
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

DOCTOR OF SCIENCES

Trust-region algorithms for nonlinear stochastic programming and mixed logit models

Bastin, Fabian

Award date:
2004

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/98b35d6c-1120-4b6f-ae1c-90e561055151

FACULTES UNIVERSITAIRES NOTRE-DAME DE LA PAIX NAMUR

FACULTE DES SCIENCES

Trust-Region Algorithms
for

Nonlinear Stochastic Programming
and

Mixed Logit Models

Dissertation présentée par
Fabian Bastin

pour l’obtention du grade
de Docteur en Sciences

Composition du Jury:

Michel BIERLAIRE

François LOUVEAUX (Co-Promoteur)
John POLAK

Marcel RÉMON

Annick SARTENAER

Philippe L. TOINT (Promoteur)

2004

c©Presses universitaires de Namur & Fabian Bastin
Rempart de la Vierge, 8

B-5000 Namur (Belgique)

Toute reproduction d’un extrait quelconque de ce livre,
hors des limites restrictives prévues par la loi,

par quelque procédé que ce soit, et notamment par photocopie ou scanner,
est strictement interdite pour tous pays.

Imprimé en Belgique

ISBN: 2-87037-446-1
Dépôt légal: D / 2004 / 1881 / 19

Facultés Universitaires Notre-Dame de la Paix
Faculté des Sciences

rue de Bruxelles, 61, B-5000 Namur, Belgium

� �

� �

Facultés Universitaires Notre-Dame de la Paix
Faculté des Sciences

Rue de Bruxelles, 61, B-5000 Namur, Belgium

Algorithmes de région de confiance pour la programmation
stochastique non-linéaire et les modèles mixed logit

par Fabian Bastin

Résumé: Ce travail a pour objet l’étude de la programmation stochastique nonlinéaire non-
convexe, en particulier dans le contexte des approches de région de confiance. Nous explorons
tout d’abord comment exploiter la structure des programmes stochastiques nonlinéaires multi-
étapes avec contraintes linéaires, au sein de méthodes de point intérieurs primales-duales.
Nous étudions ensuite la consistance des approximations par moyenne d’échantillonnage pour
des programmes stochastiques nonlinéaires généraux. Nous développons également un nouvel
algorithme pour résoudre le problème approximé au moyen d’une stratégie interne permettant
de varier la taille d’échantillonnage utilisée. Nous jugeons finalement de l’efficacité numérique
de la méthode proposée pour l’estimation de modèles de choix discrets, plus précisément les
modèles mixed logit, à l’aide de notre logiciel AMLET, écrit pour les besoins.

Trust-region algorithms for nonlinear
stochastic programming and mixed logit models

by Fabian Bastin

Abstract: This work is concerned with the study of nonlinear nonconvex stochastic program-
ming, in particular in the context of trust-region approaches. We first explore how to exploit the
structure of multistage stochastic nonlinear programs with linear constraints, in the framework
of primal-dual interior point methods. We next study consistency of sample average approxi-
mations (SAA) for general nonlinear stochastic programs. We also develop a new algorithm to
solve the SAA problem, using the statistical inference information to reduce numercial costs,
by means of an internal variable sample size strategy. We finally assess the numerical effi-
ciency of the proposed method for the estimation of discrete choice models, more precisely
mixed logit models, using our software AMLET, written for this purpose.

Dissertation doctorale en Sciences mathématiques (Ph.D. thesis in Mathematics)
Date: 12-03-2004
Département de Mathématique
Promoteur (Advisor): Prof. Ph. L. TOINT

Co-Promoteur (Co-Advisor): Prof. F. LOUVEAUX

Remerciements

Mes premiers remerciements s’adresseront à Philippe Toint, mon promoteur, qui m’a donné
la chance de travailler au sein du Groupe de Recherche sur les Transports (GRT), puis au sein
de l’Unité d’Analyse Numérique. Je voudrais le remercier pour la confiance qu’il n’a cessé
de m’accorder, même dans les moments difficiles, et les encouragements qui m’ont permis de
produire la présente thèse. Merci aussi à François Louveaux, mon co-promoteur, pour m’avoir
guidé dans mes premiers pas en optimisation stochastique.

Ma reconnaissance s’adresse également au Fonds National de la Recherche Scientifique, qui
m’a accordé une bourse d’aspirant et m’a ainsi permis de mener à bien mon travail de thèse.

Merci à Cinzia Cirillo, collègue de bureau et de travail, pour son accent italien d’une part
mais surtout pour la précieuse collaboration qui s’est nouée dans l’étude des modèles de choix
discrets. Je redoute cependant qu’elle ne soit pas prête d’oublier une marche forcée dans les
montagnes bordant Lucerne. Merci à Annick Sartenaer, ainsi qu’à Jie Sun, avec qui j’ai pu
explorer les approches de points intérieurs en programmation avec scénarios. Je voudrais les
remercier en particulier pour leurs encouragements et leur extrême sympathie à mon égard.

Merci à Marcel Rémon, pour sa permanente disponibilité pour répondre à mes questions, et
son engagement de tous les jours pour les autres.

De nombreux autres chercheurs et scientifiques m’ont aussi aidé et soutenu. Je citerai ici
Hatem Masri qui m’a de plus offert de découvrir son pays, la Tunisie, et sa famille, dont l’accueil
fut des plus chaleureux. Je voudrais également remercier Rudiger Schültz et Michel Bierlaire,
pour leurs pertinents conseils, ainsi que Stéphane Hess dont les discussions se sont révélées
particulièrement pertinentes.

Merci à mes collègues d’analyse numérique, à savoir Benoît Colson, que j’invite d’ores et
déjà à la prochaine démonstration de ”comment cracker le PC du secrétariat”, Katia Demaseure,
dite 4chats, et Caroline Sainvitu, inoubliable en sortie, et dont le prêt de sa machine, “Tore”,
fut des plus utiles lors des tests numériques. Merci aussi à Jean Tsimenga et Émilie Wanufelle,
nouvellement arrivés dans l’équipe.

Merci à Jean-Paul Hubert, du GRT, pour nos nombreux débats durant les dîners, ou devrais-je
dire déjeuner pour respecter ses origines parisiennes.

Merci à mes collègues du Département de Mathématique, et en particulier Eric Cornélis,
Bernard De Saedeleer, André Fuzfa, Murielle Haguinet, Jacques Henrard, Jean-Paul Rasson.

ii Remerciements

Merci aux membres du comité du Namur LUG1, anciens ou actuels, avec qui j’ai passé de
nombreux moments pour promouvoir l’idée que l’information est la propriété de tous. Je citerai
en particulier Frédéric Burlet, Christophe Chisogne, Nicolas Di Pietro, Vincent Fally, Emmanuel
Koch, Rémi Letot, Arnaud Ligot, Frédéric Renaud, Cyril Romain, François Schoubben, Louis
Swinnen et Jean-François Wauthy. Merci aussi à Serge Lambert, autre compagnon linuxien,
caractérisé par une perpétuelle bonne humeur.

Je voudrais également remercier mes amis tireurs, en particulier Raymonde Albessart, Lau-
rent Bacq, Christian Bungeneers, Raymond Chabot, Michel Chardon, Guy Denotte, Michel Den-
ruyter, Eric Félix, Steve Flammang, Patrick My, Joseph Pirard, Cyril Smidts, Stéphane Thoum-
sin, Constantin Tzoumacas.

Je voudrais de plus remercier mes parents ainsi que toutes les personnes de ma famille,
présents ou disparus, qui ont fait de moi ce que je suis. Merci aussi à tous ceux qui m’ont
encouragé à titres divers. Leur liste est trop longue que pour la dresser ici ; je mentionnerai
toutefois en particulier Lionel Ileka Ahuré, Bernard Noël, Jean-Philippe Tossut.

Enfin, merci à Xavier Struyven, qui s’est révélé un ami rare, comme il est donné à peu d’avoir.
Merci aussi à Charline Marroy, en qui je n’ai toujours pas trouvé les limites de l’affection dont
elle est capable, et sans qui je n’aurais pas trouvé la force d’aller jusqu’au bout de ce travail.

À tous, encore merci.

Fabian
Aspirant au FNRS

1http://www.namurlug.org

Contents

Introduction ix

Summary of contributions xi

I An introduction to nonlinear stochastic programming 1

1 Why stochastic programming? 3
1.1 A world involved in optimization . 3
1.2 Mathematical and stochastic programming . 4

1.2.1 Formulation of mathematical programs 4
1.2.2 A quick introduction to stochastic programming 5
1.2.3 Other approaches in uncertainty modelling 6

1.3 Basic notions . 7
1.3.1 Vectors and matrices . 7
1.3.2 Basic topology . 8
1.3.3 Convexity . 9
1.3.4 Derivatives . 11
1.3.5 Forcing functions . 13

1.4 Measure and probability theories . 13
1.4.1 Measure spaces . 13
1.4.2 Product spaces and product measures 15
1.4.3 Functions on measure spaces . 15
1.4.4 Conditional expectations . 17
1.4.5 Probability spaces and random variables 18
1.4.6 Multivariate variables . 20
1.4.7 Independence . 21
1.4.8 Convergence of stochastic sequences 22
1.4.9 The central limit theorem . 23

2 Nonlinear mathematical programming 25
2.1 What is a solution? . 25
2.2 Optimality conditions . 26

2.2.1 Nonlinear unconstrained programming 26

iv CONTENTS

2.2.2 Nonlinear constrained programming . 27
2.2.3 A geometric viewpoint . 29

2.3 Methods and algorithms in unconstrained nonlinear programming 30
2.3.1 Newton’s method . 31
2.3.2 Linesearch methods . 32
2.3.3 Trust-region methods . 32

2.4 Methods for nonlinear constrained programming 34
2.4.1 Penalty, barrier and augmented Lagrangian methods 34
2.4.2 Primal-dual interior point methods . 37

3 Stochastic program formulations 43
3.1 General formulation . 43
3.2 Recourse programs . 44

3.2.1 Decisions and stages . 44
3.2.2 Two-stage stochastic programming with recourse 44
3.2.3 Multistage stochastic programming . 51
3.2.4 Scenario approach . 52
3.2.5 Split-variable formulation . 54
3.2.6 Extensive form versus split-variable formulation 57

3.3 Other developments in stochastic programming 58

II Trust-region methods for nonlinear stochastic programming 61

4 Interior point methods for scenario formulations 63
4.1 Problem formulation . 64
4.2 Notation and preliminary assumptions . 65

4.2.1 Preprocessing: full row rank reduction 66
4.3 The algorithm . 70

4.3.1 The inner iteration . 70
4.3.2 Dogleg path . 78
4.3.3 Updating the dual variables . 82
4.3.4 The outer iteration . 82
4.3.5 Quasi-Newton step computation . 83

4.4 Practical aspects . 89
4.4.1 Starting point . 89
4.4.2 Initialization and updating strategies . 90

4.5 Conclusion . 91

5 Monte Carlo samplings 93
5.1 True and SAA problems . 93
5.2 First-order convergence . 94

5.2.1 Deterministic and convex constraints 94
5.2.2 Stochastic constraints . 98

CONTENTS v

5.3 Second-order convergence . 100
5.3.1 Deterministic constraints . 100
5.3.2 Stochastic constraints . 102

5.4 Asymptotic analysis of the optimal value . 106
5.5 A trust-region algorithm with dynamic accuracy 107

5.5.1 The variable sample size strategy . 110
5.6 Convergence to solutions of the SAA problem 113

5.6.1 Convergence of the sample size . 113
5.6.2 First-order optimality . 115
5.6.3 Second-order optimality . 116

III Application to discrete choice theory 119

6 Mixed logit models 121
6.1 An introduction to discrete choice models . 121

6.1.1 Decision-maker . 122
6.1.2 Alternatives . 122
6.1.3 Attributes . 122
6.1.4 Decision rule and utilities definition . 123

6.2 Random utility models specification . 124
6.2.1 Probit . 125
6.2.2 Logit . 125
6.2.3 Nested logit models . 126
6.2.4 Generalized extreme value model . 127
6.2.5 Mixed logit models . 128

6.3 Discrete choice models estimation . 130
6.4 Application of stochastic programming of mixed logit 131

6.4.1 Convergence of SAA estimators . 131
6.4.2 Estimation of the simulation’s variance and bias 133
6.4.3 Asymptotic behaviour for increasing population sizes 136
6.4.4 Applications of mixed logit models . 138

7 AMLET 139
7.1 The BTRDA algorithm for mixed logit models 140

7.1.1 Model choice and trial step computation 141
7.1.2 The variable sample size strategy . 142
7.1.3 Stopping tests . 144
7.1.4 Convergence . 144

7.2 AMLET . 145
7.3 Numerical assessment of AMLET . 146

7.3.1 Validity of bias and accuracy estimators 147
7.3.2 Algorithmic options for optimization 149
7.3.3 Performance and robustness on simulated data 149

vi CONTENTS

7.3.4 Comparison with Halton sequences . 151
7.3.5 Performance on a real data set . 155
7.3.6 Discussion . 158

A Appendix . 160
A.1 Performance comparisons and use of means 160
A.2 Example of AMLET’s output . 161

Conclusions and further research perspectives 163

Main notations and abbreviations 167

Bibliography 168

Index 181

List of Definitions

1.1 Pareto optimality . 6
1.2 Convex function . 9
1.3 Quasi-convex function . 10
1.4 Quasi-concave function . 10
1.5 Forcing function . 13
1.6 σ-algebra . 13
1.7 Measurable space . 14
1.8 Measure . 14
1.9 Measure space . 14
1.10 Measurable function . 15
1.11 Function mod zero . 15
1.12 Conditional expectation . 17
1.13 Probability measure . 18
1.14 Support of random variable . 21
1.15 Convergence with probability one . 22
1.16 Convergence in probability . 23
1.17 Convergence in distribution . 23
2.1 Global minimizer . 25
2.2 Local minimizer . 25
2.3 Strict local minimizer . 25
2.4 Linear Independence Qualification Constraint (LICQ) 28
2.5 Slater’s constraint qualification . 28
2.6 Exact merit function . 35
3.1 Two-Stage Stochastic Program with Recourse (TSSPR) 44
3.2 Scenario . 52
5.1 Strict complementarity . 103

viii List of Definitions

Introduction

This work is concerned with the study of nonlinear stochastic programming. Mathematical
programming is the study of problems where the goal is to find the optimal value of a given
mathematical function called the objective function. The optimum may be the minimum or the
maximum of the considered function depending on the problem formulation, and has often to
satisfy constraints. All parameters present in the program are usually assumed to be perfectly
known; however, in many situations, the reality cannot be captured entirely, for instance when de-
cisions have to be taken regarding observations that are not currently available and not perfectly
predictable. The aim of stochastic programming is precisely to find an optimum in problems
involving uncertain data. In this terminology, stochastic is opposed to deterministic and means
that some data are random.

This thesis deals more specifically with nonlinear nonconvex stochastic programming, in par-
ticular in the context of trust-region methods, which has proven to be very efficient in nonlinear
programming, but has only received little attention in stochastic programming.

Structure of the document and contributions

We divide the presentation in three parts. Stochastic programming is a rather complex sub-
ject; this complexity is in our view not inherent to stochastic programming itself, but lies in the
mix of different large fields of mathematics: optimization, probability and statistics. Therefore
we present in this work a relatively large introduction in Part I, composed of the three first chap-
ters. The coverage of these fields, and more specifically nonlinear and stochastic programming,
is nevertheless far from being exhaustive; our intention is primarily to give some intuition about
stochastic programming, by comparison to classical nonlinear programming, in particular for
nonconvex problems. Chapter 1 opens discussion about how uncertainty can be incorporated in
a mathematical program, and exposes the basic mathematical concepts useful for our needs. The
second chapter is a quick review of nonlinear programming; covering the essential tools that will
be used in the thesis. Finally Chapter 3 presents classical formulations of nonlinear stochastic
programs.

Part 2, made of the fourth and the fifth chapters, presents the two classes of stochastic prob-
lems considered in the present work. Chapter 4 considers nonlinear stochastic programs with
scenarios, and linear and nonnegativity constraints. An interior point trust-region algorithm is
proposed along with a new decomposition scheme for the primal-dual systems occurring during
the inner iterations. Chapter 5 explores Monte Carlo sampling techniques for nonlinear stochas-
tic programs. We present new consistency results for the solutions obtained when solving the

x Introduction

sample average approximations and present a new trust-region algorithm that takes advantage of
the statistical inference to improve its numerical efficiency.

Finally, in Part 3, composed of the two last chapters, we adapt the results of Chapter 5 to
the field of discrete choice theory, and more precisely mixed logit models. Chapter 6 introduces
discrete choice models, and we study the mixed logit models as an extension of usual stochastic
programs. Chapter 7 presents our software AMLET (Another Mixed Logit Estimation Tool),
based on the algorithm presented in Chapter 5, and written from scratch. We also discuss the
main numerical results obtained with it. Our main contributions are therefore presented in Part 2
and Part 3.2

We conclude this introduction by replicating the citation made by Nocedal and Wright [104],
in preface of their 1999 book, and borrowed from Fletcher [53], who described the field of
optimization as a “fascinating blend of theory and computation, heuristics and rigor”. We think
indeed that stochastic programming is a nice illustration of these words.

2The larger coverage of the Monte Carlo approximations compared to the primal-dual approaches reflects more
our current achievements than any judgement concerning the importance of one technique over the other.

Summary of contributions

Our contributions are the study and the design of algorithms for nonlinear stochastic pro-
gramming, and applications in discrete choice theory, more specifically to mixed logit models.
We summarize these contributions below.

Interior-point methods The decomposition scheme for the Newton primal-dual systems related
to nonlinear stochastic programs with linear and nonnegativity constraints (Section 4.3.5)
and the QR factorization with partial pivoting for elimination of redundant nonanticipativ-
ity constraints (Section 4.2.1) are new, and have been presented in the SIAM Conference
on Optimization (Toronto, 2002) by myself and the ISMP conference (Copenhagen, 2003),
by Annick Sartenaer [11]. The primal-dual interior-point method (Algorithms 4.1 and 4.3)
are not new in their essence, but represent one of the first applications of interior-point
approaches to nonlinear nonconvex stochastic programming.

Monte Carlo samplings The consistency of solutions obtained when using Monte-Carlo ap-
proximations in nonlinear stochastic programming is new and has been studied in [10],
where new results have been derived, in particular about conditions ensuring asymptotic
second-order criticality.

Mixed logit models The developments obtained in the study of Monte Carlo approximations
in nonlinear stochastic programming have been applied to mixed logit models to prove
a new result on almost-sure convergence of the Monte Carlo estimators [10], and in the
development of a new software, AMLET [8, 9].

Note also that a survey of stochastic programming and related applications can be found in
our master’s thesis [7], published in 2001.

xii Summary of contributions

Part I

An introduction to nonlinear stochastic
programming

Chapter 1

Why stochastic programming?

“Nature does not play dice.”
Albert Einstein.

1.1 A world involved in optimization

Optimization is a major component of many physical phenomena as well as human life. For
instance, numerous natural observations can be explained by the minimization of the involved
energy. People also optimize each time they want to maximize or minimize something, such as
the travel time, the profit, the number of tasks during a defined laps of time. We then want to
make the best decisions with respect to some criteria, taking operational constraints into account.
Many day-to-day tasks involve optimization, while most of the time we intuitively perform such
optimization activities, by using for instance our past experience of similar situations.

However we cannot rely on such an intuitive behaviour in many complex situations. With the
emergence of computational resources, operational research has grown up to be now a major field
in applied mathematics. Applications can be found in an impressive number of disciplines, like
economics, social management, planning, engineering, biology, physics, and chemistry. They
focus on situations where the system can be affected or controlled by outside decisions that
should be selected in the best possible manner. To this end, the notion of an optimization problem
has proved very useful. The alternatives open to the decision maker can be expressed in terms
of a set F whose elements are called feasible solutions. The goal is then to optimize over F
a certain function f known as the objective function. The objective is a quantitative measure
of the performance (or output) of the system under study, and depends on some variables or
unknowns. The aim is to assign values to these variables in order to minimize or maximize the
objective. In many situations, variables are subject to constraints, which define some restrictions
on the acceptable values. Such constraints may arise from the properties of the studied problem
(for instance the maximum of revolutions per minutes for a car engine before it breaks), from
physical constraints (e.g., available quantity of raw materials), or from operational decisions (e.g.
upper limits on investments).

The process of identifying objective, variables, and constraints for a given problem is known
as modelling. The construction of an appropriate model is the first step in the optimization

4 Chapter 1. Why stochastic programming?

process, and is crucial for the subsequent stages. If the model is too simplistic, it will not give
useful insight into the practical problem. If it is too complex, it may be difficult, or impossible, to
solve it. Moreover, the model will be expressed in mathematical terms. Therefore some aspects
of the problem have to be neglected, but this can lead to hazardous models in some situations.

In particular, it is usually assumed that one has precise information about the objective func-
tion f and the constraints. Parameters are assumed to be known exactly, so we suppose implic-
itly that the underlying aspects are perfectly known. In practice, however, this is not the case for
many optimization problems. For instance, measures of physical phenomena are biased with er-
rors. Several sources of errors also exist in the context of industrial production, as the differences
between machines and the raw materials (quantity and quality). Other processes are random by
definition. For most of the economic problems, demands are uncertain. Farming productions de-
pend of climatic conditions. The question is therefore how we can take account of the involved
uncertainty. One possible answer is to incorporate random variables into the model; another one
is to use fuzzy numbers. We will focus here on the first approach, which is known as stochastic
programming (SP).

1.2 Mathematical and stochastic programming

1.2.1 Formulation of mathematical programs

A mathematical program is an optimization problem aiming at minimizing some objective
function taking some possible constraints into account. Unconstrained optimization problems
may be written under the following (standard) form

min
x∈Rn

f(x),

where f : Rn → R is the objective function. Constrained optimization problems require that the
variable x belongs to some feasible region F , whose prototype is

F = {x ∈ Rn|x ∈ X, ci(x) ≤ 0, i ∈ I, ci(x) = 0, i ∈ E},
where I and E are (disjoint) index sets, ci : Rn → R (i ∈ I ∪ E) and X is a subset of Rn and
belongs to the domain of the functions f and ci (i ∈ E ∪ I). X is usually of simple character,
say Rn

+ or Rn. This leads to the following program:

min
x∈X

f(x) (1.1)

s.t. ci(x) = 0, i ∈ E , (1.2)

ci(x) ≤ 0, i ∈ I. (1.3)

The relations ci(x) ≤ 0 (i ∈ I) and ci(x) = 0 (i ∈ E) are called inequality and equality
constraints respectively. A point x ∈ X is said to be feasible if it satisfies all the constraints, in
other terms if x ∈ F . Assuming that the cardinality of the sets E and I is given by m1 and m2

respectively, we can gather the constraint functions into the mapping

c :Rn → Rm

x� (ci(x))i∈E∪I ,

1.2 Mathematical and stochastic programming 5

where m = m1 +m2.
It is sometimes convenient to consider strictly feasible points, i.e., points such that the in-

equality constraints are strictly satisfied. We denote the strictly feasible set by

strict{F} def
= {x ∈ Rn|x ∈ X, ci(x) < 0, i ∈ I, ci(x) = 0, i ∈ E}.

1.2.2 A quick introduction to stochastic programming

Consider the general mathematical programming problem (1.1)–(1.3). For many optimiza-
tion problems, the functions f and ci (i = 1, . . . ,m) are not known very accurately and in those
cases, it is fruitful to think of the functions ci as depending on a pair of variables (x, ξ(ω)),
where ω is a vector that takes its values in a set Ω, and ξ is a real random vector with the support
Ξ ⊂ Rq. We may think of ξ(ω) as the environment-determining variable that conditions the
system under investigation. A decision x then results in different outcomes

(f(x, ξ (ω)) , c1 (x, ξ(ω)) , . . . , cm (x, ξ(ω))) , (1.4)

depending on the uncontrollable factors. More formally, the problem can now be reformulated
as

“ min
x∈X

” f(x, ξ(ω)) (1.5)

s.t. ci(x, ξ(ω)) = 0, i ∈ E , (1.6)

ci(x, ξ(ω)) ≤ 0, i ∈ I, (1.7)

where X ⊆ Rn. We assume that the probability distribution P is given and is independent of x,
and that, for all x, f(x, ·) : Ξ → R and ci(x, ·) : Ξ → R (i = 1, . . . ,m) are random variables
themselves (see Section 1.4 for an introduction to probability theory).

We seek for some x that is feasible and that minimizes the objective for all or for nearly all
possible values of ω in Ω, or in other sense that needs to be specified. Any fixed x ∈ X may be
feasible for some ω ∈ Ω, but infeasible for some other ω′ ∈ Ω. The notion of feasibility therefore
needs to be made precise and depends on the problem at hand, in particular whether or not we
are able to obtain some information about the value of ξ(ω), before choosing x. Similarly, what
must be understood by optimality depends on the uncertainty involved as well as on the view
one may have of the overall objective(s), e.g., avoid a disastrous situation, do well in nearly all
cases,. . . We cannot “solve” (1.5)–(1.6) by finding the optimal solution for every possible value
of ω in Ω. We must therefore precise the meanings of “min” as well of the constraints.

Ideally ω, and thus ξ(ω), would be completely known before we have to choose x. The
optimal solution of (1.5)–(1.6) could be then obtained by assigning to the variables ω the known
values of these parameters. Even in this case, there arises the question of implementability.
Namely, how to design a practical (implementable) decision rule

ω → x∗(ξ(ω))

such that x∗(ξ(ω)) is feasible for (nearly) all ω ∈ Ω, and that is “optimal” in some sense. Ideally,
x(ξ(ω)) minimizes f(ξ(ω)) on S(ξ(ω)) for all ω ∈ Ω, where S(ξ(ω)) is defined by

S(ξ(ω)) = {x ∈ X|x ∈ X, ci(ξ(ω)) = 0, i ∈ E , and ci(ξ(ω)) ≤ 0, i ∈ I} .

6 Chapter 1. Why stochastic programming?

For Ermoliev [48], such an ideal decision rule is only rarely simple enough to be implementable,
so the notion of optimality must be redefined in order to make the search for such a decision rule
meaningful.

More usually, the goal is to take a decision on x, or part of it, before knowing the realization
of the random variable ξ. When no information is available about ω before the choice of x is
made, (1.5)–(1.7) can be analyzed in terms of the vector (1.4), as ω varies in Ω. We could then
formulate (1.5)–(1.7) as

min
x∈X

z(x) = {f(x, ξ(ω)) |ω ∈ Ω} ,

s.t. ci(x) = 0, i = 1, . . . , E ,
ci(x) ≤ 0, i = 1, . . . , I.

If Ξ is finite, this becomes a multiobjective optimization problem. The reader interested in such
problems can refer to, amongst others, Kaisa [79], Coello, Van Veldhuizen and Lamont [28].
The optimality is then most commonly defined with the concept of Pareto optimality. Consider
the multiobjective programming problem

min f(x)
def
= (f1(x), f2(x), . . . , fk(x))

T

s.t. x ∈ S = {x ∈ X| ci(x) ≤ 0, i ∈ I, and ci(x) = 0, i ∈ E}.

In our context, k = #Ξ, and each component of f(x) corresponds to some realization ξ.
Since there is no total order in Rn, we must reexamine the notion of minimization. The

Pareto optimality is defined as follows.

Definition 1.1: Pareto optimality
x∗ is a Pareto-optimal solution if there is no other x ∈ X such that fi(x) ≤ fi(x

∗), i = 1, . . . , k
and fj(x) < fj(x

∗) for at least one j.

There still remains the question of how to choose a (unique) decision among the Pareto-
optimal points. A popular approach is to proceed by “worst-case analysis”. For a given x, one
calculates the worst situation that could happen, in terms of all the objectives, and then chooses a
solution that minimizes the value of the worst-case loss. This should single out some point that is
optimal in a pessimistic minimax sense, but this solution is often not very satisfactory. We have
therefore to modify the program (1.5)–(1.7) so that the minimization can be undertaken without
knowing the realization of the random variable, while the objective remains unique. This leads
to the developments of deterministic equivalents for (1.5)–(1.7), whose formulations influence
both methods and interpretation of the problem (see Chapter 3).

1.2.3 Other approaches in uncertainty modelling

Incorporating uncertainty in the optimization problem requires some knowledge about the
uncertainty. Until now we have supposed that this knowledge was sufficient to develop random
variables, but this is not always the case. Therefore other ways of representing uncertainty
in mathematical programming have been considered. To date, we can distinguish two major

1.3 Basic notions 7

approaches: stochastic programming and fuzzy programming. The availability of historical data
often determines which approach to use.

Stochastic programming Uncertain parameters are represented as random variables. The chal-
lenge is to choose good probabilistic distributions. A good knowledge of the process to
optimize, availability of historical data. . . make this choice easier.

Fuzzy programming If no historical data are available, it is difficult to represent uncertainty
with probabilistic distribution. The modeller has only an a priori knowledge. In this case,
fuzzy numbers are usually preferred. The shape of the fuzzy numbers, associated to some
set of fuzzy rules, then reflects the knowledge of the decision maker.

We emphasize that if historical data are available, one should favour stochastic program-
ming. This approach is indeed less sensitive to the personality of the modeller, and benefits
from stronger analytical properties. Fuzzy programming, on its side, supposes that the decision
maker has a good idea about how to represent uncertainty, while no formal data can establish
the adequate form of the probabilistic distributions. Furthermore a nonlinear fuzzy program of-
ten amounts to a deterministic program, which is handled by classical methods (Sakawa [122],
Fuller and Carlsson [56]). The question of interest is then how to incorporate the fuzziness.
Stochastic programming, on its side, usually leads to specific procedures that take into account
the probabilistic aspects. The choice between fuzzy and stochastic programming is thus more
dependant on practical knowledge and intuition. In few words, one often prefers stochastic pro-
gramming for well-known processes or situations where random variables adequately represent
the uncertainty present in the problem, and fuzzy programming for unusual, one-shot processes,
for which uncertainty cannot be easily quantified. Hybrid methods, introducing fuzziness in
stochastic programs, have also been proposed (see for instance Mohans and Nguyen [99], Sinha,
Suwarnan and Biswal [77] and in particular Masri [91]), however such approaches are beyond
the concern of the present work.

1.3 Basic notions

We devote the remaining of this chapter to an introduction to some basic concepts that will
serve as background material in the next chapters. Since we represent in this work uncertainty
with random variables, we also review briefly in the next section measure and probability theo-
ries. Nonlinear mathematical programming and stochastic program formulations will be studied
in the next two chapters.

1.3.1 Vectors and matrices

If x is a vector in Rn, we denote its i-th component by [x]i (1 ≤ i ≤ n), or simply xi

if no confusion can arise from other suffixes attached to x. We denote by e the unit vector
(1, 1, . . . , 1)T . Similarly, the (i, j)-th component of the matrix A ∈ Rm×n will be written as [a]i,j
or simply ai,j . Note that matrices are traditionally written in upper case, while their components
are in lower case. When describing iterative methods, we will use the notation x[k] to represent a

8 Chapter 1. Why stochastic programming?

vector x at iteration k (k ∈ N), or xk when there is no risk of confusion with the k-th component
of x. Finally we denote by e[j] the j-th coordinate vector in Rn.

A symmetric matrix A ∈ Rn×n is positive semidefinite if and only if

〈x,Ax〉 ≥ 0 for all x ∈ Rn,

and it is positive definite if and only if the above inequality is a strict one, that is

〈x,Ax〉 > 0 for all x ∈ Rn, x �= 0.

We denote the smallest and largest eigenvalues of the symmetric matrix A by λmin[A] and
λmax[A] respectively. The inertia of a symmetric n× n matrix A is the triple

In(A)
def
= (n+, n−, n0),

where n+, n− and n0 are respectively the number of positive, negative and zero eigenvalues of
A.

Consider now the rectangular matrix A ∈ Rm×n. The null space of A is defined as

N (A)
def
= {x ∈ Rn |Ax = 0}.

Assume that m ≤ n and A has full row rank, and let the columns of the n by n − m matrix
N be an orthonormal basis for the null space of A (so AN = 0 and NTN = I). We say that
a symmetric matrix M ∈ Rn×n is second-order nonsingular (with respect to A) if the reduced
matrix NTMN is nonsingular, and second-order sufficient (with respect to A) if NTMN is
positive definite (see, for instance, Gould [66]).

1.3.2 Basic topology

We now present basic elements of topology that are useful for our needs. For a larger intro-
duction to topology, we refer to the book of Sutherland [131]. Suppose that ‖ · ‖ is a norm on
Rn, and consider a subset C of Rn. We define an open ball of radius ε about x ∈ C to be the set

Oε(x) = {y | ‖y − x‖ < ε}.

The set C is said to be open in Rn if for every x in C, there is a scalar ε(x) > 0 such that
Oε(x)(x) ⊆ C. The intersection of a finite number of open sets, and the union of an arbitrary
number of open sets, is open.

C is closed in Rn if Rn \ C is open. The closed ball of radius ε about x ∈ C is

Bε(x) = {y | ‖y − x‖ ≤ ε}.

The union of a finite number of closed sets, and the intersection of an arbitrary number of closed
sets, is also closed.

C is bounded if there is a constant κ for which

‖x− y‖ ≤ κ

1.3 Basic notions 9

for x, y ∈ C. Moreover, C is said to be compact if any arbitrary sequence {xk} in C has a
convergent subsequence whose limit is in C. In Rn, C is compact if and only if C is both closed
and bounded. Continuous functions reach their infima and suprema on compact sets.

As C may be neither open nor closed, we may be interested in the smallest closed set that
contains C and the largest open set that is contained in C. The closure of C is the set of points
obtained by extending C to its boundary, or more formally,

cl{C} def
= {x | ∀ ε > 0, C ∩ Bε(x) �= ∅}.

Similarly, the interior of C is the set of points whose neighbours are also in C, or, more formally,
the set

{x ∈ C | ∃ ε > 0 so that Oε(x) ⊆ C}.
The problem with this definition is that it takes no account of the fact that C may be of lower
dimension than is appropriate for the norm used. A more useful concept is that of relative interior
of C. We first need to define the affine hull of a set. A ⊆ Rn is an affine set if x+ θ(y − x) ∈ C
for all x and y ∈ C and any scalar θ. The affine hull of a set C, aff{C}, is the smallest affine set
containing C, that is

aff{C} def
= {x |x is a linear combination of vectors in C}.

The relative interior of C is the set of points whose neighbours in aff{C} are also in C:

ri{C} def
= {x ∈ C | ∃ ε > 0 so that if y ∈ Oε(x) ∩ aff{C}, then y ∈ C}.

We then have that
ri{C} ⊆ C ⊆ cl{C},

and the relative boundary of C is defined as

∂C def
= cl{C} \ ri{C}.

1.3.3 Convexity

A subset S of Rn is said to be convex if for any points x and y in S and λ ∈ [0, 1], the point
x + λ(y − x) is also in S. The point x + λ(y − x) is said to be a convex combination of x
and y. The intersection of convex sets is itself convex; however the union of convex sets is not
necessarily convex.

If U is any subset of Rn, another useful convex set is the convex hull of U , co{U}, which is
defined to be the intersection of all convex sets containing U . In other words, co{S} is the set of
all points that can be expressed as a convex combination of points in U .

The concept of convexity is extended to real functions as follows.

Definition 1.2: Convex function
Given a convex subset S of Rn, a function f : S → R is convex if

f(λx+ (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

for all x �= y ∈ S and λ ∈ [0, 1].

10 Chapter 1. Why stochastic programming?

A function f will be said concave if (−f) is convex. A convex function is continuous, as
stated in the following proposition (Bertsekas [14]).

Proposition 1.1 If f : Rn → R is convex, then it is continuous. More generally, if C ⊆ Rn is
convex and f : C → R is convex, then f is continuous over the relative interior of C.

A (constrained) mathematical program is convex if its objective function is convex, the in-
equality constraint functions gi (i ∈ I) are convex, and the equality constraint functions hi

(i ∈ E) are affine. It follows that the feasible region of a convex program is a convex set. Con-
vex programming is the part of mathematical programming studies and algorithms dedicated to
convex programs.

Convexity is a strong property. A first step to generalize this class of functions, while keeping
strong properties, is to use the notion of quasi-convexity. A quasi-convex function can be defined
in terms of level sets, as follows.

Definition 1.3: Quasi-convex function
A function f : S → R, where S ⊂ Rn is a convex set, is quasi-convex if its lower level sets,

lev≤α
def
= {x ∈ S : f(x) ≤ α} are convex sets.

Similarly, we can define quasi-concave functions.

Definition 1.4: Quasi-concave function
A function f : S → R, where S ⊂ Rn is a convex set, is quasi-concave if its upper level sets,

lev≥α
def
= {x ∈ S : f(x) ≥ α} are convex sets.

The class of quasi-convex functions contains all convex functions and all monotone functions
of a single variable. It is sometimes cumbersome to use the previous definitions. In such cases,
we can turn to the following characterizations.

Proposition 1.2 A function f : S → R, where S ⊂ Rn is a convex set, is quasi-convex if and
only if ∀x, y ∈ S and ∀λ ∈ [0, 1]:

f(λx+ (1 − λ)y) ≤ max{f(x), f(y)}.

Proposition 1.3 A function f : S → R, where S ⊂ Rn is a convex set, is quasi-concave if and
only if ∀x, y ∈ S and ∀λ ∈ [0, 1]:

f(λx+ (1 − λ)y) ≥ min{f(x), f(y)}.

These ideas have been extended in the measure theory area (see Section 1.4). In particular, a
probability measure P is said to be quasi-concave if, for any measurable sets U and V , and any

1.3 Basic notions 11

0 ≤ λ ≤ 1,
P [λU + (1 − λ)V] ≥ min{P [U], P [V]}.

1.3.4 Derivatives

First and second derivatives

We start with a univariate function f : R → R. The derivative of φ at x ∈ R is defined by

f ′(x)
def
=

df(x)

dx
= lim

ε→0

f(x+ ε) − f(x)

ε
,

if the limit exists. If x depends on y, we can compute the derivative of f with respect to y:

df(x(y))

dy
=
df

dx

dx

dy
.

This computation is known as the chain rule.
A function f : Rn → R is said to be differentiable at x ∈ Rn if all its first partial derivatives

∂f(x)

∂xi

def
= lim

ε→0

f(x+ εe[i]) − f(x)

ε
, i = 1, . . . , n,

exist. When this is the case, partial derivatives can be merged in a n-vector called the gradient
of f and denoted by

∇f(x)
def
=

⎛
⎜⎝

∂f(x)
∂x1
...

∂f(x)
∂xn

⎞
⎟⎠ .

If f is differentiable at x, f is continuous at x. If moreover its derivatives are continuous at x,
f is said to be continuously differentiable at x. More generally we say that f is in Ck if it has
continuous k-th-order partial derivatives.

If f is twice continuously differentiable (f ∈ C2), we define the Hessian matrix (or Hessian
for short) of f to be the n× n matrix-valued function

∇2f(x)
def
=

⎛
⎜⎜⎜⎜⎝

∂2f(x)

∂x2
1

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)

∂x2
2

· · · ∂2f(x)
∂x2∂xn

...
...

. . .
...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

· · · ∂2f(x)
∂x2

n

⎞
⎟⎟⎟⎟⎠ .

The curvature of f at x ∈ Rn along a direction d ∈ Rn is given by

〈d,∇f(x)d〉
‖d‖2

.

12 Chapter 1. Why stochastic programming?

A function g : Rn → Rm is differentiable at x ∈ Rn if all partial derivatives

∂gj(x)

∂xi

def
= lim

ε→0

gj(x+ εe[i]) − gj(x)

ε
, i = 1, . . . , n, j = 1, . . . , n.

exist. If this is the case, they can be gathered in the m-by-n matrix

Jg(x) =

⎛
⎜⎜⎜⎜⎝

∂g1(x)
∂x1

∂g1(x)
∂x2

· · · ∂g1(x)
∂xn

∂g2(x)
∂x1

∂g2(x)
∂x2

· · · ∂g2(x)
∂xn

...
...

. . .
...

∂gm(x)
∂x1

∂gm(x)
∂x2

· · · ∂gm(x)
∂xn

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
∇gT

1 (x)
∇gT

2 (x)
...

∇gT
m(x)

⎞
⎟⎟⎟⎠ ,

called the Jacobian matrix (or Jacobian for short) of g. Note that the second equality shows that
the Hessian of g(x) is the Jacobian of ∇g(x).

Note that when a function depends on several vectors, for instance if we consider a function

h : Rn × Rq → R

(x, y)� h(x, y),

we use a different notation to denote the derivatives of h with respect to the variables x and/or
y: ∇xh(x, y) ∈ Rn and ∇2

xxh(x, y) ∈ Rn×n represent the gradient and the Hessian of h with
respect to x, ∇yh(x, y) ∈ Rq and ∇2

yyh(x, y) ∈ Rq×q denote the gradient and the Hessian of h
with respect to y, while ∇h(x, y) ∈ Rn+q and ∇2h(x, y) ∈ R(n+q)×(n+q) denote the “complete”
first- and second-order derivatives of h, i.e. with respect to both x and y.

Directional derivatives and subgradients

Given a function f : Rn → R, a point x ∈ Rn and a vector d ∈ Rn, f is said to be
directionally differentiable at x ∈ R in the direction d if the limit

f ′
d(x)

def
= lim

t↘0

f(x+ td) − f(x)

t

exists. f ′
d(x) is the one-side directional derivative of f at x in the direction d. If f is continuously

differentiable in some neighbourhood of x,

f ′
d(x) = ∇f(x)Td.

The subdifferential ∂xf(x) of f at x is the set

∂xf(x)
def
= {g ∈ Rn | 〈g, d〉 ≤ f ′

d(x) ∀d ∈ Rn},

while each member of the subdifferential is known as a subgradient. We will denote by fx any
arbitrary subgradient of f in x. If f is convex and f(x) is finite, this derivative always exists
and f ′

−d(x) ≤ f ′
d(x). The subdifferential can then be rewritten (see for example Rockafellar an

Wets [116]) as

∂xf(x) = {g ∈ Rn | f(x) + 〈g, d〉 ≤ f(x+ d), ∀d ∈ Rn} .

Moreover, the subdifferential is not empty.

1.4 Measure and probability theories 13

1.3.5 Forcing functions

In our later developments (see in particular Chapter 4), we will also need the concept of
forcing function.

Definition 1.5: Forcing function
φ(·) is a forcing function if it is a continuous function from the set of nonnegative reals R+ into
itself with the property that

φ(x) = 0 if and only if x = 0.

Examples of forcing functions of x are x itself and x2. The products or the sums of sets of
forcing functions are forcing functions, as are their minimum or maximum.

1.4 Measure and probability theories

Probability theory founds its foundations in measure theory, so it is useful to first review
measure theory results that will be relevant for our analysis. The reader can refer amongst others
to Ash and Doleans-Dade [5] and Davidson [39] for a more detailed coverage of these subjects.

1.4.1 Measure spaces

First, define the type of objects that could be measured. This is done with the concept of
σ-algebras.

Definition 1.6: σ-algebra
Let X be a set. A σ-algebra (also called a σ-field) over X is a collection X of subsets of X with
the following properties:

1. X is closed under countable unions. In other terms, if U1, U2, . . . are in X , then their
union ∞⋃

n=1

Un

is also in X .

2. X is closed under countable intersections. If U1, U2, . . . are in X , then their intersection

∞⋂
n=1

Un

is also in X .

3. X is closed under complementation: if U is in X , then the complementary set of U ,
denoted by

UC def
= X \ U,

14 Chapter 1. Why stochastic programming?

is also in X .

There are two trivial σ-algebras: for any set X , the collection {∅, X} and the power set

P(X)
def
= {S ⊂ X}. The smallest σ-algebra which contains all elements of some collection M

is called the σ-algebra generated by M and is sometimes denoted by σ(M). If X and Y are
both σ-fields, and Y ⊂ X , then Y is said to be a sub-field (or a sub-algebra) of X , and X is said
to contain more information or refine Y . If X = R we will often use the Borel field BR (or B
for short), the σ-algebra generated by the collection of closed half-lines with rational endpoint
C = {(−∞, r], r ∈ Q}. A number of different base collections generate BR, including the
collection of closed half-lines with real endpoints {(−∞, x], x ∈ Q}, the open intervals of R,
the closed intervals, and the half-open intervals.

Adding a σ-algebra to a set X leads to the notion of measurable space.

Definition 1.7: Measurable space
A measurable space is an ordered pair (X,X), where X is a set, and X is a σ-algebra on X .
The sets in X are called measurable sets.

Having a measurable space (X,X), we would like to be able to quantify in some manner
how large is an element of X . This is achieved by introducing a measure on X .

Definition 1.8: Measure
Let X be a set, and X a σ-algebra on X . A measure on X is a map

µ : X → [0,∞]

which is countable addititive, in the sense that, if Y1, Y2, Y3, . . . are all elements of X , and are
disjoint, then

µ

(∞⋃
n=1

Yn

)
=

∞∑
n=1

µ (Yn) .

The counting measure is the simplest measure of all; it assigns to any set the cardinality of
that set:

µ(S) = #S.

If µ(X) <∞, the measure is said to be finite, and if X =
⋃

j Xj , where {Xj} is a countable
collection of X -sets, and µ(Xj) <∞ for each j, µ is said to be σ-finite.

The next definition that we introduce synthesizes the previous ones.

Definition 1.9: Measure space
A measure space is an ordered triple (X,X , µ), where X is a set, X is a σ-algebra and µ is a
measure on X .

1.4 Measure and probability theories 15

1.4.2 Product spaces and product measures

If (X1,X1) and (X2,X2) are two measurable spaces, let

X1 ×X2 = {(x1, x2) |x1 ∈ X1, x2 ∈ X2}

be the Cartesian product of X1 and X2, and define X1 ⊗X2 = σ(RX1X2), where

RX1X2 = {(Y1 × Y2), Y1 ∈ X1, Y2 ∈ X2}.

The space (X1×X2,X1⊗X2) is called a product space, and (X1,X1) and (X2,X2) are the factor
spaces, or coordinate spaces, of the product. The elements of the collection RX1X2 are called the
measurable rectangles.

Let µ be a measure on X1, and ν, a measure on X2. Therefore (X1,X1, µ) and (X2,X2, ν)
are two measure spaces. Define the set function

π : RX1X2 �→ R+,

where RX1X2 denotes the measurable rectangles of the space X1 ×X2, by

π(X1 ×X2) = µ(X1)µ(X2).

π is a measure on RX1X2 , called the product measure, and (X1 ×X2,X1 × X2, π) is a measure
space. µ and ν are called the marginal measures corresponding to π.

1.4.3 Functions on measure spaces

It is often convenient to be able to make some correspondence between measurable sets of
two spaces. This is accomplished by means of measurable functions.

Definition 1.10: Measurable function
Let (X1,X1) and (X2,X2) be measurable spaces. A function

f : X1 → X2

is called measurable with respect to X1 and X2, or X1/X2-measurable, if every X2-measurable
set has an X1-measurable preimage under f . Formally:

∀A ⊂ X2, if A ∈ X2, then f−1(A) ∈ X1.

When the relevant σ-algebras are understood, we will often simply say that f is measurable,
without explicit reference to X1 and X2.

This definition depends only on the σ-algebras X1 and X2 and has nothing to do with any
actual measure on X1 or X2.

Consider now measure spaces; it is usually sufficient to consider structures or properties
almost everywhere, i.e., holding for every element of X , except possibly for sets of measure
zero. This leads to the definition of a function mod zero.

