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Optimal LQ-Feedback Regulation of a Nonisothermal
Plug Flow Reactor Model by Spectral Factorization

Ilyasse Aksikas, Joseph J. Winkin, Member, IEEE, and Denis Dochain

Abstract—The linear-quadratic (LQ) optimal temperature and
reactant concentration regulation problem is studied for a partial
differential equation model of a nonisothermal plug flow tubular
reactor by using a nonlinear infinite dimensional Hilbert state
space description. First the dynamical properties of the linearized
model around a constant temperature equilibrium profile along
the reactor are studied: it is shown that it is exponentially stable
and (approximately) reachable. Next the general concept of
LQ-feedback is introduced. It turns out that any LQ-feedback is
optimal from the input-output viewpoint and stabilizing. For the
plug flow reactor linearized model, a state LQ-feedback operator
is computed via the solution of a matrix Riccati differential equa-
tion (MRDE) in the space variable. Thanks to the reachability
property, the computed LQ-feedback is actually the optimal one.
Then the latter is applied to the nonlinear model, and the resulting
closed-loop system dynamical performances are analyzed. A
criterion is given which guarantees that the constant temperature
equilibrium profile is an asymptotically stable equilibrium of
the closed-loop system. Moreover, under the same criterion, it is
shown that the control law designed previously is optimal along the
nonlinear closed-loop model with respect to some cost criterion.
The results are illustrated by some numerical simulations.

Index Terms—Linear-quadratic (LQ) optimal control, non-
isothermal plug flow reactor, nonlinear infinite dimensional
systems, regulation, spectral factorization.

I. INTRODUCTION

TUBULAR reactors play a very important role in chem-
ical and biochemical engineering (see, e.g., [20], [13],

[9], [17]). Typically in such reactors the medium is not ho-
mogeneous (e.g., fixed-bed reactors, packed-bed reactors,
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fluidized-bed reactors,…) and possibly involve different phases
(liquid/solid/gas). The dynamics of nonisothermal plug flow
reactors are described by nonlinear partial differential equations
(PDEs) derived from mass and energy balances (see e.g., [4],
[16], [27], and the references therein). The main source of non-
linearities in the dynamics of a (bio)chemical process is usually
concentrated in the kinetics terms of the model equations.
In this paper, we are interested in a nonisothermal chemical
reaction occurring in a plug flow reactor with one reactant
and one product . The kinetic term is modeled by first-order
kinetics with respect to the reactant concentration and by the
most often used Arrhenius law with respect to the temperature.
The choice of a first-order dependence with respect to the
reactant concentration corresponds to the situation found, e.g.,
in thermal cracking processes [14].

In the control literature, linear quadratic (LQ) optimal con-
trol plays a paramount role. It is known that the solution of
the LQ-optimal control problem for infinite-dimensional state
space systems with bounded measurement and control can be
obtained by solving an algebraic operator Riccati equation (see,
e.g., [11]). On the other hand, it is known that the LQ-optimal
feedback operator can be alternatively derived by solving a spec-
tral factorization problem and by obtaining the solution of an
operator Diophantine equation: see [6] and [7]. These two pa-
pers deal with the case of stabilizable/detectable systems with
finite-dimensional input and output spaces and with bounded
measurement and control. In [25], the general case of stable
weakly regular linear systems with admissible unbounded input
and output operators, was studied.

The objective of this paper is basically twofold. From a
theoretical viewpoint the spectral factorization approach is
extended to the more specific case of exponentially stable
linear systems with bounded measurement and control and
infinite-dimensional output and input spaces. Second, an
LQ-optimal feedback is computed for the linearized model of a
nonisothermal plug flow reactor around a constant temperature
equilibrium profile by using this approach. Next, this feedback
is applied to the nonlinear model and the closed-loop system
performances are analyzed.

The contributions of this paper can be summarized as fol-
lows. Section II deals with the infinite-dimensional state space
description of a nonisothermal plug flow reactor model with a
specific equilibrium profile. Here, a constant temperature pro-
file is chosen. The choice of such a profile is motivated by the
fact that it minimizes the energy consumption along the re-
actor (see [23]). Section III is concerned with the linearized
model around the chosen profile, its equivalent triangularized
model and its properties: its exponential stability and reacha-
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bility are established. In Section IV we are interested in the de-
sign of a LQ-feedback control by spectral factorization for a
specific class of infinite-dimensional systems, that includes the
linearized plug flow reactor model. In this section the general
concept of LQ-feedback is introduced as a solution of a par-
tial realization problem for the standard spectral factor of the
LQ-problem Popov function. It turns out that any LQ-feedback
is optimal from the input-output viewpoint and stabilizing. Sec-
tion V deals with the computation of a particular LQ-feedback
for the linearized plug flow reactor model by using the approach
developed in the previous section. This LQ-feedback is com-
puted via a matrix Riccati differential equation (MRDE) in the
space variable. Thanks to the reachability property of the lin-
earized model, the computed LQ-feedback turns out to be the
optimal one. The resulting nonlinear closed-loop system perfor-
mances are analyzed in Section VI. More precisely it is shown,
under suitable conditions on the systems parameters, that any
constant temperature equilibrium profile is an asymptotically
stable equilibrium of the closed-loop system. This result follows
by the analysis developed in [2] and [4], that is based on the con-
cepts of m-dissipativity and nonlinear contraction semigroup,
see, e.g., [18]. Moreover, under the same conditions, it is shown
that the control law designed previously is optimal along the
nonlinear closed-loop model with respect to a modified cost cri-
terion, which takes care of the nonlinearity. The theoretical re-
sults are illustrated by some numerical simulations. Section VII
contains some concluding remarks and perspectives for further
research.

