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Data assimilation problems

Motivation: data assimilation for weather forecasting

(Attempt to) predict. . .

tomorrow’s weather

the ocean’s average temperature
next month

future gravity field

future currents in the ionosphere

. . .

using observations of continuous variables.
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Data assimilation problems

Data assimilation for weather forecasting (3)

The principle:

Minimize deviation between model and past observations
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temp. vs. days

• Known situation 2.5 days ago
and background prediction
• Record temperature for the past 2.5 days
• Run the model to minimize difference

I between model and observations
• Predict temperature for the next day

min
x0

1

2
‖x0 − xb‖2B−1 +

1

2

N∑
i=0

‖HM(ti , x0)− bi‖2R−1
i
.
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Data assimilation problems

Data assimilation problem: reformulation

The 4DVAR formulation for

min
x0

1

2
‖x0 − xb‖2B−1 +

1

2

N∑
i=0

‖HM(ti , x0)− yi‖2R−1
i
.

Gauss-Newton method : iterate on

1 linearize, concatenate successive times, define x0 = x + s

2 solve

min
x0

J(s)
def
= 1

2
‖x + s − xb‖B−1 + 1

2
‖Hs − d‖2R−1

where H is m × n
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Data assimilation problems

Primal and dual approaches

Three possible approaches for solving the subproblem :

the primal method : apply (preconditioned) truncated
conjugate-gradients for s (dimension n)

Use duality to re-write the problem as

min
s

J(s)
def
= 1

2
‖x + s − xb‖2B−1 + 1

2
‖a‖2R−1

such that a = Hs − d

write the corresponding KKT conditions:

(R + HBHT )λ = d − Hc , s = c + BHTλ, a = −Rλ

and apply (preconditioned) truncated conjugate-gradients in the
HTBH inner product to the 1rst equation (dimension m). Then
compute s from the 2nd. (RPCG, Gratton-Tshimanga)
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Data assimilation problems

Potential advantages of the dual approach

mathematically equivalent to the primal approach (same iterates),
with /without preconditioning

easily truncated without compromising convergence of the
Gauss-Newton algorithm (6= PSAS)

computationally attractive when m� n

=⇒

favorable when the number of observations is (relatively) small

Note : multipliers λ measure the impact of each observation individually!
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Data assimilation problems

Observation thinning

In many applications,

too many observations in some parts of the domain!

observations can be considered into a nested hierarchy {Oi}ri=0 with

Oi ⊂ Oi+1 i = 0, . . . r − 1.

(coarse vs fine)

Can we exploit this for reducing computations?
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Data assimilation problems

The coarse and fine subproblems

The fine (sub)problem:

min
s

1
2
‖ x + sf − xb ‖B−1 + 1

2
‖Hf s − df ‖2R−1

f

The coarse (sub)problem:

min
s

1
2
‖ x + sc − xb ‖B−1 + 1

2
‖ Γf (Hf s − df ) ‖2

R−1
c

where Γf is the restriction from fine to coarse observations.
Moreover

fine problem formulation =⇒ fine multiplier λf

coarse problem formulation =⇒ coarse multiplier λc
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Data assimilation problems

A useful error bound

Question: what is the difference between fine and coarse multipliers ?

If Πc = σΓf is the prolongation from the coarse observations to the fine
ones, then

‖λf − Πcλc ‖Rf +Hf BHT
f
≤ ‖ df − Hf sc − Rf Πcλc ‖R−1

f

(proof somewhat technical. . . )

Uses df but no comptuted quantity at the fine level

Observation i useful if the i-th component of λf − Πcλc is large
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Data assimilation problems

How to exploit this?

Idea:

Starting from the coarsest observation set, and until the finest observation
set is used:

1 solve the coarse problem for (sc , λc)

2 define a finer auxiliary problem by moving up in the hierarchy of
observation sets (i.e. consider finer auxiliary observations)

3 use theorem to estimate distances from λc to λaux = Πcλc

4 using this, select a subset of the auxiliary observations whose impacts
represents the impacts of these observations well enough (thinning)

5 redefine this selection as the next coarse observation set and loop

(needs: a more formal definition of the observations hierarchy
+ selection procedure)
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Data assimilation problems

An example of observation sets

Coarse set Auxilary set

Selected fine set
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Data assimilation problems

Example 1: The Lorenz96 chaotic system (1)

Find u0, where ū is an N-equally spaced entries around a circle, obeying

duj+θ

dt
=

1

κ
(−uj+θ−2uj+θ−1 + uj+θ−1uj+θ+1 − uj+θ + F ),

(j = 1, . . . 400, θ = 1, . . . , 120)

Coordinate system Initial (u1(0), u2(0), . . . , uN(0))
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Data assimilation problems

Example 1: The Lorenz96 chaotic system (2)

System over space and time Window of assimilation
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Data assimilation problems

The Lorenz96 chaotic system (3)

Background and true initial u(0) True and computed u(0)
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Data assimilation problems

Example 1: The Lorenz96 chaotic system (4)

An example of transition from coarse to fine observations sets :

Oi −→ Oi+1
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Data assimilation problems

Example 1: The Lorenz96 chaotic system (5)

Cost vs obs Cost vs flops

RMS error versus time (last iteration)
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Data assimilation problems

Conclusions and perspectives

Combining the advantages of the dual approach with adaptive observation
thinning is possible

Observation thinning can produce faster solutions

Observation thinning can produce more accurate solutions

Reuse of selected data sets along the nonlinear optimization?

Use this idea for the design of observations campaigns?

Thank you for your attention!
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Data assimilation problems

Example 2: 1D wave system with a shock (1)

Find u0(z) in

∂2

∂t2 u(z , t)− ∂2

∂z2 u(z , t) + f (u) = 0,

u(0, t) = u(1, t) = 0,

u(z , 0) = u0(z), ∂
∂t u(z , 0) = 0,

0 ≤ t ≤ T , 0 ≤ z ≤ 1,

where f (u) = µeηu

(360 grid points, ∆x ≈ 2.8 · 10−3, T = 1 and ∆t = 1
64).
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Data assimilation problems

Example 2: 1D wave system with a shock (2)

Initial x0 = u0(z) System over space and time
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Data assimilation problems

Example 2: 1D wave system with a shock (3)

Background and true initial u(0) True and computed u(0)
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Data assimilation problems

Example 2: 1D wave system with a shock (4)

An example of transition from coarse to fine observations sets :

Oi −→ Oi+1
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Data assimilation problems

Example 1: 1D wave system with a shock (5)

Cost vs obs Cost vs flops

RMS error versus time
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