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Abstract
To assess test quality, Mutation Testing (MT) creates mutants by injecting artificial faults into the system
and evaluates the ability of tests to distinguish these mutants. Tests distinguishing more mutants have
also been proven empirically to detect more real faults. MT has been applied to many domains. We focus
on MT for timed safety-critical systems modeled as Timed Automata (TA). While powerful, MT usually
yields equivalent and duplicate mutants, the former having the same behavior as the original system and
the latter other mutants. Such useless mutants bring no value, waste execution time, and can be difficult to
detect. We integrate useless mutant detection and removal strategies in our mutation framework MUPPAAL.
MUPPAAL leverages existing equivalence-avoiding mutation operators and focuses on detecting mutant
duplicates using a scalable bisimulation algorithm and a fast approximate one based on biased simulation.
We also demonstrate how to design an operator that reduces the occurrence of mutant duplicates. We evaluate
MUPPAAL on six systems, demonstrating that: 1) mutant duplicates account for up to 32% of all generated
mutants, 2) our bisimulation approach scales effectively with these systems, and 3) biased simulations further
enhance performance. Our heuristic is ten times faster than bisimulation and limits the exploration to two
times the number of exact duplicates compared to up to ten times for the baseline.

K E Y W O R D S

Model-Based Testing, Timed Automata, Mutation Testing, UPPAAL

1 INTRODUCTION

Timed systems (TS) are systems in which strict time constraints are essential for their reliability and correctness. They appear
in several safety-critical applications such as aviation and rail systems. To design TS, engineers specify their behavior using
formal models (Timed Automata TA) to analyze them and derive tests assessing the conformance of the running system to its
specification. Model-Based Testing (MBT) [1, 2] uses time-bound specifications to generate test cases validating TS behavior
and uncovering bugs while mitigating scalability concerns associated with exhaustive verification. Therefore, bug-finding
ability is an essential capacity of a good test suite, in addition to structural coverage. Mutation Testing (MT)[3] introduces
artificial faults (referred to as mutations) into the system using predefined mutation operators in order to evaluate test efficacy in
detecting bugs. The result of applying the mutation operator to a system is a mutant. Given a set of mutants, tests can distinguish
(or kill) mutants if they behave differently on the mutant than on the original system due to the injected defect’s impact: the
mutation score is the ratio of mutants killed to the total number of mutants. The mutation score can serve as a proxy for a test
suite effectiveness [4][5]. Other applications of MT involve test generation [6][7]. Empirical research has shown that tests
designed to detect mutants are significantly more likely to detect defects than other test criteria [7][2] and simulate the behavior
of real defects [6][7]. Although not as popular as code-based MT [5, 6, 7], Model-based Mutation Testing (MBMT) helps to
automatically identify defects related to missing functionality and misinterpreted specifications [8] that are difficult to identify
through code-based testing [9, 10]. MBMT is thus well suited for timed systems whose specifications are given as models. The
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simplicity and versatility of MT in assessing test effectiveness, makes this technique popular in research and industry [11].

However, not all mutants are created equal in terms of utility during test assessment. Some may be equivalent, i.e. they
exhibit the same behavior as the original system despite their syntactic difference [11]. Therefore, no test case can distinguish
such mutants from the original system. Hence they have no purpose for bug detection, waste execution time and effort trying
to kill them. Similarly, duplicate mutants exhibit the same behavior as other mutants [4, 11]. Preventing and removing such
useless mutants reduces the computational cost of MBMT and builds more confidence in mutation scores. Therefore, there is a
need to prevent and remove useless mutants, especially for timed systems where simulations can be long. Recently, Basile et
al. tackled the equivalent mutant problem for Timed Automata with Input and Output (TAIO): they defined mutation operators
that prevent mutants from refining the original system [12, 13]. However, this technique does not address duplicate mutants: in
our experiments, up to 32% of all mutants generated were duplicates motivating the need for a more comprehensive solution to
useless mutants. To this end, we present the design and implementation of MUPPAAL, a mutation framework that addresses this
challenge for Timed Automata (TA) specified in UPPAAL [14]. Our contributions within the MUPPAAL framework are the
following:

1. We introduced a novel timed mutation operator, SMI-NR, that we proved by design to prevent duplicate mutants;
2. We detected and removed duplicate mutants using a parallelized timed bisimulation algorithm [15, 16] to assess behavioural

equivalence between two mutants. If any two mutants are duplicates, we keep one of them;
3. We developed two simulation algorithms: one based on random simulations (RS) and one based on biased simulations

(BS) [17]. The biased random algorithm targets infected states and transitions [7] that exploit syntactic differences between
the original and mutant models. It then leverages the UPPAAL model-checker to generate traces involving infected states
to increase the chances of discriminating UPPAAL mutants. The primary goal is to improve our ability to distinguish
non-duplicate mutants while keeping a fast heuristic.

4. We implemented MUPPAAL using the UPPAAL execution engine for TAs and UPPAAL-TRON [18] for timed trace
generation and checking. In addition to the above contributions, MUPPAAL supports mutation operators for TA from
[19, 12, 15] avoiding equivalent mutants using refinement prevention [13, 12];

5. We assessed MUPPAAL† on six different UPPAAL models from distinct domains. Timed bisimulation can compute exact
(non-)equivalence in less than one second on average for a given pair of mutants. Our biased simulation heuristic is ten times
faster but identifies twice as many duplicates as bisimulation. Yet, it can drastically limit the number of potential duplicates
to check using the exact bisimulation method, offering a tradeoff between speed and accuracy, and can be combined
with timed bisimulation. In contrast, the random baseline suggests many false duplicates (up to 10 times compared to
bisimulation) and is not faster than timed bisimulation. Finally, our novel mutation operator effectively reduces the number
of mutants while perfectly capturing the initial mutation operator behavior.

This paper builds on our previous work [20] in several ways. First, this paper provides a novel simulation algorithm that
exploits the knowledge of infected states to guide timed trace generation [17]. Second, we reimplemented our timed bisimulation
algorithm to take advantage of parallel processing [16], yielding scalability and performance improvements. Finally, our
evaluation adds two case studies, a tram door model, and a scheduling framework.

The remainder of this paper is as follows. Section 2 introduces the formalisms we use and the equivalent and duplicate mutant
problem. Section 3 presents our new mutation operator and duplicate removal algorithms. Section 4 describes MUPPAAL and
reports on our experiments. Section 5 presents related work, and Section 6 wraps up with concluding remarks and future work.

2 BACKGROUND

In this section, we introduce the main formalisms, namely Timed Automata and Timed Automata with Inputs and Outputs.
We also describe Timed Bisimulation, Trace Simulation techniques, the UPPAAL tool, and the Equivalent/Duplicate Mutant
Problem.

† MUPPAAL implementation and full results of its evaluation are available: https://github.com/DavidC0rtes/stvr-muppaal

https://github.com/DavidC0rtes/stvr-muppaal
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2.1 Clocks and Timed Automata

To model the continuous-time domain, we use non-negative real-valued variables, known as clocks. Clocks are variables that are
incremented synchronously at the same rate. One of the most extensively studied formalisms for modeling TS is the Timed
Automata (TA) [21]. Several model checking tools rely on TA for their analysis, including UPPAAL [14], KRONOS [22], and
HYTECH [23]. TA extend the capabilities of Finite State Automata (FSA) by incorporating a set of clocks that are incremented
at a uniform rate. The reset of a clock in a timed automaton sets its value back to zero. TA allow transitions to be enabled or
disabled based on clock constraints. A transition occurs if all other conditions are satisfied. Our work uses an extension of TA
called Timed Automata with Inputs and Outputs (TAIO) [24]. In TAIO, actions are classified into two distinct sets: inputs and
outputs [25][24]. We adopt the TAIO extension of Aichernig et al. [24] for our purposes.

2.2 Timed Automata with Inputs and Outputs

A TAIO is a refined TA in which we model the interaction between a system and its environment by using input and output
actions [24]. The clock constraints are defined below.

Definition 1 (Clock constraints). Let X be a finite set of clock variables ranging over R≥0 (non-negative real numbers). Let
Φ(X) be a set of clock constraints over X. A clock constraint ϕ ∈ Φ(X) can be defined by the following grammar:

ϕ ::= true | x ∼ c | ϕ1 ∧ ϕ2

where x ∈ X, c ∈ N, and ∼∈ {<, >,≤,≥, =}.

Definition 2 (Clock Invariants). Let X be a finite set of clock variables ranging over R≥0. Let ∆(X) be a set of clock invariants
over X. Let φ1 and φ2 be clock constraints. Clocks invariants are clock constraints of the following form:

δ ::= true | x < c | x ≤ c | ϕ1 ∧ ϕ2

where x ∈ X, c ∈ N.

Definition 3 (Clock valuations). Given a finite set of clocks X, a clock valuation function ν : X→ R≥0 assigns to each clock x
∈ X a non-negative value ν(x). We denote RX

≥0 the set of all valuations. For a clock valuation ν ∈ RX
≥0 and a time value d ∈ R≥0,

ν + d is the valuation satisfied by (ν + d)(x) = ν(x) + d for each x ∈ X. Given a clock subset Y ⊆ X, we denote ν[Y ← 0] the
valuation defined as follows: ν[Y ← 0](x) = 0 if x ∈ Y and ν[Y← 0](x) = ν(x) otherwise.

