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ABSTRACT 

Models of reconstructed human epidermis (RHE) holding proliferating and fully differentiated cultured 

keratinocytes allow in vitro investigation of early molecular and cellular epidermal events during the complex 

response of keratinocytes at the onset of allergic contact dermatitis (ACD) or sensitization. In this study, data 

collected on RHE exposed to well-characterized sensitizing chemicals, such as dinitrofluorobenzene, oxazolone, 

cinnamaldehyde and isoeugenol, revealed a transient expression of IL-8 mRNA in association with abundant IL-

8 cell release. Investigations of keratinocyte signalling illustrate transient activation by tissue exposure to 

sensitizing chemicals of the epidermal growth factor receptor (EGFR). This activation of EGFR tyrosine kinase 

is involved in the expression and release of IL-8. The IL-8 release appears also to be partially dependent on p38 

and ERK 1/2 MAPK activation. Moreover, data suggest that heparin-binding EGF-like growth factor (HB-EGF) 

expression and release induced after exposure of RHE to sensitizing chemicals is also under the control of EGFR 

tyrosine kinase activity, independently of the IL-8 expression and release. Mechanistic approach of keratinocyte 

responses in the context of RHE underlying regulation of expression and release of epidermal cytokines and 

growth factors after topical application of sensitizing chemicals is proposed to identify biomarkers which could 

then be analysed for in vitro toxicological screening of new or undefined compounds.   

 

 

Keywords: keratinocytes, RHE (reconstructed human epidermis), sensitizers, IL-8, EGFR signalling 

 

 

Abbreviations used: AD: atopic dermatitis, ACD: allergic contact dermatitis, BC: benzalkonium chloride, Cin: 

cinnamaldehyde, DC: dendritic cell, DNFB: 2,4-dinitrofluorobenzene, GPCR: G protein-coupled receptor, ICD: 

irritant contact dermatitis, IL interleukin, Iso: isoeugenol, KGF: keratinocyte growth factor, MAPK: mitogen- 

activated protein kinase, MCD: methyl--cyclodextrin, Oxa: oxazolone, RHE: reconstructed human epidermis. 
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INTRODUCTION 

The skin is the largest organ of the body and covers its surface. Among other functions, a superficial barrier is 

provided by the epidermis in order to protect the body against potential harmful environmental aggressions, 

including by chemicals. The epidermis is mainly composed of proliferating and terminally differentiating 

keratinocytes which create and maintain the barrier. A frequent evidence of skin toxicity in modern life is 

allergic contact dermatitis (ACD) following exposure to sensitizing chemicals. ACD is characterized by skin 

inflammatory response through a delayed hypersensitivity reaction that is mediated by the immune system [16]. 

However, the involvement of keratinocytes is highly suspected in the initiation of the tissue response [42,41]. 

Indeed, due to their localization under the cornified barrier and their ability to secrete cytokines and growth 

factors, living keratinocytes play a crucial role as initiators of events underlying skin inflammation and 

immunologic reaction during ACD [12,2,16,17,3]. Fully differentiated keratinocytes embedded in reconstructed 

human epidermis (RHE) where they produce a cornified barrier represent a simplified but physiologically 

relevant environment for investigating the keratinocyte response during exposure to sensitizing chemicals 

through the barrier.  

To date, many cellular events, including signalling, that happen in keratinocytes exposed to harmful chemicals as 

sensitizers are not yet fully understood or even identified [54,13,23]. Notably, release of interleukin-8 (IL-8) 

from keratinocytes embedded in RHE has been reported following exposure to sensitizing chemicals [8,7]. This 

is similar to the response of immune cells [53,40,36,35], but no investigation of the mechanisms involved in this 

keratinocyte response was still reported. Here, using RHE grown in our lab [47] in order to topically expose 

keratinocytes to sensitizers, we focused our analysis on keratinocyte responses and we investigated whether an 

induction of cell signalling could bring explanation for the expression and release of IL-8. We demonstrate that 

signalling through the EGF receptor (EGFR), a major pathway for inflammatory/immune reaction of the skin, is 

largely induced by exposure to sensitizing chemicals and is involved in the production and release of IL-8 by 

keratinocytes. Concomitantly with EGFR activation, we report phosphorylation of p38 and ERK 1/2 MAPK’s 

partially responsible for the IL-8 release observed after topical application of sensitizers. EGFR kinase activity, 

observed only after sensitizing application, regulates transient expression of the heparin-binding EGF-like 

growth factor (HB-EGF). This mechanistic approach of keratinocyte responses after exposure to sensitizers can 

bring some explanation to the physiopathology of ACD and helps to define biomarkers which can be studied in 

toxicological sensitizing investigation.   
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MATERIAL AND METHODS       

Antibodies and chemicals 

Antibodies were purchased from Cell Signalling/Bioké (Leiden, the Netherlands) except for the rabbit anti-

human phospho-EGFR (Tyr 1173) (Invitrogen, Merelbeke, Belgium) for anti-human HB-EGF and for anti-

human IL-8 (R&D Systems, Abingdon, U.K.). PD 153035 was purchased from A.G. Scientific (Marcq, 

Belgium). AG 1478, PD 169316 and PD 98059 were obtained from Merck-Calbiochem (Overijse, Belgium). 

Neutralizing antibody (clone LA1) against EGFR was obtained from Millipore (Brussels, Belgium). Sensitizing 

chemicals dinitrofluorobenzene (DNFB), oxazolone (Oxa), cinnamaldehyde (Cin), isoeugenol (Iso), irritating 

chemical benzalkonium chloride (BC) and CRM 197 were purchased from Sigma-Aldrich (Bornem, Belgium). 

