
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

XFG Language and its Profile for Modeling and Analysis of Energy-Aware Real-Time
Behaviors
Kang, Eun-Young; Perrouin, Gilles; Schobbens, Pierre

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Kang, E-Y, Perrouin, G & Schobbens, P 2012, XFG Language and its Profile for Modeling and Analysis of
Energy-Aware Real-Time Behaviors..

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 02. Jul. 2025

https://researchportal.unamur.be/en/publications/704dcc96-3479-485c-ad5f-a3619b93ca5c

XFG Language and its Profile for Modeling and
Analysis of Energy-aware and real-timed behaviors

Eun-Young Kang, Gilles Perrouin, and Pierre-Yves Schobbens

PReCISE Research Centre
Computer Science Faculty, University of Namur, Belgium

{eun-young.kang,gilles.perrouin,pierre-yves.schobbens}@fundp.ac.be

Abstract. This report introduces a formal specification language XFG (extended
function-block graphs), which can be used as IF (interchange format) for Timed
Automata-based input modeling languages and model checkers. Section 1 infor-
mally represents a general introduction to XFG. The concrete E-BNF syntax rules
are presented in Section 2. Section 3 defines complete syntax and semantics of
the langauge. Section 4 gives a running example of the Brake-By-Wire (BBW)
system and part of the XFG specification of the system. We propose a model-
based approach to system engineering using XFG in Section 5 . Section 6 defines
a UML profile for XFG language based on EAST-ADL and MARTE. Finally,
Section 7 provides model-to-text transformations to convert the profiled models
into XFG language.

1 eXtended Function-block Graphs: XFG

An XFG (eXtended Function-block Graphs) language is an extension of timed automata
[2]. It is a formal specification interchange format language for modeling and analysis
of energy-aware real-time (ERT) systems. The XFG format is a textual description lan-
guage and it captures the axiomatic and operational specification of function aspects,
and ERT behavior. The XFG language aims to establish interoperability of various tools
by means of model transformations to and from XFG: The XFG is designed as an en-
gineering language for formal specification and verification, serving as the Hybrid and
Timed Automata (TA) [2, 1] based input modeling language for various model checkers
such as UPPAAL series tool [6, 21], KRONOS [8, 7], and HYTECH [12, 11, 13], etc.

An XFG system consisting of a number of graphes (processes) provides a simple
representation for high-level specification languages and is suitable for modeling in-
terprocess communication by value or signal passing though data channels. The basic
building blocks for an XFG system are presented by processes and two basic construc-
tions of the process in XFG are locations and edges. The process in XFG system rep-
resents a single thread of execution. Interprocess communication is represented by the
synchronous edges. They communicate by means of shared variables or by synchronous
value passing.

The XFG process permits two-way synchronization communication (rendezvous-
style) on complementary input and output actions, as well as broadcast actions. An
edge labeled with a synchronization l!v with another labeled l?v or an arbitrary number
of receivers l?v, where l is a synchronization channel name and v is a share variable.

Urgency

Procressing
c<3
𝑐𝑝 =0

 buff := data
 [c == 3]
cp := cp+2

[c >= 5] Idle
c<=10
𝑐𝑝 =3

system example

state
 disc [1,3] data;
 cont real energy := 0;

processes
 Receiver receiver; Sender sender;

composition receiver || sender

graph
 state clock c:= 0;
 disc buff:=0;

ports in receive;

init Idle

locations
 Idle inv (c<=10){ ……..
 ……..}

receive?data
c:=0

(a) XFG graphical form (b) XFG textual form

Fig. 1. A combination of XFG attributes: A receiver component as an XFG

Any receiver can synchronize in the current state must do so. If there are no receivers,
then the sender can still execute the l! action, i.e. sending is never blocking.

The XFG language extends classical TA with energy consumption information both
on locations and edges of an XFG process (which is seen as a timed automaton). The
energy label on a location represents the rate of energy consumption (continuous energy
consumption) per time unit for staying in that location. The energy label on an edge
represents the discrete energy consumption for taking the edge. Thus, every run in the
XFG process has a energy consumption, which is the accumulated energy (either energy
rate or discrete energy consumption) along the run of every delay (continuous) and
discrete edge. The energy consumption variable in the XFG process can be viewed
as an hybrid variable1, therefore the XFG processes are special cases of liner hybrid
automata [1], in which all continuous variables are clocks, except the energy, which is
never used for the executions in the XFG system.

Particular key features of XFG are that: 1. It provides a general form of urgency.
Edges can either be urgent or non-urgent. Urgent edges marked with a small dot (see
Urgency location in Figure 1) indicate that they have to be executed immediately once
the location has been enabled without letting time pass. This form allows easy modeling
of edge that triggers on data and time conditions; 2. It allows information for continuous
or discrete consumption of resources, e.g., energy, on both locations and transitions.
Locations are guarded with invariants, which forces control out of a location by taking
an enabled edge as soon as the location of the process and the invariant are inconsistent.

1 An hybrid variable is a variable which can have different slops on different locations

Figure 1 shows a simple XFG graph representation of a single process in the XFG
system, both in its graphical (Fig.1.a) and textual (Fig.1.b), that receives messages and
puts the message into a buffer. A message is received (from another process, not visual-
ized here) through the receive input action. It receives data between 5 and 10 seconds
then immediately goes through the Urgency location. Because of the urgency seman-
tics, the edge at the source location (Urgency location) will be taken without any delay.
This edge is indicated by the keyword prompt in Listing 1.1 (in line 14) and by the
black dot at the source of the edge in Figure.1.(a). Afterwards, it takes three seconds to
process the message.

The message is subsequently placed in a buffer, modeled by the data element buff.
The delay is enforced by the clock c. The system will leave the Processing location
when the moment c becomes three, which is exactly three seconds after the location
was entered. We put a constraint c ≥ 3 on the edge from Processing to Idle.

1 Init
2 Idle
3
4 locations
5 Idle inv(c<=10){ when (c<=10 && c>=5)
6 do c:=0;
7 goto Urgency
8
9 when not(c>=5 && c<=10)

10 do dot energy := 3;
11 goto Idle
12 }
13
14 Urgency { when true prompt
15 goto Processing
16 }
17
18 Processing inv(c<3){ when true
19 do dot energy:=0;
20 goto Processing
21
22 when c==3
23 do buff := data;
24 energy := energy+2;
25 goto Idle
26 }

Listing 1.1. XFG Process and its edges on Idle, Urgency and Process locations

The receiver process has a certain energy consumption, captured both in its graph-
ical XFG (with ċp or cp in Fig.1.a) and its textual representations (with dot energy
or energy in Listing 1.1 in lines 10, 19, 24), where ċp is a rate of energy consump-
tion per time unit during a stay in the Idle location, whereas cp is a discrete energy
consumption allocated on the edge as an update.

As soon as the receiver process is triggered (modeled by the Idle location) the
value energy grows with rate 3 (ċp = 3), until the actual receiver is taking a place
in the location Processing. With no continuous energy consumption in the location
Processing (rate 0), it will be ready to receive data from other processes. In that case
a two-units (discrete) energy is consumed on the edge from Processing to Idle.

2 The concrete XFG syntax, notation, and grammar

The concrete E-BNF grammar rules are presented in syntax charts. End symbols are
presented with under-bars such as

� terminal1 � terminal2 �

The terminal symbols present the ascii representation of the keywords of the XFG lan-
guage. Each rule is labeled with its defining nonterminal symbol.

� nonterminal �

The start symbol of the grammar is the nonterminal ”system”. A system specification
in XFG is composed of the six main parts, System Definition, User Definition, State
Definition, Process Definition, Behavior Definition and Process Type Definition. Each
part will be investigated more detail in the following sections.

2.1 System Definition

The system definition clause specifies the global variables of the system. All variables
have to be initialized:

• system definition
� system � ident �
� userde f s � type �
� statede f �
� processde f s �
� behaviorde f �
� processtypes �

– the system heading part, formed by the keyword system and a unique identifier.
– userdefs : the user defined types.
– statedef : the global state definition and all global variables.
– processdefs : the process definitions, defining the processes in the system together

with their types.
– behaviordef : the behavior definition, defining how the processes in the system are

composed.
– processtypes : the process type definitions, defining the structure of the process.

2.2 User Definition

The user definition clause presents one kind of user-defined type, constant type:

• userdefs

� define � (� ident � , � constant �) � ; �

• ident
� letter �

• letter
� a | . . . | z | A | . . . | Z �

2.3 State Definition

The state definition clause specifies the global variables of the system. All variables
have to be initialized:

• statedef

� state �
� vartype � type � [� vexpr � , � vexpr �] �

� ident � :=� vexpr � ; �

• vartype
� disc | cont | clock �

• type
� integer | real | clock �

For the model checkers the allowed value expressions could be more limited than what
is specified below. Only expressions of the following form are allowed: x− y ∼ c, x ∼
y and x ∼ c, where ∼ ∈ { <, ≤, >, ≥, == }, x and y are variables and c is a constant:

• vexpr
� unary � vexpr �
� binary � vexpr � + | − | / | ∗ � vexpr �
� primary � ident �
� (� vexpr �)�

2.4 Process Definition

The process definition clause states the processes of the system. Each process is defined
by a unique identifier and a process type. It is not allowed to use a dot (’.’) in an iden-
tifier in the process definition. However the dot can be used in the transition definition
as a special continuous variable, i.e., cost rate in terms of the clock. In this case that
transition should be the delay transition.

• processdefs

� processes � ident1 � ; � ident2 � ; � . . .� identn � ; �

2.5 Behavior Definition

The behavior definition clause specifies how the processes, which are specified in the
previous clause, communicate. This is done using parallel composition:

• behaviordef

� composition � ident1 � ‖� ident2 � ‖� . . .� identn �

2.6 Process Type

The process type clause defines the structure of the processes. A process (type) is de-
fined by elements:

– a name.
– a state definition, defining the local variables. Variables have to be initialized.
– a set of communication ports. For each port, a direction is specified in or out, and

its type (possibly empty).
– an initial location.
– a set of location definitions.