In TAIO, transitions can have a guard that will allow transitions to be taken or not, performing actions, and resetting clocks. In
TAIO, one classifies actions (or alphabet) into two disjoint subsets: input actions (suffixed with ?) and output actions (suffixed
with !) [24]. The output actions of a TAIOA can be the input actions of a TAIO B. In [26], it is considered that there are multiple
initial states, but since we use the UPPAAL tool for modeling and testing our automata, and the automata in UPPAAL have only
one state, we will consider only one initial state in the following definition (Definition 4). We formally define TAIO as follows:

Definition 4 (TAIO). A TAIO is a tuple (L, l0, X,ΣI ,ΣO,Σ, T , I), where:

• L is a finite set of locations,
• l0 ∈ L is an initial location,
• X is a finite set of clocks,
• ΣI is a finite set of input actions (?),
• ΣO is a finite set of output actions (!),
• Σ = ΣI ∪ ΣO, is a finite set of input and output actions, such that ΣI ∩ ΣO = ∅,
• T ⊆ L× Σ× Φ(X)× 2|X| × L is a finite set of transitions,
• I : L→ ∆(X) is a function that associates to each location a clock invariant.

For a transition (l, a,ϕ, Y , l′) ∈ T , we classically write l
a,ϕ,Y

––––––→ l′ and call l and l′ the source and target location, ϕ the guard,
a the action (or alphabet), Y the set of clocks to reset. The semantics of a TAIO is a Timed Input/Output Transition System
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(TIOTS) where a state is a pair (l, ν) ∈ L× RX
≥0, where l denotes the current location with its accompanying clock valuation ν,

starting at (l0, ν0) where ν0 maps each clock to 0. The transitions can be of types: Delay transitions only let time pass without
changing location. We only consider legal states, i.e. states satisfying the current state invariant, ν |= I(l). Discrete transitions
occur instead between a source and a target location. The transition can only occur if the current clock values satisfy both the
guard of the transition and the invariant of the target location.

Definition 5 (Semantics of TAIO). Let A = (L, l0, X,ΣI ,ΣO,Σ, T , I) be a TAIO. The semantics of TAIO A is given by a
TIOTS(A) = (S, s0,ΣI ,ΣO,→) where:

• S ⊆ L × RX
≥0 is a set of states,

• s0 = (l0, ν0) with ν0(x) = 0 for all x ∈ X and ν0 |= I(l0),
• Σ∆ = Σ ⊎ R≥0,
• →⊆ S× Σ∆ × S is a transition relation defined by the following two rules:

· Discrete transition: (l, ν) a–→ (l′, ν′), for a ∈ Σ iff l
a,ϕ,Y

––––––→ l′, ν |= ϕ, ν′ = ν[Y ← 0] and ν′ |= I(l′) and,
· Delay transition: (l, ν) d––→ (l, ν + d), for some d ∈ R≥0 iff ν + d |= I(l).

A path in TIOTS(A) is a finite sequence of consecutive delays and discrete transitions. A finite execution fragment of A is a
path in TIOTS(A) starting from the initial state s0 = (l0, ν0), with delay and discrete transitions alternating along the path: ρ =
(l0, ν0) d0–––→ (l0, ν′0) a0–––→ (l1, ν1) . . . (ln–2, ν′n–2) an–1––––→ (ln–1, νn–1

dn–––→ (ln, νn) where ν0(x) = 0 for every x ∈ X. A path of TIOTS(A) is
initial if s0 = (l0, ν0) ∈ S, where l0 ∈ L, ν0 assign 0 to each clock.

A timed trace [21] over Σ is a finite sequence θ = ((σ1, t1), (σ2, t2) . . . (σn, tn)) of actions paired with non-negative real numbers
(i.e., (σi, ti) ∈ Σ× R≥0) such that the timestamped sequence t = t1 · t2 · · · tn is non-decreasing (i.e., ti ≤ ti+1).

Example 1. Let A be the TAIO depicted in Figure 1. A contains two locations: l0 (initial) and l1. We denote input actions (?)
and output actions (!). In particular, l0 is the only location to define an invariant not trivially true: I(l0) = (x < 7), forcing the
TAIO to exit l0 before x becomes 7. Location l1 has a true invariant (thus not drawn), allowing it to stay in l1 forever. Suppose
that the current location is l1. The transition l1

b?,(y=9),{x:=0;y:=0}
–––––––––––––––––––––→ l0 specifies that when the input action b? occurs and the guard

y = 9 holds, this enables the transition, leading to a new current location l0, while resetting clock variables x and y. Note that
using a location invariant (which specifies the time limit to stay in a given location) differs from using a guard (specifying when
the transition is enabled). The automaton in Figure 1 is nondeterministic because location l1 has two outgoing transitions on the
same input action (b?).

a!, x > 3,  x:= 0 

x < 7 b?, y = 9, {x:= 0, y:=0} 

b?, x < 10, ∅ 

l0 l1

F I G U R E 1 A nondeterministic TAIO with two clocks x and y.

Example 2. Figure 2 presents a run of the timed automaton A presented in Figure 1. A run of A is a path in TIOTS(A) =
(s0, [x = 0.0, y = 0.0]) 3.1–––→ (s0, [x = 3.1, y = 3.1]) a!––→ (s1, [x = 0.0, y = 3.1]) 1.9–––→ (s1, [x = 1.9, y = 5.0]) b?–––→ (s1, [x = 1.9, y = 5.0])
4.0–––→ (s1, [x = 5.9, y = 9.0]) b?–––→ (s0, [x = 0.0, y = 0.0]) starting from the initial state with each clock set to 0 and the timed trace θ

associated with this non-accepting run is ((a, 3.1)(b, 5.0)(b, 9.0)).

Definition 6 (Deterministic TAIO). A deterministic TAIO is a tuple A = (L, l0, X, ΣI , ΣO,Σ, T , I) such that: for every l ∈ L, for
all actions a ∈ Σ, for every pair of different edges of the form (l, a,ϕ1, Y1, l′1) ∈ T and (l, a,ϕ2, Y2, l′2) ∈ T , implies ϕ1 ∩ ϕ2 = ∅
and l′1 = l′2. (2) For every l ∈ L, for all actions a ∈ Σ, and every valuation ν there is an edge (l, a,ϕ, Y1, l′) such that ν |= ϕ.
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(s0, 
[x = 0.0, 
y = 0.0])

 0.0 

(s1, 
[x = 0.0, 
y = 3.1])

a!  3.1  (s0, 
[x = 3.1, 
y = 3.1]) 

 time evolution 

1.9  (s1, 
[x = 1.9, 
y = 5.0])

(s1, 
[x = 1.9, 
y = 5.0])

(s1, 
[x = 5.9, 
y = 9.0])

(s0, 
[x = 0.0, 
y = 0.0])

start
b?  4.0  b? ...  

 3.1  5.0  9.0 

F I G U R E 2 The run of the timed automaton A in Figure 1

2.3 Timed Bisimulation and Trace Simulation

Timed bisimulation and trace simulation are two important concepts used in systems modeling and verification, especially those
with timing constraints and concurrent behavior. Timed bisimulation computes behavioral equivalence in timed systems while
considering both observable actions and timing constraints. Trace simulation is a more general technique for checking whether
two systems produce similar sequences of observable actions, regardless of timing.

2.3.1 Trace Simulation

Trace simulation is a technique used to compare and analyze the behavior of two systems by observing sequences of actions or
events, called traces, generated by each system. The goal of trace simulation is to establish a relationship between the traces
of the two systems, and the purpose is to verify that one system behaves like another in terms of observable actions. Trace
simulation involves running both systems with the same input, recording their traces, and comparing these traces to check for
equivalence. Trace simulation is often used in software testing and verification to ensure that a system or program produces the
expected output or behavior for a given input.

Definition 7. A Timed Trace (TT) over Σ is a sequence ρ = ((σ0, t0)(σ1, t1) . . . (σn, tn)) of actions or propositions paired with
non-negative real numbers (i.e., (σi, ti) ∈ (Σ× R≥0)) such that the timestamp sequence t = t0 · t1 · · · tn is non-decreasing (i.e.,
ti ≤ ti+1). We sometimes define ρ as the pair ρ = (σ, t) with σ ∈ Σ∗ and t a sequence of timestamps of the same length [21].
Furthermore, a timestamp sequence t = t0 · t1 · · · tn respects:

1. Initialization: t0 = 0,
2. Monotonicity: for all i ≥ 0, ti+1 ≥ ti,
3. Progress: for all t ∈ R≥0, there exists i such that ti > t.

2.3.2 Timed Bisimulation

Timed bisimulation [27] is a relation between system states that captures behavioral equivalence concerning both functional
behavior and timing constraints. Timed bisimulation is used to determine whether two states in a timed system exhibit the same
behavior in terms of observable actions, given the timing information. Timed bisimulation is particularly useful for verifying
systems modeled as TA or other formalisms with timing constraints.

