
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Model Checking for Software Product Lines with SNIP

Classen, Andreas; Cordy, Maxime; Heymans, Patrick; Legay, Axel; Schobbens, Pierre-Yves

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Classen, A, Cordy, M, Heymans, P, Legay, A & Schobbens, P-Y 2012, Model Checking for Software Product
Lines with SNIP..

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/publications/52ac88cf-d97f-42a4-860d-00ce4090d3c6

Int J Softw Tools Technol Transfer (2012) 14:589–612
DOI 10.1007/s10009-012-0234-1

MTM

Model checking software product lines with SNIP

Andreas Classen · Maxime Cordy · Patrick Heymans ·
Axel Legay · Pierre-Yves Schobbens

Published online: 14 June 2012
© Springer-Verlag 2012

Abstract We present SNIP, an efficient model checker for
software product lines (SPLs). Variability in software prod-
uct lines is generally expressed in terms of features, and the
number of potential products is exponential in the number
of features. Whereas classical model checkers are only capa-
ble of checking properties against each individual product in
the product line, SNIP exploits specifically designed algo-
rithms to check all products in a single step. This is done
by using a concise mathematical structure for product line
behaviour, that exploits similarities and represents the behav-
iour of all products in a compact manner. Specification of an
SPL in SNIP relies on the combination of two specification
languages: TVL to describe the variability in the product
line, and fPromela to describe the behaviour of the individ-
ual products. SNIP is thus one of the first tools equipped with
specification languages to formally express both the variabil-
ity and the behaviours of the products of the product line. The
paper assesses SNIP and suggests that this is the first model
checker for SPLs that can be used outside the academic arena.

A. Classen and M. Cordy are FNRS research fellows..

A. Classen (B) ·M. Cordy (B) · P. Heymans · P.-Y. Schobbens
University of Namur, Namur, Belgium
e-mail: acs@info.fundp.ac.be

M. Cordy
e-mail: mcr@info.fundp.ac.be

A. Legay
IRISA/INRIA Rennes, Rennes, France

A. Legay
University of Liège, Liège, Belgium

P. Heymans
INRIA Lille-Nord Europe, Université Lille 1, LIFL,
CNRS, Lille, France

Keywords Model checking · Product lines · Tool ·
Language · Feature

1 Introduction

Software product line (SPL) engineering is an increasingly
popular software development paradigm for building fam-
ilies of similar software products. Many of those software
products are used in critical applications such as automo-
tive or avionics. This requires a solid evidence that they
indeed work correctly with respect to their requirements and
intended properties. For example, a desired property for the
file transfer protocol studied in Sect. 6 is: “A sent message
eventually reaches its destination”.

A simple but cumbersome approach for product line
verification consists in applying classical model checking
algorithms [38] on each individual product of the family.
However, for an SPL with n features, this would lead to 2n

calls of the model checking algorithm. This solution is clearly
unsatisfactory and should be replaced by new approaches that
take the variability within the family into account. Those
approaches often rely on compact mathematical represen-
tations on which a specialized model checking algorithm
can be applied. The main difficulties are (1) to develop
such a model checking algorithm, and (2) to propose math-
ematical structures that are compact and flexible enough to
take the variability of the family and its specification into
account.

In [13], we introduced featured transition systems (FTSs),
an extension of transition systems used to represent the
behaviour of all the products of an SPL in a single compact
structure. We also proposed new model checking algorithms
that make use of the compact structure of FTSs to verify
the whole SPL in a single execution. More precisely, these

123

590 A. Classen et al.

semi-symbolic algorithms model-check the SPL against
temporal properties expressed in linear temporal logic
(LTL) [35]. Those algorithms, capable of identifying all the
products of the SPL that do satisfy a property, are called FTS
algorithms.

This article presents SNIP, an SPL model checking tool
that implements our theory. Concretely, SNIP implements
the FTS algorithms for verifying SPLs against LTL proper-
ties. Not only does SNIP put these theoretical results into
practice, it also reflects our concern of combining them with
high-level specification languages for product line specifica-
tion—a mandatory step to transfer our results from theory to
practical applications. More precisely, the specification of the
SPL in SNIP relies on the combination of two specification
languages: TVL [11] to describe the variability in the fam-
ily, and fPromela to describe the behaviour of the individual
products in a compact manner.

fPromela is an extension of Promela, the modelling lan-
guage used by the well-known model checker SPIN [23].
The syntax of Promela is close to procedural programming
languages such as Pascal or C. Its relatively low complex-
ity makes it an easy-to-learn modelling language. fPromela
extends Promela by adding a guard operator, which allows to
make a transition available only to a subset of the products.
TVL is a text-based feature modelling language that allows
to declare the features of an SPL, as well as the mathemati-
cal relations and constraints between them. Hence, the TVL
model defines the set of products of the SPL that are valid
with respect to the specified constraints.

Given an LTL property and an SPL described in TVL and
fPromela, SNIP uses the FTS algorithms to model check the
whole product line instead of each product individually. In
case there are products that do not satisfy the property, the
tool will identify one (or all) of these product(s) together with
a counterexample. To the best of our knowledge, SNIP is the
only SPL model checking tool with a high-level specifica-
tion language that is able to model check SPLs in an efficient
manner.

In addition to the FTS algorithms, SNIP also implements a
naïve approach in which each product is model checked indi-
vidually. This permits us to compare the two approaches and
assess the efficiency of the FTS algorithms. This is done by
measuring the time needed by both algorithms implemented
in SNIP to verify the SPL of a file transfer protocol against
several properties.

Structure of the paper. Section 2 surveys related work.
Section 3 presents the theoretical foundations of SNIP. Sec-
tion 4 gives the syntax and semantic of fPromela and its rela-
tion to FTSs, hence showing soundness and correctness of
the implementation. Section 5 describes the user interface of
SNIP and discusses its architecture. Finally, Sect. 6 presents
the setup and the results of a case study.

2 Brief overview of related work

SNIP is one of the first tools for SPL model checking, which
means that there are only few approaches that can be com-
pared to what we propose in this paper. For a thorough dis-
cussion of the wider (mostly theoretical) related work, the
interested reader is referred to [14].

Let us begin with a brief overview of SPL model checking
before we discuss tools related to SNIP. A number of fun-
damental models for product line behaviour have been pro-
posed in the literature. Most of those proposals do not embed
any verification procedure. Among such existing approaches,
one finds those based on UML, e.g. [16,28,33,39], which
extend existing UML diagram types (sequence diagrams,
state machines) to allow them to model SPL behaviour. How-
ever, verification can only be performed after a model of a
specific product has been derived. This leads to a scalability
problem as the number of products is potentially huge.

More formal approaches to modelling SPL behaviour are
based on modal transition systems (MTSs) [18,30] and modal
I/O automata [31]. In these approaches, transitions can be
mandatory (required transitions) or optional (allowed tran-
sitions). As expected, allowed transitions can be used to
model variability, and an MTS essentially specifies a family
of behaviours. In addition to basic MTSs, there are proposals
to extend them by introducing variability operators to spec-
ify cases in which a specific number of outgoing transitions
may be taken [17]. In [2,3], the authors propose a deon-
tic logic interpreted over MTSs, that can be used to express
both behavioural properties, and constraints over features.
The CCS process algebra was extended in a similar way [21],
with an operator that allows to model variability in the form
of alternative choice between two processes.

All these approaches are severely limited in that they can-
not relate a behaviour of a model to a specific product or
feature of the SPL. For example, MTSs are not capable to
capture the features that make a transition optional; similarly,
choices between processes in [21] are not linked to features.
In consequence, a verification algorithm cannot identify bad
products (those that violate a property) or interacting fea-
tures. Our recent work [12–14] as well as [32] overcome this
limitation by explicitly linking transitions to features. The
key idea of linking transitions to features is transposed as-is
to SNIP, the tool we focus on in this paper.

There are a number of tools similar to SNIP. In our earlier
work [12], we developed an extension of the NuSMV model
checker [8] which can model check SPLs expressed using
the fSMV language [34]. This tool uses the fully symbolic
FTS algorithm from [12], whereas SNIP uses the semi-sym-
bolic algorithms from [13,14]. SNIP differs in other ways
from our NuSMV extension. Its modelling language, fPro-
mela, is based on annotation rather than composition [26].

123

Model checking software product lines with SNIP 591

Moreover, SNIP is integrated with a feature diagram lan-
guage, TVL [11].

An early approach to SPL model checking was proposed
by Post and Sinz [36], with a technique called lifting. It con-
sists in incorporating the information about allowed products
(the variability) into the verifiable model itself. A similar
approach is followed by SPLVerifier [1], in which features are
modelled as separate and composable units. Both approaches
use a classical model checker to detect violations. A problem
with these approaches is that they stop once a violating prod-
uct is found. In such a case, they cannot be used to compute
the products that do satisfy the property. This also makes
it hard to determine the features responsible for a violation.
SNIP’s use of our FTS algorithms overcomes these problems.

For a more general overview of the topic of software model
checking, the interested reader is referred to [24].

3 Foundations

In this section, we briefly recap the theoretical foundation of
SPL verification with FTS algorithms. The interested reader
is redirected to [10,14] for more details.

3.1 FTS

In our theory, the behaviours of an individual product are rep-
resented with Transition Systems (TSs) [4]. A TS is a directed
graph whose transitions are labelled with actions, and whose
states are labelled with atomic propositions.

Definition 1 A TS is a tuple ts = (S, Act, trans, I, AP, L)
where S is a set of states; Act is a set of actions; trans ⊆
S × Act × S is a set of transitions, with (s1, α, s2) ∈ trans
sometimes noted s1

α−→ s2; I ⊆ S is a set of initial states; AP
is a set of atomic propositions and L : S → P(AP) labels
each state with the propositions that are true in it.

Where P denotes the power set.
An execution (also called behaviour) of ts is an infinite

sequence σ = s0α1s1α2 . . . with s0 ∈ I such that si
αi+1−−→

si+1 for all 0 ≤ i . A path is an execution from which the
information about the transitions has been removed, i.e., the
path π for the execution σ is the sequence s0s1 . . . The i th
state in a path π is denoted by πi , the first state being π0. The
semantics of a TS, written [[ts]]T S , is its set of paths.

An FTS extends the concept of TS to SPLs. Roughly
speaking an FTS is nothing more than a TS whose transitions
are labeled with the set of products for which the transition
is available. An FTS comes together with a Feature Diagram
(FD) that defines the set of features, and captures the set of
valid products in the SPL (see, e.g., [25,37]). FDs can be seen
as a constraint language over a set of propositional symbols
(the features). An FD can record information such as incom-
patibility, or dependency between features. For the purpose

of this paper, it is sufficient to assume that the semantics of
an FD d, denoted [[d]]FD , is its set of valid products, i.e., a
set of sets of features: [[d]]FD ⊆ P(N) where N is the set of
features defined in the FD.

Definition 2 An FTS is a tuple f ts=(S, Act, trans, I, AP,
L , d, γ), where

– S, Act, trans, I, AP, L are defined as in Definition 1,
– d is a feature model,
– γ : trans → ({⊥,�}|N | → {⊥,�}) is a total function,

labelling each transition with a feature expression, i.e., a
Boolean function over the set of features. By [[γ (t)]], we
denote the set of products that satisfy γ (t).

In SNIP, FTSs are specified with fPromela and their
corresponding FD is specified in TVL [11]. The interac-
tion between the two languages shall be studied in Sect. 4.
Observe that the TS of a particular product of the SPL is
obtained by removing all transitions of the FTS whose fea-
ture expression evaluates to f alse in the product. This is
called projection.

Definition 3 The projection of an FTS f ts to a product p ∈
[[d]], noted f ts |p, is the TS t = (S, Act, trans′, I, AP, L)
where trans′ = {t ∈ trans | p ∈ [[γ (t)]]}.

