Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

RESEARCH OUTPUTS / RESULTATS DE RECHERCHE

Engineering Configuration Graphical User Interfaces: A Model-based Perspective
Boucher, Quentin; Perrouin, Gilles; Acher, Mathieu; Heymans, Patrick

Publication date:
2012

Document Version _
Early version, also known as pre-print

Link to publication

Citation for pulished version (HARVARD):
Boucher, Q, Perrouin, G, Acher, M & Heymans, P 2012, Engineering Configuration Graphical User Interfaces: A
Model-based Perspective: Paper submitted to ECMFA'12..

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 04. Jul. 2025

https://researchportal.unamur.be/en/publications/3455556e-5ce3-4ff5-9805-ce3a0be7697f

r PReCISE — FUNDP
University of Namur
Rue Grandgagnage, 21

B-5000 Namur
Belgium

TECHNICAL REPORT

AUTHORS
APPROVED BY
EMAILS
STATUS
REFERENCE
PROJECT
FUNDING

Friday 2"¢ March, 2012

Q. Boucher, G. Perrouin, M. Acher, P. Heymans
P. Heymans
{gbo,gpe,mac,phe}@info.fundp.ac.be

Paper submitted to ECMFA’12

P-CS-TR ECMFA-000001

NAPLES

La Wallonie

Engineering Configuration Graphical User Interfaces: A
Model-based Perspective

Copyright © University of Namur. All rights reserved.

Engineering Configuration Graphical User
Interfaces: A Model-based Perspective

Quentin Boucher!, Gilles Perrouin®, Mathieu Acher!, and Patrick Heymans'-2

! PReCISE Research Centre, University of Namur, Belgium
2 INRIA Lille-Nord Europe, Université Lille 1 — LIFL, — CNRS , France
{qbo,gpe,mac,phe}@info.fundp.ac.be

Abstract. Mass popularisation of configurable solutions is a priority of
most companies. Hundreds of configurators with an interactive graphi-
cal user interface (GUI) are developed to assist customers in activating
or deactivating a large number of inter-related configuration options. In
practice, such complex configuration GUIs are developed in an ad hoc
manner (e.g., configuration rules are hard-coded), raising several issues
in terms of correctness, flexibility and maintenance. In this paper, we
adopt a model-based perspective for comprehensively engineering con-
figuration GUIs. We rely on feature models to describe configuration op-
tions and their complex relationships. We propose a generic model-based
architecture for engineering configuration GUIs, in which well-defined
and scalable reasoning operations can be integrated. We design and de-
velop model transformations that can generate customised configuration
GUI elements from feature models. We illustrate the approach using the
Mozilla’s XUL GUI environment.

1 Introduction

In a more and more competitive environment, product customisation is taken
to the extreme by companies in order to gain market share. Companies provide
customisation tools, more commonly called product configurators, to assist their
customers in deciding upon the characteristics of the product to be delivered.
This trend is further strengthened by the ever growing presence of such config-
urators on the Internet: the reference [1] lists more than 800 of those web-based
configurators coming from 28 domains, from car to food including apparel. How-
ever, unreliable and poorly designed configurators can rapidly become a strong
handicap. In particular, configurators should preclude inconsistent activation or
deactivation of configuration options while proposing appropriate, user-friendly
graphical user interface (GUI).

Our experience reveals that some existing configurators are implemented in
an ad hoc fashion. For instance, we have observed in two industrial cases that re-
lationships between configuration options are hard-coded and mixed with GUIs’
code. As constraints are scattered in the source code, severe maintenance issues

Engineering Configuration Graphical User Interfaces SUBMITTED TO ECMFA’12

occur. For example, engineers are likely to introduce errors when updating or
adding new constraints between options in the configurator. Moreover, as recog-
nized by our industrial partners developing such configurators, the correctness
and the efficiency of the reasoning operations are not guaranteed. More reliable
and maintainable solutions are thus needed.

In this paper, we explore a pragmatic and model-driven way to generate con-
figuration GUIs. We rely on feature models (FMs) to represent and reason about
the configuration options and their complex relationships. FMs have been inten-
sively studied by academics during the last two decades in the software product
line community [2]. FMs are now equipped with formal semantics [3], auto-
mated reasoning operations and benchmarks [4, 5], tools [6-8] and languages [9,
10]. In essence, an FM aims at defining legal combinations of features autho-
rised or supported by a system. In our case, configuration options are modelled
as features and each configuration (specification of a product) authorised by
the configurator corresponds to a valid combination of features in an FM. A
strength of FMs is that state-of-the-art reasoning techniques, based on solvers
(e.g., SAT/SMT/CSP), can be reused to implement decision verification, prop-
agation, and auto-completion in a rigorous and efficient way [4, 9, 11]. Therefore
FMs are a very good candidate to pilot the configuration process during which
customers decide which features are included in a product.

Once FMs have been elaborated, there is still need to produce a GUI, includ-
ing the integration of underlying reasoning mechanisms to control and update
the GUI elements. On the one hand, some FM-based configuration GUIs rely
on solvers [6-8]. But such GUIs do not consider presentation concerns and their
generation process is rigid, avoiding the derivation of customised GUIs [12]. Fur-
thermore existing graphical representations of FMs (e.g., FODA-like notation
or tree-views) are not adapted to user-friendly configuration [13]. On the other
hand, model-based approaches for generating GUIs simply produce the visual
aspects of a GUI [14-17]. This is not sufficient for configurators since constraints’
verification is paramount for their usability and performance.