 

Reconstructed epidermal model 

The RHE was prepared according to our previously described method [47]. Briefly, we used third-passage 

proliferating keratinocytes originally isolated from adult skin samples obtained from plastic surgery (Dr B. 

Bienfait, Clinique St. Luc, Namur-Bouge, Belgium). The keratinocytes were plated at high density (2.5 X 105 

cells/cm2) in polycarbonate culture inserts with 0.4 µm diameter pore size (Millipore, Brussels, Belgium) in 

keratinocyte complete culture medium. This medium consists of EpiLife medium containing HKGS (Invitrogen-

Cascade Biologics, Merelbeke, Belgium) and CaCl2 in order to reach a total Ca2+ concentration of 1.5 mM. After 

24h, the cells were exposed to the air-liquid interface by careful aspiration of the culture medium above 

keratinocytes. After this step, Epilife medium containing HKGS, 1.5 mM Ca2+, 50µg/ml vitamin C and 10ng/ml 

keratinocyte growth factor (KGF; R&D systems, Abingdon, U.K.) was used to feed the cells from the bottom of 

the polycarbonate insert filter. The medium was changed every two days. For all experiments, the RHE were 

used 11 days after seeding. 

 

Topical application of compounds on the RHE 

For application on the surface of RHE, compounds of interest were first dissolved in vehicle. In order to obtain 

adequate concentrations, subsequent series of dilutions were prepared with culture medium. In practice, 140µl of 

the diluted chemical were applied directly onto the cornified layer on top of the RHE. With this large volume, 

the whole surface of the tissue was evenly in contact with each chemical at right concentration. However, 120 µl 

of the initial 140 µl volume applied on the tissue were immediately removed in order to finally keep 20 µl of 

each chemical at defined concentrations for the duration of the treatment. In control conditions, the RHE was 

treated with the same volume of vehicle (DMSO or culture medium) in order to assess the possible influence of 

this vehicle. DNFB, Oxa, Iso, Cin, DNCB or DCNB were dissolved in DMSO. BC was dissolved in culture 

medium. 

 

IL-1 and IL-8 measurements 

The extracellular release of IL-1 or IL-8 was determined in the culture medium using quantitative sandwich 

immunoassay technique (Duoset, R&D systems, Abigdon, U.K.) according to the manufacturer 

recommendations. Briefly, Maxisorp Nunc immunoplates (Thermo Scientific) were coated overnight at room 

temperature. Subsequently, plates were blocked for 1h. After several washes, 100 µl of test sample or standard 

were pipetted into the appropriate wells and incubated for 2h at room temperature. After washings, 100 µl of 
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biotinylated anti-human antibody was added for 2h. The incubation mixture was removed and after washings, 

diluted streptavidin conjugated to horseradish-peroxidase was added for 20 min. The enzyme reaction was 

initiated by tetramethylbenzidine/H2O solution (R&D systems, Abingdon, U.K.) and stopped by addition of 

H2SO4. Using a microplate reader (Molecular Devices, Sunnyvale, CA, USA), the plates were read at 

wavelength set to 450 nm and 540 nm. The later one is being used as a correction wavelength. The amount of 

interleukins present in the culture supernatants was calculated on the basis of a standard curve with the SoftMax 

Pro 5.2 program. 

 

Measurement of cell survival: MTT assay  

Thiazolyl blue tetra-zolium bromide (MTT) (Sigma-Aldrich, Bornem, Belgium) was used at a concentration of 

0.5 mg/ml. The optical density of MTT extraction solution was determined using a microplate reader (550 nm) 

(Molecular Devices, Sunnyvale, CA). For the presentation of results, the viability was expressed as the 

percentage of surviving cells compared with 100% survival in untreated control tissues.   

 

Protein extraction and Western blotting 

RHE were harvested in twice-concentrated Laemmli sample buffer (62.5 mM tris-HCl, 2% SDS, 8.7 % glycerol, 

0.2 % dithiothreitol). The proteins extracted were separated by 10% SDS-PAGE and transferred onto 

polyvinylidene difluoride (PVDF) membranes (GE Healthcare Bio-Sciences, Diegem, Belgium). Membranes 

were then incubated with specific antibodies diluted in blocking buffer (PBS containing 1% Tween20 and 5% 

nonfat powdered milk). POD chemiluminescence substrate (Roche Diagnostics, Vilvoorde, Belgium) was used 

in order to visualize the recognized protein bands in an ImageQuant 350 device (GE Healhcare Bio-Sciences, 

Diegem, Belgium). 

 

Total RNA isolation and real-time polymerase chain reaction 

Total RNA was extracted from the RHE by the RNeasy kit (Qiagen, KJ Venlo, The Netherlands). The collected 

RNA was reverse transcribed into cDNA using the Super Script II RNase H-Reverse transcriptase kit 

(Invitrogen, Merelbeke, Belgium). Power SYBR Green PCR Master Mix (Applied Biosystems, Lennik, 

Belgium) was used for the real-time polymerase chain reaction (PCR). The oligonucleotide primer sequences 

(300 nmol/l; Sigma-Aldrich, Bornem, Belgium) used were the following: RPLP0 (F-5’-

ATCAACGGGTACAAACGAGTC-3’, R-5’-CAGATGGATCAGCCAAGAAGG -3’), IL-1(F-5’-

AACCAGTGCTGCTGAAGGAG-3’, R-5’-TGGTCTCACTACCTGTGATG-3’), IL-8 (F-5’-

GCAGAGGGTTGTGGAGAAGTTT-3’, R-5’-TTGGATACCACAGAGAATGAATTTTT-3’). We analysed the 

stability of gene expression of several candidate housekeeping genes (HKG). RPLP0, encoding a ribosomal 

protein, was chosen after testing the stability of this gene expression in each experimental condition as described 

[38]. 

