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Abstract. Software product line engineering seeks to
systematise reuse when developing families of similar
software systems so as to minimise development time,
cost and defects. To realise variability at the code level,
product line methods classically advocate usage of inher-
itance, components, frameworks, aspects or generative
techniques. However, these might require unaffordable
paradigm shifts for developers if the software was not
thought at the outset as a product line. Furthermore,
these techniques can be conflicting with a company’s
coding practices or external regulations.

These concerns were the motivation for the industry-
university collaboration described in this paper in which
we developed a minimally intrusive coding technique
based on tags. The approach was complemented with
traceability from code to feature diagrams which were
exploited for automated configuration. It is supported
by a toolchain and is now in use in the partner company
for the development of flight grade satellite communica-
tion software libraries.

Key words: Software Product Line Engineering — Code
Tagging — Feature Diagrams — Automation

1 Introduction

Software product-line engineering (SPLE) is an increas-
ingly popular software engineering paradigm institution-
alising reuse across the software lifecycle. Clements et
al. [12] define a software product line (SPL) as “a set of
software-intensive systems that share a common, man-
aged set of features satisfying the specific needs of a

* Extended version of [9]
** FNRS Research Fellow

particular market segment or mission and that are de-
veloped from a common set of core assets in a prescribed
way”. By adopting SPLE, one expects to achieve mass-
customisation, i.e., the ability to create many different
systems, leveraging on similarities between them and
thereby improve the cost, productivity, time to market
and quality of developing software.

Current approaches to the implementation of SPLs
classically advocate usage of specific programming tech-
niques (e.g., via inheritance, and aspects [1,3,4,6,17,
40]), particular architectures (e.g., components or dedi-
cated frameworks [17,21]), preprocessor directives (e.g.,
ifdef directives in C [17,36]), adapted IDEs (e.g., syn-
tax colouring [16,19,26]) or generative programming [13].
One thing almost all of these approaches have in common
is the paradigm shift they require in the way software
is written. While the transition from ‘classical’ software
engineering to SPLE is generally a conscious decision,
known to have a major impact on project management,
drastic changes to the development approach may prove
unaffordable. Whether or not a paradigm shift is the
best solution heavily depends on the context which it-
self is made of many factors: regulations, company stan-
dards, skills of the developers, the intended evolution of
the software. .. In the case of safety-critical software, as
for instance flight-grade satellite software, it can be out-
right impossible to change the coding paradigm, since it
is part of the mission requirements and often enforced
by external regulations (e.g., [34]). As we will see, this is
actually the case in the industrial context that motivates
the research described in this paper.

A major challenge for SPLE is to maintain trace-
ability between low-level implementation artefacts and
high-level abstractions, namely the features of the sys-
tem, so as to facilitate variability management. Indeed,
the choice of which product of the SPL is going to be
built is generally expressed in terms of high-level fea-
tures. If there is no traceability from features to imple-



2 Patrick Heymans et al.: A Code Tagging Approach to Software Product Line Development

mentation artefacts, then product derivation cannot be
automated, possibly negating the expected benefits of
adopting SPLE.

These concerns were the main motivations for a col-
laboration between the University of Namur and an in-
dustrial partner, Spacebel S.A., a software company spe-
cialized in aerospace applications. The context of this
work, which we now describe in more detail, is the de-
velopment of a family of file transfer protocol libraries.

1.1 Industrial context

The CCSDS File delivery Protocol (CFDP) [10], is a
file transfer protocol for communication links spanning
interplanetary distances. Figure 1 shows a sample us-
age scenario of the protocol in which a Spacecraft and a
Network Control Centre exchange files through a Ground
Station. It also shows a Remote User using the CFDP
protocol to communicate with the Spacecraft through its
connection with the Network Control Centre.

The protocol was issued by the Consultative Com-
mittee for Space Data Systems (CCSDS). It is indepen-
dent from the underlying file system and is meant to
cover an extensive number of mission needs. Capabili-
ties include deferred transmission (if the communication
link is unavailable, the transfer will be performed at the
next transmission opportunity), concurrent transfer, sus-
pend/resume, and the ability to transmit via a proxy (a
rover communicating via an orbiter with the ground sta-
tion).

Components for space usage are developed in order
to deal with extreme environmental conditions such as
cosmic rays, temperature variation and vibration. This
type of hardware is thus generally very expensive and
several evolutionary steps behind consumer hardware.
As a consequence, very stringent restrictions apply to
suppliers of on-board software components. CPU usage
and memory footprint are typical quantities that have to
be minimised. For such developments, practitioners often
have no other choice than programming in C and obey-
ing strict rules that prohibit usage of ‘dangerous’ mech-
anisms (typically, dynamic heap memory allocation) or
general-purpose third-party libraries. Similar constraints
apply to development tools which have to be certified by
the appropriate authorities. For example, Spacebel uses
the Rhapsody CASE tool and a certified C' compiler.

Considering these restrictions, and given that specific
missions only require part of the protocol’s functional-
ity, it is highly desirable to only deploy those parts of the
protocol that are eventually going to be used. More con-
cretely, the feature set of a CFDP implementation has
to be minimal wrt. the mission requirements: the im-
plementation cannot include dead code, i.e., code that
cannot be executed by any of the selected features. The
SPLE approach described in this paper takes these con-
straints into account.
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CFDP user link CFDP Entity
Packet Service
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Network Control Centre
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¥l Packet Service
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- Frame/CLTU
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Fig. 1. A CFDP scenario (adapted from [10])

1.2 Problem statement and contribution

The objective of the collaboration between the univer-
sity and Spacebel was to jointly develop an SPL im-
plementation technique that would satisfy the following
requirements:

(R1) Allow mass-customisation of the CFDP library,
i.e., be able to efficiently derive products that only
contain features required for a specific mission,
such that no product has dead code.

(R2) Have a minimal impact on current development
practices (see Section 1.1), and be compliant with
quality standards and regulations in place for flight
software.

