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Abstract—Recent studies show that developers encounter dif-
ficulties when evolving microservices architectures, especially
from a code and data management perspective. Specifically,
they struggle to recover a high-level view, although essential
for understanding and maintaining complex interactions across
various microservices codebases and their databases.

This paper introduces an approach for systematically an-
alyzing data access code fragments in complex applications
composed of multiple microservices and distributed across several
codebases. By combining heuristic-based code analysis with
natural language processing, the approach holistically identify,
extracts, interprets, and documents the interactions between
these microservices and their databases. The resulting report is
designed to support software evolution tasks, such as locating or
visualizing linked data access code fragments.

A preliminary evaluation on 5 JavaScript microservices ar-
chitectures with MongoDB and Redis provides emerging results.

Index Terms—microservices architectures, databases, data ac-
cess analysis

I. INTRODUCTION

Microservices as a software architecture pattern has signif-
icantly gained popularity over the past decade. This software
architectural model is now widely adopted by large, software-
intensive companies like Amazon, Google, or Netflix [1], [2].

In contrast with monolithic architectures, microservices
architectures are praised for their qualities of modularity, het-
erogeneity, and interoperability [3]. From a data management
perspective, however, microservice architectures introduce an
additional level of complexity. As reported by Laigner et
al. [4], polyglot persistence [5] and complex interactions, in-
carnated by multiple, heterogeneous, and distributed databases,
complicate the recovery of high-level and holistic views of
the system. Nonetheless, establishing such views accurately
is essential for supporting software evolution. It ensures a
completeness in tasks like re-documentation, visualization,
quality assessment, evolution recommendations, or impact
analysis. Otherwise, developers are required to know data
access code fragments that depend on the change operated.
Or, they may have to manually search through the entire
codebase to identify potentially impacted code fragments. This
process is time-consuming, error-prone, and cumbersome [6],
especially in large codebases residing in multiple repositories,
with microservices accessing multiple databases.

Developers require a comprehensive view of microservices
applications, including the data layer, to effectively understand,
maintain, and optimize interactions in evolving software.

Unfortunately, large language models can lead to certain
problems in software comprehension [7]. Traditional works on
code or runtime analysis neglects the data layer and multiple
codebases [8], [9]. Finally, existing works on database access
analysis [10], [11] are unsuitable for large microservices
involving several databases.

In this paper, our main question is “How to statically re-
cover a view of data access in a microservices architecture?”.
By generating a detailed report analyzing API and database
interactions between microservices, our proposed approach
considers both code and data layers as suggested by Cerny et
al. [9]. Through a heuristic-based abstract syntax tree analysis,
we automatically identify the data access code fragments of
a given microservices architecture, i.e., the set of instructions
in the source code where data is accessed, both at the API
and database query levels. By leveraging natural language
processing, we extract and interpret data access code fragments
for producing a detailed report documenting them and related
data concepts (i.e., data entities). This emerging result consti-
tutes a promising basis for software evolution tasks, such as
re-documentation, visualization, quality assessment, evolution
recommendations, or impact analysis on change as illustrated
in Figure 1.

In Section II, we present each step of our approach. A
preliminary evaluation of its current implementation [12] for
JavaScript microservices architectures with MongoDB and
Redis is presented in Section III, and discussed in Section IV.
Section V anticipates our future plans. Section VI positions
our work within the related literature.

II. APPROACH

Our approach takes as input one or more microservice
repositories and automatically identifies API invocations and
database access code fragments. It further extracts data to char-
acterize these fragments based on their similarities, enabling
the interpretation and analysis of related and linked code
fragments. Finally, the approach generates a comprehensive
and detailed report as output. Our approach relies on a 6-step
process, as illustrated in Figure 2.



// ...
webRouter.post(

'/project/:project_id/messages',
AuthorizationMiddleware.blockRestrictedUserFromProject,
AuthorizationMiddleware.ensureUserCanReadProject,
RateLimiterMiddleware.rateLimit({
endpointName: 'send-chat-message',
maxRequests: 100,
timeInterval: 60,

}),
ChatController.sendMessage

)
// ...

…
842
843
844
845
846
847
848
849
850
851
852
…

https://github.com/overleaf/web/blob/master/app/src/router.js#L842C3-L852C4

// ...
app.post(
   '/project/:project_id/messages',  
   MessageHttpController.sendGlobalMessage
  )
// ...