 

Immunohistochemical labeling of RHE 

After the respective treatments, RHE were embedded in paraffin and sections were made with a microtome. 

Sections were first deparaffined (toluol) and deshydrated (methanol). In order to inhibit endogenous peroxidases, 

every tissue section was incubated in 3% H2O2 for 10 min, then blocked and permeabilized in PBS containing 
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0.2% bovine serum albumin (BSA) and 0.02% triton X-100. After the blocking step, all sections were incubated 

overnight at 4°C with the primary antibody anti- phospho EGFR (Tyr 1173) diluted in PBS/0.2% BSA/0.02% 

TritonX-100. All the slides were then washed with PBS before incubation with HRP-secondary antibody 

(Vectastain ABC kit, Vector Laboratories, Burlingame, USA). Detection of HRP was performed with AEC 

substrate chromogen and counterstaining with heamalun was carried out for 5 min. All slides were mounted in 

Glycergel for observation in an Olympus AX70 microscope.   
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RESULTS 

Well-known sensitizing chemicals induce transient expression of IL-8  

The profile of released amounts of IL-1 and IL-8 by keratinocytes exhibiting a progressively reduced viability 

(around 50% after 22h of topical exposure) is typical for contact of cultured RHE with sensitizing chemicals as 

we previously published [47,7,46] and was currently confirmed with four compounds using RHE grown in our 

lab (Online Resource 1). Indeed, such compounds induce important IL-8 release in the medium underneath the 

tissue, while very low levels of extracellular IL-1 can be measured. Using quantitative RT-PCR, we hereby 

demonstrate that the release of IL-8 follows an early transient induction of IL-8 mRNA expression, as illustrated 

during exposure to four typical sensitizers (Figure 1). Dinitrofluorobenzene (DNFB) and oxazolone (Oxa) were 

selected as strong sensitizers, whereas cinnamaldehyde (Cin) and isoeugenol (Iso) were taken as moderate. 

Using these four compounds at respective concentrations that produce losses of viability under 50% after 22h 

exposures of the RHE (Online Resource 1), the relative mRNA expression for both IL-1 and IL-8 was 

determined after 0, 1, 4, 8, 20 and 24 hours of exposure. This kinetic approach revealed that, after exposure with 

each chemical, a transient mRNA expression of IL-8 was induced around 4h later, whereas there was nearly no 

simultaneous induction of IL-1 mRNA expression was observed (Figure 1). This transient induction of IL-8 

expression seems characteristic of sensitizers, although the fold–change varies between the different compounds. 

Indeed, exposure to the typical irritant benzalkonium chloride (BC) conversely induces a release of IL-8 from 

keratinocytes which happens together with some release of IL-1, maybe as a result of the late (20-24h) 

induction in these conditions of both IL-8 and IL-1 mRNA expression (Online Resource 2 a and b). 

 

Exposure of RHE to sensitizing chemicals induces early transient phosphorylation of EGF receptor 

EGFR is the founding member of the type I family of receptors exhibiting tyrosine kinase activity, is crucial for 

keratinocyte survival and growth, and controls tissue homeostasis by regulating epidermal proliferation and 

differentiation [43,22]. Recent data have suggested the crucial involvement of EGFR signalling during 

inflammatory skin disorders such as psoriasis, atopic dermatitis, ACD and irritant contact dermatitis (ICD) 

[21,48,43,6,54]. Moreover, induced phosphorylation of EGFR was reported in human keratinocytes exposed to 

various stresses such as oxidative stress (H2O2), scratch wound, or disruption of plasma membrane lipid rafts 

[33,25,15]. In consequence, we have investigated whether EGFR signalling could be part of the keratinocyte 

response following exposure of the RHE to sensitizing chemicals : RHE were exposed for 1 to 22h to 0.250 

mg/ml DNFB (Figure 2a), 5 mg/ml Oxa (Figure 2b), 2.5 mg/ml Cin (Figure 2c) or 3 mg/ml Iso (Figure 2d), then 

Western blot analysis of tissue extracts was performed in order to assess EGFR phosphorylation on tyrosine 

1173, one of the main phosphorylated tyrosine residue implicated in downstream signalling. The detection of 

total form of EGFR was also performed as a loading control. All sensitizing chemicals were able to induce 

EGFR phosphorylation in keratinocytes, mainly between 1 to 4 hours of exposure of the RHE (Figure 2). Thus, 

EGFR signalling precedes the transiently induced IL-8 mRNA expression reported on Figure 1. Interestingly, on 

the other hand, such an EGFR phosphorylation was not detected after exposure of RHE to the typical irritant BC 

(Online Resource 2c).  
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The inhibition of EGFR tyrosine kinase activity reduces the phosphorylation of the EGFR and the release 

of IL-8 from RHE exposed to sensitizing chemicals  

Because of the potential relationship between EGFR phosphorylation (Figure 2) and upregulation of IL-8 mRNA 

expression (Figure 1) in RHE exposed to sensitizers, we investigated whether EGFR tyrosine kinase activity 

could be involved in regulation of IL-8 expression and release. For this purpose, RHE were pre-treated or not 

with AG 1478 and PD 153035, specific inhibitors of the EGFR tyrosine kinase activity, before exposure to 

sensitizing chemicals. Firstly, using DNFB as a prototype sensitizing chemical, we demonstrated, using Western 

blot analysis, the effect of both inhibitors on the EGFR tyrosine 1173 phosphorylation (Figure 3a). Moreover, 

inhibition of tyrosine kinase activity using AG 1478 was also underlined by the decrease in the phosphorylated 

form of EGFR on tyrosine 1173 which is mainly detected in the basal layer of RHE (Figure 3b). The inhibition 

properties of AG 1478 and PD 153035 were also proved at the transcriptional level of IL-8 gene in RHE exposed 

to DNFB for 4 or 8 h (Figure 4a). Finally, pre-treatments of RHE with either AG 1478 or PD 153035 were found 

to significantly inhibit IL-8 release from RHE exposed to DNFB, Oxa, Cin or Iso (Figure 4b), strongly arguing 

for a control of IL-8 expression and release through EGFR signalling in these situations. Again, IL-1release 

from RHE exposed to sensitizing chemicals remained very low in all circumstances, as well as insensitive to 

EGFR signalling (Figure 4b).  