Our approach is to combine the best of both worlds, i.e., correct configu-
rations together with user-friendly generated GUIs. We present a model-view—
controller (MVC) architecture to design configurators, which separates concerns
between an FM (configuration options modelling), its associated solver (au-
tomated reasoning support) and the presentation of the GUI. To fill the gap
between FMs and configurators’ GUIs, the different constructions of the FM
formalism are restituted as GUI elements through model transformations. The
transformations are based on a metamodel for TVL [10], a textual language
for feature modelling. Transformations can be parameterised to derive specific
configuration GUIs. We use model-to-text transformation rules to show how to
translate a TVL model into a XUL GUI, XUL being the XML-based Ul language
of the Mozilla Foundation.

Structure of the paper. In Section 2, we describe the problem of engi-
neering configuration GUIs, report our experience in industry and discuss the
related work. In Section 3, we present TVL and its metamodel. In Section 4, we

P-CS-TR ECMFA-000001 3

Q. Boucher, G. Perrouin, M. Acher, P. Heymans SUBMITTED TO ECMFA’12

sketch our MVC-like configurator architecture. We also detail how configuration
GUIs can be generated and customised from a TVL specification, using XUL as
a target language. In Section 5, we discuss key properties of our model-based
approach and outline research directions. Section 6 concludes the paper.

2 On Engineering Configurators

2.1 Challenges

The cornerstone of a configuration is the reasoning engine that is responsible
for keeping the configuration environment consistent by handling user’s deci-
sions, instantiating constraints, propagating the results and managing (usually
preventing) conflictual decisions. Another crucial aspect of a configurator is the
GUI proposed to customers. By simplifying and facilitating the configuration
process, a configurator should compensate for consumers’ lack of technical ex-
pertise. In this way, the configuration GUI becomes a decisive criterion for cus-
tomer satisfaction. Our preliminary investigation of web-configurators design
and our experience acquired during industry collaborations reveal that existing
configurators are developed in an ad hoc fashion:

— practitioners reinvent the wheel when implementing the reasoning engine:
operations are not formally defined, raising correctness or runtime efficiency
issues;

— the logical relationships between configuration options are hard-coded, in-
ducing sever maintenance overheads;

— the GUI itself is very rigid, hindering reuse across platforms (e.g., web-based
vs standalone vs mobile) and its customisation to user profiles.

More specifically, we report on two industrial collaborations. In the first case,
the company develops critical communication systems and uses a configurator to
parameterise their deployment as well as their behaviour at runtime. Thousands
of configuration options are proposed in a Qt interface and all the code is written
in C++. We observed that i) the reasoning operations essentially consist in a set
of if-then-else instructions; i) numerous portions of code have been manually
duplicated to realize the logics and update the GUIs; i) the reasoning opera-
tions are scattered in different places (C++ files); iv) constraints are documented
in natural language through comments. As recognised by engineers, the logical
part of the configurator is difficult to maintain and evolve while the reasoning
operations have not been designed to guarantee decision verification and propa-
gation. In the second case, the company develops an all-in-one tool that guides
document preparation including the customisation of printing options and the
preview of documents. In the current version of the tool, mismatches between
the preview and the actual output can occur, and, in rare cases, documents may
not even be printable on the selected printer. Indeed, only some constraints im-
posed by the printers are implemented in the source code, mostly for time and
complexity reasons. According to the engineers, implementing those constraints

4 P-CS-TR ECMFA-000001

Engineering Configuration Graphical User Interfaces SUBMITTED TO ECMFA’12

is a complex task since it requires to have an overview of the complete archi-
tecture of the tool. In both industrial cases, our partners expressed their need
to migrate their legacy configurators towards more reliable, maintainable, and
flexible solutions.

2.2 A Model-based Perspective

To address the issues raised when engineering configurators, we argue that the
configuration options and their complex and often large number of logical rela-
tionships should be properly described in a dedicated model (i.e., an FM). How
the model is elaborated [18] or reverse engineered [19,20] is an important issue
but out of the scope of this paper. The expected benefits of using a model-based
approach are as follows:

Reliability and efficiency. State-of-the-art reasoning techniques (i.e., SAT/SMT
solvers) can be reused and generated from the FM in order to manage (e.g.,
control, propagate) the selection/deselection of configuration options;

Maintenance. The specification of constraints is well-defined and centralized
in one place, instead of being informally documented and scattered in the
source code;

Flexibility. Some elements of the FM can be customised into concrete GUI
elements through model transformations.

2.3 Related Work

Model-based generation of GUIs is an important research field in the HCI com-
munity. A whole spectrum of approaches ranging from purely manual design
to completely automated approaches have been proposed. On the one hand, a
manual design is not adequate in our context. Mechanisms for reasoning about
customers’ interactions and for updating accordingly some graphical elements
should be automatically derived. On the other hand, fully automatic approaches
generally fail to produce good GUIs.

Consequently, we focus on partially automated approaches which make up
the bulk of existing literature. Most of those approaches store extra informa-
tion for GUI derivation in models. It is referred as Model-based User Interface
Development (MBUID) and is generally supported by a dedicated environment.
The different MBUIDs and their environments have been surveyed by Gomaa et
al. [14]. However, none of them addresses the specific issues that arise when gen-
erating configurators like the integration of underlying reasoning mechanisms for
controlling and propagating customers’ choices in the GUIL. Modelling techniques
have been developed to support adaptations of interfaces at runtime [16,17]. In
the same way, configurators should be adapted to reflect the customers’ inter-
actions (i.e., selections/deselections). In our context, the kind of modifications
applied to the configurator interfaces are typically lightweight (e.g., some values
are greyed) and can be predicted. Moreover, we can take advantage of planned
variability to make use of efficient solvers to manage the configuration process.