(R3) Automate the solution as much as possible, i.e.,
automate product derivation and verification de-
pending on selected options.

The approach that came out of this collaboration
consists of a tool-supported process that spans from fea-
ture modelling (i.e., capturing the commonalities and
variabilities between the intended products of the CFDP
SPL) down to compilation. For the implementation we
chose a pruning-based approach, i.e., there is one com-
plete code base which contains all features of the system,
and from which optional features can be stripped out. At
the code level, this is achieved by special annotations,
called feature tags, which trace code fragments back to
features.

Our approach is supported by a toolchain which, as
required, automates the constraints verification and code
generation tasks behind a user-friendly interface. As we
shall see, strict adherence to R2 in particular leads to a
rather pragmatic approach to SPL implementation, that
is easy to learn, easy to apply and does not cause much
overhead. It has been used with success by the industry
partner for the development of the CFDP library prod-
uct line, and has now become integral part of their core
development method base.

The remainder of the paper is structured as follows.
We first provide the necessary background on SPLE and
feature diagrams in Section 2. The overall approach is
introduced in Section 3. In Section 4, we then focus on
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Fig. 2. Partial FD of the CFDP library

a central component of this approach, namely code tag-
ging. The deployment of the process in the company is
described in Section 5 and evaluated in Section 6. Fi-
nally, Section 7 reviews related work and Section 8 con-
cludes the paper.

Henceforth, “we” refers to the team consisting of the
two partners: the university and the company.

2 Feature models

Central to the SPLE paradigm is the modelling and man-
agement of variability, i.e. “the commonalities and dif-
ferences in the applications in terms of requirements,
architecture, components, and test artefacts” [37]. This
variability is often conveniently expressed in terms of fea-
tures, which appear to be high-level abstractions that
shape the reasoning of the engineers and other stake-
holders [11]. A product of the SPL is seen as a set of
features. In the case of the CFDP library, an example
of a feature is the ability for a user to act as a sending
entity (snd_min). This feature, in turn, can be further
decomposed: the sender can work in acknowledged mode
or not, snd_min_ack, and so on.

Feature diagrams (FDs) [22,39] are popular means
to model the variability of an SPL in terms of features.
An FD describes all legal combinations of features, each
combination being the specification of a product of the
SPL. One of the typical usages of FDs is to guide the
configuration (a.k.a. product derivation) process [14].

A partial FD for the CFDP library is shown in Fig-
ure 2. Basically, FDs are trees whose nodes denote fea-
tures and whose edges represent top-down hierarchical
decomposition of features. The features on level 1 rep-
resent the main functionality of the library: send (the
snd_min feature) and receive (recv-min) files, allow for
a device to receive data through others (extended), safe
reboot after unexpected system failure (reboot), and sup-
port for the “packet utilisation standard” (pus). Each is
then further decomposed on one or two more levels, as
shown for the recv_min feature.

Domain engineering

Featu_re Design Implementation
Modelling

] ]
= | Application engineering I

3

— Y
Configuration .| Code pruning
and compilation

Fig. 3. Process overview

In addition to their tree-shaped backbone, FDs can
also contain cross-tree constraints, often specified in propo-
sitional logic [5] or a subset thereof. The ezcludes rela-
tionship between features recv_min_excl and recv_min_ack
in Figure 2 is an example of such a constraint. Indeed,
if the protocol is to support the acknowledged transfer
mode, then the code required for unacknowledged trans-
fer mode only cannot be included. Additional textual
constraints at the bottom of the figure are another ex-
ample: a valid implementation of the protocol needs to
have at least sending or receiving capability, and if it is
to serve as a proxy (the extended feature), it needs to
have both.

In the process we present in the next section, FDs
are used to specify the commonality and variability of
the SPL as well as for product derivation.

3 Overall process

Before providing the details of the code tagging approach
and its integration with FDs, we set the stage with an
overview of the proposed process. What follows is not
meant to be a complete development process, but rather
an adaptation or complement to a development process
in place. The various activities may well be performed
independently or in a different order depending on the
settings. Their purpose is to help achieving the require-
ments set out in the introduction.

The proposed process is represented graphically in
Figure 3. It is organised according to the classical SPLE
process [37] which consists of two main streams: do-
main engineering (the creation of reusable artefacts) and
application engineering (the usage and adaptation of
reusable artefacts to create final products). During do-
main engineering, a set of core assets is developed: in
our case the FD, the system architecture, and the tagged
code. Application engineering starts with a configuration
step during which features are selected or deselected.
This selection is then used to remove dead code before
compilation. This produces a particular product of the
SPL.

Feature modelling One of the first steps is to capture the
variability of the SPL, i.e. to identify features and their
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relationships to each other. In the case of the CFDP
product line, Spacebel actually based this analysis on
the official protocol specification [10]. In a more clas-
sical software engineering scenario, this step will most
likely be based on a requirements specification. Although
this step precedes design and implementation, the latter
steps may lead to revisions of the FD, hence the feedback
loop in Figure 3.

Design Asin classical software development approaches,
the goal here is to define the (high- and low-level) ar-
chitecture of the system. The FD has to be taken into
account during this phase because the architecture must
facilitate implementation of the variability. To this end,
designs (typically UML diagrams) have to be annotated
with features, allowing us to trace features from specifi-
cation to design. It is also at this step that whole pack-
ages, files and functions that are needed for a specific
feature will be identified.

Implementation In an effort to be minimally intrusive,
implementation must remain largely untouched. Yet, we
need to trace features down to their implementation. The
approach we developed for this purpose is a form of code
tagging. It is detailed in Section 4. Roughly, during the
implementation, programmers annotate the code with
tags that designate the various features of the CFDP
library.

In the course of a project, the implementation may
lead to changes of the FD. This commonly happens if
it turns out, for example, that a feature decomposition
was too fine-grained, or if new dependencies surface.

