relationships between
synthesis techniques, material properties, and thermoelectric performance.

Throughout the preceding chapters, we have explored diverse approaches to
optimize thermoelectric potential, ranging from surface functionalization tech-
niques to the incorporation of nanostructured additives. In this cross–chapter
examination, we will analyze the collective findings, drawing parallels and
contrasts to find the main principles governing thermoelectric enhancement.

Through a systematic review of experimental results, we will explain the syn-
ergistic effects of various optimization strategies on thermoelectric properties
such as electrical conductivity, thermal conductivity, and Seebeck coefficient.

Through this cross–chapter examination, we aim not just to bring together
the results from different studies, but also to discuss and compare the results
of the different studies. Ultimately, our goal is to contribute to the collective
effort towards sustainable energy solutions by unraveling the complexities of
thermoelectric materials design.

8.1.1 Outline

The chapter begins by explaining how the structure and composition of ther-
moelectric materials affect their properties, known as the matrix effect (PPy,
PEDOT, PEDOT:PSS). It then discusses the use of fillers (GNPs, MWCNTs, and
their derivatives) to enhance these properties. Different methods for synthesiz-
ing thermoelectric materials are explored. The chapter also addresses current
challenges and future research directions. Finally, it concludes by summarizing
key findings.

8.2 Matrix Effect

Our investigation begins with polypyrrole–functionalized graphene oxide (PPy–
FrGO) binary composite. Through systematic study, we have demonstrated the
effects of adding PEDOT (Poly(3,4–ethylenedioxythiophene)) to PPy via two
distinct methods: direct mechanical mixing (PPy–PEDOT) and copolymeriza-
tion (PPy–co–PEDOT). The outcomes of these investigations illuminate the
interplay between matrix engineering and thermoelectric (TE) performance.
Furthermore, our examination extends to the inclusion of PEDOT:PSS (Poly(3,4–
ethylenedioxythiophene) polystyrene sulfonate), a well–studied conductive
polymer blend, to further explore its impact on TE properties. By summarizing
the findings from previous chapters, we aim to provide a comprehensive under-
standing of how these modifications collectively influence the TE behavior of
the composite materials.
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8.2. Matrix Effect

As detailed in Chapter 4, the ternary composites were synthesized and their
TE properties were measured. To investigate the influence of the matrix effect
on the TE properties of materials, we used PPy–FrGO as a reference material and
compared their properties with those of its ternary composite derivatives (PPy–
FrGO–PEDOT, PPy–co–PEDOT–FrGO and PPy–FrGO–PEDOT:PSS), as shown in
Figure 8.1.
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Figure 8.1: Schematic representation of different synthesized PPy–based
nanocomposites.

The observed improvement in thermoelectric properties in ternary compos-
ites compared to binary reference composite suggests the pivotal role played
by the blended matrix, Figure 8.2. This enhancement is driven by synergistic
effects, where the ternary composites amalgamate multiple materials possess-
ing complementary properties. For instance, the incorporation of PEDOT or
PEDOT:PSS into the matrix can introduce additional charge carriers, thereby
augmenting electrical conductivity.
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Moreover, it is evident that directly mixing PEDOT leads to higher electrical
conductivity than either PEDOT:PSS or copolymerized PEDOT with PPy. This
disparity can be attributed to interface effects, wherein the junction between
PEDOT and the host matrix (e.g., PPy) facilitates superior charge transfer. Con-
sequently, the electrical conductivity is enhanced compared to instances where
PEDOT is copolymerized with PPy or blended with PSS.

In addition to the enhanced electrical conductivity observed in ternary
composites, the Seebeck coefficient, or thermopower, is another criterion to
evaluate the thermoelectric properties. It quantifies a material’s ability to gen-
erate a voltage difference when subjected to a temperature gradient. Adding
to PPy, PEDOT or PEDOT:PSS to form new matrices can contribute to an in-
crease in the Seebeck coefficient, thereby enhancing the overall thermoelectric
performance of the composite.

Furthermore, while the electrical conductivity is notably improved, it is
noteworthy that the thermal conductivity remains largely unchanged in these
ternary composites. This aspect is crucial as a high thermal conductivity would
facilitate excessive heat dissipation, diminishing the temperature gradient nec-
essary for efficient thermoelectric conversion. Therefore, the maintenance
of an unchanged thermal conductivity, alongside improvements in electrical
conductivity and Seebeck coefficient, highlights the potential of these ternary
composites for thermoelectric applications which are observed in ZT values.