II. NONLINEAR PLUG-FLOW REACTOR MODEL

A. Nonlinear PDE Model

Let us consider a nonisothermal plug flow reactor with the
following chemical reaction:

where denotes the stoichiometric coefficient of the reac-
tion. In general the dynamics of tubular reactors are typically
described by nonlinear PDEs derived from mass and energy
balance principles. Here, if the kinetics of the above reaction
are characterized by first-order kinetics with respect to the reac-
tant concentration (mol/L) and by an Arrhenius-type depen-
dence with respect to the temperature , the dynamics of
the process are given by the following energy and mass balance
PDEs, where (mol/L) and denote the product con-
centration and the coolant temperature, respectively. The latter
will be used as control variable of this process.

(1)

(2)

(3)

with the boundary conditions given, for , by

(4)

The initial conditions are given, for , by

(5)

In these equations, , , , , , , , , , , and
hold for the superficial fluid velocity, the heat of reaction, the
density, the specific heat, the kinetic constant, the activation en-
ergy, the ideal gas constant, the wall heat transfer coefficient,
the reactor diameter, the inlet temperature, and the inlet reac-
tant concentration, respectively. In addition , and denote
the time and space independent variables, and the length of the
reactor, respectively. Finally and denote the initial tem-
perature and reactant concentration profiles, respectively, such
that and .

Comment 2.1: From a physical point of view it is expected
that for all , and for all ,

and where the upper bound
could possibly be equal to . It turns out that the case

is the most interesting one in the stability analysis for the
open-loop model (see [2] and [4]) and also for the closed-loop
model (see below). Moreover, this case is physically feasible:
see [13, Th. 4.1].

B. Constant Temperature Equilibrium Profile

In this paper, we are interested in equilibrium profiles for the
model (1)–(5) of the form

(6)

in the state-space where the temperature equilibrium
profile is assumed to be constant, i.e.

(7)

Comment 2.2:
a) An equilibrium profile must satisfy the boundary con-

ditions (4). Hence, by continuity of the function , in
view of identity (7), one should have for all

, i.e., the inlet temperature dictates that of the
constant temperature equilibrium profile.

b) In [23] temperature equilibrium profiles are studied that
minimize different kinds of performance criteria for
the (finite-dimensional) steady-state model: the specific
temperature equilibrium profile (7) corresponds to a
minimum for the energy consumption along the reactor.

By integrating the equilibrium ordinary differential equations
corresponding to (1)–(3), it can easily be shown that in this case
the reactant and product concentration equilibrium profiles are
given by

(8)

(9)
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respectively, where is the positive constant given by
, and the corresponding coolant tem-

perature equilibrium profile reads for as follows:

(10)

The latter can be interpreted as an open-loop infinite-dimen-
sional control profile distributed along the whole reactor.

C. Infinite Dimensional System Description

Observe that in (1)–(5), the product concentration is
known if the reactant concentration and the temperature

are known. Therefore, we shall only consider the two first
state components, viz. the reactor temperature and the reactant
concentration. Let us consider the following dimensionless
state variables and defined as follows:

(11)

Let us consider also dimensionless time and space
. Then the equivalent state space description of the

model (1)–(2) (without considering the product concentration
dynamics (3)) is given by the following abstract differential
equation on the space :

(12)

where is the linear operator defined on its domain

and (13)

(where a.c. means absolutely continuous) by

(14)

and the nonlinear operator is defined on

by

(15)

The operator is the bounded linear oper-
ator defined by

(16)

where is the dimensionless coolant temperature
and the parameters , , , and are related to

the original parameters as follows:

Denote by and the dimensionless equilibrium profile and
the corresponding coolant temperature, which satisfy the equa-
tion .

III. LINEARIZED MODEL ANALYSIS

Our objective is to synthesize a robust closed-loop infinite-di-
mensional control by state (trajectories) feedback. Let us con-
sider the state transformation

(17)

and the new input vector by Then (12)
can be rewritten as the following abstract differential equation
on the Hilbert space

(18)

where the operator is given by (13)–(14) and the nonlinear
operator is given on the closed subset

by

(19)

where the operator is given by (15).

A. Linearization and Triangularization

The linearization of the system (18) around its zero equilib-
rium leads to the following linear infinite-dimensional system
on the Hilbert space :

(20)

Here is the linear operator defined on its domain

and (21)

by

(22)

where the functions are given by

and
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For the analysis of the system (20)–(22), and in particular of its
stability properties, we first perform a similarity transformation
(i.e., Banach isomorphism) in order to get an equivalent state-
space description whose generator is triangular.

Consider the state transformation defined by the following
linear operator given by

(23)

where the function is a bounded -solution of the following
Riccati differential equation (RDE), whose existence is estab-
lished below (see Theorem 3.1):

(24)

Observe that defines a similarity transformation. Applying
this similarity transformation to the operator yields the tri-
angular operator given on its domain

by

(25)

Theorem 3.1: The RDE (24) has a bounded -solution in
[0, 1]. Consequently, the operator given by (23) is a similarity
transformation which triangularizes the operator .

