
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Understanding database schema evolution

Cleve, Anthony; Meurice, Loup; Gobert, Maxime; Maes, Jerome; Weber, Jens

Published in:
Science of Computer Programming

DOI:
10.1016/j.scico.2013.11.025

Publication date:
2015

Document Version
Peer reviewed version

Link to publication
Citation for pulished version (HARVARD):
Cleve, A, Meurice, L, Gobert, M, Maes, J & Weber, J 2015, 'Understanding database schema evolution: A case
study', Science of Computer Programming, vol. 97, no. P1, pp. 113-121.
https://doi.org/10.1016/j.scico.2013.11.025

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://doi.org/10.1016/j.scico.2013.11.025
https://researchportal.unamur.be/en/publications/08e48561-e565-40a3-991e-b82b7147c25d
https://doi.org/10.1016/j.scico.2013.11.025

Science of Computer Programming 97 (2015) 113–121

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Understanding database schema evolution: A case study

Anthony Cleve a,∗, Maxime Gobert a, Loup Meurice a, Jerome Maes a,
Jens Weber b

a University of Namur, Belgium
b University of Victoria, Canada

h i g h l i g h t s

• We present a tool-supported method to analyze the history of a database schema.
• The method makes use of mining software repositories (MSR) techniques.
• We report on the application of the method to a large-scale case study.

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 October 2013
Accepted 5 November 2013
Available online 22 November 2013

Keywords:
Database understanding
Schema evolution
Software repository mining

Database reverse engineering (DRE) has traditionally been carried out by considering three
main information sources: (1) the database schema, (2) the stored data, and (3) the
application programs. Not all of these information sources are always available, or of
sufficient quality to inform the DRE process. For example, getting access to real-world
data is often extremely problematic for information systems that maintain private data.
In recent years, the analysis of the evolution history of software programs have gained an
increasing role in reverse engineering in general, but comparatively little such research has
been carried out in the context of database reverse engineering. The goal of this paper is to
contribute to narrowing this gap and exploring the use of the database evolution history as
an additional information source to aid database schema reverse engineering. We present
a tool-supported method for analyzing the evolution history of legacy databases, and we
report on a large-scale case study of reverse engineering a complex information system
and curate it as a benchmark for future research efforts within the community.

© 2013 Elsevier B.V. All rights reserved.

Working in Paul Klint’s group at CWI has been my very first professional experience. This was certainly the best possible way to start
my research career. Paul is one of the most inspiring persons I have ever met. His ability to share his enthusiasm with his colleagues
and students, and to show them the way through his own achievements, is truly outstanding. Now that I have, in turn, the privilege
to supervise students, I make sure to regularly ask them the question Paul used to ask me: “So, are you still making progress?” Their
most recent answer is summarized in this paper. Happy Birthday, Paul! – Anthony.

1. Introduction

Understanding the evolution history of a complex software system can significantly aid and inform current and future
development initiatives of that system. Software repositories such as version management systems and issue trackers pro-
vide excellent opportunities for historical analyses of system evolution. Most research work in this area has concentrated on
program code, design and architecture. Fewer studies have focused on database systems and schemas. This is an unfortu-
nate gap as databases are often at the heart of many of today’s information systems. Understanding the database schema –

* Corresponding author.

0167-6423/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.scico.2013.11.025

http://dx.doi.org/10.1016/j.scico.2013.11.025
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://dx.doi.org/10.1016/j.scico.2013.11.025
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2013.11.025&domain=pdf

114 A. Cleve et al. / Science of Computer Programming 97 (2015) 113–121

which captures domain-specific concepts, data structures and integrity constraints – often constitutes a prerequisite to un-
derstanding the evolution of such systems.

In this paper, we report on our experiences made in the context of a real-world project with the objective of evolving a
complex medical information system to fit new requirements. Specifically, (1) we present the tool-supported approach we
developed to better understand the evolution history of the system’s database, (2) we identify research challenges in the
context of studying the evolution of data-intensive systems, and (3) we curate a rich and complex case study that can be
used to explore these challenges (and others) by the software evolution research community.

The remainder of this paper is structured as follows. The next section introduces the main subject system studied in this
paper (OSCAR) and the general context of our software evolution project. Section 3 describes the approach we have followed
to study the evolution of the OSCAR database. In Section 4, we briefly present the tool suite that supports our approach.
The results obtained when analyzing the OSCAR’s history are summarized in Section 5 and discussed in Section 6. A related
work discussion is given in Section 7 and Section 8 provides concluding remarks.

