
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Evaluating formal properties of feature diagram languages

Heymans, P.; Schobbens, P.-Y.; Trigaux, J.-C.; Bontemps, Y.; Matulevicius, Raimundas;
Classen, A.
Published in:
IET Software Journal

DOI:
10.1049/iet-sen:20070055

Publication date:
2008

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Heymans, P, Schobbens, P-Y, Trigaux, J-C, Bontemps, Y, Matulevicius, R & Classen, A 2008, 'Evaluating
formal properties of feature diagram languages', IET Software Journal , vol. 2, no. 3, pp. 281-302.
https://doi.org/10.1049/iet-sen:20070055

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. Jul. 2025

https://doi.org/10.1049/iet-sen:20070055
https://researchportal.unamur.be/en/publications/d31162f4-f138-4a7a-b02b-d5f4cdf8285d
https://doi.org/10.1049/iet-sen:20070055

Published in IET Software
Received on 1st June 2007
Revised on 21st December 2007
doi: 10.1049/iet-sen:20070055

In Special Issue on Language Engineering

ISSN 1751-8806

Evaluating formal properties of feature
diagram languages
P. Heymans P.-Y. Schobbens J.-C. Trigaux Y. Bontemps
R. Matulevičius A. Classen
Faculty of Computer Science, PReCISE Research Centre, University of Namur, Belgium
E-mail: phe@info.fundp.ac.be

Abstract: Feature diagrams (FDs) are a family of popular modelling languages, mainly used for managing
variability in software product lines. FDs were first introduced by Kang et al. as part of the feature-oriented
domain analysis (FODA) method back in 1990. Since then, various extensions of FODA FDs were devised to
compensate for purported ambiguity and lack of precision and expressiveness. Recently, the authors surveyed
these notations and provided them with a generic formal syntax and semantics, called free feature diagrams
(FFDs). The authors also started investigating the comparative semantics of FFD with respect to other recent
formalisations of FD languages. Those results were targeted at improving the quality of FD languages and
making the comparison between them more objective.
The previous results are recalled in a self-contained, better illustrated and better motivated fashion. Most

importantly, a general method is presented for comparative semantics of FDs grounded in Harel and Rumpe’s
guidelines for defining formal visual languages and in Krogstie et al.’s semiotic quality framework. This method
being actually applicable to other visual languages, FDs are also used as a language (re)engineering exemplar
throughout the paper.

1 Introduction
A software product line (SPL) is ‘a set of software-intensive
systems that share a common, managed set of features
satisfying the specific needs of a particular market segment
or mission and that are developed from a common set of
core assets in a prescribed way’ [1]. Software product line
engineering (SPLE) is a rapidly emerging software
engineering paradigm that institutionalises reuse
throughout software development. By adopting SPLE, one
expects to benefit from scale economies and thereby
improve the cost but also the productivity, time to market
and quality of developing software.

One of the main ideas behind SPLE is to dedicate a
specific process, named domain engineering, to the
development of reusable artefacts, a.k.a. core assets [2].
These core assets are then reused extensively during the
development of final products, called application engineering.

Central to the SPLE paradigm is the modelling and
management of variability, that is, ‘the commonalities and
differences in the applications in terms of requirements,
architecture, components and test artefacts’ [3]. In order to
tackle the complexity of variability management, a number
of supporting modelling languages have been proposed. To
represent variability at the requirements level, an
increasingly popular family of notations is the one of
feature diagrams (FD). FDs are mostly used to model the
variability of application ‘features’ at a relatively high level
of granularity. Their main purposes are: (1) to capture
feature commonalities and variabilities; (2) to represent
dependencies between features and (3) to determine
combinations of features that are allowed and disallowed in
the SPL.

During the last 15 years or so, researchers and industries
have developed several FD languages. The first and seminal
proposal was introduced as part of the feature-oriented

IET Softw., 2008, Vol. 2, No. 3, pp. 281–302 281
doi: 10.1049/iet-sen:20070055 & The Institution of Engineering and Technology 2008

www.ietdl.org

domain analysis (FODA) method back in 1990 [4]. An
example of a FODA FD (Inspired from a case study
defined in [5]) is given in Fig. 1. It indicates the allowed
combinations of features for a family of systems intended to
monitor the engine of a car. As is illustrated, FODA
features are nodes of a graph, represented by strings and
related by various types of edges. On top of the figure, the
feature Monitor Engine System is called the root
(feature) or concept. The nodes can be mandatory or
optional. Optional nodes are represented with a hollow
circle above their name, for example, Coolant. In
FODA, mandatory nodes are the ones without a hollow
circle. The edges are used to progressively decompose
features into more detailed features (also called subfeatures
or sometimes sons). FODA offers two kinds of
decomposition.

1. and-decomposition, for example, between Monitor
Fuel Consumption and its sons, Measures and
Methods. It indicates that the latter two features should
both be present in all feature combinations where
Monitor Fuel Consumption is present.

2. xor-decomposition, where edges are linked by an arc, as
between Measures and its sons, l/km and Gallon/
mile. It indicates that only one of the latter two features
should be present in combinations where Measures is.

Finally, in FODA, there is also a textual sublanguage
called composition rules (or CR) that allows one to express
constraints between features that crosscut the tree structure.
In Fig. 1, there is only one such constraint, located at the
bottom of the diagram. It uses the special keyword
‘requires’ to indicate that when the former feature is
present, the latter should be too.

This paper will later survey our previous contributions
[6–8] to give a precise meaning of these and other
constructs. However, for now, we retain that the meaning
of such diagrams seems to be concerned with the possible
combinations (or configurations) of features within any of
the products in the SPL – and this was indeed

acknowledged in FODA [4] and most of its successors. For
instance, one of the allowed feature combinations of the
FD in Fig. 1 is: fMonitor Engine System,
Monitor Engine Performance, Monitor
Temperatures, Oil, Engine, Transmission,
Monitor RPM, Monitor exhaust levels and
temperature, Monitor Fuel Consumption,
Measures, l/km, Methods and Based on type
of drivingg. This combination corresponds to one of
the SPL’s valid configurations which (1) does not monitor
the coolant temperatures, (2) bases the fuel consumption
monitoring on the type of driving and (3) uses l/km as a
unit of measurement. The FD thus represents an SPL with
three variation points (the features Coolant, Measures
and Methods) and 12 different valid configurations.
The complexity of this particular FD is relatively low.
Consequently, the allowed configurations are not so many,
and they can be computed relatively easily – provided that
we have a precise semantics. However, we should note that
there is an exponential factor involved in determining the
number of resulting configurations, which mainly depends
on the number of variation points and possible choices
associated to each of them.

Since Kang et al.’s initial proposal [4], several extensions to
FODA have been devised as part of the following methods:
FORM [9], FeatureRSEB [10] generative programming
[11], PLUSS [12], and in the work of the following
authors: Riebisch et al. [13, 14] and van Gurp et al. [15].
A brief overview of these proposals is given in Figs. 2 and
3 where, for each proposed FD language, a quick-facts
sheet is given in the left column, whereas an FD based on
the same example as Fig. 1 is given in the right column.
Note that Figs. 2 and 3 also introduce short names for the
languages (e.g. OFT, OFT, RFD. . .). These will be used
in the rest of the paper to facilitate formulations.

When looking at the FDs in Figs. 2 and 3, one
immediately sees aesthetic differences among languages.
For example, we have observed at least five different
notations for the xor-decomposition construct (Fig. 4).
These kinds of issues mainly concern concrete syntax, that
is, what the users see. Although concrete syntax is an
important issue in its own right [16], in this work, we
focus on what is really behind the pictures, that is,
semantics. We noticed that proponents of FD languages
often claimed for added value of their language in terms
of precision, unambiguity or expressiveness. Nevertheless,
our previous work [6–8, 17] demonstrated that the
terminology and evaluation criteria that they used to justify
these claims were often vague, and sometimes even
misleading.

We think that clearly defined criteria and terminology are
paramount to structure the research on effective modelling
techniques. Research on FD languages should be no
exception. The current status of this research is
characterised by a profusion of languages, most of whichFigure 1 FODA (OFT) FD: the monitor engine system

282 IET Softw., 2008, Vol. 2, No. 3, pp. 281–302

& The Institution of Engineering and Technology 2008 doi: 10.1049/iet-sen:20070055

www.ietdl.org

are loosely defined, and loosely compared with their
‘competitors’. Although we note that recent work was
devoted to the semantic foundations of these languages
[18–26], we still lack concrete means to discriminate
between these proposals.

This is what the current paper has to offer: a rigorous
method to evaluate and compare FD languages, focused on
the study of their semantics. This method relies on
formally defined criteria and terminology, based on the
highest standards in engineering formal languages [27, 28]
and situated within a global language quality framework
[29, 30].

A minor contribution of this paper is to recall our previous
investigations [7, 8, 17] in a self-contained, better illustrated
and better motivated way, thereby giving a clearer picture of
our overall language (re-)engineering endeavour. Moreover,
whereas [7, 17] are more technical papers devoted to

formally proving comparison results, the major contribution
of this paper is methodological: it proposes a
comprehensive and rigorous method for comparative
semantics. The method is applied to FD, but it is actually
more general and applies to all other visual languages.
Therefore the present paper can be regarded as a language
engineering exercise that might serve as an exemplar for
application to other languages. An abstract of this paper
appeared in [31].

This paper is structured as follows. In Section 2, we situate
our work within SEQUAL [29, 30], a comprehensive
framework for assessing the quality of modelling languages.
Section 3, based on [27, 28] recalls the basic concepts on
which our method relies: concrete syntax, abstract syntax,
semantic function and semantic domain. An extensive
illustration of these concepts on the FD language OFD [9]
ends this section. The general method for comparative
semantics is described in Section 4. It emphasises how

Figure 2 Survey of FD languages (1/2)

IET Softw., 2008, Vol. 2, No. 3, pp. 281–302 283
doi: 10.1049/iet-sen:20070055 & The Institution of Engineering and Technology 2008

www.ietdl.org

languages with no clearly defined semantics, or with different
semantic domains, can be made suitable for comparison. It
also defines formal criteria to compare the languages once
they have been made comparable. Section 5 summarises the
results obtained so far [7, 8, 17] by applying the method.
The paper finishes by discussing the current limitations of
the method (Section 6), the research challenges that are
still ahead (Section 7), and the conclusions (Section 8).

2 Quality in modelling
2.1 Model quality

Assessing and improving the quality of models and languages
is a complex and multidimensional task. A comprehensive
view of the concerns involved is given in the SEQUAL
(semiotic quality) framework, developed over the last
decade by Krogstie et al. [30] as an extension of Lindland
et al.’s original framework [32]. SEQUAL considers

models as signs and, based on this, distinguishes ‘semiotic
levels’ in the act of communicating through models:
physical, empirical, syntactic, semantic, pragmatic and
social. SEQUAL advocates that for an effective use of
modelling, quality must be pursued at all the levels of the
‘semiotic ladder’. SEQUAL adheres to a constructivistic
world-view that recognises model creation as part of a
dialog between participants (that is those involved in the
creation and usage of models) whose knowledge changes as
the process takes place.

