
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Understanding Data Access in Microservices Applications Using Interactive Treemaps

André, Maxime; Raglianti, Marco; Cleve, Anthony; Lanza, Michele

Published in:
Proceedings of the 33rd IEEE/ACM International Conference on Program Comprehension (ICPC 2025)

Publication date:
2025

Document Version
Peer reviewed version

Link to publication
Citation for pulished version (HARVARD):
André, M, Raglianti, M, Cleve, A & Lanza, M 2025, Understanding Data Access in Microservices Applications
Using Interactive Treemaps. in Proceedings of the 33rd IEEE/ACM International Conference on Program
Comprehension (ICPC 2025) : ERA Track.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 15. Mar. 2025

https://researchportal.unamur.be/en/publications/94fab8f5-0a6b-45a4-bde5-265ac65a6704

Understanding Data Access in Microservices
Applications Using Interactive Treemaps

Maxime André∗, Marco Raglianti†, Anthony Cleve∗, Michele Lanza†
∗Namur Digital Institute, University of Namur, Belgium

†REVEAL @ Software Institute — USI, Lugano, Switzerland

Abstract—Over the past decade, microservices have gained
significant popularity, impacting how applications are designed
and deployed. Maintaining a comprehensive high-level view of
microservices applications is essential, especially for software
evolution tasks, enabling developers to understand, maintain, and
optimize the complex interactions across various services.

Developers struggle to obtain such an overview, particularly
from a data perspective. Currently, when changes occur, they
must identify data access code fragments dependent on the
modified parts, or manually search through the entire codebase
for potentially impacted ones. This process is time-consuming,
error-prone, and cumbersome, especially in large codebases
residing in multiple repositories and accessing multiple databases.

We present a novel approach to support code and data co-
evolution comprehension. We mine data access fragments using
a custom static analyzer and use interactive treemaps to generate
a high-level view of the architecture, which can be explored at
various levels of detail allowing, among the others, several and
quick what-if analyses to assess the impact of changes (e.g., data
concept modification, technology switch).

As a case study, we use Overleaf, a popular online LATEX
collaborative authoring platform, to evaluate our approach. We
compared multiple versions and analyzed the evolution of 1.9k
code fragments associated to more than 350 data concepts across
13 microservices, 855 directories, and 3.5k files mixing different
data access technologies. We complement our analysis with
insights and reflections on the promising approach.

Index Terms—microservices, data access, treemap, program
comprehension

I. INTRODUCTION

Microservices as a software architecture pattern were first
“officially” defined in 2011 [1]. Since then, they have grown in
popularity and are now widely adopted by many software com-
panies, including Amazon, Google, and Netflix [2], [3]. They
are particularly praised for their modularity, heterogeneity,
and interoperability capabilities [4]. In theory, these qualities
are supposed to ease software evolution. However, recent
studies report that the same capabilities affect the difficulty
in obtaining an overview of the system [5]–[8].

From a data management perspective, microservices ar-
chitectures constitute an additional layer of complexity. The
polyglot persistence [1], incarnated by multiple, heteroge-
neous, and distributed databases, impacts system overviews
[9]. When changes occur, developers must know data access
code fragments dependent on the modified parts, or manually
search through the entire codebase to identify potentially
impacted ones. This process is time-consuming, error-prone,
and cumbersome [10], especially in large codebases residing
in several repositories and accessing multiple databases.

Several studies have explored the holistic visualizations of
microservices architectures [5], [7], [8], [11]. These works
typically focus on interactions between microservices from a
software architecture point of view, neglecting a deeper anal-
ysis of the data access layer. Since most existing approaches
rely on dynamic analysis, they require the deployment of the
system to perform the proposed analyses and generate their
insights. Finally, software visualizations for microservices pre-
dominantly rely on directed graphs layouts [5], [7], [11], which
can limit interpretability for large systems [8]. Developers
need a comprehensive and scalable high-level overview of
microservices applications that incorporates the data access
layer as a “first-class citizen”, to help them understand, main-
tain, and optimize the complex interactions across multiple
microservices during software evolution tasks.