2. Context: The OSCAR system

OSCAR (Open Source Clinical Application Resource) is full-featured Electronic Medical Record (EMR) software system for pri-
mary care clinics. It has been under development since 2001 and is widely used in hundreds of clinics across Canada. As an
open source project, OSCAR has a broad and active community of users and developers. The Department of Family Practice
at McMaster University, which has managed OSCAR development efforts from inception to 2012, has recently transferred
oversight of ongoing development to a newly formed not-for-profit company called OSCAR-EMR. This move was motivated
by a new regulatory requirement to undergo ISO certification (ISO 13485 Medical devices – Quality management systems).

OSCAR architecture. OSCAR has a Web application architecture following the classical 3-tier paradigm. It employs a Java-
based technology stack, making use of Java Server Pages (JSP), Enterprise Java Beans (J2EE) and several frameworks such as
Spring, Struts and Hibernate. The source code comprises approximately two million lines of code with a rough distribution
of 600 kLOC for the application logic, 1200 kLOC for the presentation layer and 100 kLOC for the persistence layer. OSCAR
uses MySQL as the relational database engine and a combination of different ways to access it, including Hibernate object-
relational middleware, Java Persistence Architecture (JPA) and dynamic SQL (via JDBC). The reason for this combination of
technologies is the constant and ongoing evolution history of the product, which originated from JDBC, via Hibernate to JPA.

Oscar database. The OSCAR database schema has over 440 tables and many thousands of attributes. At the time of conducting
our study, the database schema of the OSCAR distribution did not contain any information on relationships between tables
(foreign keys) and no documentation was available about the schema. We later learned that the missing relationships were
due to the evolution history of OSCAR, which has been using the older MyISAM database engine provided by MySQL that
does not support foreign keys. A port to the newer InnoDB engine is underway, which will eventually allow foreign keys to
be defined explicitly.

OSCAR software repositories. The OSCAR community utilizes a range of software repositories and tools, including a feature
request and bug tracking system (provided by Sourceforge), a source code submission and review system (Gerrit Code
Review), a git-based configuration management system, a community Wiki (based on Plone) and three active mailing lists
(one for developers and two for users of different levels of technical expertise).

The need to understand the database schema. The OSCAR database has grown organically over many years and knowledge
about its internal structure is distributed among pockets of developers who have been contributing to specific functions of
the system (e.g., prescription writer, representation of lab results etc.). Our need to understand the OSCAR database schema
originated from our involvement in a project with the goal to develop software for a primary care research network (PCRN).
The purpose of the PCRN is to integrate health information kept in primary care EMR software in order to make them
accessible to medical research and data mining. An important step in developing the PCRN software is to create “export
conduits” for transferring health data from the EMR into a research database for subsequent query processing. Due to its
popularity (second largest market share in British Columbia) and openness, OSCAR has been chosen as one of the first EMR
products to interface with the emerging PCRN.

While designing early versions of the PCRN data migration adapter for OSCAR, we found that we were running into
questions pertaining to the database schema. Of course, as could be expected for any heavily evolved, real-world system,
some of them had to do with the fact that the database schema lacked documentation. Moreover, the schema did not con-
tain any declared relationships (foreign keys). Other questions were of a more semantic and puzzling nature. For example,
when attempting to design the function to export data on patient immunization records, we found two seemingly unrelated
schema structures covering the same semantic issue. One schema structure revolved around tables entitled “immunizations”
and “configimmunization” while the other schema structure revolved around tables entitled “preventions” and “prevention-
sext”. During our project we found that taking into consideration the evolution history of the database schema was helpful
in answering questions like these. (We found out that the “prevention” structured superseded the “immunization” struc-
ture but has still been retained in order to deal with legacy data.) This motivated us to investigate more formally OSCAR’s
evolution history and develop methods and tools to help with this investigation.

A. Cleve et al. / Science of Computer Programming 97 (2015) 113–121 115

Fig. 1. Schema evolution example (left) and corresponding historical schema (right).

3. Approach

Because of the above observations and questions, we found that recovering a precise knowledge of the evolution history
of the OSCAR database schema was an important prerequisite for gaining an understanding of the OSCAR database. Such
historical knowledge could indeed help us to identify the most stable tables of the OSCAR schema – that we could start
with when migrating data from the transactional OSCAR database to the non-relational research database that was selected
as platform for the PCRN software system. It could also allow the discovery of potentially dead schema fragments – that are
not used anymore but are kept for backward compatibility and medico-legal reasons.