• processtypes

� graph � ident �
� state � vartype � type � ident � :=� vexpr � ; �
� ports � in | out � ident � ; �
� init � ident �
� locations � locationde f �

A location is defined by its name and a set of outgoing transitions. An invariant can be
specified for a state, limiting the allowed data values for this location. Furthermore, a
location can be declared committed, meaning that it has to be left immediately upon
entering, without any other transitions interfering:

• locationdef

� committed � ident �|� ident � inv � boolexpr �
� {� transitionde f � }�

• boolexpr
� vexpr �== | ! = |< |> | ≤ | ≥ � vexpr �
� boolexpr � and | or � boolexpr �
� not � vexpr �
� true | f alse �
� (� boolexpr �)�

A transition is defined by a guard. It defines when a transition is enabled, an optional
state update, i.e., a set of assignments to local and global state variables, an optional
communication definition, and a destination location. The prompt keyword defines tran-
sitions to be urgent:

• transitiondef

� when � boolexpr � prompt �
� synch | broadcast � ident � ? | ! � ident � ; �
� do � ident | dot ident � :=� vexpr � ; �
� f unctionde f � ; �
� goto � ident �

• functiondef
� ident � ()� {�
� if � (� boolexpr �)�

� ident � :=� vexpr � ; �
� }�

3 XFG complete syntax and semantics

3.1 Core syntax and semantics: XFG process

We define first a core syntax for an XFG system, on which the dynamic semantics is
based. In core syntax, an XFG system is defined as a single, global graph. Also at core
syntax level we do not worry about static semantics issues like type correctness. In the
following, we use some abstract syntax domains that are assumed to be provided by the
data model:

Definition 1. A data language provides the following syntactic domains:

– V : a finite set of variables,
– Vc ⊆V : a subset of clock variables,
– Expr: value expressions (over the set V of variables),
– Bexpr ⊆ Expr: the subset of Boolean expressions.

An XFG consists of a fixed, finite number of processes. The control part of any
process is described as a finite state machine. The full state space is given by a set of
variables (which can be local to the process or shared between processes), communica-
tion channels, clocks, and energy consumption functions. Edges of an XFG process can
be marked as urgent, implying that they should be taken as soon as they are enabled.
Processes of an XFG are executing asynchronously in parallel. They communicate by
means of shared variables or by synchronous value passing. The XFG process permits
two-way synchronization communication (rendezvous-style) on complementary input
and output actions, as well as broadcast actions.

Definition 2. An XFG process is a tuple 〈Dtype, Init, L, l0, I, E, H, U, CP〉 where

– Dtype : V → {disc,cont,clock} assigns to each variable a dynamic type: discrete,
continuous, or clock. The sets Vdisc, Vcont , and Vc are defined as Vt = {v ∈ V |
Dtype(v) = t} for t ∈ {disc,cont,clock},

– Init ∈ Bexpr indicates the initial condition for the process. A set of dotted variables
V̇ ∈Vdisc represents different rates of increasing energy,

– L is a finite set of locations,
– l0 ∈ L is the initial location,
– I : L→ Bexpr assigns an invariant to each location,
– H is a finite set of synchronizing action labels,
– E ⊆L×Bexpr×2V×Expr×H×L is a set of edges, represented as tuples 〈l,g,h,u, l′〉

where
• l ∈ L is the source location,
• g ∈ Bexpr is the guard,

• h ∈ H is a label for synchronization {h!x,h?x|{x} ⊆ Expr,{v} ⊆ V}, where x
and v are either empty or sequences of expressions or variables,

• u⊆V ×Expr is an update,
• l′ ∈ L is the destination location.

Note that an assignment is defined as a set of pairs 〈v,x〉 where v is a variable and x
is an expression whose value is to be assigned to the variable. Each variable should
appear at most once in the update set.

– U ⊆ E identifies the subset of urgent edges.
– CP : L∪E→ R≥0 assigns to each location and edge an energy consumption

The semantics of the XFG process is defined in terms of timed structures.

Definition 3. A timed structure is a tuple 〈S,S0,T 〉 where

– S is a set of states,
– S0 ⊆ S is the subset of initial states, and
– T ⊆ S× (R≥0∪{µ})×S is a transition relation.

A run of a timed structure is an infinite sequence

π = s0
λ0−→ s1

λ1−→ s2 . . .

where s0 ∈ S0 is an initial state and 〈si,λi,si+1〉 ∈ T is a transition for all i ∈ N.

Timed structures distinguish two kinds of transitions: time-passing transitions are
labeled by a non-negative real number that represents the amount of time that has
elapsed during this transition. Discrete transitions model state changes and have a spe-
cial label µ . To define the dynamic semantics of XFG, the following evaluation function
is needed.

Definition 4. We assume a universe Val of values that includes the set R≥0 of non-
negative real numbers and the Boolean values tt and f f . A valuation is a mapping
ρ : V →Val from variables to values such that ρ(c)∈R≥0 for all c∈Vc. For a valuation
ρ and δ ∈ R≥0 we write ρ[+δ] to denote the environment that increases each clock in
Vc by δ :

ρ[+δ](v) =
{

ρ(v)+δ if v ∈Vc
ρ(v) otherwise

We assume given an evaluation function

[[_]]_ : Expr→ (V →Val)→Val

that associates a value [[x]]
ρ

with any expression x ∈ Expr and valuation ρ . We require
that [[x]]

ρ
∈ {tt, f f} for all x ∈ Bexpr.

Definition 5. Operational semantics of an XFG process is given as a timed transition
system 〈S,s0,T 〉 where

– S = 〈l,ρ〉 ∈ L×ρ[+δ](v)

– s0 = 〈l0,ρ0〉
– T ⊆ S× (E ∪R≥0)×S such that:

• For any e = 〈l,g,h,u, l′〉 ∈ E and {〈l,ρ〉.〈l ρ ′[u]〉} ⊆ S: 〈l,ρ〉 e−→ 〈l′,ρ ′[u]〉
• For any δ ≥ 0 and any {〈l,ρ〉,〈l′,ρ ′[+δ]〉} ⊆ S: 〈l,ρ〉 δ−→ 〈l,ρ[+δ]〉
• To each such transition step, we associate an energy consumption defined by{

CP(〈l,ρ〉 e−→ 〈l′,ρ ′[u]〉) =CP(e)

CP(〈l,ρ〉 δ−→ 〈l,ρ[+δ]〉) =CP(l) ·ρ[+δ]

A run π of the XFG process is a finite of infinite sequence of steps with no time-
stuttering. The energy consumption of π denoted CP(π) is the accumulated consump-
tion of steps along the run. An XFG system is a finite set of XFG processes. With any
XFG we associate a timed structure, allowing continuous and discrete energy consump-
tion, whose states are given by the active locations of the XFG and the valuations of the
underlying variables. Detail syntax and semantics will be defined in the next section.

3.2 Complete syntax and semantics: XFG system

The aforementioned semantics gives a meaning to a global XFG system consisting of a
set of XFG’s single graphs (processes) together with a set of shared data variables and
a st of communication channels between the individual XFG’s. To define the commu-
nication channels, the concept of value passing expression is defined.

Definition 6. Let H = {h1,h2, . . . ,} be a set of communication (synchronization ac-
tion) labels, and let H = {h1,h2, . . .} denote a set of complementary labels. A value
passing expression is a tuple 〈ch, ia,oa〉 where

– ch ∈ H ∪H identifies a communication channel,
– ia ∈Vτ is a possible empty tuple of variables, and
– oa ∈ Exprτ is a possible empty tuple value expressions over V .

Let V P denote the set of possible value passing expressions, and V PV those that range
over variable set V . Two communication labels are referred to as complementary, if one
is an overlined version of the other, i.e. h and h are complementary.

In concrete syntax a value passing expression 〈〈v1,v2, . . .〉,〈x1,x2, . . .〉〉 is written
as h?v1?v2, . . . , !x1!x2, where v1,v2, . . . denotes variables, and x1,x2, . . . denote value
expressions. Mostly, value expressions only transfer single value or no value at all. In
the latter case, they become pure synchronization. Value passing expressions come with
a notion of direction, implemented by label names. Only value passing expressions with
complementary label can be matched for actual communication.

Definition 7. An XFG system is a tuple X = 〈GV,GInit,G,Ch,GCP〉, where

– GV =GVc∪GVcont∪GVdisc is a set of global variables, where each GVc,GVcont ,GVdisc
is a set of global clock, continuous, and discrete variables,

– GInit defines the initial condition of X ,
– G = 〈P1, . . . ,Pn〉 is a tuple of X ,

– Ch : EE → (V P∪{⊥}), where EE =
n⋃

P∈G

E provided that Ch(e) ∈ {⊥,V Pv} for

each P ∈ G and e ∈ E,
– GCP : LL∪EE → R≥0, where LL is a location vector, is a function mapping loca-

tion vectors or EE to energy consumptions,
– For each e,e′ ∈ EE with Ch(e) = 〈l, 〈v1, . . . , vn〉, 〈x1, . . . , xm〉〉 and Ch(e′) = 〈l′,
〈v′1, . . . , v′n′〉, 〈x

′
1, . . . , x′m′〉〉, if l and l′ are complementary then n = m′ and m = n′

and ∀ i ∈ {1, . . . ,n}.TV [[vi]] = [[x′i]] and ∀ i ∈ {1, . . . ,m}.TV [[v′i]] = [[xi]] where
• TV [[_]] : (Expr∪V)→P(Val) is an evaluation function associates a type with

each value expression and variable where P(Val) denotes the powerset of Val,
• Types are interpreted as sets of possible values and we assume type correctness

of value expressions: ∀x ∈ Expr.∀ρ ∈ (V →Val).[[x]]
ρ
∈ TV [[x]]

Thus an XFG system is defined by a global state GV , a set G of single XFG’s, and
a function Ch assigning value passing expressions to some of the edges of the XFG
processes. If Ch(e) =⊥ then no value passing is associated with e. The final constraint
in the definition only serves to ensure that value expressions with matching labels have
matching types. We assume that the identifiers used for locations and local variables are
globally unique.

Let an XFG system X , this X can be extended with an additional automaton that
does not communicate with the XFG processes in X . This simple form of extension is
formalized below.

