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EXECUTIVE SUMMARY

The SURFACE (Self Configurable Air Interface) pij@ims at studying and evaluating the
performances of a novel generalised air interfamgable of self-reconfiguring in order to
satisfy global network QoS (Quality of Service) uggments. It considers Multiple Input
Multiple Output (MIMO) technologies as an option.

Wireless MIMO channels are being investigated esitesty nowadays. Their potential
benefits for wireless communications, their higtieoughput and the increase of their QoS is
desired, and needed by new services of the thinérgéion of cellular networks (3G) and its
evolutions (Beyond 3G, B3G).

To improve wireless transmissions, the state of ¢hannel should be known by the
transmitter to adapt its transmission policies.t8® receiver has to send feedback on the
channel state to the transmitter. But when thislbeek reaches the transmitter side, it is
likely to be outdated, and therefore useless. Hewet we use the current channel state to
predict its likely future state, we are able tognait more efficiently.

In this deliverable, we aim at extending existin®@ or MIMO simplified channel models
that are suited for designing channel predictore @ocument first presents the WINNER’s
SCME channel model, which will be the referencencigh for testing predictors. Afterwards
it introduces the SURFACE channel model, which esivied from the WINNER’'s SCME,
with parameters adapted to the requirements obfttier workpackages.

Several simplified channel models and predictoesthen introduced. Two of them seemed
particularly relevant for our research work, nam#ig original ESPRIT algorithm and a

modified version by Andersen et al, as having kaitomputer power requirements. So we
investigated and tested them thoroughly. Actualigse two predictors are only for SISO
channels, so we extended them into MIMO models.

After several tests which revealed rather goodguernces, and low quantization feedback
robustness, these two MIMO predictors were mergéal a single one, taking best of both.
The new predictor requires 5 channel observationaf2x2 MIMO channel, and 17 if 4x4
MIMO. The feedback can be quantized on 2x 4 bitsgoenplex MIMO coefficient without
decreasing prediction accuracy. It means it requl@0 bits, collected during 18.75 ms (37.5
LTE TTI) to set up a 2x2 MIMO predictor, and 2,1@s collected during 63.75 ms (127.5
LTE TTI) to set up a 4x4 one. As far as noise rohess is concerned, performances are
similar at SNR of 20 dB and SNR of 100 dB. Perfanoeadecreases when SNR is only 3 dB.

We finally investigate to topic of rank predictiohthe MIMO channel matrix. For that goal,
we use the MIMO predictor to get future MIMO chahmeatrices, and after their
quantization, we compute its rank. It seems a ifigapoint quantization is required to avoid
zero matrices after rounding, and only 2x 4 bits gemplex MIMO channel coefficient is
optimal to get the best results.

Due to a late start, a first restricted versiortha$ deliverable was released in January 2007,
only reflecting the work of four person months. S final release reflects the work of fifteen
person months.
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DISCLAIMER

The work associated with this report has beeneduwit in accordance with the highest technicaldsteds and
the SURFACE partners have endeavoured to achievelégree of accuracy and reliability appropriatéhto
work in question. However since the partners haveantrol over the use to which the information tegmed
within the report is to be put by any other paatyy other such party shall be deemed to have isatig$elf as to
the suitability and reliability of the informatian relation to any particular use, purpose or agapion.

Under no circumstances will any of the partnergirtlservants, employees or agents accept any itiabil
whatsoever arising out of any error or inaccuraoyntained in this report (or any further consolidati
summary, publication or dissemination of the infatibn contained within this report) and/or the cectad
work and disclaim all liability for any loss, danggxpenses, claims or infringement of third pagits.
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LIST OF SYMBOLS

* n, - number of transmit antennas
* ng- number of receive antennas

* n - number of time samples considered by the SURFAI&Hnel model

Samples
* ng, - humber of subcarriers considered by the SURF&R&hnel model

* ng,., - humber of symbols per PRB

Symb

* Ny, - Number of taps considered by the SURFACE chamoelel

¢« h™ - SISO component of a MIMO channel, relevant foe tink from them™
transmitting antenna to tm&' receiving one.

A

e« h™ - predicted value oh™"

+ a, - amplitude for th&™ path
* @ - spatial Doppler shift for thie" path
« 1, - tap delay for th&" path

* G, - angle between the motion of the receiver anddilection of waves impinging
from thek" scatterer

* N,- number of scatterers local to the receiver (amusequently, the number of NLOS
paths)

 k, :2/‘_72 - wave number, wherg is the wave length

+ z =e'* - signal poles

* @ - diagonal matrix containing the signal poles

e Z -Vandermonde matrix containing the signal poles

* R- correlation matrix of the channel

e X(t) - transmitted signal

* y(t) - received signal

* w(t) - additive noise

* D - degree of the polynomial estimator

e E - number of observations used to compute a pr@dict

* A - nxmHankel matrix containing the channel observations

* H-MIMO n; xn, matrix, containing the channel observations fgiven time step
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/- Pseudo inverse matrix operator

.* - Conjugate transpose matrix operator

< - Complex conjugate matrix operator

.up - Matrix operation, removes the last row of a mxatr

.pown - Matrix operation, removes the first row of a mat

* |, -thenxnidentity matrix
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LIST OF ACRONYMS

« 3GPP 4 Generation Partnership Program

« CPU Central Processing Unit

« CSI Channel State Information

« ESPRIT Estimation of Signal Parameters by Rotatibneariance Techniques

e IST Information Society Technologies

« LOS Line-of-sight

* MECoM MIMO ESPRIT based on Correlation Matrix

* MEHaM MIMO ESPRIT based on Hankel Matrix

« MIMO Multiple Input Multiple Output

« MISO Multiple Input, Single Output

* NMSE Normalized Mean Square Error

* NLOS Non Line Of Sight

 PRB Physical Resource Block

« QoS Quality of Service

* ROMANTIK ResOurce Management and AdvaNced Transcealgorithms for
multihop networKs

* Rx Receiving antenna

« SCM Spatial Channel Model

« SCME Spatial Channel Model Extended

e SISO Single Input Single Output

* SNR Signal to Noise Ratio =10 fog ,, mean h‘z ; in decibels (dB)

mean |w|

e SURFACE Self Configurable Air Interface

« SVD Singular Value Decomposition

« TDD Time Division Duplex

e Tx Transmitting antenna

*  WINNER Wireless World Initiative New Radio
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1 INTRODUCTION

Multiple Input Multiple Output (MIMO) technologieare now really attractive because of

their benefits: using several antennas both orstnatiter and receiver sides can improve the
amount of transmissible information if there isfgiént decorrelation between the antenna
pairs. These benefits will be useful to propose mewless multimedia services, because they
require good quality channels, with high data rates

To properly exploit time varying wireless chanrteke transmitter needs to collect knowledge
about the channel state, to use the right powesl kevtransmit, or to wait a bit if the channel

can not accept information currently, but in TDD des. The transmitter can not collect

knowledge about the state of the channel, unlesgdbeiver feeds back some information.
However, when the transmitter receives the Cha8teke Information (CSI) fed back by the

receiver, this CSI can be outdated... So to evaltiecurrent channel state, the transmitter
shall make “guesses”, to predict the channel staémce, this is the reason why predictions
are so useful in wireless communication.

In this deliverable, we aim at extending existin§@" and MIMO simplified channel models
in order to design a MIMO predictor of the chanstalte.

First, we will present the WINNER’s SCME channeldeb WINNER is a European project
[WIN], and it has implemented SCME in Matlab; whishan extension of the 3GPP Spatial
Channel Model. We will use it to provide us refereiCSI for our computer simulations.

We will then present the SURFACE channel model,ciwhis a wrapper of the WINNER'’s
SCME, where we updated a few parameters to mathkr SURFACE workpackages
requirements.

An overview of relevant channel models and predsctwill follow. Two of them revealed
particularly interesting and appropriate for ourrking objectives. They are both based upon
the ESPRIT algorithm. We will detail them, and explain theirathematical background.
Following this description, we will give results cdmputations about these two predictors.

Actually, these two predictors are only SISO preati, so we will extend them into MIMO
predictors, and then present some computationtse$Me will also investigate the robustness
against limited feedback quantization used to tiiaenMIMO predictors.

We will then merge the two predictors into a singtee, using best of both techniques, and
present its performance.

Finally, we will investigate the topic of rank pretion of the MIMO channel matrix.
Actually, the whole matrices will be predicted hetMIMO predictor, and then their rank
will be assessed.

The document ends with concluding remarks and éuvork items.

! Single Input Single Output
2 Wireless World Initiative New Radio

* Estimation of Signal Parameters by Rotational tiarece Techniques
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2 THE WINNER’S CHANNEL SIMULATOR

This section shortly introduces the WINNER’s SCMi,comprehensive spatial channel
model we will use as reference during our Matlaimpotations.

WINNER is a European project, from the Sixth FraragwProgram effort [WIN]. Among its
numerous contributions, it extended the 3GPP Sp@iannel Model (SCM) into a new
model called SCME [Bau 05], [SCM 05].

The original SCM is a ray-based MIMO channel modéth a stochastic modeling of the
scatterers. It is divided into several environm&rgnarios, both line-of-sight (LOS) and non-
LOS. It models the received signal as 6 distintaylpaths (channel taps), and each one is the
sum of 20 complex sinusoids. All the parametersthigapower, delay and angle of
arrival/departure) are modeled as random varialldepending on given probability density
and cross-correlations functions.

The main extensions brought by SCME are new enmmrt scenarios and bandwidth of
100 MHz in both 2 and 5 GHz carrying frequenciastead of only 5 MHz at 2 GHz.

The SCME channel model has been implemented indldaGiven the environment scenario
and the antenna array configurations, it generebb@snel matrices, then multidimensional
arrays containing a specified number (100 per dgfabhannel impulse response samples for
all links.

Here are the default parameters of SCME:

. 2 Tx, 2 Rx, 6 paths per Tx-Rx pair (so 2 x 2 MIMBaanel, with 6 taps);

. Urban Micro scenario;
. Mobile user velocity: 10 m/s ;
. Sampling : 2 samples per half wavelength,

SOAt =375 ms=75TTIl (withLTETTI =0.5ms);

. 100 time samples are computed;
. Center frequency: 2 GHz.

The resulting multidimensional array has therefdse2 x 6 x 100 dimensions.

For the purpose of the present work, we will feed predictors with the channel impulse
response samples produced by SCME.

To match other workpackages requirements, the WIRNECME has been tuned. The next
section presents the modifications we made ontibartel model
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3 THE SURFACE CHANNEL MODEL

This section presents the SURFACE channel modeichwis a wrapper to 3GPP Spatial
Channel Model Extended (SCME) implementation predidy FP7 IST WINNER project
v1.0 (May 30, 2005) [SCM 05]. Either existing SCNdBrameters or a few new ones are set
in accordance with FP7 IST SURFACE D7.3 [SD 7.3].

Two main scenarios have been implemented, nameatyodiell and Pico-cell scenarios, both
for urban area. The Micro-cell scenario is derivieain the 3GPP Micro cell scenario
[BGPP 07], and proposes the choice between Outtto@utdoor and Outdoor to Indoor
alternatives. The Pico-cell scenario is derivednfrine B1 scenario of the WINNER Il IST
project [WIN 6.13.7] and is only for outdoor-to-dobr, with both LOS and NLOS coverage.

Two modeling levels are proposed. The model canrdse at link level, and perform
simulations at PRB scale, or it can be run at sydéxel where the whole channel bandwidth
is considered and no pathloss nor shadowing isexppl

3.1 Input/Output parameters

The SURFACE channel model has been implementedMATLAB function with 5 input
parameters, and 3 output parameters.

The input parameters are

The computation level : “link” or “system”;

The scenario : “micro_020", “micro_o2i”, “pico_los pico_nlos”;

The terminal velocity, in km/h;

The number of transmit antennas;

ok~ 0N PR

The number of receive antennas;

The outcomes of the model depend on the level.sBlewte that there are three output
variables, whether this is a link- or a system-eamnaulation. However, the meaning of these
output variables differs.

For the link level, the output parameters are:

1. The MIMO channel matrix (channel response), whgras the number of Txn, is
the number of Rxng,, is one (channel is computed for the full PRB, aatifor each
of its subcarriers), and finallgg ., is the number of symbols of a PRB;

2. Cis aflag set up at 1 because we emulate oneneharatrix per PRB;

3. Tis aflag set up at 0 (no time compression).
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For the system level, the output parameters are:
1. The MIMO channel matrix, with size; X ng XN, X Ng.0.o Wheren, is the number
of TX, ng is the number of Rxn.,, is the number of taps (6 actually), and finally
n is the number time samples;

Samples
2. The channel covariance matrix;

3. A structure containing the delays and the powerseath tap, and some other
parameters.

3.2 Remarks about the model

For link-level simulations, setting SCME parametinstypical PRB bandwidths leads to a
non frequency selective channel. This is why suimrascale is useless, and we model the
channel at PRB scale.

Still for link-level simulations, the carrier fregocy is hard coded to the one of a PRB chosen
randomly in the bandwidth of the channel. In Mi€eH scenarios, there is a total of 50 PRBs
in a 10 MHz bandwidth, whereas in Pico-Cell scesrihere are 60 PRBs in a 20 MHz
bandwidth.

For system-level simulations, SCME is hard codegrtavide the channel model of a single
link (one MS, one BS, whatever the number of ardehnlt could however deliver such
models for several links simultaneously.

WINNER B4 model is currently not supported in thed”Cell NLOS indoor MS scenario.