The main question then becomes: How to extract, represent and exploit the history of a database schema? While we address
this question in the context of a specific information system (OSCAR), the approach we present in this paper is fully generic,
and therefore easily reusable for analyzing other data-intensive systems. It consists of extracting and comparing the succes-
sive versions of the database schema from the versioning system, in order to produce the so-called global historical schema.
The latter is a visual and browsable representation of the database schema evolution over time. It contains all database
schema objects (i.e., tables, columns and constraints) that have existed in the history of the system. Those schema objects
are annotated with meta-information about their lifetime, which in turn serve as a basis for the visualization of the schema
and its further analysis. This historical schema can be queried in order to derive valuable information about the evolution
of the database, potentially raising other interesting system-specific questions to investigate.

The global process that we follow to build the historical database schema of a system consists of several steps:

1. SQL code extraction: We first extract all the SQL files corresponding to each system version, by exploiting the versioning
system.1

2. Schema extraction: We extract the logical schema corresponding to each SQL file obtained so far, by means of a dedicated
SQL parser.

3. Schema comparison: We compare the successive logical schemas while incrementally building the resulting historical
schema.

4. Visualization & exploitation: The historical schema can then be visualized and further analyzed, depending of the project-
specific needs.

Let us now further specify the Schema comparison step. The left-hand side of Fig. 1 gives an example evolution of a
database schema, involving three successive schema versions. Schema S1 is the oldest one and schema S3 is the most
recent one. We can see that between version 1 and version 2 column A2 has been deleted, column B2 has been created
as well as table D and its columns. Moreover the entire table C has been dropped. In version 3, table B has disappeared,
table D has been left unchanged, and table C has re-appeared. Indeed, it used to exist in version 1, it had been removed
in version 2 and it is now back in version 3. We will refer to that phenomenon by saying that a schema object may have
several lives.

The historical schema derived from the above schema evolution example is depicted at the right-hand side of Fig. 1. The
historical schema is a global representation of all previous versions of a database schema, since it contains all objects that
have ever existed in the entire schema history.

The historical schema is annotated with a list of couples (date(Si), committer(Si)) that provides, for each successive
schema version Si , the commit date (date(Si)) and the id of the committer (committer(Si)). Each object of the historical
schema (table or column) is annotated with the following meta-attributes:

• isDead: true if the object is not present in the latest (current) version of the schema, false otherwise.
• creationDate: the date the oldest schema version where the object appears, i.e., the date of creation of the object.
• lastAppearanceDate: The date of the most recent schema where the object appears.
• listOfPresence: the list of schema version dates where the object is present.
• listOfDeletion: the list of schema version dates where the object has been deleted.

1 A Git repository in the case of OSCAR.

116 A. Cleve et al. / Science of Computer Programming 97 (2015) 113–121

The historical schema derivation algorithm is based on a pairwise comparison of all those schema versions. The algorithm
starts from an empty historical schema, and then iterates on all the schemas in chronological order, while comparing the
current schema Si with the current historical schema S H . The comparison is made by iterating on each schema object (table
or column) of both schemas. Several situations may occur for a given schema object:

1. o belongs to Si but does not belong to S H . This means that o has been created in version i. We therefore add it to S H

and sets its date of creation to date(Si).
2. o belongs to Si and (now) belongs to S H . In this case, we update its listOfPresence and lastAppearanceDate and we set

its isDead attribute to false.
3. o belongs to S H but does not belong to Si . If its meta-attribute isDead is false, o was present in Si−1 but was deleted

in Si . We then update the listOfDeletion attribute and set its isDead attribute to true.

4. Tool support

We have developed three main tools for supporting our approach: a schema extractor, a historical schema derivator
and a history visualizer. Those tools are implemented as Java plugins of DB-MAIN [1]. DB-MAIN is a generic database
engineering tool with integrated support for database design, reverse engineering, re-engineering, integration, maintenance
and evolution.

The schema extractor allows to extract all the successive database schema versions from the project’s repository (SVN
and GitHub are currently supported). The output consists of a set of DB-MAIN schemas, each annotated with the commit
date and a committer id.