Definition 8. Given an XFG system X = 〈GV,GInit,〈P1, . . . ,Pn〉,Ch,GCP〉, and an
XFG process P, the extension of X with P = 〈Dtype, Init, L, l0, I, E, H, U, CP〉 is
defined to result in the XFG system X ′ = 〈GV,GInit,〈P1, . . . ,Pn,P〉,Ch′,GCP〉 where

Ch′(e) =
{
⊥ if e ∈ E
Ch(e) otherwise

If l = 〈l1, . . . , ln〉 is a location of the global graph corresponding to X , and l′ is a
location of P, then we let l + l′ denote the location 〈11, . . . , ln, l′〉 of the global graph
corresponding X ′.

Definition 9. Let vp1 = 〈l,〈v1, . . . ,vn〉,〈x1, . . . ,xm〉〉 ∈ V PV and let vp2 = 〈l′, 〈v′1,
. . ., v′n′〉,〈x

′
1, . . . ,x

′
m′〉〉 ∈ V PV ′ . Then the function synch(vp1,vp2) ∈ (P((V ∪V ′)×

ExprV∪V ′)∪{⊥}) is defined as follows:

synch(vp1,vp2) =

⋃

i∈{1,...,n}
〈vi,x′i〉∪

⋃
i∈{1,...,m}

〈v′i,xi〉 if l and l’ are complementary

⊥ otherwise

synch(vp1,vp2) returns ⊥ if vp1 and vp2 do not match, which is the case if the
synchronization labels are not complementary. If the two value passing expressions
match, then an update is produced that is the result of combining the two expressions.
Note that in that case it follows from Definition 7, that n = m′ and m = n′.

The most common operator for composing hybrid and TA is parallel composition.
There are no compatibility requirements for the parallel composition of XFG process

(seen as automata): Any pair of XFG process can be composed by the parallel compo-
sition operator. The parallel composition operator synchronizes on all external actions
that the arguments share and allows interleaving of any other actions (under the con-
dition that they maintain the consistency of the other process). The external variables
that are shared by the argument processes need to have the same values. The formal
semantics of the operator is defined in a structured operational semantics style below.

Definition 10. Given an XFG system X = 〈GV,GInit,〈P1, . . . ,Pn〉,Ch,GCP〉 with a
single XFG process Pi = 〈Vi, Initi, Li, l0i, Ii, Ei, Hi, Ui, CPi〉, the global graph corre-
sponding to X is an XFG = 〈V , Init, L, l0, I, E, H, U, CP〉 where

– V =
⋃

i∈{1,...,n}
Vi ∪ GV ,

– ∀v ∈V .Init =
{

Initi if v ∈Vi i ∈ {1, . . . ,n}
GInit if v ∈ GV

– L =
n

∏
i=1

Li

– l0 = 〈l10, . . . , ln0〉
– ∀〈11, . . . , łn〉 ∈ L.I(〈11, . . . , l0〉) =

∧
i∈{1,...,ln}

Ii(li)

– E,H and U are defined as follows: For any i, j ∈ {1, . . . ,n}, and for any urg ∈
Bexpr,

∃e1 = 〈1i,g,h,u, l′1〉 ∈ Ei.
Ch(e1) =⊥.H(e1) =⊥ and
U(e1) = urg

⇔
∃e = 〈〈11, . . . , ln〉,g,h,u,〈l′1, . . . , ł′n〉〉 ∈ E.

(∀k ∈ ({1, . . . ,n}\{i})⇒ lk = l′k) and
H(e) =⊥ and U(e) = urg

∃e1 = 〈1i,g1,h1,u1, l′i〉 ∈ Ei.
∃e2 = 〈1i,g2,h2,u2, l′j〉 ∈ E j.

synch(Ch(e1),Ch(e2)) ,⊥.
H(e1) ,⊥ . H(e2) ,⊥ and
U1(e1)∨U j(e2) = urg

⇔

∃e = 〈〈11, . . . , ln〉,g,h,u,〈l′1, . . . , ł′n〉〉 ∈ E.
(∀k ∈ ({1, . . . ,n}\{i, j})⇒ lk = l′k) and
g = g1∧g2 and h = h1∪h2 and
u = u1∪u2∪ synch(Ch(e1),Ch(e2)) and
H(e) = H(e1)∪H(e2) and U(e) = urg

– CP = 〈CP1, . . . ,CPn,GCP〉

The definition of E, H, and U need additional explanation: An edge in the global
graph (XFG system) originated either from one edge of one of the constituent graphs
(processes) or from two matching edges from two different graphes (processes) as a
consequence of synchronization. In the first case, the original edge must not have a
value passing expression associated with it, since edges with a value passing expression
are require to synchronize. The resulting global edge is then given the guard, the syn-
chronization (with an empty condition) and the urgency attribute from the local edge.
In case the edge is the result of a synchronization, the two value passing expressions
must have matched. Then the guard of the global edge is the conjunction of those of
the local edges. The synchronization action label of the global edge is a combination
of the synchronization action labels of the local edges. The update of the global edge

is a combination of the updates of the local edges and the update that results from the
synchronization. The global edge is urgent, if either one of the local edge is.

In case there is one sender-graph (process), which has an edge labeled with h!v, can
synchronize with an arbitrary number of receiver-graphs (processes) having h?v, where
h is a synchronization channel name and v is a share variable, then any receiver can
synchronize in the current state must do so. If there are no receivers, then the sender
can still execute the l! action, i.e. sending is never blocking. This broadcasting type of
synchronization is defined as follows.

Definition 11. Assume an order P1, . . . ,Pn of processes given by the order of the pro-

cesses in the XFG system X . We have a transition 〈l, l1, . . . , lm,ρ〉
µ∗−→ 〈l′, l′1, . . . , l′m,ρ ′〉

(see Definition 12) if there is an edge e = 〈l, l′〉 and m edges ei = 〈li, l′i〉 for 1 ≤ i ≤ m
such that

– e,e1, . . . ,em are in different processes,
– e1, . . . ,em are ordered according to the process ordering P1, . . . ,Pn,
– e has a synchronization label h! = {h!x|{x} ⊆ Expr,h ∈ H} and e1, . . . ,em have

synchronization labels h? = {h?v|{v} ⊆V}, where h is a broadcasting channel,
– ρ satisfied the guards of e,e1, . . . ,em,
– For all location l ∈ 〈l, l1, . . . , lm〉 not a source of one of the edges e,e1, . . . ,en, all

edges from l either do not have a synchronization label h? or ρ does not satisfy the
guard on the edge,

– ρ ′ is obtained from ρ by first executing the updated label given on e and then the
updated labels given in ei for increasing order of i,

– ρ ′ satisfies I(〈l′, l′1, . . . , ł′m〉)

In the following we define the operational semantics of the XFG system consisting
of a set of XFG processes.

Definition 12. Let X be an XFG with processes P1, . . . ,Pn. The timed structure T =
〈S,S0,T 〉 generated by X is the transition structure such that

– S0 consists of all tuples 〈l1,0, . . . , ln,0,ρ〉 where li,0 is the initial location of process
Pi and [[Initi]]ρ = tt for the initial conditions Initi of all processes Pi.

– For any state s = 〈l1, . . . , ln,ρ〉 ∈ S, any i ∈ {1, . . . ,n}, and any edge 〈li,g,h,u, l′i〉 ∈
Ei of process Pi such that [[g]]

ρ
= tt, T contains a transition 〈s,µ∗,s′〉 ∈ T where

s′ = 〈l′1, . . . , l′n,ρ ′〉 and l′j = l j for j , i, and where

ρ
′(v) =

{
[[e]]

ρ
if 〈v,e〉 ∈ u

ρ(v) otherwise

provided that [[I(l′j)]]ρ ′ = tt for all j ∈ {1, . . . ,n}. A set of pairs 〈v,e〉 is an assign-
ment where v is a variable and e is an expression whose value is to be assigned to
the variable.

– For a state s = 〈l1, . . . , ln,ρ〉 ∈ S and δ ∈R≥0, T contains a transition 〈s,δ ,s′〉 ∈ T
where s′= 〈l1, . . . , ln,ρ[+δ]〉 provided that for all 0≤ ε ≤ δ , the location invariants
evaluate to true, i.e. [[I(li)]]ρ[+ε] = tt, and that for all 0≤ ε < δ , the guards of any
urgent edge 〈li,g,h,u, l′i〉 leaving an active location li of state s evaluate to false,
i.e. [[g]]

ρ[+ε] = f f .

– To each such transition step, an energy consumption is associated by

 GCP(〈l0, . . . , ln,ρ〉
µ∗−→ 〈l′1, . . . , l′n,ρ ′[u]〉) = GCP(µ∗)

GCP(〈l0, . . . , ln,ρ〉
δ−→ 〈l0, . . . , ln,ρ[+ε]〉) = GCP(〈l0, . . . , ln〉) ·ρ[+ε]

Discrete transitions correspond to edges of one of the XFG processes. They require
the guard of the edge to evaluate to true in the source state. The destination state is
obtained by activating the target location of the edge and by applying the updates as-
sociated with the edge. Time-passing transitions uniformly update all clock variables;
time is not allowed to elapse beyond any value that activates some urgent edge of an
XFG process. In either case, the invariants of all active locations have to be maintained.

A run of X is a path in the underlying transition system. Given a run π = s0
c0
−→

s1
c1
−→ s2 . . .

cn−1
−→ sn, its ith-energy consumption is GCPi(π) =

n−1

∑
j=0

c j
i . A position along

a run π is an occurrence of a state 〈l0, . . . , ln,ρ〉 along π . Let ∆ be such a position,
then π[∆] denotes the corresponding state, whereas π ≤ ∆ denotes the finite prefix of π

ending at position ∆ .

4 Running example: Brake-by-Wire System

Our running example is a Brake-by-Wire system (BWS), which is modeled in EAST-
ADL [9] based on a use case provided by VOLVO using Papyrus UML [18] within the
ATESST2 project [4]. Figure 2 depicts a simplified schematic view of the BBW system
with Anti-lock Braking System (ABS) function, where no mechanical connection exists
between the brake pedal and the actuators applied to the four wheels.