The proof of this theorem is given in the Appendix .

B. Stability Analysis

This section deals with the exponential stability of the lin-
earized plug flow reactor model (20)–(22). With the similarity
transformation (23) and by using the invariance of stability
under system equivalence, it is sufficient to concentrate on the
analysis of the triangular operator , i.e., more specifically
on its diagonal entries. In order to do so, let us consider the
following closed densely defined linear operator on the Hilbert
space :

on the domain
, where denotes the identity operator

and is an essentially bounded measurable function, i.e.
.

Lemma 3.1: The operator is the infinitesimal generator
of an exponentially stable -semigroup on whose
growth bound is equal to , i.e., as

.
Proof: Since is a bounded linear operator on and

since , with , is the infinites-
imal generator of a -semigroup on (see [27]), then by
[11, Theorem 3.2.1, p. 110], the operator is the infinitesimal

generator of a -semigroup. It can be shown that the -semi-
group generated by is given for any
by

if
otherwise

(26)

for all and .
Since the function is in , there exists a constant

such that for almost all . Now
consider an arbitrary function . By using (26), it
can be shown that

It follows by [11, Lemma 5.2.1, p. 215] that the -semigroup
is exponentially stable.

Comment 3.1: It follows from Lemma 3.1 that the homoge-
neous Cauchy problem

(27)

has a unique (strong) solution, which is given by

(28)

Now let us consider the Laplace transform of (28) with respect
to . Then

(29)

where is the Laplace transform of . The integra-
tion of the differential (29) with respect to the spatial coordinate

gives

(30)

(31)

We can now state the following theorem, which follows from
the similarity of the operators and , under the state transfor-
mation (see (22)–(25)).

Theorem 3.2: The operator defined by (21)–(22) is the in-
finitesimal generator of an exponentially stable -semigroup
on the Hilbert state space .

Proof: By [22, Lemma 4.5, p. 84], the operator de-
fined by (25) is the infinitesimal generator of a -semigroup

on whose growth constant is equal to that of
the -semigroup generated by . In particular

is exponentially stable if and only if so is .
Now in view of Lemma 3.1, each diagonal entry operator

of is the infinitesimal generator of an exponentially stable
-semigroup on . Hence, by [11, Lemma 3.2.2, p.114],

is exponentially stable.
It follows from Lemma 3.1 and the proof of Theorem 3.2 that

the growth bound of the -semigroup generated by the
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operator is equal to . Intuitively this result could follow
from the fact that can be written as the sum of a bounded linear
operator and a (e.g., lower triangular) infinitesimal generator of
a -semigroup whose growth bound equals (see (22)).
However this line of reasoning does not hold in general as it is
explained in [2, Example 2.2.2, p. 20] and [3, Comment 5.1, p.
2420].

C. Reachability Analysis

Here we are interested in the reachability in the sense of [7]
(or equivalently the approximate controllability in the sense of
[11, Definition 4.1.17]) of the linearized plug flow reactor, i.e
the operator pair , where and are given by (21)–(22)
and (16), respectively. This property plays a crucial role in the
LQ-feedback design problem: see Sections IV and V.

The reachability of the (infinite-dimensional) linearized plug
flow reactor model follows from the total controllability of a
related finite-dimensional space-varying system.

Lemma 3.2: Let us consider the matrix pair
where and are given by

and (32)

Then is totally controllable on [0, 1]. Hence, the
reachability gramian, which is the unique solution of the fol-
lowing matrix Lyapunov differential equation:

(33)

is positive definite.
Proof: Recall that for any matrix pair , the

controllability matrix is defined as follows: (see [24, p. 66])

(34)

where .
Here in view of (32), the controllability matrix is given by

(35)

By [24, Th. 4, p.69], is totally controllable on [0, 1]
since , for all . Hence by [5, Th. 12,
p.227] and [5, Comments 18, pp. 227 and 228] ( ), the gramian

is positive definite for all .
Now we can state the following theorem.
Theorem 3.3: Let and be the operators defined by

(21)–(22) and (16), respectively. Then the operator pair
is reachable.

Proof: First recall that the operator generates an expo-
nentially stable -semigroup (see Theorem 3.2), then by [11,
Th. 4.1.23, p. 160] the extended reachability gramian, denoted
by , is the unique self-adjoint solution to the Lyapunov equa-
tion: and

(36)

In order to prove the reachability of , it is sufficient to
prove that is positive definite: see [11, Th. 4.1.22 (a), p. 160].
A straightforward calculation reveals that if the matrix

is the solution of the matrix Lyapunov differential (33), then the
solution of the operator Lyapunov algebraic (36) is given by

, where is the identity operator. Observe that for
any in , . Then one
can conclude that the operator is positive definite since, by
Lemma 3.2, is positive definite for all .

IV. LQ-FEEDBACK CONTROL AND SPECTRAL FACTORIZATION

In this section we are interested in the standard linear
quadratic optimal (LQ-)problem (see e.g., [11] and references
therein), with a view to synthesize a state LQ-feedback oper-
ator for the linearized plug flow reactor model studied in the
previous section and to apply it to the corresponding nonlinear
model introduced in Section II.