We propose a novel approach to support the comprehension
of code and data co-evolution in microservices applications.
We mine data access fragments and present them in a treemap-
based visualization. The treemap layout allows a scalable and
compact high-level overview of the system, still providing
precise localizability of the data access fragments in the
codebase. The visualization is interactive, enabling developers
to explore the system at different levels of detail and progres-
sively disclose information such as fragments accessing the
same data concepts (i.e., database conceptual entities).

Our interactive treemap supports several what-if analyses,
helping developers assess the impact of changes (e.g., data
concept modifications, technology switches). It also offers
insights into the distribution of technologies, operations, code
fragments, and data concepts, highlighting heterogeneity or
consistency at macro (i.e., entire codebase) and micro scales
(i.e., in a single file). Our approach assists in evaluating the
importance of each microservice and component from a data
access perspective and helps identifying the data-oriented parts
of a system and their characteristics. Finally, in terms of
quality assessment, it contributes to finding anti-patterns for
refactorings, such as isolated or highly nested code fragments.

In the following sections, we present our approach (Sec-
tion II) and a case study (Section III), with reflections on
some of the what-if scenarios we envision as most important
to support developers in the source code and data co-evolution
comprehension of microservices architectures. Section IV po-
sitions our work within the existing literature, while Section V
presents future research directions.

REPOSITORIES

1 STATIC ANALYSIS 2 VISUALIZATION

{;}
JSON

STATIC
ANALYSIS

RESULT
VISUALIZATION

RESULT

MODEL

A B C

ICONS

COLORS

DETAILS

CONCEPTS

LAYOUT2.1

2.2

2.3

2.4

2.5

D

Fig. 1. Approach overview.

II. INTERACTIVE VISUALIZATION OF DATA ACCESS

Interactive visualization is the key to exploration and com-
prehension of code and data co-evolution. An overview of
our approach is presented in Figure 1. From source code
repositories (A) we use a static analyze (1) [12], [13] to
retrieve code fragments (B) identifying data access in the
code. We generate an interactive treemap (2) to present an
explorable and customizable high-level architectural view of
the system (C). The underlying model (D) allows exploration
of the elements in the visualization and traceability to the
original software repository. For example, one can open the
source code file where each code fragment is located to further
inspect the fragment itself and its context of use.

A. Static Analysis
We mine the microservices architecture of interest following

the approach of André et al. [12]. We download one or more
Git repositories (A). We parse and query the source code to
identify code fragments that represent data access. We extract
the relevant information to produce an analysis report as output
(B). This report represents a microservices architecture as a set
of repositories, which are subdivided into directories and files
containing collections of code fragments. Each code fragment
is enhanced with additional details, such as the database
technology used, the CRUD operation (Create, Read, Update,
or Delete), the specific Object-Relational Mapping (ORM)
method employed, and, when available, a sample of the data
object or value affected by the operation. Each code fragment
may be linked to one or more data concepts. Those concepts
are extracted by applying a few Natural Language Processing
rules (e.g., lemmatization) to the fragment data sample. Our
analysis report relies on a custom underlying model (D).

B. Visualization
We use the analysis report as input to create the visual-

ization. We recursively traverse the repository’s hierarchy in
the report, building different aspects of the visualization (e.g.,
layout, icons, colors, as presented in Figure 1, 2.1–2.5) before
generating the final result, the interactive treemap (C).

Figure 2 shows how the containment hierarchy of reposito-
ries, directories, and files contributes directly to the treemap
layout. Literature demonstrates that treemaps are well-suited
for visualizing hierarchical and recursive large structures in
limited 2D spaces [14]–[21], which aligns with our model.

We apply a bin-packing First Fit Decreasing heuristic algo-
rithm1 to pack the rectangles representing files and directories.
Since each code fragment has a defined and uniform size,
the layout is constructed bottom-up. The size of each parent
rectangle depends on the number and sizes of its children.

Repository, directory,
and file hierarchy

Code fragment details

File
Code Fragment
ExpressJS
MongoDB
Redis

CREATE
READ
UPDATE
DELETE
OTHER

Fig. 2. Visualization result example.