Figure 3 Survey of FD languages (2/2)

Figure 4 Concrete syntaxes for xor-decomposition

284 IET Softw., 2008, Vol. 2, No. 3, pp. 281–302

& The Institution of Engineering and Technology 2008 doi: 10.1049/iet-sen:20070055

www.ietdl.org

An accurate description of SEQUAL as well as means to
pursue and measure the achievement of the quality goals
(physical quality, empirical quality. . .) can be found in [29,
30]. By the extent of the envisaged model qualities and its
neutrality w.r.t. a particular kind of models, SEQUAL is
arguably the most complete framework we know of.
However, it does not detail how to carry out specific quality
evaluation or improvement tasks, unlike other proposals, for
example, [33, 34] or [35]. Nevertheless, SEQUAL is
amenable to specific criteria and guidelines by tailoring. Its
main advantages are that (1) it helps situate one’s
investigations within a comprehensive quality space, (2) it
acts as a checklist of qualities to be pursued and (3) it
recommends general guidelines on how to proceed.

Our investigation is targeted at a specific kind of models,
namely, FDs. Furthermore, we mainly target semantic and
pragmatic qualities of these models, which we have found
to be somehow neglected in the current state of the art [7,
8]. So doing, we will see that we inevitably interfere with
other qualities, mainly syntactic quality.

The problem with evaluating model quality is that the
representative objects of study – that is, models – do not
always exist, or at least are not easily available. And this is
indeed the case for FDs, which (1) are an emerging
modelling paradigm and (2) have the purpose of
representing highly strategic company information.
Therefore representative models are almost nowhere to
find, except illustrative examples in research papers [36]. At
this stage, we thus thought that we should concentrate on
improving the quality of FD languages before any
standardisation is attempted and they hopefully become
widespread in industry.

2.2 Language quality

In [29], SEQUAL has been adapted to evaluate ‘language
appropriateness’ (Fig. 5). Six quality areas were proposed.
Domain appropriateness means that language L must be
powerful enough to express anything in the domain D, and
that, on the other hand, it should not be possible to express
things that are not in D. Participant language knowledge

appropriateness measures how the statements of L used by
the participants match the explicit knowledge K of the
participants. Knowledge externalisability appropriateness
means that there are no statements in K that cannot be
expressed in L. Comprehensibility appropriateness means
that language users understand all possible statements of L.
Technical actor interpretation appropriateness defines the
degree to which the language lends itself to automatic
reasoning and supports analysability and executability.
Finally, organisational appropriateness relates L to
standards and other needs within the organisational context
of modelling.

Not being able to assess model qualities directly, our
investigations were targeted at three main language
qualities: domain appropriateness, comprehensibility
appropriateness and technical actor interpretation
appropriateness. In particular, we studied four criteria:
expressiveness, embeddability, succinctness and complexity.
The rigourous definition of those criteria as well as a
discussion of how they match our target language qualities
are provided in Section 4.

3 Engineering formal modelling
languages
In their illuminating papers, “Meaningful modelling: What’s
the semantics of ‘semantics’?” [27] and ‘Syntax, semantics
and all that stuff. Part I: the basic stuff ’ [28], Harel and
Rumpe recognise that: ‘Much confusion surrounds the
proper definition of complex modelling languages [. . .]. At
the root of the problem is insufficient regard for the crucial
distinction between syntax and true semantics and a failure
to adhere to the nature and the purpose of each’ [27].

Although they are far less complex than, for example, the
unified modelling language (UML) [37], we demonstrated in
previous papers [6, 8] that FDs are also ‘victims’ of similar
‘mistreatments’. In [27, 28], one of Harel and Rumpe’s
main motivations is to suggest how to improve the UML.
The objective of this section is to recall the notions of
(formal) syntax and semantics from [27, 28]. In the
subsequent sections, we will show how, based on these
notions, we have devised an approach to (re)define, assess
and compare languages.

3.1 Basic notions

Very basically, the term ‘syntax’ refers to the notation that a
language offers to its users. ‘Semantics’, on the other hand,
refers to the meanings that its expressions (programs,
diagrams, sentences,. . .) are aimed to convey.

For Harel and Rumpe, the unambiguous definition of a
modelling language, be it textual or graphical, must consist
of three equally necessary elements: a syntactic domain (L),
a semantic domain (S) and a semantic function (M).
Furthermore, to keep the risk of ambiguity at its minimum,Figure 5 SEQUAL: language quality (adapted from [29, 30])

IET Softw., 2008, Vol. 2, No. 3, pp. 281–302 285
doi: 10.1049/iet-sen:20070055 & The Institution of Engineering and Technology 2008

www.ietdl.org

L, S and M must all be defined formally, that is,
mathematically. A language with such formal L, S and M
is called a formal language.

In the context of FDs, it might be extremely useful to have
a tool that tells whether a given diagram allows for at least one
feature configuration, or if it is overconstrained and thereby
allows none. For a real-size FD, this verification is far from
trivial, and can be very time-consuming and error-prone if
left to humans. This type of verification is known as
satisfiability checking and is one of the many FD-related
tasks that can be automated [7, 8] (see also Section 4.3). If
we want to engineer languages in such a way that no
ambiguity is left to tool developers, then we need to make
them formal. Only then can we prove the correctness, and
study the efficiency (computational complexity), of its
supporting algorithms. And only then can we study the
formal language properties such as expressiveness,
succinctness and embeddability (Section 4.3).

Formal semantics is also useful if a language is simply used
as a means of communication between human participants
[16]: one can refer to it in case of doubt, thereby avoiding
unintended meanings.

The above may seem all too obvious to some readers.
However, during our survey, we could observe that many
FD languages were never formally defined, despite the
actual simplicity of the task (as we will see in Section 3.4).
A tentative explanation to this situation can be found in
[27, 28] where a set of frequent misconceptions about
formal semantics are enumerated, for example, ‘Semantics
is the metamodel’, ‘Semantics is dealing with behaviour’,
‘Semantics is being executable’, ‘Semantics means looking
mathematical’ etc. But, for now, we return to the
definitions of L, S and M, which we make more precise.

3.2 Syntax

In diagrammatic (a.k.a. visual or graphical) languages, such as
FDs, basic expressions include lines, arrows, closed curves,
boxes and composition mechanisms involve connectivity,
partitioning and ‘insideness’ [27]. These form the physical
representation of the data (on screen or on paper) which is
known as concrete syntax.

For visual languages, it appears particularly difficult to
define rigid syntactic rules that clearly segregate between
valid and forbidden diagrams (this is also true, to a lesser
extent, of textual languages). Furthermore, when based on
the concrete syntax, the expression of the semantic
interpretation rules is polluted by considerations related to
visualisation. This is why the common practice in the
aforementioned areas is to define the semantics of a
language based on a so-called abstract syntax. Nevertheless,
most of the (informal) definitions of the semantics of FDs
we found in the literature were based on concrete syntax,
usually discussed on FD examples and incomplete.

The abstract syntax (L) is a representation of data that is
independent of its physical representation and of the
machine-internal structures and encodings. The set of all
data that comply with a given abstract syntax is called the
syntactic domain.

For visual languages, the two most widespread ways to
define an abstract syntax are: (1) mathematical notation (set
theory) and (2) meta-modelling. In the latter case, the
abstract syntax is described by a so-called meta-model
describing what is a well-formed (allowed) diagram. A
meta-model is usually a UML class diagram, possibly
complemented with object constraint language (OCL) rules
[37]. This format has the main advantage to be easily
readable and to facilitate some tool implementation tasks,
especially persistent storage of diagrams in a repository.
Nevertheless, we prefer the mathematical format for its
greater universality, unambiguity, conciseness and suitability
to undergo rigorous proofs [7]. As an example, in Section
3.4, we define LOFD, the abstract syntax of OFD. In
Section 4.2, we will recall how we managed to provide an
abstract syntax for several FD languages at once through a
generic mathematical structure that we called free feature
diagram (FFD) [7, 8].

3.3 Semantics

Once we have a rigid set of syntactic rules, the role of a
semantics is to assign an unambiguous meaning to each
syntactically correct diagram. Harel and Rumpe recognise
that ‘[a]greement on a language’s meaning is partly a
sociological process, without which the communicated data
are worthless’ [27]. As we have seen in Section 2, this
point of view is acknowledged and further elaborated in
[29, 30]. The sociological aspects of semantics are,
however, out of the scope of the current investigation,
although some will be discussed in Section 7. We follow
[27, 28] and consider a semantics to have two main
constituents: a semantic domain (S) and a semantic
function (M), both to be defined mathematically.

According to [27], the semantic domain ‘[. . .] specifies the
very concepts that exist in the universe of discourse. As such,
it serves as an abstraction of reality, capturing decisions about
the kinds of things the language should express’. Typically, S
is a mathematical domain built to have the same structure as
the real-world objects the language is used to account for, up
to some level of fidelity. The semantic domain that we have
proposed for OFD and for the other surveyed FD
languages is named product lines (PL) [7, 8]. It is recalled
in Section 3.4. Looking at the semantic domain is
necessary to compare two semantic definitions, as we will
show in Section 4.

The second constituent of a semantics is M, the
semantic function. M relates L and S by assigning a
meaning to each syntactically valid diagram. Its signature
is thus M : L ! S. In the case of OFD, for example,

286 IET Softw., 2008, Vol. 2, No. 3, pp. 281–302

& The Institution of Engineering and Technology 2008 doi: 10.1049/iet-sen:20070055

www.ietdl.org

we have the signature MOFD : LOFD ! PL. The
definition of MOFD is given in Section 3.4. Semantic
functions, like all mathematical functions, can be
described in a number of ways. In our example, we found
it convenient to express it as four fairly simple rules.
These rules describe declaratively how the syntactic
constructs used in the diagram constrain its associated
object in PL. The generic semantic function of FFD
(MFFD) is not much more complex, as it counts just one
additional simple rule (Section 4.2).

Being a function, M overrules ambiguity. In the previous
work [6], we could reconstruct a semantic function from the
original plain English definition of OFT [4]. We could
thereby dismiss criticisms of ambiguity [14].

In addition, a total semantic function ensures that the
semantics is complete. In Section 4.3, we will address the
converse question: is every element in S expressible by a
diagram in L? This will help us judge the expressiveness
of a language, another term confusingly used in the
literature.

3.4 Example: FORM feature diagrams
(OFD)

We use OFD [9] (the first extension of OFT [4]) as an
illustrative example of the language definition principles
that we just exposed. It is also used as a prototypical
example of the FD languages that we have generalised in
our FFD construct (Section 4.2).

OFD is used very frequently in the literature. There are
two variants of it. The simplest just extends OFT with the
possibility to draw directed acyclic graphs (DAGs) instead
of being limited to trees. The second is more complex as it
further adds three completely new constructs in FDs:
layers, implementation relationships and generalisation/
specialisation relationships. Here, we only look at the
simpler form. The more complex form is briefly discussed
in Section 7.