Configuration Configuration consists in selecting the fea-
tures to be included in a particular product. This phase
is generally guided by the requirements of a particular
customer or mission. It is important that the resulting
product is valid, i.e. that it respects all constraints of
the FD. This validity check can be done manually but
is then tedious and error-prone. Hence we recommend
using a tool dedicated to variability management (see
Section 5).

Code pruning and compilation Up to this point, the im-
plementation contains all possible features. The last step
thus consists in removing non selected features from the
tagged source code. This part is also specific to the sug-
gested code tagging approach detailed in the next sec-
tion. Roughly, a feature parser takes as input the com-
plete program together with a list of selected features,
and returns a program containing only the code frag-
ments pertaining to the selected features. The resulting
source code can then be compiled normally.

Taken together, configuration, code pruning and com-
pilation correspond to what is usually called “product
derivation” in SPLE.

4 Tag and prune

One can distinguish between two types of approaches
for implementing SPLs: compositional approaches im-
plement features as distinct modules while annotative
approaches assume that there is one complete code base
where annotations in the source code indicate the feature
a fragment belongs to [23,26]. With the compositional
approach, a product is generated by composing a set of
fragments. With an annotative approach, a product is
obtained by removing fragments corresponding to dis-
carded features.

We decided to follow an annotative approach since in
our case compositional approaches come with a paradigm
shift, which would violate one of our three main require-
ments, viz. minimal change of the coding practice. In
addition, compositional approaches tend to be coarse-
grained, i.e. enable extensions at the beginning or end of
methods (e.g. AOP), whereas in cases like CEFDP, fea-
tures can appear at different levels, from a complete
function to a very specific statement related to a par-
ticular option.

Opinions about the granularity of compositional ap-
proaches may vary. Szyperski defined a component as
follows: “A software component is a unit of composi-
tion with contractually specified interfaces and explicit
context dependencies only. A software component can
be deployed independently and is subject to third-party
composition.” [43]. Components can be defined at any
level but are not used at the lowest possible level in prac-
tice, mainly for the sake of ease of reuse.

Furthermore, existing annotative approaches proved
to be unsuitable for our undertaking. CIDE [26], for
instance, requires a special IDE. Another well known
approach consists in using #ifdef pre-processing state-
ments. This allows to remove parts of the code based
on the values of configuration parameters passed to the
compiler but is too cumbersome. Indeed, extensive usage
of ifdef structures results in unreadable code, which is
difficult to maintain, especially because of the #endif’s
that are needed to define the scope of each pre-processing
directive [41].

These were the reasons for developing a new kind of
annotative approach. A more thorough comparison with
related approaches is given in Section 7.

4.1 Syntax and semantics

Basically, a feature tag is an annotation of a block of
C code with the names of the features that require the
block to be present. If none of the features listed in a tag
is included in a particular product, then the tagged code
block will not be part of the source code generated for
this product. Tags can also be nested and a whole file
can be tagged with an additional annotation. Untagged
code is assumed to be needed for all features.
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cfdp_receiver.c

/*@feature:recv_min@*//* @file_feature!@*/

()

void cfdp_receiver_handle_PDU(cfdp_receiver* const me, struct cfdp_buffer* PDU_buffer,
CFDP_PDU_type_t PDU_type) {

/*@feature:recv_inactivity@*/
/* Restart inactivity timer */
cfdp_timer_start(&(me->timer_inactivity), me->config.timeout_inactivity);

/* Handle PDU and dispatch it depending on its type */
switch (PDU_type)

/*@feature:recv_min_ack@*/
case CFDP_PDU_ACK_FINISHED:

cfdp_receiver_handle_PDU_eof_no_error(me,PDU_buffer);

break;
case CFDP_PDU_EOF_NO_ERROR:

cfdp_receiver_handle_PDU_eof_no_error(me,PDU_buffer);

}

break;

/*@feature:recv_keep_alive@*/
case CFDP_PDU_PROMPT_KEEP_ALIVE:
{

}

break;
/*@feature:recv_prompt_nak@*/
case CFDP_PDU_PROMPT_NAK:

cfdp_receiver_handle_PDU_prompt_keep_alive(me,PDU_buffer); r

cfdp_receiver_handle_PDU_prompt_nak(me,PDU_buffer);
}

break:
default:

/* Unexpected PDU -> discard */
}

break;

()

[ cfdp_receiver.h |

*@feature:RECV_MIN@*//*@lfile_feature!@*/
"
N @file
/Il @brief
/Il @date
"

cfdp_receiver.h
This file contains the specification of cfdp_receiver
Generated by abx on Tue, 24, Mar 2009 with Rhapsody 7.2

()

/*@feature:$features@*/

Vi

/Il @brief This function handles a single PDU contained in the input buffer. It restarts the inactivity
timer, then dispatches it to specific handlers.

/Il @param PDU_buffer: [InOut] The buffer containing the PDU

/Il @param PDU_type: [In] Type of the PDU to handle

1

)‘## operation handle_PDU(cfdp_buffer, CFDP_PDU_type_t) */
voRicfdp_receiver_handle_PDU(cfdp_receiver* const me, struct cfdp_buffer PDU_buffer,
CFDP, _PDU_type_t PDU_type)

()N

\ . AST
AN Function
\\
\
/\/’\
\\
Return type Parameters Block
N /’\
AY
AN
\
\
\ MethodCall SwitchStruct
\ %
\
\
\\
\ Parameter Cases
Y %\
\
\
Case 1 Case 2 Case 3 Case 4 Default

Fig. 4. Code tagging illustration taken from the CFDP implementation

Syntactically, a feature tag is a particular comment
style. As such, it is displayed in the same colour as com-
ments in code editors, which eases the reading. Our tags
follow a pre-defined pattern that can be recognised by a
feature parser.