The FTS represents the behaviour of all the products. Its
semantics is thus the union over their projections.

Definition 4 [[f ts]]FT S =
⋃

c∈[[d]]FD
[[f ts |c]]T S

3.2 The temporal logic fLTL

A set of features defines a product, which has particular
behaviours. However, as is clear from Definition 4, features
in an FTS are not part of the behaviours or of the states of
the system. This means that existing logics, such as Linear
Temporal Logic (LTL) or Computation Tree Logic (CTL)
can be used to specify properties over an FTS. LTL consists
of standard Boolean connectives such as ∧ and ¬, as well as
a set of temporal operators. These operators are: next,©φ,
which requires that the next state in an execution satisfies
φ; and until, φ1Uφ2, which requires that φ1 holds until φ2

is satisfied (and φ2 has to be satisfied at some point). Other
temporal operators can be derived from U : eventually, ♦φ,
defined as�Uφ; and always, �φ, which is defined as¬♦¬φ.

In [13], we propose a slightly modified version of LTL
that allows to quantify over the set of products. This logic,
which is the one supported by SNIP, is called feature LTL
(fLTL) and is syntactically defined as follows.1

1 In [12], we proposed a similar extension for CTL. The model checking
algorithm of this logic is not part of the SNIP toolset.

123

592 A. Classen et al.

Definition 5 An fLTL property ψ is an expression ψ =
[χ]φ where χ : {⊥,�}|N | → {⊥,�} is a feature expres-
sion and φ an LTL property, i.e.,

φ ::= � | a (∈ AP) | φ1 ∧ φ2 | ¬φ | © φ | φ1Uφ2.

The LTL property is interpreted over infinite executions of a
TS, and satisfaction for an execution π is defined the usual
way:

π |� �
π |� a ⇐⇒ a ∈ L(π0)

π |� ¬φ ⇐⇒ π �|� φ
π |� φ1 ∧ φ2 ⇐⇒ π |� φ1 and π |� φ2

π |� ©φ ⇐⇒ π[1...] |� φ
π |� φ1Uφ2 ⇐⇒ ∃i ≥ 0 • π[i ...] |� φ2 ∧ ∀ j • 0 ≤ j < i

• π[j ...] |� φ1

where π[i ...] denotes the suffix of π starting from state i .
An FTS f ts satisfies an fLTL property [χ]φ, denoted by
f ts |� [χ]φ, iff

∀p ∈ [[d]]FD ∩ [[χ]] • f ts |p |� φ
⇐⇒ ∀π ∈ [[f ts |p]] • π |� φ.

That is, an FTS satisfies an fLTL property if each product
included in the quantification and the FD projects to a TS
that satisfies the LTL property.

3.3 The model checking problem in SPLs

The SPL model checking problem consists in determining
if the behaviours of all the products in the SPL satisfy a
certain property. In case some products do not satisfy the
property, there are two possible answers. One is to prove
non-satisfaction by a counterexample consisting of a prod-
uct and a violating execution. The other is to compute all
violating products and provide a counterexample for each.
This leads to two SPL model checking problems: Mc and
Ext Mc, respectively.

Definition 6 Given an fLTL formula φ and an FTS f ts,Mc
(f ts, φ) returns true iff f ts |� φ. If f ts �|� φ, it returns
false, a counterexample e, and a non-empty set of products
px ⊆ [[d]]FD such that ∀p ∈ px • f ts |p �|� φ with e as
counterexample.

Definition 7 Given an fLTL formula φ and an FTS f ts,
Ext Mc(f ts, φ) returns true iff f ts |� φ. If f ts �|� φ, it
returns false and a set c of couples (e, px) where px is a
non-empty set of products such that ∀p ∈ px • f ts |p �|� φ
with e as a counterexample. Furthermore, it holds that

∀p ∈ [[d]]FD • p �∈
⋃

(e,px)∈c

px �⇒ f ts |p |� φ.

The Mc SPL model checking problem is a straight gener-
alisation of the model checking problem for single systems.
However, as it only provides a counterexample for one of the
products, such a model check is only of limited use. Con-
trary to Ext Mc, it does not reveal much about the features
required for the violation to occur.

In practice, the set of products is expected to be given
as a feature expression. For example, when a check returns
f ∧¬g, the property violation can be attributed to features f
and g; moreover, this result might mean that f depends on g,
and that this dependency is not documented in the FD. When
the set of products is returned explicitly, by listing all violat-
ing products, the list has to be analysed to obtain information
about the responsible features. Furthermore, returning a list
of products does not scale with the number of features

A straightforward but rather naïve algorithm to solve these
model checking problems would be to check all valid prod-
ucts individually. That is, list the valid products, compute the
projection of each, and model check each projected TS using
a standard algorithm. In [13,14], we give alternate algorithms
for solving these problems, which are more efficient. These
algorithms explore the FTS rather than the individual TSs.
The algorithms compute for each state the set of products in
which it is reachable. Sets of products are kept in a symbolic
data structure, resulting in a semi-symbolic model checking
algorithm. SNIP implements an on-the-fly version of this
algorithm.

Input: f ts = (S, Act, trans, I, AP, L , d, γ).
Output: The full reachability relation of f ts.

R← {(s0,P(P(N))
) | s0 ∈ I };1

Stack ← [];2
while I �= ∅ do3

Take s0 from I ;4
I ← I \ {s0};5

push
(
(s0,P(P(N))), Stack

)
;6

while Stack �= [] do7
(s, px)← top(Stack);8
new←9 {
(s′, px ′ \ R(s′)) ∈ Post (s, px)
| px ′ �⊆ R(s′) ∧ (

px ′ \ R(s′)
) ∩ [[d]]FD �= ∅

}
;

if new = ∅ then10
pop(Stack)11

else12
Take (s′, px ′) ∈ new;13
R(s′)← R(s′) ∪ px ′;14
push((s′, px ′), Stack)15

end16

end17

end18
return R19

Procedure Reachables(f ts)

Procedure Reachables implements an algorithm that
computes the reachability relation R. It generalises the stan-
dard Depth-First Search (DFS) algorithm used for TSs,
by marking states with sets of products, rather than with

123

Model checking software product lines with SNIP 593

Boolean visited flags. In addition, our extension uses a gen-
eralised Post operator that computes, for a state s reachable
by products px , the successor of s:

Post (s, px) �
{
(s′, px ′) | s α−→ s′ ∈ trans ∧ px ′ = px ∩ [[γ (s α−→ s′)]]}.
In contrast to the DFS algorithm for TSs, where no state

is visited twice, our algorithm can visit states multiple times.
This is due to the fact that reachability is defined with respect
to a set of products. When R(s) = px and the DFS arrives at
s for the second time with px ′ �⊆ px , then s, although already
visited, has to be re-explored. This is because transitions that
were disallowed for px might be allowed in px ′.

The algorithm maintains R and a stack of states, the exe-
cution stack. Line 1 initialises R in a way such that the initial
states are reachable in all feature combinations. A DFS is
then started for each of them (line 6). At each iteration, the
DFS calculates the set new of unvisited successors of the
current state (line 9). It uses the Post operator and it filters
out states and products that are already in R. It also makes
sure that at least one valid product is among the remain-
ing products. If all successors were visited, the procedure
backtracks (line 11). Otherwise, it proceeds with one of the
successor states, which is added to R (line 15).

As shown in [13], this procedure can be extended to ver-
ify an LTL property using the technique of automata-based
model checking given in [38]. Given an LTL property φ, it
consists in constructing a Büchi automaton, a¬φ , that accepts
all the executions that violate φ. Büchi automata accept infi-
nite behaviours. The synchronous product of this automa-
ton and the FTS yields the FTS that is explored. Procedure
Reachables can then be used to find the accepting states
and subsequently determine the violating products.

4 Specifying SPLs in SNIP

FTSs and FDs are semantic models which are abstracted by
high-level modelling languages. SNIP uses two modelling
languages for SPL specification, fPromela, a high-level lan-
guage for FTSs based on Promela and TVL [11], a textual
FD language. In this section, we introduce the syntax of fPro-
mela and TVL. We then discuss the semantics of fPromela
in terms of FTSs and study its expressiveness.

4.1 Syntax

The syntax of fPromela is almost the same as the one of the
Promela [23] specification language used in the well-known
and widely used model checker SPIN. This should result in a
very gentle learning curve for people that are already familiar
with Promela. Consider the following system consisting of a
sender and a receiver.

Listing 1 A Promela model with a sender and a receiver.

1c h a n buffer = [3] o f { i n t };
2
3a c t i v e p r o c t y p e sender() {
4i n t p;
5d o :: t r u e ;
6i f :: p = 0;
7:: p = 1;
8f i ;
9buffer!p;
10o d ;
11}
12a c t i v e p r o c t y p e receiver () {
13d o :: t r u e ;
14buffer?_;
15o d ;
16}

The key elements in Promela and fPromela are processes
that describe behaviours of single units in the design. Such
processes are specified with the proctype keyword. A pro-
cess has to be started by another process or declaredactive,
which means that it is active in the initial state of the system. If
several processes are active, their executions are interleaved.
The sender and the receiver are both active processes. Pro-
cesses can communicate through shared variables, or more
explicitly through channels. The global variable buffer is
a channel of integers with a capacity of three. This means
that it can hold three messages. A channel will refuse new
messages to be sent once it is full; it will also refuse being
read from once it is empty.

A process can have local variables which cannot be
accessed by other processes, e.g. variable p defined at line 4
of the above code. The behaviour of a process is specified in a
procedural style. The do statement is used to declare a loop.
Ado loop can have several loop bodies (called options), each
introduced with a double colon, ::. The first statement of an
option is the condition under which it can be executed. The
loop at line 5 has one option with the condition true, which
means that it can always be executed, effectively making the
loop infinite.2 if statements work similarly. The if state-
ment at line 6 has two options. Their first and only statements
are assignments, which can always be executed. When there
are several options that can be executed like this, the choice
is non-deterministic. The if statement at lines 6–8 is thus
used to assign a value to p non-deterministically.3

Unlike in a programming language, execution of a state-
ment in Promela halts (or blocks) until the statement can
be executed. At line 9, the content of the variable p is

2 A loop can only be left with the break statement, even if it is not
finite. When the conditions of all its options are f alse, execution will
be blocked until one of them becomes true.
3 When all conditions of an if statement are f alse, execution will
be blocked until one of them becomes true. To avoid this, the else
expression can be used in one of the conditions.

123

594 A. Classen et al.

written into the channel buffer. If the channel is full, exe-
cution will be blocked here until there is space in the channel.
In essence, the sender process non-deterministically writes
zeros and ones into a buffer. The receiver process indefinitely
reads from the buffer (line 15). When reading from a chan-
nel, the underscore means that a message is discarded. If a
variable is used, e.g., buffer?var, the message is written
into the variable. In both cases, the message is removed from
the channel, which frees up space.

Promela has a rather extensive syntax that is known to be
richer than those used in other model checkers. This above
introduction only covered the most important constructs of
the language. However, it is worth mentioning that almost all
constructs that exist in Promela are available in fPromela and
SNIP, too. A full list of unsupported constructs is distributed
with SNIP and listed on the website [9].

Let us now switch from Promela to fPromela. fPromela
extends Promela with a new type, feature variables. Fea-
ture variables can be used to guard statements with feature
expressions. The following example illustrates this.

Listing 2 A simple fPromela model.

1// Declare features
2t y p e d e f f e a t u r e s {
3b o o l Foo;
4b o o l Bar
5};
6f e a t u r e s f;
7
8a c t i v e p r o c t y p e toto() {
9i n t i = 0;
10// Guarded increment statement
11g d :: f.Foo || f.Bar;
12i++;
13:: e l s e ;
14s k i p ;
15d g ;
16// Test assertion
17a s s e r t (i == 1);
18}

The features used in a model have to be declared as fields
of the special type features, which is done at lines 2–6.
The reason for this is twofold: it serves as an interface that
identifies the features used in the model and it ensures com-
patibility with Promela. The features can then be referenced
by declaring any variable with this type (f in the example).