P-CS-TR ECMFA-000001)

Q. Boucher, G. Perrouin, M. Acher, P. Heymans SUBMITTED TO ECMFA’12

In the software product line community, most existing variability-related
tools represent feature models (and allow users to configure them) using tree-
views. We can mention pure::variants [6], FeatureIDE [7] or Feature Modeling
Plug-in [8]. Those tools have a graphical interface in which users can select/dese-
lect features in a directory-tree like interface where constraints are automatically
propagated. Several visualisation techniques have been proposed to represent
FMs [13], but they are not dedicated to end users which are more accustomed
to standard interfaces such as widgets, screens, etc. An exception is the AHEAD
tool suite of Batory et al. [12]. Simple Java configuration interfaces including
checkboxes, radio buttons, etc. are generated using beautifying annotations sup-
ported by the GUIDSL syntax. Such configurators cannot be put into the hands
of end users as they are tool dependent, i.e., they cannot be included into an
existing GUI like a company’s web page. Furthermore, tree-views are too basic
and not adapted for the majority of end users.

For completeness, we also have to mention that several authors combined
MBUID approaches with FMs. Among them, we can mention Pleuss et al. who
automatically derive the individual GUI design corresponding to a configured
product [21]. However, we pursue different goals: Pleuss et al. aim at generat-
ing the GUI of products derived from the product line while our interest is on
generating the interface of a configurator allowing end users to derive products
according to their needs. Schlee and Vanderdonckt [22] also combined FMs with
GUI generation. The variability of the interface is modelled with an FM, which
will be used to derive the corresponding GUI. Their work is closer to ours but
seems abandoned since 2004. They do not address all the issues mentioned above
(e.g., customisation, reasoning).

3 Modelling Configuration Options

In sharp contrast with current practice where configuration specification and
reasoning are mixed with GUI implementation, we believe that the specification
of configuration options should be done explicitly and independently from the
GUI. As discussed in the introduction, an FM can be used to this end. FMs are
tree-like, directed acyclic graphs whose nodes denote features and whose edges
represent top-down hierarchical decomposition of features. Almost all existing
FM languages are based on the FODA notation [2] which uses graphs with
nodes and edges in a 2D space, so called feature diagrams. Over time, textual
alternatives to graphical representations have been proposed [23,9]. Reasons for
that trend are the apparent difficulty to navigate, search and interpret large
FMs. Furthermore, the constructs available or displayed are usually limited.

3.1 TVL
To cope with the limitation of existing notations, we proposed TVL [10], a tex-

tual FM language targeted to software architects and engineers and supported by
formal analysis tools. TVL can represent FMs that are either trees or directed

6 P-CS-TR ECMFA-000001

Engineering Configuration Graphical User Interfaces SUBMITTED TO ECMFA’12

acyclic graphs. The language supports standard feature decomposition opera-
tors: or- (group someOf keyword), zor- (group oneOf), and- (group allOf),
cardinality-based- (group [m..n]) decompositions. Optional features can also
be declared using the opt keyword. Five different types of feature attributes
are supported: integer (int), real (real), Boolean (bool), structure (struct)
and enumeration (enum). The domain of an attribute can be restricted to a
predefined set of values using the in keyword. Attributes can also be assigned
fixed or calculated values using the is keyword. Several standard operators are
available for calculated attributes (e.g. arithmetic operations). Their value can
also be computed using aggregation functions over lists of attributes. In FMs,
constraints can be attached to features to define relationships between features
and/or attributes. For example, the selection of a feature could require the selec-
tion of another one or, oppositely, prevent the selection of a third one. In TVL,
constraints are Boolean expressions that can be added to the body of a feature.

root Voting { -
enum defaultVoteValue in {yes, no};

(defaultVoteValue == yes) -> Yes;

(defaultVoteValue == no) -> No;

group allOf { | DefaultVote || Encoder | |VoteVaIues|
Encoder { 2

enum role in {manager, voter};
}
VoteValues group [2..*] { = > 5

S 56

“equireg-,

Yes, ~ A
No, Lo
Abstain
} Legend SR And-decomposition A Xor-decomposition
} } [.ﬁ\ group cardinality
(a) TVL FM (b) A possible FODA representation

Fig. 1: PloneMeeting FM

Fig. 1(a) illustrates some of the concepts defined above. It is an excerpt of
the complete FM we built for the voting system of PloneMeeting, the meeting
management project of PloneGov3. A possible representation in FODA nota-
tion [2] of the TVL model is proposed in Fig. 1(b). As there is a gap between
the FODA notation and TVL, we take the liberty of translating enumeration
attributes as subfeatures.

3.2 TVL Metamodel

Our approach to configuration GUIs engineering is generative, that is, from TVL
models, we aim at generating customised configurators. We need representations
of TVL models to transform their elements (e.g., features) into concrete config-
uration GUI elements. Hence, the first task is to provide a metamodel for TVL
on top of which model transformations can be defined. We rely on the Eclipse
Modelling Framework (EMF), a widely used open source modelling environment
exploited by most of model transformation languages. Fig. 2 presents an excerpt
of the metamodel we have defined for the TVL language.