Definition 8 (Timed Bisimulation [27]). Let D1 and D2 be two TIOTS over the set of actions Σ = (ΣI ∪ ΣO). Let SD1 (resp.,
SD2 ) be the set of states of D1 (resp., D2). A timed bisimulation over TIOTS D1, D2 is a binary relationR ⊆ SD1 × SD2 such
that, for all sD1R sD2 , the following holds:

1. For every discrete transition sD1

a–→D1 s′D1
with a ∈ Σ, there exists a matching transition sD2

a–→D2 s′D2
such that s′D1

Rs′D2

and symmetrically.
2. For every delay transition sD1

d––→D1 s′D1
with d ∈ R≥0, there exists a matching transition sD2

d––→D2 s′D2
such that s′D1

Rs′D2

and symmetrically.

D1 and D2 are timed bisimilar, written D1 ∼ D2, if there exists a timed bisimulation relationR over D1 and D2 containing the
pair of initial states.
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Nilsson et al. [28] Aichernig et al. [24] Basile et al. [12]
Op Description Op Description Op Description
ET Execution time CA Change action TMI Transition missing
IAT Inter-arrival time CT Change target TAD Transition ADd
PO Pattern offset CS Change source SMI State missing
LT Lock time CG Change guard CXL Constant exchange L

UT Unlock time NG Negate guard CXS Constant exchange S
HTS Hold time shift CI Change invariant CCN Constraint negation
PC Precedence constraints SL Sink location - -
- - IR Invert reset - -

T A B L E 1 Mutation operators for TA.

Example 3. Consider the two TAIO A and B in Figure 3 with the alphabet Σ = {a?} and the set of clocks X = {x, y}. A
performs non-deterministically the transition with the guard x ≤ 2, the action a?, resets clock x to 0 and enters location s1.
Similarly, B is the same but with y. We will show that these TAIO are timed bisimilar (Definition 8). We have (S0, [x = 0.0]) in
TIOTS(A) and (T0, [y = 0.0]) in TIOTS(B). Then, since A can run the delay transition (S0, [x = 0.0])

(1.0)
–––––→ (S0, [x = 1.0]) and

then (S0, [x = 1.0]) a?–––→ (s1, [x = 0.0]). B can match this with the delay transition with (T0, [y = 0.0])
(1.0)

–––––→ (T0, [y = 1.0]) and
discrete transition (T0, [y = 1.0]) a?–––→ (T1, [y = 0.0]). So, the given TAIO are bisimilar.

So S1
x ≤ 2, a?, x  ≔	0 To T1

y ≤ 2, a?, y  ≔	0 

A B

F I G U R E 3 Two TAIO A and B.

2.4 Mutation Operators and Equivalent Mutant Problem

Mutation operators are an essential component of mutation testing, a software testing technique used to evaluate the effectiveness
of a test suite. Mutation operators are responsible for generating these mutations. The equivalent mutation problem highlights
the importance of continually improving and extending test coverage to ensure that real defects are not missed during testing.

2.4.1 TA and Mutation Operators

Nilsson et al. [28] were among the first to extend TA with a task model. A task model consists of a set of n (real-time) tasks, and
they give each task a period Ti, a worst-case execution time Ci, and a relative deadline Di and mutation operators. Nilsson et al.
proposed six mutation operators: execution time (ET) affects the execution time of a task; hold time shift (HTS) and lock/unlock
time (LUT) operators either shift the whole lock/unlock time interval for a resource or only one of its bounds; precedence
constraints (PC) operators change precedence relations between pairs of tasks. The authors also define automata operators that
affect both invariant and guard constraints either for a given location (inter-arrival time (IAT)) or for the initial location (pattern
offset (PO)). Aboutrab et al. [29] and Aichernig et al. [24] also proposed some mutation operators for UPPAAL to test the
behavior of TS. Three of them are not time-related: change action (CA), change source (CS)/target (CT), and sink location
(SL). The time-related operators are: change guard (CG) alters the inequality within the guard constraint, negate guard (NG)
operator replaces a transition’s Boolean guard by its logical negation, invert reset (IR) selects one clock variable and either adds
it to the list of clocks to be reset during the transition if it is absent or removes it from the list if it is present, change invariant
(CI) adds one time-unit to the invariant constraint in an automaton location. Basile et al. [12] proposed six mutation operators in
TAIO, designed to avoid the generation of subsumed mutants by construction. Three of the six mutation operators in [12] are
time-independent: Transition MIssing (TMI) removes a transition; Transition Add (TAD) adds a transition between two locations;
State MIssing (SMI) removes an arbitrary location (also called state) other than the initial location and all its incoming/outgoing
transitions. The other three time-related operators are: Constant eXchange Larger (CXL) increases the constant of a clock
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constraint, Constant eXchange Smaller (CXS) decreases the constant of a clock constraint and Clock Constraint Negation
(CCN) negates a clock constraint. The main idea in [12] is to perform a refinement check between the mutant and the system
model, using ECDAR [30]. Table 1 shows the mutation operators retrieved from the contributions considered.

2.4.2 Equivalent/Duplicate mutant problem

MT is one of the most effective coverage criteria for evaluating the quality of the test suite [3, 11]. In addition, several recent
empirical studies evaluated the effectiveness and efficiency of MT [4, 31, 11]. The equivalent/duplicate mutant problem is a
well-documented challenge in mutation analysis [4][5][32]. It arises when two program variants exhibit identical behavior,
making them indistinguishable by test cases. This poses significant problems for both test suite generation and evaluation. In the
former case, resources are wasted trying to eliminate mutants that are, in fact, impossible to kill (achieving a 100% mutant kill
becomes unattainable if equivalence exists). In the latter case, it distorts the evaluation results because the same (faulty) behavior
is assessed several times. Equivalent and duplicate mutants can be depicted as [4]: (a) behavioral equivalence between a mutant
and the original system, (b) behavioral equivalence between two mutants but not with the original system. Mutants that fall
under case (a) are referred to as equivalent, whereas those that fall under case (b) are referred to as duplicates. In the context of
this paper, we focus on both cases, i.e., mutants of case (a) and (b). The additional costs incurred by these useless mutants are
not negligible: between 30% - 40% increase for equivalent mutants [33] and between 20% - 30% for duplicate mutants [11].

2.5 Useless Mutant Reduction Strategies

2.5.1 Code-level techniques

To overcome the equivalent mutant problem, the software testing community developed many solutions, mostly at the code level.
For source code, this problem is undecidable [33], meaning that there is no exact approach that can remove all equivalent mutants.
Therefore, various heuristics have been proposed. Surveys [11, 33] detail these heuristics, they include: search-based approaches
[34], constraint-based approaches [5, 35], and compiler optimization [4, 36], the latter having gained popularity because of its
simplicity and efficiency [37, 38]. The coming of age of machine learning for software engineering has led some researchers to
address the equivalent mutant problem with machine learning and large language models [37] with promising results.

However, these techniques are hardly transferable to our context (timed systems), since they do not work at the same
abstraction level and do not consider hard real-time constraints. Also, regarding learning-based techniques, the scarcity of
UPPAAL models compared to large repositories of JAVA software is likely to limit training/fine-tuning possibilities to obtain
optimized models. Finally, these works concentrate on equivalent mutants and do not specifically address duplicates (though
some techniques are applicable in both cases).

2.5.2 Model-level techniques

One of the advantages of considering systems at the model level is that the equivalent mutant (and its related duplicate) problem
becomes decidable depending on the formalism used. This open the way to the use of formal refinement and bisimulation
techniques to avoid and get rid of useless mutants in a sound and complete manner. One line of work focus on avoiding equivalent
mutants in the first place [13, 12]. Basile et al. use timed refinement techniques to explore the conditions under which a mutation
operator can yield equivalent mutants. By ensuring the non-conformance of the mutant to the original model we can guarantee
non-equivalence [12, 13]. An alternative is to remove equivalent mutants using timed refinement relations, as proposed by Larsen
et al. [30] and Aichernig et al. [24]. Devorey et al. used an efficient bisimulation algorithm for checking equivalence between
non-timed automata. While we leverage these strategies in the present paper, we note that, as for code-level mutation, none of
them specifically focus on mutant duplicates. Thus, our goal is to apply strategies for avoiding and removing all useless mutants,
not just equivalent ones. MUPPAAL decreases MBMT costs by eliminating useless mutants from the analysis.
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2.6 UPPAAL and UPPAAL-TRON

UPPAAL is a tool for the modeling, simulation, and verification of networks of TA extended with data types, user functions,
clocks, and synchronous communication channels [14]. The UPPAAL tool offers significant advantages, especially when
dealing with systems with large and complex dynamics and stochastic behavior. UPPAAL includes a graphical editor and
animator/simulator, as well as an efficient model checker.UPPAAL provides an exhaustive symbolic analysis of the model, and
either a proof that the model satisfies a property, or a counterexample consisting of a trace of actions and delays illustrating how
the property is violated. It has been successfully applied to numerous industrial cases. UPPAAL was extended with components
for test generation, scheduling, timed specification and controller synthesis (see Figure 4).

UPPAAL
Modeling, simulation and verification

TRON
Online testing

TIGA
Synthesis

CORA
SchedulingECDAR

Specification

F I G U R E 4 UPPAAL Tool and extensions.