<fcomment> ::= "/*@feature:" <flist> "@*/" [<filetag>]
<flist> ::= <featurename> ( ":" <flist> ) *
<filetag> ::= "/x@!file_feature!@x*/"

In this pattern, <featurename> identifies a feature of the
FD.

The scope of a tag is the ‘functional block’, which
we define as a group of statements that belong together,
and that can be removed as a whole without violating
the syntax or grammar of the language. For instance,
it would be impossible to remove only the signature of
a function without also removing its body. Functional
blocks thus correspond to elements of the abstract syn-
tax tree (AST), an idea previously found in [28]. With
this approach, we can guarantee that the pruned code
will always be syntactically correct.

The functional block corresponding to a code tag is
determined by the instructions that follow the tag. More
precisely, this can be:

— the complete source file (if followed by a <filetag>),
— a function,

a single statement,

a group of statements enclosed by braces (a block),
a loop (for, while, do),

a single case statement of a switch structure, or the
whole switch structure,

a single block of an if / else if / else structure,
a single field of a struct declaration, or the whole
struct declaration,

a single value of an enum declaration, or the whole
enum declaration.

The functional block associated to a tag will be re-
moved if the corresponding feature is not selected in the
product. If a functional block is associated to several
features (<featurelist>), it will be removed if none of
its associated features is selected. Functions are a spe-
cial case. Indeed, a tag associated to a function can be
defined in the implementation file (.c) or in the header
file (.h), the header being of higher priority. It should
be noted that blocks must be used cautiously as vari-
ables declared in a block are local to the block. The list
presented before contains no preprocessor directives as
tagging this kind of C construct was not required in our
case. However, since the parser we developed (see Sec-
tion 4.4) is invoked before the C preprocessor, our tag-
ging language could easily be adapted to support them.
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Note that code tags were conceived as necessary con-
ditions for code to be present, and so expressing the op-
posite of a given code tag (the ‘else’) can be tricky. How-
ever, this can be accomplished by defining additional fea-
tures in the FD that exclude other features. The nega-
tion thus becomes implicit through the FD. This is what
happened with the recv_min_excl feature.

The main advantages of code tagging over the previ-
ously mentioned approaches are:

— the ‘automatic’ function block scoping: the developer
does not need to track closing tags, or worry about
syntactical correctness,

— its independence from a special IDE: the developer
can use any code generator/editor combination.

However, it does require an additional parsing step.

4.2 Illustration

Figure 4 contains an example of tagged code taken from
the cfdp_receiver.c and cfdp_receiver.h source files, which
implement the CEFDP protocol for the receiving side of
a transfer. Only a fragment of these files is shown here.
There are four functional blocks tagged with features
(shown with a highlighted background in the figure) that
correspond to the features of the FD of Figure 2. Fea-
ture recu_inactivity covers the cfdp_time_start function
call (as well as the comment before it) while features
recv_min_ack, recv_keep_alive and recv_prompt_nak each
cover a case block (see blue markers of Figure 4). Ba-
sically, the cfdp_receiver_handle PDU function decides
how each incoming packet (‘CFDP protocol data unit’ or
PDU in terms of the standard) is handled. A keep alive
packet, for instance, will only be handled when the cor-
responding feature exists (recv_keep_alive). Tagging the
case statements with the features on which they depend
is very natural and results in intuitive code. In addi-
tion, the whole file is tagged with recv_min, meaning that
a protocol implementation with no receiving capability
does not need the constants, variables and functions de-
fined therein.

The bottom right part of Figure 4 shows part of the
AST of the cfdp_receiver_handle PDU function illus-
trating how code tagging actually corresponds to nodes
of the AST. Tagged nodes are highlighted by a rounded
rectangle. For example, the Case 1 node in the AST cor-
responds to the case structure where PDU_type equals
CFDP_PDU_ACK_FINISHED. In Figure 4, one can see that
lines of codes covered by feature tags correspond to nodes
of the AST. Consequently, the removal of those lines will
keep the code syntactically correct. For example, if fea-
ture recv_min_ack is not selected, the deletion of the cor-
responding case structure will keep the AST consistent.

4.8 Correctness

Syntactical correctness of the pruned source code is guar-
anteed by construction, but type errors may still persist.
This problem also exists in other approaches to SPL im-
plementation [45].

In our code tagging approach, basic type errors or
double type declarations can be avoided by following a
simple design rule:

D1-The product consisting of all features is free
of type errors.

This can be checked easily by trying to compile without
pruning—while working on the tagged code, for instance.

In the case of the CFDP implementation, however,
the errors we most often encountered in practice were
due to undeclared variables or functions, which cannot
be tackled with the previously mentioned rule. Such er-
rors generally occur if a variable that was previously
used only in one optional feature, is now also used in
another feature but its tagged declaration is left un-
changed. Compiling without the first feature will result
in an error. Debugging these errors is generally straight-
forward. Nevertheless, it is better to avoid them upfront.
To this end, we propose a second design rule and asso-
ciated test strategy.

We first need to introduce a new concept. From the
FD, one can determine for each feature f the features
that are always present if f is also present in a product.
An approximation that is easy to calculate, and that
makes sense as a design rule, is to take all the features
that are necessary for f to be present: its parent(s), its
mandatory siblings if its parent is an and feature, and
the features it requires (requires constraints in the FD),
and then recursively their parents, mandatory children
of and features, and required features. Let us call these
features the principal dependencies of f. The principal
dependencies of a feature could be seen as a super atomic
set as they might correspond to several atomic sets as
defined by Benavides et al. [7].

The design rule we impose is:

D2-Each feature can only use variables, functions
and types declared by itself or by its principal de-
pendencies.

This rule is sufficient to guarantee that each valid prod-
uct will be free of errors due to bad references. Indeed,
code pruning is monotonic: the less features are selected
the more code is pruned. More concretely, given a prod-
uct consisting only of a feature f and its principal de-
pendencies, if one adds another feature g (along with
its principal dependencies), then all of the declarations
that were previously there will still be. Indeed, adding a
feature will always add code, never remove lines of code.
Therefore, if f and g satisfy the design rule, the product
consisting of f,g and their principal dependencies will
have no bad references. This immediately generalises,
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meaning that if each feature respects the design rule, all
possible products will be free of bad references.

