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Abstract

Parametric probability distributions are central tools for probabilistic modeling in
data mining, and they lack in functional data analysis (FDA). In this paper we propose
to build this kind of distribution using jointly Quasi-arithmetic means and generators of
Archimedean copulas. We also define a density adapted to the infinite dimension of the
space of functional data. We use these concepts in supervised classification.

1. QAMML distributions

Let (Ω,A, P ) a probability space and D a closed real interval. A functional random
variable (frv) is any function from D×Ω → R such for any t ∈ D, X(t, .) is a real random
variable on (Ω,A, P ). Let L2(D) be the space of square integrable functions (with respect
to Lebesgues measure) u(t) defined on D.

If f, g ∈ L2(D), then the pointwise order between f and g on D is defined as follows :

∀t ∈ D, f(t) ≤ g(t) ⇐⇒ f ≤D g. (1)

It is easy to see that the pointwise order is a partial order over L2(D), and not a total
order. We define the functional cumulative distribution function (fcdf) of a frv X on
L2(D) computed at u ∈ L2(D) by :

FX,D(u) = P [X ≤D u]. (2)



To compute the above probability, let us remark that, it is easy to compute the probability
distribution of the value of X(t) for a specific value of t, and this for any t ∈ D. Then
we define respectively the surface of distributions and the surface of densities as follow :

G : D × R → [0, 1] : (t, y) 7→ P [X(t) ≤ y] (3)

g : D × R → [0, 1] : (t, y) 7→
∂

∂t
G (t, y) (4)

We can use various methods for determining suitable g and G for a chosen value of
X. Thus for example, if X is a Gaussian process with mean value µ(t) and standard
deviation σ(t), then, for any (t, y) ∈ D × R, we have : G (t, y) = FN (µ(t),σ(t))(y) and
g (t, y) = fN (µ(t),σ(t))(y). In the following we will always use the function G with a
function u of L2 (D), so, for the ease of the notations, we will write : G [t;u] = G [t, u (t)].
We will use the same notation for g. In what follows we define our parametric families
of probability distributions.
Let X be a frv, u ∈ L2(D) and G its Surface of Distributions. Let also φ be a continuous
strictly decreasing function from [0, 1] to [0,∞] such that φ(0) = ∞, φ(1) = 0, where

ψ = φ−1 must be completely monotonic on [0,∞[ i.e. (−1)k dk

dtkψ(t) ≥ 0 for all t in
[0,∞[ and for all k. We define the Quasi-Arithmetic Mean of Margins Limit (QAMML)
distribution of X by :

FX,D(u) = ψ

[

1

|D|

∫

D

φ (G [t;u]) dt

]

. (5)

The function φ is called the QAMML generator. In fact the expression (5) can be seen
as the limiting (or continuous) case of two other expressions. The first expression, which
is obvious and gives its name to (5), use a quasi-arithmetic mean M :

FX,D(u) = lim
n→∞

M {G[t1;u], . . . , G[tn;u]} (6)

where {t1, . . . , tn} ⊂ D is a subset of points in D, preferably equidistant. In the discrete
case, a quasi-arithmetic mean is a function M : [a, b]n → [a, b] defined as follows:

M(x1, . . . , xn) = ψ

(

1

n

n
∑

i=1

φ (xi)

)

(7)

where φ is a continuous strictly monotonic real function and ψ = φ−1.
The second limiting case links the QAMML distributions to the classical approximation
: P [X ≤D u] = H (u(t1), . . . , u(tn)), using the archimedean copulas:

FX,D(u) = lim
n→∞

ψ

[

n
∑

i=1

φ (G∗ [ti;u])

]

(8)

where ∗ is the following transformation, applied to margins:

G∗(x) = ψ

(

1

n
φ (G(x))

)

. (9)



Let us remind that a copula is a multivariate cumulative distribution function defined on
the n-dimensional unit cube [0, 1]n such that every marginal distribution is uniform on
the interval [0, 1]. The interest of copulas comes from the fact that (Sklar’s theorem), if
H is an n-dimensional distribution function with margins F1, ..., Fn, then there exists an
n-copula C such that for all x ∈ R

n ,

H(x1, ..., xn) = C(F1(x1), ..., Fn(xn)). (10)

The copula captures the dependence structure of the distribution. An important family
of copulas is the family of Archimedean copula, given by the following expression :

C(u1, ..., un) = ψ

[

n
∑

i=1

φ(ui)

]

. (11)

where φ, called the generator, has the same properties that a QAMML generator.
This second limiting case shows that QAMML shares the properties and limitations of
archimedeans copulas in the modeling of an frv X (see the GQAMML section).

2. Gateaux density

A fcdf is an incomplete tool without an associate density, but as the QAMML distri-
butions deal directly with infinite nature of functional data, we cannot use the classical
multivariate density function:

h(x1, ..., xn) =
∂n

∂x1 . . . ∂xn

H(x1, . . . , xn). (12)

To solve this problem we propose to use a concept of the functional analysis : the Gâteaux
differential which is a generalization of directional derivative. Let X be a frv, FX,D its
fcdf and u a function of L2(D). Then for h ∈ L2(D) we define the Gâteaux density of
FX,D at u and in the direction of h by:

fX,D,h(u) = lim
ε→0

FX,D (u+ h · ε) − FX,D (u)

ε
= DFX,D(u;h) (13)

where DFX,D(u;h) is the Gâteaux differential of FX,D at u in the direction h ∈ V .
It is easy to show that, if FX,D is a QAMML fcdf, u and h are two functions of L2(D),
then the corresponding Gâteaux density of FX,D computed in u, in direction of h is given
by:

fX,D,h(u) =
1

|D|
· ψ′

[

1

|D|

∫

D

φ (G [t;u]) dt

]

·

{
∫

D

φ′ (G [t;u]) · g [t;u] · h(t) dt

}

. (14)

We can show that, if we use the statistical dispersion σ(t) of the functional data, then
fX,D,σ(u) = P [X = u].