 

Phosphorylation of p38 and ERK 1/2 MAPK, induced in response to EGFR activation, is partially 

involved in IL-8 release observed after topical application of DNFB 

Phosphorylation of mitogen-activated protein kinase (MAPK) upon activation of EGFR has already been 

reported in dendritic cells and keratinocytes treated with sensitizing chemicals [53,40,23,1]. Since MAPK p38 

plays major roles in cellular responses to environmental and physiological stresses [32,20,15,14] and MAPK 

ERK 1/2 promotes cellular proliferation needed for tissue reconstruction [24], phosphorylation of both MAPK’s 

was investigated in our model. RHE were exposed for 1, 2, 4, 8 or 22h to DNFB (0.250 mg/ml) as a prototype 

sensitizing chemical, then tissue extracts were analyzed by Western blot in order to detect phosphorylated forms 

of p38 and ERK 1/2 MAPK’s (Figure 5a). Phosphorylation of both MAPK’s started after 1h of exposure, 

concomitantly with EGFR phosphorylation as reported on Figure 2. Phosphorylation of p38 ended after 4 hours 

of sensitizing topical application, while ERK 1/2 phosphorylation was maintained for 8 hours. Same MAPK 

activations were systematically observed after exposure to the other sensitizers (Oxa, Iso and Cin ; data not 

shown). Moreover, using one inhibitor of EGFR tyrosine kinase activity (AG 1478) we confirmed in our 

experimental conditions that phosphorylation of both p38 and ERK 1/2 MAPK’s is under the control of EGFR 

activation. However, AG 1478 only partially reduces the phosphorylation of p38 and ERK 1/2 observed after 

topical application of DNFB (Figure 5b). These results suggest that p38 and ERK 1/2 MAPK’s activation 

observed after phosphorylation of EGFR may be part of the keratinocyte responses that precede IL-8 mRNA 

upregulation. In order to control this hypothesis, we used specific inhibitors targeting p38 (PD 169316) and 

MEK 1/2, an upstream activator of ERK 1/2. Firstly, we show an inhibitory effect of PD 169316 and PD 98059 

respectively on p38 and ERK 1/2 phosphorylation observed after DNFB (0.250 mg/ml) application (Figure 5c 

and 5d). The release of IL-8 from RHE exposed for 22h to DNFB was also measured after pre-treatment with 

both inhibitors (Figure 5e). The IL-8 release observed after DNFB application decreased partially after a tissue 

pre-treatment with PD 169316 and PD 98059. However, large standard deviations do not allow concluding in a 
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statistically significant effect of PD 169316 or PD 98059. However, low levels of statistical “p value” calculated 

using Student’s t-test suggest some partial involvement of both p38 and ERK 1/2 MAPK’s activation on IL-8 

release after DNFB exposure. The IL-8 release measurement after topical application of Oxa, Cin and Iso on 

RHE pre-treated with PD 169316 confirms the partial involvement of p38 MAPK on IL-8 release after 

sensitizing application (Online Resource 3). However, the IL-8 release observed after Oxa and Iso exposure was 

affected to a lesser extent by PD 98059, suggesting that the signalling through ERK1/2 MAPK observed after 

sensitizing treatments is not systematically involved in IL-8 release. 

 

The keratinocyte response to sensitizing chemicals depends on ligand-dependent and ligand-independent 

activation of EGFR 

We have highlighted above that phosphorylation and activation of EGFR regulates expression and release of IL-

8, after exposure of RHE to sensitizing chemicals. Epidermal keratinocytes can produce EGFR ligands, 

including transforming growth factor-alpha (TGF-), amphiregulin (AR) or HB-EGF. These ligands are able to 

bind and activate EGFR. EGFR can also be activated through ligand-independent mechanisms since treatment of 

keratinocytes with UV or hydrogen peroxide results in activation of EGFR [5,55]. Similarly, lipid rafts 

disruption in keratinocytes also induces EGFR phosphorylation in absence of ligand [27,25,20]. In order to 

investigate whether EGFR activation and IL-8 release induced after exposure of RHE to sensitizing chemicals 

were due to ligand-dependent or -independent mechanisms, we used the EGFR-specific neutralizing antibody 

LA1. LA1 is able to impede access to the ligand-binding pocket of EGFR. RHE pre-treated with LA1 were 

exposed to DNFB and Western blot analysis revealed that the phosphorylation of EGFR was partially reduced by 

this neutralizing antibody (Figure 6a), suggesting that phosphorylation of EGFR is partly due to ligand-binding. 

We also demonstrated that the IL-8 release after exposure to the sensitizing chemicals for 22h was also sensitive 

to LA1 pre-treatment (Figure 6b). One can observe that RHE pre-treated with LA1 exhibit reproducible although 

incomplete statistically significant decrease in IL-8 release induced by each chemical. These results suggest that 

ligand-dependent and independent activation of EGFR are involved in RHE exposed to sensitizers. 