The BWS consists of seven components (seen as function blocks): the BWS is il-
lustrated as FunctionAnalysisArchitecture with �analysisFunctionType�
in Figure 2. Each construction of the BWS has �analysisFunctionProtptype�.
One component can communicate with the others through ports and connectors. Here-
after, the FunctionAnalysisArchitecture associated with�analysis Function
Type�will be called FT and the function blocks associated with�analysis Function
Protptype� will be called FP.

– Brake Pedal Sensor (pSensor) : The position of the brake pedal is measured by
this sensor and information derived from it is the basis for computing the applied
brake force.

– Brake Calculator (bCal): Based on each brake pedal position, a desired torque
(force) command is sent to the Brake Controller, i.e., each pedal angle is converted
to its corresponding torque and the desired global torque is calculated based on the
received torque. Afterwards, the calculated global torque is transferred to the Brake
Controller.

– Brake Controller (bCtr): This FP computes the desired torque required for each
wheel based on the value received from the Brake Calculator, and it sends the com-
puted torque to the ABS at each wheel.

<<analysisFunctionType>>
FunctionalAnalysisArchitecture

<<analysisFunctionPrototype>>
+pSensor: Brake Pedal Sensor

<<analysisFunctionPrototype>>
+bCal: Brake Calculator

<<analysisFunctionPrototype>>
+bCtr: Brake Controller

<<analysisFunctionPrototype>>
+vSensor: Vehicle Speed Sensor

<<analysisFunctionPrototype>>
+wSensor: Wheel Speed Sensor

<<analysisFunctionPrototype>>
+abs: ABS

<<analysisFunctionPrototype>>
+actuator: Brake Actuator

Position PositionAngle PositionAngle ReqTorque GlobalTorque

BrakeReference

BrakeReference

BrakeForce

VehicleSpeedABS

WheelSpeedABS

VehicleSpeed

WheelSpeed WSpeedRpm

VSpeedRpm

BrakeForceCmd

BrakeForceOut

Fig. 2. Schematic view of the BBW system in EAST-ADL

– ABS (abs) : This FP controls the braking to prevent the locking of wheels to avoid
skidding. It calculates ABS commands based on the referenced brake torque (from
the Brake Controller) and inputs from Vehicle Speed Sensor and Wheel Speed Sen-
sor.

– Vehicle Speed Sensor (vSensor): The speed of the vehicle is measured and trans-
ferred to the ABS

– Wheel Speed Sensor (wSensor): The speed of the wheel is measured and trans-
ferred to the ABS.

– Brake Actuator (actuator): This FP performs the actual braking by applying the
brake pad to the brake disc, i.e., brake force is translated into voltage.

Each behavior inside FP (called intra-behavior), is visualized in an XFG process and
interactions between FPs via ports and connectors (inter-behavior) are captured by syn-
chronization actions between XFG processes in the XFG system (XFG global graph).
For example, Figure 3 illustrates an XFG graphical representation, which simulates the
intra-behavior of ABS FP. The XFG textual format (XFG code) of ABS is denoted as
graph ABS in Listing 1.2 (lines 46 – 153). Urgent edge marked with a small round
blob (line 150 with prompt keyword) on the S5 location describes that no time unit is
allowed on the synchronization action, in particular regarding the value passing through
the synchronization channel (lines 149 – 153). The ABS has three modes of being:

1. Receiving data from Vehicle Speed Sensor, Wheel Speed Sensor, and Brake Con-
troller processes through each synchronization channel Vspeed_ABS?, Wspeed_ABS?,
and BrakeCtr_ABS?, which are defined in lines 59 – 60 respectively. A set of lo-

Idle

S1

S2

S3

 S4
t<=3

dot energy
:= wabsS4

BrakeCtr_ABS?brake_torque

ABS_brake_torque_f() t:=0 g1:=1

ABS_vehicle_speed_f()
 t:=0 g1:=1

Vspeed_ABS?vehicle_sensor_speed

Vspeed_ABS?vehicle_sensor_speed

ABS_vehicle_speed_f()
 t:=0 g2:=1

BrakeCtr_ABS?brake_torque

ABS_brake_torque_f()
 t:=0 g1:=1

[(g1+g2+g3) >= 3]

slip_f() t:=0

Wspeed_ABS?wheel_sensor_spin

slip_f() t:=0 g3:=1

[(g1+g2+g3) >= 3]

[(g1+g2+g3) >= 3]

slip_f() t:=0

Wspeed_ABS?wheel_sensor_spin

ABS_wheel_spin_f()
 t:=0 g3:=1

Wspeed_ABS?wheel_sensor_spin

ABS_wheel_spin_f()
 t:=0 g3:=1

ABS_Actuator!bforce_cmd
S5

[t >= 3]
 g1:=0
 g2:=0
 g3:=0
 t:=0

bforce_cmd_f_()
energy := energy + dabs

Fig. 3. XFG graphical representation of the ABS

cations {Idle, S1, S2, S3} and edges between them which are associated with rel-
evant channels model the ”receiving data” behaviors. The required functions for re-
ceiving data are illustrated as ABS_vehicle_speed_f(), ABS_wheel_spin_f(),
and ABS_Brake_torque_f() in Figure 3. They are defined in lines (79, 95), (86,
109), and (72, 125) respectively as assigning the received data to the local variables
of ABS.

2. Computing required commands based on the received data from the three processes.
A location S4 and the incoming edges to the S4model ”calculating slip value”. The
ABS controls the wheel braking in order to prevent locking the wheel, based on the
slip value (a variable for this value is defined as continuous type in line 16). The slip
value is calculated by the equation, slip = (v−wr)/v where v is the vehicle speed,
w is the wheel speed, and r is the wheel radius which are defined in lines 17 – 20.
This equation is illustrated as a function slip_f() and defined straightforwardly
in lines 100, 116, and 130. The friction coefficient of the wheel has a nonlinear
relationship with slip:

– When slip increases from zero, the friction coefficient also increases and the
value reaches the peak when slip is around 0.2. After that, further increase in
slip reduces the friction coefficient. For this reason, if slip is greater than 0.2
the Brake Actuator is released and no brake is applied, otherwise the requested
brake torque is used.

The required ABS commands for the Brake Actuator are controlled (computed) by
the variable slip. Thus, from the location S4, based on the current slip value (slip),
the ABS braking force command (bforce_cmd) is computed during a given clock

constraint t ≤ 3 (lines 136 – 147). The required function for this computation is
given as bforce_cmd_f() in Figure 3 and defined in line 145. Furthermore, the
ABS has two energy consumption types:

– Consumption of continuous energy (dot energy) expressed by its derivative
(wabsS4) that gives the rate on the location S4 where the ABS process con-
sumes energy at the rate of wabsS4 per one time unit (line 138).

– Consumption of discrete energy allocated on the edge from the location S4 to
the S5 that is expressed as a usual update, e.g., energy += dabs where dabs
is a discrete type integer (line 142).

3. Sending out the computed commands to the Brake Actuator via the synchroniza-
tion channel ABS_Actuator!, which is defined in line 61. The location S5 and its
outgoing edge, which returns to the initial location Idle, model the ”sending data”
behavior.

An interchange format XFG expressed in structured operational semantics for for-
mal modeling and analysis of ERT system is introduced based on the hybrid and timed
automata theory. In particular, the XFG language can provide a sound basis for model-
ing interdisciplinary (intra- and inter-block behaviors) semantics of systems in EAST-
ADL. Nevertheless, this language is not widespread among engineers. For this reason,
we will first model the intra- and inter-behaviors of systems in EAST-ADL at the UML
level then automatically translate the UML model into the analyzable XFG model by
model transformation. In this way, developers can use familiar notations, while ben-
efiting from formal specification and verification. Details will be investigated in the
following sections.

1 % This is the Brake by Wire System
2 system BWS
3
4 %global constants , variables assignment are added here
5 define(radius, 10); % define wheel radius
6 define(wabsS4, 3); % define weighted energy of ABS
7 define(wact, 3); % define weighted energy of Actuator
8 define(dabs, 2); % define discrete energy of ABS
9 define(dact, 2); % define discrete energy of Actuator

10
11
12 state
13 clock time:=0 ;
14 cont real[0,20] energy:=0;
15
16 cont real [0,2] slip ;
17 cont real [1,41] wheel_spin ;
18 cont real [1,41] wheel_sensor_spin ;
19 cont real [1,121] vehicle_speed ;
20 cont real [1,121] vehicle_sensor_speed ;
21 cont real [1,30] bforce_cmd ;
22 cont real [1,46] pedal_pos ;
23 cont real [1,46] pedal_sensor_pos ;
24
25 disc int [1,3] brake_torque ;
26 disc int [1,3] bforce_cmd2 ;
27
28 % define processes here (function block)
29 processes
30 Pedal_Sensor Psensor;
31 Brake_Calculator Bcal;
32 Brake_Controller Bctr;

33 WheelSpeed_Sensor Wsensor;
34 VehicleSpeed_Sensor Vsensor;
35 ABS abs;
36 Actuator actuator;
37
38
39 % define process composition behavior
40 composition
41 Psensor || Bcal || Wsensor || Vsensor || abs || actuator || Bctr
42
43
44 % each function block process is defined here
45 % define ABS process type here
46 graph ABS
47
48 % define local variable assignments
49 state
50 clock t:=0 ;
51 disc int g1:=0;
52 disc int g2:=0;
53 disc int g3:=0;
54 disc brake_torque := 0;
55 cont real abs_vehicle_speed := 0;
56 cont real abs_wheel_spin := 0;
57
58 % all the inout and output ports are defined here
59 ports
60 in Vspeed_ABS , Wspeed_ABS , BrakeCtr_ABS;
61 out ABS_Actuator;
62
63 % define initial state
64 init
65 Idle
66
67 % define locations
68 locations Idle {
69 when true
70 synch BrakeCtr_ABS?brake_torque;
71 do g1:=1;
72 abs_brake_torque := brake_torque;
73 t:=0;
74 goto S1
75
76 when true
77 synch Vspeed_ABS?vehicle_sensor_speed;
78 do g2:=1;
79 abs_vehicle_speed := vehicle_sensor_speed;
80 t:=0;
81 goto S2
82
83 when true
84 synch Wspeed_ABS?wheel_sensor_spin;
85 do g3:=1;
86 abs_wheel_spin := wheel_sensor_spin;
87 t:=0;
88 goto S3
89 }
90
91 S1 {
92 when not (g1+g2+g3 >= 3)
93 synch Vspeed_ABS?vehicle_sensor_speed;
94 do g2:=1;
95 abs_vehicle_speed := vehicle_sensor_speed;
96 t:=0;
97 goto S2
98
99 when (g1+g2+g3 >= 3)

