
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Towards More Reliable Configurators: A Re-engineering Perspective

Boucher, Quentin; Abbasi, Ebrahim Khalil; Hubaux, Arnaud; Perrouin, Gilles; Acher, Mathieu;
Heymans, Patrick
Published in:
Proceedings of the 3rd Product LinE Approaches in Software Engineering (PLEASE'12), co-located with
ICSE'12, Zurich, Switzeland

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Boucher, Q, Abbasi, EK, Hubaux, A, Perrouin, G, Acher, M & Heymans, P 2012, Towards More Reliable
Configurators: A Re-engineering Perspective. in Proceedings of the 3rd Product LinE Approaches in Software
Engineering (PLEASE'12), co-located with ICSE'12, Zurich, Switzeland. pp. 29-32.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/publications/db5925b6-90c8-4134-ba53-0a8822ad0f1d

Towards More Reliable Configurators: A Re-engineering Perspective

Quentin Boucher, Ebrahim Khalil Abbasi, Arnaud Hubaux
Gilles Perrouin, Mathieu Acher
PReCISE, University of Namur

Belgium
{qbo, eab, ahu, gpe, mac}@info.fundp.ac.be

Patrick Heymans
PReCISE, University of Namur

INRIA Lille-Nord Europe,
Université Lille 1 – LIFL – CNRS , France

phe@info.fundp.ac.be

Abstract—Delivering configurable solutions, that is products

tailored to the requirements of a particular customer, is a

priority of most B2B and B2C markets. These markets now

heavily rely on interactive configurators that help customers

build complete and correct products. Reliability is thus a

critical requirement for configurators. Yet, our experience in

industry reveals that many configurators are developed in an

ad hoc manner, raising correctness and maintenance issues.

In this paper, we present a vision to re-engineering more

reliable configurators and the challenges it poses. The first

challenge is to reverse engineer from an existing configurator

the variability information, including complex rules, and to

consolidate it in a variability model, namely a feature model.

The second challenge is to forward engineer a new configurator

that uses the feature model to generate a customized graphical

user interface and the underlying reasoning engine.

Keywords-Configuration, Re-engineering, Graphical User In-

terface.

I. OVERVIEW

Nowadays, both large and small companies adapt their
production strategies to meet customization needs. To assist
their customers in the customization, also termed configu-
ration, of their products, they provide customization tools,
more commonly called configurators. The cornerstone of
advanced configurators is the reasoning engine that is re-
sponsible for keeping the configuration environment consis-
tent by handling user’s decisions, instantiating constraints,
propagating the results and managing (usually preventing)
conflictual decisions.

A growing share of these companies now propose web-
based configurators, more than 800 of which are listed and
categorized in 28 domains in [1]. The investigation of these
configurators and our experience in industry reveal that
existing configurators are developed in an ad hoc fashion:
(i) the reasoning operations are not formally defined, raising
correctness or runtime efficiency issues; (ii) the logical
relationships between configuration options are hard coded,
inducing severe maintenance overheads; (iii) the graphical
user interface (GUI) itself is very rigid, hindering reuse
across platforms (e.g., web-based vs standalone vs mobile)
and its customization to user profiles.

Some of our partners expressed their need to migrate
their legacy configurators towards more reliable, efficient,

maintainable, and flexible solutions. This paper presents our
vision to re-engineer web-based configurators (see Figure 1),
and discusses the challenges we tackle. Our goal is to reach
software as well as industrial (bikes, cars, etc.) domains.

The first challenge is to extract configuration options and
their dependencies. Many heterogeneous artefacts are used
during the reverse engineering process (Section II), e.g. GUI,
web page source, code base, textual requirements, config-
uration files, etc. In this work, we focus on the elements
accessible from the web page, i.e., the graphical widgets, the
source of the web page, and its behaviour in order to extract
variability information. We formally capture the output of
the reverse engineering phase in a variability model. One of
the most popular forms of variability model is the feature
model (FM). Originally, FMs were developed in the context
of Software Product Line (SPL) engineering [2] but our
reengineering vision is agnostic regarding SPL methodolo-
gies. We chose the FM because its formal semantics makes
it a very good candidate to pilot the configuration process
and automate reasoning [3], [4]. Specifically, we rely on the
Text-based Variability Language (TVL) to represent FMs [5].

The second challenge is to produce a revised version of
the configurator. In this forward engineering phase (Sec-
tion IV), the FM is augmented with styling directives to
render the new GUI, and used to produce an API containing
the reasoning engine (Section III). Together, the variability
model, the styling properties, and the reasoning engine
provide a generic, efficient and reliable solution. On top
of these assets, designers can implement specific GUIs that
respect the graphical standards imposed by a particular
customer or platform. This latter stage is, however, not in
the scope of this paper.