The syntactic domain of OFD (LOFD): From the point of
view of concrete syntax, OFD are graphical combinations of
elementary symbols such as boxes (features), strings (feature
names and textual constraints), lines (feature decomposition)
and circles (on top of optional features). Defining the
allowed combinations of these symbols involves describing
where they should be placed, which size and colour they
should have etc. This is not necessarily difficult, but bulky.
The abstract syntax defines the allowed essential syntactic
structures behind these visualisation details.

A natural mathematical abstract syntax for OFD is given in
Definition 1 and illustrated in Fig. 6. We observe that an
OFD is essentially a graph, that is, a set of nodes (let us
call it N) and a relation between nodes (DE # N � N).
Features naturally map to elements of N, and

decomposition edges to elements of DE. In an OFD, there
is always a unique root feature. We will call it r and thus
have r [N . If a feature f1 is decomposed into features f2
and f3, then we have (f1, f2) [DE and (f1, f3) [DE.
Although decomposition is represented in the concrete
syntax by plain lines instead of arrows, it does have a
direction. In OFD (as in other FD languages), the
direction is represented by a feature being placed
graphically above its subfeatures. Also, in OFD,
decomposition must not have cycles (which is less
restrictive than having to be a tree, like in OFT). Hence,
DE must be a DAG.

To abstract the various kinds of decompositions, we
introduce a labelling function l that maps each node to a
boolean ands or xors operator, respectively, for and- and
xor-decomposition. s denotes the arity of the operator and
must be equal to the number of subnodes (subfeatures) of
the labelled node. The signature of l is thus l : N ! NT,
and NT (node type) is a set of boolean operators. It
contains operators and1, and2, and3, . . . as well as operators
xor2, xor3, In addition, NT also contains and0 and
opt1, explained further in the section. So, if f1 is and-
decomposed into f2 and f3, we will have l(f1) ¼ and2. A
node like f1 will thus be called an and2-node, and
sometimes simply and-node. We adopt similar
terminological conventions for nodes labelled with other
(types of) operators. Another convention is that terminal
features, that is features which have no subfeature, are
l-labelled with and0.

The abstract syntax of optional features (those with a
hollow circle on top in the concrete syntax) is a little
trickier. For each such feature with label f1 in the concrete
diagram, the abstract diagram possesses two nodes, say f1
and f1?. f1? is introduced as an intermediate node between
f1 and those nodes which should have been its supernodes,
had it not been optional. The only (direct) subnode of f1?
is f1 and l(f1?) ¼ opt1. opt1 is the boolean operator that
always returns TRUE. This way to define the abstract syntax
of optional nodes came after noticing that they actually
played a role similar to the and- and xor-decomposition,

Figure 6 OFD’s abstract syntax: LOFD

IET Softw., 2008, Vol. 2, No. 3, pp. 281–302 287
doi: 10.1049/iet-sen:20070055 & The Institution of Engineering and Technology 2008

www.ietdl.org

except for the fact that this kind of operator only acts upon
one subnode.

An important concept we introduce in LOFD and which
we also need in the generalised abstract syntax LFFD

(Section 4.2) is the concept of primitive node (also called
primitive feature; see Definition 1). As also recognised by
other authors [22, 38], there is currently no agreement on
the following question: are all features equally relevant to
define the set of possible products that the FD stands for?
This question primarily addresses semantics, but has
consequences for the syntax.

For example, in Fig. 1, one could question whether the
(absence or presence of the) feature Measures is useful to
describe a product, or if (the absence or presence of) its
subfeatures, l/km and Gallon/mile, suffice(s). Since
there was no agreement in the literature, we adopted a
neutral formalisation. Our solution accounts for the fact
that the modeller can consider only part of the features as
relevant. Although there is no construct in the concrete
syntax (neither for OFD nor any other FD language we
know), we need to introduce one in the abstract syntax,
namely a subset P of N (P # N). We will see the impact
of P when we address the semantics of OFD. Finally,
although we leave it to the modeller to determine P, we
reasonably expect that P (1) contains terminal features and
(2) does not contain opt-nodes. But we need not impose
these rules.

The last part of OFD’s concrete notation that LOFD

should account for is the textual constraint language, called
‘composition rules’ (CR). In the concrete diagram, the
language is used to specify a (possibly empty) set of rules,
usually located at the bottom of the diagram. In the
abstract syntax, we call the set of rules F and define it as a
set of words obeying the following production rule: CR ::¼
f1 (requiresjmutex)f2, where f1, f2 [P.

Definition 1 (Original Feature Diagram): An OFD
d [LOFD is a tuple (N , r, l, DE, F) where:

1. N is its set of nodes;

2. P # N is its set of primitive nodes;

3. r [N is the root;

4. l : N ! NT labels each node with an operator from NT,
where NT ¼ and< xor< {opt1}, that is, a set of boolean
functions (operators) where:

† and is the set of operators ands ðs [NÞ, that return TRUE
iff all their s arguments are TRUE;

† xor is the set of operators xors (s [N n {0, 1}) that return
TRUE iff exactly one of their s arguments is TRUE;

† opt1 is the operator that returns TRUE

The semantics of those operators is recalled here for
convenience only. By definition, it is not a part of OFD’s
abstract syntax.

5. DE # N � N is the set of decomposition edges;
(n, n0) [DE, alternatively noted n ! n0;

6. F # CR are the textual constraints, when CR ::¼
f1(requiresjmutex)f2 and f1, f2 [P.

Furthermore, d must satisfy the following well-formedness
rules.

1. Only r has no parent: 8n [N . (96 n0 [N . n0 ! n) ,
n ¼ r.

2. DE is acyclic: 96 n1, . . . , nk [N � n1 ! � � � ! nk ! n1.

3. Node operators are of adequate arities: 8n [N � l(n) ¼
opk ^ k ¼]{(n, n0)jn ! n0}:

4. Terminal features are and0-labelled: 8n [N . (96 n0 [N .

n ! n0) , l(n) ¼ and0:

Note that the first twowell-formedness rules above should be
enforced at the level of the concrete syntax (for example, by a
graphical OFD editor), whereas the last two rules should be
guaranteed when moving from the concrete to the abstract
syntax, and the modeller should not care about them.

The semantic domain of OFD (SOFD ¼ PL). In the surveyed
literature, there seems to be an agreement that FDs are meant
to represent the sets of products, and each product is seen as a
combination of features. These tenets were present from the
beginning in OFT [4] and were adopted without much
controversy in its extensions, including OFD. In particular,
none of the surveyed languages attempted to further define the
‘contents’ of a feature beyond its name (viz., the labels
appearing in the nodes of the FD), except for some recent
work [23, 39] (Section 7.2). We published the first
formalisation of a semantic domain specifically devoted to FDs
in [6]. In this semantic domain, named PL, the atomic
building blocks are features (nodes), a bit in the same way that
propositions are the atomic building blocks in the semantic
domain of propositional logic [40]. However, we want to leave
the flexibility to the modellers to decide which features are
relevant for them to discriminate products, so we use P instead
of N. Definition 2 formalises the notions of product and
product line, relyingon themore general notionof configuration.

Definition 2 (Configuration, Product, Product Line):
† A configuration is a set of features/nodes, that is, any
element of PN .

† A product is a configuration that contains only primitive
features, that is, any element of PP.

288 IET Softw., 2008, Vol. 2, No. 3, pp. 281–302

& The Institution of Engineering and Technology 2008 doi: 10.1049/iet-sen:20070055

www.ietdl.org

† A product line is a set of products, that is, any element of
PL ¼ PPP.

Fig. 7 gives an illustration of this. Like a configuration, a
product, say c, is a combination (that is a set) of features
(nodes). In this case, c is the set { f1, f3, f4, f5, f6, f7}. A
product line, for example pl, is a set of products. Here, pl is
a set of three products: {{ f3, f6}, f f1; f2; f3; f4; f5; f6; f7g;
{ f1, f4, f5, f7}}.

Recently, in other formalisation proposals, some authors
[18–24, 6] have chosen semantic domains different from
PL, for example, using lists instead of sets [18]. How to
compare PL with other semantic domains will be discussed
in Section 4 but the cause usually turns out to be an
implementation bias. For the time being, we complete the
definition of the semantics with the semantic function.

The semantic function of OFD (MOFD : OFD ! PL). In
Fig. 8, we depict MOFD, the semantic function of OFD.
To every diagram d, it assigns a PL, noted MOFD[[d]].
MOFD[[d]] is more formally described in Definitions 3 and
4. Definition 3 indicates which set of products is returned
by MOFD[[d]]: the set of the configurations (combinations
of features) which are valid w.r.t. d, restricted to their
primitive features.

Definition 3 (Semantic function): The semantics of an
OFD d is a PL (Definition 2) consisting of the products of

d, that is, its valid configurations (Definition 4) restricted
to primitive features/nodes: MOFD[[d]] ¼ [[d]] ¼ {c0jc o
d ^ c0 ¼ c

T
P}.

Definition 4 provides four clear and compact rules telling
what in OFD is a valid configuration w.r.t. d. The fact that
a configuration c is valid w.r.t. d is noted c o d .

Definition 4 (Valid configuration): A configuration
c [PN is valid for a d [LOFD, noted c o d , iff:

1. The root is in: r [c.

2. The meaning of nodes is satisfied: If a node n [c, and n
has sons s1, . . . , sk and l(n) ¼ opk, then opk(s1 [c, . . . ,
sk [c) must evaluate to TRUE.

3. The configuration must satisfy all textual constraints:
8f [F, m o f, where m o f means that we replace each
node name n in f by the truth value of n [c, evaluate f

and obtain TRUE. For instance:

† if f is a CR constraint of the form f1 requires f2, we
say that m o f when (f1 [c)) (f2 [c) evaluates to
TRUE;

† if f is a CR constraint of the form f1 mutex f2, we say that
m o f when : and2(f1 [c, f2 [c) evaluates to TRUE.

4. If s is in the configuration and s is not the root, one of its
parents n, called its justification, must be too:
8s [N � s [c ^ s = r . 9n [N � n [c ^ n ! s.

When MOFD[[d]] returns an empty set of products, that is
the empty PL, it means that d is non-satisfiable (or
inconsistent). In Fig. 8, this is the case for d3. This
happens when there is no product combination that can
satisfy the constraints in d. Checking consistency, as well as
many other tasks, can usually not be performed efficiently
just by processing syntax, nor by letting the modeller
inspect the diagram. Hence, the utility of defining the
semantics in a way that enables faithful implementation
into a computer programme automating time-consuming
and error-prone tasks.

We now take a closer look at the product validity rules of
Definition 4. The application of the rules is illustrated in
Fig. 9. We assume that all features in the OFD are
primitive, except for f9? which was generated to account for
an optional feature in the concrete syntax.

1. The first rule imposes that the root (r ¼ f1) appears in
every valid product. Hence, the product { f2, f3, f4, f7, f9},
for instance, cannot be part of it.