100 do slip := (abs_vehicle_speed -abs_wheel_spin*radius)/abs_vehicle_speed;

101 t:=0;
102 goto S4
103 }
104
105 S2 {
106 when not (g1+g2+g3 >= 3)
107 synch Wspeed_ABS?wheel_sensor_spin;
108 do g3:=1;
109 abs_wheel_spin := wheel_sensor_spin;
110 t:=0;
111 goto S3
112
113 when (g1+g2+g3 >= 3)
114 synch Wspeed_ABS?wheel_sensor_spin;
115 do g3:=1;
116 slip := (abs_vehicle_speed -abs_wheel_spin*radius)/abs_vehicle_speed;
117 t:=0;
118 goto S4
119 }
120
121 S3 {
122 when true
123 synch BrakeCtr_ABS?brake_torque;
124 do g1:=1;
125 abs_brake_torque := brake_torque;
126 t:=0;
127 goto S1
128
129 when (g1+g2+g3 >= 3)
130 do slip := (abs_vehicle_speed -abs_wheel_spin*radius)/abs_vehicle_speed;
131 t:=0;
132 goto S4
133 }
134
135 % invariant is defined if it is necessary
136 S4 inv (t <= 3) {
137 when true
138 do dot energy := wabsS4;
139 goto S4
140
141 when not (t <= 3)
142 do energy := energy + dabs;
143 t:=0;
144 g1:=0; g2:=0; g3:=0;
145 bforce_cmd := slip * abs_brake_torque;
146 goto S5
147 }
148
149 S5 {
150 when true prompt
151 synch ABS_Actuator!bforce_cmd;
152 goto Idle
153 }
154
155 % Actuator process is defined
156
157 graph Actuator
158
159 state
160 clock c;
161 cont real get_torque = 0;
162
163 ports
164 in ABS_Actuator;
165 out Actuator_Wdynamic;
166
167 init
168 Idle

169
170 locations
171
172 Idle {
173 when true
174 synch ABS_Actuator?bforce_cmd;
175 do c:=0;
176 get_torque := bforce_cmd;
177 goto S1
178 }
179
180 S1 inv (c <= 10) {
181 when (c >=2 && c <= 10)
182 do dot energy := wact;
183 actuator_torque_f() {
184 if (get_torque <=31 && get_torque >=21)
185 bforce_cmd2 := 3 ; //strong force
186
187 if (get_torque <=21 && get_torque >=11)
188 bforce_cmd2 := 2 ; // medium force
189
190 if (get_torque <=11 && get_torque >=1)
191 bforce_cmd2 := 1 ; //weak force
192 };
193 c:=0;
194 goto S2
195
196 when not (c>=2 and c<=10)
197 do energy := energy + dact;
198 goto S1
199 }
200
201 S2{
202 when true prompt
203 synch Actuator_Wdynamic!bforce_cmd2;
204 goto Idle
205 }

Listing 1.2. XFG Textual Specification

5 A Model-based Approach to System Engineering

5.1 Motivations

While the XFG language presented in the previous sections can be used directly to
model ERT systems, it may not suit systems engineers who are used to more high-level
and visual notations. Various system engineering notations have been provided these
last years, often as extensions (profiles) of the Unified Modeling Language (UML) [20]
such as SysML [16], MARTE [17] and EAST-ADL [15], the latter two being the basis
of our modeling approach. Due to the fact that the UML became the lingua franca of
modeling and is an OMG standard since 1997, several mature environment for speci-
fying UML models and profiles have been developed and these environments are now
increasingly adopted by system designers. Since UML does not own a formal seman-
tics, such models needs to be translated into analyzable specifications such as XFG and
then verified using a dedicated model-checker. This translation is often performed man-
ually by verification experts. Yet, this process is tedious an error-prone as the size of
the models increases. To combine the benefits of UML with formal verification we of-
fer means to: i) model ERT systems using existing UML system engineering notations
slightly extended (i.e. an UML profile for XFG) to describe ERT-specific concerns and

ii) an automated model-transformation producing XFG systems in their textual repre-
sentation.

5.2 EAST-ADL

EAST-ADL (Electronics, Architecture and Software Technology – Architecture De-
scription Language) [15] is an ADL dedicated to automotive electronic systems result-
ing from several European projects [3, 14]. The language provides support for architec-
tural specifications at different abstraction levels: the highest abstraction level, Vehicle
(Feature) level, characterizes a vehicle by means of its features and requirements. The
Analysis level, where the Functional Analysis Architecture (FAA) is specified, decom-
poses the model into function units, called AnalysisFunctions (AF), that communicate
through ports. The model at this level is used for the analysis of control requirements,
timing constraints, data consistency between interfaces, hazard identification, etc. The
Design level seems similar but DesignFunctions must correspond to the elements of the
final implementation: hardware, operating system, middleware, network, software mod-
ules. At Implementation level, the component architecture is represented using the AU-
TOSAR standard [5]. EAST-ADL has extensions for environment modeling, require-
ments specification, timing (borrowed from TADL [19]), dependability and V & V at
every abstraction level. This modular approach separates the definition of functional
and non-functional aspects (timing, dependability, etc.).

If EAST-ADL provides excellent support to model the requirements and architec-
ture of ERT systems at various levels of abstraction, dedicated behavioral means are
more limited. Our XFG profile mainly extends the UML state machine construct to
model precisely such behavior. The XFG profile is progressively detailed in Section
6 and summarized in Appendix A. The transformation of XFG profiled models is de-
scribed in Section 7.

6 Modelling ERT Behaviors with the XFG profile, EAST-ADL and MARTE

6.1 Structural Models

We rely on the EAST-ADL specification and UML profile [15] to model the high-level
architecture of the system. In the following, we focus on EAST-ADL analysis level but
the modeling and transformation approach is easily extensible to other levels. In the
EAST-ADL profile, analysis functions are modeled using « AnalysisFunctionType
» . To refer to such function types within an architecture UML parts (EAST-ADL «
AnalysisFunctionPrototype ») are used. These parts exhibit function types’ ports
(EAST-ADL « FunctionFlowPort »), which are connected to other function types
with connectors (EAST-ADL « FunctionConnector »). To ease communication
amongst parts, we require that each port is attached to only one connector. An excerpt
of the architecture of the BWS system discussed in previous sections is presented Figure
4.

Each function type have a set of attributes (UML properties). To model properties’
types, we make use of the MARTE [17] profile, that provides facilities to describe non-
functional properties (subtypes of MARTE « NFP_Type »). MARTE is also used to
define clocks. Since energy is treated differently from other variables, the XFG profile
provides the stereotype « XFGEnergy » to identify such a variable and ease its specific

Fig. 4. Composite Structure Diagram of the BWS (excerpt)

translation. More generally, we will describe how these types are translated into XFG
attributes in Section 7.

6.2 Behavioral Models

The XFG UML profile offers to model the behavior of automotive systems in terms of
state machines. EAST-ADL behaviors can also be given in terms of activity diagrams
[10] but UML state machines are semantically closer to XFG, based on timed automata.
Nevertheless, we will make use of activities to send information through XFG channels.

The general design philosophy underlying XFG-profiled state machines is to mix
the graphical notation of UML with XFG textual expressions to describe effects asso-
ciated by the firing of transitions, time constraints or assignments. Thus, XFG plays
the role of an ERT action language for UML state machines. Figure 5 depicts the state
machine for the ABS function detailed in XFG in the preceding sections.

In the following we explain how to use each UML construct in the context of the
XFG Profile, a summary of the profile and its intuitive semantics will be given in Ap-
pendix A.

Modelling States. Regarding state modeling, we focus on clock constraints and energy
consumption. In our profiled state machines, states do not own any behavior (Entry, Do
or Exit activities are thus forbidden) : behavior is associated to transitions as we will
explain below. Clock constraints are modeled as XFG expressions as part of the states’
invariants. The XFG UML profile provides a specific stereotype to model continuous
energy consumption in states: « XFGContEnergy » . This stereotype allows the de-

Fig. 5. State Machine for the ABS Component using the XFG Profile

signer to specify a consumption rate, the clock this consumption rate it applies to and
the energy property to be updated. The application of such stereotype is depicted in the
UML comment (a rectangle with a folded corner) associated to state S4 in Figure 5.

Fig. 6. Activity Diagram for Sending Brake Force to Actuator

Modelling Transitions The XFG UML profile models behavior over transitions. This
behavior can concern the enclosing EAST-ADL function type only (intra-behavior)
or ensure synchronization amongst function types of the considered system (inter-
behavior):

– Inter-behavioral information reception using triggers. In UML triggers are events
enabling a transition. In our profiled state machines, events for information recep-
tion are UML ReceiveSignalEvent where the associated signal carry a prop-
erty modeling the information to be received. Each trigger is associated to a «
FunctionFlowPort » port, allowing to identify from which function type the in-
formation is issued. This approach is equivalent to the reception of a value through
a channel (h?v) in the XFG language,

– Guards Guards provide fine-grained control over the firing of the transition. If the
guard is true the transition is enabled, disabled otherwise. In the context of the XFG
profile we model guards using the XFG concrete (textual) syntax. These constraints
can refer to local variables or clocks,

– Intra-behavior effects Effects correspond to behaviours realized when a triggering
event has been received and the guard is true. We model intra-behavior as an UML
OpaqueBehaviour having a textual XFG expression. The only difference is that
we use comas to separate statements and that semicolons are omitted.