16 Chapter 1. Why stochastic programming?

Definition 1.11: Function mod zero
Let (X,X , µ) be a measure space, and let X̂ be some other set. A function mod zero is a
function f defined almost everywhere on X . In other words, there is some subset X0 ∈ X , with
µ(X \X0) = 0, such that

f : X0 → X̂.

The integral of a measurable function f : X → R on a measure space (X,B, µ) is written∫
X

fdµ, or just
∫
fdµ.

It is defined via the following steps:

• If f = 1A is the characteristic function of a set A ∈ B, i.e.,

1A(x) =

{
1 if x ∈ A,

0 if x ∈ X \ A,

then set ∫
X

1Adµ
def
= µ(A).

• If f is a simple function, i.e., if f can be written as

f =
n∑

k=1

ck1Ak
,

where ck ∈ R and Ak ∈ B, k = 1, . . . , n, then∫
X

fdµ
def
=

n∑
k=1

ck

∫
X

1Ak
dµ =

n∑
k=1

ckµ(Ak).

• If f is a nonnegative measurable function, then∫
X

fdµ
def
= sup

{∫
X

hdµ |h is simple and h(x) ≤ f(x) for all x ∈ X

}
.

• If f : X → R is any measurable function, let f+ = max{f, 0} ≥ 0 and f− =
max{−f, 0} ≥ 0. The integral of f is defined as∫

fdµ =

∫
f+dµ−

∫
f−dµ

so long as at least one of the right-hand side integrals are finite. If both
∫
f+dµ = +∞

and
∫
f−dµ = +∞, the integral is undefined. A function is said to be integrable only if its

integral is both defined and finite. Noting that |f | = f+ + f−, f is integrable if and only if∫
|f |dµ <∞.

1.4 Measure and probability theories 17

If µ is the Lebesgue measure and X is any interval in Rn then the integral is called the
Lebesgue integral. If the Lebesgue integral of a function f on a set A exists, f is said to be
Lebesgue integrable.

Let p be a strictly positive integer, and (X,X , µ) a measure space. Lp(X,X , µ) is the collec-
tion of real-valued functions defined on X such that |f |p is measurable. We can then define the
Lp-norm of the function f as

‖f‖p =

√
1

p

∫
|f |pdµ.

We conclude this section with the Fubini’s theorem.

Theorem 1.1 (Fubini’s theorem) Let π be a product measure with σ-finite marginal measures
µ and ν; let f : X × Y → R be (X ⊗ Y)/B-measurable with∫

X×Y

|f(x, y)| dπ(x, y) <∞.

Define fx : Y → R by fx(y) = f(x, y) and let g(y) =
∫

Y
fxdν. Then

(i) fx is Y/B-measurable and integrable for x ∈ A ⊆ X , with µ(X \ A) = 0;

(ii) g is X /B-measurable, and integrable on A;

(iii)
∫

X×Y
f(x, y)dπ(x, y) =

∫
X

(∫
Y
f(x, y)dν(y)

)
dµ(x).

1.4.4 Conditional expectations

Suppose (X,X , µ) is some measure space, and f : X → C ⊂ R is X -measurable. If Y ⊂ X
is some σ-subalgebra, the function f will not, in general, also be measurable with respect to Y .
We can however approximate f by a Y-measurable function, called the conditional expectation
of f .

Definition 1.12: Conditional expectation
Let (X,X , µ) be a measure space, and let Y be a σ-subalgebra of X . Let f ∈ L1(X,X , µ). The
conditional expectation of f with respect to Y is the unique function, written EY [f], satisfying:

1. EY [f] is Y-measurable,

2. For any subset U ∈ Y , we have: ∫
U

EYdµ =

∫
U

fdµ.

If f is Y-measurable, we can expect that the conditional expectation of f with respect to Y
corresponds in fact to f . This is obtained from the following proposition.

Proposition 1.4 Let (X,X , µ) be a measure space, f ∈ L1(X,X , µ) and Y ⊂ X be a σ-

18 Chapter 1. Why stochastic programming?

subalgebra. If f is Y-measurable, then

EY [f] = f.

If Y1 ⊂ Y2, then
EY1 [EY2 [f]] = EY1 [f].

1.4.5 Probability spaces and random variables

In stochastic programming, uncertainty is represented in terms of random experiments with
outcomes, called random elements, individually denoted by ω. The set of all outcomes is Ω, the
sample space. An event A is a subset of Ω, and we represent the collection of random events
by A. More formally, A is a σ-field of subsets of Ω. The event A ∈ A is said to have occurred
if the outcome of the experiment is an element of A. Finally, for each A ∈ A, we associate a
probability measure P [A] defined as below.

Definition 1.13: Probability measure
A probability measure (p.m.) on a measurable space (Ω,A) is a set function P : A → [0, 1]
satisfying the axioms of probability:

(a) P (A) ≥ 0, for all A ∈ A,

(b) P (Ω) = 1,

(c) countable additivity: for a disjoint collection {Aj ∈ A, j ∈ N},

P

(⋃
j

Aj

)
=

∑
j

P (Aj).

Additional properties of P follow from the axioms.

Proposition 1.5 If A, B, and {Aj, j ∈ N} are arbitrary A-sets, then

(i) P [A] ≤ 1,

(ii) P [Ac] = 1 − P [A],

(iii) P [∅] = 0,

(iv) monotonicity: if A ⊆ B, then, P [A] ≤ P [B],

(v) P [A ∪B] = P [A] + P [B] − P [A ∩B],

(vi) countable subadditivity: P [∪jAj] ≤
∑

j P [Aj],

(vii) continuity: if Aj ↗ A or Aj ↘ A, then P [Aj] → P [A].

If A ∈ A has P [A] = 1, then A is said to occur almost surely (a.s.), or with probability

1.4 Measure and probability theories 19

one (w.p. 1). If A ∈ A has P (A) = 0, then A is said to occur with probability 0 (w.p. 0).
An event is a measurable subset of Ω. The triplet (Ω,A, P) is called a probability space. It is
easy to see that any probability space (Ω,A, P) is a measure space, so it is also called a measure
probability space. An important situation in programming stochastic is when the elements ω ∈ Ω
are used to describe a few states of the world or scenarios (see Section 3.2.4 on page 52). All
random elements then jointly depend on these finitely many scenarios; it’s a frequent situation in
strategic modelling where only a few scenarios are considered in detail. In many cases however,
the construction of Ω and A is extremely complicated, and the knowledge of the random variables
is sufficient.

A random variable ξ on a measurable space (Ω,A), taking its values in a measurable space
(Ω′,A′), is a measurable function ξ : Ω → Ω′. We will only consider real discrete or continuous
random variables. For discrete variables, Ω′ is a discrete subset of R, associated to the power
set. For continuous variables, Ω′ is equal to R or R = R ∪ {+∞} ∪ {−∞}, and is associated to
the Borel field BR or B

R
. Define a probability measure P on (Ω,A). We introduce the following

notation:
Pξ[A

′]
def
= P

[
ξ−1(A′)

]
.

It is easy to check that the function Pξ, defined on (Ω′,A′), is a probability measure.
If the random variable is discrete we can also assume that (Ω′,A′) = (R,BR). Consider a

subset A′ measurable in (R,BR); since {ai|ai ∈ A′ ∩Ω′} is measurable, we can define Pξ[A
′] =

Pξ[{ai|ai ∈ A′ ∩ Ω′}]. Moreover if the random variable is continuous and (Ω′,A′) = (R,BR),
we could have P [ξ ∈ {−∞,+∞}] > 0. Assigning a positive probability to infinity does not
however lead to meaningful results (Davidson [39], page 117). Random variables must be finite
with probability one, so (R,B, Pξ), the trace of (R,B

R
, Pξ) on R, is equivalent to it for nearly

all purposes.
The cumulative distribution function (c.d.f.) of ξ is Fξ : R → [0, 1], where

Fξ(x) = Pξ[ξ ≤ x], x ∈ R.

We take the domain to be R since it is natural to assign the values 0 and 1 to Fξ(−∞) and
Fξ(+∞) respectively. If ξ is continuous, Fξ is absolutely continuous and the derivative f =
dFξ/dx exists almost everywhere (with respect to the Lebesgue measure), and is called the prob-
ability density function (p.d.f.). According to the Radon-Nikodym theorem, the p.d.f. has the
property that for each E ∈ B,

µ(E) =

∫
E

f(x)dx.

When no confusion is possible, we will write F (x) instead of Fξ(x).

Example 1.1. For the uniform distribution (also called rectangular distribution) on [0, 1],

F (x) =

⎧⎪⎨
⎪⎩

0 if x < 0,

x if 0 ≤ x ≤ 1,

1 if x > 1.

The p.d.f. is constant at 1 on the interval, but is undefined at 0 and 1. If ξ follows an uniform
distribution on [0, 1], we will write ξ ∼ U(0, 1).

20 Chapter 1. Why stochastic programming?

Example 1.2. The p.d.f. of a normally distributed random variable, with mean µ and standard
deviation σ, is

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 .

If ξ follows a normal distribution with mean µ and variance σ2, we will write ξ ∼ N(µ, σ2).

Example 1.3. A popular distribution in discrete choice models (see Chapter 6) is the Gumbel
distribution, also called the extreme value type I distribution. Its c.d.f. is given by

F (x) = e−e−µ(ε−η)

,

where η is a location parameter and µ > 0 is a scale parameter. The p.d.f. is

f(x) = µe−µ(ε−η)e−e−µ(ε−η)

.

The mean of the Gumbel distribution is

η − Γ′(1)

µ
,

where Γ′(1) ≈ −0.57721 is the first derivative of the gamma function Γ(n) with respect to n at

n = 1. Note that γ
def
= −Γ′(1) is also known as the Euler constant. The variance of a Gumbel

distributed variable is
µ2π2

6
.

The reader interested in properties of major statistical distributions can refer to Evans, Hast-
ings and Peacock [49].

Let µ be a measure on (Ω′,A′). ξ has a probability density if there is a function f such that
for all A′ ∈ A′,

Pξ(A
′) =

∫
A′
f(x)dµ.

If (Ω,A′) = (R,BR), µ is the Lebesgue measure and dµ is then usually replaced by the notation
dx. Else, if Ω is a discrete set X , and A′ is the power set, µ is the counting measure.

1.4.6 Multivariate variables

In Euclidian n-space Rn, the n-dimensional Borel field Bn is σ(Rn), where Rn denotes
the measurable rectangles of Rn, the sets of the form B1 × B2 × . . . × Bn where Bi ∈ B for
i = 1, . . . , n. In a space (Ω,A, P), a random vector ξ = (ξ1, ξ2, . . . , ξn)T is a measurable
mapping

ξ : Ω → Rn.

If µ is the derived measure defined by µ(E) = P [A] for E ∈ Bn and A ∈ A, such that A =
ξ−1(E), the multivariate c.d.f., Fξ : R

n → [0, 1], is defined for x = (x1, . . . , xn)T by

Fξ(x) = µ((−∞, x1] × . . .× (−∞, xn]).

1.4 Measure and probability theories 21

If the distribution is continuous with p.d.f. f(x), Fubini’s theorem gives

F (x) =

∫
(−∞,x1]×...×(−∞,xn]

f(x1, . . . , xn)dx1 . . . dxn =

∫ xn

−∞
. . .

∫ x1

−∞
f(x1, . . . , xn)dx1 . . . dxn.

Example 1.4 (Multivariate normal distribution). Let ζ = (ζ1, . . . , ζn)T be a random vector
with p.d.f.

f(ζ) =
1√

(2π)n|Σ|
e−

1
2
(ζ−µ)T Σ−1(ζ−µ),

where ζ = (ζ1, . . . , ζn), µ denotes a vector of means µ1, . . . , µn, and Σ is a n × n symmetric
positive define matrix of covariance. The notation | · | designs the determinant operator. ζ is then
said to follow a multivariate normal distribution, and we write ξ ∼ N (µ,Σ). If ξ ∼ N (0, I),
where 0 is a column vector of n zeros and I is the n × n identity matrix, then we can represent
ζ as

ζ = Cξ + µ,

where C is the (unique) Cholesky factor of Σ.

We also define the support of ξ as follows:

Definition 1.14: Support of random variable
Let ξ a random variable. Ξ ∈ Rn is the support of ξ if it is the smallest closed subset in Rn

such that Pξ[ξ ∈ Ξ] = 1.

We can associate to the random vector ξ the probability space (Ξ,F , Pξ), with F = {A |A =
B ∩ Ξ, B ∈ Bn}.

1.4.7 Independence

A pair of events A, B ∈ A is said to be independent if

P [A ∩B] = P [A]P [B], (1.8)

or, equivalently, if
P [B|A] = P [B].

If, in a collection of events C, (1.8) holds for every pair of distinct sets A and B from the
collection, C is said to be pairwise independent. In addition, C is said to be totally independent if

P [∩A∈JA] =
∏
A∈J

P [A].

for every subset J ⊆ C containing two or more events.
The extension to random variables is direct. Consider two random variables X and Y on

(R2,B2, µ). If we are interested only in predicting X , the events of interest are the cylinder sets

22 Chapter 1. Why stochastic programming?

in R2, having the form B × R, B ∈ B. The marginal distribution of X is defined by (R,B, µX)
where

µX(A) = µ(A× R) (1.9)

for A ∈ B. X and Y are called independent if and only if

µ(A×B) = µX(A)µY (B)

for all pairs of events A, B ∈ B, where µX is defined by (1.9) and µY is defined analogously.
Equivalently, µ is the product measure generated by µX and µY .

Theorem 1.2 X and Y are independent if and only if for each x, y ∈ R

F (x, y) = FX(x)FY (y).

If the distribution is continuous the p.d.f. factorizes as

f(x, y) = fX(x)fY (y).

Variables ξ1, . . . , ξn distributed on the space (Rn,Bn, µ) are said to be totally independent if

µ

(
n

�
i=1
Ai

)
=

n∏
i=1

µXi
(Ai)

for all n-uples of events A1, . . . , An ∈ B. Another way to define total independence is in terms
of a partitioning of a vector ξ = (ξ1, . . . , ξn)T into subvectors ξ1 of dimension j and ξ2 of
dimension n − j, for j satisfying 0 < j < n. Under total independence, the measure of ξ
is always expressible as the product measure of the two subvectors, under all orderings and
partitionings of the elements.

Moreover if the variables ξ1, . . . , ξn follow the same probability distribution, they are said to
be independent and identically distributed (i.i.d.).

1.4.8 Convergence of stochastic sequences

It is not always possible in stochastic programming to use directly a random variable ξ. For
instance, if ξ is defined on (Rn,Bn, µ), E[f(ξ)] involves a multidimensional integral whose
solution can be difficult to obtain. Rather than ξ, we then use random variables that are close in
some sense to ξ, but we would like to be sure that refining these approximating random variables
leads us towards the true random variables ξ. This question can be formally addressed by proving
convergence of the sequences of approximating random variables.

Consider the functional expression {ξn(ω)}∞n=1 for a random sequence on the space (Ω,A, P).
When evaluated at a point ω ∈ Ω this denotes a realization of the sequence, the actual collection
of real numbers generated when the outcome ω is drawn. If for every ω ∈ Ω, ξn(ω) → ξ(ω),
we say that ξn → ξ surely (or elementwise). It is usually difficult to establish that a stochastic
sequence converges surely to a limit. A much more useful notion (because more easily shown),
is almost sure convergence, or equivalently, convergence with probability one.

1.4 Measure and probability theories 23

Definition 1.15: Convergence with probability one
A sequence of random variables {ξn}+∞

n=1 converges almost surely to a random variable ξ with
probability one if

Pξ[{ω| ξn(ω) → ξ(ω) as n→ ∞}] = 1.

The notations ξn
a.s.−→ ξ, or ξn → ξ a.s. and a.s.lim ξn = ξ are all used to denote almost sure

convergence. A weaker kind of convergence is the convergence in probability.

Definition 1.16: Convergence in probability
The sequence {ξn}+∞

n=1 of random variables converges in probability to the random variable ξ
if for all ε > 0,

lim
n→∞

Pξ[{ω | |ξn(ω) − ξ(ω)}| ≥ ε] = 0.

Almost sure convergence implies convergence in probability; however the converse is not
true.

We are sometimes only interested in the marginal cumulative distribution functions, {Fn}∞n=1,
or equivalently the marginal probability measures {µn}∞n=1.

Definition 1.17: Convergence in distribution
Given a sequence of random variables {ξn}∞n=1 and a random variable ξ, ξn converges in
distribution to ξ if ξn has c.d.f. Fn and ξ has c.d.f. ξ, and ξn(x) → F (x) pointwise for each
x ∈ C, where C ⊆ R is the set of points at which F is continuous.

The convergence of the c.d.f.s Fn at points where the limiting function F is continuous, is
also called weak convergence. Equivalent notations for weak convergence are ξn ⇒ ξ, and

ξn
D−→ ξ. This kind of convergence is sometimes also referred as convergence in probability

law, and is denoted by ξn
L−→ ξ. To say that a sequence of random variables converges in

distribution means only that the limiting random variable has the given distribution. If both ξ
and ζ follow the distribution specified by F , then ξn ⇒ ξ and ξn ⇒ ζ are equivalent statements.

The corresponding notion of weak convergence for the sequence of measures {µn} is given
by the following theorem.

Theorem 1.3 µn converges weakly to µ (µn ⇒ µ) if and only if µn(A) → µ(A) for every
A ∈ B for which µ(∂A) = 0.

1.4.9 The central limit theorem

The central limit theorem plays an important role in statistics, and we will frequently refer
to it when studying Monte Carlo samplings (see Chapters 5–7). Basically, it expresses that
if a sequence of random variables {ξt}∞t=1 have means of zero and the partial sums

∑n
t=1 ξt,

n = 1, 2, 3, . . . , have finite variances s2
n, with s2

n tending to infinity as n → ∞, then, subject to

24 Chapter 1. Why stochastic programming?

rather mild additional conditions on the distributions and the sampling process,

Sn
def
=

1

sn

n∑
t=1

Xt ⇒ N(0, 1).

Several sets of sufficient conditions have been proposed to ensure such a convergence; we restrict
here to the i.i.d. case. We then have the following result.

Theorem 1.4 (Lindeberg-Lévy theorem) If {ξt}∞t=1 is an i.i.d. sequence having zero means
and variances σ2,

Sn
def
=

1√
n

n∑
t=1

ξt

σ
⇒ N(0, 1).

The reader can refer for instance to Davidson [39], Chapter 23, for more general results.

Chapter 2

Nonlinear mathematical programming

We consider in this chapter general nonlinear programs. We first characterize a solution of
such a program and its related properties, in particular from the optimality viewpoint, which are
crucial ingredients for our discussion about consistency of solutions obtained when solving sam-
ple average approximations of nonlinear stochastic programs (see Chapter 5). We finally present
some classical methods to solve nonlinear programs. The review is far from being exhaustive but
focus on trust-region and primal-dual methods since these are the foundations for our algorithmic
developments in Part II.

2.1 What is a solution?

Consider the problem
min
x∈S

f(x),

where f : Rn → R and S is a subset of Rn. Ideally we would like to find a global minimizer of
f in S, i.e., a point in S where the function reaches its least value. A formal definition is:

Definition 2.1: Global minimizer
A point x∗ is a global minimizer of f : Rn → R in S if f(x∗) ≤ f(x) for all x ∈ S.

The global minimizer can be difficult to find, especially when the objective function is non-
convex. Most algorithms are able to find only a local minimizer, which is a point that achieves
the smallest value of f in its neighbourhood.

Definition 2.2: Local minimizer
A point x∗ of f : Rn → R in S is a local minimizer if there is a neighbourhood V of x∗ such
that f(x∗) ≤ f(x) for x ∈ V ∩ S.

A point that satisfies this definition is sometimes called a weak local minimizer. This termi-
nology distinguishes it from a strict local minimizer, formally defined as follows.

Definition 2.3: Strict local minimizer

26 Chapter 2. Nonlinear mathematical programming

A point x∗ is a strict local minimizer (also called a strong local minimizer) if there is a neigh-
bourhood V of x∗ such that f(x∗) < f(x) for all x ∈ V with x �= x∗.

Strict local minimizers are not always isolated, but all isolated local minimizers are strict.

Example 2.1. Consider the following function, from Nocedal and Wright [104], page 14:

f(x) = x4 cos
1

x
+ 2x4.

f(x) ∈ C2 and has a strict local minimizer at x∗ = 0. However there are strict local minimizers
at many nearby points xn, and we can label these points so that xn → 0, as n→ 0.

A strict local minimizer can be seen as a global minimizer is some neighbourhood V of x∗,
however if it is not isolated, it can be very difficult to identify it. This is in particular the case
when we use approximations of the objective function (see Chapter 5 on Monte Carlo samplings).
Sometimes the problem exhibits properties that are helpful in finding a global minimum. An
important special case is that of convex functions, for which every local minimizer is also a
global minimizer.

2.2 Optimality conditions

Having defined the notion of solution, there remains the question of how to check that a
point is indeed a solution. This is done in practice by testing some optimality conditions for
the optimization problem under study. Note that there are many different types of optimality
conditions, some of them requiring more of less assumptions than others, and in fact the search
for new conditions, e.g., better-suited to some particular classes of problems, remains an active
research area.

As said before, finding global optimal solutions is a very difficult task. Consequently, opti-
mality conditions aim at characterizing local solutions. However, they may be extended to cover
global solutions in some particular situations, as it is the case for convex programming. In this
thesis, we will focus on optimality conditions suitable for general nonlinear programs.

2.2.1 Nonlinear unconstrained programming

Given a function f : Rn → R, we consider the problem

min
x∈Rn

f(x). (2.1)

We start with necessary conditions, where it is assumed that a point x∗ is a local minimizer.
Properties of ∇xf(x∗) and ∇2

xxf(x∗) are derived, leading to first- and second-order necessary
conditions respectively.

Theorem 2.1 (First-order necessary condition) If x∗ is a local minimizer of problem (2.1) and
f is continuously differentiable in an open neighbourhood of x∗, then ∇xf(x∗) = 0.

2.2 Optimality conditions 27

Note that if ∇xf(x∗) = 0, x∗ is also said to be a stationary point.

Theorem 2.2 (Second-order necessary condition) If x∗ is a local minimizer of problem (2.1)
and f is twice continuously differentiable in an open neighbourhood of x∗, then ∇xf(x∗) = 0
and ∇2

xxf(x∗) is positive semidefinite.

The next theorem gives sufficient conditions on x∗, that is conditions on ∇xf(x∗) and ∇xxf(x∗)
that guarantee that x∗ is a (strict) local minimizer of f .

Theorem 2.3 (Second-order sufficient condition) Assume that ∇2
xxf is continuous in an open

neighbourhood of x∗ and that ∇xf(x∗) = 0 and ∇2
xxf(x∗) is positive definite. Then x∗ is a

strict local minimizer of problem (2.1).

As announced above, optimality conditions are easier in the case of convex programming,
and requires fewer assumptions, as shown in the following theorem.

Theorem 2.4 If f is convex, then any local minimizer x∗ of problem (2.1) is a global minimizer.
If in addition f is differentiable, then any stationary point x∗ is a global minimizer of (2.1).

These theorems show that the gradient gives valuable information when checking optimality,
and the numerical cost associated to its evaluation is often manageable. As a result, algorithms
for unconstrained optimization usually seek a point x∗ at which the gradient of f vanishes. From
a practical point of view, a frequently used stopping criterion is that ‖∇xf(x∗)‖ is less then some
small predefined tolerance.

2.2.2 Nonlinear constrained programming

Consider now a constrained problem of the form

min
x∈X

f(x) (2.2)

s.t. ci(x) = 0, i ∈ E , (2.3)

ci(x) ≤ 0, i ∈ I. (2.4)

The Lagrangian (or Lagrange function) for the program (2.2)–(2.4) is defined by

L (x, λ) = f(x) +
∑

i∈E∪I
λici(x),

where λi, i ∈ E ∪ I, are called the Lagrange multipliers. As will be seen throughout the next
sections and chapters, the Lagrangian and the Lagrange multipliers are crucial tools for the study
and the development of solution approaches in the framework of constrained problems. Note
that it is common to refer to x as the primal variables and to the Lagrange multipliers λi as the
dual variable.

28 Chapter 2. Nonlinear mathematical programming

As for unconstrained problems, we start with necessary optimality conditions.

Theorem 2.5 (First-order necessary conditions) Suppose that x∗ is a local solution of (2.2)–
(2.4) and that a constraint qualification holds at x∗. Then there is a Lagrange multiplier vector
λ∗, with components λ∗i , i ∈ E ∪ I, such that the following conditions are satisfied at (x∗, λ∗):

∇xL(x∗, λ∗) = 0, (2.5)

ci(x
∗) = 0, ∀i ∈ E , (2.6)

ci(x
∗) ≤ 0, ∀i ∈ I, (2.7)

λ∗i ≥ 0, ∀i ∈ I, (2.8)

λ∗i ci(x
∗) = 0, ∀i ∈ E ∪ I, (2.9)

Proof. See Nocedal and Wright [104], Chapter 12.

The conditions (2.5)–(2.9) are often known as the Karush-Kuhn-Tucker conditions, or KKT
conditions for short. These conditions were first derived by Karush in 1939, in his Master’s thesis
at the University of Chicago [81], and were later re-derived by the Princeton mathematicians
Kuhn and Tucker [84], in 1951. A detailed account of the history of the derivation of the KKT
conditions and the theory of nonlinear programming can be found in Kjeldsen [82] and references
therein.

The constraint qualification assumption aims to ensure that no degenerate behaviour occurs
at the value x∗. The most often used is the linear independence constraint qualification, which is
based on the active set notion. The active set A(x∗) at any feasible x∗ is the union of the set of
indices of equality constraints with the indices of active inequality constraints:

A(x∗) = {i ∈ I | ci(x∗) = 0} ∪ E .

Definition 2.4: Linear Independence Qualification Constraint (LICQ)
Given the point x∗ and the active set A(x∗), the linear independence constraint qualification
(LICQ) holds if the set of active constraint gradients {∇xci(x

∗), i ∈ A(x∗)} is linearly inde-
pendent.

An useful generalization of the LICQ is the Mangasarian-Fromowitz constraint qualification
(MFCQ), which is implied by the LICQ. We refer to Nocedal and Wright, Chapter 12, for a more
detailed exposition of optimality conditions, qualification constraints, and their qualification.

An important particular case is again that of convex programming problems: in this frame-
work, every local solution is a global solution and the KKT conditions are both necessary and
sufficient provided a constraint qualification holds. A well-known constraint qualification for the
convex case is Slater’s constraint qualification, which is formulated as follows.

Definition 2.5: Slater’s constraint qualification
There exists x̂ ∈ Rn such that ci(x̂) < 0 for all i ∈ I and ci(x̂) = 0 for all i ∈ E .

We then have the following theorem:

2.2 Optimality conditions 29

Theorem 2.6 (Convex programming) If f is convex and the feasible region is convex, any local
solution of the constrained problem (2.2)–(2.4) is also a global solution. Furthermore, if f and
ci (i ∈ E ∪ I) are differentiable and if the Slater’s constraint qualification holds, the KKT
conditions (2.5)–(2.9) are necessary and sufficient for x∗ (and λ∗) to define a global solution.

If in addition f is strictly convex, the global solution is unique.

When the problem is nonconvex, the optimality of some point x∗ usually requires the knowl-
edge of the second derivatives of f , as in the results below. Let p = #I and m = #E . For given
vectors x ∈ Rn and λ ∈ Rp+m, the set N+(x, λ) is defined by

N+(x, λ)
def
=

{
w ∈ Rn

∣∣∣∣ ∇xci(x)
Tw = 0 ∀i ∈ E ∪ {j ∈ A(x) ∩ I : λj > 0}

and ∇xci(x)
Tw ≥ 0 ∀i ∈ {j ∈ A(x) ∩ I : λj = 0}

}
.

Theorem 2.7 (Second-order necessary conditions) Assume that x∗ is a local solution of prob-
lem (2.2)–(2.4) and that a constraint qualification holds at x∗. Let λ∗ be a Lagrange multiplier
vector such that the KKT conditions (2.5)–(2.9) are satisfied. Then the curvature of the La-
grangian along directions in N+(x∗, λ∗) must be nonnegative, that is

wT∇2
xxL(x∗, λ∗)w ≥ 0, for all w ∈ N+(x∗, λ∗). (2.10)

A sufficient second-order condition may be derived if we strengthen the inequality (2.10).

Theorem 2.8 (Second-order sufficient conditions) Assume that for some feasible point x∗ ∈ Rn

there exists a Lagrange vector λ∗ such that the KKT conditions (2.5)–(2.9) are satisfied. Assume
further that

wT∇2
xxL(x∗, λ∗)w > 0, for all w ∈ N+(x∗, λ∗) with w �= 0.

Then x∗ is a strict local solution for problem (2.2)–(2.4).

2.2.3 A geometric viewpoint

It is sometimes useful to adopt a geometric, rather than algebraic, viewpoint, while analyzing
feasible sets or optimality conditions. One advantage is that the feasible region is then indepen-
dent of the coordinate system used, and this can sometimes lead to a deeper understanding of the
underlying properties of optimization algorithms.

The most important geometric object for nonlinear programming is the cone. A subset C of
Rn is a cone if for all x ∈ C and λ > 0, λx ∈ C. Given a cone C, its polar is defined as

C0 def
= {y ∈ Rn|〈y, u〉 ≤ 0, ∀u ∈ C}.

It is trivial that C0 is also a cone. Moreover (C0)0 = C whenever C is a nonempty closed convex
cone.

Let X be a closed convex set. Two cones play a special role in the theory of constrained
optimization, the normal and tangent cones. The normal cone of X at x ∈ X is defined to be the

30 Chapter 2. Nonlinear mathematical programming

set

NX(x)
def
= {y ∈ Rn|〈y, u− x〉 ≤ 0,∀u ∈ X} .

The tangent cone of X at x ∈ X is the polar of the normal cone at the same point, that is,

TX(x)
def
= NX(x)0 = cl{θ(u− x)|θ ≥ 0 and u ∈ X}.

Notice this if x lies in the interior of X , NX(x) = 0 and TX(x) = Rn.
Consider the problem

min
x
f(x) subject to x ∈ X, (2.11)

where f : Rn → R is twice continuously differentiable. The first-order necessary condition for
(2.11) can then be expressed in a very simple way.

Theorem 2.9 (First-order conditions) Suppose that x∗ is a local minimizer of f in X . Then

−∇xf(x∗) ∈ NX(x∗).

2.3 Methods and algorithms in unconstrained nonlinear pro-
gramming

We now introduce some methods and algorithms for nonlinear programming, that will be
useful for the next chapters. For a more comprehensive review of numerical methods and related
properties, we refer to Dennis and Schnabel [42], Minoux [98], Nocedal and Wright [104],
Conn, Gould, and Toint [35], but this is not an exhaustive list of references. We study in this
section algorithms designed for unconstrained programs, while the next section will be devoted
to methods for constrained programming.

We consider mathematical programs of the form

min
x∈Rn

f(x).

As said in the previous section, we then usually aim at finding points at which the gradient of
the objective function vanishes. Therefore a natural approach is to consider the system of n
nonlinear equations of n variables given by

∇xf(x) = 0, (2.12)

and to solve this system. Usually, there is no direct methods except for some particular cases,
so we will use iterative procedures to construct a sequence of points converging to a solution of
(2.12).

2.3 Methods and algorithms in unconstrained nonlinear programming 31

2.3.1 Newton’s method

Consider the problem
p(x) = 0, (2.13)

where p : Rn → Rn, p ∈ C1. Let x∗ be a solution of (2.13); x∗ will be referred as a root of p.
The first-order development of p around xk is

p(xk + s) = p(xk) + J(xk)s+O(s2), (2.14)

where J(xk) is the Jacobian matrix of p(·), evaluated at xk. We seek s such that p(xk + s) = 0.
It can be approximated by sk, obtained by solving the following system of equations (known as
Newton’s equations):

J(xk)sk = −p(xk). (2.15)

If J(xk) is invertible, sk can be computed as

sk = −J(xk)
−1p(xk).

The quantity sk is then called Newton’s direction. Let xk+1 = xk + sk. For a given x0, this
method allows us to construct a sequence of iterates {xk}∞k=0, if J(xk) is invertible for all k.

The approximation (2.15) is only valid if sk is small, so the term in O(s2) in (2.14) can be
neglected. Therefore the initial point x0 must be sufficiently close to x∗ to obtain convergence of
the Newton’s method, which is extremely efficient in this case. The algorithm below summarizes
the procedure.

Algorithm 2.1: Newton’s method for nonlinear systems

Step 0. Choose x0 sufficiently closed to x∗.

Step 1. Solve J(xk)sk = −p(xk); let xk+1 = xk + sk.

Step 2. If p(xk+1) ≈ 0, let x∗ = xk+1 and stop. Else, let k = k + 1; go to step 1.

The application of the Newton’s method to the system (2.12) is direct, by setting p(x) =
∇xf(x). The equation (2.15) becomes

∇2
xxf(xk)sk = −∇xf(xk). (2.16)

If ∇2
xxf(xk) is positive definite, then its inverse exists and sk is given by

sk = −(∇2
xxf(xk))

−1∇xf(xk). (2.17)

We can deduce from (2.16) that

∇xf(xk)
T sk = −sT

k ∇2
xxf(xk)sk ≤ −σk‖sk‖,

for some σk > 0. We finally conclude that

∇xf(xk)
T sk < 0. (2.18)

32 Chapter 2. Nonlinear mathematical programming

Computing ∇2
xxf(x) at xk may be numerically expensive, so it is sometimes preferable to

use some approximation Hk of ∇2
xxf(x). (2.17) then becomes

Hksk = −∇xf(xk).

It is nevertheless desirable to maintain the property (2.18) since from the Taylor’s theorem, for
any d ∈ Rn and ε > 0, we have

f(x+ εd) = f(x) + ε∇xf(x)Td+ 0(ε2).

Therefore any d such that ∇xf(x)Td < 0 produces a decrease in f if ε is sufficiently small; such
a d is then called a descent direction. The construction of adequate approximations Hk leads to
quasi-Newton methods.

Recall that the condition (2.12) is only a first-order necessary optimality condition; sufficient
second-order conditions require that ∇2

xxf(x∗) is positive definite in addition to ∇xf(x∗) = 0.
This fact and the absence of global convergence led to the development of so-called globalization
techniques. The purpose of such approaches is to refine the ideas of Newton’s method in order
to design algorithms converging to a first-order or second-order critical point from any starting
point. These methods can be gathered in two classes, namely linesearch methods and trust-region
methods.

2.3.2 Linesearch methods

The linesearch methods are built around the following idea: at each iteration, given an iterate
xk, choose a direction dk and search along this direction from xk a new iterate xk+1 such that
f(xk+1) ≤ f(xk). In theory, once a direction dk is found, the best decrease in f would be
obtained by solving

min
α>0

f(xk + αdk). (2.19)

Usually, the exact minimization of (2.19) is expensive and unnecessary, so instead of solving this
problem exactly, it is more efficient to solve (2.19) only approximately. We then seek some αk

such that a sufficient decrease of f is obtained at xk+1
def
= xk +αkdk. The new point xk+1 is then

the next iterate and the whole process is repeated.

2.3.3 Trust-region methods

Another broad class of globalization approaches for solving nonlinear unconstrained mathe-
matical programs is the class of trust-region methods. The main idea of a trust-region algorithm
is, at a current iterate xk, to calculate a trial point xk + sk by minimizing a model mk of the
objective function at xk inside a trust region, at each iteration. This region is defined as

Bk = {x ∈ Rm | ‖x− xk‖k ≤ ∆k} ,

where ∆k is called the trust-region radius, and where ‖ · ‖k is an iteration-dependent norm. A
classical choice is the 2-norm, but other norms can be more efficient when the geometry of the

2.3 Methods and algorithms in unconstrained nonlinear programming 33

problem is taken into account. The predicted and actual decreases in objective function values
are then compared. If the agreement is sufficiently good, the trial point becomes the new iterate
and the trust-region radius is (possibly) enlarged. If this agreement is poor, the trust region is
shrunk in order to improve the quality of the model. A formal description of the basic trust-region
algorithm follows.

Algorithm 2.2: Basic trust-region algorithm (BTR)

Step 0. Initialization. An initial point x0 and an initial trust-region radius ∆0 are given. The
constants η1, η2, γ1, and γ2 are also given and satisfy

0 < η1 ≤ η2 < 1 and 0 < γ1 ≤ γ2 < 1. (2.20)

Compute f(x0) and set k = 0.

Step 1. Model definition. Choose ‖ · ‖k and define a model mk in Bk.

Step 2. Step calculation. Compute a step sk that “sufficiently reduces the model”mk and such
that xk + sk ∈ Bk.

Step 3. Acceptance of the trial point. Compute f(xk + sk) and define

ρk =
f(xk) − f(xk + sk)

mk(xk) −mk(xk + sk)
. (2.21)

If ρk ≥ η1, then define xk+1 = xk + sk; otherwise define xk+1 = xk.

Step 4. Trust-region radius update.

∆k+1 ∈

⎧⎪⎨
⎪⎩

[∆k,∞) if ρk ≥ η2,

[γ2∆k,∆k] if ρk ∈ [η1, η2),

[γ1∆k, γ2∆k] if ρk < η1.

Increment k by 1 and go to Step 1.

In this description, reasonable values for the constants of (2.20) are, for instance,

η1 = 0.01, η2 = 0.9, and γ1 = γ2 = 0.5,

but other values may be selected. The most classical choice for mk is a quadratic function of the
type

mk(xk + s) = f(xk) + ∇xf(xk)
T s+

1

2
sTHks,

where Hk is either the Hessian ∇2
xxf(xk) or some approximation of it. Note that some authors

have suggested using other, more general, models, like the approach of Alexandrov, Dennis,
Lewis and Torczon [1].

34 Chapter 2. Nonlinear mathematical programming

If ρk ≥ η1 in Step 1, the iteration k is said to be successful since the candidate point xk + sk

is accepted; otherwise the iteration is declared unsuccessful and the new point is rejected. If
ρk ≥ η2, the agreement between the model and the function is particularly good, so the iteration
is said to be very successful. This then suggests increasing the trust-region radius, as in Step 4,
in order to allow a longer step at the next iteration.

2.4 Methods for nonlinear constrained programming

We return now to the general nonlinear program (1.1)–(1.3), that we restate for clarity:

min
x∈X

f(x) (2.22)

s.t. ci(x) = 0, i ∈ E , (2.23)

ci(x) ≤ 0, i ∈ I. (2.24)

The constraints are then often added to the objective so we can benefit from methods devoted to
nonlinear unconstrained programming. Reformulations of (2.22)–(2.24) leads to various classes
of methods for solving this program. We will review some of them in the remaining of this
chapter, in particular those that will be useful for our needs.

2.4.1 Penalty, barrier and augmented Lagrangian methods

The three types of methods reviewed in this section seek a solution by replacing the original
constrained problem (2.22)–(2.24) by a sequence of unconstrained subproblems. These methods
described hereafter may be also viewed as attempts to solve two problems simultaneously since
their — reformulated — objective function combines both the original objective f(x) and a
measure of the constraint violation, called a penalty term that we denote by θ(x). They are
implemented through the use of a so-called penalty parameter ρ, which is used to determine and
control the weight of the penalty term in the new objective function, combining f(x) and θ(x).
To achieve this, the value of ρ is made iteration-dependent, and the following problem is solved:

min
s
f(xk + s) + ρkθ(xk + s), (2.25)

where the sequence {ρk} tends to +∞, so the penalty term plays a prominent role as k increases
and the solution is enforced to be feasible. f(x) + ρθ(x) is called the penalty function, or also
merit function.

Penalty and augmented Lagrangian methods

Let consider the equality-constrained optimization problem

min
x
f(x) (2.26)

s.t. ci(x) = 0, i ∈ E . (2.27)

2.4 Methods for nonlinear constrained programming 35

The ideas is to include the equality constraints (2.27) into a penalty term that measures the
constraints violation and is added to the objective (2.26), as in (2.25). Thus the penalty term is
nonzero when x is infeasible with respect to the constraints. For this reason, such approaches
are also known as exterior penalty methods.

The quadratic penalty method uses

Q(x;µ)
def
=

1

2µ

∑
i∈E

c2i (x) (2.28)

as a penalty term, where the penalty parameter is given by ρ = 1
2µ

> 0. At iteration k, we
minimize the function

f(xk) +Q(xk;µk),

where µk is constructed in such a way that µk → 0 when k → ∞.
When inequality constraints are present, as in (2.2)–(2.4), the quadratic penalty function (2.28)

is augmented by a term reflecting their violation and becomes

Q(x;µ)
def
=

1

2µ

∑
i∈E

c2i (x) +
1

2µ

∑
i∈I

(max{ci(x), 0})2.

Note however that adding such terms may result in a less smooth penalty function, which is
of course less convenient when it is minimized. More generally, a major drawback to penalty
methods is that the Hessian ∇2

xxQ(x;µ) usually becomes ill-conditioned near the minimizer of
Q(x;µ) when µ tends to 0.

Another type of penalty term is given by

E(x;µ)
def
=

1

µ

∑
i∈I

max{0,−ci(x)} +
1

µ

∑
i∈E

|ci(x)|.

It can be shown that φ(x;µ)
def
= f(x) + E(x;µ), called the �1 exact merit function, satisfies the

following definition.

Definition 2.6: Exact merit function
A merit function ψ(x;µ) is said to be exact if there is a positive scalar µ∗ such that for any
µ ∈ (0, µ∗], any local solution of the nonlinear programming problem is a local minimizer of
ψ(x;µ).

In practice however, choosing the adequate value of µ prior an iteration is difficult when
solving most problems. Moreover, exact penalty functions are often nondifferentiable. This is
for instance the case for the �1 exact penalty function since its first derivative is not defined at
any x for which ci(x) = 0 (i ∈ E ∪ I).

A way to alleviate these difficulties is to add the penalty term to the Lagrangian function
instead of the objective. The resulting function is called the augmented Lagrangian function,
that can be formally formed as follows:

LA(x, λ;µ)
def
= f(x) +

∑
i∈E

λici(x) +
1

2µ

∑
i∈E

c2i (x).

36 Chapter 2. Nonlinear mathematical programming

An augmented Lagrangian method then performs the minimization of LA(x, λ;µ) with respect
to x, and uses some rule for updating the estimates of the Lagrange multipliers from iteration to
iteration. A very popular implementation of the augmented Lagrangian method is that of Conn,
Gould, and Toint [32] in the LANCELOT package.

Barrier methods

We now start by assuming that the problem to be solved involves inequality constraints only:

min
x
f(x) (2.29)

s.t. ci(x) ≤ 0, i ∈ I. (2.30)

A possible approach for solving such a problem is based on the use of barrier functions, whose
properties are the following:

• it is infinite everywhere except in the strictly feasible region

strict{F} = {x ∈ Rn : ci(x) < 0 for all i ∈ I};

• it is smooth inside strict{F};

• its value increases to ∞ as x approaches the boundary of strict{F}.

A well-known barrier function is the logarithmic barrier function (also called log-barrier)

P (x;µ) = −µ
∑
i∈I

log(−ci(x)),

where this time µ is called the barrier parameter. As for penalty methods, the idea is to minimize

f(x) + P (x;µ) (2.31)

with decreasing values of µ. This process can be shown to converge to a solution of (2.29)–(2.30)
as µ→ 0, under some reasonable assumptions.

The main issue with barrier methods is that the minimizer of (2.31) is more difficult to find
when µ is close to 0, which results from the poor scaling of the function P (x;µ).

For equality constraints, the barrier approach cannot be applied since such constraints are
always active. Therefore an alternative strategy must be used. For instance, one may combine
the penalty and the barrier methods and add a quadratic penalty term to the barrier function,
yielding

f(x) − µ
∑
i∈I

log(−ci(x)) +
1

2µ

∑
i∈E

c2i (x).

However, as it might be expected, minimizing such an objective function suffers from the nu-
merical difficulties encountered with the use of both penalty and barrier functions.

2.4 Methods for nonlinear constrained programming 37

Despite the difficulties encountered in implementing log-barrier methods effectively, they
have regained interest in recent years, mainly because of their connection to primal-dual interior
point methods, which have been shown to perform extremely well for large linear programming
and convex quadratic programming problems. Interior point methods have also been successfully
applied to nonlinear programming. We will explore primal-dual interior points methods more
deeply in Section 2.4.2.

2.4.2 Primal-dual interior point methods

Interior point methods are very popular in linear programming (see in particular Wright [142])
and have been successfully extended in the framework of nonlinear (convex and nonconvex)
programming. We present in this section the basic concepts to these methods, that will serve
as foundations to the primal-dual algorithm for nonlinear stochastic problems with scenarios,
presented in Chapter 4. We first discuss the linear programming case and then introduce the
nonlinear case, for which we clarify its relationship to the log-barrier approach.

Linear programming

We start by considering the linear program

min
x
cTx, (2.32)

s.t. Ax = b, (2.33)

x ≥ 0, (2.34)

where c and x are vectors in Rn, b is a vector in Rm, and A is an m×n matrix. The dual problem
for (2.32)–(2.34) is

max
λ

bTλ,

s.t. ATλ+ s = c,

s ≥ 0.

The KKT system for (2.32)–(2.34) can be formulated as follows:

F (x, λ, s) =

⎛
⎝ATλ+ s− c

Ax− b
XSe

⎞
⎠ = 0, (2.35)

(x, s) ≥ 0, (2.36)

where X = diag(x1, . . . , xn) and S = diag(s1, . . . , sn). Recall that e is the vector whose
n components are 1. The constraint XSe = 0 is known as the complementarity condition,
expressing a true combinatorial requirement: “if a constraint is non-zero then its corresponding
dual variable must be zero” and vice-versa. A primal-dual interior point method finds a solution
(x∗, λ∗, s∗) to the KKT system (2.35)–(2.36) by applying variants of Newton’s method to the

38 Chapter 2. Nonlinear mathematical programming

equalities (2.35), while the direction and the step length are chosen such that inequalities (2.36)
hold strictly at each iteration, that is

x > 0 and s > 0,

hence the qualifier interior point. We see that in primal-dual methods, the Lagrange multipliers
are treated as independent variables, with equal status to the primal variables x.

The Newton’s system for (2.35) is

J(x, λ, s)

⎛
⎝∆x

∆λ
∆s

⎞
⎠ = −F (x, λ, s), (2.37)

where J(x, λ, s) denotes the Jacobian of F (x, λ, s). A vector (x, λ, s) is said to be strictly
feasible if it satisfies the two first equalities in (2.35), i.e., if

ATλ+ s− c = 0 and Ax = b.

(2.37) is then equivalent to ⎛
⎝0 AT I
A 0 0
S 0 X

⎞
⎠

⎛
⎝∆x

∆λ
∆s

⎞
⎠ =

⎛
⎝ 0

0
−XSe

⎞
⎠ .