Figure 8.2: Thermoelectric properties of PPy–FrGO, PPy–FrGO–PEDOT, PPy–co–
PEDOT–FrGO and PPy–FrGO–PEDOT:PSS.

106



8.3. Fillers Effect

8.3 Fillers Effect

The thermoelectric behavior of PPy–based composites can be significantly in-
fluenced by the incorporation of various fillers, including GNPs, functionalized
GNPs, GNPs–Bi2O3 hybrids, MWCNTs, functionalized MWCNTs, MWCNTs–
Bi2O3 hybrids, and MWCNTs–NiO hybrids. Each type of filler contributes dif-
ferently to the overall thermoelectric performance of the composite materials,
Figure 8.3.

Figure 8.3: TE properties of binary and ternary PPy–based nanocomposites.

When GNPs are incorporated into PPy–based composites, electrical conduc-
tivity is enhanced due to their high surface area and excellent charge transport
properties. This results in improved thermoelectric performance by facilitating
efficient electron transport within the composite material. Furthermore, func-
tionalization of GNPs improves the compatibility between GNPs and the PPy
matrix, leading to better dispersion and stronger interfacial interactions, which
further improve the electrical conductivity and thermoelectric properties.

Incorporating GNPs–Bi2O3 hybrids into PPy–based composites provides
additional benefits for thermoelectric applications. Bi2O3 nanoparticles as they
act as bridges, thereby facilitating the interface interactions and enhancing
the thermoelectric power factor (PF). Moreover, the synergistic effects between
GNPs and Bi2O3 nanoparticles can lead to enhanced electrical conductivity and
thermoelectric performance compared to composites with individual fillers.
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Similarly, the inclusion of MWCNTs in PPy–based composites improves elec-
trical conductivity and TE performance due to their one–dimensional structure
and high aspect ratio, which facilitate efficient charge transport. Functional-
ized MWCNTs further enhance compatibility with the PPy matrix, promoting
better dispersion and interfacial adhesion, leading to improved thermoelectric
properties.

Introducing MWCNTs–Bi2O3 hybrids or MWCNTs–NiO hybrids into PPy–
based composites offers opportunities to simultaneously enhance electrical
conductivity and reduce thermal conductivity. The choice of Bi2O3 and NiO
among other metal oxides was based on their thermoelectric properties, com-
patibility with graphitic materials (GNPs and MWCNTs), and ease of synthesis.
The incorporation of Bi2O3 or NiO nanoparticles scatter phonons, thereby low-
ering thermal conductivity, while GNPs and MWCNTs contribute to enhanced
electrical conductivity. The combination of these fillers results in synergistic ef-
fects, leading to improved thermoelectric performance compared to composites
with individual fillers.

In summary, as depicted in Figure 8.4, the choice and combination of fillers
play a crucial role in tailoring the thermoelectric behavior of PPy–based com-
posites. By carefully selecting and engineering fillers, it is possible to enhance
electrical conductivity, reduce thermal conductivity, and improve the overall
thermoelectric performance of these materials for various applications, includ-
ing energy harvesting and waste heat recovery.
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Figure 8.4: Schematic representation of PPy–based nanocomposites with differ-
ent fillers.
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In the context of in–situ generation of metal oxides, diazonium precursors
serve as functionalization agents for carbon–based materials, such as carbon
nanotubes or graphene, by covalently attaching metal oxide precursors onto
their surfaces.

4–aminobenzoic acid (–D1) and 5–amino–1,2,3–benzene tricarboxylic acid
(–D3) are both aromatic carboxylic acids commonly used as diazonium precur-
sors in functionalization reactions. The choice between these two precursors
depends on several factors, including the desired properties of the resulting
material and the specific application requirements.

–D1 (used to anchor Bi2O3 on the surface of GNPs and MWCNTs), being a
monofunctional aromatic carboxylic acid, typically leads to the attachment of a
single metal oxide precursor moiety onto the carbon substrate. This results in
a lower density of metal oxide functional groups on the surface of the carbon
material. However, the use of –D1 can offer advantages such as improved
dispersibility of the functionalized carbon material in solution and potentially
better control over the functionalization process due to the presence of only
one functional group per diazonium molecule. Moreover, in this case, multi–
layers could be formed as the aryl diazonium radical can also react on the free
positions of the phenyl, Figure 8.5.