– Inter-behavior effects using Activities. For sending information to other func-
tion types, we use activities to model signal sending as illustrated on the transition
going to the final state of the state machine Fig. 5. Such an activity diagram is de-
picted Figure 6. It shows how we send to the information to BrakeActuator using

a SendSignalAction. As for reception, the targeted function type is identified
by specifying the EAST-ADL « FunctionFlowPort » port using the attribute
onPort in the SendSignalAction element.

– Discrete energy consumption Behaviors realized on transitions consume energy.
However this energy is discrete and is not dependent on time. As for continuous
cases, we provide a stereotype: « XFGDiscEnergy » . This stereotype allows to
specify a fixed amount of energy consumed by the transition as illustrated Fig. 5.

7 Transforming XFG UML models into XFG textual format

7.1 Model-to-Text Transformations with Acceleo MTL

Our approach relies on generative techniques to transform UML models using the XFG,
MARTE and EAST-ADL profiles into the XFG format. Model-to-Text transformations
(M2T) are an appropriate means to support it. We have chosen Acceleo2, a free imple-
mentation of OMG’s MOF Model to Text Language (MTL). Roughly, an MTL program
consists of transformation rules (called templates), which are organized in modules. A
template is usually formed both by immutable text and by expressions enclosed by
square brackets. When applied on an actual model, these expressions are substituted by
the result of their evaluation. The language offers usual constructs such as for, if and
variable definition (let). Navigation amongst model elements is performed using the
Object Constraint Language (OCL) syntax.

7.2 Mapping Structural Elements

Transforming EAST-ADL/MARTE Attributes. To describe attributes of EAST-ADL
function types, we use the “annotated stereotype"3 approach where predefined datatypes
defined in MARTE and EAST-ADL UML profiles are applied at the model level on
user-defined types. Since the XFG grammar only offers Integer and Real as possible
types for variables we will focus on these ones. We envision to add built-in types in the
XFG profile in the future. While the approach is similar to use MARTE or EAST-ADL
predefined datatypes, MARTE provides a richer set of constructs to define and constrain
datatypes. Such sophistication is currently not needed for primitive types, therefore, for
the sake of simplicity we will exemplify our mapping using EAST-ADL « EAInteger
» and « EFloat » stereotypes instead. Furthermore, we assume that discrete variables
are always of type integer and continuous ones of type real. Listing 1.3 represent
how XFG variables are handled. This basically consists in a conditional branching be-
tween properties stereotypes « EAFloat » and « EAInteger » , « Clock » properties
and energy ones (stereotyped by « XFGEnergy » since energy has a special status in
XFG). Lines 7-15 and 17 show calls to other templates which are detailed in the re-
maining of the listing.

1 [template public genVariables(props:Set(Property)) post(trim())]
2 % define local variable assignments
3 state
4 [for (prop:Property | props)]
5 [if (prop.type.getAppliedStereotypes()->notEmpty() and prop.type.

getAppliedStereotypes()->select(st|

2 http://www.eclipse.org/acceleo/
3 See part 2 of the MARTE tutorial for examples: http://www.omg.org/omgmarte/
Documents/tutorial/part2.pdf

6 st.oclAsType(Stereotype).name=’EAInteger’ or st.oclAsType(Stereotype).
name=’EAFloat’)->notEmpty())]

7 [genEAVariable(prop).trim()/]
8 [else]
9 [if (prop.getAppliedStereotypes()->notEmpty() and prop.getAppliedStereotypes()

->select(st|
10 st.oclAsType(Stereotype).name=’Clock’)->notEmpty())]
11 [genClock(prop)/]
12 [/if]
13 [if (prop.type.getAppliedStereotypes()->notEmpty() and prop.type.

getAppliedStereotypes()->select(st|
14 st.oclAsType(Stereotype).name=’XFGEnergy’)->notEmpty())]
15 [genEnergy(prop)/]
16 [/if]
17 [genVariable(prop)/]
18 [/if]
19 [/for]
20 [/template]
21
22
23 [template public genClock(clock : Property) post(trim())]
24 clock [clock.name/]:=[if (clock.default->isEmpty())][’0;’/][else][clock.default

/][/if]
25 [/template]
26
27 [template public genEnergy(energy : Property) post(trim())]
28 cont [energy.name/]:=[if (energy.default->isEmpty())][’0;’/][else][energy.

default/][/if]
29 [/template]
30
31
32 [template public genVariable(prop:Property) post(trim())]
33 [if (prop.type.name=’Integer’)]
34 disc int [prop.name/][if (prop.default->notEmpty())]:=[prop.default/];[/if]
35 [/if]
36 [/template]
37
38
39 [template public genEAVariable(prop:Property) post(trim())]
40 [if (prop.type.getAppliedStereotypes()->notEmpty() and prop.type.

getAppliedStereotypes()->select(st| st.oclAsType(Stereotype).name=’EAInteger’
)->notEmpty())]

41 [let eaType: Stereotype = prop.type.getAppliedStereotypes()->select(st| st.
oclAsType(Stereotype).name=’EAInteger’)->any(true)]

42 disc int [’[’/] [prop.type.getValue(eaType, ’min’) /],[prop.type.getValue(
eaType, ’max’) /][’]’/] [prop.name/] [if (prop.default->isEmpty())] [’;’/]
[else]:=[prop.default/]; [/if]

43 [/let]
44 [else]
45 [if (prop.type.getAppliedStereotypes()->notEmpty() and prop.type.

getAppliedStereotypes()->select(st| st.oclAsType(Stereotype).name=’EAFloat’
)->notEmpty())]

46 [let eaType: Stereotype = prop.type.getAppliedStereotypes()->select(st| st.
oclAsType(Stereotype).name=’EAFloat’)->any(true)]

47 cont real [’[’/] [prop.type.getValue(eaType, ’min’) /] , [prop.type.getValue(
eaType, ’max’) /] [’]’/] [prop.name/] [if (prop.default->isEmpty())] [’;’/]
[else]:=[prop.default/]; [/if]

48 [/let]
49 [/if]
50 [/if]
51 [/template]

Listing 1.3. Generating XFG Attributes

Acceleo templates genClock() and genEnergy are straightforward. They append
to the immutable string ’clock’ or ’cont’ (since energy is a continuous variable) the
name of the UML property and its default value or ’0’ if there is no specified de-

fault value. Applied on a model these templates generate variable declarations such
as clock t:=0; or cont energy:=0;. genEAVariable (lines 39-51) is more com-
plicated as it also retrieves the lower and upper bound values provided by the modeler
while she applied the stereotype. Thus a typical output of such a template is a decla-
ration like this one: disc int [1,3] brake_torque :=0;. Other properties are
considered as integer variables and processed with the default template genVariable.

7.3 Translating EAST-ADL Architecture into an XFG System.

As depicted Figure 4, an EAST-ADL architecture is divided in parts (whose associated
function types can be recursively decomposed). To identify in a convenient way the top-
level component, which delimits the boundaries of the system, we have introduced the
stereotype « XFGSystem » . In our case, EAST-ADL “FunctionalAnalysisArchitecture"
plays this role. Therefore the transformation of the UML model into its equivalent XFG
specification starts by looking for the model element applying « XFGSystem » .

1 [let sysComp : Component = model.allOwnedElements()->select(e:Element| e.
oclIsTypeOf(Component) and e.getAppliedStereotypes()->select(st:Stereotype|st
.name=’XFGSystem’)->notEmpty())->any(true).oclAsType(Component)]

2 [file (sysComp.name+’.xfg’, false, ’UTF-8’)]
3 [genSystem(sysComp)/]
4 [genVariables(sysComp.ownedAttribute ->reject(att|att.oclIsTypeOf(Port) or att.type

->isEmpty()))/]
5 [genProcessDecl(sysComp)/]
6 [genCompositions(sysComp)/]
7
8
9

10 [template public genSystem(sys:Component) post(trim())]
11 %System Declaration
12 System [sys.name/]
13 [/template]
14
15 [template public genProcessDecl(comp : Component) post(trim())]
16 %define processes here (function block)
17 processes
18 [let parts:OrderedSet(Property) = comp.ownedAttribute ->select(att:Property|att.

type->notEmpty() and att.getAppliedStereotypes()->select(st:Stereotype|st.
name=’AnalysisFunctionProtoType’)->notEmpty())]

19 [for (p:Property|parts)]
20 [p.type.name/] [p.name/];
21 [/for]
22 [/let]
23 [/template]
24
25 [template public genCompositions(sysComp:Component) post(trim())]
26 % define process composition behavior
27 composition
28 [for (c:Connector|sysComp.ownedConnector)]
29 [for (cend:ConnectorEnd|c.end)]
30 [if (cend<>c.end->at(c.end->size()))]
31 [cend.partWithPort.name+’||’/] [else] [cend.partWithPort.name+’;’/]
32 [/if]
33 [/for]
34 [/for]
35 [/template]

Listing 1.4. Generating XFG System Elements

Listing 1.4 illustrates the templates generating declarations at XFG system level.
Lines 1-6 exhibits calls to the templates in the main module. Lines 1-2 describes how
the top-level component is identified using « XFGSystem » stereotype and create a

file (whose extension is “.xfg") and named after the top-level component. Line 2 calls
the template for generating system declaration (detailed lines 10-13): appending the
name of top-level component to the System keyword. Then comes the call to vari-
ables generation (explained above), for which we do not consider UML ports or un-
typed UML properties. This followed by templates handling process declaration. To
generate such process declaration (lines 15-23) we identify the UML parts stereotyped
by EAST-ADL « AnalysisFunctionPrototype » . Their types, (EAST-ADL «
AnalysisFunctionTypes ») will be translated to XFG process. We then append the
name of the process (mapped from the type of the part considered), that will be detailed
in within Graph declaration, followed by an identifier (the part name). Finally, lines
25-35 details how we generate parallel composition of processes by analyzing EAST-
ADL « FunctionConnectors » connectors: for each of such connectors we extract
the name of the correct function type attached to the ports linked by the connector.

7.4 Mapping Behavioral Elements

Now we have we have translated structural elements and XFG system declarations, we
describe here how XFG processes are generated from UML state machines, as illus-
trated Listing 1.5.