Figure 2 also shows that the code fragment’s operation
in the model determines the icon used to visually repre-
sent the fragment. Each technology is mapped to a different
configurable color. Additional details are integrated in the
visualization to help interactive navigation. For example, when
hovering over a box, a tooltip appears with information such as
the hovered file path or the code fragment location. Finally, we
use the list of related data concepts to interactively highlight
the code fragments related to selected concepts. These multiple
layers of information contribute to the codebase exploration
and support several comprehension and evolution tasks.

III. CASE STUDY

Our case study concerns Overleaf, a popular collaborative
LATEX authoring platform. We compared several versions, the
latest of which (Figure 3, right) contains up to 1.9k code
fragments associated to more than 350 data concepts across 13
microservices, 855 directories, and 3.5k files mixing different
data access technologies. In total, this codebase consists of
800k LoC. Overleaf is open source and its GitHub repository2

reaches 14k stars and 103 contributors. Below we detail 4
main observations we made thanks to our visualization.

1See https://www.npmjs.com/package/bin-pack
2See https://github.com/overleaf/overleaf

https://www.npmjs.com/package/bin-pack
https://github.com/overleaf/overleaf

Overleaf | November 4th, 2024 10:05 AMOverleaf | August 5th, 2021 09:25 AM

A
B

1

C

D

A'

B'

C'

D'

Fig. 3. Comparison of two versions of Overleaf.

A. Technology Breakdown

The treemap helps us to understand at a glance the technolo-
gies used in the system. As depicted in Figure 4, we identify
two scenarios: Either the technologies are mixed within the
same files (1), or they are well-distributed and encapsulated
(2). This gives us an indication of how the data access code
is organized and how heterogeneous it is. The observation
presented at micro level (single files) is also valid at macro
level (microservices and the entire system, see Figure 3).

1 2

Fig. 4. Single file with mixed technologies (left) and multiple files each with
a single technology (right).

B. Data Concept Change Impact

The interactive visualization allows highlighting the code
fragments related to specific data concepts. This is useful to
assess the impact of changing a data concept on the affected
fragments and their distribution in the codebase. As depicted
in Figure 5, code fragments that are not related to the selected
data concept are rendered opaque. In this example, we can see
how CRUD operations on the “doc” concept are spread across
multiple components of the Overleaf codebase (1), while the
“tag” concept is cohesively independent (2). In addition, we
can quickly determine which technologies manipulate a given
concept, supporting decisions for switching technologies.

1 2

Fig. 5. Example of highlighted data concepts. CRUD operations with
ExpressJS and MongoDB on the “doc” concept (left) are spread in 9 files.
Operations on the “tag” concept are single technology and single file (right).

C. Version Comparison

The previous observations focused on a single version of
the codebase. We can also compare two versions of the same
project. Figure 3 shows the result of three years of evolution
of Overleaf. While it is apparent that the system grew, we
observe that some parts of the system remained stable. At a
first glance, we can even see identical blocks in both versions
(A vs. A’, C vs. C’, and D vs. D’). The compared visualizations
also suggest that some parts have been refactored (B). For
instance, data access code fragments have been removed from
the front-end (B’) to increase the separation of concerns.

D. Code Fragment Isolation

Besides highlighting the result of refactorings, comparisons
on Overleaf reveal another use case. Some code fragments are
particularly isolated, highly nested in the codebase. Although
this can result from a motivated choice, they deserve specific
attention as a potential anti-pattern [22].

Figure 3 shows an instance of isolated code fragment in
the older version of Overleaf (Aug. 5, 2021). The recent
version (Nov. 4, 2024) shows that the code fragment was
moved to another location (1). This move seems to relate to
the /frontend/js/ refactoring described above. Overleaf’s
developers successfully located and adapted this code frag-
ment, yet this type of instance still remain difficult to locate.
Our visualization helps to identify them faster than via manual
search.