Figure 7 OFD’s semantic domain: LOFD ¼ PL

Figure 8 OFD’s semantic function: MOFD

IET Softw., 2008, Vol. 2, No. 3, pp. 281–302 289
doi: 10.1049/iet-sen:20070055 & The Institution of Engineering and Technology 2008

www.ietdl.org

2. The second rule describes the semantics of the boolean
operators coming from the decomposition links and from
the optional features. This rule relies on the semantics of
the boolean operator opt1 as well as the operators in and
and xor. Their semantics has been recalled earlier in this
section. In the example, the rule is applied to discard the
product { f1, f2, f3, f5, f6}, say c, because f3 appears in it
together with more than one node among f5, f6 and f7.
Indeed, f3 is labelled with xor3 and has three sons: f5, f6
and f7. In c, xor3(f5 [c, f6 [c, f7 [c) would then
evaluate to FALSE.

3. The third rule is similar in spirit to the former, except that it
deals with the operators (requires and mutex) appearing
in F, the CR constraints accompanying the graphical part of
the OFD. When applied to the example, the rule interprets
the CR f4 requires f9 by checking the truth value of
(f4 [c)) (f9 [c), which in the case of the product
c ¼ { f1, f2, f3, f4, f7, f8} evaluates to FALSE.

4. The fourth and last rule is called the justification rule. It
guarantees that, except for the root, a node cannot be
present in a valid product without one of its parent nodes
being present as well. It says ‘one of its parents’ because
OFDs are DAGs and a node can therefore have multiple
parents. In the example, this rule discards the product
c ¼ { f1, f2, f3, f4, f6, f8} because f8 belongs to c but f7, its
only parent, does not. The justification rule has been often
overlooked in the literature. For example, in [25], a formal
semantics of FD is proposed without such a rule. This
leads to strongly counter-intuitive semantics. Without the
justification rule, the OFD in Fig. 9 would accept, for
example, products { f1, f2, f3, f9} or { f1, f2, f3, f4, f6, f8} as
part of its semantics. Justifications also explain the
difference between decomposition through and-nodes and
requires constraints: the presence of a subfeature is
justified by its and-parent, while requires gives no
justification.

Eventually, when all the rules in Definition 4 have been
taken into account and when all the non-primitive features

in the products have been removed according to Definition
3, we see that the semantics of the OFD in Fig. 9 comes
unambiguously as the following PL, made of two valid
products: {{ f1, f2, f3, f4, f7, f9}, f f1; f2; f3; f5gg.

4 Comparing FD languages
When languages receive a proper definition of L, S and M,
they can be assessed by means of rigorously defined semantic
criteria. Three commonly used criteria are:

† expressiveness: what can the language express?

† embeddability (also called naturalness or macro-
eliminability): when translating a diagram to another
language, can we keep its structure?

† succinctness: how big are the expressions of a same
semantic object?

In addition, in a formal language, one can precisely define
decision problems, that is, tasks to be automated. For
example, in languages like FDs that have a set as semantic
domain, we can state precisely the satisfiability problem:
given a diagram d, is M[[d]] = 0= true? As we will see,
there are many other such questions. Once these problems
are formalised, one can ask (1) whether answers (that is
computable functions) exist at all to solve this problem
(decidability) and (2), if so, what is their relative
computational difficulty (complexity).

With respect to the SEQUAL framework (recalled in
Section 2), we focus on the following qualities.

† Domain appropriateness is addressed by looking at
language expressiveness.

† Comprehensibility appropriateness is addressed by looking
at embeddability and succinctness.

† Technical actor interpretation appropriateness is addressed
by looking at decidability, complexity and also embeddability
and succinctness.

More rigorous definitions of those criteria will be given
further in Section 4.3. But first, we need to address the
practical concern that not all FD languages may be directly
comparable with each other according to those criteria.

Let us assume that we have to compare FD languages
X1, . . . , Xn. We need to have formally defined languages,
that is, for language Xi, we need to know LXi

, SXi
and

MXi
. Furthermore, if we want to be able to compare

expressiveness, embeddability and succinctness, we also
need to have SX1

¼ SX2
¼ � � � ¼ SXn

.

However, this ideal situation almost never occurs in
practice. Most of the time, we have to cope with:

Figure 9 OFD’s semantics: an example

290 IET Softw., 2008, Vol. 2, No. 3, pp. 281–302

& The Institution of Engineering and Technology 2008 doi: 10.1049/iet-sen:20070055

www.ietdl.org

† languages that have no formal semantics at all (this is the
most frequent case, which we addressed in [7, 8]);

† languages with a formal semantics but defined in quite a
different way from what is advocated in Section 3;

† languages with a formal semantics compliant with the
recommendations of Section 3, but using a different
semantic domain.

We have also started to address instances of the latter two
cases recently in [17].

The overall process of comparing FD languages should
thus be performed in two steps: (1) make the languages
suitable for comparison and (2) make the comparisons.

In Section 4.1, we offer a systematic approach to cope with
the first step, in all different situations. In Section 4.2, we
recall FFD, the main tool that we have used until now to
formalise informal FD languages. The main results of
comparative studies of FD languages carried out on the
basis of our criteria (Section 4.3) will be recalled in Section 5.

4.1 Making languages suitable for
comparison

Let us call X1 the language we want to compare with the
others (X2, . . . , Xn) which, we assume, are fully and clearly
formalised according to Harel and Rumpe’s principles
(Section 3) and have identical semantic domains. We
distinguish the three aforementioned cases.

Case 1: X1 has no formal semantics: There are two
alternatives.

† The first alternative is to define the syntax and semantics
for each FD language individually. That is, we define X1

independently from X2, . . . , Xn. This is what we did in
Section 3.4 with OFD. This is also what we did in [6]
with OFT.

† The second alternative is to make scale economies and
define several languages at once. In [8], we observed that
most of the FD languages largely share the same goals, the
same constructs and, as we understood from the informal
definitions, the same (FODA-inspired) semantics. For this
reason, we proposed to define not one FD language but a
family of related FD languages (Fig. 10).

We defined a parametric abstract syntax, called FFD, in
which parameters (Section 4.2) correspond to variations in
LX1

, LX2
, . . . , LXn

. This definition follows, but slightly
adapts, the principles of Section 3. The semantic domain
(PL, see Definition 2) and semantic function (Section 4.2)
are common to all FD variants, maximising semantic
reusability. With this method, we are confined to handle
languages whose only significant variations are in their

abstract syntax. For languages with very different semantic
choices, for example [21], it is much harder to describe
(and justify) the introduction of variation points in the
semantics. Then, we should rather follow either the first
alternative in Case 1 (if the language is informal), or Case
2 or 3 otherwise.

Case 2: X1 has a formal semantics but LX1
, SX1

and MX1
need to be clarified: Another frequent

case is when a language X1 actually has a formal semantics,
but which does not adhere to Harel and Rumpe’s
principles. That is, we cannot see explicit and self-
contained mathematical definitions of LX1

, SX1
and MX1

.
Typically, LX1

is clear and self-contained, but SX1
and

MX1
are not. Most of the time, the semantics of X1 is

given by describing a transformation of X1 ’s diagrams to
another language, say W, which is formal. W does not even
need to be an FD language, and usually it is not. Therefore
the semantic domain might be very different from the one
intuitively thought of for FDs. The main motivation for
formalising it in this way is usually because W is supported
by tools. The problem is that these kinds of ‘indirect’, or
tool-based, semantics complicate the assessment of the
language even more if W is also given a formal semantics in
a similarly ‘indirect’ way, just as X1.

Proposals of this kind can be found in recent work on FD
[18–24]. In this case, in order to facilitate the assessment of
the criteria we are interested in, it is convenient to
reformulate the way in which the FD languages to be
compared are defined. In [17], we have reformulated the
FD language proposed by van Deursen and Klint [18]
(renamed vDFD) before comparing it with FFD (Section
4.2). If we need to reformulate several semantically similar
languages at once, then a generic approach, like in Case 1,
could be applied too. The main difference between Cases 2
and 1 is that, in Case 2, formalisation decisions are usually
much more straightforward since they have already been
made. However, they might be hard to dig out if they are
coded in the operational semantics attached to some tool.

Figure 10 Meaningful modelling for a family of FD
languages with FFD

IET Softw., 2008, Vol. 2, No. 3, pp. 281–302 291
doi: 10.1049/iet-sen:20070055 & The Institution of Engineering and Technology 2008

www.ietdl.org

Also, formalisations are not necessarily error-free, and errors
can thus be discovered when re-formalising [17].

Case 3: X1 has a formal semantics with clear LX1
,

SX1
and MX1

but SX1
= SX2

, . . . ,SXn
: The third and

last case is when we have a clear and self-contained
mathematical definition of L, S and M for all languages
(either from the origin or having previously gone through
Case 1 or 2) but the semantic domains of the languages to
be compared differ, so that they cannot be compared
directly for expressiveness, embeddability and succinctness.
In this case, we thus need to define a relation between the
semantic domains. We met this problem, for instance,
when comparing vDFD with FFD [17]. On the one hand,
we had SFFD ¼ PL ¼ PPP (sets of primitive nodes), and
on the other, SvDFD ¼ OON (lists of leaf nodes). The
latter introduces an order relation on features, and one on
products. Comparing languages with different semantic
domains is actually possible, but it requires preliminary
work which is now explained.

Consider two languages with their syntactic domains L1

and L2 and two different semantic domains, respectively,
S1 and S2. Their semantic functions are M1 and M2. We
must first compare intuitively the two domains to
determine the information they share. We then create a
domain S for this shared information and provide
functions A1 : S1 ! S and A2 : S2 ! S, called
abstractions. The purpose of these abstraction functions is
to remove additional information and keep the ‘core’ of the
semantic domain, where we will perform the comparisons.
For example, in [17], we used an abstraction to remove the
ordering of features and products from SvDFD. However,
the question of the relevance of this discarded information
remains and should be studied carefully.

A simple but frequent case is illustrated in Fig. 11, where
domain S1 contains more information than S2; we then take
S2 as the common domain. An abstraction A removes
supplementary information from elements of S1 and maps
them in S2. It then makes sense to look for quasi-
translations T : L1 ! L2 between the languages’ syntactic
domains. They are translations (Definition 7 in Section
4.3) for the abstracted semantics A 8M1, and can thus be

used to compare languages for expressiveness, embeddability
or succinctness. Hence, if we apply T to a diagram d1 in
the syntactic domain L1 we will obtain a diagram d2 in the
syntactic domain L2 with the same abstracted semantics.
Semantically, if we apply the semantic function M1 to d1,
and then the abstraction function A, we will map to the
same element of S2 as if we apply T to d1 and then M2.
That is, A(M1[[d1]]) ¼ M2[[T (d1)]].

When applied to more than two languages, this method
will create many semantic domains related by abstraction
functions. The abstraction functions can be composed and
will describe a category [41] of the semantic domains. At
the syntactic level, the translations can also be composed to
yield expressiveness and succinctness results. Similarly, the
composition of embeddings yields an embedding.