…
49
50
51
52
…

https://github.com/overleaf/chat/blob/master/app/js/router.js#L49C5-L52C5

// ...
db.messages.insertOne(newMessageOpts, function (error, confirmation) {

if (error) {
return callback(error)

}
newMessageOpts._id = confirmation.insertedId
callback(null, newMessageOpts)

})
// ...

…
32
33
34
35
36
37
…

https://github.com/overleaf/chat/blob/master/app/js/Features/Messages/MessageManager.js#L32C5-L38C6
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Fig. 1. This example illustrates the process of locating linked code fragments
across separate microservices that are likely to co-evolve during change
propagation. A change made to the first code fragment should be propagated to
the other two. In this case, our approach contributes to automatically identify
code fragments sharing similarities (e.g., ‘CREATE’ operation, ‘message’
concept) and thus to facilitate co-evolution tasks.
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Fig. 2. Overview of our 6-step approach.

Acquisition. Step 1⃝ retrieves in one go all the code reposito-
ries corresponding to the microservices architecture of interest.
Initialization. Step 2⃝ parses the source code of each repos-
itory to create a queryable Abstract Syntax Tree (AST).
We rely on static program analysis to obtain comprehensive
internal details at the source code granularity level without
being restricted to particular program execution scenarios [13],
[14]. Moreover, we do not require deploying or running the
complete microservices application [15]. This is aligned with
DevOps principles [8] and helps practitioners commit to an
architecture whose deployment details are not known [8],
[9], [13], [14], [16], [17]. However, static analysis brings

challenges. As of now, we focus on popular languages like
JavaScript [18]. Those are dynamically interpreted, which
complicates static analysis [19], [20]. To tackle this, we rely
on GitHub’s CodeQL [21]. This mature and reliable solution
is particularly helpful as it offers predefined and customizable
queries for deepening the analysis.
Identification. Step 3⃝ identifies, through heuristics matching,
the code fragments that invoke a specific API endpoint or
perform a database access. Indeed, despite robust tools like
CodeQL, static analysis of highly dynamic languages remains
challenging due to the lack of type checking or parameter
value interpretation. As illustrated in Figure 3, our solution
identifies a set of AST nodes, i.e., code fragments, satisfying
several heuristics. The heuristics, presented in Table I, are
rules on the source code defined in accordance with official
documentation of the programming language (i.e., JavaScript),
the architectural style (i.e., REST by ExpressJS [22]), and
database technologies (i.e., MongoDB [23] and Redis [24])
we currently support. The heuristics go further than merely
text-based filtering on the code. The code fragments are
identified through pattern matching (e.g., method names, ar-
gument value patterns) like M1 and M3, and rules matching
(e.g., number of arguments, inferred types, code structure, and
dependencies inside the code) like M2, M4, M5, and M6. We
compute a likelihood score for each candidate code fragment
equal to the number of matching heuristics. Combining those
matching heuristics aims to reduce false positives (towards
higher precision, i.e., ratio between relevant code fragments
identified on the total number of code fragments identified)
while ignoring non-matching heuristics aims to reduce false
negatives (towards higher recall, i.e., ratio between relevant
code fragments identified on the total number of relevant
code fragments to identify). This flexibility is required by the
highly dynamic nature of the programming languages used in
microservices [18]. In this context, each analysis can set a
minimum threshold representing the optimal balance between
precision and recall. Only candidate code fragments that reach
the minimum threshold score are selected. Figure 3 gives an
example where a string-based search on some keywords like
method call names is insufficient. Indeed, ‘find’ is a popular
JavaScript method used in many other contexts. A string-based
filtering would lead to many wrong or missing source code
locations. This shows the importance of combining various
heuristics to distinguish code candidates.

https://github.com/overleaf/overleaf/blob/main/services/chat/app/js/Features/Threads/ThreadManager.js#L42C3-L52C6

// ...
export async function findAllThreadRooms(projectId) {
return await db.rooms
.find(
{
project_id: new ObjectId(projectId.toString()),
thread_id: { $exists: true },

},
{
thread_id: 1,
resolved: 1,

}
)
.toArray()

}
// ...

…
41
42
43
44
45
46
47
48
49
50
51
52
53
54
…

M1
M2
M3
M4
M5
M6
Score: 4

Fig. 3. A code fragment and its data-related samples.