1 [let atts : OrderedSet(Property) = sysComp.ownedAttribute ->select(e:Property| e.
type->notEmpty() and e.type.oclIsTypeOf(Component) and e.
getAppliedStereotypes()->select(st:Stereotype|st.name=’
AnalysisFunctionPrototype’)->notEmpty())]

2 [for (c: Component | atts.type.oclAsType(Component))]
3 [genGraph(c)/]
4 [genSyncDecl(sysComp,c)/]
5 [genVariables(c.ownedAttribute ->reject(att|att.oclIsTypeOf(Port) or att.type->

isEmpty()))/]
6 [for (st:StateMachine | c.ownedBehavior ->select(b:Behavior|b.oclIsKindOf(

StateMachine)))]
7 [generateInitialLocation(st)/]
8 [generateLocationsDef(st)/]
9 [/for]

10 [/for]
11 [/let]
12
13 [template public genGraph(comp:Component) post(trim())]
14
15 % [comp.name/] process is defined
16 graph [comp.name/]
17
18 [/template]
19
20 [template public genSyncDecl(sysComp:Component ,c:Component) post(trim())]
21 % all the input and output ports are defined here
22 ports
23 [for (p:Port| c.ownedPort)]
24 [if (p.getValue(p.getAppliedStereotype(’EAST-ADL2::Structure::FunctionModeling

::FunctionFlowPort’), ’direction’)->notEmpty() and p.end->notEmpty())]
25 [let cName : String = p.end->select(cend:ConnectorEnd|cend->notEmpty() and

cend.owner->notEmpty())->any(true).owner.oclAsType(Connector).name]
26 [p.getValue(p.getAppliedStereotype(’EAST-ADL2::Structure::FunctionModeling

::FunctionFlowPort’), ’direction’)/] [if (cName->notEmpty())][cName
/][/if];

27 [/let]
28 [/if]
29 [/for]
30 [/template]
31
32 [template public generateInitialLocation(st: StateMachine)]

33
34 [let initTrans : Transition = st.region->any(true).oclAsType(Region).transition ->
35 select(t:Transition|t.source.oclIsKindOf(Pseudostate) and t.source.

oclAsType(Pseudostate).kind = PseudostateKind::initial)->any(true)]
36 % define initial location
37 init
38 [initTrans.target.name/]
39 [/let]
40 [/template]
41
42
43 [template public generateLocationsDef(st: StateMachine) post (trim())]
44 % locations definition
45 locations
46 [for (state:State| st.region->any(true).oclAsType(Region).subvertex ->select(sta:

Vertex|sta.oclIsTypeOf(State)).oclAsType(State))]
47 [genLocation(state)/]
48 [/for]
49 [for (term:Pseudostate| st.region->any(true).oclAsType(Region).subvertex ->select(

sta:Vertex|sta.oclIsKindOf(Pseudostate) and sta.oclAsType(Pseudostate).kind =
PseudostateKind::terminate).oclAsType(Pseudostate))]

50 [generateTerminate(term)/]
51 [/for]
52 [let fst:FinalState = st.region->any(true).oclAsType(Region).subvertex ->select(sta

:Vertex|sta.oclIsKindOf(FinalState))->any(true).oclAsType(FinalState)]
53 [genFinalLocation(fst)/]
54 [/let]
55 [/template]
56
57
58 [template public generateTerminate(term : Pseudostate)]
59 [state.name/] {}
60 [/template]

Listing 1.5. Generating XFG Processes

Processes’ channels and variables generation. The full definition of each process,
starts with the Graph keyword as shown lines 13-18. Then comes the definition of
synchronisation channels (in/out ports in XFG). Such ports serves for inter-behavior
communication amongst processes and are translated from EAST-ADL ports and con-
nectors. Lines 20-30 illustrates the generation algorithm: First, we consider only UML
ports that are stereotyped by « FunctionFlowPort » for which a direction has been
indicated and that are related to an UML connector (lines 23-24). Then, we append to
the direction the name of the UML connector that is mapped to a channel in XFG. The
generation of local process variables is the same as for “system” variables.

Profiled State Machines Translation. The core of the behavioral translation is illus-
trated in the scope of the for declaration line 6. The general approach is to translate
states as locations and transition as when ... do ... goto blocks defined within lo-
cations. In the following, we describe how each element is translated according to the
visual rules depicted Figure 7.

Generating Initial Location. As illustrated by visual rule R1, the initial state in XFG
is mapped from the first state (and not the initial pseudostate in UML) of the state
machine. This mapping rule is motivated by the fact that UML constrains the initial
pseudostate (one unique transition, on which neither trigger nor guard can be added),
which does not exist in XFG. Lines 32-40 of Listing 1.5 demonstrate how to identify

Init

End

Mapping Control States

XFGUML State Machine

synch!

R1

R2 Final state

R3 Terminate state

Initial state Initial location

Final location

Absorbing location

UML State Machine XFG

R4

Mapping Decision States

s1

choice

Guard2

Guard1

s2

s3

l1

Guard1

Guard2

l2

l3

Transition

R5

Regular Transition

Urgent Transition

Mapping Flows

Fig. 7. State Machine Mapping Rules

the “start” state by identify the state whose incoming transition as the initial pseudostate
as its source.

Generating final location and sending values through communication channels.
The last transition of the UML state machine is related to inter-behavior synchroniza-
tion of state machines. It consists of an effect modeled using an activity diagram as
illustrated Figure 6. Mapping rule R2 illustrates conceptually how to transform this be-
havior in XFG and Listing 1.6 details the transformation in Acceleo. The identification
of the final state in the UML state machine is performed lines 52-54 of Listing 1.5.
From the final state, the genFinalLocation template generates a location and cre-
ates a non-guarded urgent transition (when true prompt) and call the template for
generating sending value behavior defined lines 16-23. It proceeds by retrieving the
UML SendSignalAction element (line 18) and identifying the correct communica-
tion channel (line 19), i.e. the UML EAST-ADL « FunctionConnector » connected
to the « FunctionFlowPort » port referred by the SendSignalAction element.
Once done, we append to the channel name the symbol for sending values ! and the
name of the variable contained by the signal associated to SendSignalAction. Fi-
nally, this final transition target the initial location of the XFG process as illustrated
lines 8-10.

1 [template public genFinalLocation(fst:FinalState) post (trim())]
2 [fst.name/] {
3
4 when true prompt
5 [let synTrans : Transition = fst.incoming->select(t:Transition|t.effect.

oclIsTypeOf(Activity))->any(true)]
6 synch [genSendSynch(synTrans)/]
7 [/let]
8 [let initTrans : Transition = fst.container.stateMachine.region->any(true).

transition ->
9 select(t:Transition|t.source.oclIsKindOf(Pseudostate) and t.source.

oclAsType(Pseudostate).kind = PseudostateKind::initial)->any(true)]
10 goto [initTrans.target.name/]
11 [/let]

12 }
13 [/template]
14
15
16 [template genSendSynch(trans:Transition) post (trim())]
17
18 [let sync: SendSignalAction = trans.effect.oclAsType(Activity).node->select(n:

ActivityNode|n.oclIsTypeOf(SendSignalAction))->any(true)]
19 [let syncChannel : String = sync.onPort.end->select(cend:ConnectorEnd|cend->

notEmpty() and cend.owner->notEmpty())->any(true).owner.oclAsType(Connector).
name]

20 [syncChannel/]![sync.signal.attribute ->any(true).name/]
21 [/let]
22 [/let]
23 [/template]

Listing 1.6. Generating Final Location and Sending Values to Other Processes

Generating Absorbing Locations. Regarding the generation of absorbing locations
(Rule R3), the left-hand side of the rule is covered by the for statement lines 49-51 of
Listing 1.5, which identifies the UML transition having terminate pseudostate as its
target while the right-hand side of the rule, lines 55-57 illustrate the generation of this
absorbing location.

Translating UML Choices. Mapping Rule R4 describes how a choice is translated to
XFG. In fact, there is no direct translation of the concept UML choice in XFG, choice
behavior is directly supported by transitions in XFG. Thus, we translate paths contain-
ing choices as regular XFG transitions where the source location is mapped from the
source state of the choice. Since the source of such transition is not the same as for reg-
ular UML transitions, we need to treat as a special as case as demonstrated in lines 3-4
(excerpt of the template handling transitions) in Listing 1.7. Then genChoice template
generates XFG transition with the particularity that they cannot receive values via com-
munication channels (h?v) since we model value reception in UML using triggers on
transition, which is not allowed for transition outgoing pseudostates (see [20] pp 582).

1 [template public genTransition(trans:Transition) post (trim())]
2
3 [if (trans.target.oclIsTypeOf(Pseudostate) and (trans.target.oclAsType(Pseudostate

).kind = PseudostateKind::choice))]
4 [genChoice(trans.target.oclAsType(Pseudostate))/]
5
6 ...
7
8 [template public genChoice(choice:Pseudostate) post (trim())]
9

10 [for (trans:Transition | choice.outgoing)]
11 when [genGuard(trans.guard)/] [genPrompt(trans)/]
12 [if trans.effect->notEmpty()]
13 do [genEffect(trans.effect)/]
14 [/if]
15 goto [trans.target.name/]
16 [/for]
17 [/template]

Listing 1.7. Handling Choice

Translating UML State Machine Transitions Finally, mapping Rule R5 handles reg-
ular transitions. Full Acceleo code for managing transition is provided in Listing 1.8.
Lines 1-4 have been explained above so we focus on lines 5-12:

– Mapping signal reception to value reception from communication channels. .
Value reception is modeled in the trigger of the UML transition. Template genRec-
eiveSynch (lines 14-18) generated the XFG statements for value reception in a
similar way to what we have explained for sending values,

– Guards. UML Guards are straightforwardly mapped into XFG guards since the
language for the UML constraint is already XFG. This is illustrated by template
genGuard performs this translation,

– Urgent transitions. We have introduced the stereotype « XFGUrgent » to model
the fact that a transition has to be taken as soon it is enabled. Template genPrompt
appends the keyword prompt when the stereotype is applied,

– From UML transition effects to XFG updates. For transition effects not involv-
ing any value sending, we use UML OpaqueExpression consisting of XFG state-
ments. Template genEffect (lines 37-48) describes how such opaque behaviors
are translated: it basically consists in splitting the transition in text in XFg state-
ments. For operation calls, such as slip_f(), we extract the associated XFG
statements from the method associated to the operation defined in the owning «
FunctionType » as illustrated by template getOperation lines 52-58,

– Discrete energy consumption. Regarding discrete energy consumption, we re-
trieve the expression expr which is defined in stereotype « XFGDiscEnergy »
as detailed in template genDiscEnergy lines 61-67.