Figure 8.5: Possible linkage and 2D structure of functionalized GNPs.

Functional groups are covalently bonded to the carbon atoms [261], Figure
8.5, disrupting the material’s π–conjugation by introducing sp3 hybridization at
the attachment sites. This breaks the continuous delocalized electron system,
altering its electronic properties. While this disruption reduces conductivity, it
enhances chemical reactivity and increases the material’s potential for adsorb-
ing metal ions or anchoring metal oxide nanoparticles.

On the other hand, –D3 (used to anchor NiO on the surface of MWCNTs), be-
ing a polyfunctional aromatic carboxylic acid with three carboxylic acid groups,
allows the attachment of multiple metal oxide precursor moieties onto the car-
bon substrate.
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This results in a higher density of metal oxide functional groups on the car-
bon surface compared to –D1. The increased density of functional groups can
lead to enhanced chemical reactivity, improved interfacial interactions, and
potentially higher loading of metal oxide species.

8.4 Conducting Polymer Synthesis Effect

Sodium dodecyl benzene sulfonate (SDBS) is a surfactant commonly used as a
dopant agent in the synthesis of conductive polymers like PPy. When SDBS is
employed, it typically leads to the formation of globular or spherical morpholo-
gies within the PPy structure, Figure 8.6. This globular morphology is formed
due to the surfactant’s ability to stabilize PPy chains and control their growth
during polymerization. As a result, the PPy chains are distributed uniformly,
and the material exhibits a higher surface area compared to other morphologies.
The presence of globular structures facilitates efficient charge transport within
the material, leading to enhanced electrical conductivity. Moreover, the bound-
aries and interfaces introduced by the globular morphology scatter phonons
effectively, thereby reducing thermal conductivity and improving ZT. Addition-
ally, the controlled growth of PPy chains in globular morphologies results in a
more ordered structure, leading to higher Seebeck coefficients and improved
thermoelectric performance.

SDBS as dopant

PyrroleSDBS

FeCl3

PyrroleMO

FeCl3
MO as dopant

spherical morphology

nanotubular morphology

Figure 8.6: Illustration of different routes of synthesis of PPy.

In contrast, methyl orange (MO), another dopant agent used in PPy syn-
thesis, induces the formation of tubular or fiber–like morphologies within the
polymer structure, Figure 8.6.
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The tubular morphology is formed due to the planar structure of MO, which
influences polymerization chain growth, resulting in elongated or tubular struc-
tures. The tubular structure of PPy nanotubes allows more directional charge
transport along the length of the tubes. Moreover, the elongated shape and
specific orientation of PPy nanotubes provide effective phonon scattering sites,
leading to reduced thermal conductivity thereby enhancing ZT.

Figure 8.7 shows the TE properties of both morphologies, PPy nanotubes
demonstrate better TE properties compared to PPy globules due to their higher
surface–to–volume ratio, allowing more efficient charge transport. Moreover,
the directional charge transport along the length of the nanotubes leads to
lower electrical resistance and improved conductivity, while their elongated
shape provides effective phonon scattering sites, resulting in reduced thermal
conductivity and enhanced ZT.

Figure 8.7: Thermoelectric behavior of PPy with two different morphologies.

8.5 Limitations and Future Directions

Limitations in the current study open potential areas for further optimization
in blending ratios of PEDOT or PEDOT:PSS with the PPy matrix. The study has
been confined to a limited range of ratios, possibly missing out on an optimal
composition for maximizing thermoelectric performance.
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Additionally, the characterization techniques utilized may not have fully cap-
tured the intricacies of the composite materials, suggesting a need for more
sophisticated methods such as: High–Resolution TEM (HRTM), charge carrier
and density measurements, and ZT–meter, to delve deeper into their nanos-
tructure and thermoelectric behavior. The stability and durability of the ternary
composites under real–world conditions were not investigated, leaving ques-
tions about their long–term performance and reliability unanswered.