TABLE I
IDENTIFICATION HEURISTICS FOR EXPRESSJS (E*), MONGODB (M*),

AND REDIS (R*) CODE FRAGMENTS.

ID Description
E1 Has an ExpressJS-like method name (e.g., ‘post’, ‘put’).
E2 Has a string as the first argument.
E3 Has an ExpressJS route-like string as first argument.
E4 Has a function as a second argument.
E5 Has an ExpressJS-like receiver name (e.g., ‘app’).
E6 Has an ExpressJS-like import around.
E7 Has an ExpressJS-like client assignment around.
E8 Is linked to an ExpressJS-like client assignment around.
M1 Has a MongoDB-like method name (e.g., ‘findOne’).
M2 Has a string or an object as the first argument.
M3 Has a MongoDB-like receiver name (e.g., ‘db’, ‘collection’).
M4 Has a MongoDB-like import around.
M5 Has a MongoDB-like client assignment around.
M6 Is linked to a MongoDB-like client assignment around.
R1 Has a Redis-like method name (e.g., ‘scan’, sadd’, ‘rpush’).
R2 Has a string as the first argument.
R3 Has an ExpressJS-like receiver name (e.g., ‘client’).
R4 Has a Redis-like import around.
R5 Has a Redis-like client assignment around.
R6 Is linked to a Redis-like client assignment around.

Extraction. Step 4⃝ extracts data-related samples (i.e., subset
of the identified code fragments). They are intended to provide
insights into the microservice data and related data access
operations, as illustrated in blue in the Figure 3. The extracted
samples are generally method receivers, method names, and
method arguments if they meet certain conditions. The ex-
traction mechanism leverages condition-identified AST nodes
through custom CodeQL queries.
Interpretation. Step 5⃝ interprets the data-related samples
extracted at Step 4⃝, using natural language processing (NLP).
We lemmatize, clean and unify similar tokens to infer common
data concepts (as illustrated on the right of Figure 1). In this
work, we use two NLP libraries, Natural [25] and winkJS [26].
Presentation. Step 6⃝ produces a report documenting all
data accesses in the complete microservices architecture. The
report follows an underlying model, shown in Figure 4. We
represent a microservices architecture as a set of repositories
subdivided into directories and files containing collections of
code fragments. We enrich each code fragment with additional
details extracted during static analysis, such as lines of code
(LoC), the technology used for data access, the associated Cre-
ate, Read, Update, or Delete (CRUD) operation, the specific
Object-Relational Mapping (ORM) method employed, and,
when available, a sample of the data objects or values affected
by the operation. Finally, each code fragment may be linked
to one or more data concepts extracted at Step 5⃝.

III. PRELIMINARY EVALUATION

Microservices architecture selection. We evaluate our ap-
proach on 5 different microservices architectures1 found in
benchmarks [27], [28] and on GitHub. We target projects
in JavaScript relying on MongoDB and/or Redis databases,

1https://github.com/overleaf — https://github.com/instana/robot-shop —
https://github.com/dev-mastery/comments-api — https://github.com/crizstian/
cinema-microservice — https://github.com/CloudBoost/cloudboost
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Fig. 4. Model of data access code fragments in a microservices architecture.

updated at least after 2022, with a minimum size of 500 kB,
reaching a minimum of 500 stars, and maintained by more than
1 contributor. The codebases sizes range from 6 to 100 kLoC.
Annotation. In order to establish a ground truth, we manually
annotate the source code (tests excluded) of each codebase
looking for code fragments related to data accesses in each
target technology. We manually identified a total of 694 code
fragments. For each identified fragment we reported detailed
information (i.e., location URL, access operation, sample ex-
tracted, matching heuristics and score) in a spreadsheet (§VII).
Heuristics evaluation. For evaluating the individual relevance
of our code fragment identification heuristics, we compute
separately their precision and recall for each project codebase,
based on the ground truth. We remove heuristics that make no
contribution to the score.
Code fragments identification evaluation. For evaluating
the performance of our approach, we compare the report
automatically obtained by our implementation with the ground
truth. For each project, we compute the precision and the recall
depending on the minimum score threshold set.
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Fig. 5. Mean trend (µ) of precision and recall in code fragments identification,
depending on the minimum score threshold.