Now, in order to verify that the design rule is indeed
satisfied, it is sufficient to test that for each feature, the
product consisting of the feature and its principal de-
pendencies compile. This is typically accomplished in a
two-step process. First, identify for each feature the sin-
gle product composed of its principal dependencies by
traversing the FD. Second, compile the products identi-
fied in the first step and check if they are error-free. This
requires as many prunings/compilations as there are fea-
tures, but this strategy is complete and it is linear in the
number of features. The set of configurations that should
be tested can be easily calculated from the FD. Indeed,
using a simple graph traversal, we can compute the set
of dependencies of each feature we run into. In addition,
the operation can be readily parallelised.

Note the complementarity of both design rules. Whereas

D1 makes sure that no symbol is declared twice in a
product, D2 ensures that all symbols that are referenced
by a feature are declared in all the products the feature
appears in. Together, both rules are sufficient to guar-
antee type correctness.

These design rules underline the pragmatic aspect
of code tagging. They are straightforward to implement
in an existing development environment and do not re-
quire additional tools, nor specific type systems that can
deal with features. This simplicity comes at a cost. For
instance, the design rules cannot easily deal with mutu-
ally exclusive features that declare variables or functions
with identical names. The first design rule would disallow
such cases, even though there would be no type errors in
the generated products (since the features are mutually
exclusive). In the case of the CFDP, however, we have
not experienced this problem.

4.4 Implementation

As of now, code tagging has been implemented for the
C programming language only, but can be easily imple-
mented for other imperative languages. We used Flex!
and Bison? to generate a feature parser for ANSI C' en-
riched with the previously defined code tag syntax. As
illustrated in Figure 5, this parser takes as input the
source file of an application and the list of features that
make up the product to be implemented (as well as the
location of the output directory where the results should
be stored). While parsing the file, it checks the feature
list of each tag against the list of selected features. If no
selected feature is included in a tag, the functional block
following the tag will be discarded; otherwise, it will be
included in the output file. The output file can then be
used to compile the final product.

! nttp://flex.sourceforge.net/
2 http://www.gnu.org/software/bison/

Feature parser

Fig. 5. Inputs and outputs of the feature parser

For instance, if the feature parser is run on the files
of our illustrative example (see Section 4.2) with the fea-
ture list snd_min:recv_min as parameter, the resulting
cfdp_receiver.c and cfdp_receiver.h files will contain only
source code elements related to the recv_min feature of
the FD. Concretely, all the highlighted code blocks of
Figure 4 will be removed since the features in their tags
are not part of the list of selected features.

For convenience, pruning and compilation are both
included in a makefile that first prunes each source file of
the project, including project makefiles. These makefiles
are finally executed to build the library deliverable. In
all, creating a product of the CFDP library SPL is done
with a single command:

make -FEATURE_LIST=SND_MIN:RECV_MIN
-VERSION_NAME=sender_receiver_in_unack_mode

In this command, the version name parameter is a com-
ment meant to convey the same information as the fea-
ture list, albeit in a more easily readable form.

5 Deployment in the company

In Section 3, we gave an abstract description of an overall
process that spans from feature modelling down to com-
pilation. Here, we show how this process was deployed
within the context of our industrial project, the CFDP
library SPL, and examine its impact on the standard op-
erating procedure. We also describe the toolchain that
was assembled to support the process. It consists of 3
kinds of tools:

— tools that were already in use at Spacebel, namely a
CASE tool and a C compiler;

— tools built specifically to support the approach, namely
the parser described in Section 4;

— off-the-shelf tools adopted specifically to support the
approach, namely pure::variants.

The mapping between the steps and the tools is shown
in Figure 6 and elaborated on in the remainder of this
section.

5.1 Feature modelling and design

Feature modelling is done using pure::variants, an Eclipse
plug-in developed by pure-systems GmbH [8]. For the
purpose described in this paper, a number of other tools
were considered, such as AHEAD [4], Feature Model-
ing Plug-in [2], Gears [30] and FeatureIDE [29]. We se-
lected pure::variants because of its commercial support,
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Fig. 6. Toolchain as deployed at Spacebel

and because it meets all requirements formulated by
Spacebel: one can define (complex) constraints between
features, it includes a configurator, and the feature se-
lection can easily be passed to our makefile. However,
our approach does not depend on this tool, other tools
may be used too. As mandated by company policy, a
commercial UML-based model-driven engineering tool,
is used to create design models. We extended the tool
so that an engineer can also tag design models with fea-
tures, these tags being included in the code generated
by the CASE tool. More concretely, we added a tag to
the Rhapsody CASE tool using the associated templates.
This tag is visible in the top right window of Figure 7.
Here again, the approach is general enough to accommo-
date any other CASE tool.

The feature modelling step is an addition to the tra-
ditional development process. The complete FD of the
CFEFDP product line contains 75 features, several cross-
tree constraints, and is up to three levels deep. The
only supplemental expertise required from the engineer
is knowledge about FDs, which turned out to be very
intuitive to use. The main impact of our approach on
the design phase is the need to take features into ac-
count when defining the architecture. In practice, this
means that the architecture will tend to be more mod-
ular, so that high-level features directly map to high-
level design artefacts, such as packages. Figure 7 is an
excerpt of the CFDP library architecture in which the
cfdp_receiver class of the CFDP_entity_pkg package is
tagged with the RECV_MIN feature (see top right win-
dow). As in traditional development, a good design re-
duces development time; this effect is amplified since the
design has to account for the features that will eventu-
ally become tags in the code. Altogether, the overhead
caused by our approach was, according to Spacebel en-
gineers, rather low: feature modelling and design took
an estimated 25% more time than the design phase in
similar projects of the company. This overhead is mainly
due to the FD drawing task.