The example system consists of one process, specified at
lines 8–18. Variability in fPromela is expressed by guard-
ing statements. Guard blocks use the gd keyword. As an
example, the i++ statement at line 12 is guarded with the
expression f.Foo || f.Bar (line 11). This means that
the i++ statement is only part of products containing fea-
tures Foo or Bar. The other products (line 13) do nothing
(line 14). A gd statement works like an if statement, except

that only feature variables or the else keyword can be used
in the first statement (the condition) of its options. In fact, this
is the only place where feature variables may be used. They
cannot be accessed anywhere else, be written to or printed.
In the language of the C preprocessor, the above guard would
have been written as follows:

1# i f defined(FOO) || defined(BAR)
2i++;
3# e n d i f

whereFOO and BAR are directives that are set at compile time
if the corresponding features are to be included. Variability
in fPromela is thus expressed in a way that is very similar
to how it would be expressed in a programming language
such as C. Like in C, any fPromela statement can be guarded
and guards can be nested. However, unlike #ifdefs, the
gd statements in fPromela are part of the language and its
grammar. This way, we avoid the problems that exist when
parsing C code with #ifdefs [19,27], and any product is
guaranteed to be syntactically correct. Note that the else in
fPromela has to be specified (it is not required by the C pre-
processor). Otherwise, execution of all other products will
be blocked at this point (which is consistent with the if in
Promela).

It is worth mentioning that directives of the C preproces-
sor can also be used in fPromela. However, they cannot be
used to specify variability, but only to simplify the model,
define constants, decompose it into several files, and so on.
This is very helpful for specifying properties, and is required
to make SNIP compatible with SPIN. Further note that gd
and dg are just aliases for if and fi. SNIP will distinguish
guards from normal ifs on its own. This way, a syntacti-
cally valid and well-typed fPromela file is also a syntactically
valid and well-typed Promela file, provided that all gds are
replaced by ifs.

Going back to the example from Listing 2, we see that a
guarded statement is part of the model of a product if its guard
evaluates to true in the product. In the example, this means
that i is only incremented in products containing features
f.Foo or f.Bar. At line 17, the property that i equals one
is specified using an assertion. Alternatively, properties can
be specified using LTL, fLTL or directly as automata (that
is, using never claims as in SPIN). Details regarding how
properties are specified will be provided in the next section.

4.2 TVL

TVL [11] is a textual FD language. SNIP requires that all
features declared in an fPromela file exist in an accompa-
nying TVL file. For example, a TVL feature model for the
previous example would be the following.

123

Model checking software product lines with SNIP 595

true / p = 0

line
6

line
9

true / p = 1

line
5

!full(buffer) / buffer!p

true /

p = 0 && empty(buffer)

Fig. 1 Program graph of the sender process from Listing 1

Listing 3 FD specified in TVL

1root Example group allOf {
2opt Foo ,
3opt Bar
4}

An FD is a directed acyclic graph; generally a tree.
The root keyword denotes the root of the tree, whereas
group declares branches. In this case, the root feature is
called Example, with two optional (specified by opt) child
features Foo and Bar. The keyword combination group
allOf means that if the parent feature is part of a prod-
uct, all of its non-optional children have to be as well. Other
decomposition keywords are someOf (one or more of the
non-optional children have to be part of the product) and
oneOf (exactly one of the non-optional children have to be
part of the product). The FD of Listing 3 represents a set of
four products: {Example}, {Example, Foo}, {Example, Bar},
{Example, Foo, Bar}.

FDs can be encoded as Boolean functions over the fea-
tures (i.e., feature expressions) [5] and analysed with SAT
solvers or binary decision diagrams [7].

4.3 Semantics

The syntax of Promela (and hence fPromela) is rather vast,
so that it would be tedious to define its full semantics here.
We thus omit the less relevant details of the semantics. The
interested reader is referred to [23], which contains a pre-
cise account of Promela’s semantics (in fact, [23] is the only
reference used for the implementation of SNIP).

4.3.1 Program graphs

To clarify what a Promela or fPromela model represents, we
define the abstract syntax of both languages. Each proctype
of a model defines a program graph.4 As an example, the pro-
gram graph corresponding to the sender process of Listing 1
is shown in Fig. 1.

A program graph is defined over a set of typed variables.
The vertices of this graph are the control locations (i.e., the

4 Holzmann uses the term ‘finite state automaton’ [23]. We use ‘pro-
gram graph’ [4].

program counter, represented by the line number in Fig. 1)
and its transition relation defines the control flow. Each tran-
sition has a condition under which it can be executed, and
an effect, i.e., a function that defines its effect on the set of
variables. In Fig. 1, the transitions are annotated with con-
dition/effect. In Promela, the control statements such as do,
if or the semicolon define the control flow. The only state-
ments that end up on transitions are expressions, assignments
(including channel reads and writes), assertions and print
statements (not shown in our examples, but supported by
SNIP). For the purpose of this discussion, we only consider
expressions and assignments.

Definition 8 Let t ypes be the set of types in Promela, V =
{v1, . . . , vk} a set of variables, and τ : V → t ypes their type
function: expr(V) denotes all Promela expressions over V ,
and asgn(V) all assignments. Assuming that the variables
are ordered, v ∈ τ(v1) × · · · × τ(vk) denotes a valuation
of the variables, let val(V) be the set of all valuations. For
e ∈ expr(V), we write that v |� e if the expression evaluates
to true for the values v. For a ∈ asgn(V), apply(a, v) ∈
val(V) denotes the valuation obtained after applying the
assignment a to v.

We define a program graph as a graph in which each tran-
sition is labelled with an expression (the condition) and an
assignment (its effect). If a statement in a model has no effect
on the variables, its assignment is the identity function. If a
statement can be executed at all times, its condition is simply
true. In addition, a program graph has an expression char-
acterising the variable values in the initial state.

Definition 9 A program graph over (V, τ) is a tuple
(S, trans, I, ini t), where S is a set of states and I ⊆ S a
set of initial states, trans ⊆ S× expr(V)× asgn(V)× S is
the transition relation, and ini t ∈ expr(V) is an expression
characterising the variable values in the initial state.

The semantics of a program graph G, noted [[G]], is a TS
(S′, Act ′, trans′, I ′, expr(V), L ′) where

– S′ = S × val(V), that is, each state denotes a control
location and a variable valuation of the program graph;

– I ′ = {
(i, v) | i ∈ I, v ∈ val(V) • v |� ini t

}
, the ini-

tial states are the initial control locations and valuations
satisfying ini t ;

– Act ′ = {ε}, actions are not required here, so each transi-
tion is labelled with a dummy action ε;

– L ′
(
(s, val)

) = {e ∈ expr(V) | val |� e}, each state
is labelled with the expressions satisfied by its variable
valuation;

– Transitions can only be executed when the expression
evaluates to true for the variable valuation in the start
state; they change the variable valuation in the end state

123

596 A. Classen et al.

line 5
buffer = []

p = 0

line 6
buffer = []

p = 0
line 9

buffer = []
p = 1

line 9
buffer = []

p = 0

line 5
buffer = [0]

p = 0

line 5
buffer = [1]

p = 1

line 6
buffer = [0]

p = 0
line 9

buffer = [0]
p = 1

line 9
buffer = [0]

p = 0

line 5
buffer = [0,0]

p = 0

line 5
buffer = [0,1]

p = 1

line 6
buffer = [1]

p = 1
line 9

buffer = [1]
p = 1

line 9
buffer = [1]

p = 0

line 5
buffer = [1,0]

p = 0

line 5
buffer = [1,1]

p = 1

...

...

...

...

Fig. 2 TS corresponding to the program graph of Fig. 1

according to the assignment: for e ∈ expr(V), a ∈ asgn
(V) and v ∈ val(V),

(s, e, a, s′) ∈ trans ∧ val |� e

((s, val), ε, (s′, apply(a, val))) ∈ trans′
.

The program graph corresponding to a Promela file is
obtained by transforming control statements into vertices.
In a nutshell, this is done as follows. Single expressions ter-
minated by a semicolon correspond to states with single out-
going transitions. An example is the transition from line 5
to line 6 in Fig. 1. An if statement becomes a state with
one outgoing transition per option. This transition is labelled
with the first expression of the option. The last state of all
options leads back to a common state. In the example of the
sender, there is just one transition per option, which is why
both transitions leaving line 6 lead to the same state in Fig. 1.
A do statement is similar to an if statement, except that the
last transition of all options leads back to the beginning of
the do statement. Assignment statements are always exe-
cutable, their condition is thus true. Channel writes are only
executable if the channel is not full. In Promela, variables are
implicitly initialised at zero and channels are empty; hence
the expression on the initial transition in Fig. 1.

A fragment of the TS corresponding to the program graph
of the sender is shown in Fig. 2. The TS has no infinite behav-
iours. Every behaviour stops in a state where the control loca-
tion is in line 9 and the buffer contains three elements. The
buffer is thus full and execution blocks at line 9. To obtain a
system with no finite behaviours, the program graph of the
sender and the one of the receiver have to be put in parallel.
The parallel composition of two program graphs is obtained
by interleaving their executions. One exception are rendez-
vous channels, which are channels of capacity zero. Reads

and writes of rendez-vous channels have to occur together,
at the same time, which means that these transitions are syn-
chronised. The parallel composition of two program graphs
results in a program graph over the union of their variables.
We do not go into the details of this definition. It is very
similar to the classical definition of parallel composition of
TSs, except that shared variables are taken into account. The
interested reader is referred to [4, Sects. 2.2.2 and 2.2.4].

As expected, the semantics of a Promela model is a TS.
The actual semantics is much more intricate, but Definition 9
captures the gist of it.

4.3.2 Featured program graphs

An fPromela model describes a featured program graph. A
featured program graph is a program graph in which transi-
tions are annotated with feature expressions.

Definition 10 A featured program graph over variables
(V, τ), and an FD d with features N , is a tuple
(S, trans, I, ini t, γ), where S, I, trans and ini t are defined
as in Definition 9 and γ : trans → B({ f1, . . . , fn}) anno-
tates transitions with a feature expression.

The semantics of a featured program graph is an FTS
(S′, {ε}, trans′, I ′, expr(V), L ′, d, γ ′) where S′, I ′ and
trans′ are defined as in Definition 9. Note that there is a clear
correspondence between transitions of the program graph
and those of the TS. In the FTS, γ ′ is such that for any tran-
sition t ′ ∈ trans′, let t ∈ trans be the corresponding transi-
tion of the program graph, then γ ′(t ′) = true if γ (t) is not
defined (i.e., for an unguarded transition) and γ ′(t ′) = γ (t)
otherwise.

The featured program graph of an fPromela file is obtained
in a way similar to obtaining the program graph of a normal

123

Model checking software product lines with SNIP 597

true / i++ / Foo || Bar

line
11

line
17

true / / !Foo && !Bar

line
18

true / assert(i == 1) /

i == 0

(a)

line 11
i = 0

line 17
i = 0

line 17
i = 1

line 18
i = 1

assert(i == 1)

line 18
i = 0

assert(i == 0)

Foo || Bar

!Foo && !Bar

(b)

Fig. 3 The fPromela example from Listing 2. a The featured program
graph of the model. b The corresponding FTS

Promela file. The only difference is the treatment of gd state-
ments. The featured program graph of a Promela file would
be equivalent to its program graph. Remember, the first state-
ment of an option of a gd statement is the feature expression.
The other statements are the guarded behaviour. In terms of
the featured program graph, this means that a gd statement
is treated like an if statement, except that the first state-
ment acts as the feature expression of the second statement.
If the first statement of an option block is else, the feature
expression is the negation of the conjunction of the feature
expressions of the other options in the gd statement.