4.2 Free feature diagrams

An integral part of our general comparison method is FFD, a
parametric abstract syntax that we proposed in [8]. FFD is
the main tool that we have used until now to formalise
(Case 1) or re-formalise (Case 2) FD languages.

Syntactic domain (LFFD): The definition of the generic
syntactic domain of FFD (LFFD) is a simple generalisation of
the syntactic domain of OFT [8], OFD (Section 3.4) and the
other surveyed languages (Figs. 2 and 3). FFD stands for ‘free
feature diagrams’ to emphasise its reusability for defining FD
languages. In order to cover all the FD languages being
formalised, LFFD was defined as a parametric construction.
Its four parameters (GT, NT, GCT, TCL) correspond to
the four variations we have identified in the abstract
syntaxes of the languages. That is, we ignored concrete
syntax variations such as depicted in Fig. 4.

The abstract syntax variations are as follows.

† The decomposition edges in an FD can form a tree or a
DAG. For example, in OFT, they form a tree whereas in
OFD, they can form a DAG. Although a DAG is more
general than a tree, we should also take trees into account
specifically. For this, we introduce the parameter GT: GT
(graph type) is either DAG or TREE.

† The type of nodes in an FD may change. In OFT and
OFD, the allowed node types (NT) are xor-nodes, and-
nodes and opt1-nodes. or-nodes and card-nodes are also
included in some other languages, and xor-nodes are not
present in others. This variation point corresponds to the
parameter NT: NT is a set of boolean functions
(operators). It is defined in the same way as in Section 3.4,
except that it possibly includes more operators. Noteworthy
is the cards[i. . .j] operator introduced to account for EFD
[13, 14]. The operator returns TRUE iff at least i and at
most j of its s arguments are TRUE. Also, we should note
that it is, in principle, possible to add more node types byFigure 11 Abstracting a semantic domain

292 IET Softw., 2008, Vol. 2, No. 3, pp. 281–302

& The Institution of Engineering and Technology 2008 doi: 10.1049/iet-sen:20070055

www.ietdl.org

defining their (commutative) boolean operators, in case a new
language using a new form of decomposition appears.

† The type of graphical constraints may change. In OFT
and OFD, there are no graphical constraints, but most
other languages offer this possibility. This variation point
corresponds to the parameter GCT :GCT (graphical
constraint type) is a set of binary boolean operators. For
example, Requires ()) or Mutex (j).

† Finally, the type of textual constraints may change. This
variation point corresponds to the parameter TCL (textual
constraint language). In general, it can be a subset of the
language of boolean formulae where the predicates are the
nodes of the FD. In our survey, all the investigated FD
languages used CR, (Section 3.4) except one (PFT [12])
which does not have a textual language. Nevertheless, we
decided to accommodate for more languages since some
authors have proposed to use more powerful languages, for
example, boolean logic [22].

The complete formalisation of LFFD is available in [11],
where it is simply called FFD. Once we had it, it was easy
to define all of the surveyed FD languages by simply
providing the right parameters. As Table 1 shows, defining
an FD language boils down to filling in a row of the table.
In order to be complete, the transformation from the
concrete FD languages to FFD should also be given. An
example is given in Fig. 12 which illustrates the
transformation from an EFD (concrete syntax) to an FFD
(abstract syntax).

Optional nodes: The last adaptation concerns the
optionality. In most FD languages, the nodes can be
mandatory or optional, except for EFD [13] where the
edges (not the nodes) are mandatory or optional. Both
solutions are clearly relevant and therefore for generality, we
proposed specific decompositions for optional and
mandatory nodes. Let us consider Fig. 13a, a very basic
FD. OFT and OFD [9] hint that it should be abstracted
to b, whereas EFD [13] suggests that it should be
abstracted to c. Because we want to account for both, we
take the finer decomposition d, adding an opt1-node f1?

under f0. f1? must have f1 as a son, thus we also add a new
edge (that can be omitted in the concrete syntax). We
treated mandatory nodes (filled circles) similarly. They can
be seen as and1-nodes.

Semantic domain (SFFD): With FFD, we formalised a
set of languages that were inspired from OFT. In particular,
we understood that they all shared the same semantic
domain: PL (Definition 2). Hence, PL ¼ SFFD.

Semantic function (MFFD): The genericity of FFD
added little complexity to the definition of the semantic
function. For example, with respect to the definitions of
SOFT [4] and SOFD (Definitions 3 and 4), the only change
is the addition of one more validity rule to account for
graphical constraints which are present in some other
languages, for example, RFD [10] and EFD [13, 14]
(Definition 5).

Definition 5 (valid configuration (in FFD)): A
configuration c [PP is valid for a d [LFFD, noted c o
d, iff:

1. c is valid according to Definition 4,

2. c satisfies all graphical constraints: 8(n1, op2, n2,) [CE,
op2(n1 [c, n2 [c) must be TRUE.

4.3 Comparison criteria

Sections 4.1 and 4.2 have described the method we
elaborated to make FD languages amenable to compare
with respect to the criteria that we introduced informally at
the beginning of Section 4. We now define those criteria
more accurately.

Expressiveness: Expressiveness is commonly understood
as what can be expressed in a language. For a formal
language, we can be more specific: the expressiveness E of a
language L is the part of its semantic domain (S) that it
can express, that is, the image of its syntactic domain (L)
through its semantic function M. This is what Definition
6 says, and Fig. 14 illustrates. The diagrams in the

Table 1 FD languages defined through FFD

Short name GT NT GCT TCL

OFT [4] TREE and < xor < fopt1g 0= CR

OFD [9] DAG and < xor <fopt1g 0= CR

RFD [10] ¼ VBFD [15] DAG and < xor < or <f opt1g f) , jg CR

EFD [13, 14] DAG card <fopt1g f) , jg CR

GPFT [11] TREE and <xor < or < fopt1g 0= CR

PFT [12] TREE and < xor < or < fopt1g f) , j g 0=

VFD [7] DAG card 0= 0=

IET Softw., 2008, Vol. 2, No. 3, pp. 281–302 293
doi: 10.1049/iet-sen:20070055 & The Institution of Engineering and Technology 2008

www.ietdl.org

syntactic domain of the language X (LX) have an image
E(LX), a subset of X’s semantic domain (S).

Definition 6 (Expressiveness): The expressiveness of a
language L is the set E(L) ¼ {M[[d]]jd [L}, also noted
M[[L]]. A language L1 is more expressive than a language
L2 if E(L1) . E(L2). A language L with semantic domain
S is expressively complete if E(L) ¼ S.

If S is the common semantic domain of several languages,
say W, X, Y and Z (Fig. 14), their respective expressiveness
can be compared.

In the example, we illustrate a situation where, because
of their respective definitions, no two languages have the
same expressiveness. Also, LZ is more expressive than LY .

This is written as E(LZ) . E(LY). The expressiveness
of LX and LY are disjoint: E(LX)> E(LY) ¼ 0=. The
expressiveness of LX and LZ overlap: E(LX)> E(LZ) = 0=.
In general, the relationships between the syntactic domains
(disjoint, overlapping, equal) of several languages should be
considered non-correlated with the relationships existing
between their respective semantic domains. This is because
the semantic functions can be very different from one
language to another.

In Fig. 14, we also notice that E(LW) ¼ S. In cases like
this, when the image of L is the whole of S, we say that L
is expressively complete: the part of the semantic domain it
can express is the semantic domain itself. Complete
expressiveness is a major quality for a language. It ensures
that it can express all the intended meanings.

The usual way to prove that a language L2 is at least as
expressive as L1 is to provide a translation (Definition 7)
from L1 to L2.

Definition 7 (Translation): A translation is a total
function T : L1 ! L2 that preserves semantics:
M2[[T (d1)]] ¼ M1[[d1]].

The results that we have obtained studying the
expressiveness of FD languages are summarised in Section 5.1.

Since languages compete for expressiveness, it often
happens that they reach the same maximal expressiveness
(Such as, e.g. L1 and L2 in Fig. 15). This is, for instance,
the case for programming languages, that are almost all
Turing-complete and can thus express the same
computable functions. Consequently, we need finer criteria
than expressiveness to compare these languages.

The idea is to study the properties of the translations
between those languages.

† Do they preserve structure?

† Do they increase size?
Figure 13 Three possible abstract syntaxes for optional
nodes

Figure 14 Comparing expressiveness

Figure 12 From EFD (concrete syntax) to FFD (abstract
syntax)

294 IET Softw., 2008, Vol. 2, No. 3, pp. 281–302

& The Institution of Engineering and Technology 2008 doi: 10.1049/iet-sen:20070055

www.ietdl.org

The former property is addressed by the concept of
embeddability, whereas succinctness takes care of the second.

Embeddability: When two languages have the same
expressiveness, in theory, there is a translation between
them. However, this translation might destroy the structure
of the original diagram.

For textual languages, the requirement to preserve
structure (i.e. embeddability) has been called macro-
eliminability by Felleisen [42] (inspired by Kleene [43]).
Macro-eliminability relies on the assumption that the
concerned textual languages have a context-free grammar,
which in turn allows to define the translation in a
compositional way.

Unfortunately, context-free syntax is not a realistic
assumption when dealing with visual languages [27, 28].
In particular, there is no such syntax for DAG-shaped
FDs. The compositional definition of the translation
can thus not be applied as such. In [7], we have
proposed a definition of graphical embeddability which
generalises the definition of embeddability for context-
free languages. We recall it here (Definitions 8 and 9) in
a simplified form.

Definition 8 (Graphical embeddability): A graphical
language L1 is embeddable into L2 iff there is a graphical
embedding (Definition 9) from L1 to L2.

Definition 9 (Graphical embedding): A graphical
embedding is a translation (Definition 7) T : L1 ! L2

that is node-controlled [44]: T is expressed as a set of rules
of the form d1 ! d2, where d1 is a diagram containing a
defined node or edge n, and all possible connections with
this node or edge. Its translation d2 is a subgraph in L2,
plus how the existing relations should be connected to
nodes of this new subgraph.

The notion of a node-controlled translation [44] is
illustrated in Fig. 16 and further discussed in Section 5.2.

Embeddings are of practical relevance because they ensure
that there exists a transformation from one language to the
other which preserves the whole shape of the diagrams
and generates only a linear increase in size. This way,
traceability between the two diagrams is greatly facilitated
and tool interoperability is made more transparent.
Furthermore, limiting the size of diagrams helps avoiding
tractability issues for reasoning algorithms taking the
diagrams as an input.

Embeddability can also exist between a language and a
subset of itself. A language that is non-trivially self-
embeddable [7] is called harmfully redundant (Definition
10). This means that it is unnecessarily complex: all
diagrams can be expressed in the simpler sublanguage
without loss of structure and with only a linear increase in
size.

Definition 10 (Harmful redundancy): A language L is
harmfully redundant iff there is a construct C in L that has a
graphical embedding in L n C.