 

HB-EGF is not the ligand involved in EGFR activation responsible for IL-8 release  

Previous studies have shown the large involvement of HB-EGF in inflammatory skin disorders (Piepkorn et al., 

2003; Mathay et al., 2011). In addition, it was demonstrated in keratinocytes stressed by lipid raft disruption that 

HB-EGF must be considered as a key factor during epidermal stress conditions linked to EGFR activation 

[32,15]. Thus, expression of HB-EGF precursor form (ProHB-EGF) was investigated in RHE exposed for 1, 4, 

8, 20 or 24h to DNFB, Oxa, Cin and Iso at the respective concentrations of 0.250 mg/ml, 5 mg/ml, 2.5 mg/ml 

and 3 mg/ml. Results in Figure 7 suggest that the rather late expression of proHB-EGF, observed between 4h and 

20h after exposure to sensitizers, is probably not linked to the earlier phosphorylation of EGFR and the 

downstream IL-8 expression and release. In order to confirm that HB-EGF was unable to activate EGFR, RHE 

were incubated in the presence of CRM 197, a non-toxic mutant of diphtheria toxin, highly specific for HB-EGF, 

which impairs the binding between EGFR and HB-EGF. CRM 197 is able to bind proHB-EGF as well as the 

mature form of HB-EGF [39]. The effect of CRM 197 on EGFR phosphorylation after 2h and 4h of topical 

application of DNFB was investigated and indicated no modification of the phosphorylation of EGFR after 2h of 

treatment with DNFB. However, the activation of this receptor observed after 4h of treatment slightly decreases 



 10 

in the presence of CRM 197 as a HB-EGF neutralizing agent. These results reveal that HB-EGF is not involved 

in the early phosphorylation of EGFR observed after the topical application of DNFB, but this growth factor 

seems implicated in the longer maintenance of EGFR activation signal (Figure 8a). Moreover, the IL-8 

accumulation in the extracellular medium after 22h of exposure to chemicals (DNFB, Oxa, Cin and Iso) was not 

significantly modified by the use of CRM 197 (Figure 8b), suggesting that HB-EGF, despite his involvement in 

late EGFR phosphorylation, is not involved in IL-8 release.  

 

The release of IL-8 is not responsible for HB-EGF expression and release. 

As reported in Figure 3, impairment of EGFR signalling drastically reduces the proHB-EGF expression observed 

after 4h of exposure to DNFB (Figure 9a). Since we report here that inhibition of EGFR tyrosine kinase activity 

reduces the IL-8 release observed after exposure of RHE to DNFB, and since it was reported that IL-8 induction 

in epithelial cells contributes to activate some release of EGFR ligands into the extracellular environment, 

notably through activation of a specific G protein-coupled receptor (GPCR) like the IL-8 receptor [19,34], an IL-

8 neutralizing antibody was used in order to investigate the involvement of IL-8 in induction of HB-EGF 

expression. The neutralization of released IL-8 did not modify the phosphorylation of EGFR and the proHB-

EGF expression (Figure 9b), suggesting that IL-8 is not able to control these phenomena. Using recombinant IL-

8 protein, we further confirmed that IL-8 added in extracellular medium is not involved in activation of EGFR 

signalling and HB-EGF expression in RHE (data not shown). 
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DISCUSSION 

The effects of sensitizing chemicals entering in contact with the skin target dendritic cells of the immune system, 

but critical interactions with keratinocytes are believed to be implicated in the initial epidermal response that 

results in the onset of skin inflammation. Therefore, RHE exposed to chemicals constitute relevant 3D epidermal 

models for in vitro investigation of keratinocyte responses following an exposure to sensitizing chemicals. Such 

models provide more valuable information than 2D monolayer-based cultures of keratinocytes. Indeed, in RHE, 

non-differentiating, differentiating and fully differentiated keratinocytes stratify to create an epithelium where 

the keratinization process leads to the formation of a superficial cornified barrier. As it happens in vivo, 

chemicals can be topically applied onto the keratinized layer of the model in order to investigate early molecular 

and cellular events which illustrate the keratinocyte response to different classes of molecules as sensitizers [47].  

IL-1 and IL-8 profiles, obtained after measurements of interleukins release into extracellular medium from 

keratinocytes of RHE exposed to chemicals, have been previously reported as characteristic of sensitizing 

compounds (Online Resource 1) [7]. Decoding the cellular responses given by keratinocytes towards the advert 

effects of chemicals and understanding the mechanisms of cell signalling underlying this particular regulation of 

interleukins expression and release should permit refinements of assays developed to characterize sensitizing 

properties of chemicals.  

In this study, we focused on four sensitizers (DNFB, Oxa, Iso, Cin) and we identified rapid transient 

upregulations of IL-8 expression in RHE after 4h of exposure to these chemicals. A good candidate for cell 

signalling linked to early IL-8 expression and release on different stress condition was EGFR [49,43,41,30]. 

Accordingly, our results on RHE exposed to sensitizers clearly illustrate an important transient activation of 

EGFR in keratinocytes, in correlation with IL-8 mRNA expression and release by this cell type. The topical 

application of one irritant as BC on RHE induced rather late IL-1 and IL-8 expression and release without any 

phosphorylation of EGFR, suggesting that other cellular mechanisms are involved on RHE after topical 

application of certain irritating compounds such as BC. Contrarily to irritants, sensitizing chemicals are 

electrophilic compounds presenting highly reactive properties which could potentially justify the rapid cellular 

responses and signalling pathway activations, as notably EGFR phosphorylation, observed only after topical 

application of sensitizers on RHE [11,10]. Moreover, we also found that transient and sustained p38 

phosphorylation observed on RHE treated with sensitizers is partially required for the extracellular release of IL-

8. However, experimental results obtained on RHE pre-treated with PD 98059 advise that the signalling through 

ERK1/2 MAPK observed after sensitizing treatments (Figure 5) was not systematically involved on IL-8 release. 