Here, we use the component UPPAAL-TRON [39]. TRON is a testing tool, based on UPPAAL, suited for online black-box
conformance testing of TS. TRON is used for testing the Implementation Under Test (IUT). TRON can use a randomized
online testing algorithm, an extension of the UPPAAL model checker [14]. TRON has well-defined formal semantic and
correctness criteria. These criteria define how a correct implementation should behave compared to the modeled behavior. The
implementation of the tool allows real-time testing of many real-time systems by extending the efficient algorithms and data
structures of the model checker engine. TRON can generate and execute tests event by event in real-time by stimulating and
monitoring the IUT. TRON performs these two operations, computing the possible set of symbolic states based on the timed
trace observed so far. A timed trace in TRON consists of a sequence of input or output actions and time delays [18].

2.6.1 Query Language

In model checking, we must verify that a model complies with the required specifications. Therefore, the properties must
be expressed in a formal language, such as a simplified version of TCTL [40] (Timed Computational Tree Logic), which is
supported by UPPAAL. TCTL is a specialized version of Computation Tree Logic (CTL) tailored to express real-time properties
[40]. These properties find application in systems modeled by TA. Similarly to the CTL properties, the TCTL properties consist
of both state and path formulas. A state formula represents an expression defined over the atomic propositions within a model. It
can be evaluated separately for each state within a system. A path formula, on the other hand, quantifies the paths within a model
regarding either some path (∃) or all paths (∀). Temporal operators are used to specify the states for which the state formula is to
be valid. Commonly used operators include □ for global (indicating that a condition holds now and into the indefinite future)
and ♢ for final (indicating that a condition will hold at some point in the future). Table 2 lists the types of TCTL properties
supported by UPPAAL.

As a result, the query language used by UPPAAL to specify properties is less expressive than the TCTL, and not every TCTL
formula can be expressed in UPPAAL. The following reachability properties can be written in UPPAAL:

Property 1. A[] not deadlock

At every stage, at least one transition will eventually be enabled.
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Path formula UPPAAL Description
∃♢ρ E<>ρ There exists a path where ρ eventually holds.
∃□ρ E[]ρ There exists a path where ρ is always satisfied.
∀□ρ A[]ρ For all paths, ρ is always satisfied.
∀♢ρ A<>ρ For all paths, ρ is eventually satisfied.
ρ⇝ ξ ρ –→ ξ ρ implies ξ eventually, always.

T A B L E 2 Query language in UPPAAL

Property 2. E<> A.s

It is possible to reach the s state.

Property 3. E<> (A.on or B.on)

It is possible to reach states where A is on or B is on.

Property 4. A[] (not A.on or (B.off and C.off))

For every path, if the state A is on, both states B and C must be off.

3 OVERCOMING THE EQUIVALENT AND DUPLICATE MUTANTS PROBLEM

Three strategies target the equivalent (and duplicate) mutant problem [33]: (1) avoid (2) detect, and (3) suggest equivalent (and
duplicate) mutants. In this section, we describe how MUPPAAL implements them.

3.1 Avoiding Equivalent and Duplicate Mutants

The design of the mutation operator is essential for an effective MBMT tool. It must generate as few mutants as possible without
losing efficiency, i.e., avoiding useless mutants. However, most MBMT tools [28, 29, 19] do not avoid the generation of useless
mutants. Basile et al. [12] avoid equivalent mutants by proposing operators guaranteeing that mutants do not refine the original
system’s behavior. We have implemented them for UPPAAL. In addition, we offer a new duplicate-avoiding mutation operator.

3.1.1 Mutation Operators and Non-Equivalent Mutants.

Here, we use the guidelines and the six mutation operators of [12] (see Table 1). We rely on them to avoid equivalent mutants.

3.1.2 A new duplicate-avoiding Mutation Operator.

A duplicate mutant has the same behavior as another mutant and is thus useless. The refinement technique of Basile et al.
ensures non-equivalence [12, 13] but does not avoid mutant duplicates. Hence, we introduce a new mutation operator (SMI-NR),
avoiding first-order duplicate mutants between SMI and TMI.

Example 4. Figure 5 illustrates a base system modeled as a non-duplicate TAIO. Applying TMI, i.e. removing the second
transition (l1, a?, true, ∅, l2) gives Figure 6, while applying SMI, i.e. removing location l2, gives Figure 7. Both have the same
behavior: they are thus mutant duplicates.

To formally specify SMI-NR, we first note that a mutation operator is a functionMµ that generates a set of mutants from a
TAIO. We use µ to refer to each specific operator presented in [12]. The definition of the SMI-NR operator is as follows:

Definition 9. For a TAIO A. The mutants Atmi and Asmi are defined as follows:

Atmi ∈Mtmi(A) such that Atmi = (L, l0, X,ΣI ,ΣO,Σ, T \ {ttmi}, I), ttmi = (l1, atmi,ϕ, Y , l2) ∈ T and atmi ∈ ΣI

Asmi ∈Msmi(A) such that Asmi = (L \ {lsmi}, l0, X,ΣI ,ΣO,Σ, Tsmi, I), lsmi ∈ L, lsmi ̸= l0,
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true

b!, true, ∅ 
l0 l1 l2

a?, true, ∅ 

c!, true, ∅ 

b!, true, ∅  b!, true, ∅ 

true true

true

l3

F I G U R E 5 An original model (TAIO).

true

b!, true, ∅ 
l0 l1 l2

c!, true, ∅ 

b!, true, ∅  b!, true, ∅ 

true true

true

l3

F I G U R E 6 A mutant generated by TMI operator from Figure 5.

true

b!, true, ∅ 
l0 l1

true true

l3

F I G U R E 7 A mutant generated by SMI operator from Figure 5.

Tsmi = {(l1, a,ϕ, Y , l2) ∈ T | lsmi ̸= l1 and lsmi ̸= l2}

If every possible initial finite execution fragment of A ending in location lsmi has the same previous location l′smi ̸= lsmi for
some lsmi occurrence, and l′smi only has one edge ttmi = (l′smi, a,ϕ, Y , lsmi) to lsmi, then Atmi and Asmi are duplicates and Asmi–nr is
generated.

The conditions for the SMI-NR operator are as follows:

• lsmi ∈ L \ {l0}, meaning the removed location is not an initial location,
• ∃t = (l′smi, a,ϕ, Y , lsmi), there exists a transition t ∈ T that has an input action a ∈ ΣI with lsmi as a target location, and some

l′smi, ϕ, Y ,
• Tsmi = {(l1, a,ϕ, Y , l2) ∈ T | lsmi ̸= l1 and lsmi ̸= l2}, as a consequence of removing a location, the new set of edges does not

have the removed location,
• I: L \ {l}→ Φ(X), where l ∈ L is from the original model. The locations that are not removed in the mutant keep the same

invariant.

The following theorem and proposition consider the case of a TMI mutant and a SMI mutant being timed bisimilar.

Theorem 1 (TMI and SMI duplicate mutants). Let A be a TAIO and the mutants Atmi and Asmi where:

Atmi ∈Mtmi(A) such that Atmi = (L, l0, X,ΣI ,ΣO,Σ, T \ {ttmi}, I), ttmi = (l1, atmi,ϕ, Y , l2) ∈ T and atmi ∈ ΣI , and

Asmi ∈Msmi(A) such that Asmi = (L \ {lsmi}, l0, X,ΣI ,ΣO,Σ, Tsmi, I), lsmi ∈ L, lsmi ̸= l0,
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Tsmi = {(l1, a,ϕ, Y , l2) ∈ T | lsmi ̸= l1 and lsmi ̸= l2}

Then, Atmi ∼ Asmi iff every initial and finite execution fragment of A ending in the location lsmi ∈ L, takes the same discrete
transition, with the same transition ttmi = (l, a,ϕ, Y , lsmi) ∈ T for some occurrence of the location lsmi.

Verifying the condition in Theorem 1 to prevent TMI and SMI induce duplicates is costly. Therefore, we define a relaxed
condition in Proposition 1 (see proofs in the companion website) permitting us to avoid some duplicate mutants using a
breadth-first search algorithm in polynomial time.

Proposition 1 (Duplicate mutants). Let A be a TAIO and the mutants Atmi and Asmi where:

Atmi ∈Mtmi(A) such that Atmi = (L, l0, X,ΣI ,ΣO, T \ {ttmi}, I), ttmi = (l1, atmi,ϕ, Y , l2) ∈ T and atmi ∈ ΣI , and

Asmi ∈Msmi(A) such that Asmi = (L \ {lsmi}, l0, X,ΣI ,ΣO, Tsmi, I), lsmi ∈ L, lsmi ̸= l0,

Tsmi = {(l1, a,ϕ, Y , l2) ∈ T | lsmi ̸= l1 and lsmi ̸= l2}

If every possible initial finite execution fragment of A ending in location lsmi has the same previous location l′smi ̸= lsmi for
some lsmi occurrence and l′smi only has one edge ttmi = (l′smi, a,ϕ, Y , lsmi) to lsmi, then Atmi and Asmi are duplicates.