Taking full steps (∆x,∆λ,∆s) might yield a violation of (2.36), so a possible strategy is to
perform a linesearch along this direction and to update the variables as follows:

(xk+1, λk+1, sk+1) = (xk, λk, sk) + αk(∆xk,∆λk,∆sk), (2.38)

with αk ∈ (0, 1]. In practice, this often produces very small values for the αk’s in order to
maintain the positiveness of x and s. Moreover combinatorial conditions as the complementarity
condition may be very hard to satisfy, especially for large problems. Primal-dual interior point
methods rather direct the step towards the interior of the nonnegative orthant {x ≥ 0, s ≥ 0},
while preventing x and s from being too close to its boundary. This usually allows to take longer
steps than along the pure Newton directions for F , before violating the nonnegativity condition.
To do this, we perturb the complementarity condition by introducing a small perturbation µ > 0,
i.e., we replace the condition XSe = 0 by

XSe = µe. (2.39)

The optimization is then repeated for successively smaller values of µ, as in barrier methods.
This implies that xi �= 0, si �= 0 (i = 1, . . . , n). In other terms the points must be interior since
the constraints (2.36) must be strictly satisfied. The KKT system for (2.32)–(2.34) is therefore
replaced by the following one:

ATλ+ s = c, (2.40)

Ax = b, (2.41)

XSe = µe, (2.42)

x > 0, s > 0. (2.43)

2.4 Methods for nonlinear constrained programming 39

The set of points

C = {(x, λ, s) satisfying system (2.40)–(2.43) with µ > 0}

is called the central path. An important result, due to Fiacco and McCornick [51], says that if
convergence of the points of the central path C is observed as µ goes to zero, then they must
converge to a primal-dual solution of the linear program (2.32)–(2.34) (see for instance The-
orem 3.12 in Forsgren, Gill and Wright [54]). Therefore primal-dual algorithms take Newton
steps toward points on C for which µ > 0, rather than pure Newton steps for F . More precisely,
the following system is solved at each iteration⎛

⎝0 AT I
A 0 0
S 0 X

⎞
⎠

⎛
⎝∆x

∆λ
∆s

⎞
⎠ =

⎛
⎝ 0

0
−XSe+ στe

⎞
⎠ , (2.44)

where µ
def
= στ , with

σ ∈ (0, 1] and τ =
1

n

n∑
i=1

xisi =
xT s

n
.

The parameters σ and τ are called the centring parameter and the duality measure respectively.
Once this system is solved, the iterates are updated as in (2.38), where αk is chosen so that the
variables xk+1 and sk+1 are strictly positive. The performance of the algorithm is nevertheless
dependent of the choice of the values for σ and αk. In particular, the iterates are usually required
to lie within some neighbourhood of the central path C, by choosing a judicious αk in (2.38).
In practice, the iterates then follow the central path to a solution of the linear program, and the
resulting method is called a path-following method.

So far we have assumed that all iterates are strictly feasible, so it is in particular the case for
the starting point (x0, λ0, s0). It may however be difficult to find such an initial point and often,
we only assume that x0 and s0 are strictly positive. Consequently, we have to modify the system
(2.44) in order to ensure that both feasibility and centrality are improved at each iteration. This
leads to the following system:⎛

⎝0 AT I
A 0 0
S 0 X

⎞
⎠

⎛
⎝∆x

∆λ
∆s

⎞
⎠ = −

⎛
⎝ATλ+ s− c

Ax− b
XSe− στe

⎞
⎠ .

The most popular implementation of primal-dual interior point methods for solving linear
programs is that of Mehrotra [97] (see also Lustig, Marsten and Shanno [89]), which is a so-
called predictor-corrector algorithm since it adds a corrector step to the direction computed with
(2.44) so that it follows more closely a trajectory to the primal-dual solution set. Further, Merho-
tra’s algorithm chooses the value of σ adaptively (instead of assigning it a value before computing
the search direction), depending on whether centring is needed or not at the considered iteration.

Nonlinear programming

There exists several extensions of primal-dual interior point methods for solving more gen-
eral problems than linear programs. For simplicity, we restrict here our attention to inequality-

40 Chapter 2. Nonlinear mathematical programming

constrained problems of the form (2.29)–(2.30):

min
x
f(x)

s.t. ci(x) ≤ 0, i ∈ I.

We first introduce slack variables in (2.30), which yields the following problem:

min
x
f(x) (2.45)

s.t. g(x) + s = 0, (2.46)

s ≥ 0. (2.47)

The KKT conditions for this problem are

∇xf(x) +
∑
i∈I

λi∇xci(x) = 0, (2.48)

c(x) + s = 0, (2.49)

λisi = 0, for all i ∈ I, (2.50)

λ ≥ 0, s ≥ 0. (2.51)

The bound constraints (2.51) play a vital role: primal-dual points (x, λ, s) that satisfy (2.48)–
(2.50) but violate (2.51) typically lie far from a solution of (2.29)–(2.30). As before, we perturb
the complementarity condition with the a parameter µ, and consider the system⎛

⎝∇xf(x) + A(x)Tλ
g(x) + s
ΛSe− µe

⎞
⎠ = 0, (2.52)

with λ > 0, s > 0, instead of (2.48)–(2.51). The matrix A(x) denotes the Jacobian of the
constraints, Λ = diag(λ1, . . . , λn) and S = diag(s1, . . . , sn). The Newton system associated to
(2.52) is then ⎛

⎝∇2
xxL(x, λ) A(x)T 0
A(x) 0 I

0 S Λ

⎞
⎠

⎛
⎝∆x

∆λ
∆s

⎞
⎠ = −

⎛
⎝∇xf(x) + A(x)Tλ

g(x) + s
ΛSe− µe

⎞
⎠ . (2.53)

An alternative way to obtain these equations is to solve problem (2.29)–(2.30) by means of
barrier functions as in Section 2.4.1. Using a logarithmic barrier function for dealing with the
nonnegativity constraints (2.47), we obtain the problem

min
x
f(x) − µ

∑
i∈I

log si,

s.t. g(x) + s = 0.

The Lagrangian associated to this problem is

L(x, λ, s) = f(x) − µ
∑
i∈I

log si + λT (g(x) + s)

2.4 Methods for nonlinear constrained programming 41

and it follows that the first-order optimality conditions are

∇xf(x) + A(x)Tλ = 0,

g(x) + s = 0,

µS−1e− Λ = 0,

or, if we multiply the third equation by S,

∇xf(x) + A(x)Tλ = 0,

g(x) + s = 0,

ΛSe− µe = 0,

which is equivalent to (2.52). Note that, in the log-barrier method, we eliminate s and λ directly
from the nonlinear system before applying Newton’s method.

For nonlinear functions however, the matrix⎛
⎝∇2

xxL(x, λ) A(x)T 0
A(x) 0 I

0 S Λ

⎞
⎠

may be indefinite, so the Newton’s system (2.53) may have no solution. Interior point methods
for solving nonlinear programs therefore turn to quasi-Newton techniques such that the primal-
dual systems to be solved are well behaved. Some recent works are those of Conn, Gould, and
Toint [34], Conn, Gould, Orban, and Toint [30], Gay, Overton and Wright [59], Gould, Orban,
Sartenaer, and Toint [65], M. Ulbrich, S. Ulbrich and Vicente [136], Vanderbei and Shanno [137],
Vicente [138] and Wächter [139]. In Chapter 4, we will also show that the primal-dual interior
point methods can also benefit from the structure of nonlinear stochastic programs; in particular
we will present a decomposition scheme for the quasi-Newton’s systems that we have developed
with Sartenaer Jie Sun [11].

42 Chapter 2. Nonlinear mathematical programming

Chapter 3

Stochastic program formulations

We have seen In Chapter 1 that stochastic programs are mathematical programs in which
uncertainty is introduced by means of random variables. However, until now, we did not have
produced a manageable formulation of stochastic programs. It is therefore our purpose in this
chapter to review some of the most frequently encountered formulations of stochastic programs
and give some of their main properties, in particular the recourse programs. We also briefly
introduce other aspects of stochastic programming, as chance-constrained programs, which form
an important class in stochastic programming, while keeping this presentation succinct seeing
that we will not use these additional developments in the rest of the thesis.

3.1 General formulation

Since we do not know the realization of the random variable ξ, an operational decision is
to take the best decision in “average”. Probability theory gives us an efficient definition of
“average” with the concept of expectation. The general mathematical program (1.5)–(1.6) is
therefore reformulated as follows:

min
x∈X

Eξ[f(x, ξ)] (3.1)

s.t. Eξ[ci(x, ξ)] ≤ 0, i ∈ I, (3.2)

Eξ[ci(x, ξ)] = 0, i ∈ E , (3.3)

where ξ is a real random vector defining the probability space (Ξ,F , Pξ), where Ξ is the support
of ξ, F is a σ-field of subsets of Ξ, and Pξ is the associated probability measure. Most of stochas-
tic programs can be stated in the form (3.1)–(3.3). However in some cases this is not the most
efficient formulation, as we will see in the next sections. We introduce two important classes of
stochastic programs: recourse programs and chance-constrained programs, with a stress put on
recourse programs, that we consider explicitly in Chapter 4. We can also apply consistency re-
sults of Chapter 5 to such programs. Note also that some specific problems require more general
formulations than (3.1)–(3.3). It is in particular the case with mixed logit models (see Chapter 6),
but for simplicity we will only consider the formulation (3.1)–(3.3) in this chapter, which is more
standard in stochastic programming literature.

44 Chapter 3. Stochastic program formulations

3.2 Recourse programs

3.2.1 Decisions and stages

A basic, and often used, problem in stochastic programming is the situation where decisions
have to be taken without a complete knowledge of the problem. Further decisions or recourse
actions can be taken after the uncertainty is disclosed. The uncertainty is here described with
random variables whose probability measures are available; the particular values ξ = ξ(ω) that
the various random variables will take are thus only known at some point in the decisions process.
The set of decisions is then divided into two groups.

First-stage decisions A number of decisions have to be taken before the experiment. All these
decisions are called first-stage decisions and the period during which these decisions are
taken is called the first stage.

Second-stage decisions A number of additional decisions, also called recourse actions, can be
taken after the experiment. They are called second-stage decisions and the corresponding
period, second-stage.

Some illustrations of these concepts can be found in Birge and Louveaux [21], Chapter 1.
We denote the first-stage decisions by the vector x, and the second-stage decisions by the

vector y. These latter are sometimes written y(ξ) or even y(ξ, x), to stress that y differs according
to the outcome of the random experiment and of the first-stage decision. The sequence of events
and decisions is thus summarized as

x→ ξ → y(ξ, x)

3.2.2 Two-stage stochastic programming with recourse

We seek therefore to take first-stage decisions that are in average optimal, with the possibility
to take some recourse decisions to face the additional knowledge that we will obtain after disclo-
sure of the uncertainty. This suggests defining an objective function and constraints associated to
the first-stage variables, while for the second-stage decisions we consider an additional objective
and constraints that depend on the realization of the random variables. We then combine the two
stages by adding the expectation of the second-stage objective to the first-stage objective. The
resulting program is called the two-stage stochastic (nonlinear) program with (additive) recourse.

Definition 3.1: Two-Stage Stochastic Program with Recourse (TSSPR)

min
x
z(x) = f1(x) + Q(x)

s.t. c1,i(x) ≤ 0, i = 1, . . . ,m1,

c1,i(x) = 0, i = m1 + 1, . . . ,m1,

(3.4)

3.2 Recourse programs 45

where Q(x) = Eξ [Q(x, ξ)], and

Q(x, ξ) = min
y
f2(y(ξ), ξ)

s.t. t2,i(x, ξ) + c2,i(y(ξ), ξ) ≤ 0, i = 1, . . . ,m2,

t2,i(x, ξ) + c2,i(y(ξ), ξ) = 0, i = m2 + 1, . . . ,m2.

(3.5)

For simplicity, we will usually omit the term stochastic as well as the nonlinear qualifica-
tion, while most authors consider only linear programs when speaking of TSSPR. For the linear
case, the reader can refer to the monograph of Frauendorfer [55]. We suppose here that all func-
tions f2(·, ξ), t2,i(·, ξ) and c2,i(·, ξ) are continuous for any fixed ξ, and measurable in ξ for any
fixed first argument. Given this assumption, Q(x, ξ) is measurable. The difficulty inherent in
stochastic programming clearly lies in the computational burden of computing Q(x) for all x.

Note that (3.4)–(3.5) can be expressed in a more general way. First the first-stage term is
sometimes considered to be random too; second we can express first-stage constraints in the
form x ∈ X . Therefore (3.4) can be replaced by

min
x∈X

z = f1(x, ξ) + Q(x) (3.6)

(see for instance Kall and Wallace [80], page 26). Furthermore, x acts separately in the con-
straints of the recourse problem (3.5). This is useful to develop optimality conditions that are
separable between the first- and second-period variables. Others formulations allow for nonsep-
arable constraints and dependence of the second-stage objective on x.

Feasible sets

It is often convenient to define the feasible sets associated to the different stages of the
stochastic recourse program. First let K1 be the set determined by the fixed constraints, namely
those that do not depend on the particular realization of the random vector:

K1
def
= {x | c1,i(x) ≤ 0, i = 1, . . . ,m1; c1,i(x) = 0, i = m1 + 1, . . . ,m1}.

K1 is called the first-stage feasible set. Similarly, the second-stage feasible set is given by

K2
def
= {x | Q(x) <∞}.

The TSSPR (3.4)–(3.5) can then be reformulated as

inf z(x) = f1(x) + Q(x)

s.t. x ∈ K1 ∩K2.

We also introduce the elementary feasible sets, associated to the realizations of the random vec-
tor, defined as

K2(ξ)
def
=

{
x

∣∣∣∣ ∃ y(ξ) such that t2,i(x, ξ) + c2,i(y(ξ), ξ) ≤ 0, i = 1, . . . ,m2

and t2,i(x, ξ) + c2,i(y(ξ), ξ) = 0, i = m2 + 1, . . . ,m2

}
.

46 Chapter 3. Stochastic program formulations

The set

KP
2 = ∩

ξ∈Ξ
K2(ξ)

is said to define the possibility interpretation of second-stage feasible set. If ξ is a continuous
random variable, we may have thatK2 differs from KP

2 (see Birge and Louveaux [21], page 125,
for an example). The set K2 contains decisions that are feasible almost surely, while KP

2 is the
set of decisions that are feasible surely.

Special cases: relatively complete, complete, and simple recourse

The feasible sets and objective functions can have special properties that are particularly
useful for computations. We say that the stochastic program (3.4)–(3.5) has a relatively complete
recourse if K1 ⊂ K2. In other words, every solution x that satisfies the first-period constraints
has a feasible completion in the second stage. Relatively complete recourse is very useful in
practice and in many of the theoretical results. Unfortunately, its identification can be difficult
since it requires some knowledge of the sets K1 and K2.

Assume now that the recourse objective is linear, i.e.,

Q(x) = Eξ[Q(x, ξ)]

where

Q(x, ξ) = min
y

{〈q(ξ), T y〉 |W (ξ)y = h(ξ) − T (ξ)x, y ≥ 0} ,

where W (ξ) is a matrix of size m2 × n2 and is called the recourse matrix. For each ξ, T (ξ) is
m2 × n2, q(ξ) ∈ Rn2 and h(ξ) ∈ Rm2 . Assume furthermore that W (ξ) is deterministic, i.e.,
W (ξ) = W , for all ξ ∈ Ξ. The recourse is then said to be fixed. If furthermore there exists y ≥ 0
such that Wy = t, for all t ∈ Rm2 , the stochastic program has a complete recourse. Moreover
if W = [I,−I], the TSSPR is said to have a simple recourse, and y is divided correspondingly
as (y+,y−) and q as (q+, q−). Note that, in this case, the optimal values of y+

i (ξ) and y−i (ξ),
i = 1, . . . ,m2, are determined purely by the sign of hi(ξ) − Ti(ξ)x provided that q+

i + q−
i ≥ 0

with probability one. We then have the following result.

Theorem 3.1 Consider a feasible two-stage stochastic program with simple recourse, such that
ξ has finite second moments (i.e. the variance-covariance matrix C = Eξ[(ξ − Eξ[ξ])(ξ −
Eξ[ξ])T] is finite). Then Q(x) is finite if and only if q+

i + q−
i ≥ 0, i = 1, . . . ,m2, almost

surely.

Proof. See Birge and Louveaux [21], page 92.

The simple recourse benefits from strong theoretical results, especially for linear stochastic
programs. Since linear stochastic programming is not the main concern of this work, we refer
the reader to Birge and Louveaux [21] for more results.

3.2 Recourse programs 47

Differentiability of the stochastic program

Many theoretical results and algorithms in the nonlinear optimization field assume that the
objective and constraints are differentiable, and often their derivatives too. It is therefore inter-
esting to study the smoothness properties of a stochastic program.

φ is partially differentiable at some point (x̂, ŷ) with respect to x, if there exists a function
called the partial derivative and denoted by ∂φ(x,y)

∂x
, such that

φ(x̂+ h, ŷ) − φ(x̂, ŷ)

h
=
∂φ(x̂, ŷ)

∂x
+
r(x̂, ŷ;h)

h
,

where the residuum r satisfies
r(x̂, ŷ;h)

h
→ 0

when h → 0. Similarly, the recourse function is partially differentiable with respect to xj in
(x̂, ξ̂) if there is a function ∂Q(x,ξ)

∂xj
such that

Q(x̂+ hej, ξ̂) −Q(x̂, ξ̂)

h
=
∂Q(x̂, ξ̂)

∂xj

+
ρj(x̂, ξ̂;h)

h

with
ρj(x̂, ξ̂;h)

h
→ 0,

as h→ 0. This yields the following result.

Theorem 3.2 If Q(x, ξ) is partially differentiable with respect to xj at some x̂ almost surely, if
its partial derivative ∂Q(x̂,ξ)

∂xj
is integrable and if the residuum satisfies

1

h

∫
Ξ

ρj(x̂, ξ̂;h)dPξ → 0 when h→ 0, (3.7)

then ∂Q(x̂,ξ)
∂xj

exists and

∂Q(x̂)

∂xj

=

∫
Ξ

∂Q(x̂, ξ)

∂xj

dPξ.

Proof. Provided Q(x, ξ) is partially differentiable at x̂ for all ξ ∈ Ξ, we get

Q(x̂+ hej) −Q(x̂)

h
=

∫
Ξ

Q(x̂+ hej, ξ) −Q(x̂, ξ)

h
dP

=

∫
Ξ\A

∂Q(x̂, ξ)

∂xj

dP +

∫
Ξ\A

ρj(x̂, ξ;h)

h
dP

where A ∈ F and Pξ[A] = 0.

48 Chapter 3. Stochastic program formulations

While theoretically important, this theorem has little practical interest. It is often possible
to guarantee that the recourse function is partially differentiable almost surely and the partial
derivative is integrable, but the requirement (3.7) can be difficult to check, and in fact a two-
stage stochastic program with recourse is often nonsmooth. To illustrate this difficulty, consider
the classical two-stage linear problem:

min
x
cTx+ Q(x), (3.8)

s.t. Ax = b, x ≥ 0, (3.9)

where
Q(x) = Eξ[Q(x, ξ)]

and
Q(x, ξ) = min

y

{
q(ξ)Ty |Wy = h(ξ) − T (ξ)x, y ≥ 0

}
. (3.10)

If ξ is a continuous random variable, it is possible to show that conditions of Theorem 3.2 are sat-
isfied, and therefore Q(x) is differentiable (see for instance Kall and Wallace [80], Section 1.4).
However, if the support of ξ is discrete, Q(x) is no more everywhere differentiable This comes
from the fact that, for some realization ξ, Q(x, ξ) is a piecewise linear convex function in x (see
Theorem 3.5, page 89, in Birge and Louveaux [21], and Example 5.1.1, page 159). Therefore,
there exists a finite set of points where Q(x, ξ) is not differentiable. The measure of this set
is strictly positive if the distribution of ξ is discrete, and is equal to zero if the distribution is
continuous. Thus Q(x) is differentiable when we face continuous random parameters, even if
Q(x, ξ) is not everywhere (but almost everywhere) differentiable with respect to x.

Since nondifferentiable problems are very difficult to manage, especially for nonlinear non-
convex functions, a formulation that restores the differentiability property is appealing. Assume
therefore that ξ is a discrete random variable with S possible realizations, that we denote by
s = 1, . . . , S for simplicity. Let p(s) be the probability that ξ = s (s = 1, . . . , S). Practical
methods for two-stage programs are then usually based on the extensive form, also called dual
decomposition structure, of the stochastic program (3.8)–(3.10):

min
x
cTx+

S∑
s=1

p(s)q(s)Ty(s)

s.t. Ax = b,

T (s)x+Wy(s) = h(s), s = 1, . . . , S,

x ≥ 0, y(s) ≥ 0, s = 1, . . . , S.

This form is obtained by defining second-stage vectors, one for each realization of ξ, while
maintaining only one variable for the first-stage. The resulting problem is then differentiable, and
has a formulation similar to classical mathematical programs. A well-known algorithm for two-
stage linear programs is the L-Shaped method (see again Birge and Louveaux [21], Chapter 5).
More generally, if Ξ is finite, we will work with the extensive form of the stochastic program
and make smoothness assumptions with respect to x and y(s), s = 1, . . . , S.

3.2 Recourse programs 49

Convexity and optimality

Most of the known properties in nonlinear stochastic programming are based on the assump-
tion that the problem is convex. This is in particular the case for optimality properties. It is
therefore useful to give some conditions that guarantee that a stochastic program is indeed con-
vex, and that it is well-defined. Since we are primarily interested in nonconvex programs, we
only state here state here the main results; more details can be found for instance in Birge and
Louveaux [21], Section 3.4.

Return to the general form (3.6), namely

min
x∈X

z = f1(x, ξ) + Q(x).

We can state the following property.

Proposition 3.1 If f1(x, ξ) and Q(x, ξ) are convex in x for all ξ ∈ Ξ, and if X is a convex set,
then (3.6) is a convex program.

Consider now the formulation (3.4)–(3.5), that we restate for clarity:

min
x
z(x) = f1(x) + Q(x)

s.t. c1,i(x) ≤ 0, i = 1, . . . ,m1,

c1,i(x) = 0, i = m1 + 1, . . . ,m1,

(3.11)

where Q(x) = Eξ [Q(x, ξ)], and

Q(x, ξ) = min
y
f2(y(ξ), ξ)

s.t. t2,i(x, ξ) + c2,i(y(ξ), ξ) ≤ 0, i = 1, . . . ,m2,

t2,i(x, ξ) + c2,i(y(ξ), ξ) = 0, i = m2 + 1, . . . ,m2.

(3.12)

From the previous proposition, this problem is convex if we assume that

f1, c1,i (i = 1, . . . ,m1) are convex on Rn1 ,

c1,i (i = m1 + 1, . . . ,m1) are affine on Rn1 ,

f2(·, ξ), c2,i(·, ξ) (i = 1, . . . ,m2) are convex on Rn2 , ∀ξ ∈ Ξ,

c2,i(·, ξ) (i = m2 + 1, . . . ,m2) are affine on Rn2 , ∀ξ ∈ Ξ,

t2,i(·, ξ), (i = 1, . . . ,m2) are convex on Rn1 , ∀ξ ∈ Ξ,

t2,i(·, ξ) (i = m2 + 1, . . . ,m2) are affine on Rn1 ∀ξ ∈ Ξ.

We also assume often that (3.12) satisfies the Slater’s constraint qualification (see Defini-
tion 2.5) for the second-stage problem, ensuring that the second-stage problem is well defined
and that a solution can be obtained by solving the associated KKT system.

A.1 If Q(x) < ∞, for almost all ξ ∈ Ξ, there exists some y(ξ) such that t2,i(x, ξ) +
ci(y(ξ), ξ) < 0 for i = 1, . . . ,m2 and t2,i(x, ξ) + c2,i(y(ξ), ξ) = 0 for i = m2 + 1, . . . ,m2.

50 Chapter 3. Stochastic program formulations

We can also obtain continuity of the recourse function if we assume that the recourse feasible
region is bounded, as stated in the following theorem.

Theorem 3.3 If the recourse feasible region is bounded for any x ∈ Rn1 , then the function
Q(x, ξ) is lower semicontinuous in x for all ξ ∈ Ξ.

Proof. See Birge and Louveaux [21], page 124.

Under these assumptions, if for all ξ ∈ Ξ, Q(x, ξ) is convex in x, Q(x, ξ) is a closed convex
function in x and the feasible set K2 = {x | Q(x) < ∞} is closed and convex. The following
result ensures the existence of a solution.

Theorem 3.4 Assume that the TSSPR is convex, and that f1 is continuous, c1,i and c2,i are
continuous for each i. Suppose also that the recourse feasible region is bounded for any x ∈
Rn1 , K1 is bounded and K1 ∩K2 �= ∅. Then (3.4)–(3.5) has a finite optimal solution and the
infimum of f1(x) + Q(x) is attained.

From the general optimality conditions in nonlinear convex programming (see e.g. Bertsekas
[14]), we can also state the following result:

Theorem 3.5 (Optimality conditions for TSSPR) Consider a convex two-stage stochas-
tic with recourse of the form (3.11)-(3.12). Suppose that there exists some x∗ such that
x∗ ∈ ri(Dom(f1(x)) and x∗ ∈ ri(Dom(Q(x))). Suppose also that x∗ satisfies the Slater’s con-
straint qualification for the first stage, i.e., c1,i(x

∗) < 0 for all i = 1, . . . ,m1 and c1,i(x
∗) = 0

for all i = m1 + 1, . . . ,m1. Then x∗ is optimal in (3.4) if and only if x∗ ∈ K1 and there exists
λ∗i ≥ 0, i = 1, . . . ,m1, λ∗i , i = m1 + 1, . . . ,m1, such that λ∗i c1,i(x

∗) = 0, i = 1, . . . ,m1, and

0 ∈ ∂xf1(x
∗) + ∂xQ(x∗) +

m1∑
i=1

λ∗i∂xc1,i(x
∗). (3.13)

For practical purposes, we can use the decomposition of ∂Q(x) into subgradients of the
Q(x, ξ) as below:

∂Q(x) = Eξ [∂Q(x, ξ)] + NK2(x). (3.14)

If we have relatively complete recourse, we can remove the normal cone term NK2(x) in (3.14).
We then have indeed that

NK2(x) ⊆ NK1(x),

and if η ∈ NK1(x), η has the form

m1∑
i=1

λi∂xc1,i(x), λi ≥ 0, i = 1, . . . ,m1,

3.2 Recourse programs 51

so the condition (3.13) can be rewritten as

0 ∈ ∂xf1(x
∗) + Eξ [∂Q(x∗, ξ)] +

m1∑
i=1

λ∗i∂xc1,i(x
∗).

3.2.3 Multistage stochastic programming

In the previous section, we have studied problems for which only one recourse action is un-
dertaken. However many operational and planning problems involve sequences of decisions that
respond to realizations of outcomes that are not known a priori and evolve over time. Practical ap-
plications include amongst others portfolio problems (Klassen, Shapiro and Spitz [83]), optimal
power dispatch (e.g. Dentecheva, Gollmer, Möller, Römisch and Schultz [43], Gröwe, Römisch
and Schultz [67], Römisch and Schultz [117], Bastin [7]), forest planning (Gassmann [58]), agri-
cultural management (Rosa and Yates [119]). It is therefore useful to borrow some terminology
to discrete time stochastic process theory (McFadden [94]). The random parameter is described
as a data process:

ξ
def
= {ξt : t = 0, . . . }.

For simplicity, we introduce the history process

ξt

def
= {ξ0, . . . , ξt}.

Let T + 1 be the number of stages, also called the horizon. Instead of the two decisions x and
y, we have now T + 1 sequential decisions x0, x1, . . . , xT , to be taken at the subsequent stages
t = 0, 1, . . . , T . The term stages can, but need not, be interpreted as time period. More generally,
the decisions are a process denoted by

x
def
= {xt : t = 0, . . .},

such that x is a measurable function x : ξ → x(ξ). We then define the decision process, similarly
to the history process, as

xt
def
= {x0, . . . , xt}.

At stage t, we know ξt as well as xt−1. We have to decide on xt such that the constraints
are satisfied. Assume that on the first step, the objective is deterministic (i.e. there is no random
variable ξ0). The program can then be expressed as

min
x0

f0(x0) + Eξ1

[
min
x1

f1

(
ξ1, x0, x1(ξ1)

)
+ Eξ2|ξ1

[
min

x2

f2

(
ξ2, x1, x2(ξ2)

)
+ . . .+

EξT |ξ1,...,ξT−1

[
min
xT

fT

(
ξT , xT−1, xT (ξT)

)]]]
(3.15)

such that
ci,0(x0) ≤ 0, i = 1, . . . ,m0,

ct,i(ξt, xt−1(ξt−1), xt(ξt)) ≤ 0 a.s., i = 1, . . . ,mt, t = 1, . . . , T,
xt(ξt) ∈ Xt, t = 0, . . . , T.

(3.16)

52 Chapter 3. Stochastic program formulations

From the additive property of the expectation, we can rewrite (3.15)–(3.16) as

min
x0∈X0

f0(x0) +
T∑

t=1

Eξ1,...,ξt

[
Qt

(
ξt, xt−1, xt(ξt)

)]
, (3.17)

where

X0 = {ci,0(x) ≤ 0, i = 1, . . . ,m0},
Qt = inf

xt(ξt)∈Xt

{ft(ξt, xt−1, xt(ξt)) | ct,i(ξt, xt−1(ξt−1), xt(ξt)) ≤ 0 a.s., i = 1, . . .mt}.

3.2.4 Scenario approach

The expectations in (3.17) involve multidimensional integration of implicitly defined func-
tions. To avoid this difficulty, the probability spaces are generally assumed to be discrete. This
allows the objective to be written as a finite sum and the constraints to be enforced by replicating
them for each element in Ξt. Assume thus that at each period t, ξt has a discrete probability
distribution over Ξ. We can consider the set of possible future sequences of outcomes, which is
finite; such a sequence is called a scenario, which we identify with the superscript (s).

Definition 3.2: Scenario
A scenario s is a sequence of outcomes ξt, t = 0, . . . , T , denoted by

s =

⎛
⎜⎜⎜⎝
ξ

(s)
0

ξ
(s)
1
...
ξ

(s)
T

⎞
⎟⎟⎟⎠ .

The number of scenarios is denoted by S.

The scenario concept allows us to represent the possible outcomes by means of a graph called
tree of scenarios because of its aspect. An example of such a graph is presented in Figure 3.1.
The root of the tree correspond to the first-stage decision, made before any realization of the
random parameters, while each realization of ξt+1, conditionally to ξt, is associated with a node.

It is sometimes convenient to develop some terminology associated to such a tree. Let V be
a tree of scenarios and v be one of its nodes, also denoted by vt to express that v appears at stage
t (t ∈ {0, . . . , T}). We adopt the following definitions, borrowed from graph theory. D(v) is
the set of descendants of v in V , and A(v), the set of its ancestors. We let S(v) and P(v) be
respectively the set of direct successors of v and its predecessor. The root of the tree is noted
r and the set of the terminal nodes, also called leaves, L. d(v) represent the depth of v in V ,
with d(r) = 0 (so d(vt) = t). The partial subtree of V rooted in some node v, containing all
descendants of v in V down to level k, is designed by Vk(v), and Lk(v) is the set of its terminal
nodes.

Each node v is associated to a (conditional) probability π(v) to be chosen at the stage d(v), if
its predecessor has been selected at the stage d(v) − 1, with π(r) = 1. If the ξt’s, t = 0, . . . , T ,

3.2 Recourse programs 53

Level

A(i)

D(i)

P(i)

S(i)

3 41

i

20

Figure 3.1: Tree of scenarios

are independent, it follows that the probability of scenario s is

p(s) =
T∏

t=0

π
(
v

(s)
t

)
.

The (unconditional) probability of the path leading to a node v

µ(v) = π(v)
∏

w∈A(v)

π(w),

Let x(v) be the decision vector associated to node v ∈ V , and x(v) = {x(w) |w ∈ A(v)∪ v} be
the decisions made at previous stages. If the objective and constraints are separable between the
different stages, the multistage stochastic program (with recourse) can be decomposed following
the nodes, and expressed as: ∑

v∈V

µ(v)fv(ξd(v), xv, xv), (3.18)

such that
ci(ξd(v), xv, xv) = 0, i ∈ Ev, for all v ∈ V,

ci(ξd(v), xv, xv) ≤ 0, i ∈ Iv, for all v ∈ V.
(3.19)

Note that the nonanticipativity constraints are implicitly included in (3.18)–(3.19).

54 Chapter 3. Stochastic program formulations

3.2.5 Split-variable formulation

The stochastic program is often rewritten with the split-variable formulation, introduced by
Rockafellar and Wets [115] in late 80s, and used for instance in Nielsen [103] and Ruszczyński [121].
The split-variable formulation exhibits the similarities of subproblems corresponding to the dif-
ferent scenarios by associating with each scenario s (s = 1, . . . , S) and each stage t (t =

0, . . . , T) a set of decision variables, x(s)
t ∈ Rnt , which replace the stochastic variables xt.

In order to make the presentation clearer, we return briefly to a two-stage stochastic program
with recourse, of the form (3.4)-(3.5). Assume furthermore that Ξ is finite and write it as Ξ =
{1, . . . , S}, with Pξ[ξ = s] = ps, s = 1, . . . , S. Then (3.4)-(3.5) can be rewritten as

min
(x(1),...,x(S))

S∑
s=1

ps

(
f1

(
x(s)

)
+Q

(
x(s), s

))
(3.20)

s.t. c1,i

(
x(s)

)
≤ 0, i = 1, . . . ,m1, s = 1, . . . , S, (3.21)

c1,i

(
x(s)

)
= 0, i = m1 + 1, . . . ,m1, s = 1, . . . , S, (3.22)

x(s) − z = 0, s = 1, . . . , S, (3.23)

where

Q(x(s), s) = min f2

(
y(s), s

)
(3.24)

s.t. t2,i

(
x(s)

)
+ c2,i

(
y(s), s

)
≤ 0, i = 1, . . . ,m2, (3.25)

t2,i

(
x(s)

)
+ c2,i

(
y(s), s

)
= 0, i = m2 + 1, . . . ,m2. (3.26)

(3.23) reflects the nonanticipativity conditions linking the scenarios together. If not for the com-
mon constraints x(s) − z = 0, each scenario could be solved independently without any trouble.
These constraints are referred as the nonanticipativity constraints.

If Ξ is infinite, the objective in (3.20) has to be rewritten as

min
x(ξ), y(ξ)

∫
Ξ

f1(x(ξ)) + f2(y(ξ), ξ)dµ (3.27)

s.t. c1,i(x(ξ)) ≤ 0 a.s., i = 1, . . . ,m1 (3.28)

c1,i(x(ξ)) = 0 a.s., i = m1 + 1, . . . ,m1, (3.29)

Eξ[x(ξ)] − x(ξ) = 0, a.s. (3.30)

t2,i(x, ξ) + c2,i(y(ξ), ξ) ≤ 0 a.s., i = 1, . . . ,m2, (3.31)

t2,i(x, ξ) + c2,i(y(ξ), ξ) = 0 a.s., i = m2 + 1, . . . ,m2. (3.32)

The nonanticipativity constraints (3.30) then imply that almost all x(ξ) values are the same.
In order to be able to solve (3.27)–(3.32) we can discretize this program by using Monte Carlo
approximations. To date such discretization process is subject to extensive research in stochastic
programming (see Chapter 5 for Monte Carlo samplings in nonlinear stochastic programming
and Shapiro [128] for a review of currently known properties in the context of multistage prob-
lems).

3.2 Recourse programs 55

We return to the finite case and, for a multistage stochastic program, denote x(s) the vector
of decisions at the successive stages, associated to the scenario s, s = 1, . . . , S:

x(s) =

⎛
⎜⎜⎜⎝
x

(s)
0

x
(s)
1
...
x

(s)
T

⎞
⎟⎟⎟⎠ .

Let ps be the probability of the scenario s, s = 1, . . . , S. We then aim at solving the program

min
x0

S∑
s=1

ps

(
f0(x

(s)
0) +

T∑
t=1

ft(x
(s)
t−1, x

(s)
t , s)

)
(3.33)

subject to

c0,i(x
(s)
0) ≤ 0, i = 1, . . . ,m0, s = 1, . . . , S, (3.34)

ct,i

(
x

(s)
t−1, x

(s)
t , s

)
≤ 0, i = 1, . . . ,mt, t = 1, . . . , T, s = 1, . . . , S, (3.35)

x
(s)
t ∈ Xt, t = 0, . . . , T, s = 1, . . . , S, (3.36)

x
(s)
t is nonanticipative, t = 0, . . . , T, s = 1, . . . , S. (3.37)

The nonanticipativity constraints can be expressed in various ways. For instance let Ct be the
set of scenarios with the same history at stage t. The condition (3.37) can be rewritten as

x
(s)
t = x

(u)
t , for any s, u ∈ Ct. (3.38)

In order to make (3.38) clear, let k(s), s = 1, . . . , S−1, be the stage number up to which scenarios
s and s + 1 share the same history. This number may possibly take values from 0 (only initial
decisions x(s)

0 and x(s+1)
0 are the same in scenario s and scenario s+ 1) to T − 1 (scenarios s and

s + 1 have the same history up to last but one stage). The nonanticipativity constraints can then
be expressed in a mathematical way as follows:

x
(s)
k = x

(s+1)
k , s = 1, . . . , S − 1, k = 0, . . . , k(s). (3.39)

We can summarize (3.39) by a constraint of the form

Nx = 0,

where N is a full-row rank matrix called the nonanticipativity matrix: writing

I(s) =

⎛
⎜⎝
I0

. . .
Ik(s)

⎞
⎟⎠ , s = 1, . . . , S − 1,

56 Chapter 3. Stochastic program formulations

constraints (3.39) can be organized to give the linear system

⎛
⎜⎜⎜⎝
I(1) 0 −I(1) 0

I(2) 0 −I(2) 0
.

I(S−1) 0 −I(S−1) 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
(1)
0
...
x

(1)
T

x
(2)
0
...
x

(2)
T
...

x
(S)
0
...

x
(S)
T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
0
...
0
...
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the sizes of the matrices I(s), s = 1, . . . , S, are k(s), s = 1, . . . , S. The left hand-side
matrix is clearly of full row rank.

Example 3.1. Consider a 3-stage (T = 2), 6-scenario problem (S = 6), with the following
nonanticipativity constraints:

x
(1)
0 = x

(2)
0 = x

(3)
0 = x

(4)
0 = x

(5)
0 = x

(6)
0 , (3.40)

x
(1)
1 = x

(2)
1 = x

(3)
1 , (3.41)

x
(5)
1 = x

(6)
1 . (3.42)

In this case, we have k(1) = 1, k(2) = 1, k(3) = 0, k(4) = 0 and k(5) = 1. The corresponding tree
of scenarios is illustrated in Figure 3.2.

1

2

3

4

5

6

Figure 3.2: Tree of scenarios.

3.2 Recourse programs 57

The constraints matrix N corresponding to (3.40)–(3.42) can be expressed as follows:

n0 n1 n2 n0 n1 n2 n0 n1 n2 n0 n1 n2 n0 n1 n2 n0 n1 n2

n0

n1

n0

n1

n0

n0

n0

n1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I0 0 0 −I0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 I1 0 0 −I1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 I0 0 0 −I0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 I1 0 0 −I1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 I0 0 0 −I0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 I0 0 0 −I0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 I0 0 0 −I0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 I1 0 0 −I1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where Ii, i = 0, . . . , T −1, is the identity matrix of dimension ni×ni, and ni is the size of vector
x

(s)
i (s ∈ {1, . . . , S}). In others terms, ni is the number of variables that belong to the ith stage,

for one scenario. This matrix forms the nonanticipativity matrix N for the particular example
(3.40)–(3.42).

3.2.6 Extensive form versus split-variable formulation

The main drawback to scenario formulation is the multiplication of the number of variables.
We could therefore prefer to use extensive forms, which limit the multiplication of variables,
while ensuring smoothness properties (see Section 3.2.2). Consider a tree of scenarios V . A
convenient expression is then the formulation (3.18)–(3.19), where a decision vector xv is asso-
ciated at each node v of the tree of scenarios:∑

v∈V

µ(v)fv(ξd(v), xv, xv),

such that
ci(ξd(v), xv, xv) = 0, i ∈ Ev, for all v ∈ V,

ci(ξd(v), xv, xv) ≤ 0, i ∈ Iv, for all v ∈ V.

The split-variable formulation then consists to define a decision vector x(s)
d(v) associated to each

scenario visiting the node v, instead of one vector xv, and to link the variables x(s)
d(v) with explicit

nonanticipativity constraints. The procedure is summarized in Figure 3.3.
The split-variable formulation is attractive for any algorithmic framework where the nonan-

ticipativity constraints can be temporarily ignored, so the S scenario-based subproblems appear-
ing in (3.33)–(3.37) become independent and can be solved in parallel, otherwise the extensive
form is preferable, specially when the problem presents an exploitable structure (see for instance
Steinbach [130]). Consider for instance a two-stage problem where we have one first-stage
variable and one second-stage variable, and S scenarios. The extensive form will therefore
present S + 1 variables, while the split-variable formulation will have 2S variables. In an ideal
context, we could then solve S subproblems in parallel, whose solutions have to be recom-
bined to take into account the nonanticipativity constraints, while the number of variables has
only been multiplied by approximately 2. One of the most popular algorithm for split-variables
formulations of convex stochastic programs is the progressive hedging algorithm, proposed by

58 Chapter 3. Stochastic program formulations

Figure 3.3: Variables splitting

Rockafellar and Wets [115]. Other methods have also been developed, for instance by Rosa
and Ruszczyński [118]. These authors use an augmented Lagrangian strategy and propose a
nodal decomposition based on the extensive form and a scenario decomposition based on the
split-variable formulation. They then report better results with the scenario decomposition; in
particular, the scenario decomposition is shown to less depend on the considered application that
the nodal decomposition.

3.3 Other developments in stochastic programming

Other formulations are popular in stochastic programming, that we briefly mention here,
while our subsequent developments will not rely on such approaches. In particular, chance-
constrained programming, also called probabilistic programming, is another way to give some
meaning to the minimum operator in the problem (1.5). In this case, the constraints are assumed
to hold with some probabilities, and are called probabilistic constraints. They can be expressed
as follows:

Pξ[{ξ |φi(x, ξ) ≤ 0}] ≥ αi, i = 1, . . . ,m. (3.43)

where αi ∈ [0, 1] and φi : Rn × Ξ → R (i = 1, . . . ,m). We can also require that all constraints
jointly hold with some probability α, i.e.

Pξ[{ξ |φi(x, ξ) ≤ 0, i = 1, . . . ,m}] ≥ α,

where φ(x, ξ) = (φ1(x, ξ), . . . , φm(x, ξ))T . In this case, the problem is said to have joint prob-
abilistic constraints, while if the constraints are expressed as in (3.43), the constraints are called
single (or separate) probabilistic constraints.

The chance constrained programming was first developed by Charnes and Cooper [25] in
1959, and have received a lot of attention since, especially by Prekopa [108, 109, 110, 111].
Chance-constrained programs can be derived from the general program (3.1)–(3.3), as shown
for instance in Kall and Wallace [80], Section 1.3. For more properties of chance-constrained
programs, we refer to our master’s thesis [7] and the books of Birge and Louveaux [21] and Kall
and Wallace [80]; some applications can also be found in Dempster [41].

3.3 Other developments in stochastic programming 59

We conclude this chapter by remarking that, due to the complexity of stochastic programs, we
could be inclined to solve simpler problems when we are confronted by real-world applications.
In Chapter 6, Section 6.2.5, we will see that multinomial logit models can be viewed as mixed
logit models where the random variables are replaced by their expectation. More generally, the
technique resulting from the replacement of all random variables by they expected values is
know as the “expected value method” in stochastic optimization, and the related optimization
problem is called the expected value problem or mean value problem. Such simplifications,
while producing more manageable problems, can lead to poor solutions. The pertinence of the
expected value method and that of the stochastic programming approach are usually evaluated
by means of two theoretical concepts: the expected value of perfect information and the value
of stochastic information. We refer the interested reader to Birge and Louveaux [21], Chapter 4,
for more details on these questions.

60 Chapter 3. Stochastic program formulations

Part II

Trust-region methods for nonlinear
stochastic programming

Chapter 4

Interior point methods for scenario
formulations

Having reviewed several stochastic programming formulations in the previous chapter, we
now focus on a special case of the multistage stochastic program (3.15)–(3.16), where the objec-
tive is assumed to be nonlinear. As shown before, the scenarios approach suggests developing
special techniques that allow parallelization of the algorithmic procedure. In particular, decom-
position techniques have been previously successfully applied in linear stochastic programming
(see for instance Berkelaar and al. [13] for two-stage programming, and Liu and Sun [86] for
multistage programming), and split-variable formulation has led to popular algorithms as the
progressive hedging algorithms (Rockafellar and Wets [115]) in convex stochastic programming.
The nonconvex case has however received much less attention. One of the few attempts can be
found in Liu and Zhao [87] who propose a sequential quadratic programming approach.

In this chapter, we examine how to benefit from the structure of nonlinear stochastic programs
with scenarios in the context of interior-point techniques (see Section 2.4.2), in particular in
the computation of a quasi-Newton step for the constrained barrier subproblem. This step is
combined with the projected constrained steepest descent direction to form a dogleg path, that
allows to approximately minimize some model of the barrier subproblem, similarly to the method
proposed by Zhang and Xu [143]. The agreement between the model reduction and the function
reduction is controlled by a trust-region mechanism, as proposed in Conn, Gould, Orban, and
Toint [30]. The primal-dual systems involved in the quasi-Newton steps computations are solved
with a new decomposition technique based on scenario analysis and split-variable formulation,
that can also be employed for the computation of a feasible starting point. This decomposition
technique has been developed conjointly with Annick Sartenaer (University of Namur) and Jie
Sun (University of Singapore).

64 Chapter 4. Interior point methods for scenario formulations

4.1 Problem formulation

We consider the multistage program (3.15)–(3.16) with (T + 1)-stage, where only linear
equality and nonnegativity constraints are present:

min
y0

q0 (y0) +
T∑

t=1

Eξ1,...,ξt
[Qt (y0, y1, . . . , yt−1, ξ1, . . . , ξt)], (4.1)

s.t. Ây0 = b̂, y0 ≥ 0, (4.2)

where, for t = 1, . . . , T ,

Qt(y0, y1, . . . , yt−1, ξ1, . . . , ξt) = min
yt

qt (y0, . . . , yt−1, yt, ξ1, . . . , ξt) (4.3)

s.t.
t∑

k=0

Ut,k (ξ1, . . . , ξt) yk = ht (ξ1, . . . , ξt) , yt ≥ 0, (4.4)

and yt ∈ Rnt , t = 0, . . . , T .
In the above equations (4.1)–(4.4), ξt, t = 1, . . . , T , is a random vector associated with stage

t, while ξt ∈ Rmt is a realization of ξt. The functions qt, t = 0, . . . , T , are real-valued smooth
nonlinear functions. Â is a fixed matrix defining linear constraints for the first-stage decision
y0, with right-hand side denoted by b̂. Ut,k (ξ1, . . . , ξt) , t = 1, . . . , T, k = 0, . . . , t, are random
matrices and ht (ξ1, . . . , ξt), t = 1, . . . , T , are random vectors, all of them being decided by the
realizations ξ1, . . . , ξt. The decision at stage t, t = 0, . . . , T , is represented by the vector yt.