We aggregate the results in Figure 5 to highlight trends in
the evolution of precision and recall as a function of score
thresholds. Lines represent code fragments identification for
ExpressJS in yellow, for MongoDB in green, and for Redis in
red. Note that the curves for MongoDB and Redis stop at a

https://github.com/overleaf
https://github.com/instana/robot-shop
https://github.com/dev-mastery/comments-api
https://github.com/crizstian/cinema-microservice
https://github.com/crizstian/cinema-microservice
https://github.com/CloudBoost/cloudboost


score threshold of 6 because these technologies are associated
with 6 heuristics, for a maximum score of 6, while ExpressJS
is associated with 8 heuristics.

We see that the higher the score threshold, the higher the
precision, but the lower the recall. This is not surprising, as
a higher score threshold corresponds to a strict combination
of heuristics, which causes a certain level of false negatives
(more silence) for the benefit of a higher precision (less noise).
Overall, this shows the relevance of our approach.

In particular, regarding the recall we observe a stable mean
trend of 100% up to a score threshold of 2 for all groups
of heuristics. This means that a minimum score of 2 could
be set for all identification without negatively impacting the
recall (no false negatives). Developers can therefore expect
better identification results than via a simple string search,
since every identified fragment corresponds to a minimum of
2 matching heuristics.

Finally, we can observe that, on average, the optimal pre-
cision and recall are respectively 100% and 96.84% with a
minimum score of 5 for ExpressJS, 95.19% and 88.48% with
a minimum score of 3 for MongoDB, and 68.13% and 94.55%
with a minimum score of 3 for Redis. Those are average and
can be refined depending on the analyzed project by adapting
minimum scores for each technologies. More detailed results,
by project and by heuristics, are available in our companion
repository (see link in Section VII).

IV. DISCUSSION

Our preliminary evaluation leads to promising results, yet it
currently focuses on particular languages and technologies. We
target JavaScript REST APIs implemented using the popular
ExpressJS framework and relying on MongoDB and Redis
databases. According to the literature [4], [8], [20], [22]–[24],
[29], [30], these technologies are widely used in microservice
architectures. Nevertheless, our approach must be general-
ized to cover other languages, architectural styles, APIs, and
database technologies. This will require the translation of our
identification heuristics or the implementation of new ones.

Our preliminary evaluation is also limited in its represen-
tativeness, as we considered 5 microservices applications. We
relied on existing benchmarks to select recent, diverse, and
popular repositories, but it is possible to consider a broader
set of microservices architectures.

Finally, conducting a dedicated user study involving profes-
sional microservices developers would help us further assess
our approach in real-life usage scenarios.

V. FUTURE PLANS

Our future directions will first focus on extending the lan-
guages and database technologies our static analysis approach
supports. We will rely on the CodeQL extensions already
available for other popular languages (e.g., Java, Python,
C#). As heuristics are defined as rules on source code, they
are generalizable and transposable to other languages. We
will also implement new heuristics to improve identification
performance.

In addition, we will evaluate new increments with a more
extensive set of representative microservices architectures.

We also plan to offer interactive visualizations of the output
documentation report to increase user-friendliness.

Finally, we plan to enrich our output model with runtime
information to provide a more comprehensive view of the
microservices architecture of interest [15].

VI. RELATED WORK

Several authors highlight the importance of understanding
microservices architectures [8] with code and database ac-
cesses analysis to support software evolution [4]. This section
summarizes related works to position the novelty of our.
Static analysis of microservices architectures. In a
study [15], Bushong et al. review works aiming to retrieve,
analyze, understand, and explain microservices architectures
statically, especially while deriving structural dependencies,
examining code, and reconstructing a holistic centralized view
with tools like MSANose [31] and MICROLYZE [32].

In a review on works detecting microservice API patterns,
Bakhtin et al. [13] show that static analysis is popular.

Cerny et al. also argue that static analysis deserves more
attention [9], [16]. In DevOps, it can be used for analysis at a
particular level of abstraction, helping developers to identify
problems before deployment. In a follow-up work [17], they
use it to reconstruct a microservices architecture regarding
endpoints and messages exchanged.

Singh et al. automatically document Message-oriented
Middleware-based microservices with source code static anal-
ysis to extract component-based architectures and their behav-
ior in asynchronous communication [33].

