
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

A framework for collaboratively editing domain specific models

Koshima, Amanuel; Englebert, Vincent; Thiran, Philippe

Published in:
Doctoral Symposium of the 25th European Conference on Object-Oriented Programming

Publication date:
2011

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Koshima, A, Englebert, V & Thiran, P 2011, A framework for collaboratively editing domain specific models. in
Doctoral Symposium of the 25th European Conference on Object-Oriented Programming.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 05. Oct. 2022

https://researchportal.unamur.be/en/publications/2272aebf-c446-4b1e-bc72-7f3e631e66bb

A Framework for Collaboratively Editing
Domain Specific Models

Amanuel Koshima
Vincent Englebert (promoter) and Philippe Thiran (co-promoter)

PReCISE Research Center, University of Namur, Belgium
{amanuel.koshima, vincent.englebert, philippe.thiran}@fundp.ac.be

Abstract. Modeling process most of the time demands collaboration
among a number of engineers so that DSML tools need to be support
collaboration. In this work, we will present DiCoMEF that will be de-
veloped to support collaborative modeling.

Keywords: Collaborative Work, Model Versioning, DSM

1 Problem Description

Model Driven Engineering (MDE) is a software engineering technique aiming
to raise the level of abstraction of a software development from code to model
[5]. MDE uses Domain Specific Modeling Languages (DSML) to specify the
structure, behavior and requirements of the applications within specific domains
[5]. DSML describes the business concepts at different abstraction levels using
model, meta-model and meta-meta-model. A model is an abstraction of a soft-
ware system. A meta-model is a language that defines a valid instances models.
Likewise, models are specified by a meta-model, meta-models are described by
meta-meta-models (i.e. EMF/Ecore [12]).

Like other software artifacts, meta-models could also evolve during software
development life cycles [6]. As a result, the existing models may no longer con-
form to the new version of meta-model. Therefore, these models need to be
co-evolved in order to conform to the adapted meta-model.

Although most of the DSM tools developed in the past consider the software
modeling process as a single user task, it usually requires collaboration among a
large number of engineers with different specialties [4]. Hence, there is a need for
group members to share models and meta-models and synchronize their activ-
ities. Shared modeling artifacts could be edited concurrently by different users
without prior consultation. As a result, these different versions of artifacts might
be in conflict. The management of inconsistencies is the main challenge for the
implementation of collaborative model editing framework.

A central repository with locks and merge mechanisms is the most commonly
used approach to handle conflicts and ensure collaboration [10]. But, locking
technique becomes inadequate when a number of users is getting large [3]. In
addition, this approach restricts users to be dependent on a central repository. It

could also introduces administration of access rights which might be cumbersome
and causes users dissatisfaction. Other modes of collaboration is where each
member of a group has his/her own local copy (meta)model and communicate
his/her activities by sending messages [10]. This type of collaboration gives users
control over their data and let them work in isolation. It also addresses the
problem of being dependent on a single repository. But, it is challenging to keep
all copies of (meta)models that could be concurrently modified.

2 Goal Statement

Saeki [11] introduced the use of versioning system to control and manage mod-
els and meta-models, which evolve independently. The author did not consider
collaboration in his work. EMFStore is a model repository for collaboratively
editing EMF models which is implemented based on the premise of on a cen-
tral repository with copy-merge techniques [9]. MetaEdit+ [8] implements Smart
Mode Access Restricting Technology (Smart Locks c©) to support concurrent ac-
cess of shared modeling artifacts that are stored centrally. As it was stated above,
this type of collaboration limits developers to work on one central repository.

In [4], Constantin et. al. proposed a reconciliation framework for collab-
orative model editing. In their work, they suggested a weakly coupled mode
of collaboration, where (meta)models are managed in distributed fashion. But,
they only provide a theoretical reconciliation framework to support collaborative
work without providing a solution. In another work, Mougenot et. al. [10] devel-
oped a peer-to-peer collaborative model editing framework called D-Praxis. In
Mougenot et. al. proposal, developers exchange sequences of operations used to
adapt a model. This approach implemented automatic conflict resolution based
on delete semantics and Lamport’s clock. Nevertheless, this approach suffers
from similar problem of ”lost-update”. Furthermore, it does not take into con-
sideration the co-evolution of models with their meta-models.

In this context, our research will aim at developing a Distributed Collabora-
tive Model Editing Framework (DiCoMEF) for modeling tools that are based on
EMF/Ecore meta-meta-model definition. In DiCoMEF, both models and meta-
models could be freely distributed without having constraints like central repos-
itory. Engineers will be able to carry out their work independently without prior
consultation with other users of the same model. Besides, sequences of opera-
tions that are used to adapt models and meta-models are captured and used as
a means to propagate local modifications from one developer to others. These
sequences of operations are also used to detect conflicts and merge two ver-
sions of the same meta-model into one. Indeed, the reconciliation of conflicting
modifications is supervised by a controller (human agent).

In this work, we use COPE [7] to record edit operations performed on meta-
model and to generate and attach instructions of how to migrate models. We
adopted COPE because it is industrially tested and it has tool support [1]. But,
COPE does not support collaboration. So that we will develop a tool which
provides import and export facilities with conflict detection and merging for

concurrently edited meta-models. We will also develop a tool to record edit op-
erations of models and integrate with import and export facilities. In addition, a
facility for engineers to annotate edit operations with multimedia files to express
their rationale of changes will be provided.