Let ξ = (ξ1; ξ2; . . . ; ξT) and (Ξ,A, P) be the associated probability space, and suppose that

we have S scenarios ξ(s) =
(
ξ

(s)
1 ; ξ

(s)
2 ; . . . ; ξ

(s)
T

)
, s = 1, . . . , S, with a fixed known probability

distribution
{
(ξ(s), p(s)), s = 1, . . . , S

}
. We choose to use the split-variable formulation (see

Section 3.2.5): the vectors of variables yt, t = 0, . . . , T , are duplicated for each scenario, yielding
the vectors y(s)

t , t = 0, . . . , T , s = 1, . . . , S. We introduce the following notation, for s =
1, . . . , S:

z(s) =
(
y

(s)
0 , . . . , y

(s)
T

)T

∈ Rn, n =
T∑

i=0

ni,

f (s)
(
z(s)

)
= q0

(
y

(s)
0

)
+

T∑
t=1

qt

(
y

(s)
0 , y

(s)
1 , . . . , y

(s)
t , ξ

(s)
1 , . . . , ξ

(s)
t

)
,

B(s) =

⎛
⎜⎜⎜⎜⎜⎝

Â

U1,0

(
ξ

(s)
1

)
U1,1

(
ξ

(s)
1

)
...

. . .

UT,0

(
ξ

(s)
1 , . . . , ξ

(s)
T

)
UT,1

(
ξ

(s)
1 , . . . , ξ

(s)
T

)
· · · UT,T

(
ξ

(s)
1 , . . . , ξ

(s)
T

)

⎞
⎟⎟⎟⎟⎟⎠ ,

4.2 Notation and preliminary assumptions 65

and

b(s) =

⎛
⎜⎜⎜⎜⎜⎝

b̂

h1

(
ξ

(s)
1

)
...

hT

(
ξ

(s)
1 , . . . , ξ

(s)
T

)

⎞
⎟⎟⎟⎟⎟⎠ .

The vector z(s) corresponds to the decisions associated with the sth-scenario. The function f (s)

is the general objective for scenario s, taking all the stages into account. The matrix B(s) gathers
the left-hand side coefficients of the linear constraints in (4.2) and (4.4), while b(s) collects the
right-hand side coefficients of those constraints, still for scenario s.

The stochastic program (4.1)–(4.4) can then be reformulated as follows:

min
z

S∑
s=1

p(s)f (s)
(
z(s)

)
(4.5)

s.t. B(s)z(s) = b(s), s = 1, . . . , S, (4.6)

z(s) ≥ 0, s = 1, . . . , S, (4.7)

Nz = 0, (4.8)

where z =
(
z(1); z(2); . . . ; z(S)

)
∈ RnS , and N in (4.8) is the banded block nonanticipativity

matrix, as expressed in Section 3.2.5.

4.2 Notation and preliminary assumptions

Let us introduce the following notation:

f(z) =
S∑

s=1

p(s)f (s)
(
z(s)

)
.

Due to the separability nature of f(z), its gradient, denoted by g(z), can be expressed as follows:

g(z)
def
= ∇zf(z) =

⎛
⎜⎝
p(1)g(1)

(
z(1)

)
...

p(S)g(S)
(
z(S)

)
⎞
⎟⎠ ,

where g(i)(z(i))
def
= ∇z(i)f (i)

(
z(i)

)
, i = 1, . . . , S. Similarly, its Hessian can be written as

∇2
zzf(z) =

⎛
⎜⎝
p(1)∇2

z(1)z(1)f
(1)

(
z(1)

)
. . .

p(S)∇2
z(S)z(S)f

(S)
(
z(S)

)
⎞
⎟⎠ .

The constraints (4.6) can also be rewritten as

Bz = b,

66 Chapter 4. Interior point methods for scenario formulations

where

B =

⎛
⎜⎜⎜⎝
B(1)

B(2)

. . .
B(S)

⎞
⎟⎟⎟⎠ and b =

⎛
⎜⎜⎜⎝
b(1)

b(2)

...
b(S)

⎞
⎟⎟⎟⎠ .

Using these notations we can rewrite problem (4.5)–(4.8) as the general nonlinear program
with linear and nonnegativity constraints

min f(z) (4.9)

s.t. Bz = b, (4.10)

Nz = 0, (4.11)

z ≥ 0. (4.12)

We now state our first assumptions on the problem. Let P = {z|z ≥ 0} be the set of points
satisfying the nonnegativity constraints, L = {z|Bz = b, Nz = 0} be the set of points satisfying
the linear equality constraints as well as the nonanticipativity constraints, so that the intersection

F def
= P ∩ L is the feasible set of problem (4.5)–(4.8). We denote N (A) the null space of the

matrix A, as in Chapter 1. Recall also that the relative boundary of a set X is denoted by ∂X , so
∂P = {z | ∃i such that [z]i = 0} and that e is the vector with all components equal to one. We
make the following assumptions:

A.2 The function f(·) is twice continuously differentiable in its argument over some open set
containing F .

A.3 The matrix B has full row rank.

A.4 The log-barrier function f(z) − µ〈e, log(z)〉 is bounded below on F for every µ > 0.

A.5 There exists an z0 ∈ RnS , such that z0 > 0, Nz0 = 0 and Bz0 = b.

Assumption A.2 simply ensures that f(z) is well behaved in the region of interest, while A.3
states that there is no redundant or incompatible constraints in B. Assumption A.4 is intended
to rule out functions which grow more slowly at infinity, if included in the feasible set, than the
log function. For such functions, the logarithmic barrier approach is unlikely to succeed as the
global minimizer of the barrier function is unbounded. Finally Assumption A.5 specifies that the
feasible set F is nonempty and that at least one feasible point belongs to the relative interior of
P , which is a natural assumption in interior-point methods.

4.2.1 Preprocessing: full row rank reduction

Assumption A.3 does not ensure that the coefficient matrix
(
BT NT

)T
of the linear con-

straints (4.10)–(4.11) is of full row rank. Such a property is however desirable when designing

4.2 Notation and preliminary assumptions 67

an interior point method, but this requirement is not necessarily fulfilled, even if both B and N
are of full row rank, as illustrated by the following example, due to Liu and Sun [86].

Example 4.1. Consider a simple 3-stage stochastic program with linear constraints

[y0]1 − [y0]2 = 1,

2[y0]1 + [y0]2 = ξ1,

2[y1]1 − [y2]1 = ξ2.

We then have

B(s) =

⎛
⎝1 −1 0 0

2 1 −1 0
0 0 2 −1

⎞
⎠ , s = 1, . . . , S.

Suppose that ξ1 and ξ2 have two realizations respectively, thus S = 4. The matrix N is therefore
defined by

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0

1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0

1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Hence N is a 8×16 matrix and B is a 12×16 matrix. Thus,
(
BT NT

)T
is not of full row rank.

Under Assumption A.5, the problem is consistent. Therefore, if
(
BT NT

)T
is not of full

row rank, some of the constraints in problem (4.5)–(4.8) are redundant and can be suppressed.
Under Assumption A.3, B is of full row rank so we can proceed by eliminating only some of the
nonanticipativity constraints. Liu and Sun [86] have developed a procedure that can be applied
scenario by scenario. We propose here another approach, that we have developed for our specific
case; we have also tested it by modifying the routines dgeqr and dgeqpf of CLAPACK,
version 3.0 (Anderson et al. [3]). While it is numerically more expensive, it gives sufficient
information to construct a projection matrix to the null space of the constraints by exploiting the
information collected during the preprocessing (we will make use of this projection matrix later

68 Chapter 4. Interior point methods for scenario formulations

on). The matrix
(
BT NT

)T
can be expanded as follows:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B(1)

B(2)

B(3)

. . .
B(S−1)

B(S)[
I(1) 0

] [
−I(1) 0

][
I(2) 0

] [
−I(2) 0

]
. . . [

I(S−1) 0
] [

−I(S−1) 0
]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If we transpose the previous matrix, and permute nonanticipativity columns, we can consider
the following matrix:

CT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B(1)T I(1)

0

B(2)T −I(1)

0
I(2)

0

B(3)T −I(2)

0
. . . I(S−2)

0

B(S−1)T −I(S−2)

0
I(S−1)

0

B(S)T −I(S−1)

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.13)
Let nC denote the number of rows in C or, equivalently, the number of columns in CT . Matrix
(4.13) allows us to identify nonanticipativity constraints linking scenarios i and i+1 by consider-
ing only corresponding columns during a QR factorization of CT . In order to identify redundant
nonanticipativity constraints, we use a QR factorization with partial pivoting. We compute the
factorization by generating Householder reflectors, columns by columns. Assume for some j that
we have computed Householder matricesH1, . . . , Hj−1 and permutations Π1, . . . ,Πj−1 such that

(Hj−1 . . . H1)C
T (Π1 . . .Πj−1) =

(
Rj−1

11 Rj−1
12

0 Rj−1
22

)
,

where Rj−1
11 is a nonsingular and upper triangular matrix. Consider the following column parti-

tioning of Rj−1
22 :

Rj−1
22 =

(
rj−1
j , . . . , rj−1

nC

)
.

Suppose furthermore that column j is associated to a nonanticipativity constraint linking scenar-
ios i and i+ 1 and denote ji the last column index corresponding to nonanticipativity constraints

4.2 Notation and preliminary assumptions 69

linking scenarios i and i+ 1. Let p ≥ j be the smallest index such that∥∥rj−1
p

∥∥
2

= max
{∥∥rj−1

j

∥∥
2
, . . . ,

∥∥rj−1
ji

∥∥
2

}
.

If this maximum is zero, this implies that columns j to ji are linearly dependent of column 1 to
j − 1, and therefore can be suppressed. In this case we apply the permutation Π = Π1 . . .Πj−1

to CT and delete columns j to ji. Due to numerical errors, we consider that constraints j to ji
are redundant if

‖rj−1
p ‖2 ≤ max {‖ci‖2, i = 1, . . . , nC} εm,

where εm is the machine precision and ci is the ith row of C, i = 1, . . . , nC .
Otherwise, let Πj be the nS-by-nS identity matrix with columns p and j interchanged. We

determine then a Householder matrix Hj such that if Rj = HjR
j−1Πj , then Rj (j + 1 : m, j) =

0.
Let C ′ be the matrix resulting from C, after permutations and redundant constraints deletion.

Therefore C ′ is of full row rank. We obtain finally the factorization

C ′T = QR, (4.14)

or, in others terms, since QT = Q, we have

C ′ = RTQT = LQ,

where L is lower triangular.
While this process is expensive, the resulting factorization can be exploited to compute a

projection on the null space of the constraints. Assume that C has rank r. Then the (linearly
independent) r first columns of Q determine a basis of ran(C), while the remaining columns

give a basis of its null space. Indeed since C
′T

is of full column rank, we know that its number

of columns is equal to r and that a basis of ran
(
C

′T
)

is obtain with the r first columns of Q.

The other columns are a basis for its null space. This comes from the fact that each column of
C

′T
is a linear combination of the first r columns of Q (see for example Golub and Van Loan

[61], Section 5.2), and the same is true for C
′
.

Let
Q =

(
D K

)
, (4.15)

where D contains the r first columns of Q and K, the remaining ones. Define

P = KKT ;

the matrix P is a projection onto N
((
BT NT

)T
)

.

If Assumption A.5 does not hold, problem (4.5)–(4.8) can be infeasible, even if for each sce-
nario the associated subproblem is feasible. It is indeed possible that there exists some solution
that fulfils the constraintsB(s)z(s) = b(s), s = 1, . . . , S, but is not nonanticipative. Unfortunately,
the preprocessing suppresses the incompatible nonanticipative constraints, leading to a feasible
problem. Feasibility of the original problem can be tested by checking that the starting point
respects the suppressed constraints (see Section 4.4.1).

70 Chapter 4. Interior point methods for scenario formulations

4.3 The algorithm

Our algorithm is basically a sequential minimization of a logarithmic barrier function subject
to linear constraints as proposed in Conn, Gould, Orban, and Toint [30] for nonlinear problems
with linear constraints. Recall that we want to solve the program (4.9)–(4.12):

min f(z)

s.t. Bz = b,

Nz = 0,

z ≥ 0.

We propose to (approximately) solve

min φ(z, µk)

s.t. Bz = b,

Nz = 0,

(4.16)

where
φ(z, µk) = f(z) − µk〈e, log (z)〉,

for a sequence of barrier parameters µk > 0, k = 1, 2, . . ., satisfying

lim
k→∞

µk = 0. (4.17)

An approximate minimizer of problem (4.16), zk+1, defines an outer iterate, and the associated
adjustment of the barrier parameter and other tolerances defines the outer iteration. Outer itera-
tions will be indexed by the subscript k ≥ 0, while the subscript j will index the inner iteration.
Each outer iterate zk+1 is computed by using an appropriate inner iteration algorithm to approx-
imately solve (4.16), with a corresponding sequence of inner iterates {zk,j}.

We start by explaining the inner iteration and the outer iteration. Next we give details about
the step computation and show how the structure of the problem can be exploited for the problem
in interest.

4.3.1 The inner iteration

We first examine the inner iteration, whose aim is to approximately solve (4.16) for a given
value µk > 0. For this purpose we apply a standard Newton-like trust-region method (see
Section 2.3.3) with the restriction that the iterates have to lie in the null space of

(
BT NT

)T
.

The trust region is now defined as

Bk,j
def
= {zk,j + ∆zk,j ∈ RnS |B∆zk,j = 0, N∆zk,j = 0 and ‖∆zk,j‖k,j ≤ ∆k,j},

where ‖ · ‖k,j is the norm used at the iteration (k, j) and ∆k,j is the trust-region radius at this
iteration.

4.3 The algorithm 71

We consider here a quadratic model: at iteration (k, j), we attempt to decrease the value of
the function

mk,j(zk,j +∆zk,j) = φ(zk,j, µk)+〈gk,j−µkZ
−1
k,j e,∆zk,j〉+

1

2
〈∆zk,j, (Hk,j +Z

−1
k,jVk,j)∆zk,j〉,

(4.18)

where gk,j = ∇zf(zk,j), Hk,j is an approximation of ∇2
zzf (zk,j) and Vk,j is some bounded

positive diagonal matrix of entries [vk,j]i, i = 1, . . . , nS. This model can be seen as a quadratic
model of the log-barrier function, with a modification of the barrier model’s Hessian whose
goal is to benefit from a primal-dual approach when solving problem (4.16) (see Conn, Gould,
Orban, and Toint [30]). Note also that the approximation can be made scenario per scenario,

with an approximation H(s)
k,j for ∇2

z(s)z(s)f
(s)

(
z

(s)
k,j

)
, s = 1, . . . , S. Hk,j is now defined as a block

diagonal matrix gathering these approximations.
Let

Dk,j = Z−1
k,jVk,j, Gk,j = Hk,j +Dk,j,

and

D
(s)
k,j =

(
Z

(s)
k,j

)−1

V
(s)
k,j , G

(s)
k,j = H

(s)
k,j +D

(s)
k,j, s = 1, . . . , S.

The model can then be rewritten as

mk,j(zk,j + ∆zk,j) = φ(zk,j, µk) + 〈gk,j − µkZ
−1
k,j e,∆zk,j〉 +

1

2
〈∆zk,j, Gk,j∆zk,j〉, (4.19)

The general framework of the primal-dual inner algorithm is similar to the BTR Algorithm 2.2 on
page 33, but now restricts the iterates to N

(
BT NT

)T
.

Algorithm 4.1: Inner iteration

Step 0. Initialization. An initial point zk,0 ∈ strict{P}∩L, a vector vk,0 > 0 of dual variables
associated to the positivity constraints, and an initial trust-region radius ∆k,0 are given.
The constants η1, η2, γ1, γ2 are also given, as in Algorithm 2.2. Finally, a ζk ∈ (0, 1) is
also given. Compute f(zk,0) (if not already known) and set j = 0.

Step 1. Model definition. Define a model mk,j of φ(zk,j + ∆zk,j, µk) in Bk, which is of the
form (4.19).

Step 2. Step calculation. Define dk,j = dist(zk,j, ∂P). Compute a step ∆zk,j such that

zk,j + ∆zk,j ∈ Bk,j ∩ F and dist (zk,j + sk,j, ∂P) ≥ ζkdk,j,

and such that it sufficiently reduces the model mk,j .

Step 3. Acceptance of the trial point. Compute φ(zk,j + ∆zk,j, µk) and

ρk,j =
φ(zk,j, µk) − φ(zk,j + ∆zk,j, µk)

mk,j(zk,j) −mk,j(zk,j + ∆zk,j)
.

72 Chapter 4. Interior point methods for scenario formulations

Then if ρk,j ≥ η1, define zk,j+1 = zk,j + ∆zk,j; otherwise zk,j+1 = zk,j .

Step 4. Trust-region update. Identical to Step 4 of Algorithm 2.2.

Step 5. Update the dual variables. Define vk,j+1 > 0. Increment j by one and go to Step 1.

The starting point (zk,0, vk,0) is given by the final point obtained at the previous outer iteration
if k > 0 (see Algorithm 4.3). The computation of an initial point (z0,0, v0,0) is discussed in
Section 4.4.1.

It is important to notice that we are prepared to solve in Step 2 the trust-region subproblem

min mk,j(zk,j + ∆zk,j)

s.t. B∆zk,j = 0,

N∆zk,j = 0,

zk,j + ∆zk,j > 0,

and ‖∆zk,j‖k,j ≤ ∆k,j,

only approximately, in that we merely aim at improving mk,j (zk,j + s) while satisfying the re-
maining constraints. The computation of the constrained Newton direction can be efficiently
operated as we will show below. However, if this direction is especially interesting to acceler-
ate convergence as we approach the solution, it does not guarantee global convergence of the
algorithm. This can be obtained by first computing the projected constrained Cauchy point. The
step is therefore computed in our algorithm by forming a dogleg path based on the constrained
projected Cauchy point and a quasi-Newton step. We first introduce the latter because it allows
a better insight into the model choice. Note that we choose to compute the step along the dog-
leg path instead of other paths as the projected conjugate gradient path (see for instance Conn,
Gould, and Toint [35], Section 5.4) in order to privilege exploitation of the scenario structure.
For simplicity, we will use the 2-norm at each iteration, so for convenience, we will omit the
index k, j in ‖ · ‖k,j from now on.

Quasi-Newton step

We first rewrite problem (4.9)–(4.12) into an equivalent form. This will allow us to develop
a linear system involving a symmetric matrix, as we show below. Writing problem (4.9)–(4.12)
as

min f(z) (4.20)

s.t. −Bz = −b, (4.21)

−Nz = 0, (4.22)

z ≥ 0, (4.23)

4.3 The algorithm 73

the Karush-Kuhn-Tucker conditions for this problem can then be expressed as:

g(z) +BTu− v +NTw = 0, (4.24)

Bz = b, (4.25)

Nz = 0, (4.26)

(z, v) ≥ 0, (4.27)

vizi = 0, i = 1, . . . , nS, (4.28)

where v is the vector of dual variables (Lagrange multipliers) for the bound constraints (4.23)
and u and w are the vectors of Lagrange multipliers associated with the equality constraints
(4.21) and (4.22), respectively. Equation (4.28) is the problem’s complementarity condition (see
Section 2.4.2), so we perturb it with the barrier parameter µ > 0, and replace condition (4.28) by

ZV e = µe,

where Z = diag(z1, . . . , znS) and V = diag(v1, . . . , vnS). The system (4.24)–(4.28) can then be
restated as follows:

F (z, u, v, w) =

⎛
⎜⎜⎝
g(z) +BTu− v +NTw

Bz − b
ZV e− µe

Nz

⎞
⎟⎟⎠ = 0, (4.29)

(z, v) > 0. (4.30)

Let J(z, u, v, w) be the Jacobian of F (z, u, v, w). Ignoring the nonnegativity constraints, the
Newton’s equation for this system at some inner iterate (zk,j, uk,j, vk,j, wk,j) and for some value
µk of the barrier parameter is

J(zk,j, uk,j, vk,j, wk,j)

⎛
⎜⎜⎝

∆zk,j

∆uk,j

∆vk,j

∆wk,j

⎞
⎟⎟⎠ = −

⎛
⎜⎜⎝
g (zk,j) +BTuk,j − vk,j +NTwk,j

Bzk,j − b
Zk,jVk,je− µke

Nzk,j

⎞
⎟⎟⎠ , (4.31)

where

J =

⎛
⎜⎜⎝
∇zzf (zk,j) BT −I NT

B 0 0 0
Vk,j 0 Zk,j 0
N 0 0 0

⎞
⎟⎟⎠ .

The primal-dual Newton’s system corresponding to our problem can therefore be formulated
as ⎛

⎜⎜⎝
Hk,j BT −I NT

B 0 0 0
Vk,j 0 Zk,j 0
N 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

∆zk,j

∆uk,j

∆vk,j

∆wk,j

⎞
⎟⎟⎠ = −

⎛
⎜⎜⎝
g (zk,j) +BTuk,j − vk,j +NTwk,j

Bzk,j − b
Zk,jVk,je− µke

Nzk,j

⎞
⎟⎟⎠ , (4.32)

74 Chapter 4. Interior point methods for scenario formulations

where we have replaced ∇zzf (zk,j) by its approximation Hk,j . We immediately see that Hk,j

must be chosen so that the left-hand side matrix is nonsingular.
Note also that the introduction of the parameter µk can also be motivated by considering

the barrier problem (4.16), as discussed in Section 2.4.2, where only inequality constraints were
considered. Eliminating ∆vk,j and writing uk,j+1 = uk,j + ∆uk,j , wk,j+1 = wk,j + ∆wk,j , we
obtain the following system⎛

⎝Hk,j +Dk,j BT NT

B 0 0
N 0 0

⎞
⎠

⎛
⎝ ∆zk,j

uk,j+1

wk,j+1

⎞
⎠ = −

⎛
⎝g (zk,j) − µkZ

−1
k,j e

Bzk,j − b
Nzk,j

⎞
⎠ (4.33)

and
∆vk,j = µkZ

−1
k,j e− vk,j −Dk,j∆zk,j.

The first equation of the system (4.33) can be rewritten as

Gk,j∆zk,j +BTuk,j+1 +NTwk,j+1 = −∇zφ(zk,j, µk).

Moreover, equations (4.33) are precisely the first-order optimality conditions for the problem of
minimizing the model (4.19), subject to the constraints

B(zk,j + ∆zk,j) = b,

N(zk,j + ∆zk,j) = 0.

Hence ∆zk,j may be interpreted as a constrained quasi-Newton step for the problem (4.16).
We now rewrite the system (4.32) to obtain a symmetric left-hand side matrix: premultiplying

each side of (4.32) by ⎛
⎜⎜⎝
I 0 0 0
0 I 0 0
0 0 −V −1

k,j 0

0 0 0 I

⎞
⎟⎟⎠ ,

the primal-dual system becomes⎛
⎜⎜⎝
Hk,j BT −I NT

B 0 0 0
−I 0 −D−1

k,j 0

N 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

∆zk,j

∆uk,j

∆vk,j

∆wk,j

⎞
⎟⎟⎠ = −

⎛
⎜⎜⎝
g (zk,j) +BTuk,j − vk,j +NTwk,j

Bzk,j − b
−Zk,je+ µkV

−1
k,j e

Nzk,j

⎞
⎟⎟⎠ . (4.34)

The right-hand side of this system can be simplified if we require that each iterate is strictly
feasible, or in other terms that constraints (4.10) and (4.11) are satisfied. We immediately see
that if zk,j is strictly feasible, zk,j+1 will also be strictly feasible if the step ∆zk,j belongs to the

null space of
(
BT NT

)T
, i.e.

B∆zk,j = 0,

N∆zk,j = 0.

4.3 The algorithm 75

In practice, the cost involved to produce such a starting point is balanced by the subsequent
algorithmic simplifications (Conn, Gould, Orban, and Toint [30]). We discuss the search of such
a point in Section 4.4.

Assume that zk,j is strictly feasible. The system (4.34) can then be rewritten as⎛
⎜⎜⎝
Hk,j BT −I NT

B 0 0 0
−I 0 −D−1

k,j 0

N 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

∆zk,j

∆uk,j

∆vk,j

∆wk,j

⎞
⎟⎟⎠ = −

⎛
⎜⎜⎝
g(zk,j) +BTuk,j − vk,j +NTwk,j

0
−Zk,je+ µV −1

k,j e

0

⎞
⎟⎟⎠ . (4.35)

For reference, we will denote by ∆zCN
k,j the quasi-Newton step obtained by solving the linear

system (4.35).
Computing the step from (4.35) requires some precautions when the objective function is

nonlinear nonconvex, since the coefficient matrix can then be singular. More significantly (4.35)
is inappropriate if Gk,j is not second-order sufficient with respect to

(
BT NT

)T
, as ∆zk,j at

best defines a saddle point for the model. Forcing iterates to belong to a trust region is one
possibility to circumvent these limitations (see Conn, Gould, Orban, and Toint [30]).

Restricting the directions in N
((
BT NT

)T
)

, the model (4.19) can be reformulated as

mk,j(zk,j+P∆zk,j) = φ(zk,j, µk)+〈∇zφ(zk,j, µk), P∆zk,j〉+
1

2
〈KT ∆zk,j, K

TGk,jKK
T ∆zk,j〉.

If the approximation Gk,j is second-order sufficient with respect to
(
BT NT

)T
then KTGk,jK

will be positive definite (Gould [66]). This assumption is usually made, at least asymptotically,
to ensure optimality (see for instance Conn, Gould, and Toint [34]). We will also discuss this
assumption in Section 4.3.2, describing the dogleg path approach used in our method. The
computation of the quasi-Newton step will be addressed in Section 4.3.5.

The projected constrained Cauchy point

We now describe how to obtain the projected Cauchy point, in order to ensure global con-
vergence (to a first-order critical point). Assume that we have a basis K of the null space of(
BT NT

)T
. Define

P = KKT .

This matrix P is an orthogonal projective matrix onto N
((
BT NT

)T
)

(see Section 4.2.1 for

a way to obtain such a matrix). We can thus project the gradient of the model by applying P to
it, as it is done in some indefinite dogleg methods (Zhang and Xu [143]). The projected gradient
is still a descent direction since

〈−KKT∇zφ(zk,j, µk),∇zφ(zk,j, µk)〉 = −〈KT∇zφ(zk,j, µk), K
T∇zφ(zk,j, µk)〉

= −‖KT∇zφ(zk,j, µk)‖2.

The projected constrained Cauchy point

zCC
k,j = zk,j − tCC

k,j P∇zφ (zk,j, µk) (4.36)

76 Chapter 4. Interior point methods for scenario formulations

is now defined as the solution of the problem

min
t≥0

mk,j (zk,j − tP∇zφ (zk,j, µk)) , (4.37)

such that

zk,j − tP∇zφ (zk,j, µk) ∈ Bk,j and t ‖P∇zφ (zk,j, µk)‖ ≤ (1 − ζk) dk,j. (4.38)

The left part of (4.38) ensures that the candidate point belongs to the trust region while the right
part guarantees that we stop before we get too close to the boundary of the positive orthant ∂P .

The constrained projected Cauchy step ∆zCC
k,j is therefore defined as

∆zCC
k,j = −tCC

k,j P∇zφ (zk,j, µk) . (4.39)

Computation of the projected constrained Cauchy point

The computation of the constrained Cauchy point involves a minimization process in one
dimension, so the main cost is in the computation of the projected gradient of the log-barrier
model. The gradient is

g (zk,j) − µkZ
−1
k,j e,

which can easily be calculated scenario by scenario since

∇zφ (zk,j, µk) =

⎛
⎜⎜⎜⎝
g(1)

(
z

(1)
k,j

)
− µkZ

(1)
k,j

−1
e

...

g(S)
(
z

(S)
k,j

)
− µkZ

(S)
k,j

−1
e

⎞
⎟⎟⎟⎠ .

We have that

mk,j (zk,j − tP∇zφ (zk,j, µk)) = φ (zk,j, µk) − t ‖P∇zφ (zk,j, µk)‖2

+
1

2
t2 〈P∇zφ (zk,j, µk) , Gk,jP∇zφ (zk,j, µk)〉 .

If the curvature of the model is negative in the direction −P∇zφ (zk,j, µk), then, from Step 2 of
Algorithm 4.1, the optimal step length is given by

tCC
k = min

[
∆k,j

‖P∇zφ(zk,j, µk)‖
,

(1 − ζk)dk,j

‖P∇zφ(zk,j, µk)‖

]
.

Otherwise, it is defined as

tCC
k = min

[
∆k

‖P∇zφ(zk,j, µk)‖
,

(1 − ζk)dk,j

‖P∇zφ(zk,j, µk)‖
,

‖P∇zφ(zk,j, µk)‖2

〈P∇zφ(zk,j, µk), Gk,jP∇zφ(zk,j, µk)〉

]
.

(4.40)
The main cost is the application of the projection operator P since its size is nS × nS.

Fortunately, as it is simply a matrix-vector product, we can easily parallelize it in order to work

4.3 The algorithm 77

(1) (2) . . . (S)

nS

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

× × . . . ×
× × . . . ×

...
× × . . . ×
× × . . . ×
× × . . . ×

...
× × . . . ×

...

× × . . . ×
× × . . . ×

...
× × . . . ×

× × . . . ×
× × . . . ×

...
× × . . . ×
× × . . . ×
× × . . . ×

...
× × . . . ×

...

× × . . . ×
× × . . . ×

...
× × . . . ×

. . .

. . .
...
. . .

. . .

. . .
...
. . .

...

. . .

. . .
...
. . .

× × . . . ×
× × . . . ×

...
× × . . . ×
× × . . . ×
× × . . . ×

...
× × . . . ×

...

× × . . . ×
× × . . . ×

...
× × . . . ×

×
×
...
×
×
×
...
×

...

×
×
...
×

=

×
×
...
×
×
×
...
×

...

×
×
...
×

Figure 4.1: Projection application

(1)

+ . . .+

(S)

=

⎫⎪⎪⎬
⎪⎪⎭nS

Figure 4.2: Combination of the partial results for the projection

scenario per scenario. Considering Figure 4.1, we see that we can split the projection matrix into
S parts. We can therefore take the n first columns and apply them to the gradient of the first
scenario objective. We repeat the process with the n next columns and the gradient of the second
scenario. The same procedure is applied for each scenario. Finally, the projected gradient is
computed by summing the S intermediate results, as illustrated in Figure 4.2.

The projected constrained Cauchy step ensures that a positive decrease of the model mk,j is
obtained at each iteration (k, j), as stated in the following theorem.

Theorem 4.1 If the model is of the form (4.19) and if we define the projected constrained
Cauchy point by (4.37)–(4.38), we have that

mk,j(zk,j) −mk,j(zk,j + ∆zCC
k,j)

≥ 1

2
‖P∇zφ(zk,j, µk)‖min

{
‖P∇zφ(zk,j, µk)‖

βk,j

,∆k,j, (1 − ζk)dk,j

}
,

78 Chapter 4. Interior point methods for scenario formulations

where βk,j = 1 + maxx∈Bk
‖∇zzmk(z)‖.

Proof. The proof is similar to that of Theorem 13.3.1 in Conn, Gould, and Toint [35].

4.3.2 Dogleg path

Let define

∆zCP
k,j = − ‖P∇zφ(zk,j, µk)‖2

〈P∇zφ(zk,j, µk), Gk,jP∇zφ(zk,j, µk)〉
P∇zφ(zk,j, µk).

If the model curvature is positive in the direction ∆zCP
k,j , then from (4.39) and (4.40), the pro-

jected constrained Cauchy step ∆zCC
k,j is on the segment zk,j +α∆zCP

k,j , 0 ≤ α ≤ 1. We combine
∆zCP

k,j with the quasi-Newton step, denoted as previously by ∆zCN
k,j , to form a single dogleg path:

∆zk,j(α) =

{
α∆zCP

k,j , for 0 ≤ α ≤ 1,

∆zCP
k,j + (α− 1)(∆zCN

k,j − ∆zCP
k,j) 1 ≤ α ≤ 2.

(4.41)

For notational convenience, we also define

pk,j(∆zk,j) = mk,j(zk,j + ∆zk,j) = φ(zk,j, µk) + 〈∇zφ(zk,j, µk),∆zk,j〉 +
1

2
〈∆zk,j, Gk,j∆zk,j〉,

(4.42)
and

hk,j = P∇zφ (zk,j, µk) . (4.43)

Assuming that hk,j �= 0, we have

∆zCP
k,j = − ‖hk,j‖2

〈hk,j, Gk,jhk,j〉
hk,j. (4.44)

In order to ensure that (4.41) is actually a dogleg path for our problem, we have to check that
the two following conditions are satisfied:

(R1) ‖∆zk,j(α)‖ is monotonically increasing with α, 0 ≤ α ≤ 2;

(R2) pk,j(∆zk,j(α)) decreases monotically as α increases.

Note that (R1) implies that when the path goes out of the trust region, it cannot reenter into it.
Moreover since ∆zCP

k,j and ∆zCN
k,j belong to the null space of

(
BT NT

)T
, this path is entirely in

N
((
BT NT

)T
)

, ensuring that the step is in N
((
BT NT

)T
)

, and the iterate zk,j+1 satisfies

the constraints (4.21) and (4.22).

Lemma 4.1 If Gk,j is second-order sufficient with respect to
(
BT NT

)T
,

〈hk,j,∆z
CN
k,j 〉 ≤ − ‖hk,j‖4

〈hk,j, Gk,jhk,j〉
< 0. (4.45)

4.3 The algorithm 79

Proof. Starting from the system (4.33), we have

Gk,j∆z
CN
k,j +BTuk,j+1 +NTwk,j+1 = −∇zφ(zk,j, µk). (4.46)

Premultiplying each part of (4.46) by the projection operator P on N
((
BT NT

)T
)

, we obtain

PGk,j∆z
CN
k,j = −hk,j, (4.47)

and from (4.43),
hk,j = Phk,j. (4.48)

Since ∆zCN
k,j and hk,j belong to the null space of

(
BT NT

)T
, we have from (4.47) that

〈hk,j,∆z
CN
k,j 〉 〈hk,j, Gk,jhk,j〉 + ‖hk,j‖4

= −〈PGk,j∆z
CN
k,j ,∆z

CN
k,j 〉〈hk,jP

T , Gk,jPhk,j〉 + 〈hk,j, PGk,j∆z
CN
k,j 〉2

= −〈∆zCN
k,j , PGP∆zCN

k,j 〉〈hk,j, PGk,jPhk,j〉 + 〈hk,j, PGk,jP∆zCN
k,j 〉2.

Developing P = KKT , we can write

〈hk,j,∆z
CN
k,j 〉〈hk,j, Gk,jhk,j〉 + ‖hk,j‖4

= −〈KT ∆zCN
k,j , K

TGk,jKK
T ∆zCN

k,j 〉〈KThk,j, K
TGk,jKK

Thk,j〉
+ 〈KThk,j, K

TGk,jKK
T ∆zCN

k,j 〉2.
(4.49)

Since Gk,j is second-order sufficient with respect to
(
BT NT

)T
, KTGk,jK is positive definite

and we can introduce the scalar product

〈x, y〉KT Gk,jK = 〈x,KTGk,jKy〉,

and its associated matrix norm

‖x‖KT Gk,jK =
√
〈x,KTGk,jKx〉.

We can thus rewrite (4.49) as

〈hk,j,∆z
CN
k,j 〉〈hk,j, Gk,jhk,j〉 + ‖hk,j‖4

= −〈KT ∆zCN
k,j , K

T ∆zCN
k,j 〉KT Gk,jK〈KThk,j, K

Thk,j〉KT Gk,jK

+ 〈KThk,j, K
T ∆zCN

k,j 〉2KT Gk,jK .

(4.50)

From the Cauchy-Schwartz inequality, we have

〈KThk,j, K
T ∆zCN

k,j 〉2KT Gk,jK ≤ 〈KT ∆zCN
k,j , K

T ∆zCN
k,j 〉KT Gk,jK〈KThk,j, K

Thk,j〉KT Gk,jK .

Therefore, from (4.50),

〈hk,j,∆z
CN
k,j 〉〈hk,j, Gk,jhk,j〉 + ‖hk,j‖4 ≤ 0,

which yields the desired conclusion.

80 Chapter 4. Interior point methods for scenario formulations

We now prove that ∆zk,j(α) (0 ≤ α ≤ 2) is a dogleg path, as desired.

Theorem 4.2 If Gk,j is second-order sufficient with respect to
(
BT NT

)T
, then ∆zk,j(α)

(0 ≤ α ≤ 2) is a dogleg path in N
((
BT NT

)T
)

.

Proof. From (4.41), ‖∆zk,j(α)‖ is increasing with α, for α ∈ [0, 1]. All we have to prove is that
it is also increasing for α ∈ [1, 2]. From Lemma 4.1 and (4.44), we have that

∥∥∆zCP
k,j

∥∥ ‖hk,j‖ =
‖hk,j‖2

〈hk,j, Gk,jhk,j〉
‖hk,j‖2 ≤

∣∣〈hk,j,∆z
CN
k,j 〉

∣∣ ≤ ∥∥∆zCN
k,j

∥∥ ‖hk,j‖,

where we have again used the Cauchy-Schwartz inequality to obtain the last inequality. There-
fore we have ∥∥∆zCP

k,j

∥∥ ≤
∥∥∆zCN

k,j

∥∥ .
In other words, the projected Cauchy step is shorter than the quasi-Newton step. Moreover, from
Lemma 4.1, we also have that

〈∆zCP
k,j ,∆z

CN
k,j − ∆zCP

k,j 〉 = − ‖hk,j‖2

〈hk,j, Gk,jhk,j〉
〈hk,j,∆z

CN
k,j 〉 − ‖hk,j‖6

〈hk,j, Gk,jhk,j〉2

= − ‖hk,j‖2

〈hk,j, Gk,jhk,j〉

(
〈hk,j,∆z

CN
k,j 〉 +

‖hk,j‖4

〈hk,j, Gk,jhk,j〉

)
≥ 0.

Therefore ‖∆zk,j(α)‖ is increasing with α, for α ∈ [1, 2], and the path satisfies (R1).
We now proved that (R2) is also valid. Using P∆zk,j(α) = ∆zk,j(α) and P = P T , we can

rewrite (4.42) as follows:

pk,j(∆zk,j(α)) = φ(zk,j, µk) + 〈P∇zφ(zk,j, µk),∆zk,j(α)〉 +
1

2
〈∆zk,j(α), Gk,j∆zk,j(α)〉.

The value of m(zk,j + ∆zk,j(α)) decreases along the first piece of the path, where α varies from
0 to 1. Consider a point on the second piece of the path. For 1 ≤ α ≤ 2,

∆zk,j(α) = ∆zCP
k,j + (α− 1)

(
∆zCN

k,j − ∆zCP
k,j

)
,

so we have
d

dα
pk,j(∆zk,j(α)) =

〈
∇∆zpk,j(∆zk,j(α)),∆zCN

k,j − ∆zCP
k,j

〉
. (4.51)

Developing ∇∆zpk,j(∆zk,j(α)), we obtain from (4.51) that

d

dα
pk,j(∆zk,j(α)) =

〈
hT

k,j +Gk,j

(
∆zCP

k,j + (α− 1)
(
∆zCN

k,j − ∆zCP
k,j

))
,
(
∆zCN

k,j − ∆zCP
k,j

)〉
and thus,

d

dα
pk,j(∆zk,j(α)) =

〈
hk,j,∆z

CN
k,j − ∆zCP

k,j

〉
+ (2 − α)

〈
∆zCP

k,j , Gk,j

(
∆zCN

k,j − ∆zCP
k,j

)〉
+

(α− 1)
〈
∆zCN

k,j , Gk,j

(
∆zCN

k,j − ∆zCP
k,j

)〉
.

(4.52)

4.3 The algorithm 81

Note that, from (4.44), we have

〈
∆zCP

k,j , Gk,j∆z
CP
k,j

〉
=

‖hk,j‖4

〈hk,j, Gk,jhk,j〉
,

and, from (4.47),

〈
∆zCP

k,j , Gk,j∆z
CN
k,j

〉
= −

〈
hk,j,∆z

CP
k,j

〉
,〈

∆zCN
k,j , Gk,j∆z

CN
k,j

〉
= −

〈
hk,j,∆z

CN
k,j

〉
.

Thus, (4.52) can be rewritten as

d

dα
pk,j(∆zk,j(α)) =

〈
hk,j,∆z

CN
k,j − ∆zCP

k,j

〉
+ (2 − α)

(
−

〈
hk,j,∆z

CP
k,j

〉
+

‖hk,j‖4

〈hk,j, Gk,jhk,j〉

)
+

(α− 1)
〈
hk,j,∆z

CP
k,j − ∆zCN

k,j

〉
,

leading to

d

dα
pk,j(∆zk,j(α)) = (2 − α)

(〈
hk,j,∆z

CN
k,j

〉
+

‖hk,j‖4

〈hk,j, Gk,jhk,j〉

)
≤ 0.

Therefore the value of m(zk,j + ∆zk,j(α)) is also monotically decreasing along the second piece
of the path and (R2) is satisfied.

We can summarize the computation of the step length and direction as described in Algorithm
4.2.

Algorithm 4.2: Step calculation

1. Compute the constrained quasi-Newton step by solving (4.35).

2. If the quasi-Newton step is within the trust region and
∥∥∆zCN

k,j

∥∥ ≤ (1 − ζk)dk,j , then set
∆zk,j = ∆zCN

k,j .

3. Else compute the constrained Cauchy step. If ∆zCC
k,j is not equal to ∆zCP

k,j , set ∆zk,j =

∆zCC
k,j . Otherwise set ∆zk,j = ∆zCP

k,j + (α − 1)
(
∆zCN

k,j − ∆zCC
k,j

)
, where α is chosen

such that ‖∆zk,j‖ = min [∆k,j, (1 − ζk)dk,j].

Note that it is possible to relax the second-order sufficiency condition in Theorem 4.2, as
done for instance in Zhang and Xu [143]. However, if Gk,j is not second-order sufficient, the
dogleg path is then usually based on some modifications of the primal-dual system (4.35) for
which a new decomposition scheme has to be defined. The second-order sufficiency assumption
is therefore useful to keep the method simple, and as said before, is not too restrictive since it is
often required asymptotically to prove second-order convergence.

82 Chapter 4. Interior point methods for scenario formulations

4.3.3 Updating the dual variables

We now indicate how the dual variables vk,j+1 may be updated in practice in Step 5 of the
primal-dual inner Algorithm 4.1. Our approach follows the proposition of Conn, Gould, Orban,
and Toint [30]. A simple idea is to use the value predicted in the middle part of the quasi-Newton
system (4.35):

vk,j+1 = vk,j + ∆vk,j = µkZ
−1
k,j e− Z−1

k,jVk,j∆zk,j. (4.53)

However, there is no guarantee that the choice vk,j+1 maintains feasibility (vk,j+1 ≥ 0). More-
over, the dual variables have to satisfy some technical conditions to ensure optimality (see again
Conn, Gould, Orban, and Toint [30]). It can be shown that an adequate update is achieved by
projecting (componentwise) vk,j+1 into the interval

K =
[
κ1 min{e, vk,j, µkZ

−1
k,j+1e},max{κ2e, vk,j, κ2µ

−1
k e, κ2µkZ

−1
k,j+1e}

]
,

where κ1 and κ2 are constants such that

0 < κ1 < 1 < κ2.

This is to say that

vk,j+1 =

{
PK[vk,j+1] if zk,j+1 = zk,j + ∆zk,j,

vk,j if zk,j+1 = zk,j,

where PK[x] is the componentwise projection of the vector x onto the interval K. Convenient
values for the constants are κ1 = 0.5 and κ2 = 1020.

4.3.4 The outer iteration

The outer iteration that controls the global optimization process is described in Algorithm
4.3. It is similar to the outer iteration of the primal-dual algorithm proposed in Conn, Gould, and
Toint [35].

Algorithm 4.3: Outer iteration

Step 0. Initialization. An initial feasible point z0 > 0, a vector of initial dual variables vT
0 > 0

and an initial barrier parameter µ0 are given. The forcing functions εD(µ), εE(µ) and
εC(µ) are also given. Set k = 0.

Step 1. Inner minimization. Choose a value ζk ∈ (0, 1). Approximately minimize the log-
barrier function φ (z, µk) = f(z)−µk〈e, log(z)〉 using Algorithm 4.1. Stop this algorithm
as soon as an iterate (zk,j, vk,j) = (zk+1, vk+1) is found for which∥∥∥∇z(s)f (s)

(
z

(s)
k+1

)
− v

(s)
k+1

∥∥∥ ≤ εD (µk) , s = 1, . . . , S,

‖Zk+1Vk+1 − µkI‖ ≤ εC (µk) ,

λmin

[
G

(s)
k+1 +

(
Z

(s)
k+1

)−1

V
(s)
k+1

]
≥ −εE (µk) , s = 1, . . . , S,

4.3 The algorithm 83

and
zk+1 > 0 and vk+1 > 0.

Step 2. Update the barrier parameter. Choose µk+1 > 0 in such a way to ensure that

lim
k→∞

µk = 0.

Increment k by 1 and return to Step 1.

The convergence of the algorithm can be proved as in Conn, Gould, and Toint [35], Chap-
ter 13 (see in particular Section 13.9 and the discussion in the beginning of Section 13.10). A
more general version can be found in Conn, Gould, Orban, and Toint [30] and Gould, Orban,
Sartenaer, and Toint [65]. The practical aspects for Algorithm 4.3 will be discussed in Sec-
tion 4.4.

4.3.5 Quasi-Newton step computation

We now focus on the practical details when computing the quasi-Newton step during an inner
iteration, and show how to benefit from the structure of the nonlinear stochastic program (4.5)–
(4.8). To achieve this, we propose a new decomposition scheme that exhibits strong parallelism
properties, by treating separately the nonanticipativity constraints.

Decomposition of the primal-dual system

The primal-dual system (4.35) could be split into S smaller systems, one per scenario, if there
were no nonanticipativity constraints. This suggests decomposing it in separable systems, when
possible. In this section, we show that the solution of the system (4.35) can be replaced by the
solutions of three systems, two of them being separable with respect to the scenarios. The third
system explicitly takes the nonanticipativity constraints into account, and has a sparse structure
that can be exploited. For simplicity, we will omit the subscripts k, j in the developments below.

Consider the first system,

⎛
⎝H BT −I
B 0 0
−I 0 −D−1

⎞
⎠

⎛
⎝∆z

∆u
∆v

⎞
⎠ =

⎛
⎝g(z) +BTu− v

0
−Ze+ µV −1e

⎞
⎠ , (4.54)

with solutions ∆z, ∆u, ∆v. Eliminating ∆v in this system, we obtain

(
G BT

B 0

) (
∆z
∆u

)
=

(
g(z) +BTu− µZ−1e

0

)
, (4.55)

where
∆v = −D∆z + v − µZ−1e.

84 Chapter 4. Interior point methods for scenario formulations

In order to have a well-defined system (4.55), we need to impose that the matrix

J =

(
G BT

B 0

)

is nonsingular. Let A be constructed so that BA = 0 and rank
(
BT A

)
= nS. From the

Sylvester’s law of inertia, we have that J is nonsingular if and only if ATGA is nonsingular
(Gould [66]). In other terms, J is nonsingular if and only if G is second-order nonsingular with
respect to B. We therefore make the following assumption from now on:

A.6 G is second-order nonsingular with respect to B.

Using the solution of the system (4.54), the system (4.35) can now be rewritten as⎛
⎜⎜⎝
H BT −I NT

B 0 0 0
−I 0 −D−1 0
N 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

∆z + ∆z
∆u+ ∆u
∆v + ∆v
∆w + w

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
0

N∆z

⎞
⎟⎟⎠ .