3 http://www.plonegov.org/

P-CS-TR ECMFA-000001 7

©

Q. Boucher, G. Perrouin, M. Acher, P. Heymans SUBMITTED TO ECMFA’12

H Model
© fileName : EString

1

0. include
 types
025 [} DataPair | Efpata |
7 i .
B e ypes | o value : Estring fe——1 o ° ~
0.1 o key:EString | PRI data 4 features
type 0.
Zr Zﬁ | 15 Featoreartriburel attritutes features
E| 0.
- RecordTy | ..
- 1= | [RecordType j‘ ‘k i ‘ e
i
pleTvpe Jfields e = foot : EBoolean
© optional : EBoolean
(L. Estring
— target 1 N
T = © label : EString
[_E Reartype | HBooliype |[Hintype | [H EnumType |
{ ” H } 3, literals : EString parents | 0.+
lowerBound TD 1F0T T
upperBound
expressions] in [0.1
[| ['E FeatureGroup ke}—— I 5 Oneof |
~ H Domain [1 [1

IntDomain
= expfessions

.

— -y

[mee—— B Expression

0. AlIOF SomeOf
H RealDomain 1 }@—4 EilSsme

= —_—

[2
ifogt
o}*

£

| e——"

> RIS

nstraint

B BinaryFMConstraint]
[—

Fig. 2: TVL metamodel (excerpt)

The entry point is the metaclass Model which contains all the elements of

a given TVL specification and may refer to other specifications if needed. The
metamodel is organised around three main packages:

4

Types: The types package describes standard TVL types instances of ab-
stract metaclass Type. real is mapped to RealType, int to IntType, struct
to RecordType and so on. These types are used to specify feature attributes
through the FeatureAttribute metaclass. Data models informal key/value
pairs.

Features: The features package models the variability part of TVL. Groups
are defined as instances of the abstract FeatureGroup metaclass. The option-
ality of a feature (opt keyword) is modelled through the optional attribute
and the root attribute specifies whether the feature is at the top of the
decomposition hierarchy.

Expressions: The expressions package is responsible for modelling fea-
ture expressions, domain restriction on types (instance of the abstract meta-
class Domain) and constraints (only “requires” and “excludes” constraints
are shown here).

Model-based Infrastructure for Configurator
Generation

In this section, we present a model-based infrastructure for engineering configu-
rators. We first introduce a generic architecture to integrate the reasoning facil-

P-CS-TR ECMFA-000001

Engineering Configuration Graphical User Interfaces SUBMITTED TO ECMFA’12

ities of the FM into the GUL. We then exemplify how such an architecture can
be realized by means of model transformations that generate the configuration
GUI, including generic controller components for managing user’s decisions.

4.1 An Architectural Pattern for Configurators

The role of software architecture in the reusability and evolvability of software
has long been acknowledged. We rely on design patterns to define a generic ar-
chitecture for configuration interfaces. The key idea is to separate variability
reasoning done on the FM, event handling (user actions) and the actual rep-
resentation of the GUI. Thus, our architecture is inspired by the Model-View-
Controller (MVC) pattern [24] and is decomposed in three tiers (see Fig. 3).

Presentation layer 1 Control layer 1 Reasoning layer
User action Update FM

" figura
View model Controller Configuration

—O— —o—
A Update GUI ty

N Forward
) Changes é * update

Rendering
engine SAT/SMT
Solver
®o00 ECMFA'12 Translate

Groupbox

Checkbox
Label

Feature model

Fig.3: A MVC-like architecture for Configurators

In this paper, we focus on the MVC-related models (shown in black typeface)
while the supporting components (greyed out) are considered as third-party
software. The roles involved in our adaptation of the pattern are as follows:

— Model: In our case, the model is an FM. The TVL model is used to effec-
tively engineer a configuration GUI. It is connected to a reasoning engine
(SAT/SMT solver), which is responsible of interactive configuration exposed
through a generic API.

— View: The view contains a description of the GUI to be displayed to the
user. This description is generated from the FM using the transformation
rules described in Section 4.2. Rather than generating the interface in its
implementation language (e.g. HTML, Swing, etc.) we derive a model for it.
This has two advantages; i) GUI models are more concise and thus easier to
generate and i) we can target several platforms from the same GUI model,
extending the applicability of the generation.

— Controller: Finally, the controller is the central point of our architecture. It
listens to user actions, updates the FM (selected features, attribute values,
etc.) and interacts with the reasoning engine to determine the list of changes
to be propagated to the GUI. Once done, it updates the GUI model by
hiding, making visible or updating elements affected by the changes.

P-CS-TR ECMFA-000001 G

Q. Boucher, G. Perrouin, M. Acher, P. Heymans SUBMITTED TO ECMFA’12

From a dynamic perspective, interaction between components works accord-
ing to the numbered arrows. The initial step is to translate the FM in a format
compatible with the SAT/SMT solver (e.g. as a CNF problem). This translation
is made once and allows efficient reasoning by exploiting this robust technology.
Once an instance of the FM is encoded within the solver, the configurator can
be used interactively. For example, ticking a checkbox in the GUI will trigger an
event through the view model and propagated to the controller (User action).
Depending on the nature of this action, the controller will generate an update
request (Update FM) for the configuration API. This API will in turn update
the FM instance (e.g. by setting a Boolean variable corresponding to the feature
associated with the checkbox to true via the Forward update event). The solver
will compute the new list of features to be de/selected as a result. This result
will be transferred to the controller (Notify) that will make decisions regarding
changes in the GUIL The GUI is then updated (update GUI) accordingly.