Moreover, understanding the synergistic effects and trade–offs between vari-
ous fillers in ternary or quaternary composites is crucial for optimizing the ther-
moelectric performance of PPy–based materials. Each filler type contributes
unique properties to the composite, such as enhancing electrical conductivity,
reducing thermal conductivity, or improving compatibility with the PPy matrix.
However, when multiple fillers are combined, their interactions can lead to syn-
ergistic effects, where the overall thermoelectric performance is greater than the
sum of its individual components. On the other hand, there are also trade–offs
to consider when incorporating multiple fillers. For instance, increasing the
loading of certain fillers to improve one aspect of thermoelectric performance,
such as electrical conductivity, may inadvertently lead to an increase in ther-
mal conductivity, counteracting the desired effect. Balancing these trade–offs
requires a deep understanding of the interactions between fillers, the PPy ma-
trix, and the resulting composite structure. Furthermore, optimizing the filler
composition and distribution within the composite is essential to achieve the
desired balance of properties for efficient thermoelectric conversion.

Furthermore, the use of dopant agents such as sodium dodecyl benzene sul-
fonate (SDBS) and methyl orange (MO) in the synthesis of conductive polymers
like PPy significantly influences the resulting morphologies and, consequently,
the TE properties of the materials. The differences between SDBS–induced glob-
ular morphologies and MO–induced tubular morphologies in PPy significantly
impact the thermoelectric properties of the material. Globular morphologies
offer advantages such as enhanced charge transport, reduced thermal con-
ductivity, and higher Seebeck coefficients, leading to improved thermoelectric
performance. Understanding these differences is crucial for tailoring the mor-
phology of PPy–based materials to optimize their thermoelectric properties for
various applications.

Moving forward, future research could focus on fine–tuning the nanostruc-
ture and morphology of ternary composites to optimize their thermoelectric
properties. This could involve exploring alternative synthesis methods such as
different dopants resulting in different morphologies, and alternative additives
such as 0D (quantum dots), 1D (SWCNTs), 2D (MXene with the general formula
of Mn+1Xn: M being an early transition metal, and X being carbon or nitrogen)
or 3D (Metal–organic frameworks) materials to achieve enhanced performance.
Furthermore, exploring a broader range of materials beyond PEDOT and PE-
DOT:PSS to form binary or ternary matrices could expand the design space for
high–performance thermoelectric composites.
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Moreover, further research is needed to explain the processes and optimize
morphology control strategies for enhanced thermoelectric performance by
focusing on the dopant effect on the TE properties. Integration of these com-
posites into prototype thermoelectric devices and evaluating their performance
under realistic conditions would be crucial for assessing their potential for
practical applications.

8.6 Conclusions

In conclusion, our investigation into thermoelectric materials has yielded valu-
able insights into their optimization and potential applications. Through the
synthesis of findings from various studies, we have identified fundamental prin-
ciples (electrical conductivity, Seebeck coefficient, and thermal conductivity)
governing thermoelectric enhancement, such as material composition and
processing techniques.

Looking ahead, there remain challenges to be addressed, further research
and innovation will be crucial in advancing thermoelectric technology and
exploiting its full potential for sustainable energy solutions.
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CONCLUSION

To address the issue of the global demand for energy, there is a method that
allows minimizing energy losses by recovering and directly converting residual
heat into useful electrical energy. This method involves thermoelectric (TE)
energy technology. This thesis investigates several challenges in enhancing the
thermoelectric properties of conducting polymer–based composites.

The first part of this work involved a comprehensive literature review fo-
cused on the principles of thermoelectricity, traditional thermoelectric mate-
rials, and innovative approaches in conductive polymers and thermoelectric
composites. This background and literature enhance the understanding of key
challenges, backup the choice of studied polymers and fillers, and guide the
development of their preparation methods. By exploring the physical concepts
and recent advancements, the review aimed to address the limitations of exist-
ing materials and identify promising alternatives for efficient thermoelectric
applications.