IV. RELATED WORK

Cerny et al. review techniques that provide holistic views
of microservices architectures. The authors aim to fill the
lack of a reified view caused by decentralized architectures,
especially for large systems involving several independent
teams. In a first work [8], besides the most commonly used
visualizations based on directed graphs, the authors discuss
alternative kinds of layout, such as the notation-based ones,
leveraging UML and SysML models. They also mention the
matrix-based approach and the metaphor-based visualization
using physical world contexts such as cities, islands, or land-
scapes. They point-out that 3D spaces in Augmented Reality
and Virtual Reality can contribute to the understandability. In
addition, they present tools such as Amazon’s X-Ray console3,
Simianviz4, MicroDepGraph5. In another review [5], they list
tools like VR-EA [23], Kiali6, and Jaeger UI7. They also
approach map-based and hierarchical visualizations. The same
authors introduce Microvision [24], a 3D-based visualization
tool able to visualize holistically a microservices architecture
with complex relationships in Augmented Reality. They point-
out that the 3D allows exploiting a larger area, thus suitable for
large codebases, and that the navigation helps to inspect, in a
more natural way, various angles and abstraction perspectives.

From a 3D perspective, Abdelfattah et al. investigate Virtual
Reality for visualizing microservices architectures, especially
for representing inter-services dependencies. Based on a con-
trolled experiment, they observe that the third dimension helps
developers to identify the dependencies, the cardinalities, and
the potential bottlenecks [25].

Ardigò et al. present M3tricity, a tool that uses the city
metaphor also in 3D to visualize the evolution of object-
oriented software systems, with particular emphasis on the
data and information access. According to the authors, the tool
contributes to the program comprehension and the evolution
analysis [26], [27].

Parker et al. conduct a systematic mapping study on the
visualization of microservices anti-patterns at runtime. They
argue that bringing a way to observe large microservices archi-
tectures as a whole would offer a great benefit to microservices
developers. Similarly to Cerny et al., they find a prevalence
of visualizations based on directed graphs [11].

3See https://aws.amazon.com/xray/
4See https://simianviz.surge.sh/
5See https://github.com/clowee/MicroDepGraph
6See https://kiali.io/
7See https://github.com/jaegertracing/jaeger-ui

Ma et al. introduce an approach for creating graphs that
visualize microservice dependencies for analysis and testing. It
helps detect issues early and track service connections during
updates, working well for systems of any size [28].

In a systematic mapping study, Gortney et al. review
dynamic analysis techniques for visualizing microservices
architectures. They emphasize that the absence of views of the
entire system could lead to a messy architecture and potential
problems in terms of change propagation. Directed graph-
based visualization is the most common approach and it has
been used in different variants such as the service dependency
graph, the business process graph, and the service endpoint
call graph. Additionally, the study reveals that some tools rely
on 3D-based Augmented Reality. The authors cite tools like
MicroART [29], Zipkin8, and ExplorViz9 [7].

Mayer et al. propose a dashboard for visualizing depen-
dency graphs and multiple charts of metrics taken from the
information extracted statically and dynamically from mi-
croservices architectures [30].

The common thread in the related work is that each ap-
proach tries to tame the complexity of the domain, where
the intrinsic complexity of software is augmented with the
additional complexity of data storage mechanisms. Starting
from a simplification approach, our idea follows Ben Shnei-
derman’s mantra: “Overview first, zoom and filter, then details-
on-demand” [31]. We use a simple yet sufficient 2D represen-
tation (treemaps), making it interactive, and augmenting it with
carefully selected meta-information about data access.

V. CONCLUSIONS

We addressed the challenge of maintaining a high-level
overview of microservices architectures and their data access
by introducing a novel treemap-based visualization approach,
offering a fresh alternative to traditional graph-oriented rep-
resentations. Our interactive treemap enables us to perform
what-if analyses, assess the distribution of technologies and
data concepts in the codebase, and evaluate the size and
heterogeneity of data access components.

Through a case study on Overleaf, we demonstrated the
performance of the proposed approach in identifying technol-
ogy breakdown patterns, analyzing the impact of data concept
changes, comparing system versions to track evolution or
refactoring scenarios, and highlighting particular code patterns.

This promising approach can be used in future work to aid
in decision-making for refactoring and evolution strategies. It
also opens the door to extend the visualization with additional
dimensions for even richer insights.