5.2 Implementation and testing

The implementation activity itself does not require many
changes to existing practice, one of the goals of our ap-
proach. The CASE tool is used to generate code skele-
tons from the design models, including skeletons already
tagged with features (as described in Section 4). The
remaining code is written manually and tagged with
features in the process. A few new coding rules were
added due to the way the code pruner works, such as
the mandatory use of blocks in case statements, for in-
stance. Again, the developer needs additional expertise:
she has to understand the FD, and to learn the syntax
and the semantics of the tagging language. The devel-
opers reported that the conceptual overhead caused by
feature tags is manageable. During testing and debug-
ging, around 20% of the errors were caused by feature
tags, and of these only 5% were actual logical errors.
The other 95% were all type errors, easily found (resp.
corrected) by testing (resp. enforcing) the second design
rule from Section 4.3. Feature tagging thus only caused
a marginal increase in the number of errors.

In order to determine the overhead caused by the
tagging activity and the additional testing, we developed
part of the library without feature tags, adding them as
part of a second pass over the code. Tagging the code
retrospectively took 20% of the time it took to develop
the said code. Note that this is a cautious estimate; the
developers reported that it is generally easier to tag the
code directly than retrospectively.

5.8 Configuration, pruning and compilation

Once the development of the SPL is finished, one can
configure and build various products from the SPL. Con-
figuration, that is, selecting the features to be included
in a product, is done again using pure::variants (reusing
the FD elaborated during the design phase). The tool has
a graphical interface in which users can select/deselect
features in a directory-tree like interface, shown in Fig-
ure 8 ; it also prevents the user from making inconsistent
choices. The configuration process is thus completely
tool-supported. Once a product is obtained, pruning and
compilation of the source code are fully automatic. To
this end, we developed a pure::variants plug-in that ex-
ports a feature selection to command line syntax of the
makefile. The deliverables (source code and executable)
generated by the makefile constitute the end result of
the tool-supported process.

The person doing the configuration needs to have
a deep knowledge of the mission requirements as well
as a sufficient understanding of the FD, to be able to
map mission requirements to features of the library. Note
that in the case of the CFDP, configuration is generally
not done by the engineer responsible for the design or
development of the library, and so special care has been
taken to document each individual feature in the FD.
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Fig. 7. Excerpt of the CFDP library annotated architecture in Rhapsody

It is during this activity that the initial investment of
20% overhead during development pays off. If this activ-
ity were performed manually on untagged code, it would
take around 20% of the development time to create each
product. The investment thus pays off with the second
product. Furthermore, manual code pruning would be
error-prone.

6 FEvaluation

Here we evaluate the approach and toolchain after the
deployment at Spacebel. We first discuss extent to which
the initial requirements, formulated in Section 1.2, were
satisfied. This is followed by a broader discussion of
lessons learnt.

6.1 Initial requirements

(R1) Mass-customisation and no dead code. The
first requirement is the outset of the project: be able to

quickly produce a reduced version of a library on de-
mand. Mass-customisation is enabled by following an
SPL approach, with variability management through FDs.
Dead code is avoided by pruning unnecessary code (re-
lated to features irrelevant for the specific needs of a
mission) before compilation. We have conducted exper-
iments to measure the gains in memory and CPU foot-
print that can be achieved by customising a library to
specific mission requirements: products that correspond
to common mission requirements were generated, com-
piled, loaded and tested using company’s usual perfor-
mance tools. While the full library requires 65 kB of
PROM, a version restricted to sending files needs 16.2
kB, four times less. The binaries’ sizes of the numerous
(over one billion®) configurations of the CFDP thus vary
between these two values. To put this into perspective,
for the LISA Pathfinder (a planned ESA mission which
does not use the CFDP protocol), the PROM budget for
the entire data handling system, of which the CFDP

3 according to S.P.L.O.T. [33]
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Fig. 8. CFDP feature diagram in pure::variants

would be just a small part, is 375 kB. We therefore con-
sider this requirement to be met.

(R2) Minimal impact and compliance. The ap-
plication domain, satellite on-board systems, comes with
a number of stringent development constraints, qual-
ity standards and regulations. Those impose develop-
ment practices that it would be too costly or even im-
possible to change, hence this second requirement. As
detailed in the previous section, the transition to our
SPLE approach necessitates three changes: (1) specifi-
cation and design now include the FD, (2) code has to
be developed with tags that trace back to features, and
(3) each delivered library goes through a configuration
and pruning step. These changes require additional ex-
pertise from engineers and developers: FDs and the tag-
ging technique. According to the practitioners involved,
both are very easy to master and do not affect coding
practice in a fundamental way; the development envi-
ronment and paradigm are not affected. Altogether the
overhead in time ranges from 20% to 25% when com-
pared to traditional development. Furthermore, none of
these points impacts the technologies used during the
development process. Technically, the deliverable is thus
indistinguishable from one that would have been devel-
oped individually, which meets the compliance require-
ment.

(R3) Automation. All of the additional steps are
tool-supported, and pruning is fully automated. There

is room for improvement, though. Firstly, FD elabora-
tion and configuration will always require user interven-
tion and can thus never be completely automated. In
previous papers, we proposed methods to further im-
prove the configuration process based on the Spacebel
case [20,46]. Secondly, although the tagging approach
keeps the code very readable (tags minimally alter the
code and can be easily recognized), readability could be
enhanced by highlighting tagged code fragments (e.g.
with colours [26]). Thirdly, the design rules from Sec-
tion 4.3 could be checked proactively by the IDE, notify-
ing the developer immediately of a type error. Fourthly,
integration of the various tools in the toolchain of Fig-
ure 6 is currently not very tight in that it occurs only
through file exchange. Support for traceability and co-
evolution of the involved artefacts is thus rudimentary. A
tighter integration of all tools into an IDE would further
reduce development costs and risks of errors. While the
goal of our code tagging approach was to be independent
of a specific IDE, nothing prevents us from developing
an IDE that supports the usage of code tags. As long as
the IDE is based on code tagging, it will create artefacts
that can be edited in any source code editor.