These results suggest that complex cell signalling pathways downstream of EGFR activation lead to rapid IL-8 

expression and release after application of sensitizing chemicals. The phosphorylation of EGFR also regulates 

the transient membrane expression of ProHB-EGF after topical application of sensitizers. However, despite the 

release of this ligand, HB-EGF is not responsible for this phosphorylation of EGFR. So, the expression of IL-8 

and HB-EGF are under the control of EGFR phosphorylation and ligands involved in the rapid EGFR ligand-

dependent phosphorylation are not yet identified. TGF-is largely expressed in skin and this growth factor is 

involved in skin inflammatory disorders such as ACD and psoriasis. Indeed, it is reported that TGF-, as a 

ligand of EGFR, regulates the expression and release of several chemokines, as IL-8, implicated in cell migration 

of components of the immune system in skin [37,30]. Possibly, a similar mechanism might regulate sensitizer-

induced EGFR phosphorylation and IL-8 release. Indeed, the quantification of TGF- in the extracellular 
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medium of RHE treated with sensitizing chemicals as well as the neutralization of this EGFR-ligand using a 

specific neutralising antibody against TGF-should be deserve in further study. 

TGF-, firstly expressed as a transmembrane precursor, is enzymatically-cleaved as a soluble growth factor in 

the extracellular medium [28]. TNF- converting enzyme (TACE) is a member of a disintegrin and 

metalloprotease family, a group of zinc-dependent transmembrane metalloproteinases [29]. TACE cleaves 

ectodomains of various transmembrane proteins including TNF- and EGFR ligands as TGF-. TACE-mediated 

ectodomain shedding appears to be a central component in many important physiological and pathological 

activities as this enzyme is expressed in most tissues and meanwhile its expression is enhanced during the 

inflammation process [4,18]. A specific TACE inhibition using TAPi-1 should be performed in order to evaluate 

the involvement of TGF- on cellular responses induced on RHE after sensitizing exposure [52].  

Sensitized mice, treated with a selective inhibitor of EGFR kinase activity before antigen challenging, exhibited 

enhanced contact hypersensitivity in response to DNFB induced by the down regulation of CXCL8/IL-8 [31,44]. 

In psoriasis, enhanced IL-8 expression can lead to epidermal hyperplasia. Thus IL-8 is sometimes considered as 

an autocrine growth factor involved in epidermal proliferation and repair [9,57,48]. Previous studies have also 

shown some involvement of HB-EGF in inflammatory skin disorders [45,33] where this growth factor is 

responsible for epidermal hyperplasia. Indeed, after topical application of sensitizing chemicals on RHE, our 

report illustrated expression and release of IL-8, followed by expression and release of proHB-EGF into the 

extracellular epidermal environment. Both IL-8 and HB-EGF, involved in cellular proliferation and skin repair, 

are likely involved in the maintenance of tissue homeostasis in the epidermis after stress such as sensitization.  

Ligand-independent activation of EGFR also appears to play a role in the initiation of cell responses after topical 

application of sensitizing chemicals. However, mechanistic explanation for the ligand-independent activation of 

EGFR in such conditions remains puzzling. Such activation could result from inhibition of particular tyrosine 

phosphatases by oxidative stress, after exposure to H2O2 or UV [5,55]. It has been already reported that reactive 

oxygen species mediate sensitization effects in dendritic cell in vitro [35]. Experiments are currently undertaken 

to investigate the induction of such oxidative stress and the potential involvement of reactive oxygen species in 

EGFR phosphorylation in RHE after topical application of sensitizers on the tissue (Frankart and Poumay, 

unpublished results). Moreover, the most likely reactivity of electrophilic molecules such as sensitizers happens 

with amino acid side chains exhibiting nucleophilic properties like cysteine sulfhydryl group (-SH) for instance 

[11]. The catalytic domain of protein tyrosine phosphatases is rich in cysteine-residues and becomes rapidly 

impaired when interactions occur with electrophilic molecules such as sensitizers [50,5]. Thus, since both 

electrophilic and oxidative stresses inactivate protein tyrosine phosphatases, one may postulate that investigating 

the phosphatase activity could bring information about an involvement of the enzyme in the sensitizer-induced 

phosphorylation of EGFR. In other words, analysis of EGFR phosphorylation induced by tyrosine phosphatase 

inhibition after electrophilic stress on RHE could potentially be used as a particular cell biomarker for 

electrophilic stress induced by topical application of sensitizers.  

Similarly to protein tyrosine phosphatises, the catalytic domain of TACE is sensitive to redox state due to the 

presence of a cysteine-zinc bond. Disruption of this bond, following the induction of intracellular oxidative 

stress, results in a conformational change and activation of the enzyme. In this way, the production of ROS could 

lead to TACE activation through cysteine-zinc bound disruption, thereby contributing to increased release of 

EGFR ligands and subsequent receptor activation [56].  
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In addition, it could be of interest to mention that EGFR is mainly localized within cholesterol-enriched 

membrane microdomains named lipid rafts [51].  The functional significance of lipid rafts in keratinocytes has 

been considerably studied [32,25,33,20] and our lab has shown EGFR activation and internalization in 

keratinocytes after lipid raft disruption, but also after treatment of keratinocyte monolayers with DNFB [26,25]. 

Moreover, significant transient expression and release of IL-8 and HB-EGF were also observed [33]. Since 

transcriptional profiling of lipid raft-disrupted keratinocytes revealed regulations found in atopic dermatitis 

(AD), altogether those results suggest that lipid raft organization and related cell signalling are likely perturbed 

in skin disease [33]. Those similarities with our present data obtained with keratinocytes embedded in RHE and 

exposed to sensitizing chemicals lead us to hypothesize that, during sensitization, interactions of keratinocytes 

with sensitizing molecules may also involve membrane microdomains. More direct analysis of keratinocyte 

membrane domains are now required in order to test this hypothesis [27,25,20]. 