VI. REPLICATION PACKAGE

To ensure verifiability and replicability of our work, the
artifacts of our case study are publicly available as open source
at: https://figshare.com/s/4dce410c10c7c26dabe3

8See https://zipkin.io/
9See https://github.com/ExplorViz

https://aws.amazon.com/xray/
https://simianviz.surge.sh/
https://github.com/clowee/MicroDepGraph
https://kiali.io/
https://github.com/jaegertracing/jaeger-ui
https://figshare.com/s/4dce410c10c7c26dabe3
https://zipkin.io/
https://github.com/ExplorViz

ACKNOWLEDGMENTS

This research is supported by the SofinaBoël Fund for
Education and Talent and the Federation Wallonie-Bruxelles
(FWB), as part of the ARC project RAINDROP, and by
the Swiss National Science Foundation (SNSF) through the
project “FORCE” (SNF Project No. 232141). The authors
would like to thank the Swiss Group for Original and Outside-
the-box Software Engineering (CHOOSE) for sponsoring the
trip to the conference.

REFERENCES

[1] J. Lewis and M. Fowler. (2014) Microservices. [Online]. Available:
https://martinfowler.com/articles/microservices.html

[2] C. Richardson, Microservices Patterns: with Examples in Java. Simon
and Schuster, 2018.

[3] S. Newman, Building microservices. O’Reilly Media, Inc., 2021.
[4] M. André, “Automated database schema evolution in microservices,” in

Conference on Very Large Data Bases (VLDB), vol. 3452. CEUR-WS,
2023, pp. 37–40.

[5] T. Cerny, A. S. Abdelfattah, V. Bushong, A. Al Maruf, and D. Taibi,
“Microservice architecture reconstruction and visualization techniques:
A review,” in IEEE International Conference on Service-Oriented System
Engineering (SOSE). IEEE, 2022, pp. 39–48.

[6] T. Cerny and D. Taibi, “Static analysis tools in the era of
cloud-native systems,” in International Conference on Microservices
(Microservices), 2022, arXiv preprint. [Online]. Available: https:
//arxiv.org/abs/2205.08527

[7] M. E. Gortney, P. E. Harris, T. Cerny, A. Al Maruf, M. Bures, D. Taibi,
and P. Tisnovsky, “Visualizing microservice architecture in the dynamic
perspective: A systematic mapping study,” IEEE Access, vol. 10, pp.
119 999–120 012, 2022.

[8] T. Cerny, A. S. Abdelfattah, J. Yero, and D. Taibi, “From static
code analysis to visual models of microservice architecture,” Cluster
Computing, pp. 1–26, 2024.

[9] R. Laigner, Y. Zhou, M. A. V. Salles, Y. Liu, and M. Kalinowski, “Data
management in microservices: State of the practice, challenges, and
research directions,” VLDB Endowment, vol. 14, no. 13, pp. 3348–3361,
2021.

[10] A. Lercher, J. Glock, C. Macho, and M. Pinzger, “Microservice API
evolution in practice: A study on strategies and challenges,” Journal of
Systems and Software, vol. 215, p. 112110, 2024.

[11] G. Parker, S. Kim, A. Al Maruf, T. Cerny, K. Frajtak, P. Tisnovsky,
and D. Taibi, “Visualizing anti-patterns in microservices at runtime: A
systematic mapping study,” IEEE Access, vol. 11, pp. 4434–4442, 2023.

[12] M. André, E. Rivière, and A. Cleve, “Data access-centered understand-
ing of microservices architectures,” in IEEE International Conference on
Software Architecture (ICSA): Companion Proceedings. IEEE, 2025,
in press.

[13] M. André, E. Rivière, and A. Cleve. DENIM reverse engineering.
Zenodo. [Online]. Available: https://doi.org/10.5281/zenodo.14740539

[14] B. Shneiderman, “Tree visualization with tree-maps: 2-d space-filling
approach,” ACM Transactions on Graphics, vol. 11, no. 1, pp. 92–99,
1992.

[15] M. Balzer and O. Deussen, “Exploring relations within software systems
using treemap enhanced hierarchical graphs,” in IEEE International
Workshop on Visualizing Software for Understanding and Analysis
(VISSOFT). IEEE, 2005, pp. 1–6.

[16] M. Balzer, O. Deussen, and C. Lewerentz, “Voronoi treemaps for the
visualization of software metrics,” in ACM Symposium on Software
Visualization (SoftVis). ACM, 2005, pp. 165–172.

[17] R. V. Hees and J. Hage, “Stable and predictable Voronoi treemaps
for software quality monitoring,” Information and Software Technology,
vol. 87, pp. 242–258, 2017.