It is known that the LQ-problem can be solved by spectral
factorization: see, e.g [6], [7] for the case of finite rank bounded
observation and control operators, and, e.g., [25] for the general
case of stable weakly regular linear systems with admissible
unbounded observation and control operators. Here we consider
the spectral factorization approach for the more specific case of
exponentially stable linear systems with bounded observation
and control operators and infinite-dimensional output and input
spaces. This is motivated in particular by the structure of the
control operator of the plug flow reactor model given by (16).

The spectral factorization problem, especially the one related
to the LQ-problem, has been extensively studied in the system
and control literature. In particular computational techniques,
like the symmetric extraction method, have been analyzed in
detail. For example this method has been successfully imple-
mented for a heat diffusion model in [7] and for a larger class
of semigroup Hilbert state-space systems with a Riesz-spec-
tral generator, including also damped vibrating string models,
in [26] (see also the references cited therein).

Let us consider the following class of infinite-dimensional
state space systems:

(37)

where the following assumptions hold : (A1) the state
, a real separable Hilbert space with inner product , the

input and the output , where and are
real separable Hilbert spaces, (A2) is
the infinitesimal generator of a -semigroup on ,
where for all , (A3) and are bounded
linear operators, i.e., and and (A4)

is an exponentially stable -semigroup.
The transfer function of such a system is given by

as a bounded and analytic
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-valued function on the open right-half plane , where
is the identity operator, denotes the resolvent of
and denotes the space of bounded analytic -valued

functions on (see [25, p. 291]) for any Banach space .
For any system given by (37) let us consider the LQ-(optimal)

control problem: for any initial state , find a square
integrable control that minimizes the cost
functional

(38)

The solution of this problem can be obtained by finding the non-
negative self-adjoint operator that solves the Oper-
ator Riccati Equation (ORE), viz.

(39)

for all where .
Theorem 4.1: Consider an infinite-dimensional state-space

system of the form (37). Assume that conditions (A1)–(A4)
hold. Then the ORE (39) has a unique nonnegative self-ad-
joint solution and for any initial state ,
the quadratic cost (38) is minimized by the unique control
given on by

(40)

where the optimal feedback

(41)

is stabilizing, i.e., the feedback semigroup is
exponentially stable. In addition, the optimal cost is given by

. Finally, with denoting the null
space of an operator and denoting the unobserv-
able subspace of system (37), , where the
optimal cost is zero iff the initial state is unobservable.

Comment 4.1: The latter result is well known: see, e.g., [11,
Section 6.2] and references therein. The proof of the last asser-
tion about the null space of is the same as the one of [7,
Theorem 2, p. 761] (where the output and input spaces are as-
sumed to be finite-dimensional).

In [7, Theorem 3, p. 761] relates the solution of the LQ-con-
trol problem to a spectral factorization problem when
is exponentially stabilizable and is exponentially de-
tectable and when and are finite-dimensional spaces.
This result is extended in Theorem 4.2, to the more general
case of infinite-dimensional separable Hilbert input and output
spaces and when generates an exponentially stable

-semigroup. The proof of this result is similar to that of [7,
Theorem 3] and can be found in [2, pp. 39, 40].

Theorem 4.2: Consider any system (37) and assume that con-
ditions (A1)–(A4) hold. Let denote its
transfer function. Let denote the LQ-optimal state feedback
operator for the LQ-control problem associated with the cost
(38). Under these conditions, the LQ-optimal feedback operator

is a solution of the following equation:

(42)

where the invertible standard spectral factor
(such that is in and

where the (strong) limit is to be taken along the positive axis) is
a solution of the following spectral factorization problem

(43)

where .
Comment 4.2:
(a) The spectral factorization problem (43) admits a solu-

tion, i.e., there exists an operator valued function in
together with its inverse such that (43) holds,

if and only if the Popov (spectral density) function
is coercive, i.e., there exists such that, for all

, : see [25, p. 316]. Such
a spectral factor can be computed by using the solution of
the operator Riccati equation: see (42), from which it can
also be shown that .

(b) Since the operators and are known, (42) can be
seen as a partial realization problem for the strictly proper
transfer function . This equation corresponds to
the Diophantine (19) in [7], where the stabilizing feed-
back has been chosen equal to zero.

By Theorem 4.2, is a solution of (42). However it turns out
that in general it is not the only one. This motivates the following
definition.

Definition 4.1: Consider any system (37) satisfying
(A1)–(A4), with its transfer function .
A state feedback operator is called an LQ-feed-
back if it is a solution to

(44)

where is the unique invertible standard spec-
tral factor of the Popov function .

Theorem 4.3: Consider any system (37) satisfying
(A1)–(A4). Let denote the reachable restriction of
the optimal feedback , where denotes the orthog-
onal projection onto the reachable subspace . Then
any LQ-feedback is given by

(45)

where is any solution of

(46)

Moreover, there exists a unique LQ-feedback, viz. , whenever
is reachable.