3.3 Pathloss assumptions

For Pico-cell scenario, the pathloss has been adapecause it requires some parameters
SCME does not have. According to [SD 7.3, Tablg,#dat LOS case, pathloss should be

PL,os =22.710g,,(d,[m]) + 41+ 20l0g,,(f[GHZ/5),  d, <R,

PL, s =40l0g,,(d,[m]) + 41-17.3l0g,(R,,) + 20log,,( f [GHZ]/5), d, 2R,

with Rbp :4(th _1)/§th -

and for NLOS case, pathloss should be

and d, =10m..5km

Plyiios = PLLOS(dl[m]) +20-12.5n; +10n; |0910(d2[m])

with n, =max(28-0.0024*d,[m|, 184) and d, =w/2..2km, w=15m

whered; andd, are defined as on Fig 3-1.
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B B - &
N "N e

Figure 3-1 : Urban micro environment, position & Bnd MS

Actually, WINNER SCME only provides us with distad, and no angles to derive distances
d; andd,. So we imposed the following scheme to estimagedibsired distancedi andd,,
where anglé worth 45° in NLOS case, or 6.4° in LOS casedffl00m,0 = 6.4° impliesd;=
90m andd,=10m) :

dp

MS

dy

BS

Figure 3-2 : Urban micro environment, assessmemtosition of BS and MS

The micro-cell pathloss has also been changed filtenSCME settings, to match LTE
pathloss assumption, according to [SD 7.3, Tablg, 4ut it only depends on distande
which value is known by SCME. So the LTE pathloskrbt require any special assumption,
unlike the WINNER Il B1 pathloss of pico-cell sceioa.

The next two subsections details the parametettseofhannel model, for each scenario. Then
we will move to channel prediction and review aited set of channel models and prediction
strategies that revealed relevant for our predicivork.
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3.4 Link level parameters

Micro-Cell Pico-Cell
Parameters _ _ Source
Outdoor Ou_tdoor LOS NLOS
to-outdoor | to-indoor
Level ‘link’ -
User- Scenario | ‘micro_o020’ | ‘micro_o2i’ | ‘pico_los’ | ‘pico_nlos’ -
defined Velocity
input [km/h] 3/30 S'J‘Efg&% -
parameters Nt User-defined requirements
NR User-defined following
October 28,
Channel 2007
Output C 1 1 1 1 conference
variables call
T 0 0 0 0
Carrier Depends on simulated Depends on simulated
frequency PRB, PRB, TS 36.211
. o v8.0.0
[GHZ] within [1.75 ; 2.25] within [4.6 ; 5.4]
MS-BS Original
distance Random SCME
MS height 15 Original
[m] ' SCME
BS height D7.3, Table
(m] 15 10 4.3
Number of SCME flat
paths in 1 over a PRB
TDL
Internal
SCME Delay
parameters| Sampling 5.67 (= 1/180 kHz) 3.2 (= 1/312.5 kHz -
[us]
Number of X
time 14 symbols or 1 ms 12 symbols or 0.3456 D7.3, Table
ms 2-1
samples
Time
sampling 71.42 28.8 D7.3, Table
2-2
[us]
WINNER B1
scenario
D7.3, Tables
Pathloss 4-1 and 4-2
Shadowing
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3.5 System level parameters

Micro-Cell Pico-Cell
Parameters _ _ Source
Outdoor Ou_tdoor LOS NLOS
to-outdoor | to-indoor
Level ‘system’ -
User- Scenario | ‘micro_o020’ | ‘micro_o2i’ | ‘pico_los’ | ‘pico_nlos -
defined Velocity 3
input [km/h] S'L';‘;e&% -
parameters Nt User-defined requirements
NR User-defined following
October 28,
Channel 2007
Output C Covariance matrix conference
variables call
T SCME'’s FullOutput
Carrier
frequency 2 5
[GHZ]
MS-BS Random
distance
MS height 15
[m]
BS height D7.3, Table
(m] 15 10 4.3
Number of
paths in 6
Internal TDL
SCME De|ay
parameters | sampling 100 50
[us]
Number of
time samples 100
Time
sampling 135 54
[ms]
WINNER B1
scenario
Pathloss | No pathloss from SCMEPathLossModelUsed = ‘no’)
Shadowin No shadowing from SCME
9 (ShadowingModelUsed = ‘no’)
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4 MODELISATION AND PREDICTION - STATE OF ART

In this section, we will present some channel modeld estimators we investigated. There
are many more existing channel models, but weiariging our scope to the ones that have
been showed to perform predictions. We will firstiew the ROMANTIK parametric model
and a polynomial estimator. Then we will go throegMISO estimator, and we will end this
section with an ESPRIT-based technique, which seerfiswell into our approach.

Before introducing these models, we will say a walbdut Kalman filters. This kind of filters
would be very useful to help our models and predscto deal with noisy situations. Indeed,
Kalman filters could perform smoothing to remove tffects of the noise and provide a
better estimate of the channel state. But the mdeawback of these filters is that they need
significant computational power. We are rather agnat designing a predictor which can be
run on typical energy- and CPU-limited devicesalword, we are looking for the best trade-
off between prediction performance and computemuireqnents. So we will not discuss
Kalman filters further on.

4.1 The ROMANTIK model

ROMANTIK is an FP5 IST project. Its name medasfOurce Management anddvaNced
Transceiver algothms for multihop netwd€s. As part of its contributions, it proposed a
channel model. The ROMANTIK model was initially $8® parametric model [Bar 03a]. It
has later been generalized into a MIMO model [B&b]0 These models also perform
prediction of the channel state. It is worthwhilentioning here that the ongoing FP6 IST
project URANUS follows up ROMANTIK activities, in working towards parametric model
of channel estimation.

4.1.1 The SISO model

Here is the SISO channel model, from [Bar 03a], etthe channéh depends on timé and
delay r Netl ,
Y hit,r) = ) a, e %" o(r-1.)
k=1
This model contains (N, +1) parametersa,, 7,, ¢ k. The a, are the amplitudes, the

r, are the delays and thgg are the Doppler frequency shifts of each patlnefahannel.

Actually, its a (N, +1)-order model; a sum diN_+1) weighted complex sinusoids. To
estimate these parameters, sounding is suggesfBdri03a].

Hence for the prediction, the scheme is first ttneste the §N_+1) parameters of the

channel, then to run the model with the estimatadpeters to predict future values. Because
these parameters are time-varying, predictionsrestiain reliable only for a limited period of

time. The prediction at time+ A hence writes:
Ng+1

h(t+A,7) = Z a, e %" 5(r-1 t+n)
k=1

! Universal RAdio-liNk platform for efficient USereatric access
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4.1.2 The MIMO model

ROMANTIK further proposed a MIMO channel model (jB&3b]), considering that a
n, xn, MIMO channel can be regarded aslh, spatially correlated SISO channels.

The exploitation of the spatial correlation lead RENTIK to assume that the delayg and
the Doppler shiftsg, are identical for all then, [h; SISO components of a given MIMO

channel. This assumption is motivated by the faet tantennas are relatively close with
respect to the distance between the transmittertladeceiver, such that the variation of
delay or Doppler shift from an antenna pair to Aeotan be regarded as negligible.

Indeed, the delays depend on the path lengths,irarftbnt of the distance between the
transmitter and the receiver, the few centimetetsvben transmit/receive antennas are quite
negligible. The same applies to the Doppler shiftsey depend on the angle between the
movement of the receiver and the direction of tlaes impinging from the scatterers. If the
scatterers are not too close, the variations ofeabgtween receiving antennas are negligible
too. However, despite delays and Doppler shiftsideatical from one spatial link to the
other, those links can appear uncorrelated dueetalifference between their amplitudes.

In the ROMANTIK MIMO channel model, the communicati link between them™
transmitting antenna and th& receiving one is given by:

N +1 .
h™(t,r) = > a™ e % J(1-r,)

k=1

The prediction scheme is the same than in the SE¥@: first estimate the parameters of the
channel model by sounding, then run it to computaré values. For a given link, the MIMO
prediction at timet + A writes:

Ng+1

h™+0,7) = > 8™ & %Y 5(1-1,14s)
k=1

4.1.3 Comments

As we can see, ROMANTIK relies on a parametric nhoBieom a feedback point of view, a
parametric model has the advantage to be fullynddfiwith a reduced set of parameters.
Indeed, it's easier to send a small amount of patara than a lot of CSI. On the other hand,
the predictions will remain reliable as long as plagameters remain constant.

The core of this parametric model is actually ttineste these parameters. To perform it,
ROMANTIK suggest sounding, and documents [Bar G8a] [Bar 03b] describe in details
several sounding schemes.

As we do not know whether SURFACE will afford sourg] we considered other options. In
the next section, we will review a simpler predictmecause it is polynomial.
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4.2 A Polynomial Estimator

4.2.1 Proposed scheme

This section is based on [Che 03]. The authorsqwefirst to compute a polynomial model
which fits a set of channel observations, thenuo this model in order to predict future
channel observations. In fact, the model is spti two separate models, one for the real part
of the channel state, and the other for its imagipart.

The polynomial, discrete time channel model, ingigdan initial phase, , writes:

Ng+l

hn) =Y a &% = |m)+ jQn)

k=1

We have to compute the two polynomilis) andQ(n) such that

Real part of the channel state

I(n) = Dz_lckmk = 0(h(n))

D-1
Q(n) => d.m" = O(h(n) ) = Imaginary part of the channel state
k=0

whereD is the degree of the polynomial. Therefore, tawdethec, and thedy, we have to
solve these linear systems:

1 D - D \(g O(hyn))

1 D-1 .. DD & | _ O(hn-1))
1 1 - 1 Jley) (O(kn-D+1))
1 D - D™ \(d )

1 D-1 .. (O] d | _ d hyn-1))
i 1 1 ds [ h'n-D+1))

More details about mathematical justification o elgorithm is given in [Che 03].

The predictiong|, time instants later, are then given by:

LN

T+ = 3 o (D+1)* and G(n+1) = 3 d, (D+D)*-

k=0 k=0

LN

= h(n+1) = DZl(ck+io|k)E(D+|)k

0

File: SURFACE_D2_2 v2_0.doc, January 2007 Page 21 of 86



SURFACE (27187) Title: Channel Model Prediction

4.2.2 Comments

This polynomial channel model is very simple, wathly two small matrices to invert, which
additionally are always the same. Their inversddtherefore be precomputed, which would
ease the process.

The model is also very simple because it does eetira lot of observations. We can aim at
using polynomials with degree 3, 5 or at least li@neans that we do not need more than
E=3, 5 or 10 observations to produce predictionker E is the number of channel
observations the predictor needs.

However, there are two main drawbacks: predictiemesonly reliable on very short term and
this is a SISO model.

4.2.3 Results of computations

We have implemented this predictor in a Matlabpcand tested it with WINNER’s SCME.
SCME was used with its default values listed in tldac2. Figure 4-1 shows two
representative runs of the predictor (real partyorrhe left subfigure is obtained with a
polynomial of degree 2, and the right one with &pomial of degree 7. In the first case, the
warm-up, which is the initial period untit channel observations have been collected, is
only 3 observations. It is 8 in the second caseiriguhe warm-up period, no prediction is yet
available.
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Figure4-1 : Predictions of the polynomial estimator

These predictions are not reliable widh= 2, and its gets worse when increasing the dexfree
the polynomial.

This model is actually too simple and it can natfguen well with a too low sampling rate as
the one used iRigure 4-1. Therefore, it cannot predict the oscillationstted channel state,
and its predictions often fall much below or abdke value it has to predict, resulting in a
significant prediction error.

We will now review a MISO estimator, which represents the channel as a sumeighted
sinusoids. It is not as simple as the polynomidimestor is. Hence, it should be more
accurate.

! Multiple Input Single Output.
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4.3 A MISO estimator

This subsection is based on the predictor desciibb¢érr 02]. This predictor is meant to be
used with smart antenna base stations, e.g. seugratransmitting antennas, and only one
receiving antenna. This is a MISO channel modeis ©the model, with theindex standing
for the transmitting antenna this “sub-channed’related with:

N +1

() =2 a'e'"
k=1

As mentioned above, the channel model is a weighted of complex sinusoids. With the
help of mathematical properties detailed in [Arf,02can be expressed as a weighted sum of
itself at past instants:

Ng+1

h'(t)=-2 b h(t-k)

k=1

such that we just have to compute theto be able to predict future channel observations
from a linear combination of past values. To dettive by, one has to solve a huge linear
system, with the pseudo inverse of a large mawixcampute. More details about this
predictor and the way to compute thecoefficients are to be found in [Arr 02].

To exploit the spatial correlation between thechannels, the authors of [Arr 02] suggest to
use the samis coefficients for each transmitting antenna.

To draw a conclusion about this method, we cantbay it seems complex. It deals with
larger matrices, which contain future measureméiis. non causality of the method and the
heavy computations motivated our choice not toitest

We will now shortly present a channel model whiekras us to be really promising. The next
two sections will dig deeper into this SISO chanmeldel and the MIMO model we have
derived from it.

4.4 The Andersen et al. predictor

This last subsection is based on the paper [AndI&%%uthors model the channel as follows:

Ng+1 Ng+1

hit)=> ae'%=>az', z =e % [k

k=1 k=1
It means that the channel impulse respdifeis considered as a weighted sum(bif, +1)

complex sinusoids. Thax are the weighting coefficients and tige are the spatial Doppler

frequencies. So, the main goal of this method iBnid the z,, called signal-poles, and tlag
(amplitudes).
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Actually, this model can be seen as a modified ivrr®f the ESPRIT techniqiieWe
performed Matlab computations with this channel elaghd it seems to work great with
WINNER'’s SCME. So we have investigated it deeper,

The next two sections provide more details aboetvibrking scheme of this ESPRIT-based
technique. In Sectiol, we will review deeply the Andersen et al. préalicbut the next
section will first review the original ESPRIT tedbuoe.

! Estimation of Signal Parameters by Rotational fiarece Techniques
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5 THE ESPRIT PREDICTOR

This section will detail the working scheme of 88PRIT method [Sto 05]. We will discuss
about the channel model and its parameters, thewillvgive its mathematical background,
and we will conclude this section with a summangoathm.