To conclude, studies performed on complex models composed of keratinocytes embedded in RHE allow better 

identification of early keratinocyte response to harmful chemicals. Particularly, investigation of keratinocyte 

signalling that controls expression and release of cytokines appears of great interest in highlighting potential 

biomarkers for their use in discrimination of sensitizing versus non-sensitizing chemicals. Transient and 

sustained phosphorylation of EGFR, due to tyrosine kinase activation that also regulates IL-8 and HB-EGF 

expression and release, seems to specifically occur in RHE treated with sensitizers. However, more known 

sensitizing chemicals should ideally be applied on RHE in order to sustain our current data. How chemicals 

interact with keratinocytes, especially with their membranes, in order to activate EGFR signalling is still 

hypothetical, but represents an interesting topic to further explore physiological keratinocyte response to 

chemicals and to bring new ideas in order to develop more relevant and accurate alternative methods useful for 

cutaneous toxicology. 
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FIGURE LEGENDS 

 

Figure 1. Well-known sensitizing chemicals induce transient expression of IL-8. RHE were treated with 

DNFB (a), Oxa (b), Cin (c) or Iso (d) for 1, 4, 8, 20 or 24 hours. Total RNA extracts prepared from three 

independent cultures were analysed by real-time PCR to determine relative IL-1 and IL-8 mRNA expression. 

Data show the mean +/- SEM of the relative mRNA expression.  
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Figure 2. Exposure of RHE to sensitizing chemicals induces early transient phosphorylation of EGF 

receptor. Proteins extracted from RHE exposed for 0, 1, 2, 4, 8 or 22 hours to DNFB (a), Oxa (b), Cin (c) or Iso 

(d) were then subjected to SDS-PAGE and Western blot analysis using antibodies against total (EGFR tot) and 
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phosphorylated form of EGFR (tyrosine 1173) (pEGFR). Data are representative of at least three independent 

experiments. 
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Figure 3. The inhibition of EGFR tyrosine kinase activity reduce the phosphorylation of the EGFR from 

RHE exposed to sensitizing chemicals. RHE were pre-treated or not with 1µM AG 1478 (a) (b) or 500nM PD 

153035 (a) specific inhibitors of EGFR tyrosine kinase activity. RHE were then topically treated for 2h with 

0.250 mg/ml DNFB. (a) RHE were lysed and subjected to Western blotting analysis using antibodies against 

total (EGFR tot) and phosphorylated forms of EGFR (tyrosine 1173) (pEGFR). (b) Paraffin sections of RHE 

were labelled against phosphorylated forms of EGFR on tyrosine 1173. Section of negative control do not 

receive primary antibody.   
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Figure 4. The inhibition of EGFR tyrosine kinase activity reduce the expression and release of IL-8 from 

RHE exposed to sensitizing chemicals RHE were pre-treated or not with specific inhibitors of EGFR tyrosine 

kinase activity, AG 1478 (1µM) or PD 153035 (500nM). (a) RHE were topically exposed for 4h or 8h to DNFB 
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in the presence or absence of AG 1478 or PD 153035. Total RNA extracts were analysed by real-time PCR in 

order to determine relative IL-8 mRNA expression. For each time point of the experiment, IL-8 expression was 

set up at 100% in RHE exposed to DNFB only. Statistical analysis was performed by ANOVA 1 after testing the 

homogeneity of the variance. Post hoc comparisons were performed by Tukey test (* p<0.05, **p<0.01, 

***p<0.001). Data are shown as means +/- SEM. (b) RHE were topically exposed to DNFB, Oxa, Cin or Iso for 

22h. After this incubation, cell survival in RHE was measured by MTT assay, and determination of IL-1 and 

IL-8 in culture medium performed by ELISA assay. Statistical analysis of released cytokines was performed 

using ANOVA 1. Post hoc comparisons were performed by Dunnet’s tests (* p<0.05, **p<0.01, ***p<0.001). 

Data show the means +/- SEM of values obtained in three independent experiments. 
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Figure 5. Phosphorylation of p38 and ERK 1/2 MAPK’s, linked to EGFR activation, are partially involved 

on IL-8 release observed after topical application of DNFB. (a) Proteins extracted from RHE exposed for 0, 

1, 2, 4, 8 or 22 hours to DNFB (0.250 mg/ml). (b) RHE were pre-treated or not with 1µM AG 1478. RHE were 



 26 

then topically treated for 2h with 0.250 mg/ml DNFB. RHE were pre-treated or not with 15µM of PD 169316 (c) 

or with 2µM of PD 98059 (d), RHE were then topically treated for 2h with 0.250 mg/ml DNFB. (a) (b) (c) (d) 

RHE were subjected to SDS-PAGE and Western blot analysis using antibodies against total and phosphorylated 

forms of p38 and ERK 1/2 MAPK’s. Data are representative of at least three independent experiments. (e) RHE 

were pre-treated or not with 15µM of PD 169316 or with 2µM of PD 98059. RHE were then topically treated for 

22h with 0.250 mg/ml DNFB. After this incubation, cell survival in RHE was measured by MTT assay, and 

determination of IL-1 and IL-8 in culture medium performed by ELISA assay. Statistical analysis of released 

cytokines was performed using ANOVA 1. Statistical “p values” are calculated using Student’s t-tests as Post 

hoc comparisons. Data show the means +/- SEM of values obtained in at least three independent experiments. 
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Figure 6. The keratinocyte response to sensitizing chemicals depends on ligand-dependent and ligand-

independent activation of EGFR. RHE were incubated for 2h with neutralizing LA1 antibody (10µg/ml). (a) 

Cultures were exposed or not for 2h to DNFB (0.250 mg/ml). Proteins were then extracted and analyzed by 
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Western blotting using specific antibodies for total (EGFR tot) and phosphorylated form of EGFR (pEGFR) (Tyr 

1173). (b) RHE were exposed for 22h to DNFB (0.250 mg/ml), Oxa (5 mg/ml), Cin (2.5 mg/ml) or Iso (3 mg/ml) 

before cell survival assays. IL-1 and IL-8 were measured in collected culture medium. Data show the mean +/- 

SEM of values obtained in triplicates. Statistical analysis of released cytokines was performed using ANOVA 1. 