To illustrate this, the featured program graph correspond-
ing to the fPromela example from Listing 2 is shown in
Fig. 3a. The feature expression labels were added in colour
behind the existing labels. All unguarded statements, like the
assert at line 17, are not labelled. The corresponding FTS
is shown in Fig. 3b.

The semantics of an fPromela model is an FTS. As for
Promela, the actual semantics is much more intricate than
Definition 10. In fact, it follows the semantics of Promela
(given in [23]) exactly, just adding feature expressions from
the featured program graph to the transitions. The parallel
composition of two featured program graphs is defined in
the same way as for program graphs. Each transition of the
resulting featured program graph corresponds to a transi-
tion of one of the featured program graphs, whose feature
expression it inherits. An exception are rendez-vous transi-
tions, whose feature expression are the conjunction of those
of the transitions being executed in parallel.

Just like FTSs and TSs, featured program graphs and pro-
gram graphs are related by a projection operation. The fol-
lowing definition is analogous to Definition 3.

Definition 11 Given a featured program graph f G = (S,
trans, I, ini t, γ) with FD d, its projection to a product p ∈
[[d]]FD , noted f G |p, is the program graph
(S, trans′, I, ini t) where

trans′ � {t ∈ trans | t �∈ dom(γ) ∨ p |� γ (t)}.

This definition covers the case in which γ (t) is not defined
(e.g., for an unguarded transition). If a transition is not in the
domain of γ, dom(γ), the transition is included.

Syntactically, the projection operation can be accomplis-
hed as follows.

Algorithm 1 Given an fPromela model with FD d, its pro-
jection to a product p ∈ [[d]]FD can be obtained as follows:

(1) remove all feature variable declarations;
(2) replace the feature expressions of all gd statements by

the value they take for p;
(3) remove the feature expressions that evaluate to true;
(4) replace all gd statements by if statements.

The obtained model is a syntactically valid Promela model.
Since feature variables are guaranteed to only appear in fea-
ture expressions, removing them will not lead to bad refer-
ences.

Theorem 1 Given an fPromela model with FD d and fea-
tured program graph f G, the reduction to a product p ∈
[[d]]FD computed according to Algorithm 1 yields a Promela
model whose program graph is semantically equivalent to
f G |p.

Proof It should be clear that without steps (2) and (3) of
Algorithm 1, the resulting program graph would have at least
the transitions and states of f G |p. The effect of step (2) is
that all feature expressions that evaluate to f alse become
transitions which can never be executed. This is equivalent
to removing them. Furthermore, the transitions in f G whose
feature expression evaluated to true (that are thus in f G |p)
are now all prefixed with a single transition with the expres-
sion true (the evaluated feature expression). The effect of
step (3) is to remove these transitions. The resulting program
graph is thus indeed semantically equivalent to f G |p. ��

An immediate consequence of the above result is that an
fPromela model without any guarded statements can be inter-
preted either as an fPromela or as a Promela model. The first
interpretation yields an FTS and the second yields a TS, both
of which have exactly the same behaviours. For the fPro-
mela example from Listing 2, the projection to the product
{Example, Foo} is the following:

1a c t i v e p r o c t y p e toto() {
2i n t i = 0;
3i++;
4a s s e r t (i == 1);
5}

The relation between fPromela and Promela is thus very
similar to that between FTSs and TSs, as is the relation
between fPromela and FTSs and Promela and TSs. This is

123

598 A. Classen et al.

Fig. 4 Relation of fPromela,
Promela, FTSs and TSs

best illustrated by the diagram in Fig. 4. The diagram is com-
mutative, as Theorem 1 and the following theorem establish.

Theorem 2 For any fPromela model with with FD d and
featured program graph f G, for any product p ∈ [[d]]FD ,

[[f G |p]] ≡ [[f G]] |p
where ≡ means that both TSs are semantically equivalent.

The semantics of a program graph is defined in the same
way as the semantics of a featured program graph. Further-
more, feature expressions are treated in the same way by FTS
projection (Definition 3) and by the projection of a featured
program graph (Definition 11). In consequence, the order in
which these operations are applied does not matter. Hence,
[[f G |p]] is syntactically equivalent to [[f G]] |p.

This concludes our discussion of the semantics of fPro-
mela. Before we proceed to study its expressiveness, we
would like to point out that there is also a much easier method
to implement syntactic projection.

Algorithm 2 Given an fPromela model with FD d, its pro-
jection to a product p ∈ [[d]]FD can be obtained as follows:

(1) initialise all feature variables according to p;
(2) replace all gd statements by if statements.

The advantage of this method is that it does not require the
whole fPromela file to be parsed. As gd can be replaced
by if in an fPromela file anyway, all that needs to be done
is to initialise the feature variables. For the example from
Listing 2, this would yield the following.

1t y p e d e f product {
2b o o l Foo = 1; // initialise
3b o o l Bar = 0 // initialise
4};
5product f;
6
7a c t i v e p r o c t y p e toto() {
8i n t i = 0;

9// gd becomes if
10i f :: f.Foo || f.Bar;
11i++;
12:: e l s e ;
13s k i p ;
14f i ;
15
16a s s e r t (i == 1);
17}

The principal difference with Algorithm 1 is that the fea-
ture expressions at line 10 and line 12 remain as transitions.
This changes nothing for those that evaluate to f alse since
they can never be taken. Those that evaluate to true, how-
ever, are additional transitions that have to be executed before
the actual guarded statement is executed. This leads to two
discrepancies. First, these transitions will create stutter steps
in the underlying TS (i.e., transitions that do not modify the
atomic propositions).

Definition 12 A stutter step is a transition s1
α−→ s2 such that

L(s1) = L(s2). Two executions are stutter equivalent if they
only differ in their stutter steps, and two TSs ts1 and ts2 are
stutter trace equivalent if for any execution in [[ts1]]T S , there
exists a stutter equivalent execution in [[ts2]]T S , and vice-
versa. By extension, two program graphs are stutter trace
equivalent if their TSs are stutter trace equivalent.

In addition to creating stutter transitions in the underlying
TS, these transitions might also introduce new non-determin-
ism. Consider the following case:

1g d :: f.Foo;
2c h a n !1;
3:: t r u e ;
4s k i p ;
5d g ;

The channel write statement is only part of products with
feature Foo, whereas the skip is part of all products. A dis-
crepancy arises in products with feature Foo. First, consider

123

Model checking software product lines with SNIP 599

projection according to Algorithm 1: when the execution gets
to the above statements and the channel is full, the system
will always take the skip transition. If projected according
to Algorithm 2, the channel write will be prefixed by a true
transition. Now, when the execution gets to the guarded state-
ment, the system has the non-deterministic choice of taking
the skip or the true transition. If the true transition is
taken, the execution will be blocked at the channel write state-
ment. If the channel remains full indefinitely, this leads to a
deadlock which does not exist in the other projection. The
problem is that thetrue transition introduced non-determin-
ism which did not exist in the actual system. A necessary con-
dition for this problem to occur is that the guarded statement
is not exclusive, i.e., some of the feature sets defined by its
feature expressions overlap. Otherwise, the true transition
would be the only one, and thus cannot introduce new non-
determinism. This is formalised by the following theorem.

Theorem 3 Given an fPromela model with FD d and fea-
tured program graph f G, the reduction to a product p ∈
[[d]]FD computed according to Algorithm 2 yields a Promela
model whose program graph G is stutter trace equivalent to
f G |p if all gd statements are exclusive. Exclusive means
that the feature sets defined by the feature expressions of a
gd statement are disjoint.

Proof In the resulting Promela model, the feature variables
are normal Boolean variables. By definition of fPromela, they
are never written to, which means that all feature expres-
sions will always evaluate to the same value. The resulting
program graph G thus corresponds to that of Algorithm 1
in which step (3) was not executed. As stated in the proof
of Theorem 1, the transitions in f G whose feature expres-
sion evaluated to true are now prefixed with a transition (the
former feature expression) whose expression always evalu-
ates to true. These true transitions lead to a stutter transition
in [[G]], since they do not change the variables. However, [[G]]
is only stutter equivalent to [[f G |p]] if the true transitions
do not introduce new non-determinism. If the feature sets of
a gd statement are disjoint, it will have at most one true
transition in any product. In this case, the true transitions do
not introduce new non-determinism. ��
In practice, the feature expressions of a gd statement are
almost always disjoint. Furthermore, stutter equivalence pre-
serves all LTL properties that do not use the next operator
(©), which is almost never used. Because of this, and because
of its ease of implementation, we use Algorithm 2 to imple-
ment projection (the input to SPIN) in our benchmarks.

The above theorem has a corollary which yields an alter-
native, much more intuitive, semantics for fPromela.

Corollary 1 Each fPromela model is semantically equiv-
alent to the non-deterministic choice between 2n Promela
models (where n is the number of feature variables) obtained

by varying the initial values of the features. (Provided that
the feature expressions of all gd statements are disjoint.)

4.4 Expressiveness

By Definition 10, any fPromela model can be translated into
an equivalent FTS. The fPromela modelling language is thus
a subset of the FTS language. It is not difficult to show that the
converse holds as well, i.e., that both languages are expres-
sively equivalent.

Theorem 4 Any FTS can be translated into fPromela.

Proof Let (S, Act, trans, I, AP, L , d, γ) be an FTS. An
equivalent fPromela model with FD d can be obtained by
encoding the transition relation withgoto statements (which
work similar to C). Basically, each state becomes a program
location and gotos are used to jump from location to loca-
tion reflecting the transition relation. Each goto thus cor-
responds to one transition and is guarded with the feature
expression of the transition. For each state s ∈ S with its
outgoing transitions, this yields:

1// One label identifying the state:
2state_s:
3// If the state is an initial state ,

a second label:
4init_s:
5// For each target state one option

with a goto:
6g d :: feature expression;
7g o t o state_target;
8:: ...
9d g ;

The initial states are modelled as follows:

1// One goto per initial state
2i f :: g o t o init_state;
3:: ...
4f i ;

The program graph G of an active proctype with this
behaviour will have |S| + 1 control locations, one for each
state, plus the additional initial state. Since there are no vari-
ables, [[G]] is syntactically identical to the input FTS, except
for the additional initial state. ��

5 SNIP

We now focus on the usage of SNIP. First, we present the user
interface of the tool that we illustrate with several examples.
We then discuss the architecture of SNIP as well as var-
ious implementation choices and third-party libraries used

123

600 A. Classen et al.

in its design. Finally, we describe how the FTS algorithms
of [13,14] have been implemented.

5.1 User interface and illustration

The user interface of SNIP is designed to take into account
the various SPL model checking use cases. It also addresses
a variety of practical concerns such as simulation, bounded
checking, or layout of counterexamples.

Since our development has focused mainly on the model
checking algorithms, SNIP is currently a command-line appl-
ication, with no graphical user interface. However, we do not
believe that a model checker needs to have a graphical user
interface to be user-friendly. As for most model checkers,
SNIP’s use consists in launching checks with certain param-
eters (property, execution bound). The command line is a
very efficient and convenient interface for this kind of task.
It remembers past commands and keeps a trace of inputs and
outputs.

To make it easy to get started with SNIP, the list of
its parameters is shown when launching SNIP without any
parameter (or with bad parameters).

5.1.1 Introductory example and assertion checking

As inputs, SNIP requires an fPromela file, a TVL file and a
property. For our first illustration, we use the example from
the previous section, where the fPromela file is given in List-
ing 2 and the TVL file in Listing 3. In this case, the property
is the assertion at line 17 of the model. To check it, SNIP
would be executed as follows.