5.1 Channel Model

This is the basic channel model we will use, dependn distancec

Ng+1

h(x) - Z ak eik/lxa)s(ﬁk)’
k=1

whereN, is the number of scattereeg,is the amplitudeg, is the angle between the motion
of the receiver and the direction of arrival of tfeeeived signalk, is the wave number,
depending on the wavelengtk,(= 277/ 1).

To reduce the problem of modeling the channel siata classical frequency estimation
problem, we will assume that velocity is constasu ¢onstant sampling in time is constant
sampling in space) and that amplitude variationy & neglected. We will also transform
the model into a discrete time model.

Ky AX cos( 8;

So, we havee ’, where Ax is the move between two discrete time steps. Algtual

k, AX cos(8, ) is the spatial Doppler shift. We will write it . We will also writez, =€ % .
Ng+1 Ng+l

Therefore,hn) = > a " = > a z".
k=1 k=1

For our predictions, we have to find the, = e'%* (so-called signal poles) and
theax (amplitudes). We will now discuss about a wayeavk these parameters.

5.2 Basic idea

At first, we consider, a E x N, Vandermonde matrix such as

1 1

e e

A=| €4 e” s
QELia .. JElia,

Actually, 4 is linked to the channel matrix, because ¢ifeare the poles of the channel.
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Be Jyr =(ley,(0,...0)7) and Iy =((0,...0)7, 1), wherel; is the squarge-1) x (E-1)
identity matrix. Salyp and Joown are (E-1) x E matrices such that

1 1
4 g A
Jpp = : . : = A,p, and
gE2ia .. JE2ia
4 v @%s
2ig 2i gy
€ e A
Jpown A = . . : = Apown -
gEVia .. JEin

Note that these matrices d&-1) x N, . Actually, Aup is the 2 matrix without its last row, and
Apown iS4 without its first row.

It's easy to see thatl . [P = 4,,,, Means that

e' 0
ei(ﬂz

0 ei¢NS

5.3 The ESPRIT technique (mathematical background)

We will consider now the vectoy(n) = h(n)Ix/n)+w'n) which is the received signal

from the channel to study; whexeis the information to transmit, and is the noiser( is
discrete time).
Ng+1

Actually, becauséy'n) = Z a, z.", we have this matrix equation :
k=1

h(n,n-1...,n-E) = Ala.
Soy(n) = Alalx(n)+w(n).

Be R the covariance matrix of the received signal,*tltenotes the conjugate transpose of
the matrix.

R = Elyn)lyn)*} = El alalxn)ixn)*a*a*} + E wn)iwn)*}
— R= AP1* + ol ; whereP = E{ aln)X(n)* @&}
Please pay attention that we need the hypothesightd noise is a white noise to write:

E{wn)ovyn)*} = o2

Notice too that we have to be in discrete timedmpute our predictors, so in the matriégs
A, P, there are discrete time values.
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We will write | = rank(a[P[.2*). In fact,| = N_ +1 , the number of paths.

Actually, A[P[2* has N, +1 positives eigenvalues, arld-(N_,+1) zero eigenvalues. They
are linked to the eigenvaluesif

If we write /Tj for the eigenvalues ofilP[2*, and A for those ofR, we have that
4 = Aitot Oi=1. N+l
. o> 0j=N_+2,..E

Now let's make a Singular Value Decomposition (SMid)the R matrix @ squareE x E
matrix).

where S contains the eigenvectors of thé, +1 greatest eigenvalues, a@l contains the
remaining eigenvectors.

A 0 Ayn2 0
So R=S 5*+G G .
0 /1N5+1 0 Ae

Let’'s calculateR(S:

A 0 Mz 0 A 0
RIS = S B*3 + G G*S$S = S -
H_’_J \ﬁ_r_J
0 /]Ns+1 " 0 Ae - 0 /]Ns+l

(I's because of the SVD: the eigenvectors arecorbinmalised, and theB 1 G .)

A 0
= RBE=S
0 /‘NS+1

But becaus® also equalsa[P [}1* + ¢?l, RIS also equalsa®P1*[3 + o°S !

= RB = APMH*[S + 0°S

A 0
Therefore, AP*® + 0°S = S :
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And then
A —0? 0
A
AP*S$ = S = SIA .
0 Au—0°
So, S= 2P07*3I\* = alC
%/_J

>

C

— S = 4IC and 4 = SIC™.

Now remember that we proved thak, [A[D = Jyqu [A.

So, becauseg = SIC™,
Jpp BICT® = Jyp AP = Iy = Jpoun BICT

And then J,, [BIC'PIC = J,g 5B

| —
A
=D

Finally we have that S, [D = Sy, Where

Sre = Jyp S = (E-1) first rows ofS and

Soown = Jpown S = (E-1) last rows ofs

Becausep = C™[@I[C, andC is nonsingular,® and ® share the same eigenvalues. They
are related by a similarity transformation. Theigemvalues are actually the diagonal
elements of®, i.e. €®,€®, ..., €%, our signal poles. Therefore, to find tag=¢€'%,
we have to compute the SVD &fto deriveS. From S we can get the matrix, whose

i Ng+1

eigenvalues are the desired signal paé&s, €®2, ..., €
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5.4 How to compute the correlation matrixR?

First, we have to fill# , a Hankel matrix with the received signal. Pleast that we will
needE =m+ n-1 observations to fill the matrix.

hl) h2)  h3) h(m)
h(2) h(3) h(4) hfm+1)
h('n) h(n'+1) h(n.+2) h(m+.n—1)

Then, we can get an estimationRoby computing HUIL .

Indeed,
h(d) . h(n)
a1 h(:l) h(:2) ) h(m) - R2) . h(n+l
m m D :
hn) h(n+l) --- h(n+m-1) Rm) . Rrn+m-1)
[ MURYHIRZ i Y+ dyminemy

FORUHIRZ) AT U - R s i v

> hk)h(k) > hk)h(n+k-1)
k=1 k=1
HH™ m : m
= —= . “. .
m m _ m _
> hn+k-1)hck) D hn+k-1)h(n+k-1)
k=1 L. k=L
m m
Po P P P
A P Po P :
= P Pi P P
Y
Py ° P2 Pa Po

where p, is the time correlation between channel obseraaibn)} and{h/n+k)}.
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As a result, we can get an estimatioriRpthe correlation matrix of the received signal, by
computing:
HLH*

m
The shape of the Hankel matrix, e.g. the ratio betwthe number of columms and the
number of rows, has an influence on the performance of the pteditncreasen improves
the precision of the correlatiops . Increasen enlarges the range of time correlations inside

the correlation matriR. For our computations, we chagéo be nearly square matrices, with
one more row than columngg m).

R =

5.5 Computing the amplitudes

Once we have found the signal poles, we can competemplitudes by solving this linear
system:

h1) 1 1 - 1 a,
h2)| |z 2z - Zya 3,

hNE)) \z7 " - 7)) \ag.
Y Z a

Y=zl = a=(Z*2) ' Z*N

5.6 Producing predictions

Consider we have computed the signal poles anda#smciated amplitudes from the

E =n+m-1 channel observationg1), h(2), ..., h(n + m-1). It means that
Ng+l Ng+L Ng+L Ng+1
h)=>a; h2)=kdaz; h3)=>az’ .. hE)=)az" "
k=1 j=1 k=1 k=1

In real life, the environment changes, and the shhimpulse response changes accordingly.
The channel ought not to vary too fast, unlesscmputed parameters (signal poles and
amplitudes) would quickly become outdated withicegtain time span.

Assuming those parameters to be valid within a rgitaerizon, we just have to reuse the
computed parameters for predictions as follows:

Ng+1

On=E+LE+2... irn)=>a z"".
k=1
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5.7 Summary Algorithm

Here is the ESPRIT prediction algorithm.

1.

H LH*
m

Compute an estimate of the correlation ma®ixR = , Where# is a Hankel

matrix containing the channel observations.

Compute the SVD oR (-~ R=U.X V), and derive thé& matrix, which comes from
the first (N, +1) columns ofU. (N, +1) is the number of singular values Rflarger
than the variance of the noise (assumed here kaden).

Find the® matrix by solvingS,; [D = Syqyn-
The signal poles4} are the eigenvalues ab .

Find the amplitudes fromY=Z[@& = a=(Z*Z)"[Z*N, where Z is a

Vandermonde matrix filled with the poles, aMds a vector containing the channel
observations.

Finally, here are the predictions:

Ng+l

On=E+LE+2... h'n)=>az".
k=1

In Section7, we will discuss the robustness of this predicdod we will also show results of
Matlab computations. But before coming to this dsston, we will detail the modified
ESPRIT algorithm of [And 99] briefly introduced 8ection4.4.
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6 ANOTHER PREDICTOR BASED ON ESPRIT

In their paper [And 99], the authors introducedaaiant of the typical ESPRIT algorithm we
just reviewed. Their idea is to apply the ESPRIalgsis to a Hankel matrix which contains
the channel observations.

6.1 Basicidea

First, we have to fill the xm Hankel matrix#;, withn + m=E + 1, andm< n. E still stand for
the number of observations collected to perforndistens.

hl) h2)  h3) - h(m)
h2) h3)  h4) - h(m+l)
h(.n) h(n'+1) h(n.+2) h(m+'n—1)

Let’'s compute a SVD aff:

w0 2]
2 2

whereU (n x m) andV (m x m) contain orthonormal columns, arXd(m x m) is a diagonal
matrix whose (diagonal) elements are sorted byevaly contains the firs(N, +1) columns,

where (N, +1) is the dimension of the signal space.
Let us now compute @ matrix such as
'JUP [Ul [® = ‘JDOWN [Ul

where thez are the eigenvalues of tlie matrix. In [And 99], it is suggested to discardgso
with an amplitude larger than 1.05. This threshislcset arbitrarily. Figuré-1 shows an
example of the set of poles we can identify. Thesolying beyond the red circle are
discarded.

15

0.5

Imaginary part
+

s el 0.5 0 0.5 1 15

Real part

Figure6-1 : A plot example of computed poles (green pldtke green circle is the unitary circle, and e
curve stands for the threshold
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When the poles are known, we can compute the amdpkt and build the predictor in a
similar way to the standard ESPRIT algorithm:

a=(Z*2)'Z*y

N+l

where the predictiofisare given by: On=E+1 E+2,... ﬁ(n) = Zak z'n.
k=1

6.2 Mathematical justification

Be # the Hankel matrix which is used it this methodd & the correlation matrix used by

ESPRIT. SoR = HUT
m

Let us make singular value decompositions:

SVD

R= U, .V~
SVD
= U, .2, .V, *
S =V, .2, .U, *

Therefore, becausB = M' we have

m

OU, 2y OV * OV Ry Uy

=l

SinceVy has been obtained from a SVB,; is a unitary matrix.

It means thatv,, .V, * =1 =V, *.V,.
1
= R=U, E{a >, EEH*jHJH*.

Keep in mind thatR = U, .>, .V *,
whereUgr is aE x E unitary matrix, likeUy;

whereVr* is aE x E unitary matrix, likeUy*;

where ., is aE x E diagonal matrix, Iike(i X, Iy *) actually.
m

! Oddly, we discovered that if we take 1dg the(Ns +1) first columns of thesr matrix, we will get the same
results as if we perform the SVD and uselhmatrix.
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Sointhe end,R = U, E@i >, 2, *) W, * isan Eigen Value Decomposition (EVD)
m
of R, and the singular vectors derived from the SVD+ofare the eigenvectors BY.

Therefore, using th&lg matrix for the SVD oR or theUy matrix from the SVD ofir does
not make a difference.

6.3 Differences between this algorithm and ESPRIT

ESPRIT can deal with noise, because the numberolgfspto identify is drawn from the
number of singular values larger tharf, the variance of the noise (assumed to be known).

The Andersen et al. predictor does not explicityaldwith the noise. The number of poles to
identify remains always the same, whatever theentdgsel. Consequently, one may expect
ESPRIT to be more robust against noise than thafireddersion of Andersen et al.

On the other hand, ESPRIT delivers normalized polesreas the Andersen et al. predictor
does not. The latter only suggests discarding peids a too large modulus. Indeed poles
with a modulus larger than unity will bring insthty in the system, and the influence of
poles smaller than unity fade along time.

6.4 Summary Algorithm

Here is the summary of this alternate predictor.

1. Compute the SVD of thex matrix (a Hankel matrix containing the channel
observations).

2. Take the first(Ns+1) columns of theU matrix ;) to compute thed matrix:
Jpp U 1D = Jpoun [U;-

3. Therefore, the poles are the eigenvalue®oivhich are smaller than 1.05.

4. Then compute the amplitudea=(Z* Z) ' [Z* Y

Ng+l

Finally, the predictions are given byln=E+1L E+2,... ﬁ(n) = Zak z".
k=1

In the last two sections, we have reviewed two HFHRsed predictors. We will now
proceed to a section presenting the results ofMha#ab computations we performed with
these two algorithms.

File: SURFACE_D2_2 v2_0.doc, January 2007 Page 34 of 86



SURFACE (27187) Title: Channel Model Prediction

7 SISO COMPUTATIONS

In this section, we will show the results of SIS@mputations, performed with Matlab. We
have tested the ESPRIT predictor and the Anderseal.eone, and we have used the
WINNER’s SCME to provide us with a reference chdntwe predict. For all the results
described in this section, SCME was used with gfudlt values as listed in Sectiéh
Additionally, we used Matlab in its default resadutt, which is 64 bits.

In the next subsection, we will show results oladirwithout noise, and compare the two
methods. Then, we will show the effects of addirddtevGaussian noise on the channel.

7.1 Sample computations
In this subsection, we will compare the two methiodsoise free computations.

Figure 7-1, Figure 7-2 and Figure 7-3 show a few sample results obtained wih= 14
channel observations (warm-up period of 14 x 7(5ms = 52.5 ms). These graphics show
the real part of the values. Their imaginary p#otk quite the same. On the left handside,
one observes the actual channel observations aidptiedictions. On the right handside, the
prediction error is illustrated.