The historical schema derivator takes as input the set of extracted schemas and produces the corresponding global
historical schema. Our initial (naive) implementation of the algorithm was not sufficiently scalable to analyze long histories
of large database schemas in satisfying time. We therefore implemented a multi-threaded version of the algorithm. In this
version, an independent thread is used to analyze each distinct table of the schema, and is responsible for iterating through
all the schema versions in order to derive the historical information of that table. All parallel threads share a common
resource, namely the historical schema, that they can all update when they discover information about their respective
tables.

The main program thread iterates over all tables of all successive schema versions. Each time the main thread encounters
a table t that does not correspond to a running or terminated thread, it starts a new thread for t . As we will see below, this
multi-thread implementation allowed us to significantly improve the efficiency of our historical schema derivation tool.

The current version of the tool is able to identify 16 distinct types of database schema changes: adding/dropping a table;
adding/dropping a column; adding/dropping a primary identifier; adding/dropping a foreign key; adding/dropping an index;
adding/dropping/updating a default column value; changing the type of a column; making a mandatory column optional
(i.e., nullable) and conversely.

The visualizer provides the user with a visual and browsable representation of the database schema evolution over time.
It takes the historical schema as input and allows, among others, to (1) compare two arbitrary schema versions, (2) extract
the database schema at a given date, (3) extract the complete history of a particular schema object (column/table), (4) ex-
tract various statistics about the evolution of the database schema, (5) analyze the involvement of each developer in that
evolution.

5. Results

We analyzed the history of the OSCAR database schema during a period of almost ten years (22/07/2003–27/06/2013).
During this period, a total of 6702 different schema versions can be found in the project’s GitHub repository. The earliest
schema version analyzed (22/07/2003) includes 88 tables, while the latest schema version considered (27/06/2013) com-
prises 445 tables. When applied to this dataset, our single-thread schema comparison implementation takes more than
three hours to derive the historical schema, while the multi-threaded version completes the process in 40 minutes.

Once the historical schema was derived, we applied a procedure that would colorize each historical schema object,
depending on its age and its liveness. Fig. 2 (left) shows a colorized version of the historical schema of OSCAR, that has
been automatically derived by our tool, and that can be browsed and queried using DB-MAIN. All schema objects depicted
in green constitute the tables and columns that are still present in the latest schema version of OSCAR. All red schema
objects have been deleted. The color shade corresponds to the age of the objects. A dark red schema object is a table or a
column that has been deleted a long time ago. A light red object is an object has recently been removed from the schema.
An object depicted in green corresponds to a column or a table that is still present in the latest schema version. The darker
the green, the older the corresponding table or column is, and vice versa. A schema object colored in orange is a deleted
object that had several lives. Fig. 2 (right) zooms on a particular table of the global historical schema of OSCAR, namely
the integratorconsent table. The table itself is green, which means that it belongs to the latest schema version of OSCAR.

2 We consider one schema version per commit.

A. Cleve et al. / Science of Computer Programming 97 (2015) 113–121 117

Fig. 2. The OSCAR historical schema as it can be viewed in DB-MAIN (left), and a zoom on a particular table (right).

It includes 21 columns that are in red, meaning that they have been deleted. The table also contains one deleted column
that had several lives, as well as 9 columns that still belong to the latest schema version. Among those 9 active columns,
4 are present in the table since its creation, while the 5 other ones have been added more recently. When selecting a given
schema table or column of the historical schema, the user may inspect its associated meta-attributes (creation date, number
of versions, etc.) via the property box of DB-MAIN.

We also provide the user with a historical schema querying tool, allowing the extraction of interesting statistics regarding
the evolution of the schema of interest. Some of those statistics for the OSCAR database are given below. In addition, the
history of each single schema object (table or column) is also available via our tool. This historical information includes the
date(s) of all creation, update and deletion operations, and for each of them, the id of the corresponding developer.

Fig. 3(A) depicts the evolution of the number of tables in the OSCAR schema. We can observe that this number keeps
increasing. Indeed, we found out that in our case study, developers are very reluctant in removing tables in order to achieve
backward compatibility and avoid the important impact of a schema refactoring on the data and the application programs.
From the same figure, we can also easily identify those schema versions that could be considered as “major releases”, i.e.,
those versions where an important number of tables have been added and/or deleted. Fig. 3(B) represents the evolution
of the total number of columns in the OSCAR schema, that has grown from 2443 to 13 364 columns in circa ten years.
Fortunately, this number follows a similar trend as the evolution of tables, keeping the average number of columns per
table quite stable over time (around 25).