Defining ∆̃z = ∆z + ∆z, ∆̃u = ∆u+ ∆u, ∆̃v = ∆v + ∆v and ∆̃w = ∆w +w, we obtain the
following set of equations:

H∆̃z +BT ∆̃u− ∆̃v +NT ∆̃w = 0, (4.56)

B∆̃z = 0, (4.57)

−∆̃z −D−1∆̃v = 0, (4.58)

N∆̃z = N∆z. (4.59)

The second system of interest, that we now construct, will allow us to determine ∆w, so that we
will be able to eliminate this variable in the third step of the decomposition. Putting (4.58) in
(4.56), we have

−HD−1∆̃v +BT ∆̃u− ∆̃v +NT ∆̃w = 0,

or, equivalently,
−

(
I +HD−1

)
∆̃v +BT ∆̃u+NT ∆̃w = 0. (4.60)

Hence (4.60) can be rewritten as

−GD−1∆̃v +BT ∆̃u+NT ∆̃w = 0. (4.61)

In order to derive ∆̃v from (4.60), we must impose that G is invertible; in other terms we require
the following assumption to hold:

A.7 G is nonsingular.

Note that Assumption A.7 does not imply that Assumption A.6 is satisfied, as shown in the
example below.

4.3 The algorithm 85

Example 4.2. Consider the matrix A of dimensions n × n and the full row rank matrix B, of
dimensions m× n (m < n):

A =

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠ , B =

(
1 0 0 0
0 1 0 0

)
.

Then we have that

BABT =

(
0 0
0 0

)
,

which is clearly singular.

Under Assumption A.7, we obtain from (4.61) that

∆̃v = DG−1BT ∆̃u+DG−1NT ∆̃w. (4.62)

From (4.57) and (4.58), we can write

BD−1∆̃v = 0. (4.63)

Premultiplying each side of (4.62) by BD−1, we have from (4.63) that

BG−1BT ∆̃u+BG−1NT ∆̃w = 0.

By Assumptions A.6 and A.7, BG−1BT is nonsingular. Indeed, we have that (Gould [66])

In(A) = In(G) + In(−BG−1BT),

where In(A) is the inertia of A (see Section 1.3.1). Therefore, under Assumption A.7, A is
nonsingular if and only if BG−1BT is invertible. Hence,

∆̃u = −
(
BG−1BT

)−1
BG−1NT ∆̃w. (4.64)

From (4.58) and (4.59), we have

ND−1∆̃v = −N∆z. (4.65)

Putting (4.62) in (4.65), we obtain

−N∆z = NG−1BT ∆̃u+NG−1NT ∆̃w,

or, with (4.64),

N
(
G−1 −G−1BT

(
BG−1BT

)−1
BG−1

)
NT ∆̃w = −N∆z. (4.66)

In order to ensure that this system has a unique solution, we need the following assumption:

86 Chapter 4. Interior point methods for scenario formulations

A.8 G is second-order nonsingular with respect to
(
BT NT

)T
.

This assumption is trivially satisfied ifG is second-order sufficient with respect to
(
BT NT

)T
.

We can now write the proposition below.

Theorem 4.3 Under Assumptions A.6–A.8, the matrix

M = N
(
G−1 −G−1BT

(
BG−1BT

)−1
BG−1

)
NT

is nonsingular.

Proof. Let

J =

(
G BT

B 0

)
, L =

⎛
⎝ J

(
NT

0

)
(
N 0

)
0

⎞
⎠ .

We can factorize L as follows:⎛
⎝ J

(
NT

0

)
(
N 0

)
0

⎞
⎠ =

(
I 0(

N 0
)
J−1 I

) ⎛
⎝J 0

0 −
(
N 0

)
J−1

(
NT

0

)⎞
⎠

⎛
⎝I J−1

(
NT

0

)
0 I

⎞
⎠ .

From Assumption A.8, L is nonsingular, so, from the law of inertia, the matrix

−
(
N 0

)
J−1

(
NT

0

)
(4.67)

is also nonsingular. Note that (4.67) is nothing else than the Schur complement of J in L.
Since the inverse of J is(

G−1 −G−1BT
(
BG−1BT

)−1
BG−1 G−1BT

(
BG−1BT

)−1(
BG−1BT

)−1
BG−1 −

(
BG−1BT

)−1

)
,

we have (
N 0

)
J−1

(
NT

0

)
= N [G−1 −G−1BT (BG−1BT)−1BG−1]NT ,

Therefore, the matrix
N [G−1 −G−1BT (BG−1BT)−1BG−1]NT

is nonsingular.

The last system to solve in order to obtain the solution of (4.35) then becomes:⎛
⎝H BT −I
B 0 0
−I 0 −D−1

⎞
⎠

⎛
⎝∆z

∆u
∆v

⎞
⎠ = −

⎛
⎝g(z) +BTu− v +NT (w + ∆w)

0
−Ze+ µV −1e

⎞
⎠ . (4.68)

4.3 The algorithm 87

Solution of the second system of the decomposition

As said before, the second system, while large, has an exploitable sparse structure, as shown
in the following theorem.

Theorem 4.4 Suppose that N is selected such that
(
BT NT

)T
has full row rank. Then the

coefficient of the linear equation (4.66) is a symmetric tri-block-diagonal matrix, or a block-
diagonal matrix whose blocks are symmetric tri-block diagonal submatrices.

Proof. The proof is similar to Liu and Sun [86]. We consider three cases.

1. The matrix N has the same form than⎛
⎜⎜⎜⎝
N (1) −N (1)

N (2) −N (2)

.
N (S−1) −N (S−1)

⎞
⎟⎟⎟⎠ ,

with all N (i) (i = 1, . . . , S − 1) having n columns. Let

F = G−1 −G−1BT (BG−1BT)−1BG−1.

P can be decomposed as
F = diag(F (1), . . . , F (S)),

where, for s = 1, . . . , S,

F (s) = G(s)−1 −G(s)−1
B(s)T (B(s)G(s)−1

B(s)T)−1B(s)G(s)−1
.

Let C(i) = F (i) + F (i+1). It is then easy to check that

NFNT =⎛
⎜⎜⎜⎜⎝

N (1)C(1)N (1)T −N (1)F (2)N (2)T

−N (2)F (2)N (1)T N (2)C(2)N (2)T −N (2)F (3)NT
3

.

−N (S−1)F (S−1)N (S−2)T N (S−1)C(S−1)N (S−1)T

⎞
⎟⎟⎟⎟⎠ ,

(4.69)
which is a symmetric tri-block-diagonal matrix.

2. The matrix N is partitioned into the form⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

N (1) −N (1)

.
N (i−1) −N (i−1)

N (i+1) −N (i+1)

.
N (S−1) −N (S−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

88 Chapter 4. Interior point methods for scenario formulations

In this case, we partition F into diag(F 1, F 2) with F 1 = diag(F (1), . . . , F (i)) and F 2 =
diag(F (i+1), . . . , F (S)). Then NFNT is a block-diagonal matrix with two blocks being
tri-block-diagonal submatrices respectively.

3. The matrix N has the form⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

N (1) −N (1)

.
N (i−1) −N (i−1)

0 · · · 0 N (j+1) −N (j+1)

.
N (S−1) −N (S−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By permuting the positions of columns of N , we may have N ′ = (N, 0), where N has the
same form as IN case 2. Correspondingly, F is changed as F ′ = diag(F 1, F 2, F 3) where
we have

F 1 = diag(F (1), . . . , F (i)), F 2 = diag(F (j+1), . . . , F (S)),

and
F 3 = diag(F (i+1), . . . , F (j)).

Then
NFNT = N ′F ′N ′T = Ndiag(F 1, F 2)N

T
.

Thus, solution to this system reduces to the solution of case 2.

Therefore, without loss of generality, we have to consider the solution of a linear system
involving a tri-block-diagonal system of the form (4.69).

Applying Proposition 4.3 to the subsystem defined by considering the k first scenarios, k =
1, . . . , S, every principal block submatrix is nonsingular. Therefore NFNT has a block LU
factorization (see for instance Golub and Van Loan [61]). We can then use a block LDLT

factorization, where L is a block unit lower matrix and D is a block diagonal matrix. The
factorization can be expressed as follows. Consider the tri-block diagonal matrix

R =

⎛
⎜⎜⎜⎜⎜⎝

H1 U1

UT
1 H2 U2

UT
2 H3

.
UT

j−1 Hj

⎞
⎟⎟⎟⎟⎟⎠ .

Then

R =

⎛
⎜⎜⎜⎝

I1
UT

1 Q
−1
1 I2

.
UT

j−1Qj−1 Ij

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
Q1

Q2

. . .
QJ

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
I1 Q−1

1 U1

I2 Q−2
2 U2

.
IJ

⎞
⎟⎟⎟⎠ ,

4.4 Practical aspects 89

where Q1 = H1, Qi = Hi − UT
i−1Q

−1
i−1Ui−1, i = 2, . . . , J .

However, in the nonlinear case, the LDLT can be numerically instable, so it is preferable to
use other space approaches, as the multifrontal method implemented in MA27 from the Harwell
Subroutine Library (HSL) when solving the linear system (4.66). Note that MA27 can also be
used when solving systems (4.54) and (4.68).

Solution of the primal-dual subsystem

We now summarize our decomposition strategy.

Algorithm 4.4: Primal-dual system solution

Step 1. Solve the system (4.54) in parallel.

Step 2. Solve the system (4.66) in order to get ∆̃w, and compute ∆w by

∆w = ∆̃w − w.

Step 3. Solve the system (4.68) in parallel.

4.4 Practical aspects

We conclude the algorithm presentation by considering some practical aspects for its imple-
mentation. First of all we will examine how to compute a suitable starting point. After this, we
will discuss how to initialize and update quantities involved in the algorithm.

4.4.1 Starting point

Another benefit of the QR-factorization as described in Section 4.2.1 is that we can then
easily compute a feasible point with respect to the equality constraints. Taking the factorization
(4.14), and the decomposition of Q as in (4.15), the point

z = DR−T b (4.70)

is feasible (see Nocedal and Wright [104]). However, such a point do not necessarily satisfy
nonnegativity constraints (4.30). One possibility is to move the point along the null space of the
equality constraints, but it is not trivial to determine it.

We adopt here another strategy, as in Conn, Gould, Orban, and Toint [30]. Considering
problem (4.5)–(4.8), where the objective function is set to zero, we obtain:

min 0 (4.71)

s.t. Bz = b, (4.72)

Nz = 0, (4.73)

z ≥ 0. (4.74)

90 Chapter 4. Interior point methods for scenario formulations

Every solution of this problem is feasible for the preprocessed problem (4.5)–(4.8), and the
original one as soon as Assumption A.5 on feasibility is fulfilled.

Problem (4.71)–(4.74) is linear, so we can use any linear interior point method. However, it
is more efficient to use some centred damped Newton methods. These leads the iterates towards
the central path, that plays a vital role in interior point methods (Nocedal and Wright [104]).
Conn, Gould, Orban, and Toint [30] have adapted the method proposed by Zhang [144]. Here
we use the algorithm of González, Tapia and Potra [64]. Both converge to the analytic centre
once a feasible point has been found. However, in the event that the size of the iterate exceeds
some prescribed upper bound, the last point with a norm smaller than this bound is taken for the
initial point.

Note that the primal-dual system associated to (4.71)–(4.74) is⎛
⎜⎜⎝

0 BT −I NT

B 0 0 0
−I 0 D−1

k,j 0

N 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

∆zk,j

∆uk,j

∆vk,j

∆wk,j

⎞
⎟⎟⎠ = −

⎛
⎜⎜⎝
BTuk,j − vk,j +NTwk,j

Bzk,j − b
−Zk,je+ µVk,je

Nzk,j

⎞
⎟⎟⎠ . (4.75)

Since the objective function is constant, the Hessian is zero and Gk = Dk. Therefore Gk is
positive definite and Assumptions A.6 and A.7 are trivially satisfied. In the implementation of
the algorithm proposed by González, Tapia and Potra, we can again benefit from the previously
described decomposition.

4.4.2 Initialization and updating strategies

While the implementation of the method is not yet completed, we propose in this section
some possible practical choices, based on the papers of Conn, Gould, and Toint [34] and Conn,
Gould, Orban, and Toint [30].

The initial dual variables v0 are simply those calculated at the analytic centre z0, while the
initial value of the barrier parameter is the smallest power of 10 larger than 〈z0, v0〉 /n. The
barrier parameter can be updated as follows

µk+1 = min
(
0.1µk, µ

1.5
k

)
.

Such a scheme allows a slower reduction of µk as it approaches zero, while satisfying (4.17).
The forcing functions which control the inner-iteration convergence are defined to be

εC (µ) = εD (µ) = µ1.01 = −εE (µ) .

Values η1 = 0.01, η2 = 0.9 are used to accept and reject steps in the inner-iteration, and the
trust-region radius can be updated according to the usual rule

∆k,j+1 =

⎧⎪⎨
⎪⎩

min [1020,max (2‖∆zk,j‖,∆k,j)] if ρk,j ≥ η2,

∆k,j if ρk,j ∈ [η1, η2) ,
1
2
∆k,j if ρk,j < η1;

the initial radius for each inner iteration is ∆k,0 = 1000µk.

4.5 Conclusion 91

A key point of the algorithm is the computation of some approximation Hk,j of the Hessian
∇2

zzf(z). This approximation has to respect some properties, as the second-order sufficiency of
Gk,j with respect to

(
BT NT

)T
. A possible approach is to first set H(s)

k,j = ∇2
z(s)z(s)f

(s)
(
z(s)

)
,

s = 1, . . . , S. The multifrontal scheme used in MA27 (see, Duff and Reid [46]) can cope with
large, sparse systems and reports the inertia of the coefficient matrix. If, for some s, MA27
reports that G(s)

k,j is not second-order sufficient or if G(s)
k,j is singular, we use the naive expedient

of replacing G(s)
k,j by G(s)

k,j = G
(s)
k,j +

∥∥∥G(s)
k,j

∥∥∥ I . More sophisticated strategies can be considered,

and are subject to investigations.

4.5 Conclusion

We have constructed in this chapter a feasible primal-dual interior point algorithm. As in
classical interior point methods, the main numerical costs lie in the computation of steps of the
inner iterations. Such a step can be obtained along a dogleg path, whose calculation can be
organized to exhibit strong parallelism properties when applied to a stochastic nonlinear non-
convex multistage stochastic program, in particular when solving the linear system giving the
quasi-Newton direction, for which a new decomposition scheme is proposed.

We use a well-studied trust-region algorithm, developed by Conn, Gould, Orban, and Toint
[30], as the general framework for our method, so the global convergence is ensured. We have
also shown that the decomposition scheme could be exploited when computing a starting feasible
point. More numerical experimentation is nevertheless required to assess the gains in computa-
tion times that can be achieved by the parallelization.

92 Chapter 4. Interior point methods for scenario formulations

Chapter 5

Monte Carlo samplings

Monte Carlo methods are well-known tools in stochastic programming for the case where the
random variables are either discrete with a large number of possible realizations, or continuous.
Usually the optimization process is assumed to produce a global minimum in all the feasible set
(see for instance Shapiro [126]), a first-order critical point (Gürkan, Özge and Robinson [68, 69],
Shapiro [127]) or a solution in a complete local minimizing set with respect to some nonempty
open bounded set (Robinson [114]).

In this chapter we will examine nonlinear nonconvex programs for which a global minimizer
is very difficult to obtain, so our hope is limited in finding second-order critical points. We
introduce our approach by reexamining consistency results when only first-order critical points
are considered. We next consider second-order criticality and show that when the sample size
tends to infinity, approximating local solutions may have limit points that are not (local) solutions
of the true problem. This leads us to develop new conditions under which second-order properties
are preserved for limit points. Such a task is indeed valuable since there may be more than one
solution in the nonconvex case, and they often do not share the same constraint qualification
properties; moreover this avoids the need to consider the complete set of minimizers of the true
problem by focusing only on the limit points of the computed approximating solutions.

5.1 True and SAA problems

We consider the problem
min
z∈S

g(z) = Eξ[G(z, ξ)], (5.1)

where z ∈ Rm is a vector of decision variables, S is a compact subset of Rm representing
feasible solutions of the above problem, ξ is a random vector defined on the probability space
(Ξ,F , P) and G : Rm × Ξ → R is a real valued function. We assume that, for every z ∈ S, the
expected value function g(z) is well defined, i.e. that the function G(z, ·) is F-measurable and
Pξ-integrable. For simplicity, we restrict ourselves in a first step to the case where the set S is
deterministic and convex.

If the distribution function of ξ is continuous or discrete with a large number of possible real-
izations, g(z) is usually very difficult to evaluate. Therefore solving problem (5.1) becomes diffi-
cult and we have to turn to approximations such as Monte Carlo methods (see Shapiro [126, 127]

94 Chapter 5. Monte Carlo samplings

for a review). In these methods, the original problem (5.1) is replaced by successive approxi-
mations obtained by generating samples ξ1, . . . , ξN . The approximation for a sample of size N
is

min
z∈S

ĝN(z) =
1

N

N∑
i=1

G(z, ξi). (5.2)

We refer to (5.1) and (5.2) as the true (or expected value) and the sample average approximation
(SAA) problems, respectively.

5.2 First-order convergence

We now investigate the convergence of the solutions and optimal values of the sequence of
SAA problems (5.2) to a solution and optimal value of (5.1) for N approaching infinity. We first
introduce the basic concepts used in this chapter by reviewing first-order convergence.

5.2.1 Deterministic and convex constraints

Let z∗N be a first-order critical point of ĝN(·) as defined in (5.2) and consider the sequence

{z∗N}∞N=1,

constructed by taking larger and larger samplings. Since S is a compact set, this sequence has
some limit point z∗. Without loss of generality, we identify the sequence {z∗N}

∞
N=1 with one of

its subsequences converging to z∗ from now on. Our first aim is to show that, under reasonable
assumptions, z∗ is a first-order critical point for the true problem (5.1).

We now state our assumptions.

A.9 The random draws are independently and identically distributed.

A.10 For Pξ-almost every ξ, the function G(·, ξ) is continuously differentiable on S.

A.11 The family G(z, ξ), z ∈ S, is dominated by a Pξ-integrable function K(ξ), i.e. Eξ[K(ξ)]
is finite and |G(z, ξ)| ≤ K(ξ) for all z ∈ S and Pξ-almost every ξ.

A.10 obvioulsy implies that G(·, ξ) is continuous almost surely. This fact and A.11 are typical
assumptions of stochastic programming theory (see Rubinstein and Shapiro [120], for instance).
The stronger form of A.10 is justified by our interest in first-order optimality conditions, which
are expressed in terms of the objective function’s gradient.

It is important to note (see [120] again) that A.9–A.11 together imply that there exists a
uniform law of large numbers (ULLN) on S, for the approximation ĝN(z) of g(z), that is

sup
z∈S

|ĝN(z) − g(z)| a.s.−→ 0 as N → ∞.

5.2 First-order convergence 95

They also imply that g(z) is then continuous on S.
The ULLN property corresponds to the stochastic version of the uniform convergence of a

sequence of functions. Therefore, we have the following lemma

Lemma 5.1 Assume that A.9–A.11 hold. Then

ĝN(z∗N)
a.s.−→ g(z∗). (5.3)

Furthermore, if f(·) is a continuous function defined on some convex domain that includes
ĝN(z∗N) (N = 1, . . . ,∞) and g(z∗), then

f(ĝN(z∗N))
a.s.−→ f(g(z∗)). (5.4)

If ĥN(·) (N = 1, . . . ,∞), and h(·) are functions such that

ĥN(z∗N)
a.s.−→ h(z∗),

then, for any real scalar a,

aĥN(z∗N) + ĝN(z∗N)
a.s.−→ ah(z∗) + g(z∗), (5.5)

and
ĥN(z∗N)ĝN(z∗N)

a.s.−→ h(z∗)g(z∗). (5.6)

Proof. We first prove (5.3), or, more precisely, that

∀ε > 0,∃N1 s.t. ∀N > N1, |ĝN(z∗N) − g(z∗)| < ε a.s. (5.7)

The triangle inequality gives that

|ĝN(z∗N) − g(z∗)| ≤ |ĝN(z∗N) − g(z∗N)| + |g(z∗N) − g(z∗)| . (5.8)

From the ULLN property, we deduce that supz∈S |ĝN(z) − g(z)| a.s−→ 0. Therefore, there exists
some N1 > 0 such that for all N > N1,

|ĝN(z∗N) − g(z∗N)| ≤ sup
z∈S

|ĝN(z) − g(z)| < ε

2
a.s.. (5.9)

Moreover, the continuity of g(z) on S and the fact that z∗ is the limit point of {z∗N}
∞
N=1, together

imply that for N large enough, say N > N2 > 0,

|g(z∗N) − g(z∗)| < ε

2
. (5.10)

Combining (5.8), (5.9) and (5.10), forN larger than max(N1, N2), we have that |ĝN(z∗N) − g(z∗)| <
ε a.s., which proves (5.7).

96 Chapter 5. Monte Carlo samplings

We now prove (5.4). Let ε > 0. Then, by continuity,

∃ δε s.t. ∀x, y ∈ dom(f), |x− y| < δε ⇒ |f(x) − f(y)| < ε.

But, since ĝN(z∗N) and g(z∗) both belong to the domain of f , we have that

∃Nε s.t. ∀N > Nε, |ĝN(z∗N) − g(z∗)| < δε, a.s.

Combining these two inequalities, we obtain that

∃Nε s.t. ∀N > Nε, |f(ĝN(z∗N)) − f(g(z∗))| < ε, a.s.,

which is (5.4).
Finally, we prove (5.5) and (5.6). The result (5.5) is immediate; (5.6) follows easily from the

following relations:

|h(z∗N)g(z∗N) − h(z∗)g(z∗)|
= |(h(z∗N) − h(z∗))(g(z∗N) − g(z∗)) + g(z∗)(h(z∗N) − h(z∗)) + h(z∗)(g(z∗N) − g(z∗))|
≤ |h(z∗N) − h(z∗)| |g(z∗N) − g(z∗)| + |g(z∗)| |h(z∗N) − h(z∗)| + |h(z∗)| |g(z∗N) − g(z∗)|.

As first-order conditions are generally expressed in terms of the objective function’s gradient,
we need a further assumption on this gradient.

A.12 The gradient components ∂
∂zl
G(z, ξ) (l = 1, . . . ,m) are dominated by a Pξ-integrable

function.

This new assumption allows us to apply the results of Rubinstein and Shapiro [120], page 71,
and deduce that the expected value function g(z) is continuous and differentiable at y almost
surely, and that expectation can be interchanged in the expression of the gradient, that is

∇zg(y) = E [∇zG(y, ξ)] .

We then have that

E [∇ĝN(z∗)] =
1

N

N∑
i=1

E
[
∇zG(z∗, ξi)

]
=

1

N

N∑
i=1

∇zE
[
G(z∗, ξi)

]
= ∇g(z∗).

i.e. ∇ĝN(z∗) is an unbiased estimator of ∇g(z∗). We may now verify that z∗ is a first-order
critical point.

Theorem 5.1 Assume that A.9–A.12 hold. Then z∗ is a first-order critical point of (5.1) almost
surely.

5.2 First-order convergence 97

Proof. Since z∗N is a first-order critical point of ĝN(z), from Theorem 2.9 on page 30, we have
that

−∇xĝN(z∗n) ∈ NS(z∗N),

where NS(z∗N) is the normal cone to S at z∗N . Since S is convex, this implies (see Rockafellar
and Wets [116], Section 6.9) that each z∗N satisfies the following first-order conditions for (5.2),
i.e.

〈∇zĝN(z∗N), u− z∗N〉 ≥ 0, for all u ∈ S. (5.11)

From Lemma 5.1, applied to the derivatives, we have ∇zĝN(z∗N)
a.s.−→ ∇zg(z

∗). Therefore, taking
the limit as N tends to infinity in (5.11), we obtain that

〈∇zg(z
∗), u− z∗〉 ≥ 0, for all u ∈ S, a.s..

In other terms, −∇zg(z
∗) ∈ NS(z∗) almost surely. Thus z∗ is a first-order critical point for (5.1)

almost surely, as desired.

The previous result can also be derived from stochastic variational inequalities, as presented
in Shapiro [127]. Consider a mapping Φ : Rn × Ξ → Rn and a multifunction Γ : Rn ⇒ Rn.
Suppose that the expectation φ(z) := Eξ[Φ(z, ξ)] is well defined. We refer now to

φ(z) ∈ Γ(z) (5.12)

as the true, or expected value, generalized equation and say that a point z∗ ∈ Rn is a solution of
(5.12) if φ(z∗) ∈ Γ(z∗). If ξ1, . . . , ξN is a random sample, we refer to

φ̂N(z) ∈ Γ(z) (5.13)

as the SAA generalized equation, where φ̂N(z) = N−1
∑N

i=1 Φ(z, ξi). We denote by S∗ and S∗
N

the sets of (all) solutions of the true (5.12) and SAA (5.13) generalized equations, respectively.
We then have the following result (Shapiro [127]):

Theorem 5.2 Let S be a compact subset of Rn such that S∗ ⊂ S. Assume that

(a) the multifunction Γ(z) is closed, that is if zk → z, yk ∈ Γ(zk) and yk → y, then y ∈ Γ(z),

(b) the mapping φ(z) is continuous on S,

(c) almost surely for N large enough the set S∗
N is nonempty and S∗

N ⊂ S,

(d) φ̂N(z) converges to φ(z) almost surely uniformly on S as N → ∞.

Then d(S∗
N , S

∗) → 0 almost surely as N → ∞.

Consider the particular case Γ(·) = NS(·). Then φ(z∗) ∈ Γ(z∗) if and only if

〈φ(z∗), u− z∗〉 ≤ 0, ∀u ∈ S.

Following Shapiro, we refer to such variational inequalities as stochastic variational inequal-
ities. The assumption Γ(z) closed always holds for variational inequalities. Take Φ(z, ξ) =

98 Chapter 5. Monte Carlo samplings

−∇zG(z, ξ) and let S∗ and S∗
N represent the set of first-order critical points of the true (5.12)

and SAA (5.13) generalized equations, respectively. Then under A.9–A.12, we have φ(z) =
−∇zg(z), and φ(z) is continuous on S. Assumption (d) of Theorem 5.2 corresponds to the
ULLN, while A.10 and S compact ensure that Assumption (c) is fulfilled. Therefore, we see that
Theorem 5.1 is a particular case of Theorem 5.2.

5.2.2 Stochastic constraints

It is also possible to prove first-order convergence when S is nonconvex or non-deterministic
under stronger assumptions. We suppose that the feasible set can be described by equality and
inequality constraints. The original problem is then stated as follows

min
z∈V

g(z) = Eξ[G(z, ξ)],

s.t. cj(z) ≤ 0, j = 1, . . . , k,

cj(z) = 0, j = k + 1, . . . ,M,

(5.14)

where V is a compact subset of Rn. The corresponding SAA problem is now defined as

min
z∈V

ĝN(z),

s.t. ĉjN(z) ≤ 0, j = 1, . . . , k,

ĉjN(z) = 0, j = k + 1, . . . ,M.

(5.15)

Here, for every j = 1, . . . ,M , {ĉjN(·)} is a sequence of real-valued (random) functions converg-
ing asymptotically in N , to the corresponding function cj(·). We will assume that the functions
cj(·) can be represented in the form of expected values:

cj(z) = Eξ[Hj(z, ξ)], j = 1, . . . ,M.

The expected value functions cj(·) (j = 1, . . . ,M) can be estimated by the corresponding sample
mean functions

ĉjN(z) =
1

N

N∑
i=1

Hj(z, ξi).

For simplicity, we will consider the more general parametric mathematical programming
problem

min
z∈V

ĝ(z, ε),

s.t. ĉj(z, ε) ≤ 0, j = 1, . . . , k,

ĉj(z, ε) = 0, j = k + 1, . . . ,M,

(5.16)

where ε is a vector of parameters giving perturbations of the program (5.16); g(·), ĝ(·, ε), cj(·),
ĉj(·, ε) are assumed to be twice continuously differentiable.

We will assume that the perturbation is of the form

ε =
(
εg εc1 . . . εcM

ε∇g ε∇c1 . . . ε∇cM

)T
,

5.2 First-order convergence 99

and
ĝ(z, ε) = g(z) + εg,

ĉj(z, ε) = cj(z) + εcj
, j = 1, . . . ,M,

∇zĝ(z, ε) = ∇zg(z) + ε∇g,

∇z ĉj(z, ε) = ∇zcj(z) + ε∇cj
, j = 1, . . . ,M.

In the Monte Carlo context, we can define εN as

εN =

⎛
⎜⎜⎝

ĝN(z) − g(z)
ĉjN(z) − cj(z), j = 1, . . . ,M

∇zĝN(z) −∇zg(z)
∇z ĉjN(z) −∇zcj(z), j = 1, . . . ,M

⎞
⎟⎟⎠ .

We will assume that εN converges uniformly on V to 0 almost surely as N tends to infinity. In
other terms, we assume that the ULLN holds for the objective and the constraints, as well as for
the corresponding derivatives.

The Lagrangian functions associated to (5.14) and (5.16) are respectively

L(z, λ) = g(z) +
M∑

j=1

λjcj(z)

and

L(z, λ, ε) = ĝ(z, ε) +
M∑

j=1

λj ĉj(z, ε).

Let z∗(ε) denotes a first-order critical point for program (5.16). Therefore there exists La-
grange multipliers λ∗(ε) such that (z∗(ε), λ∗(ε)) satisfy the Karush-Kuhn-Tucker (KKT) condi-
tions; in other terms (z∗(ε), λ∗(ε)) is solution of the system

∇zL(z, λ, ε) = 0,

λj ĉj(z, ε) = 0, j = 1, . . . ,M,

ĉj(z, ε) = 0, j = k + 1, . . . ,M,

ĉj(z, ε) ≤ 0, j = 1, . . . , k,

λj(ε) ≥ 0, j = 1, . . . , k.

As before, since V is compact, z∗(εN) has some limit point z∗ as N → ∞, and without
loss of generality, we can assume that z∗(εN) → z∗ as N → ∞. We can now prove first-order
convergence for the general case.

Theorem 5.3 Assume that

(a) εN
a.s.−→ 0 uniformly on V, as N → ∞,

(b) λ∗(εN) has some limit point λ∗ almost surely as N → ∞,

Then z∗ is a first-order critical point for (5.14).

100 Chapter 5. Monte Carlo samplings

Proof. Consider the sequence {(z∗(εN), λ∗(εN))}, N = 1, . . . ,∞. From (b), there exists a
subsequence converging almost surely to (z∗, λ∗). Our assumption (a) and Lemma 5.1 imply
that (z∗, λ∗) satisfies the KKT conditions for the true problem.

Note that assumption (b) always holds if the multipliers remain bounded. If this stronger
assumption is made, it is also possible to use Theorem 5.2 to show that z∗ is first-order critical,
as in Shapiro [127]. Let µ := (z, λ) ∈ Rm+M and K := Rm × Rk

+ × RM−k ⊂ Rm+M . Define

φ(µ) = (∇zL(z, λ), ck+1(z), . . . , cM(z)) ,

and
φ̂N(µ) = (∇zL(z, λ, εN), ĉk+1(z, εN), . . . , ĉM(z, εN)) .

The variational inequality φ(µ) ∈ NK(µ) represents the KKT optimality conditions for the true
optimization problem.

5.3 Second-order convergence

5.3.1 Deterministic constraints

We now show that we may verify that z∗ is a local minimizer, if we further strengthen our
assumptions. We first consider the case where S is deterministic and assume that z∗N is a local
minimum of ĝN(x). This is to say that

∃ δN s.t. ∀z ∈ B(z∗N , δN) ∩ S, ĝN(z∗N) ≤ ĝn(z),

where B(x, d) is the open ball centred at x and of radius d. In order to show that z∗ is a local
minimum of g(·), we must therefore have that the neighbourhood in which z∗N is a local minimum
does not shrink to a singleton when N → ∞. We express this requirement by the following
technical assumption.

A.13 There exists a > 0 and Na > 0 such that, for all N ≥ Na,

∃δN ≥ a s.t. ∀x ∈ B(z∗N , δN) ∩ S, ĝN(z∗N) ≤ ĝn(z).

This allows us to write a basic second-order convergence theorem.

Theorem 5.4 Assume that A.9–A.13 hold. Then z∗ is a local minimum of g(·) almost surely.

Proof. Let z′ be a minimizer of g in K = B
(
z∗, a

2

)
∩ S, where a is defined as in A.13. Then for

N sufficiently large, we have that,

B
(
z∗,

a

2

)
⊂ B(z∗N , εN) and z∗N ∈ B

(
z∗,

a

2

)
. (5.17)

5.3 Second-order convergence 101

Since z∗ is the limit point of {z∗N}∞N=0, the second part of (5.17) is satisfied for N sufficiently
large. Consider now z ∈ B(z∗, a

2
). We have that, |z − z∗N | ≤ |z − z∗| + |z∗ − z∗N | . Thus

|z − z∗N | ≤
a

2
+
a

2
= a ≤ δN .

Therefore z ∈ B(z∗N , εN), so the first part of (5.17) is also satisfied when N is sufficiently large.
We now verify that

|ĝN(z∗N) − g(z′)| a.s.−→ 0. (5.18)

Assume first that ĝN(z∗N) ≤ g(z′), then

|ĝN(z∗N) − g(z′)| = g(z′) − ĝN(z∗N)

Since z′ minimizes g(·) in K and, from (5.17), z∗N ∈ K, we have that

g(z′) − ĝN(z∗N) ≤ g(z∗N) − ĝN(z∗N) ≤ sup
z∈S

|ĝN(z) − g(z)| .

But the ULLN property implies that

sup
z∈S

|ĝN(z) − g(z)| a.s.−→ 0,

and therefore
|g(z′) − ĝN(z∗N)| ≤ 0 a.s. (5.19)

Assume now that ĝN(z∗N) ≥ g(z′). Since z′ ∈ K, from the first part of (5.17), ĝN(z∗N) ≤ ĝN(z′).
Therefore we can write

|ĝN(z∗N) − g(z′)| ≤ ĝN(z′) − g(z′) ≤ sup
z∈S

|ĝN(z) − g(z)| .

and we deduce that
|g(z′) − ĝN(z∗N)| ≥ 0 a.s. (5.20)

Combining (5.19) and (5.20), we obtain (5.18). From Lemma 5.1, ĝN(z∗N)
a.s−→ g(z∗), so we

have that g(z′) = g(z∗). In other terms, z∗ is a local solution of (5.1) almost surely.

Classical results, where global minimizers are considered, express that dist(z∗N , S∗) converges
almost surely to 0 as N tends to infinity, where S∗ is the set of minimizers of the true problem
(see for instance Theorem 5.2). Robinson [114] shows that, under mild regularity conditions, if
the true problem has a complete local minimizing (CLM) set with respect to a nonempty open
bounded set G, then for large N , the approximating problem has almost surely a CLM set with
respect to G such that the distance between the CLM set associated to true problem and that of the
approximating problem tends to 0 as N tends to infinity. Moreover, the approximating infimum
over the closure of G converges to a finite minimum for the true problem over the closure of G.
While this proves the existence of solutions for the approximating problem, Assumption A.13
reflects that if z∗N is a local minimizer of the approximating problem, without any other restric-
tion, its distance to the set of true local minimizers can remain strictly positive with a probability
that do not converge to zero as N tends to infinity.

102 Chapter 5. Monte Carlo samplings

Example 5.1. Consider the problem

min
z∈[−1,1]

z3 − z

2
Eξ[ξ], (5.21)

where Ξ = {−1, 1} and Pξ[ξ = −1] = Pξ[ξ = 1] = 0.5, so Eξ[ξ] = 0. Therefore (5.21) has
only one local minimizer, which is also global, at z∗ = −1. The SAA problem is then

min
z∈[−1,1]

z3 − z

2N

N∑
i=1

ξi.

This last problem has two (isolated) local minimizers,⎧⎨
⎩−1,

√∑N
i=1 ξi
6N

⎫⎬
⎭ ,

when
∑N

i=1 ξi > 0. When N → ∞, we have that Pξ

[∑N
i=1 ξi > 0

]
→ 0.5, and

√∑N
i=1 ξi
6N

a.s.−→ 0,

since, from the strong law of large numbers, 1
N

∑N
i=1 ξi → Eξ[ξ] = 0 almost surely as N → ∞.

But 0 is a saddle point of the true problem (5.21), not a minimizer, even locally, and the distance
to S∗ = {−1} is then equal to 1. Note that in this example the ULLN holds for the objective
function as well as for all its derivatives.

It can be shown that in a neighbourhood of a local solution of the true solution, under some
mild regularity the SAA has almost surely a solution whenN is sufficiently large (Shapiro [127]).
However, care must be taken when solving the SAA problem for N fixed since, as illustrated by
the previous example, we can find approximating local minimizers that are not close to a true
local minimizer.

5.3.2 Stochastic constraints

Assumption A.13 is somewhat artificial and it is thus of interest to search for more elegant
conditions. While our arguments will be similar to those presented in perturbation analysis, as
for instance in Rubinstein and Shapiro [120], it is important to note that perturbation analysis as-
sumes the existence of a solution of the true problem and then studies the existence and behaviour
of solutions of the perturbed problem in a neighbourhood of this original solution. At variance
with this approach, we focus here on conditions under which the limit point of a sequence of
approximating solutions is a solution of the true problem. The difference will be more formally
illustrated at the end of this section where we compare our developments to some sensitivity
analysis results.

5.3 Second-order convergence 103

We consider the case where the feasible set is described by a set of equality and inequality
constraints, as in (5.14). Without loss of generality, we can assume that z∗(εN) → z∗ almost
surely, as N tends to infinity. If there is a unique Lagrange multipliers vector λ∗ ≡ λ∗(0)
associated to z∗ that satisfies the KKT conditions, then under some conditions λ∗(εN) → λ∗

almost surely as N → ∞.

Lemma 5.2 Assume that the Jacobian of

∇zL(z, λ) = 0,

λjcj(z) = 0, j = 1, . . . ,M,

cj(z) = 0, j = k + 1, . . . ,M,

(5.22)

is well defined at (z∗, λ∗) and nonsingular. Then λ∗(εN) converges almost surely to λ∗ as N
tends to infinity.

Proof. Consider the linear system

∇zL(z, λ, ε) = 0,

λj ĉj(z, ε) = 0, j = 1, . . . ,M,

cj(z, ε) = 0, j = k + 1, . . . ,M.

(5.23)

From our initial assumptions, this system is continuously differentiable in all the arguments.
Moreover, the Jacobian of the left-hand side with respect to (z, λ) is invertible at (z∗, λ∗).

From the implicit function theorem (see for instance Fiacco [50], page 36), in a neigh-
bourhood B of (z∗, λ∗, 0), there exists a unique continuously differentiable function γ(ε) =
(z∗(ε), λ∗(ε)) satisfying (5.23) with (z∗(0), λ∗(0)) = (z∗, λ∗). Since z∗(εN) → z∗ almost
surely, z∗(εN) belongs almost surely to B for N large enough. But (z∗(εN), λ∗(εN)) satisfies
(5.23), so from the unicity and continuity of γ(ε), λ∗(εN) tends to λ∗ almost surely as N tends
to infinity.

Therefore, ∇L(z∗(εN), λ∗(εN)) converges almost surely to ∇L(z∗, λ∗), when N tends to
infinity. The unicity of λ∗ can be ensured with a suitable constraint qualification, as the linear
independence constrained qualification, which is particularly convenient for our discussion.

Definition 5.1: Strict complementarity
Given z∗ and a vector λ∗ satisfying the KKT conditions, we say that the strict complementarity
condition holds if exactly one of λ∗j and cj(z∗) is zero for each index j = 1, . . . , k. In other
words, we have that λ∗j > 0 for each j ∈ {1, . . . , k} ∩ A(z∗).

Assume that the strict complementarity condition and the LICQ hold at (z∗, λ∗) for the pro-
gram (5.16). If λ∗(εN) → λ∗ almost surely, we obtain that almost surely λN(εN), j ∈ J(z∗),
are strictly positive and hence the corresponding constraints are active at z∗(εN) for all N
large enough. Moreover, since ĉj(z∗(εN), εN) → c(z∗) almost surely, we have that for all N
large enough, almost surely, A(z∗(εN)) = A(z∗) and strict complementarity condition holds at
z∗(εN), associated to the Lagrangian multipliers λ∗(εN), for the program (5.15).

104 Chapter 5. Monte Carlo samplings

Theorem 5.5 (Second-order convergence) Assume that λ∗ is the unique vector of Lagrangian
multipliers associated to the program (5.14) at z∗, and that

(a) εN
a.s.−→ 0 uniformly on V, as N → ∞,

(b) z∗(εN)
a.s.−→ z∗, λ∗(εN)

a.s.−→ λ∗ as N → ∞,

(c) ∇2
zz ĝ(z

∗(εN), εN)
a.s.−→ ∇2

zzg(z
∗) as N → ∞,

(d) ∇2
zz ĉj(z

∗(εN), εN)
a.s.−→ ∇2

zzcj(z
∗) (j = 1, . . . ,M) as N → ∞.

Suppose also that the strict complementarity condition and the LICQ hold at (z∗, λ∗) for (5.14).
Then, almost surely,

(i) the LICQ holds at (z∗(εN), λ∗(εN)),

(ii) (z∗, λ∗) satisfy the second-order necessary condition for (5.14):

wT∇2
zzL(z∗, λ∗)w ≥ 0, for all w ∈ Null[∇z ĉj(z

∗)T]j∈A(z∗), ‖w‖ = 1. (5.24)

If furthermore there exists some α > 0 such that for all N large enough

wT∇2
zzLN(z∗N , λ

∗
N)w > α, for all w ∈ Null[∇z ĉj(z

∗(εN))T]j∈A(z∗(εN)), ‖w‖ = 1,

then z∗, associated to λ∗, satisfies the second-order sufficient conditions for program (5.14):

(iii) wT∇2
zzL(z∗, λ∗)w > 0, for all w ∈ Null[∇zcj(z

∗)T]j∈A(z∗), ‖w‖ = 1. (5.25)

In other terms v∗ is an isolated local minimizer of (5.14).

Proof. In order to show (i), consider the matrix formed by the gradients of active constraints at
z∗ for (5.14):

{∇zcj(z
∗)}j∈A(z∗). (5.26)

From the strict complementarity conditions and convergence of Lagrange multipliers, the active
set of program (5.15) at z∗N is asymptotically the same as the active set of program (5.14) at z∗,
almost surely. Since εN → 0 uniformly on V , almost surely, we have that the matrix formed by
the active constraints of the perturbed problem,

{∇z ĉj(z
∗(εN), εN)}j∈A(z∗(εN)) (5.27)

converges to (5.26) almost surely as N tends to infinity:

{∇z ĉj(z
∗(εN), εN)}j∈A(z∗(εN))

a.s.−→ {∇zcj(z
∗)}j∈A(z∗). (5.28)

The LICQ amounts to say that any square submatrix of the Jacobian of (5.26) is nonsingular.
From (5.28), the same is true almost surely for (5.27) for N large enough. Thus the LICQ holds
almost surely for the approximating problems when N is sufficiently large.

We now show (ii). From (5.28), we may associate a basis KN with the null space of (5.27)
such that

KN
a.s.−→ K, (5.29)

5.3 Second-order convergence 105

where K is a basis of Null[∇zcj(z)
T]j∈A(z∗) (see Gill and al [60]).

(z∗(εN), λ∗(εN)) satisfy the second-order necessary conditions, that can be expressed as,
from the strict complementarity conditions and LICQ,

KT
N∇2

zzL(z∗(εN), λ∗(εN), εN)KN is semi-positive definite.

From (5.29) and Assumptions (a)–(d), we have that

KT
N∇2

zzL(z∗(εN), λ∗(εN), εN)KN
a.s.−→ KT∇2

zzL(z∗, λ∗)K.

Therefore we have (5.24) and (5.25).

Note that LICQ and strict complementarity conditions imply that the minimizer is isolated
while the second-order sufficient condition is usually used to characterize strict local minimizers.
In other terms, there exists a neighbourhood NS of z∗ such that z∗ is the only local minimizer in
NS . Recall that isolated local minimizers are also strict local minimizers but that the inverse is
not always true (Nocedal and Wright [104], page 14). If z∗ is a strict but not isolated local mini-
mizer, every neighbourhood of z∗ contains other local minimizers than z∗, which are candidates
to be limit points of the sequences of solutions of the SAA problems (5.2), as N tends to infinity,
so z∗ can be difficult to identify.

Recall that we have proved the convergence of the Lagrange multipliers by assuming that
the Jacobian of (5.22) is nonsingular. The same assumption can be used to replace the non-
degeneracy hypothesis, as shown in the following corollary.

Corollary 5.6
Assume that λ∗ is the unique vector of Lagrangian multipliers associated to the rogram (5.14)
at z∗, and that

(a) εN
a.s.−→ 0 uniformly on V as N → ∞,

(b) z∗(εN)
a.s.−→ z∗, as N → ∞,

(c) the Jacobian of (5.22) is nonsingular,

(d) ∇2
zz ĝ(z

∗(εN), εN)
a.s.−→ ∇2

zzg(z
∗) as N → ∞,

(e) ∇2
zz ĉj(z

∗(εN), εN)
a.s.−→ ∇2

zzcj(z
∗) (j = 1, . . . ,M) as N → ∞.

Suppose also that the strict complementarity condition and the LICQ hold at (z∗, λ∗) for (5.14).
Then z∗, associated to λ∗, satisfies the second-order sufficient conditions for program (5.14):

wT∇2
zzL(z∗, λ∗)w > 0, for all w ∈ Null[∇zcj(z

∗)T]j∈A(z∗), ‖w‖ = 1.

Proof. From Theorem 5.5, z∗ associated to λ∗ satisfies the second-order necessary conditions
for program (5.14). But (c) implies that

wT∇2
zzL(z∗, λ∗)w �= 0, for all w ∈ Null[∇zcj(z

∗)T]j∈A(z∗), ‖w‖ = 1.

Therefore (z∗, λ∗) satisfies the second-order sufficient property for program (5.14).

106 Chapter 5. Monte Carlo samplings

The converse of Theorem 5.5 can be obtained from classical results of perturbation analysis
(Fiacco [50], Theorem 3.2.2), that we restate for completeness. More developments in the con-
text of stochastic programming can be found in Rubinstein and Shapiro [120] and Shapiro [125].

Theorem 5.7 Suppose that the following assumptions hold:

(a) the functions defining (5.16) are twice continuously differentiable in z and their gradients
with respect to z and the constraints are once continuously differentiable in ε in a neigh-
bourhood of (z∗, 0),

(b) the second-order sufficient conditions for a local minimum of (5.16) hold at z∗, with asso-
ciated Lagrange multipliers λ∗,

(c) the LICQ holds at (z∗, 0),

(d) the strict complementarity condition holds at (z∗, 0),

then

(i) z∗ is a local isolated minimum of (5.16) with ε = 0 and the associated Lagrange multi-
pliers λ∗ are unique,

(ii) for ε in a neighbourhood of 0, there exists a unique, once continuously differentiable
vector function γ(ε) = (x(ε), λ(ε))T satisfying the second-order sufficient conditions for
a local minimum of problem (5.16) such that γ(0) = (z∗, λ∗)T , and hence z(ε) is a local
isolated minimizer of problem (5.16) with associated unique Lagrange multipliers λ(ε),
and

(iii) for ε near 0, the set of active constraints is unchanged, strict complementarity conditions
hold, and the LICQ holds at z∗(ε).