1.5 . . . ! ! ! ! ! ! 2 . . . !
#  Channel T —#+— ESPRIT
s —+— ESPRIT i 151 Andersen et al.
Andersen et al. "
2 I e ]&
Sosl * * X g ! \
= * * + oL )
% . * Bosl : R
g o, " WA 2 A LA
S + * \ 2 I Tk A 4]
< * N R A I * = T W N B S O
&-0.5¢ * e + 4 S * X
g * * " 505
R * " =
O -1r w 1
1
-L.5F * 1.5
-2 I I I I I I -2 L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Discrete time Discrete time
Figure7-1 : A sample result of the SISO predictdEs=(14).
3 . . 3 . .
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Figure7-2 : Another sample result of the SISO predic{ars 14).
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Figure7-3 : More sample results of the SISO predict&rs (L4).

Figure 7-4 presents another execution of the predictorsthmipredictors are now computed
with E = 20 values (warm-up period of 20 x 7.5 x 0.5 =n7§.

0.8 ; ; ; : : : : : : 0.6 ; ;
+  Channel —+— ESPRIT
—+— ESPRIT Andersen et al.
0.6+ E no.4t B
Andersen et al. * o
o
, I
°
So4p £ F @0.2 X ,
- 5 / )\ [ \ / \ / \ / \
2 * =
) Q /
o2t * Eo 4]
<} * g l
% * . * S \
ol * -0.2
£ * * | ¥ < oo ‘
c * * — {
= % o |
Qo.2} * * 50.4 J\
=
|
0.4F + g 0.6 I
*
aE.
0 6 * 1 L L L L L L Il L _08 L L L L L L L L L
5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Discrete time Discrete time

Figure7-4 : Sample result of our SISO predictdes<(20).

The Andersen et al. predictor seems to perform mhoetter than the standard ESPRIT
method. Its predictions remain reliable for a mimiger time span. On the other hand, the
error of the Andersen et al. predictor is exporadytincreasing, which is not the case with
the ESPRIT method.

The exponentially increasing error of the Anderseal. predictor appears because the signal
poles are not normalized. Actually, they shouldubgary, because of their physical meaning.
If the modulus of a computed pole is larger thaityuit will bring instability to the system.
On the contrary, if its modulus is smaller thantynithe effect of the pole will fade.
Therefore, adding a normalization step while conmgutthe signal poles will make the
Andersen et al. predictor less instable.

To assess the benefit of this normalization stepnaof the two predictors, built frol = 14
observations, where the Andersen et al. predicks dn exponentially increasing error, is
shown inFigure 7-5 andFigure 7-6.
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Figure7-5 : A result sample of our SISO predictors

With the same observations, and a normalizatiorp, stee outcome of the Matlab
computations significantly changes, as showRigure 7-6. Pay attention to the difference of
scale!

=

5

*+  Channel * —F— ESPRIT
1L —F— ESPRIT * i — s Andersen et al. i
Andersen etal. | * * * g
2 5
Q o5 o5t 1
" f e 1 2R LA
[
< L —
T [}
5 o +ﬁ\z/\a\ %\/ 2. 7 G N
8 w4 x G LW VA T
© < I * / ]
e * o
g-o.s— * 20.5— B
I ¥ s
S 1t N N 1 Sl 1
* L §
=
1.5+ B W, st B
) 5 10 15 20 25 30 35 40 45 50 ) 5 10 15 20 25 30 35 40 45 50
Discrete time Discrete time

Figure7-6 : The same result sample of our SISO predi@stig the figure above, with normalized poles,tffier
Andersen et al. predictor

The normalized Andersen et al. predictor has aor éewel below 0.2 during the 5 first steps,
whereas the unnormalized Andersen et al. predi@sran error below 0.2 for 12 steps! But if
one sets 0.5 as threshold for the maximum toleraexd, the predictor with normalized poles
will remain below the threshold until the end oé tiatlab run. With unnormalized poles, the
error raises above the threshold as soon as ther28iction step.

Hence, it seems that the normalization step isbétt long term predictions, but short term
predictions are not so good with that step. Withhradization, the Andersen et al. predictor is
rather good all along the computation run. Withibuit is really accurate in the short term,
but its performance degrades along time. For tlet of this section, the investigated
Andersen et al. predictor is the original one, @ighout normalization of the signal poles.

Please keep in mind that there is no rationaleetatee maximum tolerated error level. Of
course 0.2 is better than 0.5, but we can not dewbat is affordable and what is not.
Therefore we will now use an averaging metric teas the performance of the predictors.
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7.2 Performance indicator

The following sections will discuss the Normalizdeéan Square Error (NMSE) achieved by
the predictors. This performance indicator will gmoe averaged results, instead of sample
results as in the former subsection.

The NMSE for a given future time instagiwith to > E) is defined by

. [bvo-Aeo))

NMSEt, ) = I:ZE‘:l . —E)Px

It is the average of the squared difference betwtbenreference channehj and the

prediction (ﬁ). It is normalized with respect to the average @oWXx of the channel, which
is computed from

E+K

Px=Y"|(ht))|,

t=E+1

whereK stands for the considered prediction horizon.

7.3 Performance of the predictors

In this section, we will assess both predictorspaise free conditions. First, we will see the
behavior of the predictors when initialized from ddannel observations. It corresponds to
an 8x7 Hankel matrixcigure 7-7 shows the time evolution of their NMSE, averagedb66
runs. There is not a great difference betweenwbetéchniques.

MMSE of the SISO predictors, trained with 14 samples,
Moise free conditions, results averaged on 500 runs
18

1.7+
16|
151
141
13F
121
111

MNMSE

09k
0a8F
07k
06F
05r
0.4r
03F =
0z
0

—O— ESPRIT
Andersen et al. []
1 1 1 1 1 1 I I I
045 1 1.4 2 24 5 S 7] 4 45 5
Prediction Range [wavelength)]

Figure7-7 : Time evolution of the NMSE for the SISO pidrs in noise free conditionk € 14)

We also tried to collect different numbers of obadéions to build our predictors, by choosing
E = 20, andE = 8. These results are presentefigure 7-8 The computations point out the

similar behavior of the two predictors, and thduahce of the number of received signal
observations used to build the predictors. The notrgervations we used, the smaller the
NMSE is.
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NMSE of the SISO predictors, trained with 20 samples, MNMWSE of the SISO predictors, trained with 8 samples,
Moise free conditions, results averaged on 500 runs Moise free conditions, results averaged on 500 runs
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Figure7-8 : Time evolution of the NMSE for the SISO pidis in noise free conditiorSE 20 ande = 8)

Figure 7-9 compares the influence of the number of obsermatifor each predictor
separately. Using only 8 observations seems toobemough, but the difference between 14
and 20 observations is slight. Keep in mind thatcfalecting 8 observations, we need to wait
30 ms, so 60 TTI, and for 20 observations, it rezgii’5 ms, so 150 TTIl. Moreover, the more
observations we use, the more the computationdearanding.

MMWSE of the ESPRIT predictor, WMSE of the Andersen et al. predictaor,
Moise free conditions, results averaged on 500 runs Moise free conditions, results averaged on 800 runs
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Figure7-9 : Time evolution of the NMSE for the SISO piedrs, noise free conditions

All these computations were performed in noise t@editions. Let us see how the predictors
are robust against noise.

7.4 Noisy computations

Now, we want to check the robustness of our predicagainst noise. So we added white
Gaussian noise to the results of SCME, and rarpoedictors on these modified data. Here
are some graphics showing, for each algorithm tithe evolution of the NMSE with four
noise levels - the Signal to Noise Ratio (SNR) @ 1B, 40 dB, 20 dB and 3 dB. These
results are compared with the noise free situation.
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Figure 7-10 presents for each predictor,

evolution of the NMSE at various SNR’s.

MMSE of SIS0 ESPRIT, trained with 20 samples,

Results averaged on 500 runs
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Figure7-10: Time evolution of the NMSE for our predictamsoisy situationsg = 20)

With added noise, a difference appears betweemwberedictors. ESPRIT produces better
results for the first time steps, but after a while NMSE overtakes the one of Andersen et al.
And the higher the SNR is, the longer ESPRIT isdoghan Andersen et al. At the low SNR

of 3 dB, the performances are really poor, espgdiat ESPRIT.

In a same wayfigure 7-11 presents the time evolution of the NMSE for eadddjztor, but
now trained with only 8 channel observations, stilVarious SNR'’s.

MMEZE of the 5150 ESPRIT, trained with 8 samples,

MMSE of the SISO Andersen et al. predictor, trained with 8 samples,
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Figure7-11: Time evolution of the NMSE for our predictimsnoisy situationsk = 8)

With only 8 observations to train the predictore influence of the noise is very limited. The
noise free curve is really close to the ones at SXIRO and 100 dB, and the curves at
SNR = 20 dB are not so far away. The situation BHNR = 3 dB still produces poor results.
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We also still have that ESPRIT produces lower NMSE first time steps than the
Andersen et al. technique and again, the higheStiR is, and the longer ESPRIT is better
than Andersen et al. Keep in mind that ESPRIT us@se variance to set the value of N
which influences the number of signal poles impliedhe computations. On the other side,
the Andersen et al. technique only discards polés modulus larger than 1.05, which is a
default value not depending on the noise levelsThitherefore an explanation for the better
results of ESPRIT in noisy situations, at leasttfar first predicted values.

While in noise free conditions, we said that therenobservations we use to train the
predictors and the more accurate they are, wherssgaunoise has been added, using only 8
observations produce better results than with 26eofations.Figure 7-12 shows that
comparison with SNR = 20 dB.

MMSE of the SIS0 ESPRIT ;
. MMSE of the SISO Andersen et al. predictor,
55 SMR =20 dB, results averaged on 500 runs SR =20 dB, results averaged on 500 runs
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Figure7-12 : Influence of the number of observationsarsy conditions (SNR = 20 dB)

Actually, it is only at SNR of 100 dB or in noiseeé conditions that predictors work better
with more observations. This is maybe because a@sing the number of observations
increases more the influence of the noise thamatheunt of useful information.

7.5 SISO conclusions

Because noise free conditions are not practical,eas@n a SNR of 100 dB seems unrealistic,
it seems more efficient to limit the number of cheahn observations used to train the
predictors. Moreover, it makes the computations ldemanding, and it requires shorter
warm-up time.

About the choice of the technique, ESPRIT seenpetiorm better than the other, especially
for the first time steps. It is maybe because #pdsl its predictions according to the noise
level. But on drawback it means that it requirdsvetions of that noise level.

Having covered the SISO case, let us move nowadtiMO case.
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8 MIMO PREDICTORS

In this section, we will present innovative MIMOtersions of the ESPRIT and the Andersen
et al. predictors.

The idea is now to find the poles for all the traitéeceive antenna pairs of the MIMO
channel in a single operation. Of course, we camsider that an; xn; MIMO is like

n, ;SISO channels, but if we rum, [h; times the SISO algorithm, we will not exploit the
spatial correlation there is between these SISQratia.

Once we have identified the poles of the MIMO chelnwe compute the amplitudes for each
transmit/receive antenna pair like in the SISO case

We will present the MIMO extension of ESPRIT thée MIMO extension of the Andersen
et al. technique in the following subsections. Tm@ify the notations, we will consider a
2 x 2 MIMO, but these predictors also work withgar antenna arrays, as we will see in the
following chapter.

8.1 The MIMO extension of ESPRIT

This subsection presents the MIMO extension ofatiginal ESPRIT technique. This MIMO
predictor will be called MECoM, for MIMO ESPRIT Bed on Correlation Matrix.
Remembering the summary algorithm of the SISO ESRiREection5.7, the first step of the
algorithm is the writing of the time domain corrga matrix.

So here is a way to get it for our MIMO channetsEiwe still have to fill a “Hankel” matrix
with the channel observations. Beforehand, we dgfine MIMO channel vectors:

hawo (1) = (M), h'2(t), h#(t), h?%(t)) = vectorized channel matrii.

hMIMO(l) hMIMO(z) hMIMO(m)
= hMIM(:)(Z) hMIM(:)(B) hMIMO(:m+1)
hMIMO(n) hMIMO(n+1) hMIMO(m+n_1)
M@ W1 b5 P*1 - h"(m) hm  hmy  h*m
_|M2) h%2) h52) n*2) . Wi hEmel) hYmel) R me)
h*m) h?m) h*m) ¥*m) - h*mn-1) h*mn-1) h*(mn-1) h?(m+n-1)

The incidence of parametera and n should be further discussed. The phenomena we
described in the SISO case (Sectidd) are still relevant in the MIMO case. For our
computations, we chosa andn such that# is nearly a square matrix, with slightly more
rows than columns.
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Then, we compute an estimationRby ﬂ
m

When we have obtained the correlation matrix of MIMO channel, we use the same
algorithm as in the SISO case. It means that wepcbentheS matrix from the SVD oR
(- R=U.XV, andSis filled with the firstN, columns ofJ; N, comes from the number of

singular values oR larger than the variance of the noise).

With this S matrix, we can get the matrix by solvingS,; [D = S,o,n- The MIMO signal
poles (thez) are then the eigenvalues of.

Once the poles have been identified, we deriveathplitudes. We can compute them from

Y™ =Z[@"", whereZ is a Vandermonde matrix filled with the MIMO polesd Y™ is a
vector containing the observations correspondinthéam™ transmitting antenna and tné&
receiving antenna.

= a™=(z*Z)tEZ*ym"

Therefore, we have the poles of the MIMO chanrted £) and the amplitudes corresponding
to these poles for each transmitting-receiving mmaepair (thea™ [1m, n), and we are able
to do predictions:

Ng+1

Ot=E E+1... h""(t)=>a ™" z'.
k=1

We will discuss later about the reliability of tieegredictions, and we will also show results
of Matlab computations. But before this performaassessment, we will present our MIMO
extension of the Andersen et al. predictor.