Fig. 3(C) provides some finer-grained information about the creation and deletion of tables. One can easily notice that
OSCAR tables are rarely removed. The evolution of the schema consists (most of the time) of adding tables, while not
replacing or splitting them up. The total number of deleted tables is around 30, and we can again quickly identify the
major release time periods. The observation is similar for the ratio of created and deleted columns, as shown in Fig. 3(D).
The number of column creations is, indeed, often greater than the number of column deletions. During the last releases,
however, the number of columns more instable: 964 columns were created in version 452, 954 columns were deleted in
version 453. The explanation is the following: at release 452, huge tables (each including hundreds of columns) have been
added to the database, and the peak that we observe originates from the deletion of some of those tables. During our test
period, a total of 3872 columns were removed, while 14 793 columns were created.

Table 1 provides statistics about the different types of schema changes applied to the OSCAR schema during the studied
period. In those statistics, the add column operation corresponds to the creation of a new column in an existing table.
Creating a table including n columns only counts as one add table operation, not as n add column operations.

Fig. 3(E) shows the classification of the OSCAR tables according to two dimensions: their creation schema version (X axis)
and their size, expressed in number of columns (Y axis). We can notice that the large tables (over 200 columns) are created
throughout the whole life of the system. This means that those tables are not a reflection of early design problems but are
still being generated and used now. We investigated further this unexpected observation and found that the large tables

118 A. Cleve et al. / Science of Computer Programming 97 (2015) 113–121

Fig. 3. Extracted information from the OSCAR historical schema: (A) evolution of the number of tables; (B) evolution of the number of columns; (C) cre-
ation/deletion of tables; (D) creation/deletion of columns; (E) table creation version VS table size; (F) table creation version VS number of changes.

Table 1
Distribution of the OSCAR schema changes during the considered time period.

add table 443 add identifier 48 add index 125 change default value 23
drop table 86 drop identifier 21 drop index 32 change column type 342
add column 2091 add foreign key 3 add default value 1509 set nullable column 32
drop column 703 drop foreign key 12 drop default value 47 set non-nullable column 27

were related to a user-programmable extension mechanism of OSCAR, which provides “power-users” with tools to add
so-called forms to OSCAR for capturing specialized clinical data input.

Another interesting property, particularly in the context of database migration, is the stability of the tables. A table that
has been created a long time ago, and that was not subject to frequent modifications can be considered stable. In Fig. 3(F)
we characterize each table with respect to the number of times it has been modified since its creation, and we relate this
information to its creation version. We can see that the database schema is globally stable, most of the tables having less

A. Cleve et al. / Science of Computer Programming 97 (2015) 113–121 119

Fig. 4. Information about the developers involved in the evolution of the OSCAR database schema. (A) number of tables impacted by each developer;
(B) table vs developer matrix.

than 4 modifications. As expected, it is mainly the oldest tables that have the higher number of changes, but there are a
few exceptions.

Fig. 4 relates the OSCAR developers with the evolution of the schema. Fig. 4(A) shows, for each developer, the number of
distinct tables in the evolution of which she has been involved in (by creating, updating or deleting the table). We observe
that the few most active schema committers have hardly touched 20% of the OSCAR tables. Fig. 4(B) provides a set of points
(x, y) meaning that developer x has been involved in the evolution of table y. Such information is useful, for instance, to
identify the experts of a given table, or the creator of a given schema object. We can also formulate the assumption, to be
confirmed in the next steps of our research, that the set of tables modified in a short period of time by the same developer
are somehow related to each other. This can potentially constitute additional insights in the context of implicit foreign key
detection.

6. Discussion

Analyzing the evolution history of the OSCAR database schema has helped us in understanding the current schema
structure and informed our process of developing a software for migrating OSCAR data to the PCRN research data base.
We were surprised to see that schema structures are rarely deleted even if they are semantically replaced by others, for
example as in the case of the “preventions” table structure replacing the “immunizations” structure (see above). In these
kinds of situations, our tool-based method allowed us to easily determine which schema structure superseded which other
schema structure. There are potentially multiple explanations for keeping these legacy schema structures. The most likely
explanation is domain-specific, namely that they are kept for medico-legal reasons: a patient record (electronic or otherwise)
is a legal document that can only be amended but not deleted or arbitrarily modified. Keeping superseded database schema
structures is the easiest way of accommodating older patient data that uses these outdated fields. Indeed, in case of the
preventions tables, the OSCAR preventions user dialog has at the bottom a link entitled “old immunizations”, which allows
the user to access the legacy data.