Our architecture slightly differs from the original MVC pattern in the sense
that there is no direct link between the FM and view model. The main reason
is that interactive configuration can induce complex GUI updates for which a
specific behavior has to be provided. Since most of this behavior can be made
generic, controllers can be reused amongst different GUIs. In the following, we
present how to generate the view model from a TVL Ecore model and to design a
reusable controller and exemplify our approach on the Mozilla’s XUL language.

4.2 View Generation

As a possible target GUI implementation language for view generation, we use
the XML User Interface Language (XUL) which is an XML-based UI Description
Language (UIDL) included in the application framework of the Mozilla Founda-
tion*. It has the advantage of being a cross-platform markup language for user
interfaces and has been used to implement applications such as Mozilla Firefox
or Thunderbird, for example. The language supports web standards like a.o.
CSS to define the appearance and Javascript for the presentation logic. XUL
user interfaces are rendered by Mozilla’s Gecko layout engine®. Various tags
to represent common GUI concepts (e.g. checkbox, label, textbox, button,
listbox, radio, menu, toolbar) are available. Furthermore, XUL provides a
broadcaster/observer mechanism to monitor user actions.

MTL. Since in this example we focus on XML-based GUI generation from TVL
EMF models, Model-to-Text transformations (M2T) are an appropriate means
to support it. We have chosen Acceleo®, a free implementation of OMG’s MOF
Model to Text Language (MTL). Roughly, an MTL program consists of trans-
formation rules (called templates), which are organized in modules. A template
is usually formed both by immutable text and by expressions enclosed by square
brackets. When applied on an actual model, these expressions are substituted

4 https://developer.mozilla.org/En/XUL
® https://developer.mozilla.org/en/Gecko
S http://www.eclipse.org/acceleo/

10 P-CS-TR ECMFA-000001

Engineering Configuration Graphical User Interfaces SUBMITTED TO ECMFA’12

by the result of their evaluation. The language offers usual constructs such as
for, if and variable definition (let). Navigation amongst model elements is
performed using the Object Constraint Language (OCL) syntax.

Main module. The template/module mechanism provided by MTL allows
to design modular transformations that can be combined depending on users’
needs. A single entry point, called the main module, can be defined to orchestrate
template calls. Listing 1.1 exhibits our main module. Line 1 specifies the packages
of the metamodel on which this module has access to. Line 2 shows how required
modules can be imported. Line 5 specifies the location and characteristics of the
file where generated text will be stored. Lines 6-9 declare a window in XUL
and link the scripts that will be used to control the interface (see Section 4.3).
Finally, lines 11-12 illustrate calls to other templates to generate broadcasters
(see Section 4.3) and starts the actual generation process (genFeature).
[module main(’http://www.fundp.ac.be/tvl/1.0’, ’http://www.fundp.ac.be/tvl
/1.0/expressions’, ’http://www.fundp.ac.be/tvl/1.0/features’, ’http://www

.fundp.ac.be/tvl/1.0/types’) /]
[import be::ac::fundp::UIGenPatterns::features::genFeatureOperator/]

[template public main(featureModel : tvl::Model)l]
[file (’AutomatedConfigurator.xul’, false, ’UTF-8’)]
<?xml-stylesheet href="chrome://global/skin/" type="text/css"?>
<window id= "main" title="Configurator" ... xmlns="http://www.mozilla.org/
keymaster/gatekeeper/there.is.only.xul">
<script src="controller.js"/>
<script src="static.js"/>
[comment Brodcasters generation... /]
[generateBroadcasters (featureModel) /]
[genFeature (featureModel.features->select (f|f.root)->first()) /]
</window>
[/file]
[/template]

Listing 1.1: Main module for XUL generation

Transforming features. Features may be represented differently depending
on their type (optional, mandatory, etc.), place in the FM hierarchy and the
presence of attributes. For example, we decided not to represent mandatory fea-
tures as they do not need to be selected by the user. In case they have associated
attributes, they are mapped to a groupbox labelled with their name and con-
taining the attributes’ widget. Optional or alternative features are transformed
into checkboxes or radiobuttons. Since in TVL all features except the root are
part of a group, most of the representation options are covered.

Transforming groups. Listing 1.2 presents the template for the conversion of
an alternative (one0f) group. Lines 5-8 are concerned with the correct man-
agement of ids, which are used by the controller to update the interface. The
actual radiogroup is created at Lines 9-13, delegating to genFeatureAttrGroup
the generation of radiobuttons corresponding to features of this group and the
management of their potential attributes. Since this genFeatureAttrGroup is
generic, we need to inform it on the nature of the group (some0f, oneOf) via

P-CS-TR ECMFA-000001 11

00O UL W

©

©O00 O Uk W

Q. Boucher, G. Perrouin, M. Acher, P. Heymans SUBMITTED TO ECMFA’12

Boolean parameters so that it can make the right decision depending on the call-
ing template. We have implemented other groups conversion in a similar manner
(not shown here).