8.2 The MIMO extension of the Andersen et al. predictor

This section will now extend the Andersen et ajodathm to MIMO scenarios. This MIMO
predictor will be called MEHaM, for MIMO ESPRIT Bad on Hankel Matrix. As it was
detailed in Sectior6.4, the Andersen et al. technique does not reguicerrelation matrix.
Instead, one directly applies the analysis to a Kdammatrix containing the channel
observations. In the MIMO case, the procedurenslar, with the following matrix:

Fy Wy Wy Py - WBmo Bm w1
Lo | T2 W) P2 12 Wy Py ) Fmey

') h"z(n).hm(n) m) - hmn-Y Hz(rm-n—l).hm(rm-n—l) h2(m+n—1)

Again, the choice of our parametansandn should be discussed. They should be chosen with
the same rule than in the MIMO version of ESPRI®r Bur computations, we will use the
same # matrices (nearly square, with slightly more ratan columns).
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When we have generated thematrix, we compute its SVI)— # =U.X V), and take the
first columns of theJ matrix U;) to compute thed matrix:

Jyp U [0 = Jpouy Uy,
such asJ, U, and J,, (U, are square matrices.
Again, the poles of th®1IMO channel are the eigenvalues@fwhich are smaller than05

Then we have to compute the amplitudes for eactsinéting-receiving antenna pair, like we
did with MECoM:

amn = (Z* Z)—l EZ* Nmn

Ng+l

Therefore, the predictions are given byt =E, E+1,... h™"(t)= Zakm“ z'.
k=1

8.3 Numerical complexity of these predictors

Before presenting computation results, we investijahe numerical complexity of the two
predictors. They both require 3 SVD of matriceshwsize n; x ng, which can be done

in Ofmin{n,n2 , nZn.}).

The other computations to get the predicting patarsecan be doné)(n?ng), but MEHaM

requires two times less computations. Moreover, MEHIoes not require to estimate the noise
variability, so the computational load is furtheduced.

Once the signal poles and the amplitudes are knpredijcting the channel state for the next time
step can be done i@(nT nRNS).

In the next section, the performance of these tv&PERIT-based MIMO predictors are
assessed with Matlab computations on SCME obsenaati
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9 MIMO COMPUTATIONS

In this section, we will present results from Matleomputations of the MIMO extensions of
both ESPRIT and Andersen et al. predictors, regmgtMECoM and MEHaM. We will still
rely on WINNER’s SCME to provide us with a simul@tMIMO channel, using its default
values listed in Sectiod. Matlab was run in its default resolution, whisl64 bits.

9.1 A typical computation

Figure 9-1 to Figure 9-4 first illustrate the results of a typical executiof both predictors in
noise free conditions, showing the difference ofidwour between them. Both collected
E = 11 channel observations. Because the MIMO seé$-@x 2, there are four plots kigure
9-1. Each of them shows the channel observationsdinared the predicted values in green.

Channelobservation

Channelobservation

Figure 9-2 presents the error curves for the MECoM algorithitn.has
performance.
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Figure9-1 : A typical MECoM computation
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Figure9-2 : Error of a typical MIMO ESPRIT computation

On the other handfigure 9-3 shows a typical run on the MEHaM predictor.

Channelobservation

Channelobservation

The prediction error is shown Figure 9-4.
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Figure9-3 : A typical MIMO Andersen et al. predictor countation
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Figure9-4 : Error of a typical MIMO Andersen et al. pretdir computation

It appears that MEHaM performs better than MECoMleast from this single typical run.
Let us now consider the averaged performance dfetlpvedictors, to have more consistent
figures.

9.2 NMSE in MIMO scenarios

As in the SISO case, we will consider the Normalizdean Square Error. In MIMO
scenarios, the NMSE for a given future time insta(ith to > E) is defined by

w1 |ty = Aot )f
NMSEt,) = Z ZZPX‘ E)m . ‘

t=E+1 n=1 m=1

where Px, the mean power of the MIMO channel, isioled by

(h"mct)f

ng E+K

P =Y 3 ¥

n=1 m=1 t=E+1

and K stands for the considered prediction horizon.

9.3 Performance of the predictors

This section will assess the performance of the Mljgredictors in noise free conditions.
Figure 9-5 shows the time evolution of the NMSE in a 2x2 scen Predictors where trained
with 11 MIMO channel observations, which means &8 Bbankel matrix, or with 20 MIMO
channel observations, which implies a 17x16 Hankelrix. Averages where performed
on 1,000 runs.
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MNMSE of the 232 MIMO predictors, for all taps,
Moise free, results averaged on 1000 runs
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Figure9-5 : Time evolution of the NMSE of our MIMO pretlics in noise free conditions

MEHaM, trained with 11 MIMO channel observation®guces the best results. Using more
observations causes an increase of the NMSE teatlne of 3. For MECoM, results are really
poor — pay attention to the scale. But there itrseasing 20 observations is better than using
only 11 observations.

Let us add some Gaussian noise, to see how mugiretestors are robust against noise.

9.4 Adding coloured noise

As in the SISO case, we have added Gaussian noisketreference channel to model
background noise and multiuser interference. Tlasenwas white in time domain, but
coloured in the space domain, to reflect spatiaietation of the MIMO channel.

We tested the two predictors with different noiseels. We used a Signal to Noise Ratio
(SNR) of {3, 20, 40, 100} dB. In noise free condiis, singularity problems occur. This is the
reason why we tested a SNR of 100 dB. Thanks todise, as weak as it can be, the Hankel
matrix # has independent rows and columns. This solvesitigilarity issue.

Remember that in SISO case, when Gaussian noisadesl, we found it is better to limit

the number of channel observations used to traenpttedictor. We also had that ESPRIT
performed better than the Andersen et al. technigsigecially at low SNR’s. In MIMO noise

free conditions, it seems that only MEHaM, so thiMd extension of the Andersen et al.
technique, produces consistent results.

We will see now how the MIMO predictors behave wherse is added. We will present first
results obtained with predictors trained with 1IM@ channel observations, and then we will
show what happens when using 20 or 5 observatiwtead.
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9.4.1 Using 11 observations on 2x2 MIMO

We will start our computation with predictors buwlh E = 11 observations for each antenna
pair. Figure 9-6 first presents the results for MECoM first. We di@00 executions, and we
tested four levels of noise: SNR =100 dB, 40 dBdB and 3 dB.

MMSE of the 22 MECoM predictors, for all taps,
Fredictor trained with 11 ob=ervations, results averaged on 1000 runs
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Figure9-6 : Time evolution of the NMSE for MECoM in noisjtuations = 11)

As you can see, the noise free curve is corrupteditgularity problems which disappear
when adding a few noise, even at the high SNR 6fdB. OnFigure 9-6, the graphic has
been truncated to present clearly the noisy curaed, therefore, only the first point of the
noise free curve is visible.

High SNR obviously brings lower NMSE for the firsalues, but not for all. After 3
wavelengths for example, NMSE is lower with SNR éBthan with SNR = 100 dB.

On the other handfigure 9-7 shows the results for MEHaM, also averaged on
1,000 executions. The curves are more stationdargt RMSE values are larger than with
MECoM, but they do not increase like the MECoM angs with MECoM, the lower the
SNR is, the more constant the NMSE will be. Aftaifta wavelength, NMSE are lower at
SNR of 20 dB than 100 dB.

Let us point out that for both predictors, havin§MR or 20 dB or 40 dB barely lead to the
same NMSE curves. One can also notice that MECotYl ®NR = 20 dB lead to the same
NMSE curve as MEHaM with SNR = 100 dB does.
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MMSE of the 2x2 MEHaM predictors, for all taps,
Predictor trained with 11 observations, results averaged on 1000 runs
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Figure9-7 : Time evolution of the NMSE for MEHaM in noisjtuations = 11)

If we want to compare the two predictors, at tredistic SNR’s of 3 and 20 dB, as it is shown
on Figure 9-8, we should say that MECoM produces better regattshe first time steps, but
then it is MEHaM which has the lowest NMSE curve. V& find the same conclusion as we
get for the SISO case. Therefore, if we considexdigtion horizon longer than half a
wavelength, MEHaM seems to be a better predictom MECoM.

MNMSE of the 2x2 MIMO predictors, for all taps,
Predictors trained with 11 observations, results averaged on 1000 runs
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Figure9-8 : Reliability of our two MIMO predictord5= 11, SNR = 40 dB or 3 dB)

We will try to improve the predictions by increagithe number of channel observations we
use to build the predictors.
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9.4.2 Using 20 observations on 2x2 MIMO

So we will use now 20 observations of each of ogn4h,) antenna pairs. So it means that

initialisation of the predictor (warm-up period)liseake more time and that the computation
load will be heavier, due to larger matrices.

Figure 9-9 shows the results for MECoM.

MNMSE of the 2x2 MECoM predictars, for all taps,
Predictor trained with 20 observations, results averaged on 1000 runs
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Figure9-9 : Time evolution of the NMSE for MECoM in noisjtuations E = 20)

Except with SNR = 100 dB, the NMSE curves for MECaké actually higher witle = 20
than withE = 11. And therefore, it is better to limit the walof E. Moreover, it makes the
computations less demanding and makes the predéastar to train.

The MEHaM’s performance is shownhigure 9-10. For MEHaM, it is a bit different. Using
more observations lead to lower NMSE.

MMSE of the 2x2 MEHaM predictors, for all taps,
Predictor trained with 20 observations, results averaged on 1000 runs
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Figure9-10 : Time evolution of the NMSE for MECoM in ngisituations = 20)
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Because MECoM performs better with a limited numifesbservations, and because, we can
not afford to wait and then to handle a large nundéeVlIMO channel observations, we will
now try to reduce the number of samples we neeth Wlr setting, 11 channel observations
require to wait 11 x 3.75 = 41.25 ms = 82.5 TTl,di3ervations need 75 ms = 150 TTI, but 5
observations can be collected within 18.75 ms & 37.l.

9.4.3 Using 5 observations on 2x2 MIMO

Because the Hankel matrix described in sect®dsand8.2 should have more rows than
columns, for a 2x2 MIMO channel, we need at leagtiBIO channel observations.

hll(l) h12(1) h21(1) h22(1)
h11(2) h12(2) h21(2) h22(2)
It means thatt = h11(3) h12 (3) h21(3) h22 (3)
h11(4) h12(4) h21(4) h22(4)
h11(5) h12(5) h21(5) h22(5)

Figure 9-11 presents the performance of the two MIMO predgtdrained with onlyfE =5
observations. Frequencies are still obtained frg®0A executions.

MMSE of the 2x2 MECoM predictors, for all taps, MMSE of the 2x2 MEHaM pradictor, for all taps,

Predictor trained with & observations, results averaged on 1000 runs 25 Predictor tained with & observations, results averaged on 1000 runs
& . T T
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Figure9-11 : Time evolution of the NMSE for MECoM and MEM in noisy situationsg = 5)

The MECoM performances are not so depredated wtsdmguonly 5 MIMO channel
observations, and are even equivalent for the fiirstlictions. As far as MEHaM is concern,
except for the unrealistic 100 dB curve, the NM3& equivalent foE = 11 andE = 5 at the
beginning. But after 2 wavelengths, the NMSE angoaentially increasing. We will now try
to improve the MEHaM technique.

9.4.4 Improving MEHaM

One of the main difference between the two MIMOdptors is that MECoM uses the noise
level (which has to be estimated) to set Mievalue to decide how many columns will be
taken into account for computing the signal polekereas MEHaM uses a default value,
which until now was the maximum value. This subisectvill present the influence of this
parameter, and will help to decide of a better diefealue.
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Figure 9-12 shows the influence of that number of columns lom time evolution of the
NMSE for 2x2 MEHaM predictor, at several noise lsv&lEHaM was only trained with 5
MIMO channel observations.

2x2 MEHaM predictor, influence of the number of columns
SMR=52dB - average on 300 runs
Ayerage number of columns used by MECoM: 0.30389
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232 MEHaM predictor, influence of the number of columns
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Figure9-12 : Influence of the number of columns on theHdal predictor (5 obs, SNR = 3, 20, 100 dB)
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As one can see drigure 9-12 the optimal number of columns to use is the sesallWith
only one column, MEHaM produces its lowest NMSE]east for first predicted values. It
can fit the MECoM curves at low SNR and is morecedht than the other predictor at the
high SNR of 100 dB.

So from now on, we will only use the first eigentggf the Hankel matrix to compute signal
poles. It implies MEHaM will only consider one sanpole, and therefore only one
corresponding amplitude. So the MEHaM computatimesome highly simplified.

Here are now some results comparing MECoM andithaeced MEHaM technique.

NMSE of the 2x2 MIMO predictars, for all taps, NMSE of the 2x2 MIMO predictars, for all taps,
Fredictors trained with 5 observations, results averaged on 1000 runs Fredictors trained with 5 observations, results averaged on 1000 runs

2 : : : : : : 2
18} / . 18}
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1}
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Figure9-13 : Comparison between MECoM and MEHaM, inflepéthe limited number of columns on
MEHaM, at several noise levelEX5)

First, one may notice that MEHaM produce the sarmMSH curves for SNR: {20, 40, 100}
dB.

Then except at the unrealistic noise level of 1@ ®#EHaM, using only the first
eigenvector, produce the same NMSE as MECoM oriittstewavelength, and is even more
efficient than MECoM at the low SNR of 3 dB. Itasmain achievement point because using
only 1 eigenvector really simplifies the computap with no performance degradation
regarding MECoM. And moreover, MEHaM does not nesry knowledge about noise
variability. On drawback, prediction error is dramally increasing after a wavelength,
whereas MECoM'’s error does not increase so mucheffesh of the predictor should be
considered.

Whatever, from now on, when we will use the MEHaMdictor, we will always restrict the
technigue to consider only the first eigenvectothaf Hankel matrix of 2x2 MIMO channels.
We will now look at the performance of the predistm 4x4 MIMO scenarios.