II. REVERSE ENGINEERING A LEGACY CONFIGURATOR

The migration of legacy applications is an age-old prob-
lem and different solutions have been proposed in several do-
mains. To decrease the cost of migration and avoid creating
new applications from scratch, most of these solutions are
based on a reverse engineering process [6], [7]. We propose a
semi-automatic and supervised reverse engineering approach
to migrate a web configurator into a new configurator with
an embedded constraint solver.

Original ad hoc
configurator

Re-engineered
configurator

Configuration GUI

Page source code

Extract
variability

information

User
directives

Variability
patterns

Variability
information

Configuration
options

Hierarchy

Constraints

Documentation

Graphical
representation

Validate
variability

model

Reverse Engineering Configuration GUI Modelling

Add
rendering

and styling
properties

TVL model

Rendering
and styling

sheet

Forward Engineering

Generate
abstract

configuration
GUI

Generate
platform
specific

configuration
GUI

Configuration GUI

Configuration solver
instance

Page source code

Generate
solver

instance

Link solver
and

configuration
GUI

Configuration
GUI (UsiXML)

Figure 1. Re-engineering process

During reverse engineering, valuable configuration data
(configuration options, hierarchy, constraints, etc.) is gath-
ered by analyzing the existing GUI. As many yet different
configuration GUIs exist, configuration data can be struc-
tured, organized and represented in a different way. Nev-
ertheless variability patterns, i.e. elements of GUIs related
to variability concerns that repeat in a predictable manner,
can be identified, implemented, and reused within the reverse
engineering process. A user can specify high-level directives
to parameterize reverse engineering and make possible or
improve the identification of variability patterns.

The goal of the reverse engineering process is to gather
graphical widgets (e.g. HTML or jQuery elements and
images) and determine their types (e.g. option, description
field, and constraint). To guide the reverse engineering
process, we sampled some existing web-based configurators
from different industries and listed variability patterns that
implement options and attributes, and mechanisms to de-
scribe and instantiate constraints. An example of variability
patterns is using radio buttons to represent options contained
in a group. It means that only one option can be selected
in this group. This pattern is a directive to find options that
are mutually exclusive in the configurator.

One important issue during reverse engineering is the
detection of constraints. We discovered several constraint
patterns. In one case, constraints are expressed in natural
language and the element which contains this sentence
is an inner child of the option element. In another case,
constraints are wrapped into a jQuery object, which requires
the execution of the associated code to actually observe the
constraint it imposes. This task typically uses automated
tools such as web crawlers.

Until now, our progress in supporting reverse engineering
consisted in the design and development of a Firebug1

extension. We chose Firebug because it is open source, and
can be extended to support more functionalities. In essence
the extension offers a search engine with ability to look
for special patterns parametrized by the user. When a user
browses a web page she can inspect which patterns are used
and how they are implemented in the source code. Then, she
initiates the search engine with these patterns and executes
it. At the moment the search engine supports a few number
of simple patterns and other patterns are currently being
developed. To prevent the search engine from crawling the
whole web page, the user can highlight a special part of
the page and set the engine to just consider the highlighted
region. The extension’s settings also allow the user to define
which attributes need to be recorded during the process. For
example, the user might prepare the search engine to track
attributes such as class, type, checked, etc. that usually hold
valuable data about the GUI.

Reverse engineering yields an XML file that contains
all extracted variability information. The extracted elements
hierarchy is also kept unchanged. The XML model then is
the input for the configuration GUI modelling part.

III. CONFIGURATION GUI MODELLING

The textual elements extracted during reverse engineering
are only option, attribute and constraint candidates. The user
then has to validate this pre-typing, remove irrelevant ele-
ments, add new elements, rename elements, and recategorize
elements. Currently, the post-processing step is supported by

1http://getfirebug.com/

an interactive GWT2 application that lays out in a collapsible
tree the updated model. Once the user is satisfied with the
raw extracted data, a TVL model is generated.

A first step is to exploit the tree hierarchy to create and
organize TVL features. This is an opportunity to refactor
configuration options and to create new ones if needed. To
identify the variability and constraints between these options,
a set of patterns, derived from our survey, can be provided
to the modeller as guidelines. For example, from constraint
patterns, we know that a constraint can either be part of an
option description (hint) or is its first inner child.

The next step is to add visualisation aspects to the TVL
model. To cope with this issue, we encode this information
in a property sheet linking GUI properties to constructs of
the FM. This mapping is based on the retrieved GUI data in
the pruned model. This property sheet is expressed in FCSS
(Featured Cascading Styles Sheets), a CSS-like language we
are currently designing. As in usual CSS, properties include
layout information but also feature-specific visualisation
strategies (e.g. hide, grey out, default value, etc.). Other
properties may be related to the rendering of enumeration
attributes depending on the number of available values,
e.g. small ones may be represented as radio buttons in the
final interface, while larger ones can be more efficiently
represented as combo boxes. The availability of certain
options may also depend on the target language (HTML,
XUL, GWT, etc.).