Post hoc comparisons were performed by Student’s t-tests (* p<0.05, **p<0.01, ***p<0.001). Data show the 

means +/- SEM of values obtained in three experiments. 
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Figure 7. Expression of ProHB-EGF is induced by sensitizers. RHE were exposed for 0, 1, 4, 8, 20 or 24h to 

DNFB (0.250 mg/ml) (a), Oxa (5 mg/ml) (b), Cin (2.5 mg/ml) (c) and Iso (2.5 mg/ml) (d). Protein extracts were 
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prepared and analysed by Western blot analysis for proHB-EGF and RPL13A (60S ribosomal protein L13a), as a 

loading control.  
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Figure 8. HB-EGF is not the ligand involved on EGFR activation responsible for IL-8 release observed 

after topical application of sensitizers. (a) RHE were incubated for 2h with CRM 197 (10 µg/ml), then 

exposed or not for 2h or 4h to DNFB (0.250 mg/ml). Proteins were then extracted and analyzed by Western 

blotting using specific antibodies for total (EGFR tot), as a loading control, or phosphorylated form of EGFR 

(pEGFR). ProHB-EGF and RPL13A (60S ribosomal protein L13a), as a loading control, was also investigated. 

(b) RHE were incubated for 2h with CRM 197 (10 µg/ml), then exposed for 22h to DNFB (0.250 mg/ml), Oxa 

(5 mg/ml), Cin (2.5 mg/ml) or Iso (3 mg/ml) before cell survival assays. IL-8 were measured in collected culture 

medium. Data show the mean +/- SEM of values obtained in triplicates. 
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Figure 9. The release of IL-8 is not responsible for HB-EGF expression and release. RHE were pre-treated 

or not with (a) 1µM AG 1478 as a specific inhibitor of EGFR tyrosine kinase activity or with (b) 0.5 µg/ml of 

IL-8 neutralizing antibody. (a) (b) RHE were then topically treated for 2h with 0.250 mg/ml DNFB, lysed and 
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subjected to Western blotting analysis using antibodies against total (EGFR tot) and phosphorylated forms of 

EGFR (pEGFR). ProHB-EGF and RPL13A (60S ribosomal protein L13a), as a loading control, were also 

investigated. 
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ONLINE RESOURCE LEGENDS 

 

Online Resource 1. Topical application of sensitizers on RHE induces similar profile of IL-1 and IL-8. 

RHE were treated for 22h with increasing concentrations of DNFB (a), Oxa (b), Cin (c) or Iso (d). After the 

treatments, the culture medium under the tissues was collected and analysed using ELISA assays in order to 

quantify the amount of released IL-1 and IL-8. Tissues were analyzed by the MTT assay in order to evaluate 

the cell survival after the treatment. This was expressed as percentage of remaining viability compared with the 

viability measured in control conditions which was fixed at 100%. Statistical analysis of extracellular released 

cytokines was performed by ANOVA 1 after testing the homogeneity of the variance. Post hoc comparisons 

were performed by Dunnet’s test, comparing each value to the extracellular release of cytokine from control 

RHE (* p<0.05, **p<0.01, ***p<0.001). Data show the mean +/- SEM of at least three independent experiments 

(n=3), each experiment performed with at least duplicate samples. In order to obtain homoscedasticity, values for 

released cytokines (x) were replaced by their logarithmic values [log (x)]. 
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Online Resource 2. Benzalkonium chloride (BC) induces different keratinocyte response in RHE exposed 

to this typical irritant. (a) RHE were exposed for 22h to increasing concentrations of BC. After incubation, the 

culture medium under the tissues was collected and analysed using ELISA assays in order to quantify the amount 
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of IL-1 and IL-8 released. Tissues were analyzed by the MTT assay in order to evaluate the cell survival after 

exposure. This was expressed as percentage of remaining viability compared with the viability measured in 

control conditions which was fixed at 100%. (b) RHE were exposed to BC for 1, 4, 8, 20 or 24 hours. Total RNA 

extracts were prepared from three independent cultures and then analysed by real-time PCR in order to 

determine relative IL-1and IL-8 mRNA expression. Data show means +/- SEM of relative mRNA expression. 

(c) RHE were exposed to 0.250 mg/ml BC for 0, 1, 2, 4, 8 or 22 hours, then analyzed by Western blotting using 

antibodies against total (EGFR tot) and phosphorylated form (pEGFR) of EGFR. These data are representative 

of three independent experiments. 
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Online Resource 3. Involvement of p38 and ERK 1/2 MAPK’s phosphorylation, linked to EGFR 

activation, on IL-8 release observed after topical application of Oxa, Cin and Iso. (a) (b) (c) RHE were pre-

treated or not for 2h with 15µM of PD 169316 or with 2 µM of PD 98059. RHE were then topically treated for 
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22h with 5 mg/ml Oxa (a), 2.5 mg/ml Cin (b) or 3 mg/ml Iso (C). After this incubation, cell survival in RHE was 

measured by MTT assay, and determination of IL-1 and IL-8 in culture medium performed by ELISA assay. 

Statistical analysis of released cytokines was performed using ANOVA 1. Statistical “p values” are calculated 

using Student’s t-tests as Post hoc comparisons. Data show the means +/- SEM of values obtained in at least 

three independent experiments. 



 39 

 

 