The embeddability results that we have obtained so
far concerning FD languages are summarised in Section
5.2. However, linear translations are not always possible.
In this case, the blow-up in the size of the diagram must
be measured. This is achieved by examining succinctness.

Succinctness: For languages with same expressiveness,
embeddability guarantees that their respective diagrams are
(roughly) of the same size (since, by definition, there exists
a linear translation between them). When equally expressive
languages are not embeddable, succinctness (Definition 11)
allows to compare the size of their respective diagrams by
computing the size of the diagrams before and after
translation from one language to the other. Stated
otherwise, succinctness measures the blow-up caused by a
change of notation.

Definition 11 (Succinctness): Let G be a set of functions
from N ! N. A language L1 is G-as succinct as L2, noted
L2 � G(L1), iff there is a translation T : L1 ! L2 that is
within G: 9g [G, 8n [N, 8l1 [L1, jl1j � n) jT (l1)j �
g(n). Common values for G are ‘identically’ ¼ fng,
‘thrice’ ¼ f3ng, ‘linearly’ ¼ O(n), ‘cubically’ ¼ O(n3),
‘exponentially’ ¼ O(2n). We will omit ‘identically’.

Figure 15 Translation between expressively complete
languages

Figure 16 Node-controlled translation (graphical embedding)
of redundant optional node (in OFD concrete syntax)

IET Softw., 2008, Vol. 2, No. 3, pp. 281–302 295
doi: 10.1049/iet-sen:20070055 & The Institution of Engineering and Technology 2008

www.ietdl.org

If L1 is more succinct than L2, this usually entails that L1’s
diagrams are likely to be more readable. Also, if one needs to
translate from L1 to L2 (e.g., because a tool for achieving
some desired functionality is only available in L2),
succinctness will be an indicator of the difficulty to maintain
traceability between the original and the generated diagram.
Traceability of linear translations is easy but is likely to
become more difficult as the size of the generated diagrams
grows bigger. However, we should note that this is hard to
measure precisely because succinctness does not provide
information on the structure of the generated diagrams.
(However, looking at the transformation’s definition will
provide the information.) In this sense, succinctness is a
coarser-grained criteria than embeddability. Finally, as we
already pointed out concerning embeddability, increases in
size are generally not good for the tractability of algorithms.
Our current results on succinctness of FD languages are
summarised in Section 5.3.

Complexity: When considering decision problems
associated with diagrams in a given language, a typical
measure of complexity is time complexity, that is,
the number of steps that it takes to solve an instance of the
problem as a function of the size of the input, using the
most efficient algorithm [45]. Exploring the memory usage
of the most efficient algorithm is called space complexity.
Time and space are usually ranked into complexity classes,
like NP-complete, PSPACE-complete. . . [45].

For example, worst-case execution time of satisfiability
checking might grow linearly with the size of the diagrams
in some FD languages whereas, in other languages, it may
grow exponentially with it. In the latter case, we are likely
to face tractability issues.

In our previous work [7], we have studied the complexity
of a series of problems for the surveyed FD languages.

† Satisfiability: given a diagram d, is M[[d]] = 0= true?

† Equivalence: given two diagrams d1 and d2, is
M[[d1]] ¼ M[[d2]] true?

† Model-checking (called product-checking for FDs): given
a product c and a diagram d, is c [M[[d]] true?

† Intersection: compute a new diagram d3 such that
M[[d3]] ¼ M[[d1]]

T
M[[d2]].

† Union: compute a new diagram d3 such that
M[[d3]] ¼ M[[d1]]

S
M[[d2]].

† Reduced product: compute a new diagram d3 such that
M[[d3]] ¼ {c1 < c2jc1 [M[[d1]], c2 [M[[d2]]}:

These are classical problems for languages whose semantic
domain is a set. Their relevance in the context of SPL
requirements engineering is further elaborated in Section 5.4

and in [8]. Complexity results are important because they
help evaluate the scalability of the tool support answering
those questions for a given language. Formalisation of both
the syntax and semantics is a necessary prerequisite to devise
precise questions and make sure that they match intuition.
Complexity results then give an indication about the worst
case, and how to handle it. Heuristics taking into account
the most usual cases can be added to the backbone
algorithm, to obtain practical efficiency. Finally, we
should note that although formality is required, comparing
languages w.r.t. complexity does not require that these
languages have the same semantic domains.

5 Language evaluation results
Here, we summarise the results obtained when we have
applied our general method of comparative semantics to the
FD languages. For the languages defined generically with
FFD (Section 4.2), the details and proofs can be found in
[7]. The treatment of vDFD [18] is found in [17].

5.1 Expressiveness

For expressiveness, the distinction between languages that
only admit trees and the ones that allow sharing of features
by more than one parent (DAGs or vDFD) turns out to be
important. While tree-shaped languages are expressively
incomplete without constraints, OFD are already
expressively complete without the constraints, and thus a
fortiori RFD, EFD, VBFD and VFD. vDFD are ‘almost’
trees in that only terminal features (i.e. the leaves) can have
multiple parents (justifications), but this is sufficient to
obtain expressive completeness.

The expressive incompleteness of tree-shaped diagrams
without constraints (in particular, OFT [4] cannot express
disjunction) partially justifies a posteriori the proposal [10]
(RFD) to add the or operator to OFT. But even so, we do
not attain expressive completeness: this language is still
unable to express card3[2. . .2], the choice of two features
among three. This justifies similarly the proposal [13]
(EFD) to use the card operators. Both [10] and [13] also
propose to allow DAGs: this extension alone, as we have
seen, ensures expressive completeness. But we will see
below better justifications in terms of embeddability rather
than succinctness.

Designing an FD language is thus essential to include
more than trees to reach expressive completeness. Trees,
however, are easier to understand and manipulate because
they have a compositional semantics. vDFD [18] manages
to have both advantages.

5.2 Embeddability

As explained in Section 4.3, a construct can be embedded (or
macro-eliminated [42]) in another language if we can express
it by a fixed schema.

296 IET Softw., 2008, Vol. 2, No. 3, pp. 281–302

& The Institution of Engineering and Technology 2008 doi: 10.1049/iet-sen:20070055

www.ietdl.org

An optional node n can be translated into an xor2-node,
say n? with two sons: the original node n, and the TRUE
node v which is an and0-node (i.e. with no son). As we see
in Fig. 16, all incoming edges from the parents of n are
redirected to the new top node (n?), and all outgoing edges
to its sons start from the node n. This supports our view
that optionality is better treated as an operator.

We constructed an embedding from OFD without
constraints (called COFD in [7]) to VFD, presented in
Table 2. To save space, we use the textual form for the
graphs. For instance, a node bearing an xorm operator is
translated into a node bearing a cardm[1. . .1] operator. In
the next section, we will consider how those embeddings
increase the size of the graph. Here, we observe that the
VFD diagram resulting from the embedding of a COFD
diagram has the same size. This result indicates that card-
nodes proposed by Riebisch et al. [13] (EFD) can embed
all the other constructs. We proposed thus to use them
systematically inside tools. We slightly differ from EFD
that also uses optional edges: these can be modelled by
card1[0. . .1]-nodes and would be harmfully redundant. We
proposed VFD to eliminate this slight drawback. Note that
this latter suggestion only concerns abstract syntax. In the
concrete syntax, it is probably a good idea to keep optional
nodes as this would decrease the size and visual complexity
of the diagrams.

5.3 Succinctness

In [7], we also discovered translations that are not expressible
as macros, because they depend on the number of
neighbours. In this case, it is still interesting to compute
the increase in size of the graph, as measured by
succinctness. RFD and OFD are of similar succinctness,
but, when translating VFD or EFD to OFD, we translate
a cardk-node to an OFD graph of size O(k2) [7]. A VFD
of size O(k) could contain k cardk-nodes, giving a cubic
translation at the end: COFD � O(VFD3). This result
indicates again that card-nodes are a useful addition, but
for different reasons than presented in [13].

5.4 Complexity

For FDs, solving all the standard problems of Section 4.3
turns out to be practically useful.

† Equivalence of two FDs is needed whenever we want to
compare two versions of a PL (for instance, after a

refactoring). When they are not equivalent, the algorithm
can produce a product showing their difference. For FD
languages based on DAGs, and that allow non-primitive
features, such as OFD, EFD, VFD, this problem is P1-
complete [7] (just above NP-complete [45]).

† Satisfiability is a fundamental property. It must be checked
for the PL but also for the intermediate FDs produced during
a staged configuration [20]. For FD languages based on
DAGs, this problem is NP-complete.

† Model-checking (here, also called product-checking)
verifies whether a given product (made of primitive
features) is in the PL of an FD. It is not as trivial as
expected, because the selection performed for non-primitive
nodes must be reconstructed. This gives an NP-complete
problem. When recording this selection, the problem
becomes linear again.

† Union is useful when teams validate in parallel the feature
combinations that lead to an acceptable product, without
feature interference. Their work can be recorded in separate
FDs. The union of these FDs will represent the validated
products. For FD languages based on DAGs, this problem
is solved in linear time, but the resulting FD should
probably be simplified for readability.

† Intersection and reduced product are similar.

The complexity results show the role of non-primitive
features: on one hand, it is useful to record them to
accelerate the checking of products, but they should not
become part of the semantics since this would restrict
the expressiveness and strongly reduce the possible
transformations of diagrams.

6 Limitations
The main limitation of our work is explicit in its scope: the
proposed method and its current results concern only
formal language properties related to semantics. In order
not to over-interpret our conclusions, one should look at
this work with a comprehensive view of model quality in
mind. For example, with respect to SEQUAL, in order to
be accurate and effective, we have deliberately chosen to
address only part of the qualities required from a ‘good’
modelling language: Domain appropriateness is addressed
by looking at language expressiveness; Comprehensibility
appropriateness is addressed by looking at embeddability
and succinctness; and Technical actor interpretation
appropriateness is addressed by looking at decidability,
complexity as well as embeddability and succinctness.

Furthermore, we are conscious that our criteria cover only
part of each of the aforementioned language qualities.
Answering a limited number of questions is a deliberate
choice to avoid answering none of them with sufficient
accuracy. However, this implies that to obtain a complete

Table 2 Embedding COFD into VFD

Instead of . . . write . . .

opt1(f) card1[0. . .1](f)

xorm(f1, . . . , fm) cardm[1. . .1](f1, . . ., fm)

ands(f1, . . . , fs) cards[s. . .s](f1, . . ., fs)

IET Softw., 2008, Vol. 2, No. 3, pp. 281–302 297
doi: 10.1049/iet-sen:20070055 & The Institution of Engineering and Technology 2008

www.ietdl.org

picture of the pros and cons of the languages, further
investigation is needed. In Section 7, we will discuss several
qualities that we have not addressed at all but that, we
think, require similar attention. In particular, our approach
evacuates concerns related to concrete syntax, although we
think this is a very important topic.