0.2 Lessons learnt and discussion

Return on investment. While it is hard to cite exact
numbers, the return on investment of the approach is
positive. The overhead required to develop the CFDP as
an SPL was an estimated 25%. The advantage gained
from this upfront investment is the ability to deliver a
customised version of the library very quickly and for a
very low marginal cost. We estimate that the investment
is redeemed with the first delivered individual product.

Granularity of tagging. Achieving a low granu-
larity turned out to be less of a technical problem, and
more of a challenge to find intuitive ways to implement
tags at low granularity. For instance, we spent consider-
able time trying to find an intuitive tag placement for
nested if/else if/else structures. The current granu-
larity of the tagging approach was based on an analysis
of the granularity required for the CFDP implementa-
tion. The only experienced limitation at present is the
inability to remove individual parameters of a function.
However, tagging of parameters and expressions appear
to be infrequent and specific to some projects [31,32].

FD Granularity. Initial FDs had a very fine gran-
ularity; hundreds of features, up to five levels deep. Ex-
periments showed that the advantages gained in terms of
memory and CPU footprint would not offset the higher
development cost of those fine-grained features and the
FD was revised.

Legibility. According to developers, the legibility of
the source code is not reduced by the tagging approach
(tags are C comments which are rendered in a differ-
ent colour in most code editors). However, developers
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found it sometimes hard to determine the feature(s) cor-
responding to a specific source code fragment, especially
in the presence of nested tags. We have developed a pro-
totype tool that alleviates this problem with tag-based
filter and visualisation techniques [18].

Error proneness and flexibility. The two design
rules defined in Section 4.3 are sufficient to guarantee ab-
sence of type errors in all possible variants. As mentioned
in the previous section, misplaced tags mostly led to
type/scope errors which were easily caught and solved.
The number of more fundamental errors detected during
testing was not increased significantly by the presence of
tags. A drawback of the first design rule is that it makes
it impossible to have mutually exclusive features declare
variables or functions with the same name. This is rather
restrictive but does not imply that the approach does
not provide support for alternative features. Indeed, such
features are not necessarily implemented with similarly-
named functions. This rule was not a problem in the
case of the CFDP even though it has mutually exclusive
features. Evaluating our approach on other cases could
lead us to adapt this first design rule.

Threats to validity. While the approach presented
in this paper is applicable in a number of situations, it
was currently applied to a single project only. We noticed
that it is harder to add features to code that was not de-
signed and written with features in mind. This confirms
the intuition that it is harder to transform a legacy code
base into an SPL than to develop an SPL from scratch. It
remains to be seen how the approach performs for other
projects. We are currently planning to use the approach
for a product line of satellite hardware simulation and
benchmarking tools. This will also allow us to tackle
another threat which is the scalability of the approach.
Applying it on the CFDP library (made of 6224 lines of
code) was not a problem but we have no evidence that
it is the case for larger problems. However, we are rather
confident that the approach will scale since feature tags
are non-invasive. Another limitation is that the approach
has only been applied in a single domain, aerospace, with
all its specificities, especially its strict certification rules,
and space and memory consumption constraints. Apply-
ing the approach in other domains might lead us to re-
vise, or even relax, the design rules or propose an inte-
grated IDE. Currently, the approach has been applied by
two developers at Spacebel. This could be considered as
a threat since this population sample is small and both
developers have the same background. All those threats
could be tackled by applying our approach on different
projects in several application domains, so involving dif-
ferent developer profiles and project sizes.

7 Related work

7.1 SPL implementation

Gacek et al. [17] discuss different approaches to han-
dle variability at the code level, such as inheritance,
parametrisation, conditional compilation or overloading.
These techniques have several drawbacks. All of them are
general-purpose programming techniques, making it im-
possible to distinguish constructs that implement vari-
ability from those that are part of the ‘normal’ code.
As a consequence, features cannot be readily identified
in the code and there is thus no straightforward way to
actually reduce a codebase to a certain feature set (in
order to minimise code size and memory footprint, for
instance). Finally, none of those techniques is meant to,
much less capable of, representing all kinds of variability
found in an SPL, thus leading to an amalgamation of
various techniques in the same code base.

Gacek et al. [17] as well as Anastasopoulos and
Muthig [1] also investigate aspect-oriented programming
(AOP) as an SPL implementation technique. AOP re-
quires a paradigm shift and its granularity is generally
not sufficient to allow for the insertion of individual
statements in methods [26] (a critique applying to most
compositional approaches, such as feature-oriented pro-
gramming [4]). Even the somewhat fine-grained code in-
jection techniques, such as before/after method advice
code, or purposely set hooks, have the significant draw-
back of not allowing the developer to see the ‘whole pic-
ture’. Indeed, the purpose of AOP is to allow the in-
jection of crosscutting concerns into the code, which, as
shown by Anastasopoulos and Muthig [1], does not sup-
port all kinds of variability. For example, if all features of
the CFDP library SPL were aspects, then the remaining
code would just be a skeleton, making it close to impos-
sible to understand, let alone debug, it. Similarly to us,
Késtner et al. [25] evaluated the ability to implement an
SPL on a case study, but using AspectlJ, i.e., an AOP
approach.

One advantage of compositional approaches over an-
notative ones is their emphasis on modularity. However,
in cases such as the CFDP library, there is no need to
modularise the code more than it already is. The size of
the applications in this domain as well as the experience
of the developers with the modularisation mechanisms
provided by C' or C' + + are sufficient; in fact, any fur-
ther modularisation would most likely entail overhead
rather than benefits.