The second-order sufficiency property is now taken as an assumption, so that z∗ is in fact
assumed to be a local solution. More general results of perturbation analysis can be obtained
by using epi-continuity arguments and the concept of complete local minimizing set (Robin-
son [113, 114]).

5.4 Asymptotic analysis of the optimal value

In this section we briefly discuss the asymptotic behaviour of the optimal values ĝ(z∗N) of the
sample average approximations. Our differentiability conditions allow us to extend some results
given in Rubinstein and Shapiro [120], at the price of stronger assumption.

We consider here the case where S is deterministic. We will assume that z∗ can be seen as
an unique global minimizer in some neighbourhood with the following assumption:

A.14 z∗ is an isolated local minimizer of g(z) as defined in (5.1).

5.5 A trust-region algorithm with dynamic accuracy 107

Consider the sample average approximation (5.2) of the true problem (5.1), and as before,
without loss of generality, assume that z∗N converges to z∗ almost surely as N tends to infinity.
We have the following theorem.

Theorem 5.8 Assume that A.9 and A.14 hold, and that z∗N → z∗ almost surely. Let N be a
neighbourhood of z∗ where z∗ is an isolated minimizer of g(·). If

(a) for every z ∈ S, the function G(z, ·) is F-measurable;

(b) for some z ∈ S ∩N , the expectation Eξ[G(z, ξ)2] is finite;

(c) there exists an F-measurable function K : Ξ → R such that Eξ[K(ξ)2] is finite and

|g(z1, ξ) − g(z2, ξ)| ≤ K(ξ)‖z1 − z2‖

for all z1, z2 ∈ S ∩N and almost every ξ ∈ Ξ;

(d) for all N sufficiently large, ĝN(z∗N) ≤ ĝN(z) for all z ∈ N if z∗N ∈ N ,

then we have that √
N(ĝN(z∗N) − g(z∗)) ⇒ N(0, σ2)

almost surely, where
σ2 = Eξ[G(z∗, ξ)2] − g(z∗)2.

Proof. Since z∗N → z∗ almost surely as N → ∞, there exists some N0 such that for all N ≥ N0,
z∗N belongs to N almost surely. Define S′ = S ∩ N . z∗ can be seen as the unique global
minimizer of g(z) over S′ and almost surely z∗N is also a global minimizer of ĝN(z) over S ′. The
result then follows directly from Theorem 6.4.3 of Rubinstein and Shapiro [120].

Theorem 5.7 is stronger than the classical central limit theorem in the sense that the approx-
imating and the true objectives are not evaluated at the same point. When global solutions are
found more detailed results can be derived (Rubistein and Shapiro [120], Section 6.5). They
are still valid if for N large enough Assumption (d) of Theorem 5.7 is satisfied. Further re-
search would include reexamination of this assumption and investigation of the complete local
minimizers set concept, introduced by Robinson [113], to develop a better framework for local
optimization.

5.5 A trust-region algorithm with dynamic accuracy

The SAA problem (5.2)

min
z∈S

ĝN(z) =
1

N

N∑
i=1

G(z, ξi),

can still be expensive to solve, even on modern computers. This is for instance the case for mixed
logit models that we present in the next chapters. However, for a fixed level of approximation,
defined by the number of random draws, or, in other terms, the sample size, it is possible to

108 Chapter 5. Monte Carlo samplings

accelerate the first iterates of the used optimization procedure by considering subsets of the
sampling instead of its entirety. More precisely, we generate a sample set prior the optimization
process, with Nmax i.i.d. random draws. At iteration k, we will use a subset of this sample set,
by using Nk of the Nmax random draws. For simplicity, we then use the Nk first random draws.
This therefore implies that ĝN is a well defined smooth function for each choice of N .

A first question is to measure the approximation accuracy. Let αδ be the quantile of aN(0, 1)
associated to some level of signification δ, i.e. Pξ[−αδ ≤ X ≤ αδ] = δ, where X ∼ N(0, 1).
We work here pointwise, so we can benefit from the central limit theorem:

g(z) − ĝN(z) ⇒ N

(
0,
σ2(z)

N

)
,

where σ2(z) is the variance of g at z. Therefore, the confidence interval for g(z) around ĝN(z) is

[ĝN(z) − εδN(z), ĝN(z) + εδN(z)],

where εδN(z) is given by

εNδ (z) = αδ
σ(z)√
N
. (5.30)

Typically, one chooses α0.9 ≈ 1.64 or α0.95 ≈ 1.96. In practice, we do not know σ2(z), so we
approximate it by its estimator

σ̂2
N(z) =

1

N − 1

N∑
i=1

(G(z, ξi) − ĝN(z))2.

The variable sample size procedure can be external to the algorithm, or internal. An external
approach consists to apply the optimization algorithm repeatedly with samplings of increasing
sizes. The algorithm can be expressed more formally as follows.

Step 0. Set k = 0, Nmax and N0, with 0 < N0 ≤ Nmax. Define some feasible point z̃.

Step 1. Solve (approximately) ĝNk
with z̃ as the starting point and let z∗Nk

be the found solution.

Step 2. If Nk = Nmax, stop. Otherwise, set Nk+1 such that Nk < Nk+1 < Nmax, and z̃ = z∗Nk
.

Increment k by 1 and go to Step 1.

The major difficulty in this procedure is to quantify the word “approximately” in Step 1. If no
care is taken, the resulting algorithm may in fact consume more time than the direct minimization
of ĝNmax .

On the other hand, the internal approach consists to vary the number of used random draws
inside the optimization algorithm. We present here the approach developed for unconstrained
optimization by Bastin, Cirillo and Toint [8, 9] in the context of mixed logit models estimation.
The proposed algorithm is of the trust-region type (see Section 2.3.3 on page 32), where, for sim-
plicity, we assume that the 2-norm is used at each iteration. Basically if the model approximates
the objective function well compared to the accuracy of the objective function itself (which is
dependent on the Monte Carlo sample size), we surmise that we could work with a less precise

5.5 A trust-region algorithm with dynamic accuracy 109

approximation and therefore reduce the sample size. On the other hand, if the model adequation
is poor compared to the precision of the objective function, we increase the sample size in an
attempt to correct this deficiency. A formal description of the algorithm follows.

Algorithm 5.1: Basic trust-region algorithm with dynamic accuracy (BTRDA)

Step 0. Initialization. An initial point z0 and in initial trust-region radius ∆0 are given. The
constants η1, η2, γ1, and γ2 are also given as in Algorithm 2.2. Set a minimum number of
draws Nmin = N0

min and a sample size N0 satisfying ‖∇θĝN0(z0)‖ �= 0 if εN0
δ (zk+1) �= 0,

except if N0 = Nmax. Compute ĝN0(z0) and set k = 0, t = 0.

Step 1. Stopping test. Stop if ‖∇θĝNk
(zk)‖ = 0 and either Nk = Nmax, or εNk

δ (zk) = 0.
Otherwise go to Step 2.

Step 2. Model definition. Define a model mNk
k of ĝNk

(θ) in Bk. Compute a new adequate
sample size N+ (see Algorithm 5.2). Set N− = Nk.

Step 3. Step calculation. Compute a step sk that sufficiently decreases the model mNk
k and

such that zk + sk ∈ Bk. Set

∆mNk
k = mNk

k (zk) −mNk
k (zk + sk).

Step 4. Comparison of decreases. Compute ĝN+(zk + sk) and define

ρk =
ĝNk

(zk) − ĝN+(zk + sk)

∆mNk
k

. (5.31)

Step 5. Sample size update. If ρk < η1 and Nk �= N+, modify N− or the candidate sample
size N+ to take into account variance differences (see Algorithm 5.3). Recompute ρk.

Step 6. Acceptance of the trial point. If ρk < η1, define zk+1 = zk, Nk+1 = N−. Otherwise
define zk+1 = zk + sk and set Nk+1 = N+; increment t by one.

If Nk+1 �= Nmax, ‖∇θĝNk+1
(zk+1)‖ = 0, and εNk+1

δ (zk+1) �= 0, increase Nk+1 to some
size less or equal to Nmax such that ‖∇θĝNk+1

(zk+1)‖ �= 0 if Nk+1 �= Nmax, and compute
ĝNk+1

(zk+1).

If Nk = Nk+1 or if sufficient decrease has been observed since the last evaluation of
ĝNk+1

, set Nk+1
min = Nk

min. Otherwise define Nk+1
min > Nk

min (see Algorithm 5.4).

Step 7. Trust-region radius update. Identical to Step 4 of Algorithm 2.2.

Recall that the iteration k is said to be successful if ρk ≥ η1 and very successful if ρk ≥ η2.
In this algorithm, the variable t is used to record the number of successful iterations. Note also
that the BTR and the BTRDA algorithms coincide if we fix Nk to Nmax for all k ≥ 0.

It is important to keep in mind that at each iteration, we work with a fixed subset of the Nmax

110 Chapter 5. Monte Carlo samplings

random draws, and that this subset is the same at each iteration using Nk random draws. A
different strategy would be to allow the use of newly generated random draws at each iteration.
Such an approach has some advantages, at least theoretically:

• the random draws have not to be kept in memory (or possibly in a file),

• when the iterates are close enough and the same number of draws is used, the variation of
the objective function could inform us on the quality of the approximation,

• it is not always possible to reuse the same sample (if for instance the random variable
corresponds to a realization of a physical phenomena1),

• if the algorithm converges to a second-order critical point, the evaluation of the objec-
tive with different sets of random draws may help to detect degenerate cases as in Exam-
ple 5.1 on page 102.

However, the noise in the objective function makes difficult the identification of an adequate step
if we use different random samples, since this step can be smaller than the noise, in particular
when we are close to the solution. In order to avoid failure of the optimization procedure, we
could then increase the number of random draws, possibly beyond Nmax, in such a way that
the reduction is always (sufficiently) greater than the accuracy. This is for instance the under-
lying idea of the trust-region algorithm using dynamic accuracy presented in Conn, Gould and
Toint [35], Section 10.6, but the strategy developed in Algorithm 5.1 is then no longer applicable
since it allows steps smaller than the approximation accuracy. Moreover, the required sample
size can then be very large and numerically unmanageable, for instance if the neighbourhood
of the current iterate is nearly flat, and we cannot define some maximum sample size Nmax as
in Algorithm 5.1. Finally, the cost of the sample generation represents another overhead of the
optimization process.

5.5.1 The variable sample size strategy

A crucial ingredient to make our algorithm efficient is to design a technique which adapts
the number of draws used to the optimality level of the successive iterates. We now outline the
proposed design.

Prior to the optimization, the user chooses a maximum sample sizeNmax. A minimum sample
size N0

min is defined to allow estimation of the accuracy; in our tests, we have used N0
min = 36,

which has revealed to be a convenient value. We also define N0 = max{N0
min, 0.1Nmax} if

‖∇θĝN0(z0)‖ = 0 and εN0
δ (z0) �= 0, N0 = Nmax otherwise. The choice of N+ in Step 3 of

Algorithm 2.2 is described below.

Algorithm 5.2: Candidate sample size selection
Define some constants ν1 and χ1 such that ν1, χ1 ∈ (0, 1). Use (5.30) to estimate the size

1Note that if the evaluation of the objective involves some physical measurement, the derivatives are also often
difficult to obtain, suggesting the use of derivative-free strategies (see for instance Colson [29] for derivative-free
trust-region methods).

5.5 A trust-region algorithm with dynamic accuracy 111

needed to obtain a precision equal to the model decrease, that is

N s = max

{
Nk

min,

⌈
α2

δ σ̂N(z)

(∆mNk
k)2

⌉}
.

Compute the ratio between the model improvement and the estimated accuracy,

τ k
1 =

∆mNk
k

εNk
δ (zk)

,

and the ratio between the current sample size and the suggested sample size for the next itera-
tion:

τ k
2 =

Nk

min{Nmax, N s} .

Then define

N ′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min {�χ1Nmax�, �N s�} if τ k
1 ≥ 1,

min
{
�χ1Nmax�, �τ k

1N
s�

}
if τ k

1 < 1 and τ k
1 ≥ τ k

2 ,

�χ1Nmax� if ν1 ≤ τ k
1 < 1 and τ k

1 < τ k
2 ,

Nmax if τ k
1 < ν1 and τ k

1 < τ k
2 .

Set N+ = max{N ′, Nk
min}.

A possible value for χ1 is 0.5.
If τ k

1 ≥ 1, the model decrease is greater or equal to the estimated accuracy, and we then
reduce the sample size to the minimum between N s and �χ1Nmax�. The idea to use �χ1Nmax�
comes from the practical observation that enforcing such a decrease in the proposed sample sizes
provides better numerical performance.

If τ k
1 < 1 the improvement is smaller than the precision. However, since the sample has been

generated before the optimization process, a sufficient improvement during several consecutive
iterations may lead to a significant improvement compared to the approximation accuracy, while
keeping the computational costs lower than if Nmax draws were used. We then consider two
cases.

• If τ k
1 ≥ τ k

2 , the ratio between the current sample size and the potential next one is lower
than the ratio between the model decrease and the estimated error. If the sample size
increases, the error decreases for a similar ∆m

Nj

j (j ≥ k), and therefore τk
1 increases. We

capitalize on τ k
1 by computing a sample size lower than N s, such that an increase of order

εNk
δ (zk) would be reached in approximately �τk

1 � iterations if τ j
1 is similar τ k

1 for j close to
k. We therefore propose to use the minimum between �χ1Nmax� and �τ k

1N
s� as the new

sample size.

• If τ k
1 < τ k

2 , it may nevertheless be cheaper to continue to work with a smaller sample
size, defined again as �χ1Nmax�. This is why we choose to use this smaller sample size
as long as τ k

1 is superior to some threshold ν1, set to 0.2 in our simulations. Below to

112 Chapter 5. Monte Carlo samplings

this threshold, we consider that the decrease is too small compared to the log-likelihood
accuracy, and we possibly increase the sample size.

If N+ is not equal to Nk, the computation of

ĝNk
(zk) − ĝN+(zk + sk)

in Algorithm 2.2 is affected by the change in approximation variance. This can lead to a small
or negative ratio ρk, even when the model mNk

k gives a good prediction for the sample size Nk.
In particular, ĝN+(θ) can be superior to ĝNk

(zk) for all θ in a neighbourhood of zk. It is therefore
important to avoid such cases, which motivates the possible redefinition of ρk as described in the
algorithm below.

Algorithm 5.3: Sample size revision when ρk < η1 and Nk �= N+.
If ρk < η1, compare N+ and Nk. If N+ > Nk, compute ĝN+(zk), ∆mN+

k and εN
+

δ (zk),
else if N+ < Nk compute ĝNk

(zk + sk). Set N− to max{Nk, N
+}, and redefine

ρk =
ĝN−(zk + sk) − ĝN−(zk)

∆mN−
k

.

While we expect to benefit from smaller sample sizes when we are far from the solution, we
ought to be sure that we use a sample size equal to Nmax during the final iterations, in order to
benefit from the desired accuracy. For this purpose, we increase the minimum sample size when
the variable sample size strategy does not provide sufficient numerical gains. This is done as
described below.

We first define two Nmax-dimensional vectors v and l, and, at iteration k = 0, set v(N0) =
ĝN0(z0), l(N0) = 0, and for i = 1, . . . , Nmax, i �= N0

2, set v(i) = +∞, l(i) = −1. At
the beginning of iteration k, v(i) = ĝi(zh(i)), where h(i) corresponds to the index of the last
iteration for which Nh(i) = i, and Nh(i)−1 �= Nh(i) if h(i) > 0, or +∞ if the size i has not been
used yet. l(i) contains the number of successful iterations until iteration h(i) (included), or −1 if
the size i has not been used. Recall also that t contains the total number of successful iterations
encountered until the current iteration k (included).

Algorithm 5.4: Minimum sample size update when Nk �= Nk+1.
Let γ3 ∈ (0, 1] be a constant. If

v(Nk+1) − ĝNk+1
(zk+1) ≥ γ3ν1(t− l(Nk+1))ε

Nk+1

δ (zk+1), (5.32)

set Nk+1
min = Nk

min. Otherwise increase the minimum sample size: set

Nk+1
min ∈ {Nk+1 + 1, . . . , Nmax}.

Set l(Nk+1) = t and v(Nk+1) = ĝNk+1
(zk+1).

2We are in fact only interested in i ≥ N0
min, since the sample size used at iteration k (k ≥ 0) has to be greater or

equal to N0
min, but allow i to start from 1 for notational convenience.

5.6 Convergence to solutions of the SAA problem 113

A convenient value for γ3 is 0.5. Note that Nk+1
min > Nk if (5.32) is not satisfied. Moreover,

we have that ifNk �= Nk+1, t−l(Nk+1) ≥ 1. This is clearly true if l(Nk+1) = −1, so without loss
of generality, we assume that l(Nk+1) ≥ 0. At the beginning of iteration k, we have l(Ni) ≤ t,
i = 1, . . . , Nmax. If ρk ≥ η1, t is incremented by 1 in Step 6 of Algorithm 2.2, so l(Nk+1) < t in
Algorithm 5.4. If ρk < η1, from Algorithm 5.3, Nk < Nk+1 since reductions of sample sizes can
only occur at successful iterations. This also implies that l(Nk+1) < l(Nk) ≤ t.

Finally, we note that, if Nk �= Nmax, we cannot exclude the pathological case in which zk is a
first-order critical point for ĝNk

. If εNk
δ (zk) �= 0, the algorithm does not stop, but since the model

is quadratic, no decrease is achieved if Hk is positive definite. The algorithm would then break
down. In order to avoid this situation, we therefore force an increase of Nk+1 in Step 6 when this
situation occurs. In practice however, the gradient norm usually changes slowly in the vicinity of
such a critical point, and a small gradient typically leads to a small model decrease, which itself
then causes the sample size to increase and Nmax is reached before our safeguard is activated.

5.6 Convergence to solutions of the SAA problem

We now consider the formal convergence properties of the BTRDA algorithm for the solution
of the SAA problem, and show that they can be derived from results known for general trust-
region methods.

5.6.1 Convergence of the sample size

We start by investigating properties of our variable sample size technique and prove the
crucial property that Nk converges to Nmax as k → ∞, under some regularity assumptions that
we now make explicit.

A.15 For Pξ-almost every ξ, the function G(·, ξ) is twice continously differentiable on S.

A.16 For all N such that N0
min ≤ N ≤ Nmax, ĝN is bounded below on S almost surely.

A.17 The Hessian of each SAA objective is uniformly bounded, that is there exists a positive
constant κ1 such that for all z and N = N0

min, . . . , Nmax,

‖∇zz ĝN(z)‖ ≤ κ1.

A.18 For all k, mNk
k is twice differentiable on Bk.

A.19 For all k, mNk
k (zk) = ĝNk

(zk) and ∇zm
Nk
k (zk) = ∇z ĝNk

(zk).

114 Chapter 5. Monte Carlo samplings

A.20 The Hessian of the model remains bounded within the trust-region, that is there exists a
positive constant κ2 such that for all z ∈ Bk,∥∥∥∇zzm

Nk
k (z)

∥∥∥ ≤ κ2.

Assumption A.15 ensures that, almost surely, ĝN is twice continuously differentiable on S.
These assumptions allows us to show the announced result.

Theorem 5.9 Suppose that Assumptions A.9, A.15–A.20 hold and that we have

∃κ > 0 such that εNk
δ (zk) ≥ κ, (5.33)

for all k sufficiently large. Then, almost surely, either the algorithm converges in a finite number
number of iterations with a final number of random draws equal to Nmax, or the number of
iterations is infinite and there exists some j such that for all iterations i, i ≥ j, Ni is equal to
Nmax.

Proof. Consider first the finite case. From the stopping criteria in Step 1 of Algorithm 2.2,
we cannot stop with a sample size less than Nmax as long as (5.33) is fulfilled, so the result is
immediate.

Consider now the infinite case. We first prove that the sample size cannot stay fixed at a value
N1 < Nmax, after what we show that the maximum sample size must be reached and that the
sample size is equal to Nmax for k large enough.

Assume, for the purpose of obtaining a contradiction, that

∃k1 such that ∀k ≥ k1, Nk = Nk1 < Nmax. (5.34)

For a fixed sample size, Algorithm 2.2 corresponds to the basic trust-region algorithm (Conn,
Gould and Toint [35], Chapter 6). Assume first that there are only finitely many successful
iterations. Let s be the index of the last successful iterations. Then zk = zs+1 for all k > s. From
Assumptions A.15–A.20 and our model choice, we can apply Theorem 6.4.4 in Conn, Gould and
Toint [35] to deduce that ‖∇z ĝNs+1‖ = 0 almost surely. From Steps 0 and 6 of Algorithm 2.2,
either (5.33) is violated or Ns+1 = Nmax, and the algorithm stops, violating our assumption that
the number of iterations is infinite.

We may therefore assume, without loss of generality, that there is an infinite number of
successful iterations. However, from Algorithms 5.2 and 5.3, and (5.33), a necessary condition
for N+ < Nmax at iteration k is

∆mNk
k ≥ ν1κ,

when τ k
1 ≥ ν1, or

∆mNk
k ≥ κ

Nk
min

Nmax

,

5.6 Convergence to solutions of the SAA problem 115

when τ k
1 ≥ τ k

2 . Assume that the iteration is successful. Then N+ = Nk+1 = Nk1 for k large
enough and we have from (5.34) that

ĝNk1
(zk) − ĝNk1

(zk+1) ≥ η1∆m
Nk1
k ≥ η1 min

{
ν1κ, κ

N0
min

Nmax

}
.

Since there is an infinite number of successful iterations, ĝNk1
(zk) converges to infinity, as k →

∞, but this contradicts the assumption that ĝNk1
is bounded below. We have therefore that

if Nk1 < Nmax, then there exists k2 > k1 such that Nk2 �= Nk1 . (5.35)

Assume now by contradiction that

∀k, there exists j ≥ k such that Nj < Nmax. (5.36)

From Algorithm 5.4,Nk
min increases monotically and is bounded above byNmax. Therefore there

exists some N# = limk→∞Nk
min, with N# ≤ Nmax. Since Nk

min is finite for all k, N# is reached
at some iteration k# and Nk

min = Nk# < Nmax for all k ≥ k#. From (5.35) and (5.36), there
exists an infinite subsequence of iterations such that Nk+1 �= Nk. Let m ≥ k# be the index of
such an iteration. From Algorithm 5.4 and (5.33) we have that

v(Nm+1) − ĝNm+1(Nm+1) ≥ γ3ν1(t− l(Nm+1))ε
Nm+1

δ (zm) ≥ γ3ν1κ, (5.37)

otherwise we would have Nm+1
min > Nm

min. However each SAA objective is bounded below from
Assumption A.16, and there is a finite number of possible sample sizes. Therefore, (5.37) can
only be satisfied for a finite number of iterations, so we obtain a contradiction if (5.36) is satisfied.
Consequently Nk = Nmax for all k large enough.

5.6.2 First-order optimality

Having proved that the sample size must be equal to Nmax for k large enough, we now prove
first-order convergence of the proposed algorithm by applying convergence results known for
trust-region methods. For this purpose, we impose a sufficient decrease of the model at each
iteration:

A.21 For all k

mNk
k (zk) −mNk

k (zk + sk) ≥ κ3‖∇z ĝNk
(zk)‖min

{
‖∇z ĝNk

(zk)‖
ζk

,∆k

}
,

for some constant κ3 ∈ (0, 1) and ζk = 1 + maxx∈Bk

∥∥∥∇xxm
Nk
k (zk)

∥∥∥.

Assumption A.21, a classic in trust-region method analysis, is fulfilled as soon as the step ensures
a model decrease at least as much as that obtained at the approximate Cauchy point (Conn, Gould
and Toint [35], page 131). We then obtain our first convergence result.

116 Chapter 5. Monte Carlo samplings

Theorem 5.10 (First-order convergence)
Suppose that Assumptions A.9, A.15–A.21 hold and that

∃κ > 0 such that εNk
δ (zk) ≥ κ,

for all k sufficiently large. Then, almost surely, either the algorithm converges in a finite number
of iterations to a first-order critical point of ĝNmax , or the number of iterations is infinite and

lim
k→∞

‖∇zĝNk
(zk)‖ = 0,

with Nk = Nmax for all k sufficiently large.

Proof. From Theorem 1, we know that Nk = Nmax for all k sufficiently large. The first-order
convergence then results from the Theorem 6.4.4 in Conn, Gould and Toint [35] in the finite
case, and Theorem 6.4.6 in the infinite case.

From (5.30), we see that εNδ (z) is equal to 0 if and only if σ(z) = 0. This means however
that each ξi, i = 1, . . . , N , are almost surely equal, or in other terms, that almost surely, the SAA
is equal to g(z), independently of the number of random draws.

5.6.3 Second-order optimality

We conclude our convergence analysis by briefly indicating that, under some additional as-
sumptions, any limit point of the sequence of iterates may be proved to be second-order critical.
We first slightly strengthen the conditions governing the trust-region update, imposing that the
radius actually increases at very successful iterations:

A.22 If ρk ≥ η2 and ∆k ≤ 1020, then ∆k+1 ∈ [γ4∆k, γ5∆k] for some γ5 ≥ γ4 > 1.

We also require that the Hessian of the model and that of the simulated log-likelihood asymptot-
ically coincide whenever a first-order limit point is approached.

A.23 We assume that

lim
k→∞

‖∇zzĝNk
(z)k −∇zzm

Nk
k (zk)‖ = 0 whenever lim

k→∞
‖∇zm

Nk
k (zk)‖ = 0.

Second-order convergence is then ensured if the step uses negative curvature of the model
when present. This is expressed formally by the following theorem, where λmin[A] denotes the
smallest eigenvalue of the matrix A.

Theorem 5.11 (Second-order convergence) Suppose that Assumptions A.9, A.15–A.23 hold
and that

∃κ > 0 such that εNk
δ (zk) ≥ κ,

5.6 Convergence to solutions of the SAA problem 117

for all k sufficiently large. Let k1 be such that Nk = Nmax for all k ≥ k1. Assume furthermore

that for all k ≥ k1, if τk = λmin

[
∇zzm

Nk
k (zk)

]
< 0, then

mNk
k (zk) −mNk

k (zk + sk) ≥ π2|τk|min{τ 2
k ,∆

2
k},

for some constant π2 ∈
(
0, 1

2

)
. Then, almost surely, any limit point of the sequence of iterates

is second-order critical.

Proof. Directly follows from Theorem 6.6.8 of Conn, Gould and Toint [35].

Note also that the existence of a limit point is ensured if, as is nearly always the case, all
iterates lie within a closed, bounded domain C ⊆ Rm.

118 Chapter 5. Monte Carlo samplings

Part III

Application to discrete choice theory

Chapter 6

Mixed logit models

In this chapter we adapt the consistency results developed in Sections 5.2 and 5.3 to the
specific case of (possibly) constrained parameter estimation in mixed logit models. Mixed logit
modelling belongs to the family of discrete choice models; this is one of the most used tools to
estimate disaggregate individual preferences. Discrete choice problems have been of interest to
researchers for many years in a variety of disciplines (Ben-Akiva and Lerman [12]). Examples
of the many possible applications can be found in mathematical psychology (Luce [88]), in
marketing (see for instance McFadden and Train [95] and Allenby and Rossi [2]), in econometric
studies (e.g. McFadden [93]) and in transportation (see for instance Sheffi [129], Chapter 10) The
first generation models (logit and nested logit), developed in the last 30 years contain a number
of important limitations, so new models have been proposed, as the generalized extreme value
and mixed logit models. Mixed logit models, that consitute the main concern of this chapter,
are gaining more and more popularity within the practitioners community. Unfortunately, those
specifications have no closed form expression and the solution is approximated through Monte
Carlo simulations. Monte Carlo methods have been extensively used in the area of stochastic
programming to treat problems incorporating uncertainty. We dedicate this chapter to a brief
review of discrete models and to the application of nonconvex stochastic programming to mixed
logit models. In particular, we apply our consistency results presented in Chapter 5 to mixed
logit models. We also produce estimates of the simulation bias and variance.

6.1 An introduction to discrete choice models

Discrete choice analysis attempts to provide an operational description of how individuals
perform a selection amongst a finite (discrete) set of alternatives. The purpose of the first three
sections of this chapter is to give some principles of individual choice theories that are useful
to understand the formulation and the empirical usages of discrete choice models. For a more
exhaustive introduction to discrete choice theory the reader can refer to Bierlaire [19], Ortúzar
and Willumsen [105], Chapter 4, and to the books by Anderson, De Palma and Thisse [4], and
Train [135].

Following the framework given by Ben Akiva and Lerman [12], we view the choice as the
outcome of a sequential decision making process, which includes the following steps:

122 Chapter 6. Mixed logit models

1. definition of the choice problem;

2. generation of alternatives;

3. evaluation of the attributes of the alternatives;

4. choice and implementation.

We briefly describe the elements of this decisional process below.

6.1.1 Decision-maker

Choice models are referred to as disaggregated models. It means that the decision-maker
is assumed to be an individual, while in aggregate modelling one observation is the average of
(sometimes) hundreds of individual observations. The concept of individual may be extended,
depending on the particular application; in particular the decision-maker may be a group of
persons (for instance a household); the internal decisions within the group are then ignored and
we consider only the decisions of the group as a whole. We will refer to decision-maker and
individual interchangeably and denote by I the population size (the number of individuals).

Because of its disaggregate nature, the model has to include the characteristics, or attributes,
of the individual. The analyst has to identify the attributes that are likely to explain the choice of
the individual. There is no automatic process to perform this identification. The knowledge of
the actual application and the data availability play an important role in this process. We will not
discuss these aspects here, while this step is crucial for the practitioner. We refer to Ben-Akiva
and Lerman [12] for a coverage of such questions.

6.1.2 Alternatives

The decision-maker is assumed to make a choice among a set of alternatives. The set con-
taining these alternatives is called the choice set, and while this set can be continuous, we will
consider here only discrete choice sets. A discrete choice set, that we will denote by A, contains
a finite number of alternatives that can be explicitly listed. The corresponding choice models are
called discrete choice models. Two concepts of choice set are considered: the universal choice
set and the reduced choice set. The universal choice set contains all potential alternatives in the
context of the application. The reduced choice set is the subset of the universal choice set con-
sidered by a particular individual. Alternatives in the universal choice set that are not available
to the individual under consideration are excluded. The awareness of the availability of the al-
ternative by the decision-maker should be considered as well (see Swait [132] for more details
on choice set generation). The set of alternatives available for individual i (i = 1, . . . , I) will
be represented by A(i) ⊂ A. In the following, choice set will refer to the reduced choice set,
except explicitly mentioned.

6.1.3 Attributes

Each alternative in the choice set is characterized by a set of attributes that affect the choice
of the individual. Some attributes may be generic to all alternatives, and some may be specific to

6.1 An introduction to discrete choice models 123

an alternative. An attribute is not necessarily a directly observed quantity. It can be any function
of the available data. The definition of attributes as a function of available data depends on the
problem. Several definitions must usually be tested to identify the most appropriate.

6.1.4 Decision rule and utilities definition

In order to model the individual choices, we have to define the rules used by the decision-
maker. Different sets of assumptions can be considered, leading to different family of models, as
the neoclassical economic theory, the Luce model and random utility models (see Bierlaire [19]).
We will focus here on random utility models since they constitute the most common framework
for generating discrete-choice models. In random utility theory each alternative has some prob-
ability to be chosen by an individual (with a null probability if it is not available to the particular
individual). Such a probability is modelled as a function of the socio-economic characteristics
of the individual and the relative attractiveness of the alternative. Random utility models as-
sume that the decision-maker belongs to a given homogeneous population, acts rationally and
has a perfect discrimination capability. The analyst however has incomplete information and,
therefore, uncertainty must be taken into account. Manski [90] identifies four different sources
of uncertainty: unobserved alternative attributes, unobserved individual attributes, measurement
errors and proxy, or instrumental, variables.

For each individual i, each available alternative Aj ∈ A(i) (j = 1, . . . , |A(i)|) has an associ-
ated utility Uij , modelled as a random variable to reflect this uncertainty. The utility is typically
split into two components,

Uij = Vij + εij. (6.1)

In this description, Vij = Vij(βj, xij) is a function of some model parameters βj to be estimated
and of xij , a vector containing all attributes, both of individual i and attributes Aj , while εij

is a random term reflecting the unobserved part of the utility, reflecting the idiosyncrasies and
particular tastes of each individual, together with any measurement or observational errors made
by by the modeller. A popular and simple expression for Vij (j = 1, . . . , |A(i)|) is the linear
utility

Vij(βj, xij) = βT
j xij =

Kj∑
k=1

βk
j x

k
ij,

where Kj is the number of observed attributes for alternative Aj (j = 1, . . . , |A(i)|). The pa-
rameter vectors βj (j = 1, . . . , |A(i)|) are assumed to be constant for all individuals but may
vary across alternatives. The linear assumption simplifies the formulation and the estimation of
the model, and nonlinear effects can still be captured in the attributes definitions, as a function
of available data. For instance, instead of considering travel time as an attribute, the logarithm
of the travel time can be considered.

A model parameter is called generic if it is involved in all alternatives, and has the same
value for all of them. Otherwise it is said to be (alternative) specific. Since we can decompose
a specific parameter in several parameters taking the same value for a subset of alternatives, and
associated to null observations for others, we may assume, without loss of generality, that all

124 Chapter 6. Mixed logit models

parameters are generic. In order to simplify the notation, we will hence omit the subscript j for
parameters vectors.

6.2 Random utility models specification

The derivation of random utility models is based on a specification of the utility as defined
by (6.1). The theory then assumes that individual i selects the alternative that maximizes his/her
utility. In other terms, he/she chooses Aj if and only if

Uij ≥ Uil, ∀Al ∈ A(i).

Thus the probability of choosing alternative Aj is given by

Pij = P [εil ≤ εij + (Vij − Vil) ,∀Al ∈ A(i)] . (6.2)

Different assumptions about the random terms εij and the deterministic term Vij will produce
specific models. Without loss of generality, it can be assumed that the residuals εij are random
variables with zero mean and a certain probability distribution to be specified. The zero mean
assumption is valid if the deterministic part of the utility function of each alternative includes an
alternative specific constant (ASC) (Bierlaire [19]). In practice, it is impossible to estimate the
value of all ASCs from observed data. From (6.2), we see that the probability of choosing some
alternative is not modified is an arbitrary constant κ is added to all utilities. Only the difference
between the ASCs can be identified.

It is common practice to constrain one ASC in the model to zero. While the choice of the
particular alternative whose ASC is constrained is purely arbitrary from a modelling viewpoint,
its influences the estimation process (see Bierlaire, Lotan and Toint [20], who also propose a
different technique of ASC specification, optimal from an estimation perspective).

The scale of the utility may also be arbitrarily specified. Indeed, for any α ∈ R, α > 0, we
have from (6.2) that

Pij = P [α(εil − εij) ≤ α(Vij − Vil), ∀Al ∈ A(i)].

The model is said binary if only two alternatives are available. The arbitrary decision about α is
then equivalent to assuming a particular variance v of the distribution of the error term. Indeed if

V ar[α(εil − εij)] = v2,

we have also
α =

v√
V ar[εil − εij]

.

This equivalence can be extended to the case where more than two alternatives are considered,
if the error terms are i.i.d. across the alternatives. However the i.i.d. assumption implies that the
alternatives should be, in fact, independent. Mixed-mode options, for example car-rail combi-
nations, will usually violate this condition. We will examine this more deeply in the context of
multinomial logit models in Section 6.2.2.

The actual form of the distribution of the residuals εij leads to different families of models;
we will present in the next subsections the most commonly used ones. Other families of models
exist (see Ben Akiva and Lerman [12], Chapter 5).

6.2 Random utility models specification 125

6.2.1 Probit

The multinomial probit, or normal probability unit, model is derived from the assumption that
residuals εi = (εi1, . . . , εiJ)T is a multivariate normal distributed with a vector of means 9 and a
J×J variance-covariance matrix Σε. The probit model is motivated by the central limit theorem,
assuming that the error terms are the sum of independent unobserved quantities. Unfortunately,
the probability function (6.2) has no closed analytical form, which limits practical use of this
model. A comprehensive development of probit models can be found in Daganzo [37].

6.2.2 Logit

If we now assume that the residuals εij are independent and identically Gumbel distributed
with mean 0 and scale factor µ, the probability that the individual i chooses the alternative
Aj ∈ A(i) can be expressed as

eµVij∑|A(i)|
m=1 e

µVim

. (6.3)

This is the multinomial logit model (for derivation of (6.3), see for instance Domencich and
McFadden [44], Chapter 4). It is common practice to arbitrary define µ = 1.

If ξ1 and ξ2 are independent Gumbel distributed with parameters (η1, µ) and (η2, µ), respec-
tively, then ξ1−ξ2 is logistically distributed with mean η2−η1 and scale parameter µ. The c.d.f.
of a logistic random variable is

1

1 + e−µ(x−a)
,

where a is the mean and µ > 0 is the scale parameter. The terminology logit models comes from
this property. In particular, if there are only two alternatives, (6.2) becomes

Pi1 = P [Vi1 − Vi2 ≥ εi2 − εi1].

The logistic distribution can be seen as an approximation to the normal distribution, as shown in
Figure 6.1. In this figure, we have represented a normal of mean 0 and variance 1, a Gumbel of
mean ln(ln2), and scale parameter equal to π/

√
6, and a logistic of mean 0 and scale parameter

or π/
√

3. Then each distribution has a median equal to 0 and a variance equal to 1.

IIA property

An important property of the multinomial logit model is the independence from irrelevant
alternatives (IIA). It expresses that, if some alternatives are removed from or added to a choice
set, the relative choice probabilities in the reduced choice set then remain unchanged. That is,
for any choice sets S ⊆ T ⊆ A, for any alternatives A1 and A2 in S, we have

PS [A1]

PS [A2]
=
PT [A1]

PT [A2]
.

A more formal description of this property and associated difficulties can be found for instance
in Ben-Akiva and Lerman [12], who show, in particular, that its validity depends on the structure

126 Chapter 6. Mixed logit models

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

c.
d.

f.

Quantile x

Normal
Gumbel
Logistic

Figure 6.1: comparison between normal, Gumbel and logistic distributions

of the choice set, and also that it may be unrealistic if the alternatives are not distinct for the
individual.

Several extensions of the multinomial logit model have been proposed and allow to partially
avoid the IID assumption, including nested and mixed logit models (or error component structure
models) (see Bhat and Koppelman [18] for a review of these developments).

6.2.3 Nested logit models

The nested logit model, first derived by Ben-Akiva [12], is an extension of the multinomial
logit model designed to capture correlations among alternatives. It is based on the partitioning
of the choice set A into n disjoint nests Ak:

A =
n⋃

k=1

Ak, and Ak ∩ Al, ∀k �= l.

The utility function of each alternative is composed of a term specific to the alternative, and
a term associated with the nest. If j ∈ Ak, we have

Uj = Vj + εj + VAk
+ εVk

,

where VAk
is the component of the utility which is common to all alternatives in the nest Ak.

The error terms εj and εAk
are assumed to be independent, with the error term εk independent

and identically Gumbel distributed, with scale parameter σk. The distribution of εAk
is such that

the random variable maxl∈Ak
Ul is Gumbel distributed with scale parameter µ.

A pseudo-utility V ′
Ak

is associated to the nest Ak. V ′
Ak

is called the composite utility, the
expected maximum utility, the inclusive value or the accessibility in the literature. The composite

6.2 Random utility models specification 127

utility for nest Ak is defined as

V ′
Ak

= VAk
+

1

σk

ln
∑
j∈Ak

eσkVj ,

Since Aj ∈ Ak, the probability that Aj is chosen is

P [Aj] = P [Ak]P [Aj | Ak],

where

P [Ak] =
e

µV ′
Ak∑n

s=1 e
µV ′

As

and P [Aj | Ak] =
eσkVj∑

a∈Ak
eσkVa

,

The parameters µ and σk reflect the correlation among alternatives in the nest Ak. Indeed, if
j, l ∈ Ak, we have (see Ben-Akiva and Lerman [12], page 289)

µ

σk

=
√

1 − corr(Uj, Ul).

This implies that µ
σk

∈ [0, 1]. If µ
σk

= 1 for all k, the alternatives are uncorrelated within the
nests and the nested logit is equivalent to the multinomial logit. Note that the parameters µ and
σk are closely related in the model, and only their ratio is meaningful. A common practice is to
arbitrarily constrain one of them to a value, usually 1. A model where the scale parameter µ is
constrained to 1 is said to be “normalized from the top”. A model where one of the parameters
σk is constrained to 1 is said to be “normalized from the bottom”.

A direct extension of the nested logit model consists in partitionning some or all nests into
sub-nets, which can, in turn, be divided into sub-nets. Because of the complexity of these models,
their structure is usually represented as a tree (Daly [38]). The number of potential correlation
structures can however be very large, and no technique currently exists to identify the most
appropriate one from the data. Moreover, no correlation across nests can be captured by the
nested logit model.

6.2.4 Generalized extreme value model

In a generalized extreme value (GEV) model, the probability of individual i choosing alter-
native Aj within A(i) = {A1, . . . , An} is given by

Pij =
eVij ∂G

∂xj
(eVi1 , . . . , eViAn)

µG(eVi1 , . . . , eViAn)
. (6.4)

where G : Rn
+ → R is a differentiable function with the following properties:

1. G(x) ≥ 0 for all x ∈ Rn
+,

2. G is homogeneous of degree µ > 0, that is G(αx) = αµG(x), for all x ∈ Rn
+,

3. limxl→+∞G(x1, . . . , xl, . . . , xn) = +∞ for all l such that 1 ≤ l ≤ n, and

128 Chapter 6. Mixed logit models

4. the k-th partial derivative with respect to k distinct xj is nonnegative if k is odd, and
nonpositive if k is even, that is ∀j1, . . . , jk such that 1 ≤ jl ≤ n if 1 ≤ l ≤ k and jl �= jm
if 1 ≤ l,m ≤ k, l �= m, we have

∀x ∈ Rn
+,

∂kG

∂xj1 . . . ∂xjk

(x)

{
≥ 0 if k is odd,

≤ 0 if k is even.

McFadden [92] showed that the choice model defined by equation (6.4) is consistent with
random utility maximization.

The multinomial logit and the nested logit model are both specific generalized extreme value
models. The multinomial logit model can be derived from

G(x) =
n∑

j=1

xµ
j ,

and the nested logit model, from

G(x) =
n∑

k=1

(∑
j∈Ak

eσkxi

)µ/σk

.

6.2.5 Mixed logit models

Decomposition (6.1) assumes that each individuals calmly weighs all the elements of interest
(with no randomness) and selects the most convenient option, but only some of the above ele-
ments are observed so we need residuals to explain what otherwise would amount to non-rational
behaviour. Such assumptions are clearly strong, and suggest allowing the model parameters to
vary within the population. More precisely, we will assume that each parameter vector β(i)
(i = 1, . . . , I) is a realization of a random vector β. Furthermore, β is itself assumed to be
derived from a random vector γ and a parameters vector θ, which we express as

β = h(γ, θ). (6.5)

γ typically specifies the random nature of the model while θ quantifies the population charac-
teristics for the model. Moreover the use of random coefficients relaxes the IID assumption for
residuals and overcomes the rigid interalternative substitution pattern of the multinomial logit
models.

Usually, β follows itself a probability distribution, and θ specifies the parameters of this
distribution. Therefore we have that f(β|θ) = f(h(γ, θ)), where f designs the underlying
distribution function. We will nevertheless use the notation (6.5) in order to emphasize that the
random part can be expressed by a non-parametric vector, as in (5.1). For example, assume that β
is a K-dimensional vector of independent normal variables whose k-th component is N(µk, σ

2
k).

We may then choose γ = (γ1,γ2, . . . ,γK), with γk ∼ N (0, 1) and let the vector θ specify the
means and standard deviations of the βk, θ = (µ1, σ1, µ2, σ2, . . . , µK , σK). Therefore, (6.5) can
be written in this case as β = (µ1 + σ1γ1, µ2 + σ2γ2, . . . , µK + σKγK) .

6.2 Random utility models specification 129

If we knew the realization γ(i), and thus the value β(i) = h(γ(i), θ), for some individual i,
the conditional probability that he/she chooses alternative j would then be given by the standard
logit formula

Lij (γ, θ) =
eVij(β(i),xij)∑|A(i)|

m=1 e
Vim(β(i),xim)

. (6.6)

However, since β is random, we need to calculate the associated unconditional probability, which
is obtained by integrating (6.6) over γ:

Pij(θ) = EP [Lij(γ, θ)] =

∫
Lij(γ, θ)P (dγ) =

∫
Lij(γ, θ)f(γ)dγ, (6.7)

where P is the probability measure associated to γ and f(·) is its distribution function.
The unknown values of θ are estimated by maximizing the log-likelihood function, i.e. by

solving the program

max
θ
LL(θ) = max

θ

1

I

I∑
i=1

lnPiji
(θ), (6.8)

where ji is the alternative choice made by the individual i. This involves the computation of
Piji

(θ) of (6.7) for each individual i (i = 1, . . . , I), which is impractical since it requires the
evaluation of one multidimensional integral per individual. Therefore, we use a Monte-Carlo
estimate of Piji

(θ) obtained by sampling over γ, and given by

SPR
iji

(θ) =
1

R

R∑
r=1

Liji
(γr, θ), (6.9)

where R is the number of random draws γr, taken from the distribution function of γ. As a
result, θ is now computed as the solution of the simulated log-likelihood problem

max
θ
SLLR(θ) = max

θ

1

I

I∑
i=1

lnSPR
iji

(θ). (6.10)

However, since I can be large (typically in the thousands), the evaluation of SLLR(θ) may
remain very expensive, even on modern computers, as pointed out by Hensher and Greene [72].

We finally notice that the mixed logit problem (6.7)–(6.8) can be viewed as a generalization
of the stochastic programming problem (5.1), that we restate for clarity:

min
z∈S

g(z) = Eξ[G(z, ξ)],

where z ∈ Rm is a vector of decision variables, S is a compact subset of Rm representing feasible
solutions of the above problem, ξ is a random vector defined on the probability space (Ξ,F , P)
and G : Rm × Ξ → R is a real valued function. Indeed, we may write (6.7)–(6.8) as

min
θ
g (θ) = min

θ
−LL(θ) = min

θ
−1

I

I∑
i=1

lnEP [Liji
(γ, θ)] . (6.11)

130 Chapter 6. Mixed logit models

The associated sample average approximation problem is then written as

min
θ
ĝR(θ) = min

θ
−SLLR(θ) = −1

I
min

θ

I∑
i=1

lnSPR
iji

(θ). (6.12)

We will denote by θ∗ a solution of (6.11) and by θ∗R a solution of (6.12). The generalization is
minor since it only consists in optimizing a sum of logarithms of expectations, instead of a single
expectation.