The second part explores four research questions to be addressed in this
thesis. The first treats how do surface modifications of graphene and different
synthesis methods (direct mixing or copolymerization) affect the thermoelec-
tric properties of ternary composites based on polypyrrole (PPy) and either
poly(3,4–ethylenedioxythiophene) (PEDOT) or PEDOT:polystyrene sulfonate
(PEDOT:PSS). One significant finding was that functionalizing graphene with
diazonium salts and employing a mixing procedure greatly improved the ther-
moelectric performance, particularly in the PPy–FrGO–PEDOT nanocomposite,
which showed a remarkable enhancement in its power factor (PF) and figure of
merit (ZT) of 0.21 µWm–1K–2 and 6.51×10–4, respectively, while those of PPy are
8.6×10–4 µWm–1K–2 and 2.7×10–6, respectively. This was attributed to better
adhesion and distribution of the polymers atop the functionalized graphene
and promoting better charge mobility.
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The question aimed to be answered in the fifth chapter was about how do
different functional groups (benzoic acid, benzene tricarboxylic acid, hydroxyl,
carboxyl, amino, and thiol) grafted onto multi–walled carbon nanotubes (MWC-
NTs) influence the thermoelectric properties of PPy–MWCNTs nanocomposites.
The grafting of functional groups involved the use of chemistry of diazonium
and infrared irradiation approach. It was found that these functions generally
reduce electrical conductivity, however increase the Seebeck coefficient. The
composites were synthesized by adopting an in–situ oxidative polymerization of
pyrrole on the functionalized MWCNTs to wrap them with polypyrrole. Among
the functional groups tested, thiol–functionalized MWCNTs (MWCNTs–SH)
demonstrated the most promising results, achieving a power factor significantly
higher than that of pure PPy of 0.51 µWm–1K–2 and 0.064 µWm–1K–2, respec-
tively. While the power factor achieved is comparable to that of some PPy com-
posites, such as PPy Nanowire/Graphene at 0.61 µWm–1K–2 [128], PPy/MWC-
NTs at 0.77 µWm–1K–2 [139] and PPy/MWCNTs/Ni(OH)2 at 0.2 µWm–1K–2 [153],
it is still lower than some materials reported in the literature, such as PPy/MWC-
NTs (68 wt.%) at 2.2 µWm–1K–2 [262] and PPy:NPs and double–walled carbon
nanotube–graphene oxide at 0.96 µWm–1K–2 [263]. The power factor can vary
depending on the specific composition (fillers concentration) and synthesis
method of the composite, which opens avenues for further research and im-
provement.

Further research was conducted on elaborating hybrid composites by in-
corporating graphene nanoplatelets (GNPs) or MWCNTs and bismuth oxide
nanoparticles (Bi2O3) to enhance the thermoelectric conversion efficiency
of PPy–based nanocomposites. The decoration of GNPs and MWCNTs with
nanoparticles involved three steps: functionalization of GNPs or MWCNTs
with diazonium salt (–D1), impregnation with bismuth precursor, and calcina-
tion. The hybrid material, PPy-GNPs–Bi2O3, showed an eleven–fold increase
in power factor (1 µWm–1K–2) compared to pure PPy (0.087 µWm–1K–2). This
improvement was attributed to enhanced charge transport and π–π stacking
interactions between the PPy chains and the GNPs surfaces, with Bi2O3 play-
ing a crucial role in binding both PPy and GNPs and improving the overall
thermoelectric behavior.

Moreover, the inclusion of Bi2O3 in PPy–MWCNTs composites was exam-
ined, revealing that the PPy–MWCNTs–Bi2O3 nanocomposite exhibited a higher
power factor (0.843 µWm–1K–2) than both pure PPy (0.087 µWm–1K–2) and PPy–
MWCNTs (0.21 µWm–1K–2). This underlines the significant role of Bi2O3 in
enhancing charge transport within the composite matrix.

Lastly, the study explored the impact of nickel oxide (NiO) decorated MWC-
NTs in a PPy nanocomposite on its thermoelectric properties at room tem-
perature. The customized method for incorporating NiO–decorated MWCNTs
involved three steps: functionalizing MWCNTs with diazonium salt grafting
(–D3), generating NiO nanoparticles on their surfaces, and chemically polymer-
izing pyrrole using methyl orange as a template and dopant.
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This resulted in a nanocomposite with significantly higher Seebeck coefficient,
electrical conductivity, and power factor (5.82 µWm–1K–2) compared to both
PPy and PPy–MWCNTs–D3 (0.62 µWm–1K–2 and 0.78 µWm–1K–2). The presence
of NiO acted as a dopant, increasing charge carrier density and contributing to
the highest recorded figure of merit (ZT = 1.51×10–2) among the studied materi-
als. Given that there are few research on hybrid organic metal oxide composites
for thermoelectric energy conversion, the power factor and ZT, at room temper-
ature, of PPy/MWCNTs/Metal oxide nanocomposites achieved in this work was
highly superior to reported values with metal oxides PPy/MWCNTs/Ni(OH)2

at 0.2 µWm–1K–2 [153], PPy/Graphene/NiO at 0.435 µWm–1K–2 (at 60 ◦C) [229],
PPy/Te (1 wt.%) at 1.064 µWm–1K–2 (at 100 ◦C) [230], and for PPy/SnS (20 wt.%),
the PF and ZT values at 100 ◦C are 6 µWm–1K–2 and 0.86×10–2, respectively
[264].