3 Method

Collaboration Framework: DiCoMEF is a distributed collaborative system in
which every engineer has his/her own local copy of (meta)models and edit them
locally. Changes concern (meta)models are captured and used to propagate lo-
cal modifications to other engineers. Besides, engineers could also annotate the
rationale of changes they make with multi-media files. As part of change man-
agement, a controller is responsible for supervise modifications of (meta)models.
A controller detects conflicts and reconciles them under the supervision of the
engineer who proposed changes. Afterwards, s/he propagates accepted modifi-
cations to other engineers.

Model Comparison compares two (meta)models so as to drive their differ-
ences. State-based comparison and change-base comparison are the most com-
monly used approaches [3]. The first approach compares the information of
(meta)models whereas the second one compares the log of changes recorded from
the latest common version. Unlike state-based comparison, change-base compar-
ison captures the time sequence of changes that is important to understand
changes, conflict detection, and merging [3]. Besides, it keeps composite opera-
tions in the same context [3]. State-based comparison is computationally expen-
sive. In this work, we opted for the change-base comparison.

Conflict Detection and Resolution: according to [3], conflicts are a set of
operations that causes inconsistency. These conflicts could be textual, syntac-
tic, composite, or semantic conflicts. Conflicts might be solved manually, semi-
automatically or automatically. Manual conflict detection is time consuming and
error prone to deal with complex (meta)models. Automatic conflict resolution
is not applicable in most situations, because conflict detection and resolution is
domain specific. This work adopts a semi-automatic conflict detection approach.

Model Merging : it is a process of integrating concurrently edited (meta)models,
which have the same base version into a new (meta)model. The most commonly
used merging techniques are raw merge, two-way merge and three-way merge [3].
The last one gives the better result as compared to the other two approaches.
So that we adopted a three-way mergining technique in our work.

Model Migration : it is a process of adapting models in response to meta-
model evolution in order to keep the existing models conform to a new ver-
sion of meta-model [7]. Difference-based approaches and operation-based ap-
proaches are commonly adopted approach for model migration. Difference-based
approach could not always derive correct migration instructions. Operation-based
approaches derives migration instructions from sequences of operations that
adapt a meta-model. This approach keeps composite operations in the same
context, which could help to understand the intention of a user.

Change Propagation: engineers can communicate their works in peer-to-peer
communication mode, but it is difficult to keep all local copies consistent that are
concurrently edited by different engineers. Another mode of change propagation
is where every developer sends sequences of changes to a controller and then the
controller supervises modifications and propagates accepted changes to other
members. We adopted the second mode of communication and will investigate
different policies on how to apply propagated changes on all local copies.

Validation: DiCoMEF will be tested and evaluated with USiXML project.
USiXML is an UML/XML/ECore based meta-model which offers a common
way to specify User Interface (UI) independent of the underlying platform and
programming languages [2] .

References

1. COPE, coupled evolution of metamodels and models. http://cope.in.tum.de/

pmwiki.php, 2011.
2. UsiXML, user interface extensible markup language. http://www.usixml.org/,

2011.
3. K. Altmanninger, M. Seidl, and M. Wimmer. A survey on model versioning ap-

proaches. IJWIS, 5(3):271–304, 2009.
4. C. Constantin, V. Englebert, and P. Thiran. A reconciliation framework to support

cooperative work with DSM. In Proceedings of the First International Workshop
on Domain Engineering held in conjunction with CAiSE’09 Conference, collection
CEUR-WS.org, volume 457, 2009.

5. J.-M. Favre. Towards a basic theory to model model driven engineering. In
In Workshop on Software Model Engineering, WISME 2004, joint event with
UML2004, 2004.

6. B. Gruschko. Towards synchronizing models with evolving metamodels. In In
Proc. Int. Workshop on Model-Driven Software Evolution held with the ECSMR,
2007.

7. M. Herrmannsdoerfer, S. Benz, and E. Juergens. COPE: A Language for the
Coupled Evolution of Metamodels and Models . In Proc. of the 1st International
Workshop on Model Co-Evolution and Consistency Management. ACM, 2008.

8. S. Kelly. Case tool support for co-operative work in information system design.
In C. Rolland, Y. Chen, and M. Fang, editors, Information Systems in the WWW
Environment, volume 115 of IFIP Conference Proceedings, pages 49–69. Chapman
& Hall, 1998.

9. M. Koegel and J. Helming. EMFStore: a model repository for emf models. In
J. Kramer, J. Bishop, P. T. Devanbu, and S. Uchitel, editors, ICSE (2), pages
307–308. ACM, 2010.

10. A. Mougenot, X. Blanc, and M.-P. Gervais. D-praxis: A peer-to-peer collaborative
model editing framework. In Proceedings of the 9th IFIP WG 6.1 International
Conference on Distributed Applications and Interoperable Systems, DAIS ’09, pages
16–29, Berlin, Heidelberg, 2009. Springer-Verlag.

11. M. Saeki. Configuration management in a method engineering context. In
E. Dubois and K. Pohl, editors, CAiSE, volume 4001 of Lecture Notes in Com-
puter Science, pages 384–398. Springer, 2006.

12. D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling
Framework 2.0. Addison-Wesley Professional, 2nd edition, 2009.