We are currently designing an integrated textual editor
for TVL and FCSS using the Xtext project3. In addition to
syntax highlighting and checking facilities, Xtext eases the
integration with the model transformation environment we
exploit for the configuration interface generation.

IV. FORWARD ENGINEERING A NEW CONFIGURATOR

In this step, a set of model transformations needs to be
applied to the integrated TVL-FCSS model to progressively
derive the final configuration GUI in a given implementation
language. So far, we have been experimenting model-to-
text transformations (M2T) to generate configuration GUIs
in the XUL language4. Based on MTL (MOF Model to
Text Language), the upcoming OMG standard for M2T5 and
supported within the Acceleo environment6, we defined a
set of transformation patterns for mapping TVL constructs
such as feature groups (or, xor, cardinality-based) and fea-
ture attributes (numbers, strings, enumerations...) to XUL
widgets. These transformations patterns can be flexibly com-
bined to generate the whole configuration GUI. Our initial
experiments targeted Mozilla’s XUL although these patterns
are easily convertible to other XML-based user interface

2http://code.google.com/webtoolkit/
3http://www.eclipse.org/Xtext/
4https://developer.mozilla.org/en/XUL
5http://www.omg.org/spec/MOFM2T/1.0/
6http://www.eclipse.org/acceleo/

description languages. These patterns are platform-specific,
though. We will evolve these patterns as model-to-model
transformations between TVL-FCSS and UsiXML [8], a
model-based standard for describing interfaces in a platform-
independent way. Then, M2T transformations would be
used to bridge the gap between the platform-independent
model and the final GUI language. Additionally, we will
devise solutions to incorporate existing designs (such as page
templates) during the transformation process [9].

As noted in [9], integrating the configuration GUI with the
reasoning code is a challenge. We offer a MVC-like archi-
tecture enabling the integration between the TVL model, the
GUI and the configuration reasoning facilities. This explicit
separation of concerns allows for more scalable configu-
ration based on solvers in sharp contrast to ad hoc, hard-
wired dependencies in most existing configurators. Further-
more, maintenance is greatly simplified by an independent
variability model, FCSS and the automation of configurator
generation.

V. RELATED WORK

Reverse engineering the variability of existing systems has
already been applied to different kinds of artifacts [10], [11],
[12], [13], [14], [15], e.g., legacy system documentation,
textual requirements, configuration files, source code, etc.
For example, She et al. present procedures for reverse
engineering FMs from operating systems [15]. Our work
focuses on a specific kind of artifact: web-based config-
urators. We are not aware of existing works tackling the
problem of reverse engineering variability models from such
configurators.

Several tools provide support for reverse engineering
GUIs but not for the specific purpose of retrieving variability.
For example, Memon et al. [7] propose to reverse engineer
web applications for the purpose of testing. Vanderdon-
ckt et al. [16] developed VAQUISTA to reverse engineer
a presentation model of a web page. In our work, the
extraction of variability information from a web page is only
the foundation stone upon which we build to re-engineer
configurators.

Model-based generation of GUIs is an important research
field in the human computer interface community. Sev-
eral Model-based User Interface Development Environments
(MBUIDEs) have been proposed. Each MBUIDE defines its
own set of models to describe the interface. The different
MBUIDEs and the associated models have been surveyed
by Gomaa et al. [17] but none of them address the specific
problem of generating configuration interfaces.

GUI generation based on FMs has been considered by
existing works (see [9] for a more complete and detailed
overview). For example, Pleuss et al. combine the concepts
from MBUIDEs and FMs to automatically derive individual
GUIs corresponding to selected features [18]. Schlee and
Vanderdonckt [19] model the variability of the interface

with an FM, which will be used to derive the corresponding
GUI. Ultimately, our ambition is to include all the advanced
feature of configurators such as beautification, configuration
scheduling, views, etc. into the re-engineering process [9].

VI. CONCLUSION

The development and maintenance of configurators is a
central yet difficult activity for many organisations. This
difficulty is often amplified by the ad hoc nature of config-
urators in which the variability model, styling information
and reasoning engine are all entangled. This paper presented
our vision to re-engineering more reliable configurators and
the challenges it poses.

Before implementing this vision, some other challenges
still have to be dealt with. From a reverse engineering
perspective, variability patterns should be identified in a
more systematic way, formally defined and comprehensively
implemented. The degree of automation and the quality
of the models generated as output should be carefully
evaluated. From a forward engineering perspective, different
languages and transformations are still to be defined and
combined. In particular, facilities to specify views (for
structuring configuration screens) and feature configuration
workflows [20] (for specifying configuration sequences)
should be provided and integrated in the toolchain.