Since Proposition 1 is not a sufficient condition, we cannot prevent some duplicates with this condition. In Figures 8 and
9 we depict examples where Proposition 1 cannot prevent duplicates. In Figure 8, we can see that removing the transition
(lprev, asmi?, x >= 1, ∅, lsmi) leads to a deadlock because the only possible transition is (lprev, b!, x >= 1, ∅, l3). At location l3, we are
stuck in a deadlock and cannot reach location lsmi. So here, if we remove such a transition, it is equivalent to the mutant in which
we remove the location lsmi. In Figure 9, we can see that removing the transition (lprev, asmi?, x >= 1, ∅, lsmi) leads to a deadlock
(because we cannot reach the location lsmi). Therefore, if we remove such a transition, it is equivalent to the mutant in which we
remove the location lsmi.

true

b!, true, x:=0  l0 l_smi
a_{smi}?, x>=1 

c!, true, ∅ 

 b!, x <= 0, ∅ b!, true, x:=0  

true true

true

l3

l_prev

c!, true, ∅ 
b!, x>=1, ∅ 

F I G U R E 8 Removes transition (lprev, b!, x ≥ 1, ∅, l3) could cause a deadlock because the only possible transition is (lprev, b!, x >= 1, ∅, l3).

true

b!, true, x:=0l0 l_smi
b!, x<=0,∅ 

c!,true,∅ 

true true

l_prev

b!, true,x:=0 

a_{smi}?, x>=1,∅ 
F I G U R E 9 Removes location l3 could cause a deadlock because the only possible location is lsmi.
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3.2 Detecting Duplicate Mutants

Mutant duplicates are a well-known issue in mutation testing: empirical studies report that between 20% and 30% of all generated
mutants are duplicates [4, 33], which affects mutation testing effectiveness [41]. In addition, to be computationally tractable, the
SMI-NR is incomplete. Therefore, we present an approach to detect and remove duplicate mutants after mutant generation by
using a timed bisimulation algorithm [27, 15]. MUPPAAL uses Ortiz et al. timed bisimulation algorithm [15]. Because timed
bisimulation’s complexity is EXPTIME [27], if the bisimulation process takes longer than the specified time to analyze a pair of
mutants, our algorithm will stop the bisimulation process.

1 Input: A l i s t o f m u t a n t s LM
2 Output: A p a i r o f s e t s ( no d u p l i c a t e and t i m e o u t m u t a n t s ended ) .
3 MU tm ={} ; A s e t o f p a i r s o f m u t a n t s ended wi th t i m e o u t
4 EQC ={} ; A s e t o f e q u i v a l e n c e c l a s s e s
5 NEQC ={} ; A s e t o f no - e q u i v a l e n c e c l a s s e s
6 for ( i =0 ; i<LM . s i z e ( ) - 1 ; i ++) {
7 for ( j = i +1 ; j<LM . s i z e ( ) ; j ++) {
8 // search for an equivalence class in EQC that contains i
9 e q c _ i = g e t E q u i v a l e n c e C l a s s ( i ) ;

10 // search for a no-equivalence class in NEQC that contains i
11 n e q c _ i = g e t N o E q u i v a l e n c e C l a s s ( i ) ;
12 if ( e q c _ i == n u l l ) { // if they do not exist, create them

13 EQC . add ( {i} ) ;
14 NEQC . add ( {} ) ;
15 }
16 if ( j ∈ e q c _ i | | j ∈ n e q c _ i ) {
17 // If the mutant j is in the equivalence class or no-equivalence

18 // class of i, timed bisimulation between i and j can be inferred

19 continue ; }
20 // if the result cannot be inferred, compute timed bisimulation

21 b i s i m = B i s i m i l a r A l g o (LM[i] , LM[j] ) ;
22 if ( b i s i m == TIMEOUT) {
23 // Add the pair of i – th, j – th mutants that ended with timeout

24 MU tm . add(LM[i],LM[j] ) ;
25 continue ; }
26 // update the equivance classes and no-equivalent classes accordingly

27 e q c _ j = g e t E q u i v a l e n c e C l a s s ( j ) ;
28 n e q c _ j = g e t N o E q u i v a l e n c e C l a s s ( j ) ;
29 if ( b i s i m == 1) { // if the mutants are equivalent

30 merge ( eqc_ i , e q c _ j ) ;
31 merge ( neqc_ i , n e q c _ j ) ;
32 } else if ( b i s i m == 0) { // if the mutants are not equivalent

33 n e q c _ i . e x t e n d ( e q c _ j ) ;
34 n e q c _ j . e x t e n d ( e q c _ i ) ; }
35 }
36 }
37 MU ={} ;
38 for ( c =0; c < EQC . s i z e ( ) ; c ++) {
39 // Take one representative of each equivalence class

40 MU . add(EQC[c][0]) ; }
41 return pair(MU ,MU tm) ;

Algorithm 1 Bisimulation Process taking advantage of timed bisimulation as equivalence relation.
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Algorithm 1 describes how MUPPAAL detects duplicates using timed bisimulation [15]. It receives a list of mutants and
returns a pair with two sets, whereMU is a set of non-duplicate mutants andMU tm is a set of mutants whose analysis ended
with a timeout. In addition to the journal version of this article, we present a strategy that can save computing time by taking
advantage of the algebraic properties of timed bisimulation.

Timed bisimulation is an equivalence relation [42]. An equivalence relation like timed bisimulation partitions a set of TAIO
into disjoint equivalence classes, where the members of each class are duplicates of each other. Then, the problem of detecting
duplicates in a set of mutants can be seen as the problem of partitioning it modulo timed bisimulation. Efficiently partitioning a
set under an equivalence relation is thoroughly investigated in [43]. We apply these results to save computing time potentially,
but first, we need some definitions.

Let timed bisimulation equivalence be denoted as ∼. Let X be a set of TAIO. The equivalence class of TAIO A, denoted [A],
is defined as [A] = {x ∈ X : x ∼ A}. A no-equivalence class [¬A] is defined as [¬A] = {x ∈ X : ∃y ∈ [A] | x ̸∼ y} [42].

With these, we are ready to introduce Algorithm 1, which efficiently constructs the partition induced by timed bisimulation
over the input mutant set. It works as follows:

1. Iterate through every pair A, B of the input mutants (lines 6, 7).
(a) Get the equivalence class and no-equivalence class of B. If they do not exist, create them (lines 8-15).
(b) If A belongs to [B], then A is equivalent to B. If A belongs to [¬B], then A is not equivalent to B. These facts can be

inferred without computing timed bisimulation; we may continue with the next pair. (lines 16-20).
(c) If neither case holds, the timed bisimulation must be computed (line 22).
(d) If the result is a timeout, then updateMU tm (line 25).
(e) If the timed bisimulation is true, then [A] and [B] are the same, and they must be merged, and this holds for [¬A] and

[¬B] too (line 33).
(f) If the timed bisimulation is false, then [¬A] must include B and any other mutant equivalent to B. Also, [¬B] must

include A and any other mutant equivalent to A (line 34-37).
2. After the set of mutants was partitioned, construct a new set by taking one mutant of each class. These mutants are

guaranteed to be not equivalent. Return the set of non-duplicate mutants and the pairs of mutants that timed out during
timed bisimulation (lines 40-45).

This technique was first presented and applied to the equivalent mutant problem in [16], where experimentation and details
can be consulted.

3.3 Suggesting Duplicate Mutants

As stated before, timed bisimulation is computationally costly (EXPTIME [27]). To assess this complexity in practice, we
present two baseline approaches (Random and Biased Simulation) based on a simulation that suggests (it is not exact) mutants
as potential duplicates. MUPPAAL uses the tools UPPAAL and UPPAAL-TRON to automatically suggest duplicate mutants.

3.3.1 Random Simulation (RS)

Random Simulation (RS) assumes a uniform distribution of traces over the model; such traces are selected randomly. Therefore,
we take a pair of mutants, generate a random set of traces from one of the two mutants, and run them on the other mutant model
and reciprocally [17]. We check whether the mutants accept these traces (i.e., whether the mutants can simulate the actions and
delays). If a simulation trace fails to run on one of the models, we deduce that the mutants cannot be bisimilar. However, if
all simulation traces are accepted, we consider mutants as probably bisimilar (i.e., we cannot guarantee the existence of the
bisimilarity relation). We use the query simulate [<=k; N] 1 using UPPAAL to get traces which simulate k units of time and
getting N traces. Then, we use UPPAAL-TRON to check the validity of the traces of one mutant into the other [39]. To perform
trace simulations on UPPAAL-TRON, our translator tool uses ANTLR [44] to parse and translate the traces from UPPAAL into
a preamble file and a trace file. UPPAAL-TRON needs these two files to monitor an execution: (1) the preamble file provides
the required definitions to configure and prepare UPPAAL-TRON for test execution of the trace, and (2) the trace file, which is
a sequence of actions and delays to check if the model can execute. Given two mutants, Automaton A and Automaton B, our tool
proceeds as follows (for N random traces): (1) it takes the Automaton A to generate traces using UPPAAL. Then the tool reads
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1 Input: A mutant M1 ∈ MU tm, number of traces to generate N, and a simulation time k
2 Output: An array with UPPAAL-TRON traces

3 T =[N]; // The set of N UPPAAL traces

4 T ′=[N]; // The set of N UPPAAL-TRON traces

5 for(i=0;i<N; i++){

6 //The seed for the pseudo-random generator

7 r = random();

8 //Get random trace from UPPAAL
9 T [i] =verifyta(M1, k, r);

10 //Translate trace to UPPAAL-TRON format

11 tree=parser(lexer(T[i]));
12 T ′[i] = tree.format();
13 }

14 return T ′;

Algorithm 2 Trace generation.