9.5 Testing 4x4 MIMO scenarios

As it was mentioned before, the predictors are restricted to 2x2 MIMO systems. This
subsection will therefore present some 4x4 MIMOuitss We will begin with noise free
computation, then we will add some Gaussian noise.
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9.5.1 Noise free conditions on 4x4 MIMO

Because a 4x4 MIMO channel embeds 16 antenna pagsneed at least 17 channel
observations to maintain the number of rows of Hamkel matrix larger than its number of
columns. Therefore we tested the predictors whaingd with 17 observations, and with 33
for the comparisorfrigure 9-14 shows these results.

NMSE of the 4x4 MIMO predictors, for all taps,
Moise free, results averaged on 1000 runs
12 T T T T T T T T

T
—&— MECoM 17 obs
—— MEHaM 17 obs
10 MECahd 33 obs
WMEHah 33 obs

NMSE
m
T

T MECoh

v MEHah
L \ i
. _ ,LJMM_G_,O—@—G——(\——”—’O—(H
[ e 4
D 1 | 1 1 1 | 1 1 1 ‘
u] 0.5 1 1.5 2 25 3 38 4 4.5 5

Prediction Range [wavelength]

Figure9-14 : Time evolution of the NMSE for the 4x4 MIM®@edictors, in noise free conditiors=(17 and 3}

We still have some problems with MECoM in noiseefreonditions. As we will see in the
following subsection, with added noise, performawidébe improved. One can note that the
number of observations used to train the prediatalg have limited effect.

9.5.2 Adding coloured noise

Before trying to enhance the MEHaM for 4x4 MIMO oheals as it has been done for 2x2
MIMO channels ir0.4.4 , we will present some comparative resulttheftwo predictors. So
all eigenvectors have been considered to set upMtedaM predictor.Figure 9-15 shows
these results, with predictors trained with 17 MIMRannel observations.

NMEE of the 41d MIMO predictors, for all taps,
Predictors trained with 17 obserations, results averaged on 1000 runs
4 T T T T T T T T T

—— MECoM 100 dB

MEHzM —— MEHaM 100 dB
3 -
MECoM 40 dB
251
w MEHal 40 dB
(73] ok
=
= MECoM 20 dB
15+
MEHaM 20 dB

—&— MECoM 3 dB

—O— MEHaM 3 dB

1 1 1 1 |
a 0.5 1 15 2 25 3 35 4 45 5
Prediction Range [wavelength]

0 1 1 1 1

Figure9-15 : Time evolution of the NMSE for the 4x4 MIM®edictors, no limitation on the number of
columns for MEHaM, with additive Gaussian noige=(17)

File: SURFACE_D2_2 v2_0.doc, January 2007 Page 55 of 86




SURFACE (27187) Title: Channel Model Prediction

As one can see, adding noise, even at the high &NRO dB really improves the prediction
quality of MECoM. But on drawback, first predicteclues of MEHaM contain much
instability. This is maybe because all the eigetmschave been considered. As in the 2x2
MIMO scenarios, we should introduce a limitation.

The following subsection will help to decide theo® of the eigenvectors.

9.5.3 Improving MEHaM in 4x4 scenarios

As we did for 2x2 MIMO scenarios in secti®@¥.4, we will now try each possible value
of Ns for MEHaM in 4x4 MIMO scenariogsigure 9-16 andFigure 9-17 show the results of
these computations. NMSE attained by MEHaM usinly @ncolumn or more than 14 are so
bad that they are not plotted on the figuresgepka narrow scale.

434 MEHaM predictor, influence of the number of columns
SMR=30dB - average on 100 runs
Average nurmber of columns used by MECoh: 3.49
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434 MEHaM predictor, influence of the number of columns
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Figure9-16 : Influence of the number of columns on thé ¥&HaM predictor (17 obs, SNR = 3, 20dB)
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MEHaM predictor, influence of the number of columns
SNR=400dE - average on 100 runs
Awerage nurnber of columns used by MECoM: 11.34
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Figure9-17 : Influence of the number of columns on thé ¥¥EHaM predictor (17 obs, SNR = 40, 100dB)

The red curves show the performances of MECoM,gusiir'e noise variance to decide the
number of columns. As one can seeFagure 9-16 by choosing a value in between 4 and 7,
MEHaM can reach the performance of MECoM. But watigher SNR, as it is shown on

Figure 9-17, by choosing an efficient value, MEHaM can behaeadly better.

To limit the size of handled matrices and the corational load of the predictor, using 5
columns seems us to be the best trade off. Fromamwn 4x4 MIMO scenarios, we will use
MEHaM trained from 17 MIMO channel samples, andegalill only be computed from 8
eigenvectors of the Hankel matrix of the channel.

Here are now ofigure 9-18 some comparative results of the 4x4 MIMO pred&tor
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MWSE of the 4xd MIMO predictors, for all taps,
Predictor trained with 17 observations, results averaged on 1000 runs
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Figure9-18 : Comparison between MECoM and MEHaM in 4x4@ scenario, influence of the limited
number of columns on MEHaM, at several noise le{ietd7)

The limitation we added on the number of eigenusctised in the poles’ computation really
improved the performances of the predictors. Tiséainility of the first predictions oRigure
9-15 completely disappeared, and MEHaM produces betwilts than MECoM (except in
the unrealistic case of SNR = 100 dB), in an easiay, which does not require noise
estimation.

9.6 Conclusions about MIMO computations

During all our MIMO tests, we found first that tinember of channel observations used to
train the predictors has only limited effect. Fbattreason, choosing the smallest number is
the more efficient, because it deals with smallatrioes and warm-up time is shortened.

We have also shown that the noise free conditi@mete troubles of singularity and so on,
but adding a slight noise, with a SNR of 100 dBgvent these troubles. Then in noisy
conditions, we showed that MECoM was producingdretésults than MEHaM. Actually,
MECoM is considering the noise level to decide hnany eigenvectors it will use, whereas
MEHaM was first using all of them. We thereforetresed MEHaM to use only the first one
in 2x2 scenarios, and only the 5 first ones in dadnarios.

With that enhancement of MEHaM, we found the MEHad/good as MECoM, or sometimes
better. Moreover, MEHaM does not require noisenestion.
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Figure 9-19 illustrate the final results of MECoM and MEHaM, the realistic SNR’s of 3

and 20 dB.

MMSE of the 2x2 MIMO predictors, for all taps,
SNR =193 dB, results averaged on 1000 runs
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Figure9-19 : Reliability of MIMO ESPRIT (SNR = 20 dB aBddB)

4 45 5

The 2x2 MEHaM has its NMSE growing dramaticallytfasmpared to MECoM'’s. But on
the first wavelength, results remain good. And ¢benputational load of MEHaM is lighter
than the MECoM one. A refresh step should be censdi

On 4x4 scenarios, NMSE curves are flatter. Thiprizbably because more information is
taken into account for 4x4 scenarios. (16 embedsl&D, instead of 4 for the 2x2 case).

Moreover, MEHaM curves are largely lower to the MIBCones.

We will now try to find how our predictors behavehen feedback channel has been

guantized on a few bits.
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10 WORKING WITH QUANTIZED VALUES

From the beginning, we always used to 64 bits defasolution of Matlab. If a computer can

perform computations on 64 bits, this is not theecaf small handsets. Moreover, when
considering the feedback load, we can not affoadsferring all coefficients at full number

resolution. We should preserve the bandwidth feruser’'s applications.

This section will therefore investigate the inflaenof quantization of the reference channel
on the predictors’ performance.

10.1 Quantization law

We will try to reduce the feedback information tdy3 or 6 bits for each part of the complex
MIMO coefficients. So to feedback MIMO channel infaation about one time step, we
need 21t Nk Npits bits, whereNyiis = {3, 6}.

Therefore, to train a 2x2 MIMO predictor using 3sbiwe need 120 bits, and using 6 bits, we
need 240 bits. And for a 4x4 MIMO predictor, usiBgits requires 816 bits of feedback,
and using 6 bits requires 1632 bits.

Figure 10-1 presents the quantization law we used. It is syimoad since we round real
values to the nearest quantized ones.

Cuantization law

IR=R 3 _II 4

0G| B |
.4} [~ ]

0.2t [ -

02t e -

n4tk _J 4
0B} [~ -

nek ,_ i
¥ | —— 3 bits ||
B hits

1 1 1 1 1 1 1 1 1 I I
-1 08 06 04 -02 0 02 04 0B 0B 1
Real value

Cuantized value
=
1

Figure10-1 : Quantization law, using 3 or 6 bits

We will now see how the predictor behaves whemé@iwith limited feedback quantization.
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10.2 Influence on 2x2 MIMO predictors

This section show performance of the two predicteingn trained with low bit quantization
feedback. These results are compared with fullldaek results.

MMSE of the 2x2 MIMO predictors, for all taps,
SNR =23 dB, results averaged on 500 runs
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Figure10-2 : Influence of quantization on 2x2 MIMO chahi@\R = 3 dB

Figure 10-2 presents these results with SNR = 3 dB. One carnhsg quantization has barely
no influence at that low SNR.

MMSE of the 232 MIMO predictors, for all taps,
SHR =193 dB, results averaged on 500 runs
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Figure10-3 : Influence of quantization on 2x2 MIMO chahr@\R = 20 dB
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Figure 10-3 shows the same kind of results, but with a SNRG®HB. With a so weak noise
level, quantizing feedback with only 2x 3 bitsisufficient. But using 2x 6 bits produces the
same results as using the full resolution.

The problem of using only 2x 3 bits is even moiigaal at the high SNR of 100 dB, because
using to few bits leads to singular matrices whemjputing the poles with MECoM, and
therefore put a stop to their computation. Thisthe reason why there is no curve
using 2x 3 bits for MECoM ofigure 10-4 The MEHaM performances are a bit degraded by
the 2x 3 bits quantization. Besides, that figureveh quantization on 2x 6 bits has still no
influence on MEHaM, but decrease the MECoM'’s periance.

MMWSE of the 2x2 MIMO predictors, for all taps,
SMR =933 dE, results averaged on 500 runs
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Figure10-4 : Influence of quantization on 2x2 MIMO chahi&@\R = 100 dB

Therefore, if we neglect the unrealistic 100 dBveuof MECoM, we can state that we can
quantize our feedback information with 2x 6 bits gemplex MIMO coefficient without
losing quality. It means that we require 240 bit$eedback to train the predictors, for being
able to perform predictions.

10.3 Influence on 4x4 MIMO predictors

In a same way, we will now present how 4x4 MIMO dictors behave with limited amount
of feedbackFigure 10-5 present these results with a SNR of 3 dB, and, t88iR’s of 20 and
100 dB are considered.

At 3 dB, the shape of the MECoM curves is the séondboth 2x2 and 4x4 scenarios, but
MEHaM ones are different: there is less instability4x4 MIMO MEHaM predictions.
MEHaM produces far better predictions than MECoNhdAas in 2x2 scenarios, quantize on
2x 3 bits, 2x 6 bits, or consider full resolutiaatls to the same results, for each predictor. At
that low SNR, they are both really robust againstrgization.
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Figure10-5 : Influence of quantization on 4x4 MIMO chahi@\R = 3 dB

When decreasing the noise to get a SNR of 20 dBfference appears with quantization on
only 2x 3 bits: MEHaM predictions are a bit bettdnit MECoOM ones become poor.
Moreover, as in 2x2 scenarios, we get that quathtaeves with 2x 6 bits can match really

well curves obtained with full resolution.

These results are presentedrigure 10-6
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Figure10-6 : Influence of quantization on 4x4 MIMO chahi@\R = 20 dB
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Finally we move to the 100 dB simulations. As ie Bx2 case, singularity troubles happen
with MECoM when the noise is too low, and its effdisappears in the rounding operation of
the quantization step. Using 2x 6 bits preventehesubles. This is the reason whigure
10-7 does not show 2x 3 bits results for MECoM.

MMSE of the 4xd MIMO predictors, for all taps,

SMR =100 dE, results averaged on 500 runs
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Figure10-7 : Influence of quantization on 4x4 MIMO chaht@\R = 100 dB

At that high SNR, MEHaM is still not really affectéby the quantization. On long term
predictions, using only 2x 3 bits even producesebeesults. As far as MECoM is concerned,
when there is no quantization, it is better thanHAK for half a wavelength, but when there
is quantization, MEHaM is always the best.

10.4 Summary results

From all these simulations, one can state that tigeathe feedback using 2x 6 bits does not
decrease the accuracy of predictions. The NMSE esurare the same when quantized
on 2x 6 bits and when not quantized, for each ptediand for every SNR. Using fewer bits

for quantization sometimes also leads to good tgshut sometimes leads to instability at
high SNR’s, and even to singularity troubles witEE@bM.
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11 AN INOVATIVE MIMO CHANNEL PREDICTOR

The two predictors have globally the same workiogesne. They need a matrix containing
the channel information, then they look for sigpales, and their corresponding amplitude.
But they use different techniques to perform thmesahing. From all the tests presented
before, we are now able to merge the two MIMO prtedls into a single one, using best of
both predictors.

11.1 Working scheme of the predictors

Here is first the comparative algorithm of the tyedictors. It highlights the differences
between them.

MECoM MEHaM

Using correlation matrix, estimated by a

normalized cross product of a Hankel matrix Using straightly the Hankel matrix

Choosing the number of eigenvectors of the
correlation taken into account with respect to
the noise level (which has therefore to be
estimated)

Choosing the number of eigenvectors taken into
account from past simulations. That value
depends only on the number of antennas.

Computing the ® matrix from the eigenvectors

The signal poles are the normalized The signal poles are the eigenvalues of ®
eigenvalues of ® smaller than 1.05

Computing the corresponding eigenvalues, by solving a linear system for each antenna pair

The following subsections will discuss the choicetween MECoM’s and MEHaM’s
strategies.