To some degree, the creation of new schema structures to semantically replace existing ones without removing them is
similar to the well-known process of “cloning” in program code. Therefore, the preventions tables and the immunization
tables could be considered database clones. However, subtle differences exist to the concept of program clones. For example,
program clones are usually still made up of functional code (as opposed to dead code), while the superseded database clone
may indeed be considered “dead schema” from the point of view of at least a newer installation of the information system
software, i.e., an installation that does not have to deal with legacy data that uses the superseded database structure.

Another important insight created by our schema evolution analysis method was a better understanding of the role of
the many large-scale tables that contain hundreds or even thousands of attributes. The information content of these tables
overlaps significantly with other parts of the transactional database. Therefore, our initial hypothesis (before considering the
evolution history) was that these tables were relicts of early database designs. The evolution analysis, however, refuted this
hypothesis and indicated that these tables are indeed being generated throughout the system lifetime. Further investigation
showed that they were connected to an extension mechanism. We were therefore able to exclude them for the first phase
of our database migration project, which simplified our task significantly.

Methods for analyzing the evolution history of database schemas could be helped significantly by having access to actual
production data. Unfortunately, this is virtually impossible due to the sensitive nature of the data in case of the OSCAR
system. One way to get around this problem is to transform the production data in a set of unrealized data, which still
retains certain properties that are important to understand the schema evolution. For this purpose, we have written a
program to securely hash encrypt OSCAR patient data prior to export. Special values such as null and timestamps would

120 A. Cleve et al. / Science of Computer Programming 97 (2015) 113–121

remain unchanged during this transformation. We have sought and received ethics approval for using our unrealization
process to transform real patient data for the purposes of understanding software evolution. We are currently working with
a clinic in Vancouver on executing this process. The resulting data set will provide us with further data to help mine for
“dead schema” and “cloned” schema structures.

7. Related work

Previous database understanding techniques take as input one or several of the following information sources:

• the database schema [2–4]. Spotting similarities in names, value domains and representative patterns may help identify
hidden constructs such as foreign keys;

• the data [5–8]. Mining the database contents can be used in two ways. Firstly, to discover implicit properties, such as
functional dependencies and foreign keys. Secondly, to check hypothetic constructs that have been suggested by other
means;

• the programs [9–12]. Basic dataflow analysis techniques can already bring valuable information about table and column
structures and meaningful names. More sophisticated techniques such as program slicing can be used to identify com-
plex constraint checking or implicit foreign keys. Dynamic program analysis techniques have also been proposed to do
the same job in presence of highly dynamic database manipulation code [13].

It is important to note that none of those three sources of information is sufficient, yet they can all contribute to a better
knowledge of the hidden components and properties of a database schema. In the present work, we argue that considering
historical information as additional, complementary input has the potential to further enrich the knowledge that can be
recovered.

Since the seminal work by Manny Lehman on the laws of software evolution [14,15], many researchers have conducted
empirical software evolution research, working on a wide variety of topics such as analyzing the co-evolution of test and
production code [16], analyzing code cloning [17], predicting bugs from history [18,19], and many more.

While the literature on database schema evolution is very large [20], very few authors have proposed approaches to
systematically observe how developers cope with database evolution in practice. Existing work in this domain [21,22] ana-
lyzed the evolution of rather small database schemas. Curino et al. [21] present a study of the structural evolution of the
Wikipedia database, with the aim to extract both a micro-classification and a macro-classification of schema changes. In this
study, a period of 4 years has been considered, corresponding to 171 successive versions of the Wikipedia database schema.
The latter is rather limited in size: It includes from 17 to 34 tables depending on the schema version considered. The total
number of columns in the schema does not exceed 250, whatever the version. Lin et al. [22] study the co-evolution of
database schemas and application programs in two open-source applications, namely Mozilla and Monotone. The number
of schema changes reported is very limited. In Mozilla, 20 table creations and 4 table deletions are reported in a period of
4 years. During 6 years of Monotone schema evolution, only 9 tables were added while 8 tables were deleted.