3. GQAMML distributions

QAMML shares the limitations of archimedeans copulas (see section 1), but the
archimedean copulas of dimension n > 2, can capture dependence structures from inde-
pendence until the complete positive dependence between variables. Thus, if for s, t ∈ D,
there is a negative dependence between X(s) and X(t), the QAMML will not be able
to model the situation. But the bidimensional archimedean copulas can deal with this
kind of dependence, using the same generator, but with larger domain for the parameter.
Then we define the Generalized Quasi-Arithmetic Mean of Margins Limit (GQAMML)
FX,D(u) as follows. Let X be a frv defined on D, u ∈ L2(D), {Dp,Dn} a partition of D
such :

• ∀s, t ∈ Dp, there is a positive dependence between X(s) and X(t),

• ∀s, t ∈ Dn, there is a positive dependence between X(s) and X(t),

• ∀s ∈ Dp and ∀t ∈ Dn, there is a negative dependence between X(s) and X(t).

Then

FX,D(u) = ψ

(

|Dp|

|D|
φ
[

FX,Dp
(u)
]

+
|Dn|

|D|
φ
[

FX,Dn
(u)
]

)

(15)

where φ is the generator of an bidimensional archimedean copulas.
Of course, using the chain rule, the Gâteaux density of FX,D is given by

fX,D,σ(u) = ψ′

(

|Dp|

|D|
φ
[

FX,Dp
(u)
]

+
|Dn|

|D|
φ
[

FX,Dn
(u)
]

)

{

|Dp|

|D|
φ′
[

FX,Dp
(u)
]

fX,Dp,σ(u) +
|Dn|

|D|
φ′
[

FX,Dn
(u)
]

fX,Dn,σ(u)

}

(16)

4. CQAMML distributions

In functional data analysis, we know that, some times, when we treat smooth data,
there is a lot of information in the derivatives of the data. Of course we can apply the
GQAMML distributions to the concerned derivative, but we can also consider jointly the
distribution of the different derivatives. Then we define the Complete Quasi-Arithmetic
Mean of Margins Limit (CQAMML) F

j
i X,D

(u) (with i < j ) as follows. Let X be a frv

defined on D with j successive derivatives, u ∈ L2(D) with j successive derivatives:

F
j
i X,D

(u) = C
(

FX[i],D

(

u[i]
)

, . . . ,FX[j],D

(

u[j]
))

(17)

where :

• X [i] and u[i] are the ith derivatives for X and u,

• C is a n-dimensional copula.



Table 1: Results of the 10-fold cross validations
Distributions misclassifications

FX,D 31.4%

FX′,D 9.4%

FX′′,D 5.5%

F
1
0X,D 16.5%

F
2
1X,D 4%

F
2
0X,D 9.4%

Note that the copula C is not necessarily an archimedean copula. The density of the
CQAMML distribution is a classical joint density used with the Gâteaux densities of the
different GQAMML distributions.

5. Supervised classification

To illustrate the interest of the QAMML families of distribution we propose to use
it in a supervised classification application. To perform the classification we use the
Gâteaux density of a QAMML distribution to build a bayesian classifier:

P (ωi|u) =
fωi,D,h(u) · P (ωi)

P (u)
(18)

where P (ωi|u) is the probability that u belong to the ith group, fωi,D,h(u) the adequate
Gâteaux density, and P (u) the probability of u (but this latter is constant for all cluster,
so it is not necessary to compute it).
We compute the parameters of each cluster using the classical maximum likelihood, and
the cluster of u is the cluster with the highest probability P (ω|u).
The chosen dataset is the well known spectrometric data from Tecator. The data consist
in 100 channels of spectrum absorbance (wavelength from 850 nm to 1050 nm). The goal
is to distinguish the data with more than 20% of fat content, from the data with less
than 20% of fat content. We have performed a 10-fold cross validation on the data, the
first derivative, the second derivative using the GQAMML distributions, and jointly on
the different derivatives using the CQAMLL distributions, and this with the following
parametrization :

• Surface of distributions G : Normal distribution,

• QAMML and GQAMML generators : Clayton generator,

• CQAMML copula : Normal copula.

The table 1 shows the results, and we can see that the best results are given using the
distribution of the second derivative, and also considering jointly the distribution of the



first and second derivative, but it is well known that the second derivative of these data
contains the more interesting information to distinguish the clusters. We can also remark
that when we use directly the functionnal data jointly with the derivatives, the quality
of the classification decrease, but we know that original functions contain only slight
differences between the two groups.

6. Conclusions

The good results of the supervised classification example show that our new families
of parametric distributions for functional data can be used in classifications task in
FDA. These distributions can be used also in unsupervised classification with existing
algorithms. And a lot of parametrization can be chosen using existing copulas in the
different level of the QAMML families, and other choices for the distributions of the
surface of distributions can be done. So a great field of experimentation is open with the
QAMML families of distributions for functional data.
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