[**

* Manages ’’xor’’ groups (oneOf)

* Q@param someGroup : the OneOf group to be processed
*/]

[template public oneOf (oneOfGroup : OneOf)]
<groupbox id="[oneOfGroup.eContainer (features::Feature).label/]">
<description value="Please, choose exactly one option" />
<caption id="[oneOfGroup.eContainer (features::Feature).label/]-1label" label
="[one0fGroup.eContainer (features::Feature).label/]"/>
<radiogroup id="[oneOfGroup.eContainer (features::Feature).label/]" onselect
="actionPerformed (event) ;">

[for (it : features::Feature | oneOfGroup.groupedFeatures)]
[genFeatureAttrGroup (it,false, true)/]
[/for]

</radiogroup>
</groupbox >
[/template]

Listing 1.2: OneOf (xor) group conversion

Transforming attributes. Numbers (IntType, RealType) are translated to
textfields of the corresponding types (since they exist in XUL) with the possi-
bility to define ranges with respect to the defined domain. Boolean attributes
are mapped to checkboxes. Structures (RecordType) are generated with respect
to the types of their fields. For enumerations, we have considered three differ-
ent mapping depending on their size: “small” enumerations are represented as
radiobuttons while “medium” ones are mapped to menu lists, which are more
compact. Finally, “large” ones are transformed to popup menus as shown in List-
ing 1.3. The actual values of “small”, “medium” and “large” can be specified via
parameters.

[**
* genFeatureAttributeEnumSmall: Generates a popup menu for big enumerations
* @param enum : TVL enumeration
* Qparam label: Feature label owning this enumeration
*/1]
[template public genFeatureAttributeEnumBig(enum : FeatureAttribute)]
[let gName: String = enum.eContainer (features::Feature).qualifiedName]

<groupbox id="[qName+ ’-box’/]" observes="[qName/]-broadcaster">

<hbox >
<label value="Label [enum.id/]"/>
<menulist id="[qName+’.’+enum.id/]" onchange="actionPerformed(event) ;">
<menupopup >
[for (it : String | enum.type.oclAsType(types::EnumType).literals)]
<menuitem id="[qName+’.’+enum.id+’.’+it/]" label="Label [it/]"/>
[/for]
</menupopup >
</menulist>
</hbox >
</groupbox >
[/1let]
[/template]

Listing 1.3: Large enumeration conversion

12 P-CS-TR ECMFA-000001

OO0~ Uk W -

Engineering Configuration Graphical User Interfaces SUBMITTED TO ECMFA’12

Other mappings. If we exclude the transformation of TVL attributes, which
can be thought as parameterised one-to-many mappings between TVL and the
configuration GUI, all our mappings are one-to-one. Since MTL templates can
be easily combined this is not an issue for simple cases. Regarding complex
situations, even parameterisation may not be enough or result in long, hard to
debug templates. We discuss a more expressive approach to tailor the mapping
in Section 5. It is worth noticing that not all TVL constructs are covered by
patterns. In fact some of them may serve other purposes than configuration, e.g.
DataPair instances are used for internal reasoning and may not have any utility
for configurators’ users.

4.3 Controller

Central to our architecture is the controller (see Fig. 3): it serves as a bridge
between the FM and the GUI model. First, the controller captures the change
made by the user in the user interface. This is typically done using listeners. Once
this event has been caught, the controller has to determine the id of the widget
as well as its new value. We implemented a prototype controller in Javascript
for the XUL interfaces we generated. Listing 1.4 contains a partial implementa-
tion of the actionPerformed function which is called by XUL event attributes
like oncommand, onselect, onchange, etc. Basically, the function retrieves the
modified widget as well as its type (Lines 2-3). Then, the switch (Lines 5-
15) retrieves the value of the widget depending on its type before calling the
doChanges function which will contact the solver.

function actionPerformed(event){
var element = event.target;
var elementType=element.nodeName;
var value;
switch (elementType) {
case ’radiogroup’:
element=element.selectedItem;
radioSelected (element) ;
break;
case ’checkbox’:
checkboxChanged (element) ;
value=element.checked;
break;

)

doChanges(element.id,value);

Listing 1.4: Event handling Javascript

Depending on the type of the widget, the controller can update some part
of the interface on its own. Indeed, one can distinguish two kinds of constraints
in an FM: hierarchical constraints (a feature is enabled if and only if its parent
feature is included in a configuration) and other Boolean constraints between
features/attributes like requires, excludes, etc. Boolean constraints have to be
handled by the solver while the hierarchy can be processed locally (i.e. directly
by the controller) by showing (resp. hiding) widgets in the interface depending
on the selection (resp. deselection) of the widget corresponding to their an-
cestor. The same principle applies to the relationship between a feature and

P-CS-TR ECMFA-000001 13

V)

O UL WK

Q. Boucher, G. Perrouin, M. Acher, P. Heymans SUBMITTED TO ECMFA’12

its attributes, and a struct attribute and its sub-attributes. This mechanism is
implemented in our Javascript with two functions: radioSelected for the se-
lection of a radio button (called at Line 8 of Listing 1.4) and checkboxChanged
for a checkbox (called at Line 11). Listing 1.5 presents the checkBoxChanged
function. All sub-elements (children features or attributes) of a non-mandatory
feature are grouped in a groupbox observing the broadcaster with an id of the
type parent.id-broadcaster. The checkbox, passed as a parameter to the function,
is used to find its corresponding XUL broadcaster using our naming convention
(Line 2). If a broadcaster is found, its hidden parameter is set the same Boolean
value as the checked attribute of the checkbox. Then, all observing elements
will get the same hidden value. The radioSelected is handled in a similar way.
function checkboxChanged(element){
var broadcaster = document.getElementById(element.id + ’-broadcaster’);

if (broadcaster != null) broadcaster.hidden=!(document.getElementById (
element.id) .checked) ;