In this paper, that extends our recent previous results [23], we report on the history analysis of a very large database
schema that is several orders of magnitude larger than the schemas analyzed in all previous similar studies. We introduce
the concept of global historical schema, and propose a scalable tool allowing to derive such a schema from the versioning
system, in a browsable and queriable format. The colored visualization of the global historical schema is analogous to the
approach of visualizing program change sets at the architectural level with UML class diagrams [24]. A myriad of other
inspiring software visualization tools have been proposed to support the understanding of large-scale software systems
evolution, including CodeCity [25], the Evolution Radar [26] and ExtraVis [27].

8. Conclusions

This paper reports on our experiences made in the context of large-scale project aiming at evolving OSCAR, a large and
complex medical information system. We present a tool-supported process that allowed us to analyze the evolution history
of the OSCAR database over a period of circa ten years. The method is based on the automated derivation of a global
historical schema, that includes all the schema objects involved in the entire lifetime of the database, each annotated with
historical and temporal information. The identification is schema changes is currently limited to 16 distinct operations. More
sophisticated analysis techniques have to be developed in order to identify such changes as renaming a column, splitting a
table, or merging two tables into one single table. Since our approach only considers successive schema versions as input,
such refactoring operations are currently seen as the combination of deletion and creation operations.

While this work only makes a first humble step towards the understanding of large database evolution histories, it also
opens several important new research and collaboration perspectives for the entire software evolution research community.
First, because the OSCAR system constitutes by itself, considering its size and complexity, a very rich case study that could
be used as a basis for validating other reverse engineering techniques and identifying novel research questions in the field.
Second, because considering the link between the evolution of the database and the evolution of all the other software
artifacts remains a largely unexplored yet important research domain. Such well-known notions as code ownership, cloning,

A. Cleve et al. / Science of Computer Programming 97 (2015) 113–121 121

late propagation, bad smells, bug linkage, bug assignment, etc. do also make much sense in the context of database/program
co-evolution.

Acknowledgements

This work has been supported by the F.R.S.-FNRS, in the context of the DISSE research project.

References

[1] DB-MAIN, The DB-MAIN official website, http://www.db-main.be, 2011.
[2] S.B. Navathe, A.M. Awong, Abstracting relational and hierarchical data with a semantic data model, in: Proc. of the Sixth International Conference on

Entity-Relationship Approach (ER’1987), North-Holland Publishing Co., 1988, pp. 305–333.
[3] V.M. Markowitz, J.A. Makowsky, Identifying extended entity-relationship object structures in relational schemas, IEEE Trans. Softw. Eng. 16 (8) (1990)

777–790.
[4] W.J. Premerlani, M.R. Blaha, An approach for reverse engineering of relational databases, Commun. ACM 37 (5) (1994) 42.
[5] R.H.L. Chiang, T.M. Barron, V.C. Storey, Reverse engineering of relational databases: extraction of an EER model from a relational database, Data Knowl.

Eng. 12 (2) (1994) 107–142.
[6] S. Lopes, J.-M. Petit, F. Toumani, Discovering interesting inclusion dependencies: application to logical database tuning, Inf. Syst. 27 (1) (2002) 1–19.
[7] H. Yao, H.J. Hamilton, Mining functional dependencies from data, Data Min. Knowl. Discov. 16 (2) (2008) 197–219.
[8] N. Pannurat, N. Kerdprasop, K. Kerdprasop, Database reverse engineering based on association rule mining, CoRR arXiv:1004.3272.
[9] J.-M. Petit, J. Kouloumdjian, J.-F. Boulicaut, F. Toumani, Using queries to improve database reverse engineering, in: Proc. of the 13th International

Conference on the Entity-Relationship Approach (ER’1994), Springer-Verlag, 1994, pp. 369–386.
[10] G.A. Di Lucca, A.R. Fasolino, U. de Carlini, Recovering class diagrams from data-intensive legacy systems, in: Proc. of the 16th IEEE International

Conference on Software Maintenance (ICSM’2000), IEEE Computer Society, 2000, p. 52.
[11] J. Henrard, Program understanding in database reverse engineering, PhD thesis, University of Namur, 2003.
[12] A. Cleve, J. Henrard, J.-L. Hainaut, Data reverse engineering using system dependency graphs, in: Proc. of the 13th Working Conference on Reverse

Engineering (WCRE’2006), IEEE Computer Society, Washington, DC, USA, 2006, pp. 157–166.
[13] A. Cleve, J.-R. Meurisse, J.-L. Hainaut, Database semantics recovery through analysis of dynamic SQL statements, J. Data Semant. 15 (2011) 130–157.
[14] M.M. Lehman, On understanding laws, evolution, and conservation in the large-program life cycle, J. Syst. Softw. 1 (1984) 213–221.
[15] M.M. Lehman, J.F. Ramil, P.D. Wernick, D.E. Perry, W.M. Turski, Metrics and laws of software evolution – the nineties view, in: Proc. of the 4th Int’l