Other approaches use static analysis with dynamic analysis
for architecture reconstruction. For instance, Mayer et al. ex-
tract service and API descriptions from configuration files [14].

Unfortunately, these works limit their scope to the API level,
ignoring the data perspective. Moreover, they are generally
limited to a single codebase. Finally, for those relying on
dynamic analysis, live deployment is required, which may
affect results, as it does not guarantee covering the entire
application architecture.
Static analysis of database accesses. Meurice et al. offer
a static analyzer for pointing source code locations of dy-
namically generated SQL queries by JDBC, Hibernate and
JPA [34]. They also propose an approach to detect inconsisten-
cies between database queries and their evolving schema [35].

Nagy et al. propose SQLInspect, a tool able to statically
extract and assess SQL queries from Java programs [36].

Liu et al. present SLocator, a similar approach combining
static analysis and information retrieval, to locate the origin
of SQL queries generated by the JPA ORM framework [11].

Scherzinger et al. propose ControVol, a framework sup-
porting schema evolution with static type checking in Java
applications relying on NoSQL data stores [10].

Meurice et al. propose a support tool based on static analysis
on Java applications for inferring the implicit schema(s) of
NoSQL data stores like MongoDB [37].



Regrettably, these works mainly focus on architectures
involving a single database or codebase, losing the big picture,
which is unsuitable for large microservices.

VII. CONCLUSIONS

While microservices architectures are gaining popularity,
recent studies report on difficulties and challenges faced by
practitioners. They need help to understand such architectures
from a code and data management perspective, affecting
software evolution tasks. This is due, among other things,
to the heterogeneous and distributed nature of the underlying
databases and their access code fragments.

To address this problem, we propose a heuristics-based
approach for statically identifying and analyzing data access
code fragments in codebases of microservices architectures. Its
goal is to provide developers with a holistic view facilitating
the evolution of data access in such architectures, e.g., in the
context of impact analysis and change propagation.

Our preliminary evaluation shows promising results for
JavaScript REST APIs relying on NoSQL databases.

COMPANION REPOSITORY

The open-source implementation of our approach, our com-
plete preliminary evaluation results, and examples are publicly
available in our companion repository: https://doi.org/10.5281/
zenodo.14740539.
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[32] M. Kleehaus, Ö. Uludağ, P. Schäfer, and F. Matthes, “MICROLYZE: A
Framework for Recovering the Software Architecture in Microservice-
based Environments,” in Information Systems in the Big Data Era, vol.
317. Springer, 2018, pp. 148–162.

[33] S. Singh and A. Koziolek, “Automated Reverse Engineering for MoM-
Based Microservices (ARE4MOM) Using Static Analysis ,” in Proc. of
ICSA 2024. IEEE Computer Society, 2024, pp. 12–22.

[34] L. Meurice, C. Nagy, and A. Cleve, “Static Analysis of Dynamic
Database Usage in Java Systems,” in Proc. of CAiSE 2016. Springer,
2016, pp. 491–506.

[35] ——, “Detecting and Preventing Program Inconsistencies Under
Database Schema Evolution,” in Proc. of QRS 2016. IEEE, 2016,
pp. 262–273.

[36] C. Nagy and A. Cleve, “SQLInspect: A Static Analyzer to Inspect
Database Usage in Java Applications,” in Proc. of ICSE 2018, 2018,
pp. 93–96.

[37] L. Meurice and A. Cleve, “Supporting Schema Evolution in Schema-
less NoSQL Data Stores,” in Proc. of SANER 2017. IEEE, 2017, pp.
457–461.

https://doi.org/10.5281/zenodo.14740539
https://doi.org/10.5281/zenodo.14740539
https://doi.org/10.5281/zenodo.14740539
https://doi.org/10.5281/zenodo.14740539
https://doi.org/10.5281/zenodo.14740539
https://codeql.github.com/docs/codeql-overview/about-codeql/
https://codeql.github.com/docs/codeql-overview/about-codeql/
https://github.com/expressjs/express
https://www.mongodb.com/
https://www.mongodb.com/
https://redis.io/
https://naturalnode.github.io/natural/
https://winkjs.org/

	Introduction
	Approach
	Preliminary Evaluation
	Discussion
	Future Plans
	Related Work
	Conclusions
	References