1 [template public genTransition(trans:Transition) post (trim())]
2 [if (trans.target.oclIsTypeOf(Pseudostate) and (trans.target.oclAsType(Pseudostate

).kind = PseudostateKind::choice))]
3 [genChoice(trans.target.oclAsType(Pseudostate))/]
4 [else]
5 [if (trans.trigger->notEmpty())]
6 synch [genSynch(trans.trigger->any(true))/];
7 [/if]
8 when [genGuard(trans.guard)/] [genPrompt(trans)/]
9 [genEffect(trans.effect)/]

10 goto [trans.target.name/]
11 [/if]
12 [/template]
13
14 [template public genReceiveSynch(trigger : Trigger) post (trim())]
15 [let syncChannel : String = trigger.port->any(true).end->select(cend:ConnectorEnd|

cend->notEmpty() and cend.owner->notEmpty())->any(true).owner.oclAsType(
Connector).name]

16 [syncChannel/]?[trigger.event.oclAsType(ReceiveSignalEvent).signal.attribute ->
any(true).name/];

17 [/let]
18 [/template]
19
20 [template public genGuard(guard : Constraint) post (trim())]
21 [if (guard->notEmpty() and guard.specification.oclIsTypeOf(OpaqueExpression))]
22 [guard.specification.oclAsType(OpaqueExpression)._body/]
23 [else]
24 true
25 [/if]
26 [/template]
27
28
29 [template public genPrompt(trans:Transition) post (trim())]
30 [if trans.getAppliedStereotypes()->notEmpty() and trans.getAppliedStereotypes()->

select(st| st.oclAsType(Stereotype).name=’XFGUrgent’)->notEmpty()]
31 prompt
32 [/if]

33 [/template]
34
35
36
37 [template public genEffect(effect : Behavior) post(trim())]
38 [if (effect->notEmpty() and effect.oclIsTypeOf(OpaqueBehavior))] do
39 [let strs:Sequence(String) = effect.oclAsType(OpaqueBehavior)._body.tokenize(’

,’)]
40 [for (str:String | strs)]
41 [if (str.contains(’()’))] [getOperationBody(str,effect)/]
42 [else]
43 [str.trim()/];
44 [/if]
45 [/for]
46 [/let]
47 [/if]
48 [/template]
49
50
51
52 [template public getOperationBody(str:String,b:Behavior) post(trim())]
53 [let opNam: String = str.tokenize(’(’)->first().trim()]
54 [if (b.redefinitionContext.owner.oclAsType(Component).ownedOperation ->select(op:

Operation|op.name.equalsIgnoreCase(opNam))->notEmpty())]
55 [b.redefinitionContext.owner.oclAsType(Component).ownedOperation ->select(op:

Operation| op.name.equalsIgnoreCase(opNam))->any(true).method.oclAsType(
OpaqueBehavior)._body/]

56 [/if]
57 [/let]
58 [/template]
59
60
61 [template public genDiscEnergy(trans:Transition) post(trim())]
62 [if trans.getAppliedStereotypes()->select(st:Stereotype|st.name=’XFGDiscEnergy’)->

notEmpty()]
63 [let st: Stereotype = trans.getAppliedStereotype(’XFG::XFGDiscEnergy’)]
64 [trans.getValue(st, ’expr’)/]
65 [/let]
66 [/if]
67 [/template]

Listing 1.8. Handling Transitions

Transforming State machine states into XFG locations. The last elements the trans-
formation handles are UML states, which are transformed to location. Besides transi-
tions covered above, we need to handle invariants and continuous energy consumption.
The general template for handling states is shown Listing 1.9:

– “Committed” States. To model situations in which the state has to be left im-
mediately upon entering, we use « XFGCommitted » . Lines 26-30 checks for the
presence of the stereotype applied to the state and appends the keyword committed
before the XFG location name,

– State invariants. State invariants are translated into location invariants. The trans-
lation algorithm is the same as for guards in transitions. This algorithm is shown
lines 13-15,

– Translating continuous energy consumption. We use « XFGContEnergy » stereo-
type to model continuous energy consumption on states. This is translated into an
internal, non-guarded, XFG transition where the update is the dotted consumption
of the energy variable modelled by an equation entered in the ’expr’ tagged value
of « XFGContEnergy » . The translation is defined lines 18-24.

1 [template public genLocation(state : State) post (trim())]
2 [committed(state)/] [state.name/] [if state.stateInvariant ->notEmpty()][

genStateInvariant(state.stateInvariant)/][/if]{
3 [for (trans : Transition | state.outgoing->select(t:Transition| not

t.target.oclIsTypeOf(FinalState)))]
4 [genTransition(trans)/]
5 [/for]
6 [if (state.getAppliedStereotypes()->notEmpty() and state.

getAppliedStereotypes()->select(st| st.oclAsType(Stereotype).name=’
XFGContEnergy’)->notEmpty())]

7 [genContEnergyCP(state)/]
8 [/if]
9 [/]

10 }
11 [/template]
12
13 [template public genStateInvariant(cons:Constraint) post(trim())]
14 inv ([cons.specification.oclAsType(OpaqueExpression)._body/])
15 [/template]
16
17
18 [template public genContEnergyCP(state:State) post (trim())]
19 [let st : Stereotype = state.getAppliedStereotypes()->select(st| st.oclAsType(

Stereotype).name=’XFGContEnergy’)->any(true)]
20 when true do
21 [state.getValue(st,’expr’)/]
22 goto [state.name/]
23 [/let]
24 [/template]
25
26 [template public committed(state:State) post(trim())]
27 [if state.getAppliedStereotypes()->select(st:Stereotype|st.name=’XFGCommitted’)->

notEmpty()]
28 committed
29 [/if]
30 [/template]

Listing 1.9. Handling Locations

A Appendix: The XFG Profile

In this section, we summarize the XFG Profile. The domain diagram of the profile is
given Figure 8.

Fig. 8. Domain Diagram of XFG Profile

The following table summarizes the stereotypes, their application context and con-
straints.

Name Base UML
Metaclass

Tagged Properties Description Constraints

« XFGSystem » Component None Models the top-level
EAST-ADL function
type to be considered
for XFG generation.

There cannot
be more than
one applica-
tion of this
stereotype in a
model.

« XFGEnergy » Datatype None Models the special en-
ergy variable to be gen-
erated in XFG textual
format

none

« XFGContEnergy » State rate : energy con-
sumption rate,
onClock: the
clock referred to,
energyResource: the
energy resource to be
updated, expr : the
XFG code statement to
be inserted in the XFG
specification

Models the continuous
conception of energy
by multiplying the rate
by the clock value

None

« XFGCommitted » State None Models “committed”
states, left immediately
upon entering

none

« XFGDiscEnergy » Transition cpVal : amount of
energy consumed,
energyResouce: the
energy resource to be
updated, expr : the
XFG code statement to
be inserted in the XFG
specification

Discrete consumption
of Energy

None

« XFGUrgent » Transition None Denotes urgent transi-
tions, taken as soon
there are enabled

none

Table 1. XFG Profile Stereotypes

References
1. R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho. Hybrid automata: An algorithmic

approach to the specification and verification of hybrid systems. In Hybrid Systems, volume
736 of LNCS, pages 209–229. Springer-Verlag, 1993.

2. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

3. ATESST. Atesst eu project website. http://www.atesst.org/.
4. Advancing Traffic Efficiency and Safety through Software Technology Phase 2 (European

project), 2010. http://www.atesst.org.
5. AUTomotive Open System Architecture, 2010. http://www.autosar.org.
6. Gerd Berhmann, Alexandre David, Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi.

Developing uppaal over 15 years. Software - Practice and Experience, December 2010.
7. C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In Hybrid Systems III,

volume 1066 of LNCS. Springer-Verlag, 1996.
8. C. Daws, A. Olivero, and S. Yovine. Verifying ET-LOTOS programs with KRONOS. In

Proceedings of the 7th International Conference on Formal Description Techniques, pages
227–242. Chapman and Hall, 1995.

9. EAST-ADL Consortium. East-adl domain model specification v2.1.9. Technical report,
Maenad European Project, 2011.

10. L. Feng, D.J. Chen, H. Lönn, and M. Törngren. Verifying system behaviors in east-adl2
with the spin model checker. In Mechatronics and Automation (ICMA), 2010 International
Conference on, pages 144–149. IEEE, 2010.

11. T.A. Henzinger and P.-H. Ho. algorithmic analysis on nonlinear hybrid systems. In Proceed-
ings 7th International Conference on Computer Aided Verification, CAV’95, volume 939 of
LNCS, pages 225–238. Springer-Verlag, 1995.

12. T.A. Henzinger and P.-H. Ho. HyTech: The cornell hybrid technology tool. volume 1019 of
LNCS, pages 29–43. Springer-Verlag, 1995.

13. T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to hytech, 1996.
14. MAENAD. MAENAD Project webiste. http://www.maenad.eu/.
15. MAENAD Project. East-adl domain model specification (version 2.1.9). Technical report,

EAST-EEA, 2011.
16. OMG/INCOSE. Systems modeling language version 1.2. Technical report, OMG, June

2010.
17. OMG, UML profile for MARTE, 2011. http://www.omgwiki.org/marte/.
18. Open Source Tool for Graphical UML2 Modeling, 2010. http://www.papyrusuml.org.
19. TIMing MOdel, 2010. http://www.timmo-2-use.org/timmo/index.htm.
20. UML 2.4, 2011. http://www.omg.org/spec/UML/2.4.1/.
21. UPPAAL CORA, 2012. http://people.cs.aau.dk/ adavid/cora/language.html.