Symp. on Software Metrics, METRICS ’97, IEEE CS, 1997, p. 20.
[16] A. Zaidman, B.V. Rompaey, A. van Deursen, S. Demeyer, Studying the co-evolution of production and test code in open source and industrial developer

test processes through repository mining, Empir. Softw. Eng. 16 (3) (2011) 325–364.
[17] N. Göde, R. Koschke, Frequency and risks of changes to clones, in: Proc. of ICSE ’11, ACM, New York, NY, USA, 2011, pp. 311–320.
[18] P.J. Guo, T. Zimmermann, N. Nagappan, B. Murphy, Characterizing and predicting which bugs get fixed: an empirical study of Microsoft Windows, in:

Proc. of ICSE ’10, ACM, New York, NY, USA, 2010, pp. 495–504.
[19] M. D’Ambros, M. Lanza, R. Robbes, Evaluating defect prediction approaches: a benchmark and an extensive comparison, Empir. Softw. Eng. 17 (4–5)

(2012) 531–577.
[20] E. Rahm, P.A. Bernstein, An online bibliography on schema evolution, SIGMOD Rec. 35 (4) (2006) 30–31.
[21] C. Curino, H.J. Moon, L. Tanca, C. Zaniolo, Schema evolution in wikipedia – toward a web information system benchmark, in: J. Cordeiro, J. Filipe (Eds.),

ICEIS (1), 2008, pp. 323–332.
[22] D.-Y. Lin, I. Neamtiu, Collateral evolution of applications and databases, in: Proc. of IWPSE-EVOL’09, ACM, 2009, pp. 31–40.
[23] M. Gobert, J. Maes, A. Cleve, J. Weber, Understanding schema evolution as a basis for database reengineering, in: Proceeding of 29th IEEE International

Conference on Software Maintenance (ICSM 2013), IEEE CS, 2013, pp. 472–475.
[24] A. McNair, D.M. German, J. Weber-Jahnke, Visualizing software architecture evolution using change-sets, in: Proc. of WCRE’07, IEEE Computer Society,

Washington, DC, USA, 2007, pp. 130–139.
[25] R. Wettel, M. Lanza, R. Robbes, Software systems as cities: a controlled experiment, in: ICSE, ACM, 2011, pp. 551–560.
[26] M. D’Ambros, M. Lanza, M. Lungu, Visualizing co-change information with the evolution radar, IEEE Trans. Softw. Eng. 35 (5) (2009) 720–735.
[27] B. Cornelissen, A. Zaidman, A. van Deursen, A controlled experiment for program comprehension through trace visualization, IEEE Trans. Softw. Eng.

37 (3) (2011) 341–355.

http://www.db-main.be
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib4E61766174686541776F6E6731393838s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib4E61766174686541776F6E6731393838s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib4D61726B6F7769747A31393930s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib4D61726B6F7769747A31393930s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib5072656D65726C616E694574416C31393934s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib436869616E674574416C31393934s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib436869616E674574416C31393934s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib4C6F70657332303032s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib59616F32303038s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib50657469744574416C31393934s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib50657469744574416C31393934s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib44694C756363614574416C32303030s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib44694C756363614574416C32303030s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib48656E7261726432303033s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib436C6576654574416C32303036s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib436C6576654574416C32303036s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib436C6576654574416C32303131s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib4C65686D616E31393834s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib4C65686D616E31393937s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib4C65686D616E31393937s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib5A6169646D616E32303131s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib5A6169646D616E32303131s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib476F646532303131s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib47756F32303130s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib47756F32303130s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib44416D62726F7332303132s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib44416D62726F7332303132s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib5261686D32303036s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib437572696E6F32303038s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib437572696E6F32303038s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib4C696E32303039s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib676F626572746574616C32303133s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib676F626572746574616C32303133s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib4D474A3037s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib4D474A3037s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib57657474656C32303131s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib44416D62726F7332303039s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib436F726E656C697373656E32303131s1
http://refhub.elsevier.com/S0167-6423(13)00309-2/bib436F726E656C697373656E32303131s1