The -check parameter activates SNIP’s model checker.
If it is set, SNIP automatically checks all assertions and
looks for deadlocks. The -fm parameter specifies the fea-
ture model. This parameter can be omitted if the TVL file

has the same name as the fPromela file. That is, if the TVL
file were named model.tvl, the preceding command-line
can be shortened to:

The output provided by SNIP consists of two parts. First,
SNIP reports the products for which the property is violated
in the form of a feature expression (line 5). Second, SNIP
gives a counterexample, that is, an execution of the fPro-
mela model which proves the property violation (line 7 and
following). It is presented as a sequence of states separated
by double dashes. For each state, SNIP prints the products
that can reach the state as a feature expression (‘/’ means
all products), the position inside each process (pid 00,
toto @ NL11means the process with id 00, of type toto
is at line 11), and the values of the variables. At line 3, SNIP
also reports two statistics: the number of states that were
explored and re-explored. The explored states are the states
that were visited and stored in memory; the re-explored states
are visited states that had to be explored again.

To make counterexamples shorter and easier to under-
stand, variables are only printed if their value has changed.
Furthermore, the last state is repeated in full so that the user
can work backwards. There are two options to control the
output of counterexamples: -nt disables them (very useful
if the user is only interested in the satisfying products), and
-st prints only states in which variable values changed (i.e.,
states in which processes do nothing are not shown.). Since
SNIP’s output is text and can be interpreted immediately (no
need for an additional tool), it can be piped to other com-
mand-line tools such as cat or grep. This is very useful to
filter the relevant variables out of long counterexamples.

For the example, SNIP reports that the assertion is violated
by products that satisfy !Foo & !Bar. This is as expected,
since only those products lack the i++ statement at line 12.
SNIP implements both Mc and ExtMc. If only -check is
specified, SNIP computes Mc. This means that SNIP stops as
soon as it finds a violation. To compute ExtMc, the param-
eters -check and -exhaustive have to be set.

In this case, SNIP will print a violation upon finding
it (line 4), and continues searching for violations in the
other products. In the example, we disabled printing of

123

Model checking software product lines with SNIP 601

counterexamples using -nt, otherwise, SNIP will print a
counterexample for each violation. When the search termi-
nates, SNIP prints a summary with all the products found to
violate (line 14). In this case, those are the same as before.
However, we now have the certitude that all products satis-
fying Foo|Bar are free from violations.

5.1.2 Sender/receiver example and deadlock checking

We now consider a more complex example that uses both
parallel composition and infinite behaviours. For doing so,
we modify the sender/receiver example given in Listing 1 by
making each of the two processes optional. The FD in this
case would be the following.

1root Main group someOf {
2Send ,
3Receive
4}

The Promela model is transformed into the following fPr-
omela model.

1t y p e d e f f e a t u r e s {
2b o o l Send;
3b o o l Receive
4};
5f e a t u r e s f;
6
7c h a n buffer = [3] o f { i n t };
8
9p r o c t y p e sender () {
10i n t p;
11d o :: t r u e ;
12i f :: p = 0;
13:: p = 1;
14f i ;
15buffer!p;
16o d ;
17}
18
19p r o c t y p e receiver () {
20d o :: t r u e ;
21buffer?_;
22o d ;
23}
24
25a c t i v e p r o c t y p e boot() {
26g d :: f.Send;
27r u n sender();
28:: e l s e ;
29s k i p ;
30d g ;
31g d :: f.Receive;
32r u n receiver ();
33:: e l s e ;
34s k i p ;
35d g ;
36}

Instead of declaring the sender and the receiver processes
active, they are now started explicitly by the boot proc-
ess, using Promela’s run statement. Each run statement is
guarded by the respective feature. This way, only products
with the Send feature have a sender process, and likewise for
the Receive feature. Checking this model yields the follow-
ing.

SNIP finds two deadlocks, as expected. The counterexam-
ples (disabled here for brevity) identify the deadlocked states.
In the first case, the sender is started without a receiver. It will
thus send messages until the buffer is full, at which point it
waits indefinitely at line 15; a deadlock state. In the second
case, the receiver is started without a sender. It deadlocks
immediately at line 21 because the buffer will always remain
empty.

It might seem that this is inconsistent with the previous
example. It too has only finite behaviours, and yet SNIP did
not report a deadlock. This is because its finite behaviours
all end with a terminal state of the program graph (in this
case, the end of the process specification). In Promela and
fPromela, a state with no outgoing transitions is not a dead-
lock state if all processes are in terminal states. In the dead-
lock states of the sender/receiver example, the boot process
is in a terminal state, whereas the sender (or receiver)
is not.

In FTSs, deadlocks can also stem from erroneous feature
expressions. Consider the following example in which A is a
single optional feature.

1t y p e d e f f e a t u r e s {
2b o o l A
3};
4f e a t u r e s f;
5
6a c t i v e p r o c t y p e foo() {
7i n t i = 0;
8g d :: f.A;
9i++;
10d g ;
11i++;
12}

123

602 A. Classen et al.

The guard at line 8 only considers products with feature A.
For all other products, there will be no transition in this state.
Those products are deadlocked, as thefooprocess is blocked
in a non-terminal state. In SNIP, such special deadlocks states
are called trivially invalid end states; ‘trivially’, because they
can be very easily avoided by making sure each gd statement
has an else option. By default, SNIP will not check for triv-
ially invalid end states. In contrast to simple deadlock check-
ing, it requires a small computation each time, which might
be costly. If SNIP is run normally, this yields.

To activate checking of trivially invalid end states, the
-fdlc parameter has to be set.

SNIP then correctly identifies the products without feature
A as violating.

5.1.3 Mine pump example and fLTL model checking

So far, we have shown how assertions and deadlocks are
checked. Of course, properties can also be specified using
LTL, fLTL or directly as never claims (an automata-based
encoding of the property).

To illustrate this verification procedure, we use the mine
pump system, a specification exemplar for distributed sys-
tems originally introduced in [29]. The purpose of the sys-
tem is to keep a mine shaft clear of water while avoiding
the danger of a methane explosion. It consists of a water
pump, a sensor measuring the water level and a sensor mea-
suring the concentration of methane in the mine. The sys-
tem should activate the pump once the water level reaches a
preset threshold, but only if the methane is below a critical
limit.

The system consists of three high-level features: (i) a com-
mand interface Command, which can be used to switch the
water regulation function on or off; (ii) a methane alarm inter-
face MethaneSensor, which can receive alarm messages from
the methane sensor in case of critical methane, and (iii) the
water regulation subsystem WaterSensor. The system is dis-
tributed: the controller and sensors are individual subsystems

which communicate by message passing. Although the sys-
tem was not designed as an SPL, these components play the
same roles as features in an SPL and can be modelled as such.

We created an fPromela model that follows the CONIC
code included in [29] very closely. The model consists of
about 200 lines of fPromela. The fPromela model consists
of five processes communicating over channels: a controller,
a pump, a water sensor, a methane sensor and a user. When
activated, the controller should switch on the pump when the
water level is high, but only if there is no methane in the
mine. The TVL FD is the following.

Listing 4 FD of the mine pump controller product line.

1root MinePump {
2group allOf {
3opt Command group someOf {
4Start ,
5Stop
6},
7opt MethaneSensor group someOf {
8MethaneAlarm ,
9MethaneQuery
10},
11WaterSensor group [0..*] {
12Low ,
13Normal ,
14High
15}
16}
17}

Most features are self-explanatory. The methane detection is
split into two features, corresponding to the two mechanisms
used. With the MethaneAlarm feature, the controller is noti-
fied when there is methane in the mine (it is passive). With
the MethaneQuery, the controller queries the methane sensor
each time before starting the pump (it is active).

The model must satisfy a large set of properties (42). Here,
we focus on one such property: “There is never a situation in
which the pump runs indefinitely even though there is meth-
ane.”; in LTL this becomes

¬♦�(pumpOn ∧ methane)

and in the syntax used by SNIP:

!<>[] (pumpOn && methane).

Checking this property with SNIP yields the following.
The property is specified with the -ltl parameter. SNIP

finds 16 violations and concludes that all products with
Start & High violate the property. This is not what we
expected, as the property is supposed to be satisfied by the
system. Products without Start or High will never even start
the pump, which is why they satisfy the property.

A look at the counterexamples reveals a problem with
the property. Basically, the controller has a central loop,

123

Model checking software product lines with SNIP 603

in which it can receive three types of messages: user com-
mands (start and stop), methane alarm messages, and water
level readings. The counterexamples show in every case
that the methane sensor sends an alarm message to the
controller. However, as the choice of receiving one of the
three messages is non-deterministic, the controller might
ignore the alarm message indefinitely. In practice, such
a behaviour is highly unlikely. It is thus reasonable to
assume that the controller will infinitely often accept a mes-
sage of each type. This assumption can be specified in
LTL as follows: (([]<> readCommand) && ([]<>
readAlarm) && ([]<> readLevel)). If we add it
as a premise to the original formula, we obtain the following
result.

This result can be interpreted as saying that the Methane-
Alarm feature is responsible for making the property true.

This corresponds to what we expected, as the MethaneAlarm
feature alerts the controller of methane, leading it to shut off
the pump. However, a product satisfies the property either
if it does not satisfy the assumption or if it satisfies the ini-
tial property !<>[] (pumpOn && methane). Hence,
we have to make sure that there are actually products that
satisfy the assumption. This is done by checking its nega-
tion.

The assumption is thus discharged by all products. Then,
we conclude that for all products with the MethaneAlarm
feature, there exists no path verifying the assumption but
violating the property. In simple terms, the feature ensures
that the pump will not run indefinitely even though there is
methane, as long as the controller does not ignore the alarm
messages indefinitely.

Normally, the example property is not expected to hold
for products that do not have the MethaneAlarm feature. It
corresponds to a requirement implemented by the feature.
This can be expressed with a quantifier in fLTL:

[MethaneAlarm] ¬♦�(pumpOn ∧ methane).

In SNIP, the quantifier of an fLTL property is specified in
TVL syntax, separately from the LTL property with the
-filter parameter.

The property is thus indeed satisfied by all relevant prod-
ucts. SNIP recalls in the output that the property is checked
over a subset of the products (line 7).

123

604 A. Classen et al.

Fig. 5 Architecture of SNIP Wrapped libraries

Parsing (symbols.c, automata.c)

Handling states (state.c)

fPromela semantics (execution.c)

Algorithm (checking.c)

Interface (main.c)

Boolean functions (boolFct.h)

CUDD CNF lib

Hash functions (hashState.h)

Jenkins Modulo

Hashtable (hashtable.h)

Judy Clarke

ability checking (sat.h)

CUDD Minisat

LTL (ltl.h)

ltl2ba

TVL (tvl.h)

TVLLibraryCore

5.2 Architecture and third-party libraries

SNIP is entirely written in the C programming language. An
overview of its architecture is shown in Fig. 5. The core of
SNIP is divided into layers, so that lower layers are unaware
of and have no dependency on upper layers. Each layer has
access to a set of wrapped libraries. A wrapper consists of an
interface (a header file) against which other code is written,
and one or more implementations of the interface depending
on the third-party library used. Third-party libraries are thus
all wrapped and can easily be replaced. The library to be used
for a wrapper is chosen at compile time. Let us first look at the
core of SNIP, before we survey the third-party libraries used.

To create the fPromela parser, we use the parser gener-
ators Flex and Bison. These tools are highly efficient and
the de-facto standard for creating parsers in C. To make sure
that a Promela file in SNIP is parsed in the same way as it
is in SPIN, we reused the Bison grammar specification from
the SPIN source code.5 As the model is parsed, SNIP fills a
symbol table with global variables and process definitions.
The body of a process is represented by a featured program
graph, which is created at the same time the model is parsed
(it is built backwards). We make extensive use of doubly
linked lists, one of the primary data structures in SNIP. As
the featured program graph is built, all feature expressions
are transformed into Boolean function objects (the actual
type depends on the library chosen for representing Boolean
functions). Furthermore, all references inside expressions are
resolved and replaced by pointers to the respective symbols.