In contrast, a more holistic (quality-wise) attempt to
compare feature modelling languages is reported in [46].
However, it is specific in the sense that it concerns the
usage of FDs in a particular company, for a given kind of
project. This leads us to point out that the notion of a
‘good’ modelling language is only relative to the context of
use of the language. The priorities to be put on the
expected qualities and criteria are very likely to be different
from one company, or project, to another. This could lead
us to relativise in some contexts the importance of
formality. But we think that, for FDs, formality is very
likely to deliver more than it will cost since (1) the
languages are relatively simple, (2) formality can be made
largely transparent to the users (hidden behind a graphical
concrete syntax), (3) the automation possibilities are many
[7, 8, 38] and (4) the information that feature models are
used to convey is of critical importance for companies and
therefore should suffer no ambiguity.

SEQUAL also helps identify another limitation of our
contributions: for the moment, we have only looked at
language quality, adopting a theoretical approach. A
complementary work is to investigate models empirically.
In Section 2, we emphasised the difficulty of such an
endeavour because of the limited availability of ‘real’ FDs.
Nevertheless, we do not consider it impossible and can
certainly learn a lot by observing how practitioners create
and use FDs. Although we have focussed on studying
theoretical properties of FD languages, we need to
recognise that no formal semantics, nor criteria, can ever
guarantee by itself that the languages help capture the right
information (neither too little nor too much) about the
domain being modelled. We have started to address such
concerns recently through the development of reasoning
tools, and their applications to case studies. Although VFD
have turned out to be a powerful and convenient pivot
language for back-end reasoning tools, methodological
guidance on how to use them in front ends and how to
complement them with other notations had to be provided.
In [39], we propose an approach that complements
features with an explicit description of the domain
assumptions, requirements and specifications underlying
them, allowing to deliver and implement a finer-grained
notion of satisfiability of a feature model. In [47], we
identified the need to separate concerns in feature models,
namely PL against software-related variability. From the
separated but formaly related variability modelling, we
managed to remove some of the ambiguity that the mere
formalisation of FDs, as provided in the present and in our
past papers, cannot remove. Further empirical research

will help us continue to investigate the problem of domain
appropriateness.

Moreover, even within the clearly confined scope of our
research, we face some threats to validity. Our examination
of formal language properties was not supported by tools
(except for mere text editors). All the formalisation of, and
reasoning (comparisons, demonstrations of theorems)
on languages were carried out by humans. Therefore we
cannot guarantee that human errors, miss- or over-
interpretations are completely absent from our results. In
addition, we need to draw the reader’s attention on the fact
that our formalisations were made only by considering the
published documents, and without contacting the authors
for clarifications, nor testing their tools. Some of our
formalisation choices might therefore only be due to the
way things were phrased in the surveyed papers, or to an
erroneous understanding from our part.

Finally, concerning the results obtained until now by
applying the method, we made clear that there are very
relevant FD language proposals [20, 21, 23–25] on which
we could not yet apply our method due to lack of time.
This is a prioritary topic of future work.

7 Future work
Ultimately, our research aims at accelerating the advent of a
standard feature modelling language of an overall excellent
quality, including (1) unambiguous and appropriate syntax
and semantics and (2) efficient and proved correct reference
algorithms. To move forward in this direction, much work
is still needed, not only by us.

7.1 Validating the results

Having made explicit the semantics of several feature
modelling languages, we need to confront them with their
proponents and, more generally, the communities of
researchers and practitioners working on the subject. Doing
so, we will be able to correct possible misinterpretations
(oversimplifications, arbitrary choices etc.) we might
have made, but also point out issues that were overlooked
in informal definitions. We expect especially lively
debates on the issue of edge-based against node-based
semantics (see discussion on optional/manadatory nodes in
Section 4.2) and on the notion of primitive feature/node
(Section 3.4).

Also, testing the tools that implement reasoning algorithms
supporting the studied languages would also be away to obtain
a clearer understanding of their semantics. As mentioned in
Section 6, some preliminary results can be found in [39, 47].
Those are currently being applied within the context of a
real e-Government SPL [48].

298 IET Softw., 2008, Vol. 2, No. 3, pp. 281–302

& The Institution of Engineering and Technology 2008 doi: 10.1049/iet-sen:20070055

www.ietdl.org

7.2 Extending the results

Our method has been applied to most informal FD
languages. A generic formalisation of all of them, FFD,
was delivered and has helped gather precise results on
them. However, a few specific constructs found in some of
the surveyed languages still have to be formalised, most
notably, layers, generalisation and implementation links in
FORM [9] and binding times in [15].

Concerning other formal languages, the comparative
semantics of FFD with vDFD (van Deursen and Klint’s
FDs) [17] was studied. More recently, several formalisation
proposals for FDs appeared in the literature. Comparative
semantics should be applied to them as well.

1. Batory [22] provides a translation of FDs to both
grammars and propositional formulae. His goal is to use
off-the-shelf logic-truth maintenance systems and SAT
solvers in feature modelling tools. The semantics of
grammars is a set of strings, and thus order and repetition
are kept in his first semantics. The semantics of
propositional formulae is closer to ours but differs in that
decomposable features are not eliminated.

2. In [21], Czarnecki et al. define a new FD language to
account for staged configuration. They introduce feature
cardinality (the number of times a feature can be repeated in
a product) in addition to the more usual (group) cardinality.
Foremost, a new semantic domain is proposed where the full
shape of the unordered tree is important, including
repetition and decomposable features. The semantics is
defined in a four-stage process where FDs are translated in
turn into an extended abstract syntax, a context-free
grammar and an algebra. In [20], the authors provide an
even richer syntax. The semantics of the latter is yet to be
defined, but is intended to be similar to [21].

3. Benavides et al. [23] propose to use constraint
programming to reason on feature models. They extend the
FD language of [21] with extra-functional features,
attributes and relations between attributes. Subsequently,
they describe tool support based on mapping those FDs to
constraint satisfaction problems.

4. Wang et al. [25] propose a semantics of FDs using
ontologies. A semantic web environment is used to model
and verify FDs with web ontology language description
logic (OWL DL). The RACER reasoner is used to check
inconsistencies during configuration. Their semantics
slightly differ from ours, since (1) they omit justifications
and (2) they did not eliminate auxiliary symbols.

Here, we just gave very sketchy ‘first impressions’ of the
main existing formal definitions. Each of them now needs
to be carefully studied according to the proposed method
and criteria.

7.3 Applying the results

Two main applications of our current results can be
considered.

† One of the main expected outcomes of our work is the
development of efficient tool support for FD languages.
Several tools with reasoning capabilities already exist [38]
but, for most tasks, they have to face tough tractability
issues. Our results (on formalisation and complexity,
mainly) can help (1) verify the correctness of these
algorithms and (2) devise optimised algorithms.

† Our work suggests VFD as the language currently
obtaining the best ranking according to the studied criteria.
To make VFD usable, we need to provide them with a
concrete syntax (One is proposed in Fig. 3 but was not the
outcome of a profound reflection.) and tool support.

Preliminary results on such applications were briefly
discussed in Section 6, and more extensively in [39, 47].

7.4 Extending the scope

As mentioned repeatedly in the paper, the scope of our
research is limited to a restricted number of qualities and
criteria. Studying other qualities and criteria is equally
important. In particular, issues related to concrete syntax,
ignored in the current paper, are complementary to our
current investigations. In our survey of FD languages, we
could observe that there were also diverging views on this
issue. Despite our focus on semantics, we do not
underestimate the impact of a good concrete syntax. In the
end, this is the only thing most language users will actually
see. Evaluation and improvement of concrete syntax is an
area of research that possesses an important body of
knowledge which is currently being structured [16, 49],
and of which FDs could take advantage. An important
topic is reducing the visual complexity of real-size
models [49].

Finally, an empirical approach to the quality of FD
languages could complement and help validate our
theoretical results. For example, complexity results, which
are typically worst-case results, should be confronted with
observations of the kinds (structure, size. . .) of models that
are actually used by practitioners. For instance, if it turns
out that most real FDs are trees (instead of DAGs), then
our complexity results should not be considered too
pessimistically.

8 Conclusions
The bad news confirmed by this paper is that the current
research on variability modelling is fragmented. The
modelling of variability, and particularly the use of FDs,
can be a precious help in mastering the complexity of
variability management in the context of SPLE. FDs

IET Softw., 2008, Vol. 2, No. 3, pp. 281–302 299
doi: 10.1049/iet-sen:20070055 & The Institution of Engineering and Technology 2008

www.ietdl.org

allow to represent in a concise way the commonalities and
the variabilities of a whole family of products in terms of
their features. Unfortunately, existing research in the field
is characterised by a growing number of proposals and a
lack of accurate comparisons between them. In particular,
the formal underpinnings of FDs need more careful
attention.

The nocuous consequences of this situation are: (1) the
difficulty for practitioners to choose appropriate feature
modelling techniques, (2) an increased risk of ambiguity in
models and (3) underdeveloped or inefficient tool support
for reasoning on FDs.

The good news that this paper delivers is that there are
remedies to this situation. The ones that we propose are: (1)
a global quality framework (e.g. Krogstie et al.’s SEQUAL)
to serve as a roadmap for improving the quality of feature
modelling techniques; (2) a set of formally defined criteria to
assess the semantics-related qualities of FD languages; (3) a
systematic method to formalise these languages and make
them ready for comparison and efficient tool automation
and (4) a first set of results obtained from the application of
this systematic method on a substantial part of the feature
modelling languages found in the literature.

Although the road ahead is still quite long, we are confident
that the community can take profit of our proposal. It could be
used, for example, as part of an arsenal to elaborate a standard
feature modelling language. This standard would not suffer
from ambiguity, and its formal properties (among others)
would be well known, allowing to devise proved correct
efficient reference algorithms. We also think that the
proposed approach is general enough to be applied to
cognate areas where existing modelling techniques face
similar challenges. Our work on FDs can thus be regarded
as a language (re)engineering examplar available for being
transposed to other domains.

9 Acknowledgments
We would like to thank David Harel and Bernhard Rumpe
for being a source of inspiration in this work and for their
encouragements. Our gratitude also goes to Andreas
Metzger, David Benavides, Martin Glinz, Juha
Savolainen, the anonymous referees and the attendees of
the Software Variability Management (SVM) workshop
(held in Helsinki in April 2007) for their constructive
comments. This work has been financed by Interuniversity
Attraction Poles Programme, Belgian State, Belgian Science
Policy, the Belgian National Bank and the FNRS.