The third part encompasses all the aforementioned contributions, examin-
ing the materials, the effects of matrices, fillers, and the synthesis methods of
conducting polymers, resulting in various morphologies and their impact on
thermoelectric properties.

Moving forward, it is crucial to study the relationship between charge carrier
concentration and mobility with the thermoelectric properties of the developed
materials and how these parameters evolve at different temperatures as in this
work evaluation of TE properties has been done at room temperature. This will
provide validation for the use of these materials in thermoelectric systems in
applications, such as photovoltaic cells. Additionally, the exploration of other
fillers, such as MXene, and their role in enhancing thermoelectric properties or
the performance of other conducting polymers should be considered. A techno–
economic analysis and a comprehensive study of the stability of the synthesized
polymers and their composites, considering environmental conditions, should
be investigated. This approach will ensure that the materials are not only high-
performing but also viable for practical, large–scale applications.
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ELECTRIC CONDUCTIVITY MEASUREMENTS

USING FOUR–POINT PROBE METHOD

Electrical conductivity measurement was assessed with a Jandel Universal Probe
station four–point probe, Figure A.1a. Composite powders were cold pressed at
7 tons into pellets using a hydraulic press (Specac) with 13 mm in diameter, and
a loading duration of about 20–30 s each, Figure A.1b.

The four–point probe method is a widely used experimental technique
for measuring the sheet resistance and/or resistivity of bulk semiconductor
materials. This method is advantageous due to its simplicity and accuracy
in determining these electrical properties, which are critical for evaluating
semiconductor performance.

Figure A.1: a) Jandel Universal Probe station, b) hydraulic press Specac.
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PROBE METHOD

A.1 Setup and Procedure

The setup consists of four aligned and equidistant probes, which are pressed
against the surface of the semiconductor sample. The distance (s) between
the probes is designed to be small compared to the overall dimensions of the
sample. This ensures that the measurements are focused on a localized area,
minimizing edge effects and other potential sources of error.

Figure A.2: Schematic representation for a four–point probe instrument.

A.1.1 Probe Arrangement

The four probes are arranged in a straight line, with equal spacing between
each probe. The probes are usually spring–loaded to ensure consistent contact
pressure on the sample surface.

A.1.2 Current Application

A current (I) is injected into the sample through the outermost probes (probe 1
and probe 4). This current flows through the sample, creating a voltage drop
across it.

A.1.3 Voltage Measurement

The voltage difference (∆V) is measured between the two inner probes (probe
2 and probe 3). This voltage measurement is crucial as it reflects the potential
difference caused by the current flowing through the sample’s resistive material.
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A.2 Calculation of Resistivity and Conductivity

The key measurement in the four–point probe method is the voltage–to–current
ratio (∆V/I). This ratio is directly related to the sample’s resistivity (ρ), which
can be calculated using the following formula, provided the sample is a thin
film or has a uniform thickness:

ρ =
π · s

ln(2)
·
∆V

I
(A.1)

Where: ρ is the resistivity of the material, s is the distance between adjacent
probes. ∆V is the measured voltage difference between probes 2 and 3. I is the
current applied between probes 1 and 4.

For bulk materials, the formula may need adjustments to account for the
sample thickness and other geometrical factors.

ρ =
π · s

ln(2)
·
∆V

I
· t · k (A.2)

Where: t is the sample thickness and k a correction factor based on the ratio
of the probe to wafer diameter and on the ratio of wafer thickness to probe
separation.