Proof: Obviously, in view of Theorem 4.2, i.e., (42), and
since , any operator given
by (45)–(46) is an LQ-feedback. Conversely assume that

is an LQ-feedback. Define the operator
by . Then, by identities (42) and (44), it fol-
lows that (46) holds. Now assume that is reachable, i.e.,

. By (46)

(47)
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Indeed, let be in , hence, there exists a sequence
in such that

where and converges to . Observe also that taking
the inverse Laplace transform of (46) leads to the identity

, for all . Hence

In view of (47), the reachability of implies that
and obviously . Consequently is the unique
LQ-feedback.

In [7, Theorem 4], it is shown that, for any exponentially sta-
bilizable and detectable SGB system, the reachable restriction

of the optimal feedback is stabilizing and optimal from
the input-output viewpoint. It turns out that these properties still
hold for any LQ-feedback associated with any system (37) sat-
isfying (A1)–(A4).

Theorem 4.4: Consider any system (37) such that (A1)–(A4)
hold. Let be any LQ-feedback associated with
this system, i.e., such that (44) holds, or equivalently (45)–(46)
hold. Then (a) the feedback is optimal from the input/output
viewpoint. More precisely, the closed-loop transfer function due
to , i.e , is
the optimal one, i.e.,

and (b) the feedback -semigroup generated
by the closed-loop operator is exponentially stable.

Proof:
a) Let us consider any LQ-feedback with

. Then the spectral factor of Theorem
4.2 is given by

Using the fact that the optimal closed-loop transfer func-
tion is given by ,
one can easily see that the transfer function

is the optimal closed-loop
one.

b) By (45), for any initial state

(48)

By the proof of [7, Th. 4], is exponen-
tially stable. Now observe that

since is invariant under state feedback (see
e.g [10]), where .
Then by applying the operator to both sides of

(48) and using (47), the following identity holds:
. Consequently, in

view of (48), the -semigroup is expo-
nentially stable.

Comment 4.3: In this section, we have extended the fact
that the optimal LQ-feedback can be computed via a spectral
factorization problem coupled with some Diophantine equa-
tion. Generally speaking, the spectral factorization method
is an interesting alternative to the ORE approach for solving
the LQ-problem. It turns out a posteriori that, for the specific
problem handled here, the computational load is the same for
both methods. Yet, as an educated guess based on the obser-
vations reported in [26], the symmetric extraction method of
spectral factorization should be efficient for axial dispersion
reactor models. Indeed such models can be seen as perturbed
diffusion equations (see, e.g., [2, Sec. 5.1] and [16]), that
involve operators whose spectrum is known to be numerically
well-conditioned for spectral factorization by symmetric ex-
traction: see [26, Remark 4.1 and Sec. 4.2] and [27, Sec. 5].

V. LQ-OPTIMAL FEEDBACK OPERATOR DESIGN

This section deals with the computation of an LQ-optimal
feedback operator for the linearized plug flow reactor model
(20)–(22), (16) by using the spectral factorization method de-
scribed in the previous section. First let us define an output func-
tion by

(49)

where are continuous functions. In view
of (38) of the corresponding quadratic cost and the linearized
model state definition (17), these functions can be interpreted
as weighting factors for estimates of the distance between the
initial model state and the chosen equilibrium profile.

Comment 5.1: By using duality and arguments similar to
those used in Section III.C, the functions and can be
chosen such that the operator pair is observable. In order
to compute an LQ-feedback in the sense of Definition 4.1, the
standard spectral factor of the Popov
function is needed. The idea is to observe that
by (44) this spectral factor has the form

(50)

In other words, is a realization of , where the
operator plays the role of an observation operator. In view of
the structure of the observation operator , given by (49), in the
open-loop transfer function , it seems natural to look for an
operator of the same form, i.e.

(51)

where and are continuous functions. Working out this
idea leads to Theorem 5.1 whose proof is based on several aux-
iliary results.

Lemma 5.1: Let us consider arbitrary functions in
. Let us define the following auxiliary functions

and
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in . Then the following identities hold:

(52)

(53)

(54)

The proof of this lemma is given in the Appendix .
We now consider the open-loop transfer function, i.e., the

linearized model transfer function . By a straightforward
computation based on

where the operator is defined by (23), it can be shown that this
transfer function can be expressed as follows.

Lemma 5.2: [Open-loop Transfer Function] Let us con-
sider the linearized plug flow reactor model (20)–(22), with con-
trol operator given by (16) and observation operator given
by (49). Then its transfer function is given by

(55)

where and are the resolvent operators of the diagonal
entries of the operator . See Comment 3.1 for the explicit form
of such operators.

An important observation for the proof of Theorem 5.1 is the
fact that any feedback operator of the form (51) is stabilizing.

Lemma 5.3: [Stabilizing State Feedback] Let us consider
the operators and as in Lemma 5.2. For any continuous
functions and on [0, 1], the feedback operator

is stabilizing, i.e., the -semigroup is
exponentially stable.