Listing 1.5: Checkbox handling Javascript

Next comes the call to the solver. The controller has to pass the id of the
widget whose value has been changed together with its new value to the solver.
Thanks to our naming convention which uses the fully qualified name of a feature
or an attribute as the id of its widget in the corresponding GUI, no id transfor-
mation is required to call the solver. The solver will return a list of triplets, each
one corresponding to a feature or an attribute affected by the choice made in the
GUI. A triplet is composed of (a) the fully qualified name of the feature or at-
tribute, (b) its value (Boolean, integer, real, etc.) and a Boolean value indicating
if this value is a user (True) or solver (False) choice. In our example, this call to
the solver is implemented at Line 2 of the doChanges function (see Listing 1.6).
There, we retrieve the list of triplets (modif) which are used to update the GUL
function doChanges (elementId,value) {

var modif = tvlServer.getModifiedTvlElements (elementId,value)
for (i==0; i<list.length; i++) {
updateUI(list[i].element, list[i].value, list[i].enabled);

}
}

Listing 1.6: Solver call Javascript

Finally, widgets of the interface corresponding to features and attributes in
the list received from the solver are updated. The controller has to find, for
each modified TVL element, the corresponding widget, update its value with
the second component of the triplet and eventually prevent future changes with
the third. With regard to the last parameter, a False value means that the fea-
ture/attribute value has been computed by the solver (due to some constraints)
and consequently cannot be modified by the user. Different strategies can be
adopted by the controller: hide, disable, strike, etc. In our Javascript file, the
iteration over the list returned by the solver is implemented at Lines 3-5 of List-
ing 1.6. There, the controller calls the updateUI function which, given a triplet,
updates the corresponding widget in the GUI. It first finds the widget using the

14 P-CS-TR ECMFA-000001

Engineering Configuration Graphical User Interfaces SUBMITTED TO ECMFA’12

feature/attribute id (Line 2 of Listing 1.7) as well as its type (Line 3). Then,
depending on the widget type, its value will be updated and eventually disabled.
Listing 1.7 contains an excerpt of the Javascript code.
function updateUI(tvlConstructId,value,enabled){

var element=document.getElementById(tvlConstructlId);

var elementType=element.nodeName;

switch (elementType) {

case ’radio’:
if (value==’true’) element.control.selectedIndex=element.control.
getIndex0fItem(element) ;

element .disabled=!enabled;
break;

Listing 1.7: UI update Javascript

5 Discussion

So far, our efforts were dedicated to the generation of configurators in a spe-
cific technological space (e.g., XUL in the illustrative example). An XML-based
language such as XUL has the advantage to allow the specification of GUI el-
ements in a compact manner (with respect to, e.g., a standard programming
language such as JAVA). In addition to some degree of platform independence,
we observed that MTL templates were small and easy to write. Yet, as exposed
in Section 2.1, our long term goal is to support different GUI types (e.g., web-
based vs standalone vs mobile). Consequently, we need to derive configuration
GUIs for different technological spaces (e.g., XUL, Qt, HTML). We would like
to avoid rewriting mappings between TVL and GUI constructs for each techno-
logical space. In a typical Model-Driven Architecture scenario, intermediate and
canonical representations are used (Computation Independent Model, Platform
Independent Model) to capitalize on reusable transformations and to decrease
adaptation costs to a new technological space. In this context, we plan to rely on
the notion of Abstract User Interface (AUI), an universal, technology-agnostic,
GUI description. Different languages, so called User Interface Description Lan-
guages (UIDLs), have been proposed in the literature to express AUIs. Such
languages (e.g., UsiXML [25], UIML [26]) describe various aspects of a GUI
in an abstract manner. Each UIDL has its own characteristics like supported
platforms, target languages, device-independence or available generation tools.

These UIDLs are not specific to configuration GUIs and require tailoring to
suit our needs. We are currently performing a systematic survey for identifying
the subset of GUI concepts relevant to the configurators domain. The introduc-
tion of a domain specific AUI for configurators will impact the transformation
chain. The M2T templates defined in this paper will be reused and adapted
as model-to-model transformations (M2M) defined between the TVL and the
AUI metamodels. M2T transformations can then be used to derive a concrete
configuration GUI in the targeted technological space.

P-CS-TR ECMFA-000001 15

Q. Boucher, G. Perrouin, M. Acher, P. Heymans SUBMITTED TO ECMFA’12

The lack of usability and flexibility of model-based generation of GUIs has
been recognised [15,21]. We are currently working on a dedicated language that
allows developers to customise the generation process. This language, named
Featured Cascading Style Sheets (FCSS), should allow developers to specify how
each TVL construct should be represented as well as beautification information
(e.g., colours). A FCSS specification is intended to serve as input to the M2M
transformations deriving the AUI models and to be reusable amongst configura-
tors so that we can exploit existing GUI generation tools without modification.

Currently, we have implemented a default strategy to layout the elements:
the feature hierarchy imposed by the FM is followed in a depth-first recursive
manner. Yet, there are cases in which this strategy may be impractical, for
example, when there are too many features/attributes to depict on a single
screen. Existing techniques for decomposing an FM into simplified FMs (views)
tailored for a specific stakeholder, role, or task, are relevant [11,5]. The different
views on an FM have to be configured, not necessarily in a linear fashion [27].
The same way we are defining the FCSS language, we plan to define this view
language over the TVL metamodel and to provide an integrated tool to deal with
TVL, FCSS and views in an unified way. Since views impact the GUI structure,
they are also to be considered during the TVL to AUI generation.