A.3 Estimation of Electrical Conductivity

Electrical conductivity (σ) is the reciprocal of resistivity:

σ =
1

ρ
(A.3)

This calculation provides an estimation of how easily electrical current can
flow through the material, a critical property for many electronic applications.
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B
HOMEMADE EXPERIMENTAL DEVICE FOR

SEEBECK COEFFICIENT MEASUREMENT

The Seebeck effect is a crucial parameter for determining the thermoelectric
power of a material. Due to the lack of equipment capable of directly measuring
this parameter, we developed an experimental setup tailored to the specific
nature of the materials under study. This technique is based on measuring the
potential difference (∆V) between two terminals subjected to a temperature
difference (∆T).

In this context, we designed a device at the Laboratory of Macromolecular
Chemistry at the École Militaire Polytechnique, Algeria, to determine the
Seebeck coefficient for all the synthesized samples.

B.1 Principle of the Seebeck Effect

The Seebeck effect occurs when there is a temperature gradient across a ma-
terial, which causes a voltage difference to develop between the hot and cold
ends. This effect is used to measure the thermoelectric power or efficiency of a
material.

B.2 Experimental Setup

The device was conceptualized using SolidWorks software, and was constructed
in the Laboratory of Macromolecular Chemistry at the École Militaire Poly-
technique, Algeria, specifically to measure the Seebeck coefficient, Figure B.1.

125
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MEASUREMENT

Figure B.1: Conceptualization and realization of a measurement cell of Seebeck
coefficient.

The setup measures the voltage difference (∆V) created when a tempera-
ture difference (∆T) is applied across the sample. A controlled temperature
difference is applied across the sample using heat sources and sinks to create
a gradient. The resulting voltage difference (∆V) between the two ends of the
sample is then measured and S =∆V/∆T.

Figure B.2: Schematic presentation of homemade apparatus.
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C
HOMEMADE EXPERIMENTAL DEVICE FOR

THERMAL CONDUCTIVITY MEASUREMENT

Thermal conductivity is a critical property for evaluating the thermoelectric
performance of a material and calculating its figure of merit ZT. High thermal
conductivity can reduce the efficiency of thermoelectric materials, as it allows
heat to pass through without contributing to the electrical power output.

To measure the thermal conductivity of materials, a homemade setup was
conceptualized and fabricated at the Laboratory of Macromolecular Chem-
istry at the École Militaire Polytechnique, Algeria. This device was calibrated
using reference measurements obtained from a HOT–Disk device, ensuring the
reliability of our results.

C.1 Design and Construction

The device was calibrated using reference measurements from a HOT–Disk
device, which is known for its accuracy and reliability in thermal conductivity
measurement. This step ensures that the custom setup provides results that are
consistent with standard techniques, Figure C.1.

The hot ribbon method is a stationary regime technique developed for
the thermal characterization of powders and porous materials. It focuses on
determining the thermal conductivity (κ) of the materials in use. This method
is recognized for its speed and precision, enabling the characterization of small–
sized powders at ambient temperature and atmospheric pressure.
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MEASUREMENT

Figure C.1: Conceptualization and realization of the components of thermal
conductivity measurements.

C.2 Principle of Operation

The sample to be characterized is placed in contact with a heating element
made of a micro–ribbon composed of a Nickel–Chrome alloy. This ribbon is
heated by the passage of an electric current. This method measures the thermal
conductance K between the heating ribbon and the device. This is done by
using the following relationship:

K =
Q

∆T
(C.1)

Where ∆T is the temperature difference between the ribbon and the surround-
ing environment, and Q is the power supplied to the heating ribbon which can
be calculated using the following equation:

Q = V· I =
V· I

R
(C.2)

With V as the potential difference circulating through the hot ribbon, and I
as the current intensity. This intensity is deduced by measuring the potential
difference obtained between the two terminals of a calibrated 50 Ω resistor.

To obtain the thermal conductivity (κ), it is necessary to use a relationship
that connects it to the thermal conductance (K). This relationship is character-
istic of the measurement device and is established through prior calibration.

K = A +κ · B (C.3)
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Figure C.2: Principle of operation of the hot ribbon technique.

A and B are calibration constants specific to the device, determined through the
calibration process.

The calibration curve plotted will be used subsequently to determine the
thermal conductivities of all the materials, once their conductance have been
measured using the device we constructed. The calibration plot resulted in
determining both constants A and B, which leads to the relation between the
conductance and the thermal conductivity by the following equation:

κ =
K + 0.0355

0.6266
(C.4)
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