Proof: The operator is given by

Observe that has the same form than the operator .
Therefore one can use the arguments of Section III. The cru-
cial difficulty in this analysis is to prove that the corresponding
scalar RDE (similar to (24)) has a solution in [0, 1]. Here this
equation takes the following form:

(56)

Observe that the independent term is not constant.
However, the fact that the latter is a bounded function, i.e there
exist constants such that ,
implies that (56) has a solution if the following lower and upper
RDEs

(57)

(58)

have solutions with (see [1, Corollary
6.7.35, p.363]). Observe that (57) and (58) have the same form

than (24). Hence, by using the arguments of the proof of The-
orem 3.1, it follows that each equation admits a (bounded) solu-
tion. Indeed, such a proof is based on the signs of the quadratic
and the independent terms. Here, only the independant term
in (24) has been changed and replaced by and , respec-
tively, and both cases can be studied relatively to the sign of
and as for (24). Consequently, by the analysis developed in
Sections III-A and B, generates an exponentially stable

-semigroup.
It turns out that the computation of a spectral factor of the

form (50)–(51) is based on the solution of a matrix Riccati dif-
ferential equation (MRDE). The need for such an equation ap-
pears when plugging the expression of in the spectral factor-
ization identity (43).

Lemma 5.4: [MRDE] Let us consider the following matrix
functions on [0, 1]:

and and let us consider the following MRDE:

(59)

Then the latter has a unique positive semidefinite solution

on [0, 1].

Proof: Observe that the entries of the matrices and
are continuous functions and that and are positive semidef-
inite. Then this lemma is an immediate consequence of [1, The-
orem 4.1.6].

Now we are in a position to state the following theorem,
whose proof is given in the Appendix .

Theorem 5.1: [Spectral Factor and LQ-Feedback] Let
us consider the linearized plug flow reactor model as in
Lemma 5.2, with transfer function given by (55). Let

be the unique invertible standard
spectral factor of the Popov function . Let

(60)

be the solution of the MRDE (59). Then is given by

(61)

Hence, the operator given for all by

(62)

is an LQ-feedback (in the sense of Definition 4.1).
Comment 5.2: Note that formula (61) is based on the a priori

knowledge of the solution of the triangularization RDE (24).
Another expression of , in terms of the system parameters
only, could also be used. However, (61) turns out to be easier
to handle, especially when checking the spectral factorization
identity: see the proof in the Appendix .

Since the pair is reachable (see Theorem 3.3), the fol-
lowing corollary is immediate in view of Theorem 4.3.
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Corollary 5.1: The LQ-feedback operator given by (62) is
unique, where it is the LQ-optimal state feedback operator .
Moreover, the optimal control is given on by

(63)

where the functions and can be computed by finding the
matrix , given by (60), that is the solution of the MRDE (59).

VI. NONLINEAR CLOSED-LOOP SYSTEM ANALYSIS

A. Stability Analysis

This section deals with the stability of any constant tempera-
ture equilibrium profile for the nonlinear closed-loop system by
applying the LQ-optimal feedback, computed in the previous
section, to the plug flow reactor nonlinear model. The analysis
is based on an asymptotic stability criterion for a class of infi-
nite-dimensional semilinear systems. This criterion is based on
the theory of nonlinear contraction semigroups (see [18], [2] and
[4]). Due to the lack of space, we refer the reader to those refer-
ences for detailed definitions of the basic mathematical concepts
used in this section.

Definition 6.1: Let be a dissipative operator on a reflexive
Banach space . Let be a subset of . is said to be in

if and for all .
Now we state an important result with a view to show the sta-

bility of the closed-loop nonlinear plug flow reactor. The proof
of this result can be found in [2, Section 4.3.3] and [4, Theorem
16].

Theorem 6.1: Let be a closed convex subset of . Consider
a linear closed dissipative operator such that
is compact for some . Consider a Lipshitz continuous
nonlinear operator on . Assume that is strictly
dissipative and the restriction of to is in and
that

holds, where denotes the distance from to .
Let be the contraction semigroup generated by . Assume
that is an equilibrium point of . Then for any ,

as .
Applying the LQ-optimal state feedback , given by (63), to

the nonlinear plug flow reactor model (12) yields the following
nonlinear closed-loop system:

(64)

where is the linear operator defined on its domain
by

(65)

with and , and is the
nonlinear operator given by (15).

In order to apply Theorem 6.1, the following lemmas are
useful.

Lemma 6.1: If , then the operator
is -dissipative. Moreover

Hence, is a closed dissipative operator.
Proof: Denote by and the diagonal entries of ,

respectively. Let , one has

Hence, the following inequality :

holds. Then under the condition , we have
and consequently is m-dissipative.

Lemma 6.2: If , there exists such that
is compact.

Proof: The compactness of can be proved
by using the one of (see [2, Lemma 6.2] and [4,
Lemma 20]) and the dissipativity of (see Lemma 6.1).

Lemma 6.3: If and

(66)

holds, where , then the restriction of on
is in .

Proof: This result can be proved in the same way than [2,
Lemma 6.3] and [4, Lemma 22].

Concerning the nonlinear operator, many of its properties are
studied in [16, Lemmas 3.1 and 3.2] in the framework of the
trajectory analysis of the same model. The following result gives
a condition that guarantees the strict dissipativity of ,
whose proof can be seen as an extension of the one of [2, Lemma
6.5] and [4, Lemma 25], and therefore omitted.

Lemma 6.4: If

(67)

holds, where and are given by

(68)

and

(69)

where and for any parameter ,

(70)

then the operator is strictly dissipative.
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An immediate and important consequence of the Lemmas
above and Theorem 6.1 is the following theorem giving an
asymptotic stability criteria.