1 Input: A s e t o f m u t a n t s MU tm , a number o f t r a c e s t o g e n e r a t e N and a s i m u l a t i o n
t ime k

2 Output: A l i s t o f non - b i s i m i l a r m u t a n t s
3 // The set of N UPPAAL-TRON traces per mutant

4 T ′ =[MU tm . s i z e ( ) ] [ N ] ;
5 for ( i =0 ; i<MU tm.size() ; i ++) {
6 T ′ [ i ]= T r a c e G e n e r a t i o n (MU tm[i] , N , k ) ;
7 }
8 NBM = [()] // List of no bisimilar mutants

9 for ( i =0 ; i<MU tm.size() - 1 ; i ++) {
10 for ( j = i +1 ; j<MU tm.size() ; j ++) {
11 for ( k =0; k<N ; k ++) {
12 Pass1 =Tron . check (MU tm[i] , T ′[j, k] ) ;
13 Pass2 =Tron . check (MU tm[j] , T ′[i, k] ) ;
14 if ( ! ( Pass1∧Pass2 ) )
15 NBM=NBM . add ( (MU tm[i]) ) ;
16 }
17 }
18 }
19 return NBM ;

Algorithm 3 Random Trace Simulation Algorithm.

them, parses trace ti, builds the preamble, and per each ti it makes a t′i file with the UPPAAL-TRON format. (2) once traces are
created, the tool uses UPPAAL-TRON to check if the Automaton B can execute the trace, returning as output Passed or Failed.
Hence, all pairs that do not accept random traces are not bisimilar.

3.3.2 Random Algorithms

Algorithm 2 describes the random trace generation process of MUPPAAL. The algorithm works as follows: a random seed is
chosen in line 7, which is then used in line 9 to generate a trace with simulation time k for the mutantM1 using the Verifyta
command-line tool [14]. Later on, we translate the generated trace from UPPAAL format to UPPAAL-TRON format (lines
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11-12). The algorithm repeats until it produces N random traces for all mutants inMU tm with a simulation time k and a random
number generator r. Algorithm 3 describes the random trace simulation process and uses Algorithm 2 to compute their UPPAAL-
TRON traces. The algorithm works as follows. At the first iteration, it checks the N random traces generated by the second
mutantMU tm[j] on the first mutantMU tm[i] (lines 12-13). In addition, if mutants are not bisimilar within a pair, NBM is
updated with the ith mutants (line 15). At the second iteration, it checks the N random traces generated by the other two mutants
inMU tm and so on up to the nth iteration. Figure 10 depicts the requirements of UPPAAL-TRON (TRON-traces and Mutants).

F I G U R E 10 Simulation of traces using UPPAAL-TRON

3.3.3 Biased Simulation (BS)

Biased Simulation (BS) leverages fundamental principles of mutation testing. Mutations are localized and primarily result in
behavioral differences. The assumption here is that these differences can be detected through a trace, which, when executed on
the original system or its mutant, traverses one of the states affected by the mutation. To achieve this, we employ UPPAAL’s
verifyta to generate biased traces. These traces are then input into UPPAAL-TRON alongside another mutant to determine if
the mutant can faithfully simulate the traces. The presence of a counterexample indicates that the mutants are not equivalent.
Otherwise, if no counterexample is found, the result remains inconclusive, prompting a bisimilarity check. The identification of
infected states is done through a syntactic and semantic comparison between two given models. These models are subsequently
utilized to generate the biased traces. This strategy has demonstrated effectiveness in mutation testing at the code level and has
proven valuable in identifying equivalent mutants [17, 45, 46, 11]. Our approach focuses on generating biased traces to reduce
state exploration, minimize the number of traces required to distinguish one model from another, and consequently, reduce the
time needed for this task. More specifically, the set of infected states, denoted as Sinfect, is constructed by loading them into
memory and extending juppaal, a Java API designed to work with UPPAAL model files. Additionally, Google’s guava library
is employed for performing set computations.

Formally, givenMA,MB two mutants, then, the set of infected locations: Sinfect =MA –MB such that:

(li ∈ LA) ∈ Sinfect ↔ li ∈ LA – LB ∨ li ∈ TA – TB

A location is different iff it is in the locations difference set or if it is either a source or target of an edge in the edge difference
set, where an edge t ∈ T .

(ti ∈ TA) ∈ Sinfect ↔ ti ∈ TA – TB

https://github.com/ksluckow/juppaal
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This means that a transition is said to be different from another iff any of the following conditions are met: (i) they have different
source and/or target, (ii) they have different guards, (iii) they synchronize over different channels, or (iv) they update or select
different variables.

In turn, when comparing one location to another, they will be deemed different if they have different types (urgent, committed,
normal), if they have different invariants, or if they have different names, in that order. The next step is to generate the traces;
since TA deal with real-time, we decided to use verifyta for this task by feeding it the model and a constructed TCTL path
formula in the form of E<> Automata.li where:

• li ∈ Sinfect

For edges in Tinfect reachability formulas of the form E<> reachSource && reachTran && Automata.li were
used, where:

• li ∈ Sinfect

• reachSource is a boolean variable set to true on all incoming edges to the source location.
• reachTran is a boolean variable set to true on the specific edge identified as different.

With this, we guarantee that all generated traces will go from the initial location to the desired location and, if necessary, along
the desired path. In Figure 11, we show the flow of the biased trace generator.
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F I G U R E 11 Flow of the biased trace generator.

3.3.4 Biased Algorithms

Algorithm 4 computes the set of infected locations and edges between any two mutantsMA andMB. The algorithm works as
follows: in line 12, it computes the set of infected locations (F ). In line 15, it computes the set of infected edges (E). At the first
iteration in lines 18-27, it adds to F the source and target locations that are found in E and do not exist in F .

Algorithm 5 describes the biased trace generation process of MUPPAAL. The algorithm works as follows: at the first iteration,
it loops through every infected location, calling the CLI tool verifyta [14] with the generated reachability formula to said
location for the mutantMB (lines 5-6). The second iteration (lines 9-18) performs the same process for every infected transition,
however, the reachability formula is more comprehensive since we want a trace that goes exactly over each transition in E . To do
that, and because UPPAAL does not support nested quantifiers e.g. (A[], A<>, E[], E<>), we add toMB a boolean variable that
is set to false by default and to true on edges going into the source location of e (line 12). Finally, the adjusted mutantMB′ as
well as the formula f are fed to verifyta, and the result is saved in T (lines 16-17).
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1 Input: Two m u t a n t s MA and MB
2 Output: A p a i r o f s e t s o f i n f e c t e d l o c a t i o n s (F ) and i n f e c t e d edges (E )
3 F ={} ; // A set of infected locations

4 E ={} ; // A set of infected edges

5 LA ={} ; // A set of locations of mutant MA
6 LB ={} ; // A set of locations of mutant MB
7 TA ={} ; // A set of edges of mutant MA
8 TB ={} ; // A set of edges of mutant MB
9

10 LA = MA . a d d L o c a t i o n s () ;
11 LB = MB . a d d L o c a t i o n s () ;
12 F = LA . d i f f e r e n c e . removeAl l (LB ) // the set of infected locations.

13 TA = MA . a d d T r a n s t i o n s () ;
14 TB = MB . a d d T r a n s i t i o n s () ;
15 E = TA . d i f f e r e n c e . removeAl l (TB ) // the set of infected edges.

16

17 // We expand F by adding the sources and targets locations of edges in F.
18 for ( e ∈ E ) {
19 s o u r c e = e . g e t S o u r c e ( ) ;
20 t a r g e t := e . g e t T a r g e t ( ) ;
21 if ( s o u r c e /∈ F ) {
22 F . add ( s o u r c e ) ;
23 }
24 if ( t a r g e t /∈ F ) {
25 F . add ( t a r g e t ) ;
26 }
27 }
28 return pair(F , E)

Algorithm 4 Difference between two mutants.

Algorithm 6 describes the biased trace simulation process. The symbolic traces of the input mutantMB are extracted from
T (line 3). After that, we iterate over every trace, translate them to UPPAAL TRON’s format using the language recognition
tool ANTLR4[44] and execute the tron CLI utility with the other mutantMA to see if it can simulateMB’s trace (lines 5-6),
according to the verdict either true (can simulate/inconclusive/timeout) or false (cannot simulate) is returned (lines 7-9).

As shown, the biased traces generation and simulation process is unidirectional, since we are computing a set difference
(MB \MA). To appropriately compare this approach to timed bisimulation one needs to cover both directions, that is why in
practice we checked every pair of mutant twice, one for each direction (MB,MA), (MA,MB), i.e., every combination of two.