Patzke and Muthig [35] propose frame technology,
an annotative approach which aim is to explicitly rep-
resent variation points in the code. The problem there
is that the implementation mixes the code representing
variable behaviour with information about how this be-
haviour can vary, hence violating the principle of separa-
tion of concerns [44]. Indeed, a variation point exists on a
much higher level than the code, since not only the code
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has variability, but so have the design and the require-
ments. We therefore explicitly separate variability (the
FD) from implementation according to the principles of
orthogonal variability modelling [38].

In response to the limitations of compositional ap-
proaches, especially when reengineering a legacy code
base as a product line, Késtner et al. [26] propose CIDE.
CIDE lets the developer use colours to label code frag-
ments that pertain to certain features. Their approach is
similar to ours in that code annotations are in fact anno-
tations of the abstract syntax tree. The main limitations
of annotative approaches tackled by CIDE, such as un-
readable code or error-prone development, are solved by
our code tagging approach as well. Their approach has
the advantage of being integrated with an IDE, allowing
for instance, to filter the displayed code to show only
one feature [24]. Similarly to our approach, CIDE sup-
ports alternative features [27]. Their approach, however,
also has a number of limitations. CIDE is tightly inte-
grated with the Eclipse IDE, storing annotations in sep-
arate files. Our code tags, on the contrary, are part of the
source code itself, meaning that they can be copy/pasted,
and that the resulting source code is portable (i.e. can
be viewed and edited with any editor). Obviously, one
could modify CIDE annotation files with any text edi-
tor. However, editing and maintaining these files would
be cumbersome and error-prone, since they have to be
kept in sync with every edit to the source code.Finally,
the choice of colour as the primary means to indicate
features (as opposed to colour just being a way to visu-
alise features), leads to limitations when the number of
features is high (close to 80 in our case), when annota-
tions are nested, or when fragments pertain to several
features.

7.2 Type correctness

In [45], Thaker et al. define the notion of safe compo-
sition as “the guarantee that programs composed from
feature modules are type safe”. It means that no ref-
erence to undefined classes, methods, variables,... can
exist in the pruned source code. In [24], Kéastner and
Apel show how the Featherweight Java calculus can be
extended with feature annotations in order to guarantee
that all possible configurations of a well-typed SPL are
well-typed as well. The main drawback of the proposal
is that it only covers a subset of a very specific pro-
gramming language, and is thus not directly applicable
in practice. With code tagging, we can easily guarantee
safe composition by following two testable design rules
explained in Section 4.3.

7.8 Pruning

A related approach with a focus on models for SPLE
(rather than code) is proposed in [15]. This approach

involves annotating fragments of a UML model (such
as a class diagram, for instance) with so-called ‘presence
conditions’. A presence condition is a Boolean expression
over the features of an FD, which for a given configura-
tion of the FD is true or false. To obtain the model corre-
sponding to a specific configuration, the model fragments
whose expressions evaluate to false are pruned. This ap-
proach is similar to code tagging, in that a code tag is
actually a presence condition consisting of a disjunction
of features. Incidentally, the authors mention that the
higher expressivity of arbitrary Boolean expression is of-
ten not needed in practice, and contend that “the ma-
jority of elements is annotated with single features” [15].
The advantage of code tags as disjunctions of features is
that code pruning becomes monotonic, which is an im-
portant requirement for safe composition in our case, as
explained in Section 4.3. A similar tool is FeatureMap-
per [19], which also allows to link features of FDs to
design models (defined in Ecore-based languages) and
so enable pruning and filtering of models based on fea-
ture selections. In our case, design models and FDs had
to be linked using tags in the Rhapsody CASE tool since
Spacebel cannot use any other tool for certification rea-
sons, as mentioned in the introduction.

7.4 Tagging

Storey et al. [42] investigate code tagging from the per-
spective of asynchronous and collaborative program de-
velopment. Their approach is supported by the open-
source tool TagSEA, and its purpose is to enhance navi-
gation and knowledge distribution in the code files them-
selves. This approach is complementary to ours and partly
confirms our choice of tagging as an appropriate means
to annotate code. Integrating TagSEA within our toolchain
would be a nice way to improve visualisation and naviga-
tion. A first prototype has already been developed [18].

8 Conclusion

To implement variation points at the code level, prod-
uct line methods classically advocate usage of inheri-
tance, components, frameworks, aspects or generative
techniques. The problem of these techniques is that they
often require unaffordable paradigm shifts from the de-
velopers if the software was not thought at the outset
of a product line. Furthermore, these techniques can be
conflicting with a company’s coding practices or exter-
nal regulations. As a consequence, we developed an ap-
proach to implementing software product lines as part
of a partnership between industry and university. The
proposal combines previous ideas in a unique way and
pursues three principal goals: (1) be able to remove all
the code that belongs to non selected features, (2) have
a minimal impact on current development practices, and
(3) automate the solution as much as possible.
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The result is an approach that spans the whole devel-
opment process and is supported by a toolchain. The ap-
proach uses feature diagrams to capture variability and
its kernel consists of a novel technique for tagging por-
tions of code with features. After configuring a product,
a feature parser is run over the codebase, which creates a
new codebase without the fragments that pertain to non
selected features. Code tagging has several advantages
over existing software product lines implementation ap-
proaches. Mainly, it uses a special code style and it is
a conservative extension of the programming language
that entails very little overhead for the programmer.

The proposed approach has been used successfully
for the development of a flight grade satellite file transfer
library product line. The feature parser is implemented
for C', but the principles behind code tagging are general
enough for it to transpose to most imperative program-
ming languages. The same conclusion applies to design
models. We thus believe that the approach can be easily
applied to a variety of projects.

In the future, we intend to extend this work in several
ways. One is to apply the process to other projects in or-
der to test its adaptability and improve it with new feed-
back. Another is to strengthen communication among
the different components and extend our approach with
additional components, e.g., to enhance visualisation and
navigation.
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