Theorem 6.2: Consider the nonlinear closed-loop plug flow
reactor model (64)–(65) such that conditions (67) and (66) hold.
If , then the operator is the generator of a
unique nonlinear contraction semigroup on . Moreover,
for any , as i.e., the zero
state is an asymptotically stable equilibrium point of (64)–(65)
on .

1) Comment 6.1: Typically, in most cases, the condition
is satisfied, since the activation energy is very large.

In this case, the asymptotic stability criterion of Theorem 6.2
reads as follows:

where the constant depends on the system parameters. From
a physical point of view, the condition above means that the heat
transfer coefficient must be large enough in order to dominate a
weighted value of the kinetic constant .

B. Optimality Analysis

This subsection deals with the optimality of the computed
LQ-feedback control along the state trajectories of the nonlinear
plug flow reactor. This analysis is inspired from [15], which
treats the problem for finite dimensional systems. The (inverse)
problem can be reformulated as follows. What type of modifica-
tion of the cost criterion can restore optimality? Let us consider
the controlled plug flow reactor nonlinear model which can be
written as follows:

(71)

where the operator is given by (13)–(14) and the nonlinear
operator is given by (19).

The idea is to write the generator of the latter as the sum of
the linearized generator and some nonlinear operator.

(72)

where the operator . The LQ-con-
trol law given by (63) is not optimal for the nonlinear
system (72), but it can be made so with respect to another type
of cost criterion which includes the function

(73)

where is given by (60), that is the solution of the MRDE
(59). It turns out that the asymptotic stability of the nonlinear
closed-loop system (72) leads to the optimality of with re-
spect to the criterion (73).

Theorem 6.3: If zero is an asymptotically stable equilibrium
profile for the nonlinear closed-loop system (72), then the

LQ-control law given by (63) is optimal for the nonlinear
system (72) with respect to the cost criterion (73).

Proof: In view of (72) and by a straightforward calculation,
one has

Now by using the fact that is the unique solution of the MRDE
(59),

Observe that , hence

If we replace by of (63), we obtain

Then , since as .
Corollary 6.1: Under the conditions of Theorem 6.2, the

LQ-control law given by (63) is optimal for the nonlinear
system (72) with respect to the cost criterion (73).

Comment 6.2: Observe that the new cost criterion (73) might
not be positive semi-definite. It would be interesting to analyze
whether the controller designed in Section V is, in some sense,
close to optimal for the same cost (38), (49), with respect to the
nonlinear model, or to study its optimality for another optimal
control problem with a positive semi-definite cost.

C. Numerical Simulations

This section is concerned with numerical simulations of the
nonlinear closed-loop plug flow reactor model. Our objective is
to illustrate the theoretical results related to the asymptotic sta-
bility property of this model. This model can be approximated
by several methods including polynomial approximations, sin-
gular perturbation methods, finite-difference solutions and or-
thogonal collocation techniques. The two last methods are be-
coming standardized for many classical chemical engineering
problems (see [21]). In the present example, we have consid-
ered a finite difference approximation method (with a backward
difference for the spatial derivative), which is one of the oldest
methods to handle differential equations. On the other hand, the
approximation of the controller is based on the numerical so-
lution of the MRDE (59). Numerous research works are con-
cerned with numerical methods for MRDEs. These include care-
fully redesigned conventional Runge-Kutta method and linear
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Fig. 1. LQ-feedback functions  for w = 10 and w = 0.

TABLE I
PROCESS PARAMETERS USED IN NUMERICAL SIMULATIONS

multistep methods for ODEs: see [8] and [12]. There are also
some unconventional methods which are not suited for time-
varying MRDEs. Here, the MRDE is solved by the Runge-Kutta
method. Finally, the set of closed-loop ODEs is solved via the
Runge-Kutta method as well. The parameter values used here
are the same used in [23] (except the value of the superficial fluid
velocity that has been changed from 0.1 m/s to 0.025 m/s) and
are depicted in Table I.

It has been theoretically shown in the previous subsection
that, under some conditions, any constant temperature equilib-
rium profile is asymptotically stable for the closed-loop plug
flow reactor model. Several initial states and weighted func-
tions have been tested in numerical simulations. The results
agree with the theoretical result. In the numerical simulations
we have set both initial temperature and reactant concentration
profiles to the inlet temperature and concentration, respectively,
i.e., for all , and . The
weighted functions are chosen as follows: for all ,
we have set and . Fig. 1 shows the

resulting LQ-optimal state feedback functions and [see
(63)]. Observe that the function is almost identically zero,
i.e., there is a very low gain feedback on the reactant concentra-
tion relative error; moreover the function induces a negative
spatially varying feedback on the temperature relative error (see
(17)). These results are not surprising in view of the choice of
the weighting functions and . The coolant temperature,
the temperature in the reactor and the reactant concentration,
at several points along the reactor and in the 3–D plot, are de-
picted in Fig. 2. It can be observed that the state numerically
converges to the chosen equilibrium profile, as predicted by the
theory. In order to illustrate the performances of the LQ-feed-
back controller, several disturbances have been considered (e.g.,
the inlet temperature, the inlet reactant concentration, the super-
ficial fluid velocity, …) at some time instant. Here the following
case is presented: the inlet temperature is disturbed by a step
of at time . The results of the simulations
are shown in Fig. 3. It can be observed that in the presence of
this disturbance the state converges to the modified equilibrium
profile since the latter depends on the inlet temperature.