5 This is indeed the only piece of SPIN source code reused in SNIP.

The state layer implements functions for the representa-
tion and manipulation of system states in memory. SNIP does
not use the state compression [22] principle implemented in
SPIN. To make state manipulation reasonably efficient none-
theless, all variables are stored in a block of memory (the
payload), rather than in linked lists. Blocks of memory can
be copied and compared efficiently with built-in functions.
The payload holds the global variables as well as those of
the processes. Since all variables have a fixed size, we only
need to keep track of the address in the payload at which the
variables of a process start. A state further contains a Bool-
ean function, which characterises the products for which it is
reachable. The state layer handles dynamically created pro-
cesses and channels.

The execution layer implements the semantics of Promela
and fPromela. To make sure that the Promela semantics is
correctly implemented, we follow the operational Promela
reference [23] very closely. We thus use a function execu-
tables, which determines the transitions that can be exe-
cuted in a state. It takes the feature expression of the state
into account, as well as the feature expressions of the can-
didate transitions. Other functions that are derived from the
Promela specification are eval, which evaluates an expres-
sion, and apply, which executes a transition. The execution
layer has also functions for simulation and for managing the
execution stack of the DFS.

On top of this hierarchy, we find the model checking layer.
It implements the algorithms from [14], both as a nested DFS
(for LTL) and as a normal DFS (for asserts and deadlocks).
Visited states are stored in a hashtable. The model checking
layer will be discussed in more detail in the following section.

123

Model checking software product lines with SNIP 605

The interface layer pieces all of the other layers together. It
is also responsible for the preparatory tasks. More precisely,
it interprets the command-line parameters and writes them to
global variables. It transforms the LTL property into a Büchi
automaton which it appends as a never claim to the input file.
It then runs the C preprocessor on the input file and launches
the parser. The interface layer also guesses the name of the
TVL model and transforms it into a Boolean function. A
number of temporary files are generated for this, which can
be preserved if SNIP is executed with the -t parameter.

SNIP uses several third-party libraries. As noted before,
the Promela grammar is taken from SPIN. To automate
the transformation from LTL to Büchi automata, we use
LTL2BA,6 a very efficient implementation based on the
results of [20]. To parse TVL models and transform them
into DIMACS, we use the TVL library.7 DIMCAS is a data
exchange format for Boolean functions in CNF. The TVL
library is written in JAVA and rather inefficient (even small
models take a second to be parsed and transformed). There-
fore, SNIP also allows the user to specify the FD in DIMACS
directly. For this, SNIP has a command-line switch -fmdi-
macs, which has to be followed by a file in DIMACS format,
and a dictionary file. Variable names in a DIMACS file are
all integers. The dictionary file lists the feature names of the
integers used in the DIMACS file. The TVL library has the
ability to export these files.

To store large sets of states with efficient lookup times, we
rely on a resizable hash table implementation provided by
Clark.8 Collisions are managed through a self-implemented
procedure that uses linked lists.

For the internal representation of Boolean functions, the
tool currently offers two alternatives: Binary Decision Dia-
grams (BDDs) [7] or Conjunctive Normal Forms (CNFs).
BDDs are manipulated through the CUDD package,9 which
is also used in other model checkers. The representation of
Boolean functions is decoupled from the SAT checking of
these functions. SAT checking in BDDs is accomplished
in constant time. Thus, if CUDD is used, it has to be used
for both (representation and SAT checking). The alternative
representation, CNFs, relies on a self-written data structure.
CNFs were mostly used during the early phases of develop-
ment. A CNF quickly grows out of proportion, since there is
(as of now) almost no simplification. For SAT checking of
CNFs we use MiniSat,10 but any other SAT checker could
be used as well. A challenge for SAT checking is that many
checks have to be executed against the FD. The CNF rep-
resentation of the FD is likely to be larger than the CNF

6 http://www.lsv.ens-cachan.fr/~gastin/ltl2ba.
7 http://www.info.fundp.ac.be/~acs/tvl.
8 http://www.cl.cam.ac.uk/~cwc22/hashtable.
9 http://vlsi.colorado.edu/~fabio/CUDD.
10 http://minisat.se.

being checked against it. To avoid having to load the CNF
of the FD into the SAT solver each time, we use MiniSat’s
ability to check satisfiability under an assumption (a literal).
Basically, the CNF of the FD is loaded once. For each CNF
checked against it, a temporary variable is created which is
appended as a literal to each clause of the CNF. The result
is then checked under the assumption that the literal is false.
After this, a new clause with the temporary variable as a
single negative literal is added, which corresponds to remov-
ing the clauses added before. The SAT solver is reinitialised
after a number of properties have been checked (a constant,
currently set to 1,000), to keep the number of temporary vari-
ables reasonably low.

5.3 Implementing the model checking algorithms

Following this overview of SNIP’s architecture, we discuss
some of the implementation details, and relate them to the
theoretical results of [13,14] that were summarized in Sect. 3.

To conduct model checking, SNIP simulates the execution
of the fPromela model. This means that (i) the calculation of
the parallel composition of the processes, (ii) the calculation
of the synchronous product of the processes and the never
claim, and (iii) the generation of the resulting FTS accord-
ing to Definition 10; are all conducted on the fly, i.e., on a
per-need basis as the model checking algorithm is executed.

The model checking algorithm itself follows the Rea-
chables procedure from [14] very closely. For simplicity,
the procedure is implemented twice. Once as a nested DFS,
which is used when an LTL property was specified (even if
the LTL property is a reachability property, and thus the inner
DFS is never started). In this implementation, the synchro-
nous product with the Büchi automaton has to be calculated.
This is not required when no LTL property is specified, which
is why we implemented a simple DFS separately, which is
used when no LTL property was specified. Checking of asser-
tions and deadlocks is done in both cases and cannot be dis-
abled (except for the -fdlc parameter discussed before) as
there would be no noticeable speed gain.

5.3.1 Optimisations

There are two alternatives for making sure that only valid
products are considered. One possibility is to seed the initial
states with the Boolean function corresponding to the FD,
the other is to test for each state whether its feature expres-
sion represents at least one valid product. In SNIP we use the
latter: each time a new state is created, its feature expression
is intersected with the BDD of the FD; if the intersection
is empty, it is rejected. This has a number of advantages
over the seeding method. First, with the seeding method,
the feature expression characterising the violating products
that is returned as part of the output will also contain the

123

http://www.lsv.ens-cachan.fr/~gastin/ltl2ba
http://www.info.fundp.ac.be/~acs/tvl
http://www.cl.cam.ac.uk/~cwc22/hashtable
http://vlsi.colorado.edu/~fabio/CUDD
http://minisat.se

606 A. Classen et al.

Boolean function encoding of the FD, rendering it useless to
the engineer. Second, the seeding method needs a data struc-
ture that exploits overlap in several instances. Basically, when
the feature expression of all states contains the Boolean func-
tion equivalent of the FD, there will be a lot of redundancy. If
the data structure used to represent feature expressions does
not exploit this overlap to reduce the overall memory require-
ments, it will not scale. This would preclude using CNFs in
this case. The CUDD package, however, does exploit overlap.
After conducting experiments with both methods, though, we
could not observe a noticeable difference in performance. We
thus dropped the seeding method.

An optimisation for the ExtMc algorithm is to main-
tain a Boolean function characterising all violating products
encountered so far, and avoiding these products in the search.
SNIP has to maintain such a Boolean function already to be
able to produce the summary information printed when the
extended model check ends. The optimisation itself is com-
bined with the check whether a state is reachable in valid
products. As we said in the previous paragraph, the feature
expression of each new state is intersected with the BDD of
the FD to make sure that it contains at least one valid product.
To implement the optimisation for the ExtMc algorithm, we
exclude all violated products from the BDD of the FD. This
way, the check required for the optimisation is conducted
automatically when a new state is created, i.e., one BDD
intersection instead of two.

5.3.2 Reducing fLTL to LTL

In [14], we show that fLTL model checking of an FTS (and
hence of an fPromela model) can be reduced to LTL model
checking of the same model with a modified FD. SNIP uses
this result, which consists in appending the fLTL guard (spec-
ified with the-filterparameter) as a constraint to the TVL
model, thus insuring that only products at the intersection of
the FD and the guard are considered. This is done before the
TVL library is called, which means that SNIP does not even
have to parse the quantifier. Since quantifiers are specified
with a separate parameter, they can not only be used for LTL
properties, but also for checking assertions and deadlocks.

5.3.3 Overview

In summary, when SNIP model checks an fLTL property
[χ]φ, it proceeds as follows. The initialisation consists of
three steps. First, SNIP translates the LTL property φ to a
Büchi automaton and appends it to the fPromela file as a
never claim. Second, SNIP appends the quantifier χ as a con-
straint to the TVL model and transforms it into a BDD. Third,
SNIP parses the fPromela file, creating one or more featured
program graphs in the process. After the initialisation, SNIP
launches the model checking algorithm. The algorithm com-

putes the FTS corresponding to the parallel composition of
the featured program graphs and their synchronous product
with the never claim. It uses a depth-first search to compute
the reachable states (stored in a hash table) and for each, the
products in which it is reachable (in the form of a BDD). For
each new state, SNIP makes sure that it is reachable in a valid
product which is not yet known to violate the property. When
a violating state is found, SNIP prints information about the
violation (the feature expression characterising the violating
products is obtained from the BDD, and a counterexample).
If the -exhaustive parameter is set, SNIP continues the
search and prints a summary of all violations when the algo-
rithm finishes.

5.3.4 Projection

Finally, we would like to point out that SNIP has a parame-
ter -spin, which causes it to interpret any input model as
a Promela file. This means that feature variables are treated
like normal Boolean variables, and that gd statements are
treated like ifs. The input will thus be interpreted as a
featured program graph without feature expressions, i.e., a
normal program graph. In other words, the use of this param-
eter results in applying the syntactic projection described
in Algorithm 2. Because feature variables are considered as
Boolean variables, they all have an initial value (which is 0
if no explicit value is given). Therefore, the resulting pro-
gram graph corresponds to the projection of the FTS to a
product p (see Theorem 1), namely the one corresponding to
the value of each feature variable. In this case, no BDDs (not
even trivial ones) will be computed and SNIP’s model check-
ing algorithm is equivalent to the classical model checking
algorithm for single systems.

This option is intensively used for our benchmarks.
Indeed, it allows us to use SNIP to compute the naïve algo-
rithm (described in Sect. 3.3). We can then compare the naïve
algorithm to the FTS algorithm where both are implemented
by the same tool (even the same code). In an experiment mea-
suring performance, this allows us to control many variables
that would be impossible to control if different tools were
used to perform the comparison.

6 Experiments

An initial set of experiments conducted with a Haskell FTS
library [13] showed that in practice, the semi-symbolic FTS
algorithm is up to three times faster than the naïve algorithm.
There were some limitations to this evaluation, which we
overcome here and in [14]: it only considered a limited num-
ber of properties (six), a rather small model (457 states in the
FTS), and it did not measure the state space reduction.

We thus conducted new experiments with SNIP. For doing
so, we considered two case studies. The first case study is the

123

Model checking software product lines with SNIP 607

mine pump system [29] discussed in Sect. 5.1. It has 11 fea-
tures and 128 products; its FTS has 21,177 states, all prod-
ucts combined leads to a TS of 889,252 states. The second
model represents a subset of the CCSDS file delivery proto-
col (CFDP) [15], with 10 features and 56 products; its FTS
has 1,064,840 states, and the sum of all products combined
leads to a TS of 2,780,475 states. The results of the mine
pump experiments can be found in [14]. Here, we report on
those of the CFDP experiments.