10 References

[1] CLEMENTS P.C., NORTHROP L.: ‘Software product lines:
practices and patterns’ in ‘SEI Series in Software
Engineering’ (Addison-Wesley, 2001)

[2] FOREMAN J.: ‘Product line based software development
– significant results, future challenge’. Software Technology
Conf., Salt Lake City, UT, USA, 23 April 1996

[3] POHL K., BOCKLE G., VAN DER LINDEN F.: ‘Software product line
engineering: foundations, principles and techniques’
(Springer, 2005)

[4] KANG K., COHEN S., HESS J., NOVAK W., PETERSON S.: ‘Feature-
oriented domain analysis (FODA) feasibility study’,
Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University, November 1990

[5] COHEN S., TEKINERDOGAN B., CZARNECKI K.: ‘A case study on
requirements specification: driver monitor’. Proc.
Workshop on Techniques for Exploiting Commonality
through Variability Management at the Second Int. Conf.
Software Product Lines (SPLC’02), 2002

[6] BONTEMPS Y., HEYMANS P., SCHOBBENS P.-Y., TRIGAUX J.-C.:
‘Semantics of FODA feature diagrams’. Proc. Workshop
on Software Variability Management for Product
Derivation: Towards Tool Support, Boston, August 2004,
pp. 48–58

[7] SCHOBBENS P.-Y., HEYMANS P., TRIGAUX J.-C., BONTEMPS Y.:
‘Generic semantics of feature diagrams’, Comput. Netw.,
2007, pp. 456–479

[8] SCHOBBENS P.-Y., HEYMANS P., TRIGAUX J.-C., BONTEMPS Y.:
‘Feature diagrams: a survey and a formal semantics’. Proc.
14th IEEE Int. Requirements Engineering Conf. (RE’06),
Minneapolis, Minnesota, USA, September 2006,
pp. 139–148

[9] KANG K.C., KIM S., LEE J., KIM K., SHIN E., HUH M.: ‘FORM:
a feature-oriented reuse method with domain-specific
reference architectures’, Ann. Softw. Eng., 1998, 5,
pp. 143–168

[10] GRISS M., FAVARO J., D’ALESSANDRO M.: ‘Integrating feature
modeling with the RSEB’. Proc. 5th Int. Conf. Software
Reuse (ICSR’98), Vancouver, BC, Canada, June 1998,
pp. 76–85

[11] EISENECKER U.W., CZARNECKI K.: ‘Generative
programming: methods, tools, and applications’ (Addison-
Wesley, 2000)

[12] ERIKSSON M., BÖRSTLER J., BORG K.: ‘The PLUSS approach –
domain modeling with features, use cases and use case
realizations’. Proc. 9th Int. Conf. Software Product Lines
(SPLC’05), 2005, pp. 33–44

[13] RIEBISCH M., BÖLLERT K., STREITFERDT D., PHILIPPOW I.:
‘Extending feature diagrams with UML multiplicities’.
Proc. 6th Conf. Integrated Design and Process Technology
(IDPT ‘02), Pasadena, CA, June 2002

300 IET Softw., 2008, Vol. 2, No. 3, pp. 281–302

& The Institution of Engineering and Technology 2008 doi: 10.1049/iet-sen:20070055

www.ietdl.org

[14] RIEBISCH M.: ‘Towards a more precise
definition of feature models’. Position Paper in
Modelling Variability for Object-oriented Product Lines,
2003

[15] VAN GURP J., BOSCH J., SVAHNBERG M.: ‘On the
notion of variability in software product lines’. Proc.
Working IEEE/IFIP Conf. Software Architecture
(WICSA’01), 2001

[16] MOODY D.L.: ‘What makes a good diagram? Improving
the cognitive effectiveness of diagrams in IS
development’. Proc. 15th Int. Conf. Information Systems
Development (ISD’06), 2006

[17] TRIGAUX J.-C., HEYMANS P., SCHOBBENS P.-Y., CLASSEN A.:
‘Comparative semantics of feature diagrams: FFD vs
vDFD’. Proc. Workshop on Comparative Evaluation in
Requirements Engineering (CERE’06), Minneapolis,
Minnesota, USA, September 2006

[18] VAN DEURSEN A., KLINT P.: ‘Domain-specific language design
requires feature descriptions’, J. Comput. Inf. Technol.,
2002, 10, (1), pp. 1–17

[19] MANNION M.: ‘Using first-order logic for product line
model validation’. Proc. 2nd Softw. Product Line Conf.
(SPLC’02), San Diego, CA, 2002, LNCS, vol. 2379, Springer,
pp. 176–187

[20] CZARNECKI K., HELSEN S., EISENECKER U.: ‘Staged configuration
using feature models’, Softw. Process Improv. Pract., 2005,
10, (2), pp. 143–169

[21] CZARNECKI K., HELSEN S., EISENECKER U.:
‘Formalizing cardinality-based feature models and their
specialization’, Softw. Process Improv. Pract., 2005, 10, (1),
pp. 7–29

[22] BATORY D.S.: ‘Feature models, grammars, and
propositional formulas’. Proc. 9th Int. Conf. Software
Product Lines (SPLC’05), 2005, pp. 7–20

[23] BENAVIDES D., RUIZ-CORTÉS A., TRINIDAD P.:
‘Automated reasoning on feature models’. Proc.
17th Int. Conf. (CAiSE’05) LNCS, Advanced
Information Systems Engineering, 2005, vol. 3520,
pp. 491–503

[24] SUN J., ZHANG H., LI Y.F., WANG H.: ‘Formal semantics and
verification for feature modeling’. Proc. 10th IEEE Int.
Conf. Engineering of Complex Computer Systems (ICECCS
‘05), 2005, pp. 303–312

[25] WANG H., FANG L.Y., SUN J., ZHANG H., PAN J.Z.: ‘A semantic web
approach to feature modeling and verification’. Proc. Int.
Workshop on Semantic Web Enabled Software
Engineering (SWESE’05), 2005

[26] ASIKAINEN T., MANNISTO T., SOININEN T.: ‘A unified conceptual
foundation for feature modelling’. Proc. 10th Int. Software
Product Line Conf., 2006, pp. 31–40

[27] HAREL D., RUMPE B.: ‘Meaningful modeling: what’s the
semantics of ‘semantics’?’, IEEE Comput., 2004, 37, (10),
pp. 64–72

[28] HAREL D., RUMPE B.: ‘Modeling languages: syntax,
semantics and all that stuff, part I: the basic stuff ’,
Technical Report MCS00-16, Faculty of Mathematics and
Computer Science, The Weizmann Institute of Science,
2000

[29] KROGSTIE J.: ‘Using a semiotic framework to evaluate UML
for the development of models of high quality’. Unified
modeling language: system analysis, design and develoment
issues’ (IDEA Group Publishing, 2001), pp. 89–106

[30] KROGSTIE J., SINDRE G., JØRGENSEN H.: ‘Process models
representing knowledge for action: a revised quality
framework’, Eur. J. Inf. Syst, 2006, 15, (1), pp. 91–102

[31] HEYMANS P., SCHOBBENS P.-Y., TRIGAUX J.-C., MATULEVIČIUS R.,
CLASSEN A., BONTEMPS Y.: ‘Towards the comparative evaluation
of feature diagram languages’. Software and Services
Variability Management Workshop Concepts, Models and
Tools (SVM07), 2007

[32] LINDLAND O.I., SINDRE G., SØLVBERG A.: ‘Understanding
quality in conceptual modeling’, IEEE Softw., 1994, 11, (2),
pp. 42–49

[33] MOODY D.L.: ‘Metrics for evaluating the quality of entity
relationship models’. Proc. 17th Int. Conf. Conceptual
Modeling (ER ‘98), Singapore, November 1998, in Ling
T.W., Ram S., Lee M.-L. (Eds.): Lecture Notes in Computer
Science, vol. 1507, Springer, pp. 211–225

[34] MOODY D.L., SHANKS G.G.: ‘Improving the quality of data
models: empirical validation of a quality management
framework’, Inf. Syst, 2003, 28, (6), pp. 619–650

[35] BECKER J., ROSEMANN M., VON UTHMANN C.: ‘Guidelines of
business process modeling’. Business Process
Management, 2000, pp. 30–49

[36] METZGER A., HEYMANS P.: ‘Comparing feature diagram
examples found in the research literature’, Technical
Report, University of Duisburg-Essen, 2007

[37] OMG: ‘UML 2.0 Superstructure Specification’,
available at: http://www.omg.org/cgi-bin/doc?formal/05-
07-04, Last Checked: 12/08

[38] BENAVIDES D., RUIZ-CORTÉS A., TRINIDAD P., SEGURA S.: ‘A survey
on the automated analyses of feature models’. Jornadas de
Ingeniería del Software y Bases de Datos (JISBD’06), 2006

IET Softw., 2008, Vol. 2, No. 3, pp. 281–302 301
doi: 10.1049/iet-sen:20070055 & The Institution of Engineering and Technology 2008

www.ietdl.org

http://www.omg.org/

[39] CLASSEN A., HEYMANS P., SCHOBBENS P.-Y.: ‘What’s in a feature:
A requirements engineering perspective’. Proc. 11th Int. Conf.
Fundamental Approaches to Software Engineering (FASE’08),
Held as Part of the Joint European Conf. Theory and Practice
of Software (ETAPS’08), Budapest, Hungary, March–April,
2008, vol. 4961, pp. 16–30

[40] TARSKI A.: ‘Logics, semantics and metamathematics’
(Clarendon Press, 1956)

[41] ADAMEK J., HERRLICH H., STRECKER G.: ‘Abstract and concrete
categories’ (Wiley, 1990)

[42] FELLEISEN M.: ‘On the expressive power of programming
languages’. Proc. 3rd European Symp. Programming (ESOP
‘90), (1990, edited by Jones N.D. (ed.), vol. 432, LNCS,
(Springer), pp. 134–151

[43] KLEENE S.C.: ‘Introduction to metamathematics, vol. 1 of
bibliotheca mathematica’ (North-Holland, Amsterdam, 1952)

[44] JANSSENS D., ROZENBERG G.: ‘On the structure of node label
controlled graph languages’, Inf. Sci., 1980, 20,
pp. 191–244

[45] PAPADIMITRIOU C.H.: ‘Computational complexity’
(Addison-Wesley, 1994)

[46] DJEBBI O., SALINESI C.: ‘Criteria for comparing
requirements variability modeling notations for product
lines’. Workshop on Comparative Evaluation in
Requirements Engineering (CERE’06), 2006, pp. 20–35

[47] METZGER A., HEYMANS P., POHL K., SCHOBBENS P.-Y., SAVAL G.:
‘Disambiguating the documentation of variability in software
product lines: a separation of concerns, formalization and
automated analysis’. Proc. 15th IEEE Int. Requirements
Engineering Conf. (RE’07), October 2007

[48] DELANNAY G., MENS K., HEYMANS P., SCHOBBENS P.-Y., ZEIPPEN J.-M.:
‘PloneGov as an open source product line’. Proc. Workshop
on Open Source Software and Product Lines (OSSPL’07),
2007

[49] MOODY D.L.: ‘Dealing with ‘Map Shock’: a systematic
approach for managing complexity in requirements
modelling’. Proc. 12th Working Conf. Requirements
Engineering: Foundation for Software Quality (REFSQ ‘06),
Luxembourg, 2006

302 IET Softw., 2008, Vol. 2, No. 3, pp. 281–302

& The Institution of Engineering and Technology 2008 doi: 10.1049/iet-sen:20070055

www.ietdl.org