VII. CONCLUSION

In this paper, the LQ-optimal temperature and reactant
concentration regulation problem has been solved by spectral
factorization, for a nonisothermal plug flow reactor linearized
model. The study of this problem lead to the concept of
LQ-feedback control, which was developed for a specific class
of exponentially stable linear systems with bounded measure-
ment and control and infinite dimensional input and output
spaces. This general approach has been implemented for the
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Fig. 2. Closed-loop nonlinear plug flow reactor for w (z) = 10 and w (z) = 0. Upper-left plot: temperature T at several points of the reactor; upper-right plot:
temperature in 3-D plot; lower-left plot: reactant concentration C at several points of the reactor; lower-right plot: reactant concentration in 3-D plot.

specific reactor model studied here: a state LQ-feedback was
computed via an appropriate MRDE. The reachability of the
model leads to the uniqueness and therefore to the optimality
of the state feedback. By applying the computed optimal
LQ-feedback to the nonlinear system it was shown that under
some physically feasible condition on the system parameters,
the corresponding closed-loop system is asymptotically stable.
This result was illustrated by some numerical simulations. In
addition it was shown that the designed feedback is optimal
along the nonlinear closed-loop system with respect to a modi-
fied cost criterion.

The analysis and methodology developed in this paper can
be, in principle, extended to any other equilibrium profile, like
those obtained in [23] and also to more complex nonlinearities.
The main point is to take care of the regularity of the new func-
tions which appear in the linearized model. These functions
correspond to the Jacobian of the nonlinear part of the model
equations evaluated at the chosen equilibrium profile.

The approach followed here could be extended to the more
realistic case where only a finite number of state components
are available for measurement along the reactor. This could be
done by synthesizing a dynamic output feedback compensator,

resulting from the coupling of the static state feedback obtained
here with a state observer realized by a static output injection,
as in, e.g., [11, Sec. 5.3].

APPENDIX

Proof of Theorem 3.1: We only prove the existence of a so-
lution to the RDE (24). The rest of the theorem follows directly
in view of (23)–(25). Two cases are considered.

Case 1: (endothermic reaction) Observe that (24)
can be identified with [1, eqs. (6.89), (6.75)], with ,

, , , and .
Since , it follows from [1, Corollary 6.7.36, p. 364] that,
whenever , the solution of the latter equation
exists on [0, 1].

Case 2: (exothermic reaction) First let us define
. Observe that is

obviously a solution of the Riccati differential inequation

(74)
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Fig. 3. Closed-loop nonlinear plug flow reactor for w (z) = 10 and w (z) = 0, and �T = 10 K (T = 350 K). Left plot: temperature T at several points
of the reactor; right plot: temperature in 3-D plot.

Now let us consider the following RDE on the interval [0,1]:

(75)

where and is
a (sufficiently large) upper bound of the function . Let
us prove the existence of a solution to the RDE (75). For this
purpose let us consider the following transformation:

Therefore, (75) can be rewritten as follows:

(76)

where for sufficiently large,
i.e., . It follows from [1, Corollary 6.7.36,
p. 364] that, whenever , the solution of the latter
equation exists on [0, 1]. Indeed one can observe that (76) can
be identified with [1, eqs. (6.89), (6.75)], with ,

, , , and . In addi-
tion, by the comparison theorem [1, Theorem 6.7.33, p. 362],
if , then for all ,

. It follows that the RDE (75) has a solution

on [0, 1] such that, if , then for all ,
; where is a solution of the following Riccati differential

inequation:

(77)

By [1, Corollary 6.7.35, p. 363], if we choose such
that , then the solution of the RDE (24) exists
on [0, 1] and fulfills there the inequalities .

Proof of Lemma 5.1: Observe that the variables and
can be written as

and

where is any complex number, is the solution of the RDE
(24) and where and are the resolvent operators of the
diagonal entries of the operator .

By a straightforward computation, it follows that

where, by using the RDE (24)

Proof of Theorem 5.1: First let us show that , given by
(61), satisfies the spectral factorization identity (43), or equiva-
lently, for all
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So let us consider arbitrary functions . By a
straightforward computation, one gets the following identity:

Let , , and be the auxiliary functions defined in
Lemma 5.1. Then it follows from identities (52)–(54) that

Now let us consider three new functions ,
and . By observing that each term that in-

cludes the complex variable can be canceled, it follows that

Now observe that
and recall that, since the matrix is solution of the RDE (59),

. These observations lead to the
following relations:

It follows by the matrix RDE (59) that:

Hence, satisfies the spectral factorization identity. It re-
mains to be shown that is in together
with its inverse and that . First by construction of

, it is easy to see that since gen-
erates an exponentially stable -semigroup : see Theorem 3.2.

In addition , since converges strongly to-
wards 0 as along the positive real axis. Now let us prove
that . Observe that the inverse of

can be expressed as follows:

(78)

By Lemma 5.3, the operator generates an exponen-
tially stable -semigroup. Thus, by [11, Theorem 5.1.5, p.
222], , hence,

. One can conclude that is the standard
spectral factor of and is an LQ-feedback of the lin-
earized plug flow reactor.
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