Each of the two case studies required the creation of both
an fPromela model and a TVL model. The translation of
the feature diagrams into TVL models was straightforward.
Creating the fPromela models required a similar effort to cre-
ating normal Promela models. Most of the complexity is due
to the fact that such formal models are very delicate, that is,
it is not always clear how a change in the model will impact a
property. Moreover, this task was complicated by the fact that
our models had to follow an existing specification. Through
these modelling tasks, we tried to assess the added complex-
ity due to the new concept of feature in fPromela. We found
that it did not add to the complexity of Promela in any signif-
icant way, and that it integrated rather well with the existing
concepts.

The fPromela models, including all properties and expla-
nations, are distributed with SNIP [9]. The full set of results
is also available online.11

6.1 Experimental setup

Our experimental setup consists of SNIP and a script that
implements the naïve algorithms using SPIN and SNIP with-
out the FTS algorithm (referred to as ‘enum (snip)’ in the
statistics). The script uses the TVL library to list the set of
valid products. For each, it transforms the fPromela input
into a Promela file that describes the behaviour of the prod-
uct (following Algorithm 2). It then uses first SNIP without
the FTS algorithm, then SPIN, to model check the file. While
the script makes up for the lack of functionality in SPIN (and
SNIP without the FTS algorithm), it is still inferior in terms of
usability. For instance, SNIP produces a Boolean expression
characterising the violating products. As shown in Sect. 5.1,
this expression identifies incompatible features, or features
that are required for a property to hold. The script, in con-
trast, only lists the products that violate the property. The list
has to be analysed again to produce information comparable
to that returned by SNIP.

SNIP without the FTS algorithm provides a baseline to
evaluate the impact of the FTS algorithm on runtime and
size of the state space. A meaningful evaluation of the run-
time cannot be done by comparison to tools such as SPIN, as
it would require us to remove the bias introduced by optimi-

11 http://www.info.fundp.ac.be/~acs/snip/benchmarks.

sations for single systems. The relevant comparison is thus
between SNIP with and without the FTS algorithm. However,
SPIN can be used to evaluate the ability of our algorithm to
reduce the state space.

We only consider ExtMc in our experiments. The per-
formance of the naïve Mc algorithm largely depends on
the order in which products are checked, which we want
to exclude as a factor.

Our experiments consist in using SNIP and the above
script to compute ExtMc for all properties of the two mod-
els. For each, we measured the runtime and the number of
explored states. Recall that the FTS algorithm can re-explore
states. The sum of the explored and re-explored states cor-
responds to the number of transitions fired. In the case of
the naïve algorithm, this number is equal to the number of
explored states. Henceforth, we will thus use ‘number of tran-
sitions’ rather than ‘sum of explored and re-explored states’.
To make measurements as fair as possible, the time counted
for the naïve algorithm only includes the verification time.
Moreover, in the case of SPIN, verification consists of three
steps: (a) generating a process analyser (pan), (b) compiling it
and (c) running it. The time for (b) was not counted, as it is due
to a design decision in SPIN rather than its model checking
algorithm. All benchmarks were run on an Ubuntu machine
with an Intel Core2 Duo at 2.80 GHz with 4 Gb of RAM.

6.2 CFDP

The Consultative Committee for Space Data Systems
(CCSDS)12 is an international organisation founded by sev-
eral space agencies. Its aim is to develop communication and
data system standards for spatial missions. One of those stan-
dards is the CCSDS File Delivery Protocol (CFDP) [15], a
communication protocol intended for deep-space file transfer
between several spacecrafts and ground stations. The proto-
col also includes the possibility to perform operations on the
storage medium.

The CFDP is highly configurable, and is thus suitable for a
wide variety of missions. For example, a mission may require
a given (negative) acknowledgment mode in order to ensure
that files are transmitted successfully. In another context,
acknowledgements may be useless or even unsuitable, e.g.,
when the transmission must be completed as fast as possible.
Furthermore, the CFDP is also compatible with a wide range
of subnetwork services. A mission usually only needs a sub-
set of its functionality. To minimise the memory requirements
of the CFDP, the non-required parts are not implemented. As
part of a collaboration with Spacebel, a Belgian company
that develops software for space missions, the CFDP speci-
fication was analysed and the protocol decomposed into fea-
tures. This feature decomposition was subsequently used in

12 http://www.ccsds.org.

123

http://www.info.fundp.ac.be/~acs/snip/benchmarks
http://www.ccsds.org

608 A. Classen et al.

the development of a CFDP library SPL [6]. We used it as
the basis for our CFDP models, in which we consider a small
subset of the protocol.

At the heart of the protocol is the transmission of files
between CFDP entities, that is, spacecrafts and ground sta-
tions. A transmission starts with the sender transferring a
metadata segment to the receiver, followed by data seg-
ments composing the file to be transmitted. Once all data
segments are transmitted, the sending entity sends an End-
Of-File (EOF) message and the receiver closes the transaction
by sending a Finished (FIN) message.

Our experiment considers the efficiency of the different
Negative Acknowledgement (NAK) procedures offered by the
CFDP to detect and retransmit lost data segments. The pro-
tocol provides four NAK modes:

Deferred. The receiving entity waits until the EOFmessage
before it requests missing data segments.

Immediate. The receiving entity requests a missing data
segment as soon as it notices the loss.

Prompted. At any point during the transmission, the sender
can prompt the receiver (using a PROMPT message) to
request the retransmission of lost data segments. In addi-
tion, the receiver will request all missing data segments
when the EOFmessage is received (as in deferred mode).

Asynchronous. At any point during the transmission, the
receiver can request the retransmission of data segments
lost up to this point.

Because we are concerned only with the variability in the
NAK modes, we consider only a small subset of the FD cre-
ated for [6]. In TVL, this subset is the following.

1root CFDP {
2group allOf {
3Entity group [0..*] {
4Snd_min group [0..*] {
5Snd_min_ack group [0..*] {
6Snd_prompt_nak
7}
8},
9Recv_min group [0..*] {
10Recv_min_ack group [0..1] {
11Recv_immediate_nak ,
12Recv_deferred_nak ,
13Recv_prompt_nak ,
14Recv_asynch_nak
15}
16}
17},
18Channel group [0..*] {
19Reliable
20}
21}
22}

Note that the FD also models the reliability of the communi-
cation channel. Even though this is strictly speaking a prop-
erty of the environment, not of the system, it is useful to
capture it as as a feature. The truth of any property is then
automatically expressed in function of the reliability of the
communication channel. It is also worth mentioning that the
features corresponding to the four NAK modes are mutually
exclusive. Consequently, the FD has 56 products.

The fPromela model of the CFDP represents the scenario
in which a file is transmitted between two CFDP entities.
With this model we verify under which conditions (i.e., with
which features) the file will be successfully transmitted to the
receiving entity. The model is based on the CFDP specifica-
tion [15], rather than code developed by Spacebel. Because
we are only interested in the transmission procedure, the
CFDP operations that are unrelated to the transmission itself
(user requests, checksum errors,...) are ignored. Moreover,
we applied some simplifications to the transmission proce-
dure as described in the protocol specification.

For the benchmarks, we considered a deadlock check,
property (#1), and the following fLTL properties.

(#2) The whole file is eventually received,♦ f ileReceived.
This property is violated by 38 products, all those
where the communication channel is not reliable, and
those without the sending or without the receiving fea-
ture.

(#3) If theEOFmessage eventually reaches the receiver, the
whole file is eventually received, ♦eof Received ⇒
♦ f ileReceived. This property is violated 18 prod-
ucts: all those where the channel is not reliable and with
both a sender and a receiver (otherwise the assumption
would not hold).

(#4) The same as (#3) with the additional assumption that a
negative acknowledgement (NAK) eventually reaches
the sending entity:

(♦eof Received ∧ ♦nak Received)⇒ ♦ f ileReceived.

This property is violated by 9 products, those with an
unreliable channel and where either

– the receiver is in asynchronous, immediate, or
prompted NAK mode,

– or the receiver is in deferred NAK mode but the
sender is unable to answer the NAK messages.

(#5) A variation of the previous property where the second
assumption is that the sender receives NAK messages
infinitely often.

(♦eof Received ∧�♦nak Received)

⇒ ♦ f ileReceived.

123

Model checking software product lines with SNIP 609

(a)

(b)

Fig. 6 Benchmark results for the CFDP. a Runtime in seconds, loga-
rithmic scale. b Number of transitions in thousands, logarithmic scale

This property is violated by 4 products: those where
the communication channel is unreliable, the receiver
has enabled a NAK mode and the sender is unable to
answer NAK messages.

The results for the aforementioned properties are pre-
sented in Fig. 6. In terms of runtime, the FTS algorithm in
SNIP is between 1.33 and 2.23 times faster than the naïve
algorithm implemented with SNIP.

In terms of state space, the FTS algorithm in SNIP reduced
the average number of states from 1,440,675 to 910,497
(37 %), whereas SPIN reduced it to 579,077 (60 %). The
small reduction in the state space explains the lesser perfor-
mance of the FTS algorithm in this case. Indeed, we observe
that the greater this reduction, the larger the difference in
runtime between the two algorithms. The significant reduc-
tion in the case of SPIN is most likely due to optimisations
such as partial order reduction. The model in question is a
distributed system in which partial order reductions can lead
to significant reductions in the size of the state space.

As to memory consumption, the deadlock check required
the most: 336.9 MB for the naïve algorithm and 395.4 MB for
the FTS algorithm. These sizes correspond to 933,276 states
in the TSs explored by the naïve algorithm and 1,069,840
states in the FTS. Here, the FTS algorithm requires 17 %
more memory, for a 14 % increase in the number of states.
Again, there is 3 % overhead for the BDDs representing sets
of products.

6.3 Incremental benchmarks

While the previous experiments compared the FTS algorithm
and the naïve algorithm on a fixed number of products, we
also conducted an experiment to evaluate how each algo-
rithm behaves when the number of products increases. For
this we used the CFDP model of the previous section and
property (#1), the deadlock check. We first verified the model
restricted to 18 products, with the following five features:
Snd_min, Snd_min_ack, Recv_min, Recv_min_ack, and Reli-
able. We then reverified the model five times, each time
adding one feature in the following order: Recv_immediate_
nak (24 products), Recv_deferred_nak (30 products), Recv_
asynch_nak (36 products), Snd_prompt_nak (48 products),
and Recv_prompt_nak (56 products).

For both runtime and state space, the increase when adding
the sixth feature, Recv_immediate_nak, is huge. The reason
for this increase is that in the immediate mode, the receiver
sends a NAK as soon as a loss is noticed. This NAK itself can
get lost, which leads to a large number of combinations for
the lost/received data segments and lost/received NAK mes-
sages. Without the Recv_immediate_nak feature, the FTS
has 16,801 states and the TSs of all products combined have
98,112, i.e., the FTS is 78 % smaller. When the feature is
added, the FTS grows to 917,066 states (by 5,300 %) and
the TSs altogether to 1,192,023 states (by 1,114 %). Now the
FTS is only 15 % smaller. Basically, the states added by
the Recv_immediate_nak feature have a negative impact on
the compactness of the FTS.

For the other features, the increase for the FTS algorithm is
consistently lower than for the naïve algorithm. For example,
when the number of features increases from eight to nine, the
number of products increases from 36 to 48 and the runtime
of the FTS algorithm grows only by 57 %, while the runtime
of the naïve algorithm rises by 85 % when implemented with
SNIP and by 72 % when implemented with SPIN.

We conducted these incremental benchmarks also for the
other properties and other orders of features, observing sim-
ilar results. As the number of features increases, the runtime
for the FTS algorithm grows slower than that of the naïve
algorithm. This indicates that the FTS algorithm scales bet-
ter with the number of features than the naïve algorithm.