4 EVALUATION

4.1 MUPPAAL Tool

MUPPAAL automates the whole mutation testing process on top of the UPPAAL verification tools. The tool is written in Java 8
and supports all the operators proposed by Basile et al. [12] plus the SMI-NR operator and is easily extendable to new ones.
It uses the ANTLR library to parse the model and generate syntactically correct and non-equivalent mutants (thanks to the
operators). It then proceeds to duplicate mutant analysis. MUPPAAL is available on our companion website.
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1 Input: The s e t o f i n f e c t e d l o c a t i o n s (F) and edges (E ) , and MB mutan t
2 Output: An a r r a y wi th UPPAAL s y m b o l i c t r a c e s
3 T := {∅} // The initially empty set of UPPAAL traces

4 for ( s ∈ F ) {
5 f = "E<>"+s . getAutomatonName ( ) + " . " + s // reachability formula to infected state

6 t = v e r i f y t a (MB , f )
7 T . append ( t )
8 }
9 for ( e ∈ E ) {

10 s o u r c e = e . g e t S o u r c e ( )
11 t a r g e t = e . g e t T a r g e t ( )
12 MB′ = addBoolGuardsToPath (MB )
13 f = "E<>"+e . getAutomatonName ( ) + " . " + boolVar +
14 "&&" + "+e . getAutomatonName ( ) + " . " + boolGuard +
15 "&&" + "+e . getAutomatonName ( ) + " . " + t a r g e t
16 t = v e r i f y t a (MB′ , f )
17 T . append ( t )
18 }
19 return T

Algorithm 5 Biased traces generation.

1 Input: The s e t o f s y mb o l i c t r a c e s (T ) , m u t a n t s MA, MB
2 Output: A b o o l e a n ( b ) i n d i c a t i n g whe the r MA can s i m u l a t e a l l t r a c e s o f MB .
3 TMB := [N] // The set of N UPPAAL traces of MB
4 b := true

5 for ( t ∈ TMB ) {
6 t′ := uppaa l2Tron ( t )
7 s := Uppaal Tron(M, t′) // string with UPPAAL-TRON’s result.

8 if ( s == "TEST FAILED " ) {
9 b := false

10 }
11 }
12

13 return b

Algorithm 6 Biased traces simulation.

4.2 Case Studies

Our studies stem from UPPAAL specifications of these cases and are available at https://github.com/farkasrebus/
XtaBenchmarkSuite. For each case study, we consider the biggest and principal automaton (or process in UPPAAL) from the
automata network.

Gear Control (GC). The GC models a simple gear controller for vehicles [47]. The GC model contains 24 states, of which
10 have invariants. All invariants are of the form x ≤ c for a clock x and constant c. There are 30 transitions, of which two have
guards of the form x < c and two have guards of the form x ≥ c, for some clock x and constant c.

Collision Avoidance (CA). The CA case models a protocol where different agents want to get access to Ethernet through a
shared channel [48]. The CA model has six states and 12 transitions, of which nine have guards of the form x == c and four have
guards of the form x < c, for some clock x and constant c.

https://github.com/farkasrebus/XtaBenchmarkSuite
https://github.com/farkasrebus/XtaBenchmarkSuite
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Train Gate Controller (TGC). The TGC models a railway system that controls access to a bridge for several trains [49]. The
bridge is a shared resource accessible by only one train at a time. The TGC model has 14 states, all of which have invariants. All
invariants are of the form x < c for a clock x and constant c. There are 18 transitions, of which four have guards of the form x < c,
and four have guards of the form x > c, for a clock x and constant c.

A combined Gear control (CGC). The CGC models a (manually) combined gear controller for vehicles [47]. The CGC
model contains 85 states, of which 20 have invariants. All invariants are of the form x ≤ c for a clock x and constant c. There are
120 transitions, of which ten have guards of the form x < c, and 10 have guards of the form x ≥ c, for some clock x and constant c.

Tram Door (TD). The TD model represents the mechanism between a tram door and a retractable bridge (a.k.a. bridge plate)
for wheelchair access to trams. The model has 31 locations in total, 7 clock constraints and many more synchronizations.

Scheduling Framework (SF). The SF model is part of a series of models written by some of the core UPPAAL maintainers,
presenting modeling patterns for the schedulability analysis problem [50].

GC CA TGC CGC TD SF
TMI 13 9 14 36 10 6
TAD 501 26 179 1,625 566 168
SMI 12 2 12 27 14 5

SMI-NR 3 0 2 5 3 1
CXL 0 1 4 4 1 1
CXS 2 1 4 6 1 1
CCN 2 2 8 10 1 0
Total 533 41 222 1713 596 182

T A B L E 3 Number of generated mutants per operator

4.3 Research Questions

To evaluate the MUPPAAL workflow depicted in Figure 12, we consider the following research questions:

• RQ1: How does biased trace simulation compare to timed bisimulation and random traces to identify duplicates?
• RQ2: What is the scalability and performance of timed bisimulation compared to random trace simulation and biased trace

simulation?
• RQ3: How does our novel SMI-NR operator compare to the original SMI operator?

Figure 12 presents the experimentation workflow for our six systems (see Section 4.2). For each case, we first generate (step
1) a set of non-equivalent mutants (MU) using the operators presented in Table 1 (Basile et al. [12]) and our novel operator
SMI-NR. This results in 3287 mutants as presented in Table 3. Then, we independently apply our timed bisimulation, biased
trace simulation, and random trace simulation algorithms on this set (steps 2.1, 2.2, and 2.3). In this journal version, we used an
improved version of the timed bisimulation algorithm implementation presented in [15], which takes advantage of parallelism
and includes other improvements in stability and performance. As a result, no comparison reached a timeout, and average
execution times are greatly reduced compared to previous results [20, 16]. The details of this solution for timed bisimulation
can be found in [16]. Regarding random trace simulation, we have three settings: 1) two traces per model and 100 time units;
2) 10 traces per model and 1000 time units; 3) 100 traces per model and 10000 time units. We run each setting ten times to
mitigate randomness effects. In step 3, we collect the execution times and the number of duplicates and likely duplicates for
analysis (RQ1 & RQ2). We use timed bisimulation to compare SMI-NR and SMI mutants (RQ3). We ran our experiments on a
UBUNTU 21.10 × 86_64 GNU/Linux machine with 8 cores, 2.2 GHz, 32GB RAM.
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F I G U R E 12 Experimentation Workflow

Case GC CA TGC CGC TD SF
41/533 12/41 71/222 373/1,713 43/596 19/182

ratio Random Trace
(N=2,k=100,E=10)

432/533
(st=32.2)

38/41
(st=9.2)

152/222
(st=14.7)

1327/1,713
(st=38.3)

514/596
(st=4.87)

163/182
(st=11.1)

ratio Random Trace
(N=10, k=1000)

247/533
(st=18.1)

38/41
(st=3.8)

119/222
(st=20.7)

774/1,713
(st=32.8)

501/596
(st=2.75)

159/182
(st=10.3)

ratio Random Trace
(N=100, k=10000)

206/533
(st=37.4)

27/41)
(st=10.0)

108/222
(st=13.1)

664/1,713
(st=57.0)

497/596
(st=5.67)

156/182
(st=12.79)

ratio Biased Trace 93/533 25/41 87/222 450/1713 103/596 36/182
T A B L E 4 Proportion of detected mutant duplicates. For random trace simulation, we report the average with standard deviation (st)

4.4 Results and Discussion

4.4.1 Answering RQ1.

Table 4 reveals that mutant duplicates represent up to 32% of the total number of mutants (for the TGC case), justifying the
need for mutant duplicate prevention and removal techniques. In general, random trace simulation overestimates the number
of duplicates up to an order of magnitude. Drastically increasing the number of traces and time units yield only limited
improvements. We conclude that random trace simulation suggests too many duplicates. In contrast, our biased simulation
heuristic is much more accurate than the random baseline, identifying 1.8 times as many duplicates than the timed bisimulation
algorithm (ground truth).

Furthermore, Figure 13 illustrates the accuracy of biased trace simulation in predicting whether a mutant was a duplicate.
It was correct more than 60% of the time for all case studies and more than 80% of the time for 5 out of the 6 case studies
considered. We believe this is a respectable result for an approach that is inherently incomplete and will likely never achieve full
accuracy. Nevertheless, it demonstrates sufficient potential to justify testing with other case studies and within other formalisms.
In the next section, we will examine the cost associated with achieving this level of accuracy.

4.4.2 Answering RQ2.

Timed bisimulation is EXPTIME-complete, implying that some comparisons could exceed our computation budget. Thanks to
our improved bisimulation algorithm, all the comparisons for all our studied systems could run without timeouts. Figure 16
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Case BT (s) BI (s) TR (s)

GC 0.038
(st = 0.008)

0.215
(st=0.17)

0.153 (N=2, k=100, E=10, st=0.007)
0.548 (N=10, k=1000, E=10, st=0.07)

6.38 (N=100, k=10000, E=10, st=0.08)

CA 0.031
(st = 0.009)

0.178
(st=0.14)

0.040 (N=2, k=100, E=10, st=0.006)
1.16 (N=10, k=1000, E=10, st=0.07)

10.5 (N=100, k=10000, E=10, st=0.23)

TGC 0.035
(st = 0.007)

0.199
(st=0.15)

0.018 (N=2, k=100, E=10, st=0.002)
0.13 (N=10, k=1000, E=10, st=0.014)

1.69 (N=100, k=10000, E=10, st=0.20)

CGC 0.007
(st = 0.548)

0.633
(st=0.51)

0.803 (N=2, k=100, E=10, st=0.10)
1.91 (N=10, k=1000, E=10, st=0.17)

337.2 (N=100, k=10000, E=10, st=10)

TD 0.004
(st = 0.001)

0.152
(st=0.10)

0.06 (N=2, k=100, E=10, st=0.02)
7.3 (N=10, k=1000, E=10, st=0.534)

31.7 (N=100, k=10000, E=10, st=3.54)

SF 0.003
(st = 0.002)

0.048
(st=0.11)

0.025 (N=2, k=100, E=10, st= 0.004)
0.034 (N=10, k=1000, E=10, st=0.001)
0.531 (N=100, k=10000, E=10, st=0.3)

T A B L E 5 Average comparison time (s) and standard deviation (st) using bisimulation (BI), biased traces (BT), and traces
(TR) with the number of traces (N), of runs (E), the units of time (k).