11.2 Choice of the matrix containing channel information

First of all, there is the choice of the matrix taning the channel observations. MECoM
uses the correlation matrix of the channel, estahdty the cross-product of a Hankel matrix.
In section6.2, we demonstrated that using the correlatiorrimat the straightly the Hankel
matrix leads to the same eigenvectors.

Therefore, it is faster and less power demandings®the Hankel matrix, to avoid the cross
product of a complexNt Nr+1) X (Nt Ng) matrix.

We have also shown we can limit the number of MIMB®annel observations to the
minimum, with the only imperative to keep more rawan columns in the Hankel matrix. So
it means that the Hankel matrix should cont&ipNg+1) MIMO channel samples.
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Here is how the Hankel matrix should look like:

SAC T eV A VAR Y
H2) WY R )

(N TN +2x Ny Bl

N ) - (NI o RN - BN D)

Then we compute its SVD and take the eigenvectoipute the signal poles. There are
two options to decide how many eigenvectors shawduse. Then we can filter and/or
normalize these poles. The next subsection dissulsse points.

11.3 Computation of the poles

The number of eigenvectors involved in the comporatfor the poles should actually reflect
the dimension of the signal subspace. The MECoktesgly comes from the original ESPRIT
technique. It estimates the dimension of the signbkpace by the number of eigenvalues of
the correlation matrix which are larger than theiarece of the noise. So the noise has to be
estimated.

The strategy we adopted with MEHaM is to performnteCarlos simulations to decide
what fixed values are optimal. It has been showat tsing only the first eigenvector
produces good results for 2x2 MIMO scenarios, asthgithe first five eigenvectors is
optimal for 4x4 MIMO scenarios.

Then we can normalize the poles, to set their madtd 1. It means only the arguments have
to be recorded, but they have to be computed. Titginal ESPRIT technique was
normalizing the poles, and so the MECoM technicpe Andersen et al. proposed instead
normalization to discard poles with modulus larj@m 1.05, and so MEHaM does.

So there are three choices to make:
1. Use a dynamical amount of eigenvectors or usecstatues;

2. Normalize the poles or not;
3. Discard the largest poles or not.

We ran several simulations to decide the optimaliads to do.Figure 11-1 shows these
results. Predictors were based on Hankel matriséshas been discussed in sectidn2. As
one can see, using a fixed number of columns pexislightly better results than the variable
value during more than a wavelength. Excepted wthere is normalization and filtering of
the poles, but these curves are really bad ane smstions will no be chosen.

When there is no filtering of the poles, normaii@athas no influence, and it produces the
best results.
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4xd MIMO predictor - Influence of the parameters
SHME=200dE - average on 750 runs
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Figurell-1: Computation of the poles, influence of plagameters (4x4 MIMO, SNR = 20 dB, 750 runs)

In conclusion, it is first better to use fixed amowof eigenvectors. Results are slightly better
and moreover, it does not need noise variabilitymegion. Then it is more efficient to
consider all the eigenvalues, without any filterifgnally, if there is no filtering, the
normalization step has no influence. We can theorg it to avoid additional computations,
or we can perform it to simplify the poles in caée¢heir transmission.

For the rest of this document, we will not consideles’ normalization anymore. The rest of
the MECoM and MEHaM technique, i.e. the amplitudenputations for each antenna pair,
and the prediction scheme are the same, and seih®&IMO predictor will do.

Before presenting the performances of this new Mipt@dictor, we will give its summary
algorithm.

11.4 Summary Algorithm

Here is the summary of this new MIMO predictor.

1. Compute the SVD of thex matrix, where # is defined as in sectioll.2.
SoH =U XV .

2. Take the first(N, +1) columns of theU matrix to build theU; matrix, where
(N, +1) worth 1 in case of 2x2 MIMO, or 5 when 4x4 MIMO.
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3. Compute thep matrix such as), U, [® = J o [U;.

4. Therefore, the poles are the eigenvalue® of

5. Then compute the amplitudes=(Z* Z) ™ [Z* ¥

N+l

Finally, the predictions are given byt =E, E+1,... h™(t)= Zakm” z'.
k=1

We will now end this section by presenting the nuoa complexity and the performance of
the new MIMO predictor.

11.5 Numerical complexity of the new MIMO predictor

Because the new predictor is based on the two sithiaalso requires 3 SVD of matrices with

size n, x Nn., which can be done @(min{n; n , nv’ng}).The other computations to get the

predicting parameters can be doneGfm°ns’). The noise variability is not required, and the
choice of the number of eigenvectors is drawn fetatic values, which makes the new predictor
faster.

Once the signal poles and the amplitudes are knpredijcting the channel state for the next time
step can still be done @(nr Nk Ns).

11.6 Performances of the new MIMO predictor

This section will present the effect of using aited amount of bits to quantize the feedback.
We tested from 2x 3 bits to 2x 6 bits per complel®@ coefficient, at several noise levels.
The quantization law we used is the one describesction10.1.Figure 11-2 Figure 11-3
and Figure 11-4 compare these results to MIMO channel predictioased on full number
resolution feedback.

MNMSE of the 2x2 MIMO predictors, for all taps, NMSE of the 4x4 MIMO predictors, for all taps,
SNR =32 dB, results averaged on 750 runs SMNR =3 dB, results averaged on 750 runs

MNMSE
MNMESE

---8r-- 2w 3 bits ---8r-- 2w 3 bits
— 41— 2% 4 hits osl — 41— 2% 4 hits ||
—&— 2 5 hits —&— 2 5 bits
2% B bits 2% B bits
—<—no guant. —— no qguant.
0.5 . : . 05 . . . :
0 0s 1 15 2 0 0.5 1 15 2 25

Prediction Range [wavelength] Prediction Range [wavelength]

Figure11-2 : Effects of quantization on 2x2 and 4x4 MIMBannels with SNR = 3 dB
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MNMSE of the 2x2 MIMO predictors, for all taps, MNMSE of the 4x4 MIMO predictors, for all taps,
SMRE =202 dB, results averaged on 750 runs SMR =20 dB, results averaged on 750 runs
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Figure11-3 : Effects of quantization on 2x2 and 4x4 MIM@annels with SNR = 20 dB
MNMSE of the 2:2 MIMO predictors, for all taps, MNMSE of the 4x4 MIMO predictors, for all taps,
SNR =100.2 dB, results averaged on 750 runs SMR =100 dB, results averaged on 750 runs
2 — i 2 T T T T
171 171
141 141
L L
W W
= =
= =
111 1.1
---%-- 2% 3 bits ---8r-- 2w 3 bits
oal — &1— - 2x 4 bits | osl — 11— 2w 4 hits ||
—— 2% 5 hits —&— 2 5 bits
2% B hits 2% B bits
—&— no guant. —&— no guant.
DS 1 1 1 DS 1 1 1 T
0 0.5 1 15 2 0 0.5 1 15 2 25
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Except at the poor SNR of 3dB, where all quantimatevels lead to the same results, using
only 2x 3 bits produces really poor results. Adigalising too few bits causes instability of
the predictions, especially in 4x4 scenarios. Meeepwith only 2x 3 bits, the higher the
SNR is, and the poorer the results are. This mayecfsrom the fact that using too few bits
causes badly scaled matrices. And the more themeis®, the more the channel is shuffled,

Figure11-4 : Effects of quantization on 2x2 and 4x4 MIMBannels with SNR = 100 dB

and then the less matrices are badly scaled.

On the contrary, when using more bits, predictiaresbetter with SNR at 20 or 100 dB than
at 3 dB, which seems logical. In addition, curve2@dB and 100 dB are the same. This is
may be because at high SNR, the effect of the neisElden by the rounding operation of the

guantization.
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Another thing to point out is that using 2x 4 litsquantize each complex MIMO coefficient
leads barely to the same results as working wittb 220d 2x 6 bits, which are close to full
number resolution results. So we can afford quatitm step, even using only 2x 4 bits per
MIMO coefficient, to keep light the feedback load.

One can also drawn attention to the fact that l@mngy predictions are really better for 4x4
than 2x2 MIMO scenarios. Do not forget that 4x4dmcgons are based on much more
channel observations (17 time samples of 16 MIMéffaments) than 2x2 predictions (5 time
samples of 4 MIMO coefficients). This can explaihyithere is more instability embedded in
2x2 predictions than 4x4 ones.

Finally, we should also mention that this new MIMx@edictor produces slightly the same
results as MEHaM, since it is mainly based onftitstegies. Results of MEHaM are just a bit
better on 4x4 scenarios, only after 1.5 wavelengthgomes from the only difference
between the two techniques: with MEHaM, we disdaelbiggest poles (with modulus larger
than 1.05), and with the new predictor we do ndter€fore, the long term predictions of
MEHaM are more preserved form instability than dines of the new predictor.

We have also considered another quantization |lamguloating point technique. We tested
it with 2x 6 bits for each complex MIMO coefficierdt means for each real value, 1 bit is for
the sign, 2 for the exponent, and 3 for the maatiSgure 11-5 presents this quantization
law. The main advantage of this law is that it isrenaccurate around zero, and therefore it
avoids rounding to zero and the ranks of the medrare maintained.

Floating point quantization law, using 5 hits

Cluantized value

1 1 1 1 1 1 1 1 1 1 1
-1 08 05 04 02 i 02 04 0B 08 1
Real value

Figure11-5 : Floating point quantization law, using Gsbit

Figure 11-6, Figure 11-7 andFigure 11-8 compare the two quantization laws. The floating
point was used with 2x 6 bits, and the fixed pewth 2x 4 bits since we have shown it was
sufficient. As one can see, results are globakygame, and using more bits with the floating
point quantization does not really improve predic. Therefore it is more efficient to
consider fixed point values, with only 2x 4 bitg pdMO channel coefficient.
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MMSE of the 2x2 MIMO predictors, for all taps, MMSE of the 4x4 MIMO predictors, for all taps,
SMNR =3.2 dB, results averaged on 250 runs SMR =3 dB, results averaged on 250 runs
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Figure11-6 : Effects of floating point quantization on2and 4x4 MIMO channels with SNR = 3 dB

MNMSE of the 2x2 MIMO predictors, for all taps, MMSE of the 4xd MIMO predictors, for all taps,
SNR = 20.2 dB, results averaged on 250 runs SNR =20 dB, results averaged on 250 runs
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Figure11-7 : Effects of floating point quantization on2and 4x4 MIMO channels with SNR =20 dB

NMSE of the 2x2 MIMO predictors, for all taps, MMSE of the d4xd MIMO predictors, for all taps,
SNR =100.2 dE, results averaged on 260 runs SNR =100 dB, results averaged on 250 runs
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Figure11-8 : Effects of floating point quantization on2and 4x4 MIMO channels with SNR = 100 dB

We will now discuss another topic. Helped by thevdIMO predictor, we will try to predict
the rank evolution of MIMO channel matrices.
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12 PREDICTIONS ON THE RANK OF THE MIMO CHANNEL MATRIX

This chapter will tackle another issue. We will usg new MIMO predictor to predict the
time evolution of the rank of the MIMO channel. W@l aim at predicting the complex
MIMO coefficients of the channel, quantizing themsing the fixed point quantization law
presented in Sectioh0.1, computing the rank of that predicted mataixd comparing it with

the matrix of the reference MIMO channel, providgdSCME.

Actually, the following figures will show, for eagbossible rank, at a given time stigpthe
fraction of channel matrices keeping the same wake from the first time step up to thg.

12.1 2x2 MIMO scenarios

This first subsection will consider 2x2 MIMO sceioa: We will next move to 4x4 ones.
Figure 12-1 presents these results with SNR = 20 dB, whemrgrée and predicted matrices
have been quantized on 2x 6 bits, as it has befamedan Sectiorl0.1.

Consecutive time steps where the rank of the reference channel matrix is constant Consecutive time steps where the rank of the predicted channel matrix is constant
232 MIMO, SNR =201 dB , o 10rnds, guantization on 2x 6 bits, 200 runs 2% 2MIMO, SHNE =201 dB e 10més, guantization on 2x B bits, 200 runs
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Figure12-1 : Rank prediction of 2x2 MIMO channel (SNR & @B, quantization on 2x 6 bits)
ThenFigure 12-2 present the same kind of results, but with quatibn on 2x 3 bits.

Consecutive tifme steps where the rank of the reference channel matrix is constant Consecutive time steps where the rank of the predicted channel matrix is constant
2% 2 MIMO, SMR =202 dB NS 10, guantization on 2x 3 bits, 200 runs 2% 2 MIMO, SMR =202 dB | Vi 10més, guantization on 2x 3 bits, 200 runs
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Figure12-2 : Rank prediction of 2x2 MIMO channel (SNR & @B, quantization on 2x 3 bits)
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There is no great difference between 2x 3 bits 2@ bits. But the issue is that predicted
matrices often have zero rank. It arises when dbading operation of the quantization leads
to a zero matrix. It's a case of deep fade. Thélera is that there are a lot of realizations,
about one third, where the predicted channel hasra rank. With our quantization laws,
when using 3 bits, everything in between -0.25 @12% is rounded to zero, and when using 6
bits, it is everything in between -0.03125 and @3Which is rounded to zero. Therefore we
tested using 2x 32 bits, to see what happens.réhidt is shown ifrigure 12-3

Caonsecutive time steps where the rank of the reference channel matrix is constant Consecutive time steps where the rank of the predicted channel matrix is constant
242 MIMO, SMR=20.1dB Wi 10m/s, quantization on 2x 32 bits, 100 runs 2% 2 MIMO, SNR =201 dB - 10més, gquantization on 2x 32 bits, 100 runs
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Figure12-3 : Rank prediction of 2x2 MIMO channel (SNR G dB, quantization on 2x 32 bhits)

So increasing the number resolution up to 2x 32 dhites not really increase accuracy of rank
prediction. There is still a big difference betweka reference channel and the predicted one.

The predicted matrices have smaller rank valueverage, and have more often zero rank
than reference channel matrices.