6 Conclusion

Configurator engineering is a difficult activity: configurators both need to be
consistent while handling user’s decisions and their GUIs should target usability
and esthetics to attract consumers. This difficulty is often amplified by the ad
hoc nature of configurators in which the variability model, GUI concerns and
reasoning engine are all entangled.

In this paper, we adopted a model-based perspective. We relied on feature
models (FMs) to formally specify configuration options and automate reason-
ing. We developed a model-based solution to generate GUIs from FMs while
relying on SAT/SMT solvers to perform reasoning as a consequence of user’s
selections/deselections. We proposed a MVC-like architecture to separate vari-
ability, reasoning and presentation. Views (GUI elements) are generated from the
TVL FM via dedicated model transformations and communicate with a generic
controller. We performed a feasbility study using as targeted languages XUL,
the Mozilla foundation’s approach to GUI engineering, and Javascript (for the
controller part). As discussed, we plan to design a set of languages to further
enhance customisation of generated GUIs. Then, we aim at generalizing our gen-
erative approach to ease support of various GUI environments (web, standalone,
etc.) and multiple devices (computers, smartphones, tablets, etc.).

References

1. http://www.configurator-database.com: (2011)

2. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-oriented domain
analysis (foda) feasibility study. Technical Report CMU/SEI-90-TR-21 (1990)

3. Schobbens, P.Y., Heymans, P., Trigaux, J.C.: Feature diagrams: A survey and a
formal semantics. In: RE’06, IEEE (2006) 136-145

16 P-CS-TR ECMFA-000001

Engineering Configuration Graphical User Interfaces SUBMITTED TO ECMFA’12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: A literature review. Information Systems 35 (2010) 615-636
Acher, M., Collet, P., Lahire, P., France, R.: Separation of Concerns in Feature
Modeling: Support and Applications. In: AOSD’12, ACM (2012) to appear.
Beuche, D.: Modeling and building spls with pure::variants. In: SPLC. (2008) 358
Kastner, C., Thum, T., Saake, G., Feigenspan, J., Leich, T., Wielgorz, F., Apel,
S.: Featureide: A tool framework for feature-oriented software development. In:
ICSE’09, IEEE (2009) 611-614

Antkiewicz, M., Czarnecki, K.: Featureplugin: feature modeling plug-in for eclipse.
In: OOPSLA Eclipse Workshop. (2004) 67-72

Batory, D.S.: Feature Models, Grammars, and Propositional Formulas. In:
SPLC’05, Springer (2005) 7-20

Classen, A., Boucher, Q., Heymans, P.: A text-based approach to feature modelling;:
Syntax and semantics of tvl. SCP 76 (2011) 1130-1143

Hubaux, A., Heymans, P., Schobbens, P.Y., Deridder, D., Abbasi, E.K.: Support-
ing multiple perspectives in feature-based configuration. Software and Systems
Modeling (2011) 1-23

Grechanik, M., Batory, D.S., Perry, D.E.: Design of large-scale polylingual systems.
In: ICSE. (2004) 357-366

Pleuss, A., Rabiser, R., Botterweck, G.: Visualization techniques for application
in interactive product configuration. In: SPLC Workshops, ACM (2011) 22:1-22:8
Gomaa, M., Salah, A., Rahman, S.: Towards a better model based user interface
development environment : A comprehensive survey. In: MICS’05. (2005)
Coutaz, J.: User interface plasticity: model driven engineering to the limit! In:
EICS’10, ACM (2010) 1-8

Blumendorf, M., Lehmann, G., Albayrak, S.: Bridging models and systems at
runtime to build adaptive user interfaces. In: EICS’10, ACM (2010) 9-18

Blouin, A., Morin, B., Nain, G., Beaudoux, O., Albers, P., Jézéquel, J.M.: Com-
bining aspect-oriented modeling with property-based reasoning to improve user
interface adaptation. In: EICS’11, ACM (2011) 85-94

Doux, G., Albert, P., Barbier, G., Cabot, J., Del Fabro, M., Lee, S.: An mde-
based approach for solving configuration problems: An application to the eclipse
platform. In: ECMFA’11, Springer (2011) 160-171

She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: Reverse engineering
feature models. In: ICSE’11, ACM (2011) 461-470

Acher, M., Cleve, A., Collet, P., Merle, P., Duchien, L., Lahire, P.: Reverse engi-
neering architectural feature models. In: ECSA’11, Springer (2011) 220-235
Pleuss, A., Botterweck, G., Dhungana, D.: Integrating automated product deriva-
tion and individual user interface design. In: VaMoS’10. (2010) 69-76

Schlee, M., Vanderdonckt, J.: Generative programming of guis. In: AVI’04, ACM
(2004) 403-406

van Deursen, A., Klint, P.. Domain-specific language design requires feature de-
scriptions. Journal of Computing and Information Technology 10 (2002) 1-17
Reenskaug, T.: Models — views — controllers. XEROX PARC (1979)
Vanderdonckt, J.: A mda-compliant environment for developing user interfaces of
information systems. In: CAiSE’05, Springer (2005) 16-31

Abrams, M., Phanouriou, C., Batongbacal, A.L., Williams, S.M., Shuster, J.E.:
Uiml: an appliance-independent xml user interface language. Computer Networks
31 (1999) 1695-1708

Hubaux, A., Classen, A., Heymans, P.: Formal modelling of feature configuration
workflows. In: SPLC’09, IEEE (2009) 221-230

P-CS-TR ECMFA-000001 17