FP
12.8%

Correct
87.2%

CA

FN

27.8%

FP

2.5%

Correct

69.7%

SF

FN0.7%Correct 99.3%

TGC

FP6.02%

Correct 93.98%

GC

FP
9.3%

Correct
90.7%

TD

FP6.6%

Correct 93.4%

CGC

Accuracy of biased traces simulation

F I G U R E 13 Accuracy of the biased traces simulation approach, using timed bisimulation as the ground truth. Showing
false negatives (FN), false positives (FP), and true positives and negatives under the Correct label, for each case study.

indicates that the highest execution time to compare two mutants, which occurred for the CGC system is less than 1.5 seconds.
We can observe that timed bisimulation is faster than the two largest configurations of the random simulation algorithm (N=10,
N=100 in Table 5) for four out of the six systems. It is slower for the smallest configuration in five out of the six cases, where the
random simulation only produces two traces. The biased simulation heuristic is faster than timed bisimulation for all the studied
systems. By computing the ratio of average execution times between biased simulation and timed bisimulation, we can deduce
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F I G U R E 14 Log scale of the total time to generate and detect useless mutants per each case study and technique.

that the worst case (GC, see Table 5), the biased heuristic is 5.6 times faster, and in the best case (CGC) 90 times faster.

To better understand the benefit associated with the approaches shown here, we computed the total cost (in time) of our
experimentation workflow per each case study and per each technique (Figure 14) ordered from smallest to biggest case study.
Therefore, these numbers include both mutant generation and useless mutant detection costs. Because of these, and strategies to
avoid some unnecessary comparisons (see Section 3.2), we cannot directly deduce such costs from pair evaluations shown in
Table 5. Additionally, we use our data points to perform a linear regression and compute the graphs depicted on Figure 15. This
figure extrapolates the values into three linear curves, expressed as functions y = f (n) where n is the number of mutants, and y
the total execution time. A logarithmic scale was used due to the significant variation between approaches and their respective
time ranges (see Table 5 and Figure 16). Interestingly, random trace simulation starts showing diminishing returns after the
number of mutants exceeds approximately 250, and becomes even more expensive than timed bisimulation. Conversely, biased
trace simulation proves to be the least expensive of the three approaches. However, it is noteworthy that each curve exhibits two
valleys at roughly the same data points. This suggests that although there is a natural trend for execution time to increase with
the input size, the complexity, and behavior of the mutants themselves can also impact the total cost.

If we combine these observations with those of RQ1, we draw the following conclusions. First random simulation performs
poorly in all settings, since it is ineffective at identifying duplicates and does not have impressive execution times compared
to timed bisimulation. The biased simulation heuristic offers speedy execution times and is much more effective at identifying
duplicates than random simulations. Timed bisimulation is slower, but being an exact algorithm, it is the only one that can give a
definitive verdict on the duplicates. Thus, biased simulation and timed bisimulation can work in synergy. One can first use biased
simulation to filter trivial duplicates very quickly and use timed bisimulation only on the most difficult cases. For example, for
the gear control system, one can focus on the 93 duplicates to run bisimulations on instead of 206 or 432.

4.4.3 Answering RQ3.

Table 6 compares the SMI and SMI-NR mutants. SMI can generate a large proportion of duplicates (up to 83%) while SMI-
NR by design does not produce any duplicate. The two last rows of Table 6 show that SMI-NR produces unique mutants
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F I G U R E 15 Extrapolation of the total time taken as a function of the number of mutants, per each technique.

GC CA TGC CGC TD SF
# SMI mutants 12 2 12 27 14 5

# SMI duplicates 9 2 10 22 11 4
# SMI-NR mutants 3 0 2 5 3 1

# Bisimilar pairs SMI-NR-SMI 3 0 2 5 3 1
T A B L E 6 SMI-NR and SMI Operators Comparison

while preserving the behavior of the SMI operator. We conclude that the SMI-NR operator offers a viable alternative to SMI,
introducing the same faults while preventing duplicates.

4.5 Threats to Validity

4.5.1 Internal Validity

To ensure the reliability of our mutation tool, MUPPAAL, we manually verified that each generated mutant conformed to the
intended operator definitions. We validated these mutants within UPPAAL and, when necessary, employed bisimulation and
refinement checks using external tools such as verifyta, UPPAAL-TRON [14], and TimBrCheck [51] to assess their equivalence
to other models. Although this approach significantly reduced errors, we acknowledge that the tool may not be entirely free of
bugs. Nonetheless, our method effectively identified and addressed numerous issues.

4.5.2 Construct validity

We chose our baseline settings to expose diverse tradeoffs between performance and accuracy concerning timed bisimulation.
We did not explore larger values of N and k since accuracy only marginally improved for even higher execution times. We ran
each comparison ten times to mitigate randomness effects.
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F I G U R E 16 Distribution of the time(s) spent comparing any two mutants using timed bisimulation (left) and biased traces
(right), for all case studies, over 10 runs.

4.5.3 External validity

We cannot guarantee that our results extend to all timed systems expressed in UPPAAL. We selected six cases of different natures:
a gear controller, a network communication model avoiding collisions, a train gate controller, a tram door, and a scheduling
framework. These models have different sizes and numbers of clock constraints. They enabled us to observe differences in
detecting and removing duplicate mutants. Our cases were enough to assess diversity regarding mutant types and their analysis
times. Additionally, we cannot guarantee either that our results regarding the proportion of duplicates apply to all possible
mutation operators. There are different proposals for timed operators [28], especially when they deal with another formalism
(timed automata with tasks). For example, when considering operators for networks of timed automata [52], the number of
duplicates can reach up to 95% for a certain combination of UPPAAL model and operator. However, the set of operators we
have considered in this study are quite generic.

4.5.4 Conclusion validity

We chose standard ways of measuring MUPPAAL’s effectiveness, reporting means, and standard deviation for algorithms
involving randomness regarding mutant detection rates and execution costs. We also provided accuracy charts covering false
positives and false negatives compared to the ground truth obtained via our exact bisimulation algorithm.

5 RELATED WORK

Several works cover the long-standing equivalent mutant problem [7, 17, 33, 4, 3]. Interest in the mutant duplicate problem is
more recent [4], mostly at the code level [41]. MBMT gained traction more recently [53, 17, 54, 19]. Researchers applied MBMT
for timed specifications [28, 29, 24, 12, 30, 55]. In [28], the authors present six mutation operators for TA, but do not guarantee
the absence of equivalent or duplicate mutants. Aichernig et al. [24] design eight mutation operators for TA based on [29]. Again,
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these operators do not prevent generating equivalent or duplicate mutants. Basile et al. introduced six mutation operators for TS
[12]. These mutation operators follow the same construction as those defined in [24, 29]. However, Basile et al. used a timed
refinement technique to avoid the generation of equivalent mutants but do not address mutant duplicates [13, 12]. Larsen et
al. defined a MBMT technique [30] on top of the UPPAAL-ECDAR verification tool [56]. It also uses refinement checking
to eliminate equivalent mutants but does not address duplicates. Aichernig et al. designed a MBMT tool called MoMuT::TA
[19]. MoMuT::TA maps TA to formal semantics and performs a conformance check between mutants and the original model to
generate test cases automatically. The tool UPPAL-TRON [39] is an addition to the UPPAAL environment. One can also use it
to handle conformance tests on TS. UPPAL-TRON simulates the IUT with inputs deemed relevant by the model, monitors
the outputs and checks the conformance of these against the behavior specified in the model. Hessel and Pettersson proposed
a MBMT tool called Cover [57]. Cover generates test-cases based on TA and Timed Computation Tree Logic (TCTL). One
uses properties written in TCTL to verify the test model. Similar approaches exist [58, 59]. µUTA introduces a test generation
method to derive mutants from the specification and executes them via online testing. It focuses on robustness testing of web
services [60].

6 CONCLUSION

This paper presents the implementation and evaluation of MUPPAAL, a mutation framework for timed systems specified as
UPPAAL automata. MUPPAAL focuses on getting rid of useless mutants, leveraging refinement techniques to avoid mutant
equivalence [12, 13] and offers both reduction (via a dedicated mutation operator) and removal via parallelized bisimulation and
fast biased simulation techniques for duplicate mutants. This framework allowed us to assess the duplicate mutant problem,
largely ignored by previous studies, and to demonstrate that mutant duplicates can represent up to 32% of the total number of
mutants for the six systems we considered. We also showed that bisimulation can analyze a pair of mutants in less than one
second and that our biased simulation algorithm offers a compromise between speed and accuracy for five out of the six studied
systems. We are continuously extending MUPPAAL, notably in designing mutation operators for timed automata networks [52].
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