Let see what happens with no quantization, asptoed inFigure 12-4

Consecutive time steps where the rank of the referenice channel matrix is constant Consecutive time steps where the rank of the predicted channel matnx is constant
2% 2 MIMO, SNR=202dB L 10m/fs, no quantization, 100 runs 22 MMO, SNR =202 dB s = 10més, no guantization, 100 runs
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Figure12-4 : Rank prediction of 2x2 MIMO channel (SNR & dB, no quantization)
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So when the channel matrices are not quantizedatilealways remains full. This statement
is maybe a consequence of the SCME scenario. Baotéorget that we work on computer
with finite precision. We used the default Matlasalution, which is actually 64 bits, so it
should bring the same results as the 2x 32 bits. difference arises because Matlab uses
floating point and our quantization laws only calesifixed point values...

The quantization brings in some issues. First, Wy oonsider values in between -1 and 1,
for the real and the imaginary parts. But sometithese values are larger. So if all values are
rounded to (1 + i), the rank of the matrix is desed. Secondly, there is the problem of the
zero rank. Actually, quantization on 2x 6 bits medmat only 6 bits are used to represent a
real value in between -1 and 1. Therefore, evesffimient too close to zero is rounded to
zero. Some of our predictions, in case of deepsfadee in the magnitude order of4énd
lower, and so this may cause a zero rank. The deresd tap also has an influence, as it is
shown inFigure 12-5. If we only consider the first one, which is theshpowerful, we can
limit the proportion of zero rank.

Consecutive time steps where the rank of the channel matrices is constant - Zx2 MIMO, SNR = 20.2 dB »Vyeer

= 10m/s, quantization on 2% 6 hits, 200 runs

||:|rank:D |:|rank:1 -rank:2|

Figure12-5 : Rank prediction of 2x2 MIMO channel, withceaap considered separately (SNR = 20 dB,
quantization on 2x 6 bits)

Therefore it should be better to pick a more sigtajuantization law. It would be better to
work with a floating point one, and to use a noimfarm representation. On the other hand,
detecting cases of deep fade, when the rank is oalild help avoiding the waste of
resources.

We will see now how it works when considering 4xfM® channels.
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12.2 4x4 MIMO scenarios

Here are now the same kinds of results, but coriegléx4 MIMO channelsFigure 12-6
present results with quantization on 2x 6 bitshaf MIMO channel matrices, whereas results
of Figure 12-7 are obtained with quantization on only 2x 3 bits.

Caonsecutive time steps where the rank of the reference channel matrix is constant

nce. ! Consecutive time steps where the rank of the predicted channel matrix is constant
434 MIMO, SNR =20 dB | - 10mfs, quantization on 2x B bits, 200 runs

4 x4 MIMO, KR = 20 dB ™ 10m/s, quantization on 2% B bits, 200 runs
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Figure12-6 : Rank prediction of 4x4 MIMO channel (SNR & @B, quantization on 2x 6 bits)
Consecutive time steps where the rank of the reference channel matrix is constant Consecutive time steps where the rank of the predicted channel matrix is constant
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Figure12-7 : Rank prediction of 4x4 MIMO channel (SNR & @B, quantization on 2x 3 bits)

The results obtained in 4x4 cases are similar ¢ooties of 2x2 scenarios. The difference is
that there are more possible values, and therefoegesalues are more distributed. The trouble
of zero matrices happens less often. It is becthese MIMO channel matrices has size 4x4,

it means that 16 coefficients have to be null tbegeero rank, instead of only 4 coefficients in
2X2 case.

Before considering another quantization law, hena Figure 12-8 the time evolution of the

ranks for each tap separately. We still have largeks on first taps, because there is much
power.
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Consecutive time steps where the rank of the channel matrices is constant - 4x4 MIMO, SNR=20dB , v

— 10m/s, quantization on 2x 6 hits, 200 runs

|| Jrank =10 | Jrank =1 | [ rank =2 ([ rank = 3 -rank:d|

Figure12-8 : Rank prediction of 4x4 MIMO channel, withceaap considered separately (SNR = 20 dB,
quantization on 2x 6 bits)

12.3 Using another quantization law

The trouble of zero rank we experience comes frber quantization step. Small MIMO
channel coefficients are rounded to zero. And evban considering quantization on 2x 32
bits, we still have the same problem.

So an idea would be to use floating point to quanthannel matrices before computing their
rank. Using floating point would bring extra acatyanear zero. We have already tried
floating point quantization when considering chdrprediction, and it was useless. Having
zero or near zero values leads to the same chamneeictions. But when considering rank
prediction, having zero or non zero values is d#ife.

We tested different amount of bits for this flogtipoint quantization: from 3 to 6 bits per real
value. Actually, when considering 6 bits, 2 are fioe exponent, and the last 4 are for the
mantissa. And when considering 3 to 5 bits, onlg bit is for the exponent, and the others
are for the mantissa. To have a larger dynamic witly one-bit exponents, we decided to
read this bit either as 10r 10°. So our quantization law is not uniform.

Figure 12-9 illustrate the quantization law. Because of thecgd meaning of the single
exponent bit, all the curves look the same neaw,zerthe magnitude order of f0It also
explains why there is no difference between 5 ahisswhen away from zero, because both
use 4 bits for their mantissa. Finally, near zatblaws can achieve values in the magnitude
order of 10, so there is no visible difference.
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Here are now some tests of rank prediction, usiege floating point quantization laws. The
SNR is 20 dB, and 2x2 MIMO channels are considedéavill underline the influence of the
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Figure12-9 : Floating point quantization law, using Jtbits
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Figure12-10 : Prediction rank of 2x2 MIMO channel, flagipoint quantization on 2x 3 bits (SNR = 20 dB)
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Figure12-11 : Prediction rank of 2x2 MIMO channel, flagjipoint quantization on 2x 4 bits (SNR =20 dB)
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Consecutive time steps where the rank of the reference channel matrix is constant Congecutive time steps where the rank of the predicted channel matrix is constant
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Figure12-12 : Prediction rank of 2x2 MIMO channel, flagipoint quantization on 2x 5 bits (SNR = 20 dB)
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Figure12-13 : Prediction rank of 2x2 MIMO channel, flagipoint quantization on 2x 6 bits (SNR = 20 dB)

As one can see, the amount of bits we use influéate reference channel and predicted
channel. Using a lot of bits leads to high rankkereas using only a few causes low ranks.
As mentioned earlier, when there is no quantizatdirthe ranks are full.

Another thing to point out is that predictions ajwaunderestimate the rank, and predicted
ranks change faster than reference ranks. But keepind that after a while, predictors
become outdated, with a too large NMSE.

FromFigure 12-1Q one can draw that using only 2x 3 bits is nofisigint. There is a lot of
zero rank predicted, but none in the reference mélarUsing 2x 4 bits leads to the best
results, and the 2x 5 results are rather good\Wdwen using 2x 6 bits, ranks are full at the
beginning, but predicted ranks change faster teéarence ranks. Therefore, 2x 4 bits seems

to be the most efficient choice, at least for 2xBM® scenarios. We will now move to 4x4
scenarios.
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Consecutive time steps where the rank of the reference channel matrix is constant Congecutive time steps where the rank of the predicted channel rmatrix is constant
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Figure12-14 : Prediction rank of 4x4 MIMO channel, flagipoint quantization on 2x 3 bits (SNR = 20 dB)
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Figure12-15 : Prediction rank of 4x4 MIMO channel, flagjipoint quantization on 2x 4 bits (SNR =20 dB)

Congecutive time steps where the rank of the reference channel matrix is constant Consecutive time steps where the rank of the predicted channel matrix is constant
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Figure12-16 : Prediction rank of 4x4 MIMO channel, flagjipoint quantization on 2x 5 bits (SNR =20 dB)
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Consecutive time steps where the rank of the reference channel matrix is constant Consecutive time steps where the rank of the predicted channel matrix is constant
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Figure12-17 : Prediction rank of 4x4 MIMO channel, flagjipoint quantization on 2x 6 bits (SNR =20 dB)

In 4x4 scenarios, it is still 2x 4 bits which prads the best results, and 2x 5 bits is pretty
good too. When considering 2x 6 bits, the rank jotexhs are really good, but only give full
rank. Here are now some simulations considering Bits for quantization, but with a SNR
of 100 dB.
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Figure12-18 : Prediction rank of 2x2 MIMO channel, floaipoint quantization on 2x 4 bits (SNR = 3 dB)
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Figure12-19 : Prediction rank of 4x4 MIMO channel, floaipoint quantization on 2x 4 bits (SNR = 3dB)
File: SURFACE_D2_2 v2_0.doc, January 2007 Page 80 of 86




SURFACE (27187) Title: Channel Model Prediction

At the low SNR of 3 dB, predictions are not as gaesdat SNR of 20 dB. Predicted ranks
change faster than reference ranks. Though there jsined figure explaining it, using more
or less bits than 2x 4 for quantization does ngirowe rank prediction.

Then let us have a look at results when SNR = B0 d
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Figure12-20 : Prediction rank of 2x2 MIMO channel, floaipoint quantization on 2x 4 bits (SNR = 100 dB)

Congecutive time steps whare the rank of the reference channel matrix is constant Consecutive time steps where the rank of the predicted channel matrix is constant
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Figure12-21 : Prediction rank of 4x4 MIMO channel, floaipoint quantization on 2x 4 bits (SNR = 100 dB)

Results are good at this high SNR, but predictansys underestimate slightly the reference
rank. Still now, choosing 2x 4 bits for quantizateeems to be the optimal trade off.

12.4 Conclusions on rank prediction

When considering rank prediction, the quantizatisnvery important. If there is no
quantization of the MIMO channel matrices, the rahkays remain full. When quantized,
these matrices often have zero rank troubles, edpyethe predicted ones. It comes from the
rounding operation of the quantization: all smallues are rounded to zero, which may cause
a zero matrix.
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This is the reason why we used a floating poinhgjaation law. Because of the exponent, we
can have enhanced precision near zero, with ofdyvaamount of bits. We have shown that
using 2x 6 bits per MIMO channel coefficient leads nearly constant full rank, as the
unquantized scenarios. Then we found that using @ml 4 bits with our non uniform
quantization law seems to be the optimal traddeoffet the best rank prediction.
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14 CONCLUSIONS

Our objectives in this deliverable were on the baad to present a wireless MIMO channel
model, and on the other hand to provide a schereetalperform predictions of the channel
state. The channel model we worked on is a wrappghe WINNER’s SCME channel
model. Its parameters have been tuned to meet SRFAequirements discussed in
deliverable D7.3 [SD 7.3].

About channel prediction, after having investigassVeral channel models, mostly SISO
models, we found two predictors suited for our vilegkenvironment (energy and CPU-
limited devices), except that they are SISO’s.

We implemented in Matlab these two SISO predictord tested them with the WINNER'’s
SCME channel simulator. We analyzed them, the ehofsome of their parameters, and also
their robustness against noise.

From these computations, it seemed that the twdigices produce the same kind of results,
even if ESPRIT is a bit better for the first preadit values. We have also shown that in noisy
conditions, using only a limited amount of chanoleservations produces better results; even
if in noise free conditions it was more efficieatuse a maximum of channel observations.

We then extended these two SISO predictors into ®lidhannel predictors, which is actually
the scope of this document. The two new MIMO prexigcare named MECoM, which is the
extension of the original ESPRIT technique, and MEH based on the Andersen et al.
techniques. Both predictors are not really dependerthe number channel observation used
to initialize them, so we found that only 5 MIMOatinel observations are sufficient to train a
2x2 MIMO predictor, and 17 are required to tradixd one.

With some improvement, MEHaM was found to be thst Ipeedictor. Moreover, it is also the
simpler, because it does not require noise estimathen computing the signal poles.

Afterwards, we investigated the robustness of tHEI®! predictors to limited feedback load,
by working with quantized values. We have shown gfuang from the full number resolution
of MATLAB to 2x 6 bits quantized values has barelg influence on the predictors’
performance.

From all these simulations, we have merged theMWdO predictors into a single on, taking
best of both. Actually, the new predictor is maibgsed on MEHaM, but without discarding
the largest poles. We have shown that we can tmifeedback load by quantization on 2x 4
bits per complex coefficient without decreasingdicgon performances. We have also tested
the difference between floating point and fixednpajuantization laws, but it seems floating
point has no interest in this case.

Finally, we have investigated the topic of rankdacgon. The proposed scheme is to use the
new MIMO predictor to predict future MIMO channehtrices, to quantize them and then to
compute their rank. Without the quantization staf, ranks were full, which is not an
interesting case. Our tests revealed that fixeatpguantization produces poor results. The
predicted rank was often zero, which means theigesti MIMO channel matrix, after
quantization, was actually a matrix full of zerdgat problem actually occurs at the rounding
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operation of the quantization step. Near zero \wlalee rounded to zero, and so the rank
decreases.

This is the reason why we then have tried a nofotmifloating point quantization technique,
to get extra precision near zero. We have showm tiseng only 2x 4 bits per complex MIMO
coefficient, with our non uniform quantization laproduces rather good results, even if they
slightly underestimates reference MIMO channel rdR&nk predictions are only a bit poor
when SNR is too low, at 3 dB in our simulations.

Hence, for future work, following topics should Gensidered:

« Working on refreshment scheme of the MIMO chanmedjztor. The performances of
the predictor are known. Then from the requirementdhe air interface, a threshold
should be set-up to decide whether a predictioaligble or not. Investigations on the
capacity to guess the reliability horizon of a giv@edictor should be done, in the aim
to automatically trigger refreshments of the premlievhen it is outdated. It means as
late as we can, to save computational power of Isinnger equipments like cell
phones, but not too late to avoid using an outdptedictor.

* Improving the predictors, trying to optimize thegalithm, and to reduce the
computational load, in the aim of practical impleraion.

* Working on more efficient techniques of rank préidic. The rank predictor should be
simplified. If we are only interested by the rarfkaomatrix, it is not optimal to spend
time and power to compute all its coefficients.
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