Note also that the multinomial logit model can then be viewed as the mean value problem if
we use the error component formulation for mixed logit models, that is we express the parameters
vector for each individual, β(i) (i = 1, . . . , I), as follows:

β(i) = b+ η(i), (6.13)

where b = E[β] is the parameters mean value over the population and η(i) is the individual
deviation from the mean, representing personal preferences of each individual. We can then link
(6.13) to (6.5) by defining

β = h(γ, θ) = θ1 + θ2γ,

where E[γ] = 0, K = K1 + K2, θ1 ∈ RK1 , θ2 ∈ RK2 and θ = (θ1, θ2). Replacing γ by its
expectation and ignoring θ2 (which can now take any value in RK2), we obtain the multinomial
logit corresponding to the original mixed logit formulation. The discussion about the value of the
stochastic solution in Birge and Louveaux [21], Section 4.5, then illustrates that the multinomial
logit solution can be poor compared to the mixed logit solution.

Unfortunately the mixed logit is numerically very expensive to solve, even when Monte-
Carlo approximations are used; the choice of an adequate optimization procedure is therefore
crucial. We will explore this aspect in Chapter 7. In the remaining of this chapter we will focus
on properties of the problem (6.12). As in Chapter 5, we will study the adequation between
problem (6.11) and problem (6.12) when R increases. We will also derive some useful statistical
estimators that about the approximating log-likelihood. These will serve as foundations for the
algorithm with variable sample size presented in Chapter 7.

6.3 Discrete choice models estimation

Having defined the form of the choice probabilities, we now face the problem of estimat-
ing the parameters vector β in the alternatives utilities. This is usually done by means of the
maximum likelihood (ML) method. Assume that we have a sample of I individuals from an
homogeneous population. If this population is large, we can assume that the observations in the
sample are independent, so we can define the likelihood function as the product of the model
probabilities that each individual chooses the option they actually selected:

L(β) =
I∏

i=1

Piji
(β). (6.14)

6.4 Application of stochastic programming of mixed logit 131

If β∗ = argmaxL(β), then β∗ corresponds to the parameters vector which has the greatest prob-
ability of having generated the observed sample. However, in practice, I is large, so evaluating
(6.14) is numerically instable since 0 ≤ Piji

≤ 1 (i = 1, . . . , I), and, more importantly, the
maximization of a product is often less stable than the maximization of a sum. To avoid these
difficulties, it is preferable to consider the logarithm of the likelihood. We then aim at solving
the program

max
β

LL(β) =
I∑

i=1

lnPiji
(β). (6.15)

From a theoretical viewpoint, any solution of (6.15) is a maximizer of (6.14) since the logarithm
operator is monotically increasing. The log-likelihood function requires nevertheless that Piji

<
i (i = 1, . . . , I) to be well-defined. This condition is fulfilled with usual random utility models.
(6.15) is then a unconstrained concave maximization problem that can be easily solved with
classical methods.

6.4 Application of stochastic programming of mixed logit

6.4.1 Convergence of SAA estimators

We now apply our consistency results obtained in Sections 5.2 and 5.3 of the previous chapter
to the framework of mixed logit models. This is possible because we have already seen in
Section 6.2.5 that the mixed logit problem is a generalization of the stochastic program (5.1).

We first specify that the i.i.d. Assumption A.9 is now to be understood as the requirement
that different samples used to compute the choice probabilities are identically distributed and
independent both for each individual and across them. Next note that the assumption, in the
stochastic programming case, that the feasible set S is compact ensures that the solutions of
problem (5.2) remain in a bounded domain of Rm, but that our formulation of the mixed logit
problem does not include any such safeguard. We therefore complete our assumptions on mixed
logit models by introducing the following one.

A.24 The solution θ∗R of the simulated mixed logit problem (6.12) remains in some convex
compact set S for all R sufficiently large.

The set S can be explicitly expressed as convex constraints (bounds are typical) on the problem
or be implicit for an unconstrained problem. In the latter case, A.24 indicates that the solutions
are uniformly bounded for sufficiently large sample sizes. Such an assumption is reasonable to
avoid pathological cases where some components of θ∗R converge towards plus or minus infinity.
As for the stochastic programming case, this assumption implies that the sequence {θ∗R} has limit
points, and, again as above, we identify it, without loss of generality, to one of its convergent
subsequences and assume that θ∗R → θ∗ as R → ∞.

For obtaining convergence to first-order critical points, we also need to ensure A.10 and A.11
by imposing suitable conditions on the problem’s components EP [Liji

(γ, θ)].

132 Chapter 6. Mixed logit models

A.10ml The utilities Vij(γ, ·) (i = 1, . . . , I , j = 1, . . . , J) are continuously differentiable for
almost every γ.

That A.10ml implies A.10 immediately results from the property of the logit formula, which
ensures that

∂

∂θt

Liji
(γ, θ) = Liji

(γ, θ)
∑
s �=ji

Lis (γ, θ)
∂

∂θt

(Viji
(γ, θ, xiji

) − Vis (γ, θ, xis)) . (6.16)

A.11 is automatically satisfied since |SPiji
(γ, θ)| ≤ 1 for all θ and 1 is obviously P -integrable

with unit expectation. We obtain from A.24, A.10ml and Lemma 5.1 that, for all individuals i
(i = 1, . . . , I),

SPR
iji

(θ∗R)
a.s.−→ PR

iji
(θ∗) and SLLR(θ∗R)

a.s.−→ LL(θ∗).

We now examine the derivatives of the true and SAA problems. For t = 1, . . . ,m, i =
1, . . . , I , we have

∂

∂θt

LL(θ) =
1

N

N∑
n=1

1

EP [Liji
(γ, θ)]

∂

∂θt

EP [Liji
(γ, θ)] ,

and
∂

∂θt

SLL(θ) =
1

N

N∑
n=1

1

SPR
iji

(θ)

1

R

R∑
r=1

∂

∂θt

Liji
(γr, θ).

A.12 now becomes

A.12ml For t = 1, . . . ,m, ∂
∂θt
Liji

(γ, θ) (i = 1, . . . , I) is dominated by a P -integrable function.

From (6.16), we see that it is in particular true if the following holds.

A.12ml’ For t = 1, . . . ,m, ∂
∂θt
Vij (γ, θ, xij) (i = 1, . . . , I , j = 1, . . . , J) is dominated by a

P -integrable function.

If the utilities are linear in θ, as is often the case in applications, the derivatives are independent
of θ. Then all we have to assume is that the expectation of the absolute partial derivatives is
finite, which is usually not restrictive. If the utilities are nonlinear, we observe that (A.12ml)’
is satisfied if, for t = 1, . . . ,m, i = 1, . . . , I , j = 1, . . . , J , EP [K(γ)] is finite, where K(γ) =

maxθ

∣∣∣ ∂
∂θt
Vij (γ, θ, xij)

∣∣∣. Under A.10ml, and the assumption that θ ∈ S, where S is compact,

K(γ) is finite for almost every γ, and its expectation is usually finite.
We may now apply Lemma 5.1 and deduce that

∇θSLL
R(θ∗R)

a.s.−→ ∇θLL(θ∗),

6.4 Application of stochastic programming of mixed logit 133

as R → ∞. Using the same arguments as in Theorem 5.1, we then obtain the following result.

Theorem 6.1 (First-order convergence for mixed logit) Assume that A.9, A.24, A.10ml and
A.12ml hold. Then θ∗ is a first-order critical point of problem (6.11) almost surely.

We have therefore proved convergence of the simulated estimators to the true maximum
likelihood estimators almost surely, allowing the inclusion of convex constraints on θ. Classical
results (see Chapter 10 of Train [135]) shows convergence in distribution and in probability
asymptotically when the population size increases. The asymptotic behaviour is briefly discussed
in section 6.4.3.

The extension of Theorem 5.5 establishing second-order convergence to the mixed logit prob-
lem is immediate, as well as Theorem 5.4, as soon as the corresponding assumptions are fulfilled.

6.4.2 Estimation of the simulation’s variance and bias

We now further investigate the question of estimating the error made by using the SAA
problem (6.12) instead of the true problem (6.11) as a function of the sampling sizeR. Due to the
stochastic nature of the approximation, the size of the error can only been assessed by providing
a (hopefully high) probability that it is within some confidence interval asymptotically centred
at zero and of radius ε. In practice, we first fix some probability level α > 0 and determine the
value of ε such that, for given θ,

P
[
|LL(θ) − SLLR(θ)| ≤ ε

]
≥ α.

Developing this expression we have that
∣∣LL(θ) − SLLR(θ)

∣∣ is smaller than ε if and only if

∣∣∣∣∣1I
I∑

i=1

lnPiji
(θ) − 1

I

I∑
i=1

lnSPR
iji

(θ)

∣∣∣∣∣ ≤ ε.

Consider now individual i. We are interested in the asymptotic behaviour of

lnPiji
(θ) − lnSPR

iji
(θ)

for a given θ (such as the solution of the SAA problem). Since the logarithm is continuously
differentiable on R+

0 and since EP

[
Liji

(γ, θ)2] is finite, we can use the delta method (see for
instance Borovkov [22], page 44, for the one-dimensional case or Rubinstein and Shapiro [120]
section 6.3, for the multi-dimensional case) to conclude that

√
R

(
lnPiji

(θ) − lnSPR
iji

(θ)
)
⇒ d

dPiji

lnPiji
(θ)N(0, σ2

iji
(θ)),

where σ2
iji

(θ) is the variance of Piji
(θ, γ). In other terms, we have that

lnPiji
(θ) − lnSPR

iji
(θ) ⇒ 1

Piji
(θ)

√
R
N

(
0, σ2

iji
(θ)

)
.

134 Chapter 6. Mixed logit models

As samples are independent between individuals, so are the normal distributions in this last limit,
and we thus have that

LL(θ) − SLLR(θ) ⇒ 1

I
N

(
0,

I∑
i=1

σ2
iji

(θ)

R (Piji
)2

)
(6.17)

The associated asymptotic value of the confidence interval radius ε is then given by

εRδ (θ) = αδ
1

I

√√√√ I∑
i=1

σ2
iji

(θ)

R (Piji
(θ))2 . (6.18)

Recall that αδ is the quantile of a N(0, 1) associated to some level of signification δ. In practice
we evaluate this accuracy εRδ (θ) by taking the SAA estimators σR

iji
(θ) and PR

iji
(θ).

Equation (6.18) gives us important information on the quality of the approximation. The
accuracy can be improved if we take a bigger sampling sizeR, but, as in other basic Monte-Carlo

methods, the convergence is only in O
(√

R
)

(Fishman [52], page 8). However the population

size also has an influence on the quality of the approximation. First of all, we note that

0 ≤ εRδ (θ) ≤ αδ
1

I

I∑
i=1

√
σ2

iji
(θ)

R (Piji
(θ))2 .

If the total population is assumed to be infinite, then we may consider a population of size I as a
independent and identically distributed sample within it. We then obtain from the strong law of
large numbers that, almost surely,

0 ≤ εRδ (θ) ≤ αδ√
R
EI

[
σiji

(θ)

Piji
(θ)

]
.

In other terms, for a fixed sampling size R and a fixed θ, if the expectation of individual
errors is finite, εRδ (δ) converges to some real value which is less than this expectation. Assume
indeed that there exists some κ such that for all θ in S, and for each individual i (i = 1, . . . , I),

σiji
(θ)

Piji
(θ)

≤ κ.

Then, from (6.18),
εRδ (θ) ≤ αδ

κ√
IR

.

This suggests that the error decreases as the population size increases. However, we must
remember that E

[
SLLR(θ)

]
�= LL(θ), because of the logarithmic operator, and our confi-

dence interval is thus centred at zero only asymptotically. However, since (6.17) implies that
LL(θ) − SLLR(θ)

p→ 0, when R tends to ∞ for a fixed population size I , we deduce that the
estimator is consistent. To estimate the bias for a given finite R, we first compute the Taylor
development of lnSPR

iji
around the true value Piji

, for some individual i:

lnSPR
iji

(θ) = lnPiji
(θ) +

1

Piji
(θ)

hiji
− 1

2 (Piji
(θ))2h

2
iji

+O
(
h3

iji

)
,

6.4 Application of stochastic programming of mixed logit 135

where hiji
= SPR

iji
(θ) − Piji

(θ). Therefore, since E [hiji
] = 0,

E
[
lnSPR

iji
(θ)

]
− lnPiji

(θ) = − 1

2 (Piji
(θ))2E

[
h2

iji

]
+ E

[
O

(
h3

iji

)]
.

Because A.9, we obtain then that

E
[
h2

iji

]
=

1

R
σ2

iji
(θ).

Averaging now over the individuals, and neglecting the terms of order three and above, we obtain
that the simulation bias B can be approximated by

BR(θ) := E[SLLR(θ)] − LL(θ) = − 1

2IR

I∑
i=1

σ2
iji

(θ)

(Piji
(θ))2 ≤ 0, (6.19)

which can be easily computed from the estimated error as

BR(θ) = − I

2α2
δ

(
εRδ (θ)

)2
. (6.20)

Thus, (6.19) implies that, up to second order,

max
θ
E[SLLR(θ)] ≤ max

θ
LL(θ).

It is interesting to note from (6.18) that the confidence interval radius εRδ (θ) is small whenever
the standard deviations are themselves small compared to the probability choices. Moreover,
(6.20) shows that the simulation bias decreases faster than the error. This suggests that the
number of random draws is heavily related to the nature of the model: as expected, more variation
of model parameters between the individuals imposes larger samples. The choice of a uniformly
satisfying sample size across different models thus appears doubtful. This observation seems to
support, for the case of the objective function value, the practical conclusions of Section 4.3 of
Hensher and Greene [72].

Recall that the bias results from the use of the logarithm operator, so a formulation that trans-
forms the likelihood function (6.14) to a form that is more manageable for the optimization,
while avoiding the introduction of a bias, could be desirable. Nevertheless, in addition to the
production of a more stable mathematical program, the ability of the logarithm operator to trans-
form a product into a sum is particularly interesting for the simulation error estimation, which
is obtained in our case as a confidence interval radius. Such an approach requires the knowl-
edge of the (asymptotic) probability distribution of the simulated objective. Summing normal
distributions, as in our estimation of the simulated log-likelihood accuracy, results in another
normal distribution, but other transformations can lead to distributions that are difficult to iden-
tify. This is in particular the case for the original product formulation (6.14). The SAA problem
would then be a product of simulated, normally distributed (with different means and variances),
probabilities, but the resulting distribution does not correspond to a simple probability distribu-
tion. Techniques exist to reduce the bias in a function, but this often leads to increases of bias

136 Chapter 6. Mixed logit models

in the derivatives (see for instance Cox and Hinkley [36]), so a point that satisfies optimality
conditions of such an approximated problem is not necessarily better than a solution of the SAA
problem (6.15). Careful investigation, both theoretically and numerically, would therefore be
useful for a better understanding of the bias influence on the solution and the bias reduction
techniques that could be used.

Finally, note also that if we make the additional assumption that the SAA problems are solved
globally instead of locally, we obtain that

max
θ∈S

E[SLLR(θ)] ≤ E

[
max
θ∈S

SLLR(θ)

]
.

Therefore the maximization procedure itself can produce another bias opposed to the bias of sim-
ulation. As a consequence, the solutions of successive SAA problems do not necessarily increase
monotonically when R grows, which makes bias tests based on this increase questionable.

These estimates provides information on the quality of the successive average approximation
which can be used to improve efficiency of numerical estimation procedures, as done in the
software AMLET (Bastin, Cirillo, and Toint [8, 9]), described in the next chapter.

6.4.3 Asymptotic behaviour for increasing population sizes

We finally devote a last paragraph to the extension of the results obtained by Hajivassiliou
and McFadden [70] and published in Train [135]. In particular we study the consistency and ef-
ficiency of the SAA problem when the population size becomes infinite. Our results apply to the
constrained case and the convergence results hold almost everywhere, instead of in distribution.

From the strong law of large numbers,

BR(θ)
a.s.−→ − 1

2R
EI

[
σ2

iji
(θ)

(Piji
)2

]
.

Therefore the problem is consistent if and only if R tends to infinity when N tends to infinity,
as reported by Hajivassiliou and McFadden [70] and Train [135], page 288. Taking the Taylor
expansion around the true parameters, that solve ELL(θ) := EI [lnPiji

(θ)] , the expectation of
the logarithm of the probability choice for all individuals i, these authors conclude that

• if R is fixed, the SAA problem is inconsistent;

• if R rises slower than
√
N , the SAA problem is consistent but not asymptotically normal;

• if R rises faster than
√
N , the SAA problem is consistent, asymptotically normal and

efficient, equivalent to the true problem.

Note that these results are obtained using convergence in distribution of the solutions of the SAA
problems. We provide, in the next theorem, results of the same type. They are now expressed
almost surely, at the expense of not being directly computable.

Proposition 6.1 Assume that a ULLN holds for the approximation LL(θ) of ELL(θ) and
another ULLN holds for the approximation SLLR(θ) of LL(θ). Suppose furthermore that

6.4 Application of stochastic programming of mixed logit 137

SLLR(·, γ) is continuous on S for almost every γ, that LL(θ) is continuous on S for almost
every i, and that ELL(θ) is continuous on S. Then

sup
θ∈S

∣∣SLLR(θ) − ELL(θ)
∣∣ a.s.−→ 0

as I tends to infinity and R tends to infinity sufficiently fast compared to I .

Proof. Let δ > 0 be a small constant. From the ULLN assumption for LL(θ), we have that, for
I sufficiently large,

sup
θ

∣∣∣∣∣EI [lnPiji
(θ)] − 1

I

I∑
i=1

lnPiji
(θ)

∣∣∣∣∣ < δ

2
a.s.

For such an I , we have, from the ULLN assumption for SLLR(θ), that for R sufficiently high,

sup
θ

∣∣∣∣∣1I
I∑

i=1

lnPiji
(θ) −

I∑
i=1

ln
1

R

R∑
r=1

SPR
iji

(θ)

∣∣∣∣∣ < δ

2
a.s.

Combining these two inequalities with the triangular inequality

sup
θ

|SLLR(θ) − ELL(θ)| ≤ sup
θ

|SLLR(θ) − LL(θ)| + sup
θ

|LL(θ) − ELL(θ)|,

we obtain that

∃Iδ s.t. ∀I ≥ Iδ ∃RI s.t. ∀R ≥ RI , sup
θ

|SLLR(θ) − ELL(θ)| < δ a.s.

Now define some sequence {δn}∞n=1 converging to zero, and let {Iδn} be the corresponding
population sizes as given by this last bound. If the population size I grows faster than Iδn and R
faster than RI , we see that

sup
θ

∣∣SLLR(θ) − LL(θ)
∣∣ → 0, a.s., (6.21)

which implies the desired result in this case. If, on the other hand, I grows slower than Iδn , we
identify an increasing subsequence of population sizes {In} ⊆ {I} that grows faster than Iδn .
For population sizes I ′ between In and In+1, (6.21) holds if we require RI′ to be equal or larger
than RIn+1 . As a consequence, we obtain that (6.21) holds irrespective of the speed of growth of
{I} provided R grows sufficiently fast.

Let {θ∗I,R} be the sequence of SAA solutions for I tending to infinity, and R tending to
infinity sufficiently fast compared to I . Let θ∗ be a limit point of this sequence and assume
(without loss of generality) that {θ∗I,R} converges to θ∗. Then, under the assumptions of the
previous proposition, we obtain from Lemma 5.1 that

SLLR
(
θ∗I,R

) a.s.−→ ELL(θ∗).

We may finally re-apply our convergence analysis to this framework, and obtain, under assump-
tions similar to those used above (we now need domination by functions that are (I × P)-
integrable), that, almost surely, θ∗ is a first (second)-order critical point if the θ∗I,R are first
(second)-order critical points.

138 Chapter 6. Mixed logit models

6.4.4 Applications of mixed logit models

We conclude this chapter by mentioning some of the numerous applications of mixed logit
models. To our knowledge, the mixed logit approach appeared in 1977, in a analysis of the
demand for different types of automobiles in the United States, made by the Electric Power
Research Institute [47] (EPRI), where the parameters to estimate were independent and lognor-
mally distributed. However mixed logit models have became popular only since the last ten
years among researchers and practitioners in economics and transportation (see, for instance,
Bhat and Castelar [17], Brownstone, Bunch and Train [23], Cirillo and Axhausen [26], Hensher
and Greene [72], Hensher and Sullivan [73], Hess and Polak [74]), sociology (Montmarquette,
Cannings, and Mahseredjian [100]),. . . . The developments in science computing during the last
decade made them indeed numerically manageable even with personal computers, while in the
algorithmic achievements made the estimation process more efficient. We will in particular study
the application of the BTRDA Algorithm 5.1 to mixed logit estimation in the next chapter.

Chapter 7

AMLET

In the previous chapter we have established that the sample average approximation of the
maximum likelihood program occurring in mixed logit models estimation is a manageable way
to approximate the maximum likelihood estimators. But, even in this form, evaluation costs
can be prohibitive due the required sample sizes, as mentioned for instance by Hensher and
Greene [72]. The current research approach has thus shifted, in order to reduce computational
time and simulation error, to quasi-Monte-Carlo approaches instead of pure Monte-Carlo meth-
ods. However these authors underline the need for speed in practice, in order to be able to explore
alternative model specifications. As a consequence, current research has turned to the cheaper
quasi-Monte Carlo approaches, based on low discrepancy sequences, which has been shown to
produce more accurate integration approximations when the number of draws is fixed, for in-
stance in the study of physics problem (Morokoff and Caflish [102]). Bhat [15] and Train [134]
for instance advocate using Halton sequences (Halton [71]) for mixed logit models and find they
perform much better than pure random draws in simulation estimation. Garrido [57] explores the
use of Sobol sequences, while Sándor and Train [123] compare randomized Halton draws and
(t,m, s)-nets.

This trend is not without drawbacks. For instance, Bhat [15] pointed out that the coverage of
the integration domain by Halton sequences rapidly deteriorates for high integration dimensions
and consequently proposed a heuristic based on the use of scrambled Halton sequences. He
also randomized these sequences in order to allow the computation of the simulation variance of
the model parameters. However Hess, Polak and Daly [75] have shown that scrambled Halton
methods are very sensitive to the number of draws, and can behave poorly when this number in-
creases. Recently Hess, Train and Polak [76] have proposed the use of randomly shifted uniform
vectors and have reported better performance than with any of the Halton based approached. By
contrast, the dimensionality problem is irrelevant in pure Monte Carlo methods, and while com-
putational experiments show that for low dimensional integration quasi-Monte Carlo techniques
outperform Monte Carlo integration, the advantage is less clear in high-dimension (Deák [40],
Morokoff and Caflish [102]). The same is reported for estimation of mixed logit models, where
Monte Carlo methods are again competitive when high-dimensional problems are considered
(Hess, Train and Polak [76]). Moreover for quasi-Monte Carlo procedures, the quality of the
results can only be estimated in practice, by repeating the calibration process on randomized
samples and by varying the number of random draws, while Monte-Carlo techniques can benefit

140 Chapter 7. AMLET

from classical statistical inference. This suggests adapting the BTRDA Algorithm 5.1, presented
in Chapter 5 to the mixed logit estimation problem and we show that this technique results in
an algorithm that is numerically competitive with existing tools for mixed logit models, while
giving more information to the practitioner. This underlines the importance of the choice of op-
timization algorithm when looking for numerical performances and shows that exploitation of
statistical inference is valuable.

7.1 The BTRDA algorithm for mixed logit models

Algorithm 5.1 can be directly applied when solving problem (6.12),

min
θ

−SLLR(θ) = min
θ

−1

I

I∑
i=1

lnSPR
iji

(θ).

However, this problem differs from the stochastic problem (5.2)

min
z∈S

ĝN(z) =
1

N

N∑
i=1

G(z, ξi),

by the presence of a bias, that we should take into account when varying the sample sizes in
Step 5, in order to make the method efficient. Moreover, we prefer to consider here the maxi-
mization formulation (6.10),

max
θ
SLLR(θ) = max

θ

1

I

I∑
i=1

lnSPR
iji

(θ), (7.1)

which is more popular in the discrete choice literature. For clarity, we therefore rewrite the
BTRDA Algorithm 5.1, where we use the notations relative to the mixed logit problem (7.1),
and adapt the terminology to reflect that we face a maximization, not minimization, problem.
The sample size update in Step 5 also considers the simulation bias, and refers to Algorithm 7.2
instead of Algorithm 5.3. We finally explicit in Algorithm 7.3 the practical procedure used when
updating the minimum sample size, on the basis of Algorithm 5.4.

Algorithm 7.1: Trust-region maximization algorithm for mixed logit estimation

Step 0. Initialization. An initial point θ0 and in initial trust-region radius ∆0 are given. The
constants η1, η2, γ1, and γ2 are also given as in Algorithm 2.2.

Set a minimum number of draws Rmin = R0
min and a sample size R0 satisfying

‖∇θSLL
R0(θ0)‖ �= 0 if εR0

δ (θk+1) �= 0, except if R0 = Rmax. Compute SLLR0(θ0)
and set k = 0, t = 0.

Step 1. Stopping test. Stop if ‖∇θSLL
Rk(θk)‖ = 0 and either Rk = Rmax, or εRk

δ (θk) = 0.
Otherwise go to Step 2.

7.1 The BTRDA algorithm for mixed logit models 141

Step 2. Model definition. Define a model mRk
k of SLLRk(θ) in Bk. Compute a new adequate

sample size R+ (see Algorithm 5.2). Set R− = Rk.

Step 3. Step calculation. Compute a step sk that sufficiently increases the model mRk
k and

such that θk + sk ∈ Bk. Set

∆mRk
k = mRk

k (θk + sk) −mRk
k (θk).

Step 4. Comparison of increases. Compute SLLR+
(θk + sk) and define

ρk =
SLLR+

(θk + sk) − SLLRk(θk)

∆mRk
k

. (7.2)

Step 5. Sample size update. If ρk < η1 and Rk �= R+, modify R− or the candidate sample
size R+ to take bias and variance differences into account (see Algorithm 7.2). Recom-
pute ρk.

Step 6. Acceptance of the trial point. If ρk < η1, define θk+1 = θk, Rk+1 = R−. Otherwise
define θk+1 = θk + sk and set Rk+1 = R+; increment t by one.

If Rk+1 �= Rmax, ‖∇θSLL
Rk+1(θk+1)‖ = 0, and εRk+1

δ (θk+1) �= 0, increase Rk+1 to some
size less or equal to Rmax such that ‖∇θSLL

Rk+1(θk+1)‖ �= 0 if Rk+1 �= Rmax, and
compute SLLRk+1(θk+1).

If Rk = Rk+1 or if sufficient decrease has been observed since the last evaluation of
SLLRk+1 , set Rk+1

min = Rk
min. Otherwise define Rk+1

min > Rk
min (see Algorithm 7.3).

Step 7. Trust-region radius update. Identical to Step 4 of Algorithm 2.2.

In our implementation, we have set η1 = 0.01, η2 = 0.75, γ1 = 0.5 and γ2 = 0.5. Note that
t is again used as a successful iterations counter. We develop our other practical choices in the
remaining of this section.

7.1.1 Model choice and trial step computation

We use a quadratic model, defined as

mR
k (θk + s) = mR

k (θk) + 〈gR
k , s〉 +

1

2
〈s,Hks〉,

where
mR

k (θk) = SLLR (θk) and gR
k = ∇θSLL

R (θk) (7.3)

and whereHk is a symmetric approximation to ∇2
θθSLL

R(θk). In our implementation we use the
symmetric rank-one (SR1) quasi-Newton update to obtain such an approximation, as described
in Nocedal and Wright [104], page 204. Despite being numerically cheap, SR1 is very efficient in
the context of trust-region methods (see Conn, Gould and Toint [31, 33] or Byrd, Fayez Khalfan

142 Chapter 7. AMLET

and Schnabel [24]). In particular, it significantly outperformed the BFGS update, another well-
known method, during our preliminary tests (see Section 7.3.2 below).

Another benefit of the SR1 update is that it generates good Hessian approximations for gen-
eral nonlinear functions, under some reasonable conditions. Using the final SR1 Hessian approx-
imation in the computation of t-statistics, we observed that these statistics are usually similar to
those obtained with the true Hessian, but not always. The evaluation of the true Hessian is a
very expensive task, especially when the number of parameters is high, while the approximate
Hessian is directly available. The potential time saving when using the SR1 approximation could
therefore be important: we believe that investigating more precisely when the Hessian approxi-
mation is sufficient for computing the t-statistics is a valuable direction for further research.

The computation of the step sk is performed using the Steihaug-Toint method (see for in-
stance Conn, Gould and Toint [35], Section 7.5.1, or Nocedal and Wright [104], page 75).

7.1.2 The variable sample size strategy

Algorithm 5.2 is based on the possibility to estimate the error made by using the sample
average approximation, using statistical inference on the approximating objective. Recall that,
from the delta method, we have

LL(θ) − SLLR(θ) ⇒ 1

I
N

(
0,

I∑
i=1

σ2
iji

(θ)

R (Piji
)2

)
(7.4)

so the approximation error can be estimated by

εRδ (θ) = αδ
1

I

√√√√ I∑
i=1

σ2
iji

(θ)

R (Piji
(θ))2 .

Therefore, in Algorithm 5.2 on page 110, the suggested sample size N s, based on the approxi-
mation error and used, is now given by

Rs = max

⎧⎪⎨
⎪⎩Rk

min,

⎡
⎢⎢⎢⎢

α2
δ

(I∆mRk
k)2

I∑
i=1

(
σRk

iji
(θ)

)2

(
PRk

iji
(θ)

)2

⎤
⎥⎥⎥⎥

⎫⎪⎬
⎪⎭ .

In our tests, we set χ1 = 0.5.
The sample size revision of Algorithm 5.3 has to be slightly modified in order to take account

of the bias of simulation along with the simulation variance. The sample size revision is now
performed with the algorithm below.

Algorithm 7.2: Sample size revision when ρk < η1 and Rk �= R+.
If R+ < Rk set

Rb =

⎡
⎢⎢⎢⎢

1

2∆mRk
k I

I∑
i=1

(
σRk

iji
(θ)

)2

(
PRk

iji
(θ)

)2

⎤
⎥⎥⎥⎥ .

7.1 The BTRDA algorithm for mixed logit models 143

If R+ < Rb < Rk, set R+ = Rb and recompute ρk from (7.2).
If the (possibly recomputed) ρk < η1, compare R+ and Rk. If R+ > Rk, compute

SLLR+
(θk), ∆mR+

k and εR
+

δ (θk), else if R+ < Rk compute SLLRk(θk + sk). Set R− to
max{Rk, R

+}, and redefine

ρk =
SLLR−

(θk + sk) − SLLR−
(θk)

∆mR−
k

.

When the number of draws increases (R+ > Rk), the bias decreases in absolute value, but the
objective function can still increase due to the refinement of the sample average approximations.
Therefore, we force the algorithm to evaluate SLLR+

(θk) in order to avoid the accuracy differ-
ence effect. The case R+ < Rk is more subtle since the absolute value of the bias then increases,
so the objective function is usually lower for a fixed θ. If ρk is low, we try to circumvent the bias
effect by testing another sample size Rb, that corresponds to the sample size giving a bias equal
to the predicted increase, using the estimation (6.20).

We also slightly modify Algorithm 5.4 that updates the minimum sample size, in order to
better take the bias of simulation into account. As before we define two Rmax-dimensional
vectors v and l, and, at iteration k = 0, we set v(N0) = ĝN0(z0), l(N0) = 0, and for i =
1, . . . , Nmax, i �= N0, v(i) = −∞ (instead of +∞ since we face now to an optimization process),
l(i) = −1. At the beginning of iteration k, v(i) = SLLi

(
θh(i)

)
where h(i) corresponds to the

index of the last iteration for which Rh(i) = i, and Rh(i)−1 �= Rh(i) if h(i) > 0, or +∞ if the
size i has not been used yet. l(i) contains the number of successful iterations until iteration h(i)
(included), or −1 if the size i has not been used. Algorithm 5.4 is now reformulated as below.

Algorithm 7.3: Minimum sample size update when Rk �= Rk+1.
Let γ3 ∈ (0, 1] be a constant. If

SLLRk+1(θk+1) − v(Rk+1) ≥ γ3ν1(t− l(Rk+1))ε
Rk+1

δ (θk+1), (7.5)

set Rk+1
min = Rk

min. Otherwise increase the minimum sample size: if Rk < Rk+1, set

Rk+1
min = min

{⌈
Rk +Rk+1

2

⌉
, Rmax

}
,

else
Rk+1

min ∈ {Rk+1 + 1, . . . , Rmax}.
Set l(Rk+1) = t and v(Rk+1) = SLLRk+1(θk+1).

Note that we apply a different strategy if the sample size decreases or increases. In the first
case, bias difference and loss of precision can explain a decrease or a small increase of the SAA
objective, but it is numerically cheaper to continue to use sample sizes as small as possible; in
our implementation we then set Rk+1

min = Rk+1 + 1. In the second case, we try to avoid poor
increases of the SAA objective for large sample sizes since the associated numerical cost is then

144 Chapter 7. AMLET

important, and we then use a more conservative approach.
The constant γ3 is set to 0.5 in our tests. As before, we take safeguards to avoid the patholog-

ical case in which θk is a first-order critical point for SLLRk . In practice, we have chosen to set
Rk+1 = Rmax if ‖∇θSLL

Rk(θk)‖ ≤ tol and εRk
δ ≥ tol, where tol is a predefined tolerance (we

used 10−6), but this feature was never triggered in our experiments. Indeed, the gradient norm
usually changes slowly in the vicinity of such a critical point, and a small gradient typically
leads to a small model increase, which itself then causes the sample size to increase and Rmax is
always reached before our safeguard is activated.

7.1.3 Stopping tests

The presence of statistical error requires that the classical stopping tests for unconstrained
optimization, which involve the gradient norm and sometimes the difference between successive
iterates or function values, must be considered with caution. In particular they usually lead to
final iterations that produce insignificant objective decreases compared to the approximation’s
accuracy. Numerical simulations revealed however that the algorithm can reach an adequate
accuracy for a subset of the parameters but then produce small improvements at the maximum
sample size during a few iterations, after what good improvements are again obtained, and the
desired accuracy achieved on the remaining parameters. This is in particular true for parameters
that are hard to estimate, such as small standard deviations since they produce small variations of
the simulated likelihood function. It is therefore important not to stop the algorithm prematurely.

In our implementation, we choose to stop the iterative process if

‖∇zSLL
R(z)‖ ≤ max(µ1ε

R
δ (z), tol),

where 0 < µ1 < 1 and εRδ (z) is the estimated log-likelihood accuracy, and either the maxi-
mum sample size Nmax is used or, in order to consider the multinomial logit case, the estimated
log-likelihood accuracy is sufficiently small. The value µ1 = 0.2 has revealed to be a good com-
promise, for a signification level δ set to 0.9 in the accuracy estimator. We also stop the algorithm
if a (user preset) maximum number of iterations has been reached without convergence, or if the
norm of computed step falls under a user-defined significativity threshold (we used 10−6).

7.1.4 Convergence

The convergence properties developed in Section 5.6 for the BTRDA Algorithm 5.1 are still
valid. We nevertheless discuss briefly some of the assumptions and show that most of them are
implied by our implementation choices. Recall also that the problem is now a maximization
one, while in Chapter 5, we consider minimization problems. Therefore, we have to consider
the satisfaction of assumptions by the opposite of the simulated log-likelihood objectives and the
opposite of the models mRk

k , k ≥ 0.
First note that Assumption A.15 is fulfilled with the following one:

A.13ml The utilities Vij(γ, ·) (i = 1, . . . , I , j = 1, . . . , J) are twice continuously differentiable
for almost every γ.

7.2 AMLET 145

Assumption A.16 is immediately satisfied since the approximating objective is bounded
above by zero. We obtain indeed from (6.9)

SPR
iji

(θ) =
1

R

R∑
r=1

Liji
(γr, θ),

and the logit formula (6.6) that:

SLLR(z) =
1

I

I∑
i=1

lnSPR
iji

≤ 1

I

I∑
i=1

ln 1 = 0, (7.6)

for R = R0
min, . . . , Rmax.

Our choice to use a quadratic model, as described in Section 7.1.1, guarantees satisfaction
of Assumptions A.18 and A.19. Moreover, from Theorem 5.9 on page 114, Rk is constant for k
large enough. The SR1 approximation then satisfies A.23 under reasonable conditions (see for
instance Nocedal and Wright [104], page 207).

Assumption A.21, a classic in trust-region method analysis, is fulfilled by our choice of the
Steihaug-Toint step since it ensures a model decrease at least as much as at that obtained at the
approximate Cauchy point (Conn, Gould and Toint [35], page 131).

The condition (5.33) can now be expressed as

∃κ > 0 such that εRk
δ (zk) ≥ κ, (7.7)

for all k sufficiently large. From (6.18), we see that εRδ (z) is equal to 0 if and only if σiji
(z) = 0,

for i = 1, . . . , I , and j = 1, . . . , R. We then have a multinomial logit model, instead of a
mixed logit, and the simulated likelihood function value is then independent of the sampling.
Consequently, the fact that (7.7) is not satisfied is merely an indication that the multinomial
logit solution is a limit point of the iterates, and that the mixed logit formulation is probably
inappropriate. The algorithm could then be terminated with a sample size less than its maximum,
as described in Step 1 of Algorithm 2.2. However, the maximum sample size is always reached in
our numerical experimentations, even when testing multinomial logit models. This is explained
by the fact that we approximate the σiji

(z) by σR
iji

(z) and that small standard deviations are not
easy to recover since their influence in the model is weak. Therefore, the error term remains
positive and Rmax is always reached in the final iterations.

7.2 AMLET

Algorithm 7.1 has been incorporated in the software AMLET (for Another Mixed Logit Es-
timation Tool), that has been developed in order to validate the proposed methodology. AMLET
is entirely written in C and runs in a Linux environment. For efficiency purposes, the basic
linear algebra computations are undertaken with the libraries ATLAS (Whaley, Petitet and Don-
garra [141]) and CLAPACK (Anderson et al. [3]). We have also implemented two random gen-
erators for the Monte Carlo simulations: the standard minimial generator (Park and Miller [107])

146 Chapter 7. AMLET

and L’Ecuyer [85]. The implementation follows the guidelines proposed by Press et al. [112].
The two methods has given good, similar, results during our tests; the experiments that we report
in the next sections have used the standard minimal generator.

The package allows the user to solve mixed or multinomial logit models from existing data,
or to set up simulated data corresponding to a user-defined model structure. AMLET com-
putes parameters estimators, classical tests for goodness of fit (as described in Ben-Akiva and
Lerman [12] and Ortúzar and Willumsen [105]), and some specific information such as esti-
mations of the simulation bias and log-likelihood accuracy. An example of output is given in
Appendix A.2.

7.3 Numerical assessment of AMLET

In this section, we compare results obtained with AMLET on synthetic and real data to those
obtained using Gauss 5.1 and the MaxLik module (Schoenberg [124]), in which we have used
Halton sequences and the code written by Train [134] (we consider here the version without
panels). All tests reported were obtained using AMLET under the gcc 2.95 compiler with
optimisation on a Pentium IV 2Ghz. Gauss, on the other hand, was installed on a Pentium III
600Mhz, with 256 Mo of memory. In order to correct for the slower computer, we have computed
corrected timings for Gauss (in brackets in the tables below) by multiplying the Pentium III
times by execution time ratio (time on Pentium IV divided by time on Pentium III, approximately
0.37) for the solution of a test problem described in Section 7.3.5 with 1000 Monte Carlo draws.
For future experimentations, we could also use Ox (Doornik [45]), whose command line versions
are free for academic research. For the estimation of the standard deviation and bias, we use a
level of signification δ = 0.9. The tests cover five different questions:

• the validity of the bias and accuracy estimators,

• comparisons of different algorithmic options in the optimization process,

• the performance and robustness of the package on simulated data,

• comparisons with the Gauss package using Halton sequences, and

• the performance of the package on real data.

In experiments using simulated data, we always use linear utility functions. Furthermore, the
attribute values are drawn from a standard univariate normal distribution N(0, 1) and the coeffi-
cient of each independent variable is also drawn from an univariate normal distributionN(0.5, 1).
The error term is then generated from an extreme value (Gumbel) distribution, ensuring that the
conditional choice probability follows the logit formula (6.6). This allows us to compute the
utility of each alternative, including observed and unobserved terms. The individual choice is
then identified for each observation as the alternative with the highest utility. The optimization
starting point is defined by setting all initial parameter values to 0.1.

7.3 Numerical assessment of AMLET 147

7.3.1 Validity of bias and accuracy estimators

Since the bias and accuracy estimates (6.20) and (6.18) are only valid asymptotically as
R increases, it is useful to assess them numerically for practical purposes, in particular when
the simulation bias is significant. In order to assess these formulae, we consider a synthetic
population of 5000 individuals facing 5 alternatives (one of which is the null alternative) for
which the utilities involve 5 parameters. We vary the sample sizes using 500, 1000, 2000, 3000,
4000, 5000 random draws per individual. For each fixed number of random draws, we minimize
36 different SAA approximations, resulting in 36 slightly different solutions (with nonnegative
components). We then compute the mean of these 36 optimal values to obtain a “mean optimal
value”, which we will denote by SLLR

∗ , and which can be viewed as an estimator of E[SLLR
∗]

with

SLLR
∗ = max

θ≥0
SLLR(θ).

(The variance of this estimator is equal to σ2/N , where σ2 is the variance of SLLR
∗ andN = 36.)

For each of the 36 solutions, we furthermore estimate the standard deviation due to the sampling
effect by recomputing the log-likelihood at the solution with 36 new samples; the mean of these
newly estimated log-likelihood values is an estimator ofE[SLLR] at the considered solution, that
we will denote by Ê[SLLR]. We finally computed the average of these 36 Ê[SLLR], denoted by

Ê[SLLR]. We also estimate the model with a sample of 12000 random draws per individual and
use the estimated log-likelihood value as reference. The optimal simulated log-likelihood value is
then −1.44167087, for an estimated accuracy equal to 2.3434.10−4 and a bias of −5.0742.10−5.
The size limit of 12000 draws has been imposed by memory limitations of the used computer,
with respect to the current implementation of AMLET. Results are reported in Table 7.1.

We observe that estimated and numerical standard deviations are similar, suggesting that the
approximation (6.18) is adequate, even when the simulation bias is of the same order (for instance

for the case of 500 draws). The evolution of the estimated bias reflects well that of Ê[SLLR],
but the parallelism is less clear between the bias and the mean optimal value SLLR

∗ (note the

decrease in this quantity when the number of draws changes from 2000 to 3000, while Ê[SLLR]
increases). This can be explained by the standard error of the mean estimator since, for in-
stance, the confidence interval radius at level 0.95 for SLLR

∗ can be estimated to be 0.000091 and
0.000070 for the cases of 3000 and 5000 random draws, respectively. The parallelism between

bias and Ê[SLLR] is particularly remarkable since this last value is, in our results, approximated
from the mean over 36 different (but close) values of θ (resulting in 1296 different samplings),
instead of being recomputed for a single θ with a sufficiently high number of samplings. If all
our θ values were identical (and in the neighbourhood of the calculated 36 values), the associated
confidence interval radii at level 0.95 would be approximately 0.000015 and 0.000012 for 3000
and 5000 random draws respectively, and the influence of bias could then be detected. We finally
note that the estimated bias is greater in absolute value than the difference between the mean op-
timal value and the reference value obtained with 12000 draws. This difference can however
be explained by the bias present in the reference value, combined with the simulation errors.
In practice, the simulation bias is therefore difficult to quantify when only the approximating
optimal values are available, since it is masked by the variance of the simulated log-likelihood

148 Chapter 7. AMLET

N
um

ber
of

draw
s

500
1000

2000
3000

4000
5000

M
ean

optim
ization

tim
e

(s)
73

161
324

471
574

781
M

ean
optim

alvalue
-1.44273663

-1.44210903
-1.44178060

-1.44181801
-1.44173967

-1.44167739
M

ean
optim

alvalue
difference

-
0.00062760

0.00032843
-0.00003741

0.00014864
-0.00000802

E
stim

ated
standard

deviation
0.00069299

0.00049190
0.00034825

0.00028452
0.00024658

0.00022058
N

um
ericalstandard

deviation
0.00069968

0.00047864
0.00034943

0.00028007
0.00024944

0.00021436
E

stim
ated

accuracy
0.00113987

0.00080911
0.00057281

0.00046799
0.00040559

0.00036282
E

stim
ated

bias
-0.00120060

-0.00060492
-0.00030319

-0.00020239
-0.00015201

-0.00012162
B

ias
difference

-
0.00059568

0.00030174
0.00010080

0.0005039
0.00003038

A
verage

Ê
[S
L
L

R
]

-1.44273888
-1.44214435

-1.44183149
-1.44173967

-1.44168272
-1.44165735

A
verage

Ê
[S
L
L

R
]difference

-
0.00059453

0.00031286
0.00009182

0.00005695
0.00002537

M
ean

difference
w

ith
reference

value
-0.00106576

-0.00043816
-0.00010973

-0.000147146
0.0000014914

-0.000011856

Table
7.1:

V
alidation

of
error

and
bias

estim
ation

7.3 Numerical assessment of AMLET 149

values.
Table 6.18 also exhibits the slow convergence in O(

√
R) of Monte Carlo approximations.

However we observe that the bias decreases in absolute value faster than the error, this last
reduction being in O(R), as predicted by (6.20). It is also interesting to note that none of the
216 numerical optimization processes required unexpectedly large computing times, but some
variation remains that depends on the generated samplings.

7.3.2 Algorithmic options for optimization

Solving (7.1) requires the use of numerical optimization procedures, amongst which one of
the most popular for calibrating discrete choices models is the BFGS linesearch method (see
Train [135], pages 225–226). This method is based on using a quasi-Newton direction where the
Hessian of the log-likelihood function is approximated by the well-known BFGS secant formula.
A suitable step length is then computed along this direction to yield the final step. This method
is acknowledged to be efficient whenever the function to optimize is concave. As this is not
the case for mixed logit models, it is thus interesting to evaluate the relevance of trust-region
methods, the contending methodology described in Section 7.1 which specialized in nonconcave
problems and uses the SR1 secant formula.

For comparison purposes, we therefore coded a BFGS algorithm, as described by Nocedal
and Wright [104], using the efficient linesearch technique by Moré and Thuente [101] and as-
sociated code. We then simulated three populations of 5000 individuals facing five alternatives
(one of which is the null alternative), with associated utilities involving respectively two, five
and ten parameters. We used 2000 random draws and compared the BFGS, BTR and BTRDA
algorithms for solving the SAA problem (7.1). For each dimension, the procedure was repeated
for 10 different samplings.

The three algorithms give similar optimal log-likelihood values for a particular sampling, that
are indistinguishable in view of the simulation accuracy. Figure 7.1 summarizes the computing
times for the three methods.

Computing the geometric mean of the ratios between mean optimization times (see Ap-
pendix A.1), we obtain that BTR typically requires 79% of the time required by the BFGS
algorithm. BTRDA however requires on average only 52% of the time needed by BTR, and 41%
of the BFGS time. Moreover, for each simulation, BTRDA is the fastest method, followed by
BTR. These results therefore comfort our choice of a trust-region approach combined with the
variable sample size strategy.

7.3.3 Performance and robustness on simulated data

We next turn to experiments involving more complex simulated data. Two simulated ex-
periments varying the number of observations and alternatives provide the framework of our
evaluation. Both test the methodology on four separate integration dimensions (2, 5, 10 and 15).
For each of the simulated cases, we then estimated the model 10 times and computed the aver-
age optimization time, accuracy (6.18) and simulation bias (6.20). For each parameter, we also
computed the standard error (calculated as the square root of the average of the squared standard
error from individual runs, as in Sandór and Train [123]) and the relative error, defined as the

150 Chapter 7. AMLET

2 dimensions 5 dimensions 10 dimensions
BTRDA 167s 319s 709s
BTR 310s 706s 1235s
BFGS 357s 894s 1736s

Figure 7.1: Comparison of CPU times for the optimization algorithms

standard error divided by the mean value of the parameter. We finally average the relative errors
over the parameters to obtain an indicator of the stability of the parameters when the sampling
changes.