Our goal is to provide more systematic and flexible
solutions for re-engineering legacy configurators. The huge
number of existing configurators (e.g., see [1]) gives us a
good opportunity to validate our procedures.

ACKNOWLEDGMENTS

We thank our colleague Germain Saval for his sugges-
tions and comments. This work was partially funded by
the Walloon Region under the NAPLES project, the IAP
Programme, Belgian State, Belgian Science Policy under the
MoVES project, the BNB and the FNRS.

REFERENCES

[1] http://www.configurator-database.com, 2011.

[2] P. C. Clements and L. Northrop, Software Product Lines:
Practices and Patterns, ser. SEI Series in Software Engineer-
ing. Addison-Wesley, August 2001.

[3] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-corts,
“FAMA: Tooling a framework for the automated analysis of
feature models,” in Proceeding VaMoS’07, 2007, pp. 129–
134.

[4] M. Mendonca, M. Branco, and D. Cowan, “S.P.L.O.T.: Soft-
ware product lines online tools,” in Proceeding of OOP-
SLA’09, 2009.

[5] A. Classen, Q. Boucher, and P. Heymans, “A text-based
approach to feature modelling: Syntax and semantics of tvl,”
Science of Computer Programming, vol. 76, pp. 1130–1143,
2011.

[6] E. Stroulia, M. El-Ramly, P. Iglinski, and P. Sorenson, “User
interface reverse engineering in support of interface migration
to the web,” Automated Software Eng., vol. 10, pp. 271–301,
2003.

[7] A. M. Memon, I. Banerjee, and A. Nagarajan, “GUI ripping:
Reverse engineering of graphical user interfaces for testing,”
in Proceedings of RE’03. IEEE, 2003, pp. 260–269.

[8] J. Vanderdonckt, “A MDA-compliant environment for devel-
oping user interfaces of information systems,” in Proceedings
of CAiSE’05. Springer, 2005, pp. 16–31.

[9] Q. Boucher, G. Perrouin, and P. Heymans, “Deriving config-
uration interfaces from feature models: A vision paper,” in
Proceedings of VaMoS’12. ACM, 2012, pp. 37–44.

[10] I. John, “Capturing product line information from legacy user
documentation,” in Software Product Lines. Springer, 2006,
pp. 127–159.

[11] V. Alves, C. Schwanninger, L. Barbosa, A. Rashid, P. Sawyer,
P. Rayson, C. Pohl, and A. Rummler, “An exploratory study
of information retrieval techniques in domain analysis,” in
Proceedings of SPLC’08. IEEE, 2008, pp. 67–76.

[12] N. Weston, R. Chitchyan, and A. Rashid, “A framework for
constructing semantically composable feature models from
natural language requirements,” in Proceedings of SPLC’09,
ser. ICPS, vol. 446. ACM, 2009, pp. 211–220.

[13] M. Acher, A. Cleve, P. Collet, P. Merle, L. Duchien, and
P. Lahire, “Reverse Engineering Architectural Feature Mod-
els,” in Proceedings of ECSA’11. Springer, 2011, pp. 220–
235.

[14] M. Acher, A. Cleve, G. Perrouin, P. Heymans, C. Vanbeneden,
P. Collet, and P. Lahire, “On extracting feature models from
product descriptions,” in Proceedings of VaMoS’12. ACM,
2012, pp. 45–54.

[15] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki,
“Reverse engineering feature models,” in Proceedings of
ICSE’11. ACM, 2011, pp. 461–470.

[16] J. Vanderdonckt, L. Bouillon, and N. Souchon, “Flexible re-
verse engineering of web pages with vaquista,” in Proceedings
of WCRE’01. IEEE, 2001, pp. 241–248.

[17] M. Gomaa, A. Salah, and S. Rahman, “Towards a better
model based user interface development environment : A
comprehensive survey,” in Proceedings of MICS’05, 2005.

[18] A. Pleuss, G. Botterweck, and D. Dhungana, “Integrating
automated product derivation and individual user interface
design,” in Proceedings of VaMoS’10. Universität Duisburg-
Essen, 2010, pp. 69–76.

[19] M. Schlee and J. Vanderdonckt, “Generative programming of
graphical user interfaces,” in Proceedings of AVI’04. ACM,
2004, pp. 403–406.

[20] A. Hubaux, A. Classen, and P. Heymans, “Formal mod-
elling of feature configuration workflows,” in Proceedings of
SPLC’09. Carnegie Mellon University, 2009, pp. 221–230.