This can be visualised by comparing the rate at which the
runtime increases with the rate at which the number of prod-

123

610 A. Classen et al.

ucts increases. For the algorithm to scale with the number of
features, its runtime should increase linearly in the number
of features (i.e., logarithmically in the number of products),
rather than exponentially. To test this, we take the runtime for
checking the model consisting of 24 products as the baseline,
and extrapolate the runtime for the models of 30, 36, 48 and
56 products in two ways.

Exponential. The runtime increases at the same rate as the
number of products, i.e., by 25% for the increase to 30,
by 50% for the increase to 36 and so on. This growth is
exponential in the number of features.

Linear. The runtime increases at the same rate as log2 of the
number of products, i.e., by 7% for the increase to 30,
by 13% for the increase to 36 and so on. This growth is
linear in the number of features.

As the baseline we chose the runtime for the model of 24
products, because the runtime for the model of 18 products
(i.e., without the Recv_immediate_nak feature) is an outlier
for all three algorithms.

The result is shown in Fig. 7, where we plot the projected
runtimes as well as the measured runtime for each algorithm
and implementation. To make the results easier to interpret,
we further added a function that approximates each line (in
black). As can be seen clearly in these figures, the runtime of
the FTS algorithm increases at a rate that is between exponen-
tial and linear, whereas that of the naïve algorithms increases
at the exponential rate (whether implemented with SNIP or
with SPIN).

6.4 Discussion

These results (and those in [14]) show that the FTS algorithm
is a viable approach for state space reduction, in some cases
leading to better performance than the script using SPIN, a
tool that has been under development for over 30 years. There
is, nevertheless, room for improvement of the implemen-
tation. Furthermore, we believe that the state space reduc-
tions of SNIP and SPIN can reinforce each other, opening an
exciting area of future work. One step will be to extend the
optimisations currently implemented in SPIN, such as partial
order reduction, to FTS. The FTS algorithm could then be
integrated into SPIN. While such a project will most likely be
more expensive than the development of SNIP, its prospects
are promising.

As for the threats to validity, all experiments were exe-
cuted by an automated script running on a dedicated machine.
This minimises the risks of flawed runtime measures, e.g.,
due to other processes. Although the tools were the only
running processes on the machine, all benchmarks were run
five times (and the runtimes averaged) to avoid the influence
of independent random variations. Furthermore, the runtime

(a)

(b)

(c)

Fig. 7 Growth of the runtime with increasing number of features.
a FTS algorithm with SNIP. b Naïve algorithm with SNIP. c Naïve
algorithm with SPIN

123

Model checking software product lines with SNIP 611

reported for the naïve algorithm is only the verification time.
This removes the bias that might have been caused by an
inefficient implementation of the script iterating through the
products, generating the input files, deleting them, and so
forth.

From the obtained results it is clear that the FTS algo-
rithm is in most cases an improvement over the naïve algo-
rithm, both in terms of runtime and in terms of state space.
However, the use a single model means that this is a quasi-
experiment and that the extent to which it generalises cannot
be concluded from its results. Nevertheless, we used several
properties, including both liveness and safety (mostly com-
binations of both) and covering properties satisfied under
various circumstances (i.e., violated by different sets of prod-
ucts).

7 Conclusion

We presented SNIP, a tool that tackles the SPL model check-
ing problem. It combines an implementation of the semi-
symbolic FTS algorithms with two high-level specification
languages. Its modelling language, fPromela, is an extension
of Promela, the language used by the popular model checker
SPIN. SNIP also uses TVL, a text-based language for defin-
ing the features of an SPL and the constraints between them.

SNIP was implemented from scratch. Although this was
a time consuming and risky undertaking, it has given us
many insights into the use of the semi-symbolic FTS algo-
rithm as part of a model checker for a non-trivial language.
Experiments conducted with SNIP have shown that the FTS
algorithm is generally faster than the naïve algorithm, and a
viable approach for state space reduction. Furthermore, from
the experiment results, we expect the gap between the two
algorithms to increase as the number of features in a given
SPL gets larger. However, another performance evaluation
with a higher number of features should be carried out before
drawing conclusions.

In spite of these positive results, we are aware that there is
still much room for improvement. Indeed, the model checker
SPIN, which has been under development for more than
30 years, generally outperforms our tool thanks to many opti-
misations, such as partial order reduction or statement merg-
ing. This opens both theoretical and practical challenges,
because these optimisations have not been studied for FTS
yet. In future work, we plan to improve the efficiency of
the FTS model checking. In this regard, we notably aim to
(1) combine our fLTL verification algorithm with distributed
LTL model checking; (2) define abstraction relations (e.g.
bisimulation and simulation) for an FTS in order to exploit
them to verify a more abstract FTS; (3) study how to apply
optimisations such as partial order reduction.

Acknowledgments This work was funded by the FNRS, the Interuni-
versity Attraction Poles Programme of the Belgian State, Belgian Sci-
ence Policy (MoVES project) and the BNB.

References

1. Apel, S., Speidel, H., Wendler, P., von Rhein, A., Beyer, D.: Detec-
tion of feature interactions using feature-aware verification. In:
ASE 2011, pp. 372–375. IEEE (2011)

2. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: A logical frame-
work to deal with variability. In: IFM ’10. LNCS, vol. 6396, pp.
43–58. Springer, Berlin (2010)

3. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: Formal descrip-
tion of variability in product families. In: SPLC’11, pp. 130–139.
IEEE CS (2011)

4. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT
Press, Boca Raton (2007)

5. Batory, D.S.: Feature models, grammars, and propositional formu-
las. In: SPLC ’05. LNCS, vol. 3714, pp. 7–20. Springer, Berlin
(2005)

6. Boucher, Q., Classen, A., Heymans, P., Bourdoux, A., Demon-
ceau, L.: Tag and prune: a pragmatic approach to software product
line implementation. In: ASE ’10, pp. 333–336. ACM, New York
(2010)

7. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-
decision diagrams. ACM Comput. Surv. 24(3), 293–318 (1992)

8. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV:
a new symbolic model checker. Int. J. Softw. Tools Technol.
Transf. 2, 410–425 (2000)

9. Classen, A. http://www.info.fundp.ac.be/~acs/fts. (2010)
10. Classen, A.: Modelling and Model Checking Variability-Inten-

sive Systems. PhD thesis, PReCISE Research Centre, Faculty of
Computer Science, University of Namur (FUNDP), 5000 Namur,
Belgium (2011)

11. Classen, A., Boucher, Q., Heymans, P.: A text-based approach to
feature modelling: syntax and semantics of TVL. Sci. Comput.
Programm. 76, 1130–1143 (2011)

12. Classen, A., Heymans, P., Schobbens, P.-Y., Legay, A.: Symbolic
model checking of software product lines. In: ICSE ’11, pp. 321–
330. ACM, New York (2011)

13. Classen, A., Heymans, P., Schobbens, P.-Y., Legay, A., Raskin,
J.-F.: Model checking lots of systems: Efficient verification of
temporal properties in software product lines. In: ICSE ’10, pp.
335–344. ACM, New York (2010)

14. Classen, A., Heymans, P., Schobbens, P.-Y., Legay, A., Raskin,
J.-F.: Modelling and model checking variability-intensive systems
with featured transition systems. IEEE Trans. Softw. Eng. (2012)
(Submitted)

15. Consultative Committee for Space Data Systems (CCSDS).
CCSDS File Delivery Protocol (CFDP): Blue Book, Issue 4. Num-
ber CCSDS 727.0-B-4. NASA (2007)

16. Czarnecki, K., Antkiewicz, M.: Mapping features to models: a
template approach based on superimposed variants. In: Gluck,
R., Lowry, M. (eds.) GPCE ’05. LNCS, vol. 3676, pp. 422–437.
Springer, Berlin (2005)

17. Fantechi, A., Gnesi, S.: Formal modeling for product families engi-
neering. In: SPLC ’08, pp. 193–202. IEEE (2008)

18. Fischbein, D., Uchitel, S., Braberman, V.: A foundation for behav-
ioural conformance in software product line architectures. In ROS-
ATEA ’06, ISSTA ’06 workshop, pp. 39–48. ACM, New York
(2006)

19. Garrido, A., Johnson, R.: Analyzing multiple configurations of a
C program. In: ICSM ’05, pp. 379–388. IEEE (2005)

123

http://www.info.fundp.ac.be/~acs/fts

612 A. Classen et al.

20. Gastin, P., Oddoux, D.: Fast LTL to Bnchi automata translation. In:
CAV ’01. LNCS, vol. 2102, pp. 53–65. Springer, Berlin (2001)

21. Gruler, A., Leucker, M., Scheidemann, K.: Modeling and model
checking software product lines. In: FMOODS ’08. LNCS, vol.
5051, pp. 113–131. Springer, Berlin (2008)

22. Holzmann, G.J.: State compression in SPIN. In: the 3rd SPIN
Workshop (1997)

23. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley, Menlo Park (2004)

24. Jhala, R., Majumdar, R.: Software model checking. ACM Comput.
Surv. 41(4), 21:1–21:54 (2009)

25. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-ori-
ented domain analysis (FODA) feasibility study. Technical Report
CMU/SEI-90-TR-21, SEI (1990)

26. Kästner, C., Apel, S., Kuhlemann, M.: Granularity in software
product lines. In: ICSE ’08, pp. 311–320. ACM, New York (2008)

27. Kästner, C., Giarrusso, P.G., Ostermann, K.: Partial preprocessing
C code for variability analysis. In: VaMoS ’11, ICPS, pp. 127–136.
ACM, New York (2011)

28. Kishi, T., Noda, N.: Formal verification and software product
lines. Commun. ACM 49(12), 73–77 (2006)

29. Kramer, J., Magee, J., Sloman, M., Lister, A.: CONIC: an inte-
grated approach to distributed computer control systems. IEEE
Proc. Comput. Digit. Tech. 130(1), 1–10 (1983)

30. Larsen, K.G.: Modal specifications. In: Automatic Verification
Methods for Finite State Systems. LNCS, vol. 407, pp. 232–246.
Springer, Berlin (1989)

31. Larsen, K.G., Nyman, U., Wasowski, A.: Modal I/O automata for
interface and product line theories. In: ESOP ’07. LNCS, vol. 4021,
pp. 64–79. Springer, Berlin (2007)

32. Lauenroth, K., Töhning, S., Pohl, K.: Model checking of domain
artifacts in product line engineering. In: ASE ’09, pp. 269–280.
IEEE/ACM (2009)

33. Liu, J., Dehlinger, J., Lutz, R.: Safety analysis of software product
lines using state-based modeling. J. Syst. Softw. 80(11), 1879–
1892 (2007)

34. Plath, M., Ryan, M.: Feature integration using a feature con-
struct. Sci. Comput. Program. 41(1), 53–84 (2001)

35. Pnueli, A.: The temporal logic of programs. In: FOCS ’97, pp.
46–57. IEEE (1977)

36. Post, H., Sinz, C.: Configuration lifting: Verification meets soft-
ware configuration. In: ASE’08, pp. 347–350. IEEE CS (2008)

37. Schobbens, P.-Y., Heymans, P., Trigaux, J.-C., Bontemps, Y.: Fea-
ture Diagrams: A Survey and A Formal Semantics. In: RE ’06, pp.
139–148. IEEE CS (2006)

38. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to auto-
matic program verification. In: LICS ’86, pp. 332–344. IEEE
(1986)

39. Ziadi, T., Hélouët, L., Jézéquel, J.-M.: Towards a UML profile for
software product lines. In: van der Linden, F. (ed.) PFE ’03. LNCS,
vol. 3014, pp. 129–139. Springer, Berlin (2003)

123