[18] E. Faccin Vernier, A. C. Telea, and J. Comba, “Quantitative comparison
of dynamic treemaps for software evolution visualization,” in IEEE
Working Conference on Software Visualization (VISSOFT). IEEE, 2018,
pp. 96–106.

[19] W. Scheibel, C. Weyand, and J. Döllner, “EvoCells—A treemap layout
algorithm for evolving tree data,” in International Joint Conference
on Computer Vision, Imaging and Computer Graphics Theory and
Applications (VISIGRAPP), vol. 3: IVAPP, 2018, pp. 273–280.

[20] W. Scheibel, M. Trapp, D. Limberger, and J. Döllner, “A taxonomy
of treemap visualization techniques,” in International Joint Conference
on Computer Vision, Imaging and Computer Graphics Theory and
Applications (VISIGRAPP), vol. 3: IVAPP, 2020, pp. 273–280.

[21] D. P. Tua, R. Minelli, and M. Lanza, “Voronoi evolving treemaps,” in
Working Conference on Software Visualization (VISSOFT). IEEE, 2021,
pp. 1–5.

[22] B. A. Muse, M. Rahman, C. Nagy, A. Cleve, F. Khomh, and G. Antoniol,
“On the prevalence, impact, and evolution of SQL code smells in data-
intensive systems,” in International Conference on Mining Software
Repositories (MSR). ACM, 2020, pp. 327–338.

[23] R. Oberhauser and C. Pogolski, “VR-EA: Virtual reality visualization
of enterprise architecture models with ArchiMate and BPMN,” in
International Symposium on Business Modeling and Software Design
(BMSD). Springer, 2019, pp. 170–187.

[24] T. Cerny, A. S. Abdelfattah, V. Bushong, A. Al Maruf, and D. Taibi, “Mi-
crovision: Static analysis-based approach to visualizing microservices
in augmented reality,” in IEEE International Conference on Service-
Oriented System Engineering (SOSE). IEEE, 2022, pp. 49–58.

[25] A. S. Abdelfattah, T. Cerny, D. Taibi, and S. Vegas, “Comparing 2D and
augmented reality visualizations for microservice system understandabil-
ity: A controlled experiment,” in IEEE/ACM International Conference
on Program Comprehension (ICPC). IEEE, 2023, pp. 135–145.

[26] S. Ardigò, C. Nagy, R. Minelli, and M. Lanza, “Visualizing data in
software cities,” in IEEE Working Conference on Software Visualization
(VISSOFT). IEEE, 2021, pp. 145–149.

[27] ——, “M3tricity: Visualizing evolving software & data cities,” in
ACM/IEEE International Conference on Software Engineering (ICSE):
Companion Proceedings. ACM, 2022, pp. 130–133.

[28] S.-P. Ma, C.-Y. Fan, Y. Chuang, W.-T. Lee, S.-J. Lee, and N.-L. Hsueh,
“Using service dependency graph to analyze and test microservices,” in
IEEE Annual Computer Software and Applications Conference (COMP-
SAC), vol. 2. IEEE, 2018, pp. 81–86.

[29] G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino,
and A. Di Salle, “MicroART: A software architecture recovery tool
for maintaining microservice-based systems,” in IEEE International
Conference on Software Architecture Workshops (ICSAW). IEEE, 2017,
pp. 298–302.

[30] B. Mayer and R. Weinreich, “An approach to extract the architecture of
microservice-based software systems,” in IEEE Symposium on Service-
Oriented System Engineering (SOSE). IEEE, 2018, pp. 21–30.

[31] B. Shneiderman, “The eyes have it: A task by data type taxonomy for
information visualizations,” in The Craft of Information Visualization.
Elsevier, 2003, pp. 364–371.

https://martinfowler.com/articles/microservices.html
https://arxiv.org/abs/2205.08527
https://arxiv.org/abs/2205.08527
https://doi.org/10.5281/zenodo.14740539

	Introduction
	Interactive Visualization of Data Access
	Static Analysis
	Visualization

	Case Study
	Technology Breakdown
	Data Concept Change Impact
	Version Comparison
	Code Fragment Isolation

	Related Work
	Conclusions
	Replication Package
	References