We first vary the number of observations over 2000, 5000, 7500 and 10000, while the number
of choice alternatives is kept fixed to 5. We limit the sample size to 1000, mainly due to memory
limitations.

The results presented in Figure 7.2 then show that the optimization time increases with the
number of observations at an approximately linear rate while remaining manageable. The esti-
mated error (Figure 7.3) decreases with the number of observations, while at the same time the
bias remains of the same order. The ratio between the bias and the accuracy therefore increases,
which makes the application of the delta method as in (7.4) more questionable as the number of
observations grows for fixed sample size (as stated from the theoretical point of view by Haji-
vassiliou and McFadden [70]). The number of dimensions also produces growth in the absolute
value of the estimated accuracy and bias.

We next vary the number of alternatives in the choice model amongst 2, 3, 5, and 10 (one
of which being the null alternative); the number of simulated individuals remains fixed to 5000,
and the maximum sample size is set to 2000.

From Figure 7.4, we see that the optimization time decreases from 2 to 5 alternatives and
then increases from 5 to 10 alternatives. Note also that the average relative error tends to increase
with the number of parameters. A possible interpretation of these phenomena is that having more
alternatives makes the discrimination of individual choices easier, leading to a sharper maximum
of the simulated likelihood function.

7.3 Numerical assessment of AMLET 151

0

200

400

600

800

1000

1200

2 4 6 8 10 12 14

O
pt

im
iz

at
io

n
tim

e

Dimensions

2000
5000
7500

10000

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

2 4 6 8 10 12 14

A
ve

ra
ge

 r
el

at
iv

e
er

ro
r

Dimensions

2000
5000
7500

10000

Figure 7.2: Evolution of time and average relative error with the number of observations

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

2 4 6 8 10 12 14

E
st

im
at

ed
 e

rr
or

Dimensions

2000
5000
7500

10000

-0.0014

-0.0012

-0.001

-0.0008

-0.0006

-0.0004

-0.0002

0
2 4 6 8 10 12 14

E
st

im
at

ed
 b

ia
s

Dimensions

2000
5000
7500

10000

Figure 7.3: Evolution of estimated error and bias with the number of observations

The estimated simulation error and bias (in absolute value) grow with the number of alter-
natives (Figure 7.5), while the average relative error decreases when the number of alternatives
increases. This suggests that the stability of the objective function is far from providing a com-
plete view of the quality of the derived estimations, as already suspected by Bhat [16]. An
important topic of research therefore remains to improve error estimates on the parameters when
using Monte Carlo approximations.

7.3.4 Comparison with Halton sequences

A major drawback to Monte Carlo methods is their slow convergence rate as a function of the
sample size, as shown in Table 7.1. Quasi-Monte Carlo methods try to speed up this convergence
by picking up points that are more uniformly distributed in the integration domain. One popular
such technique is the generation of Halton sequences, which are used for instance by Train [134]
in his Gauss package.

In the unidimensional case, one chooses a prime number b (b ≥ 2), and expands the se-

152 Chapter 7. AMLET

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2 4 6 8 10 12 14

O
pt

im
iz

at
io

n
tim

e

Alternatives

2
3
5

10

0

0.05

0.1

0.15

0.2

0.25

2 4 6 8 10 12 14

A
ve

ra
ge

 r
el

at
iv

e
er

ro
r

Alternatives

2
3
5

10

Figure 7.4: Evolution of optimization time and average relative error with the number of alter-
natives

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.001

0.0011

2 4 6 8 10 12 14

E
st

im
at

ed
 e

rr
or

Alternatives

2
3
5

10

-0.0012

-0.001

-0.0008

-0.0006

-0.0004

-0.0002

0
2 4 6 8 10 12 14

E
st

im
at

ed
 b

ia
s

Alternatives

2
3
5

10

Figure 7.5: Evolution of estimated error and bias with the number of alternatives

quences of integers 1, 2, . . . in terms of the base b. For each integer g, we have

g =
L∑

l=0

αl(g)b
l, (7.8)

where 0 ≤ αl(g) ≤ b− 1 and bL ≤ g < bL+1. The order of the digits αl(g) is then reversed and
a radix point placed in front of the sequence, yielding

φb(g) = 0.α0(g)α1(g) . . . αL(g).

For example, the Halton sequence associated to base 3 is

1

3
,
2

3
,
1

9
,
4

9
,
7

9
,
2

9
,
5

9
,
8

9
, . . .

To obtain a sequence of n-tuples in n-space, we build a Halton sequence for each component
with a different prime base b. Typically, the first n primes are used.

7.3 Numerical assessment of AMLET 153

When the number of random parameters is small (typically less than six), approximation of
the log-likelihood function based on Halton sequences usually gives the same results as pure
Monte Carlo sampling, but uses less draws. This is reflected in Table 7.2, where we consider
a simulated population of size 2000 with a model that has five parameters and five alternatives.
Results for AMLET are averaged over ten simulations. We see also that AMLET is still more
than competitive with Gauss in terms of computing time.

Variable
Gauss AMLET

125 Halt. 250 Halt. 1000 MC 2000 MC
P1 mean 0.4588 0.4587 0.457262 0.459014

P1 std. dev. 1.0854 1.0837 1.06473 1.06628
P2 mean 0.4489 0.4530 0.447979 0.451381

P2 std. dev. 1.1620 1.1622 1.17201 1.18576
P3 mean 0.5704 0.5697 0.567744 0.570876

P3 std. dev. 1.1212 1.1044 1.09374 1.109960
P4 mean 0.6165 0.6212 0.613718 0.617642

P4 std. dev. 1.3386 1.3677 1.33244 1. 34054
P5 mean 0.6548 0.6565 0.645966 0.648561

P5 std. dev. 1.2558 1.2360 1.21282 1.22422

Log-likelihood -1.44770 -1.44784 -1.44835 -1.44813
Bias NA NA -0.000826983 -0.000415893

Accuracy NA NA 0.00149579 0.00106076

Optimization time (s) 959 (355) 1649 (611) 75 149

Table 7.2: Halton and Monte Carlo samplings for 5 random parameters

When the number of random parameters increases, results deteriorate as illustrated in Ta-
ble 7.3, where ten parameters and 5 alternatives are considered for a simulated population of size
5000. Here 250 Halton draws are needed to obtain similar results to those found by AMLET with
1000 random draws. However these results can be further refined with AMLET by taking 2000
or 3000 random draws1, while using substantially more Halton draws become computationnaly
intractable. Computation times clearly favour AMLET since the optimization time used by this
package is smaller than that used by Gauss with Halton draws, even when 3000 random draws
are compared to 125 Halton draws.

Another experiment, reported in Table 7.4, considers a case where only 2000 individuals
are observed, and indicates, surprisingly, that results obtained with Gauss deteriorate when we
take 250 Halton draws instead of 125 Halton draws. This problem might reflect the fact that
Halton sequences are often less suitable for high-dimensional problems because the sequences
associated to successive prime numbers exhibits correlations as the prime numbers increase and
the space is not covered as uniformly in this case (see Figure 7.6, where 250 Halton draws
are represented). This difficulty can possibly be addressed by considering scrambled Halton

1In Euclidian distance, any of the 10 solutions found by AMLET with 2000 random draws is closer to the mean
solution obtained with 2000 or 3000 draws than the Halton solution, which is close to the mean of the solutions
obtained with 1000 random draws.

154 Chapter 7. AMLET

Variable
Gauss AMLET

125 Halt. 250 Halt. 1000 MC 2000 MC 3000 MC
P1 mean 0.4022 0.4371 0.438871 0.452648 0.452363

P1 std. dev. 0.9575 1.0546 1.07166 1.10767 1.10093
P2 mean 0.4237 0.4586 0.461841 0.477684 0.476018

P2 std. dev. 0.8423 0.8646 0.891689 0.927504 0.929728
P3 mean 0.3903 0.4305 0.429788 0.443977 0.444003

P3 std. dev. 0.7959 0.8812 0.884533 0.936943 0.933369
P4 mean 0.4700 0.5129 0.517726 0.534389 0.534119

P4 std. dev. 0.6744 0.7205 0.745905 0.775687 0.779972
P5 mean 0.4808 0.5308 0.532857 0.551394 0.551530

P5 std. dev. 0.7027 0.8312 0.849630 0.886852 0.886516
P6 mean 0.3782 0.4100 0.413706 0.426934 0.425777

P6 std. dev. 0.8297 0.9163 0.950053 0.989986 0.984977
P7 mean 0.3920 0.4337 0.436586 0.451637 0.450216

P7 std. dev. 0.9116 1.0398 1.03758 1.08211 1.07664
P8 mean 0.4895 0.5310 0.535650 0.553087 0.552532

P8 std. dev. 0.9198 1.0022 1.02415 1.05907 1.06029
P9 mean 0.4441 0.4768 0.482356 0.499464 0.498142

P9 std. dev. 0.9048 0.9694 0.979119 1.02628 1.02319
P10 mean 0.3702 0.4149 0.413833 0.427490 0.425641

P10 std. dev. 0.6250 0.8410528 0.810528 0.837880 0.839898

Log-likelihood -1.44244 -1.43990 -1.44132 -1.44086 -1.44076
Accuracy NA NA 0.0010331 0.0007410 0.0006046

Bias NA NA -0.00098627 -0.0005073 -0.0003378

Time (s) 5608 (2077) 11480 (4252) 417 868 1281

Table 7.3: Halton and Monte Carlo sampling for 10 random parameters (5000 individuals)

sequences (Bhat [15]), in which more general permutations are applied to the order of the digits
in (7.8). As an alternative, Hess, Train and Polak [76] also propose the use of randomly shifted
uniform vectors. We plan to pursue the research described here by comparing our results with
those obtained with such techniques.

7.3.5 Performance on a real data set

We finally test our algorithm on a real data set obtained from the six-week travel diary Mo-
bidrive (Axhausen, Zimmerman, Schönfelder, Rindsfúser and Haupt [6]) collected in the spring
and fall 1999 in Karlsruhe and Halle (Germany). The mixed logit models aims at explaining
individual modal choice across five alternatives (car driver, car passenger, public transport, walk
and bike). The framework applied considers the daily activity chain, in that the individual pattern
is divided into tours, which are themselves defined as the sequence of trips starting and ending at
home or at work, both being considered as fixed locations. Details and motivation for the model
structure can be found in Cirillo and Toint [27].

In this data set, we restricted our attention to the observations from Karlsruhe because level of
service variables (i.e. time and cost for various modes) were available for this location only. The
sample then includes approximately 160 households and 360 individuals. After data cleaning,

7.3 Numerical assessment of AMLET 155

Variable
Gauss AMLET

125 Halt. 250 Halt. 1000 MC 2000 MC
P1 mean 0.4432 0.4072 0.429672 0.443550

P1 std. dev. 1.0336 0.9438 0.988477 1.02280
P2 mean 0.4837 0.4409 0.462633 0.477523

P2 std. dev. 0.5929 0.5264 0.528293 0.573141
P3 mean 0.4652 0.4438 0.460063 0.474699

P3 std. dev. 0.6226 0.6013 0.606384 0.628658
P4 mean 0.3878 0.3593 0.376619 0.390012

P4 std. dev. 1.0374 0.9715 1.01980 1.07015
P5 mean 0.4576 0.4118 0.434051 0.447357

P5 std. dev. 0.8978 0.7725 0.834783 0.882849
P6 mean 0.4219 0.3920 0.407852 0.420751

P6 std. dev. 1.0214 0.8921 0.946411 0.986813
P7 mean 0.4977 0.4645 0.487255 0.499920

P7 std. dev. -0.6172 0.5375 0.633064 0.654150
P8 mean 0.4339 0.4008 0.418941 0.431671

P8 std. dev. 0.9481 0.7917 0.898677 0.925221
P9 mean 0.4786 0.4442 0.470780 0.485152

P9 std. dev. 1.0760 0.9738 1.02480 1.05215
P10 mean 0.5014 0.4561 0.482453 0.495858

P10 std. dev. 0.8562 0.7598 0.830905 0.853791

Log-likelihood -1.43714 -1.43785 -1.43767 -1.43676
Bias NA NA -0.0009082 -0.0004681

Accuracy NA NA 0.001567 0.001125

Time (s) 2092 (775) 2911 (1078) 179 400

Table 7.4: Halton and Monte Carlo sampling for 10 random parameters (2000 individuals)

5799 tours were retained for the parameter estimation procedure. As several tours are performed
by the same individuals, the data therefore contains significant correlations. At this stage of
development of AMLET, this cannot yet be taken into account but we hope to include panel
analysis facilities in the package soon. For further details on mixed logit on the Mobidrive panel
data set, see Cirillo and Axhausen [26].

Our model contains 14 variables, four of which are alternative specific constants (car driver
being the base). We estimate household location characteristics (urban/suburban location), indi-
vidual socio-demographic variables (female and working part time, being married with children,
annual car mileage), tour variables (number of stops), pattern variables (time budget) and level of
service variables (time and cost). We specify a mixed logit model with fixed coefficients except
for time, cost and time budget, which are expected to vary considerably across observations, and
are assumed to be normally distributed. The value of time is 9.55 DM (about 4.9 Euros), which
is comparable to that used in other European studies (see TRACE [133]).

The model has been estimated both with Gauss and AMLET, using the same starting point.
Results are summarized in Table 7.5, where only one simulation is used for each column, the four

156 Chapter 7. AMLET

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10th prime number (29)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

9th an 10th prime numbers

Figure 7.6: Difficulties with standard Halton draws

first parameters being the alternative specific constants. The alternatives associated to other non-
generic parameters are indicated between brackets, next to the parameter name. The following
abbreviations have been used: CD for car driver, CP for car passenger, PT for public transport,
W for walk and B for bike.

AMLET results are similar to those obtained by Gauss, supporting the observation that good
results can be obtained with a small number of Halton draws, at least when the integration di-
mension is low. However, the optimization time of AMLET is very competitive with that of
Gauss, since they are similar for 2000 random draws and 125 Halton draws, and AMLET is
clearly faster for a sample size of 1000. We have also computed an average solution with AM-
LET, by running ten simulations. The average optimization time is then 900 seconds with 1000
random draws and 1585 seconds with 2000 random draws. If we use the BTR algorithm, AM-
LET takes in average 1758 and 3431 seconds with 1000 and 2000 random draws, respectively,
so we observe a speed-up factor of approximately 2 when using our sample size strategy.

The crucially beneficial effect of the variable sample size strategy is illustrated in Figure 7.7,
giving the evolution of the sample size Rk with the iteration index k. The left graph corresponds
to a maximum sample size of 1000 while the right graph has been obtained with a maximum of
2000 random draws. Furthermore, Figure 7.8 shows that the sample size increases towards its
maximum value only when the objective function’s value is near to its maximum, and is very
small when we are far from the solution. The graphs correspond again to 1000 (left) and 2000
(right) random draws.

7.3.6 Discussion

Due to the complexity of the objective function in mixed logit models, the choice of the
optimization procedure is of crucial importance. First of all, the speed of convergence can be
dramatically increased if the available information is exploited. In our case, we see that the
estimation of the standard deviation allows us to speed up the initial iterations by using smaller

7.3 Numerical assessment of AMLET 157

V
ar

ia
bl

e
So

ft
w

ar
e

G
au

ss
(1

25
H

al
to

n)
A

M
LE

T
(1

00
0

M
on

te
C

ar
lo

)
A

M
LE

T
(2

00
0

M
on

te
C

ar
lo

)
C

oe
ffi

ci
en

t
t-

st
at

is
tic

C
oe

ffi
ci

en
t

t-
st

at
is

tic
C

oe
ffi

ci
en

t
t-

st
at

is
tic

C
ar

Pa
ss

en
ge

r
(C

D
)

-1
.4

51
1

17
.6

78
-1

.4
41

09
17

.7
12

7
-1

.4
49

37
17

.7
04

5
Pu

bl
ic

T
ra

ns
po

rt
(P

T
)

-0
.9

35
5

6.
86

9
-0

.9
34

35
5

6.
92

11
6

-0
.9

35
23

2
6.

86
94

9
W

al
k

(W
)

0.
10

81
0.

73
1

0.
10

37
39

0.
70

89
12

0.
10

61
54

0.
71

84
96

B
ik

e
(B

)
-0

.6
35

5
4.

61
4

-0
.6

33
50

7
4.

65
29

4
-0

.6
36

25
8

4.
62

29
7

U
rb

an
ho

us
eh

ol
d

lo
ca

tio
n

(P
T

)
0.

56
09

5.
13

3
0.

55
29

85
5.

10
11

0.
55

75
15

5.
11

42
7

Su
bu

rb
an

ho
us

eh
ol

d
lo

ca
tio

n
(W

,B
)

-0
.3

45
1

3.
94

2
-0

.3
46

05
9

4.
01

46
-0

.3
43

10
4

3.
92

56
Fu

ll-
tim

e
w

or
ke

r
(P

T
)

0.
26

90
2.

89
0

0.
27

23
23

2.
94

15
3

0.
27

04
77

2.
90

78
2

Fe
m

al
e

an
d

pa
rt

-t
im

e
(C

P)
0.

91
33

8.
71

1
0.

90
12

66
8.

63
97

0.
91

16
15

8.
70

66
9

M
ar

ri
ed

w
ith

ch
ild

re
n

(C
D

)
0.

97
16

11
.5

74
0.

96
33

06
11

.5
90

8
0.

97
12

95
11

.5
83

5
A

nn
ua

lm
ile

ag
e

(C
D

)
0.

05
18

12
.0

96
0.

05
11

03
4

12
.0

11
5

0.
05

17
93

12
.0

89
6

N
um

be
r

of
st

op
(C

D
)

0.
13

49
3.

03
0

0.
13

04
9

2.
96

80
2

0.
13

38
26

3.
01

39
5

T
im

e
m

ea
n

-0
.0

26
8

9.
86

8
-0

.0
26

18
24

9.
65

18
8

-0
.0

26
82

15
9.

89
27

3
T

im
e

st
d.

de
v.

0.
02

05
6.

02
4

0.
01

97
85

5
5.

79
46

8
-0

.0
20

60
27

6.
08

41
C

os
tm

ea
n

-0
.1

68
3

11
.3

56
-0

.1
66

76
7

11
.2

89
2

-0
.1

68
15

5
11

.3
17

6
C

os
ts

td
.

de
v.

-0
.0

45
2

2.
95

8
0.

04
50

30
6

2.
60

62
6

-0
.0

45
56

2
2.

84
25

7
T

im
e

bu
dg

et
m

ea
n

(C
D

,C
P)

-0
.1

24
9

7.
77

3
-0

.1
22

59
7.

71
89

4
-0

.1
24

71
9

7.
77

77
4

T
im

e
bu

dg
et

st
d.

de
v.

(C
D

,C
P)

-0
.1

13
6

4.
93

2
0.

10
37

46
4.

27
11

7
0.

11
22

92
4.

88
76

9

L
og

-l
ik

el
ih

oo
d

-1
.1

64
89

-1
.1

65
33

7
-1

.1
64

84
9

B
ia

s
N

ot
av

ai
la

bl
e

-0
.0

00
08

24
75

4
-0

.0
00

04
52

83
2

A
cc

ur
ac

y
N

ot
av

ai
la

bl
e

0.
00

02
77

41
4

0.
00

02
05

55
8

O
pt

im
iz

at
io

n
tim

e
(s

)
65

85
(2

43
9)

87
1

16
52

Ta
bl

e
7.

5:
Te

st
s

on
re

al
da

ta
se

t

158 Chapter 7. AMLET

0
100
200
300
400
500
600
700
800
900

1000

0 20 40 60 80 100 120

S
am

pl
e

si
ze

Iteration

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 20 40 60 80 100 120 140

S
am

pl
e

si
ze

Iteration

Figure 7.7: Variation of sample sizes with iterations

0
100
200
300
400
500
600
700
800
900

1000

-2.2 -2 -1.8 -1.6 -1.4 -1.2 -1

S
am

pl
e

si
ze

Log-likelihood value

0
200
400
600
800

1000
1200
1400
1600
1800
2000

-2.2 -2 -1.8 -1.6 -1.4 -1.2 -1

S
am

pl
e

si
ze

Log-likelihood value

Figure 7.8: Variation of sample sizes with log-likelihood value

samples, and often to stop earlier. Secondly, important savings can be achieved by taking the
problem properties into account in order to avoid unnecessary computations. For instance, we
evaluate the function and its gradient analytically at the same time, instead of successively.

Quasi-Monte Carlo methods produce the same accuracy with less random draws, at least
in low and medium integration dimensions, but this accuracy is difficult to quantify in practice,
while this is easy for Monte Carlo approaches. As our algorithm exploits this information, its ap-
plication to quasi-Monte Carlo techniques is not as direct as with pure random draws. Moreover
usual problems in high-dimensional integration with quasi-Monte Carlo methods, such as corre-
lations, do not occur in pure Monte Carlo procedures. Consequently, the latter are often more
robust, both theoretically and numerically. Our procedure can therefore be seen as a compromise
between speed and the exploitation of theoretical information. More research is however needed
to apply the same philosophy to quasi-Monte Carlo sequences.

A Appendix 159

A Appendix

A.1 Performance comparisons and use of means

When comparing two algorithms, we would like to express the relative with some index. In
order to achieve this goal we typically take a set of running tests on the machine and compute
some sort of mean. There are a number of different ways to define a mean value; among them the
arithmetic mean, the geometric mean, and the harmonic mean. Jacob and Mudge [78] illustrates
that these different means are not equal, leading to different conclusions.

Consider n numbers a1, . . . , an. The arithmetic mean is defined as

AM(a1, . . . , an) =

∑n
i=1 ai

n
,

while the geometric mean is

GM(a1, . . . , an) = n

√√√√ n∏
i=1

ai.

Finally, the harmonic mean is defined as

HM(a1, . . . , an) =
n∑n

i=1
1
ai

.

Note that the harmonic mean is the inverse of the arithmetic mean:

AM(a1, . . . , an) =
1

HM
(

1
a1
, . . . , 1

an

) . (7.9)

When comparing running of two algorithms we can also compute the ratio of arithmetic
means:

RAM =

∑n
i=1 ti∑n
i=1 t

′
i

,

where ti and t′i are the times taken respectively by the first and the second algorithm, on test
problems i, i = 1, . . . , n.

Consider for instance that we wish to evaluate two algorithms, and that we have two prob-
lems tests. The first algorithm take 3 and 300 seconds for the first and the second problem,
respectively, while the second method consume 12 and 600 seconds. Consider the ratios of the
running times:

test 1 :
3

12
test 2 :

300

600
.

Then AM = 3/8, so the first algorithm is 8/3 times as fast as the second (reference) algorithm.
On the other hand, HM = 1/3, so the first algorithm is three times faster than the second. On
the other hand GM =

√
2/4. Finally, RAM = 303/612 ≈ 0.495. Each performance measure

gives a different answer, so which one have we to use? Each one gives in fact an answer to a
different question.

160 Chapter 7. AMLET

Let ai, i = 1, . . . , n, be running times obtained when using a first algorithm, and a′i, i =
1, . . . , n, the corresponding running times for a second algorithm. The arithmetic mean of the
set of ratios is then equal to

1

n

n∑
i=1

ai

a′i
,

it is a weighted average where the weights are the inverses of the running times of the second
algorithm. By (7.9) the arithmetic and geometric means differ only by the choice of the reference
algorithms. The geometric mean has the advantage that it is irrelevant to the choice of the
reference algorithm, but suffers from less intuitive interpretation.

The ratio of arithmetic means of running times provides an answer to the question “how
much time will be saved by running an algorithm compared the reference one”. For this we have
to test typical programs that we will have to solve, and to weight them with their frequency when
computing the average. While this approach is intuitively appealing, the construction of a test
set is not an easy task, and depends on the final user. Since in our context the applications can
vary a lot between users, the ratio of arithmetic means is not of huge interest. The choice of an
index of comparison is therefore more trickier that it could appear at a first sight. We privilege
here the geometric mean for its irrelevance to the choice of the reference algorithm.

A.2 Example of AMLET’s output

We reproduce below one output obtained during our tests on the Mobidrive data set. The
maximum number of random draws per individual is fixed to 2000. Note that for convenience
of presentation, we have omitted the variance-covariance and correlation matrices in the listing
below, while they are available in AMLET’s output.

Time spent: 1712.730 seconds
Number of observations: 5799

Method used for the optimization: mcbtrda
Time consumed during the optimization process: 1693 seconds
Number of iterations: 139
Function evaluations: 141
Seed used for the random generator: 7104900
Final number of random draws: 2000

Log-likelihood value at zero: -1.609437912
Log-likelihood value for specific constants: -1.264117075
Log-likelihood value: -1.164563086
Gradient norm: 1.183717455e-05
Accuracy of the likelihood function evaluation: 0.000210895
Bias of simulation: -4.76652e-05

Estimation Standard deviation t-statistic

0 -1.45687 0.00676958 17.7068 *

A Appendix 161

1 -0.934566 0.0187581 6.82364 *
2 0.11002 0.0221068 0.73996
3 -0.635721 0.0191581 4.59293 *
4 0.565902 0.0120608 5.15292 *
5 -0.347151 0.00774181 3.94545 *
6 0.267496 0.00873135 2.86271 *
7 0.918413 0.011402 8.60098 *
8 0.973428 0.00713988 11.5202 *
9 0.0520725 1.84648e-05 12.1182 *
10 0.136972 0.00200753 3.05703 *
11 -0.0271638 7.42529e-06 9.96859 *
12 0.0209935 1.1595e-05 6.16526 *
13 -0.169869 0.000219132 11.4753 *
14 0.0466559 0.000228449 3.08682 *
15 -0.125882 0.000262423 7.77072 *
16 0.116828 0.000495892 5.24632 *

rho-squared: 0.276416
adjusted rho-squared: 0.274595

Likelihood ratio test

Chi-square value for l(0): 5159.66
Level of rejection: 1

162 Chapter 7. AMLET

Conclusions and further research
perspectives

The research work described in this thesis is concerned with the study of nonlinear stochastic
programming, more particularly with the design of algorithms for solving classes of nonlinear
stochastic programs. In order to efficiently solve a stochastic program, we have to take its struc-
ture into account, and to adapt algorithms in consequence. In this thesis, we have considered two
classes of problems: nonlinear stochastic problems with a split-variable formulation and general
nonlinear programs involving continuous variables or discrete variables with a large number of
possible realizations, which are approximately solved using Monte Carlo samplings. For both of
them, we have designed trust-region based algorithms that take their properties into account.

Interior point methods for scenario formulations

We have first described a primal-dual interior point algorithm where the structure of the
primal-dual systems is exploited to favour parallelization of the implementation. We have showed
that, under some assumptions, the decomposition scheme is well-defined, while the global struc-
ture of the algorithm, based on existing primal-dual trust-region methods, and the use of a dogleg-
path for the model minimization, ensures that the algorithm is convergent.

More experimentation is however needed to numerically confirm our conclusions, in particu-
lar in order to assess the gains in computation times obtained with the parallelization. Moreover,
recent developments in linear and convex stochastic programming are based on the exploitation
of the sparse structure related to the formulation in extension (see for instance Gondzio and
Grothey [62], Gondzio and Sarkissian [63], Steinbach [130]). This offers the benefit to avoid
the variables multiplication, but restricts the possibilities of parallelization. It would therefore be
interesting to explore adaptation of such techniques to the nonconvex case, and to compare the
numerical performances of the different approaches.

Monte Carlo samplings

A second part of this work is the study of Monte Carlo techniques for stochastic nonlinear
nonconvex programs, both on a theoretical level and on a practical one.

164 Conclusions and further research perspectives

Consistency of Monte Carlo approximating solutions

We have first studied the consistency of solutions obtained when solving sample average
approximations of the true problems, for an increasing number of random draws. Classical
results are limited to first-order critical or global solutions. We have developed new conditions
ensuring that second-order critical solutions of the SAA problems converge almost surely to
second-order critical solutions of the true problem.

A trust-region algorithm with dynamic accuracy

When the number of draws is fixed, statistical inference allows us to evaluate the accuracy
of the approximation. We have capitalized on this accuracy estimation to design a trust-region
method that allows the use of subsets of the initial set of random draws when possible, leading to
reductions of the numerical cost associated to the objective evaluation. The resulting algorithm,
that we refer as BTRDA, for basic trust-region with dynamic accuracy, is nonmontone in the
sense that it allows increases of the approximated objective value. However, it is proved to
converge to a solution of the original SAA problem under reasonable conditions.

Application to discrete choice theory

Our Monte-Carlo developments have then been applied to the mixed logit models estimation
problem. Mixed logit problems are currently very popular among practitioners in discrete choice
theory, but are numerically difficult to solve since they involve random parameters, which are
usually assumed to be continuous, leading to choice probabilities that are multidimensional in-
tegrals. We have shown that the mixed logit problem can be seen as a generalization of usual
stochastic programs and that the consistency results obtained for SAA solutions can then be
easily extended. Moreover, the BTRDA algorithm has been adapted to take the additional diffi-
culties (in particular the simulation bias) into account, and implemented in our software AMLET
(Another Mixed Logit Estimation Tool). Numerical experimentations exhibit very favourable re-
sults, in comparison to standard nonlinear programming methods and to existing tools for solving
mixed logit problems.

Research perspectives

The BTRDA algorithm is currently for unconstrained problems only. A natural research
direction is to adapt it to constrained problems, in particular if these constraints involve some
randomness. More generally, the BTRDA algorithm could be adapted to larger classes of prob-
lems, as soon as the objective function can be approximated by numerically cheaper approxima-
tions, whose accuracy can be estimated. It is even possible to adapt the BTRDA methodology
to the previously presented primal-dual interior approach as soon as the objectives related to the
different scenarios are of similar order, since the relative weights can then be estimated by the
scenarios probabilities. However, care must be taken in practice since scenarios with low prob-
abilities often correspond to situations where a nonanticipative solution leads to a poor value of
the related objective.

Conclusions and further research perspectives 165

Practitioners in discrete choice theory usually solve the mixed logit estimation problem using
quasi-Monte Carlo approximations instead of Monte Carlo ones, in order to construct numeri-
cally cheaper problems. However, the accuracy estimation is then a difficult task, so the BTRDA
algorithm cannot be directly applied. The potential benefit of using quasi-Monte Carlo suggests
however adapting the methodology to such techniques, for instance the Latin hypercube sam-
pling method (McKay, Beckman and Conover [96], Owen [106]), and the randomized Halton
sequences (see in particular Wang and Hickernell [140], that develop associated error estimation
procedures).

Finally, the variable sample size strategy, while numerically efficient during our tests with
AMLET, can very probably be improved, in order to obtain further numerical gains. Moreover,
more numerical tests, both on discrete choice models and on other problems, should be useful in
assessment and refinement of the proposed method.

Final conclusions

Nonlinear stochastic programming requires the design of methodologies that take account
of the properties of the considered problems, as done in this work. Note however that the two
proposed algorithms address different difficulties. In the split-variable formulation, the major
computational burden is the number of variables that is often very large. On the other hand, the
sampling average approximation can require a very large number of random draws to deliver an
adequate accuracy, independently of the number of variables. Combining the two approaches
could nevertheless result in a method that will address these two major difficulties in stochastic
programming.

We therefore consider the present work as a first step in dealing with nonlinear nonconvex
stochastic programs, suggesting many possible future research directions we are interested in,
rather than a completed exploration of the subject.

166 Conclusions and further research perspectives

Main notations and abbreviations

General
R set of real numbers
R set of extended real numbers: R ∪ {−∞,+∞}
R+ set of real positive numbers
N set of natural numbers
∅ empty set
e[j] j-th coordinate vector
Π projection operator
#S cardinality of S
NX(x) normal cone of X at x ∈ X
TX(x) tangent cone of X at x ∈ X

Mathematical programming
E set of equality constraints
I set of inequality constraints
x∗ optimal solution
F feasible set
strict{F} strictly feasible set

Stochastic programming
H number of stages (horizon) in multistage prob-

lems
s scenario
S number of scenarios

Probability theory
ω random event (ω ∈ Ω)
Ω set of all random events
A event (measurable subset of Ω)
A collection of subsets of Ω
ξ random vector (possibly indexed by time, ξt)
ξ realization of ξ
Ξ support of ξ

168 Main notations and abbreviations

P [·] probability of events
E[ξ], ξ expectation of ξ
σ(·) standard deviation
a.s. almost surely
i.i.d. independent and identically distributed
a.s.−→ almost sure convergence
p→ convergence in probability

⇒,
D→ convergence in distribution

N(µ, σ2) normal distribution with mean µ and variance
σ2

Φ(x) cumulative distribution function of the standard
normal random variable

Main mathematical notations

AMLET Another Mixed Logit Estimation Tool
BTR basic trust-region algorithm
IIA independence from irrelevant alternatives
KKT Karush-Kuhn-Tucker
LICQ Liner Independence Constraint Qualification
LL log-likelihood
MC Monte Carlo
ML maximum likelihood
SAA sample average approximation
SLL simulated log-likelihood
SP stochastic programming
TSSPR two-stage stochastic programming with recourse

Main abbreviations

Bibliography

[1] Natalia M. Alexandrov, John E. Dennis Jr, Robert M. Lewis, and Virginia Torczon. A
trust region framework for managing the use of approximation models. Structural Opti-
mization, 15(1):16–23, 1998.

[2] Greg M. Allenby and Peter E. Rossi. Marketing models of consumer heterogeneity. Jour-
nal of Econometrics, 89:57–78, 1999.

[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide.
SIAM, Philadelphia, Pennsylvania, USA, third edition, 1999.

[4] Simon P. Anderson, Andre De Palma, and Jacques-Francois Thisse. Discrete Choice
Theory of Product Differentiation. MIT Press, Cambridge, Massachusetts, USA, 1992.

[5] Robert B. Ash and Catherine A. Doleans-Dade. Probability and Measure Theory. Har-
court/Academic Press, second edition, 1999.

[6] Kay W. Axhausen, Andrea Zimmerman, Stefan Schönfelder, Guido Rindsfüser, and
Thomas Haupt. Observing the rythms of daily life: A six week travel diary. Trans-
portation, 29(2):95–124, 2002.

[7] Fabian Bastin. Nonlinear stochastic programming. Master’s thesis, Department of Math-
ematics, University of Namur, Namur, Belgium, September 2001.

[8] Fabian Bastin, Cinzia Cirillo, and Philippe L. Toint. Numerical experiments with AMLET,
a new Monte-Carlo algorithm for estimating mixed logit models. Paper presented at the
10th International Conference on Travel Behaviour Research, 2003.

[9] Fabian Bastin, Cinzia Cirillo, and Philippe L. Toint. A new efficient Monte Carlo algo-
rithm for estimating mixed-logit models. Technical report, Department of Mathematics,
University of Namur, Namur, Belgium, Forthcoming.

[10] Fabian Bastin, Cinzia Cirillo, and Philippe L. Toint. Convergence theory for nonconvex
stochastic programming with an application to mixed logit. Mathematical Programming,
Series B, Submitted.

[11] Fabian Bastin, Annick Sartenaer, and Jie Sun. On interior point methods using a suitable
decomposition for multistage nonlinear stochastic programming. In Preparation.

170 BIBLIOGRAPHY

[12] Moshe Ben-Akiva and Steven R. Lerman. Discrete Choice Analysis: Theory and Appli-
cation to Travel Demand. The MIT Press, 1985.

[13] Arjan Berkelaar, Dert Cees, Bart Oldenkamp, and Shuzhong Zhang. A primal-dual de-
composition interior point approach to two-stage stochastic linear programming. Techni-
cal report, Erasmus University Rotterdam, The Netherlands, 1999. Econometric Institute
Report EI-9918/A.

[14] Dimitri P. Bertsekas. Convexity, Duality, and Lagrange Multipliers. Lecture Notes, Mas-
sachusetts Institute of Technology, 2001.

[15] Chandra R. Bhat. Quasi-random maximum simulated likelihood estimation of the mixed
multinomial logit model. Transportation Research, 35B(7):677–693, August 2001.

[16] Chandra R. Bhat. Simulation estimation of mixed discrete choice models using random-
ized and scrambled Halton sequences. Transportation Research B, 37(3):837–855, 2003.

[17] Chandra R. Bhat and Saul Castelar. A unified mixed logit framework for modelling re-
vealed and stated preferences: formulation and application to congestion pricing analysis
in the San Francisco bay area. Transportation Research B, 36(3):593–616, 2002.

[18] Chandra R. Bhat and Frank S. Koppelman. Activity-based modeling of travel demand.
In Randolph W. Hall, editor, Handbook of Transportation Science, pages 35–61, Norwell,
USA, 1999. Kluwer Academic Publisher.

[19] Michel Bierlaire. Discrete choice models. In Martine Labbé, Gilbert Laporte, Katalin
Tanczos, and Philippe L. Toint, editors, Operations Research and Decision Aid Method-
ologies in Traffic and Transportation Management, volume F. 166 of NATO ASI Series,
pages 203–227, Berlin, Germany, 1998. Springer-Verlag.

[20] Michel Bierlaire, T. Lotan, and Philippe L. Toint. On the overspecification of multinomial
and nested logit models due to alternative specific constants. Transportation Science,
31(4):363–371, 1997.

[21] John R. Birge and François Louveaux. Introduction to Stochastic Programming. Springer-
Verlag, 1997.

[22] Alexander Borovkov. Statistique mathématique. Mir, 1987.

[23] David Brownstone, David S. Bunch, and Kenneth Train. Joint mixed logit models of
stated and revealed preferences for alternative-fuel vehicles. Transportation Research B,
34(5):315–338, 2000.

[24] Richard H. Byrd, Humaid Fayez Khalfan, and Robert B. Schnabel. Analysis of a sym-
metric rank-one trust region method. SIAM Journal on Optimization, 6(4):1025–1039,
1996.

BIBLIOGRAPHY 171

[25] Abraham Charnes and William W. Cooper. Chance-constrained programming. Manage-
ment Science, 5:73–79, 1959.

[26] Cinzia Cirillo and Kay W. Axhausen. Mode choice of complex tour. In Proceedings of
the European Transport Conference, Cambridge, UK, 2002.

[27] Cinzia Cirillo and Philippe L. Toint. An activity based approach to the Belgian national
travel survey. Technical Report 2001/07, Transportation Research Group, Department of
Mathematics, University of Namur, 2001.

[28] Carlos A. Coello Coello, David A. Van Veldhuizen, and Gary B. Lamont. Evolutionary
Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, Boston,
USA, 2002.

[29] Benoît Colson. Trust-Region Algorithms for Derivative-Free Optimization and Nonlinear
Bilevel Programming. PhD thesis, University of Namur, Namur, Belgium, July 2003.

[30] Andrew R. Conn, Nicholas I. M. Gould, Dominique Orban, and Philippe L. Toint. A
Primal-Dual Trust-Region Algorithm for Non-convex Nonlinear Programming. Mathe-
matical Programming, 87(2):215–249, 2000.

[31] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Convergence of quasi-
Newton matrices generated by the symmetric rank one update. Mathematical Program-
ming, 50(2):177–196, 1991.

[32] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. LANCELOT: a Fortran
package for large-scale nonlinear optimization (Release A). Springer-Verlag, Heidelberg,
Berlin, New-York, 1992.

[33] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Numerical experiments
with the LANCELOT package (Release A) for large-scale nonlinear optimization. Math-
ematical Programming, Series A, 73(1):73–110, 1996.

[34] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. A primal-dual algorithm
for minimizing a non-convex function subject to bound and linear equality constraints.
In DG. Di Pillo and F. Giannessi, editors, Nonlinear Optimization and Applications 2.
Kluwer Academic Publishers, 1999.

[35] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Trust-Region Methods.
SIAM, Philadelphia, USA, 2000.

[36] David R. Cox and David V. Hinkley. Theoretical Statistics. Chapman & Hall, London,
England, 1974.

[37] Carlos F. Daganzo. Multinomial Probit: The theory and its application to demand fore-
casting. Academic Press, New York, USA, 1979.

172 BIBLIOGRAPHY

[38] Andrew Daly. Estimating "tree" logit models. Transportation Research B, 21(4):251–268,
1987.

[39] James Davidson. Stochastic Limit Theory. Oxford University Press, Oxford, England,
1994.

[40] István Deák. Multidimensional integration and stochastic programming. In Y. Ermoliev
and R. J.-B. Wets, editors, Numerical Techniques for Stochastic Optimization, pages 187–
200. Springer Verlag, 1988.

[41] M. A. H. Dempster, editor. Stochastic Programming. Academic Press, London, England,
1980.

[42] John E. Dennis Jr and Robert B. Schnabel. Numerical Methods for Unconstrained Opti-
mization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, New Jersey, USA,
1983.

[43] Darinka Dentcheva, Ralf Gollmer, Andris Möller, Werner Römisch, and Rüdiger Schultz.
Solving the unit commitment problem in power generation by primal and dual methods. In
M. Brøns, M. P. Bendsøe, and M. P. Sørensen, editors, Progress in Industrial Mathematics
at ECMI 96, pages 332–339. Teubner, Stuttgart, Germany, 1997.

[44] Thomas A. Domencich and Daniel L. McFadden. Urban Travel Demand: A Behavioral
Analysis. North-Holland, Amsterdam, The Netherlands, 1975. Reprinted 1996.

[45] Jurgen A. Doornik. Ox: An Object-Oriented Matrix Language. Timberlake Consultants
Press, London, England, 4th edition, 2001.

[46] Iain S. Duff and John K. Reid. The multifrontal solution of indefinite sparse symmetric
linear equations. ACM Transactions on Mathematical Software, 9(3):302–325, 1993.

[47] Electric Power Research Institute. Methodology for predicting the demand for new
electricity-using goods. Final Report EA-593, Project 488-1, Electric Power Research
Institute, Palo Alto, California, USA, 1977.

[48] Yuri Ermoliev and Roger J-B Wets. Stochastic programming, an introduction. In Y. Er-
moliev and R. J.-B. Wets, editors, Numerical Techniques for Stochastic Optimization,
pages 1–32, Berlin, 1988. Springer-Verlag.

[49] Merran Evans, Nicholas Hastings, and Brian Peacock. Statistical distributions. John
Wiley & Sons, 2nd edition, 1993.

[50] Anthony V. Fiacco. Introduction to Sensitivity and Stability Analysis in Nonlinear Pro-
gramming. Academic, New York, USA, 1983.

[51] Anthony V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Uncon-
strained Minimization Techniques. John Wiley & Sons, New York, NY, USA, 1968.
Reprinted by SIAM Publications in 1990.

BIBLIOGRAPHY 173

[52] George S. Fishman. Monte Carlo: Concepts, Algorithms and Applications. Springer
Verlag, New York, USA, 1996.

[53] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, New York, USA,
second edition, 1987.

[54] A. Forsgren, Philip E. Gill, and Margaret H. Wright. Interior methods for nonlinear opti-
mization. SIAM Review, 44(4), 2002.

[55] Karl Frauendorfer. Stochastic Two-Stage Programming, volume 392 of Lecture Notes in
Economics and Mathematical Systems. Springer-Verlag, 1992.

[56] Robert Fuller and Christer Carlsson. Fuzzy multiple criteria decision making; recent
developments. Fuzzy Sets and Systems, 78(2):139–153, 1996.

[57] Rodrigo A. Garrido. Estimation performance of low discrepancy sequences in stated pref-
erences. Paper presented at the 10th International Conference on Travel Behaviour Re-
search, 2003.

[58] Horand I. Gassmann. Optimal harvest of a forest in the presence of uncertainty. Canadian
Journal of Forest Research, 19:1267–1274, 1990.

[59] David M. Gay, Michael L. Overton, and Margaret H. Wright. A primal-dual interior point
method for nonconvex nonlinear programming. In Y. Yuan, editor, Advances in Nonlinear
Programming, pages 31–56. Kluwer Academic Publishers, Dordrecht, The Netherlands,
1998.

[60] Philip E. Gill, Walter Murray, Michael Saunders, G. W. Stewart, and Margaret H. Wright.
Properties of a representation of a basis for the null space. Mathematical Programming,
33(2):172–186, 1985.

[61] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins
University Press, third edition, 1996.

[62] Jacek Gondzio and Andreas Grothey. Reoptimization with the primal-dual interior point
method. SIAM Journal on Optimization, 13(3):842–864, 2003.

[63] Jacek Gondzio and Robert Sarkissian. Parallel interior point solver for structured quadratic
programs: Application to financial planning problems. Technical Report MS-03-001,
School of Mathematics, The University of Edinburgh, United Kingdom, 2003.

[64] María D. González-Lima, Richard A. Tapia, and Florian A. Potra. On effectively com-
puting the analytic center of the solution set by primal-dual interior-point methods. SIAM
Journal on Optimization, 8(1):1–25, February 1998.

[65] Nicholas I. M. Gould, Dominique Orban, Annick Sartenaer, and Philippe L. Toint. Super-
linear convergence of primal-dual interior point algorithms for nonlinear programming.
SIAM Journal on Optimization, 11(4):974–1002, 2001.

174 BIBLIOGRAPHY

[66] Nick Gould. On practical conditions for the existence and uniqueness of solutions to
the general equality quadratic programming problem. Mathematical Programming, pages
90–95, 1985.

[67] Nicole Gröwe, Werner Römisch, and Rüdiger Schultz. A simple recourse model for power
dispatch under uncertain demand. Annals of Operations Research, 59:135–164, 1995.

[68] Gül Gürkan, A. Yonca Özge, and Stephen M. Robinson. Sample-path solution of stochas-
tic variational inequalities. Mathematical Programming, 84(2):313–333, 1999.

[69] Gül Gürkan, A. Yonca Özge, and Stephen M. Robinson. Solving stochastic optimization
problems with stochastic constraints: an application in network design. In D.T. Sturrock
P. A. Farrington, H. B. Nembhard and G. W. Evans, editors, Proceedings of the 1999
Winter Simulation Conference, pages 471–478, USA, 1999.

[70] Vassilis A. Hajivassiliou and Daniel L. McFadden. The method of simulated scores for
the estimation of LDV models. Econometrica, 66(4):863–896, 1998.

[71] John H. Halton. On the efficiency of certain quasi-random sequences of points in evaluat-
ing multi-dimensional integrals. Numerische Mathematik, 2:84–90, 1960.

[72] David A. Hensher and William H. Greene. The mixed logit model: The state of practice.
Transportation, 30(2):133–176, 2003.

[73] David A. Hensher and Charles Sullivan. Willingness to pay for road curviness and road
type for long-distance travel in New Zealand. Transportation Research D, 8(2):139–155,
2003.

[74] Stéphane Hess and John Polak. Mixed logit estimation of parking type choice. Submitted
for presentation at the 83rd Transportation Research Board Annual Meeting, 2004.

[75] Stéphane Hess, John Polak, and Andrew Daly. On the performance of shuffled Halton
sequences in the estimation of discrete choice models. In Proceedings of European Trans-
port Conference, Strasbourg, France, 2003. PTRC.

[76] Stéphane Hess, Kenneth Train, and John Polak. On the use of randomly shifted uniform
vectors in the estimation of a mixed logit model for vehicle choice. Transportation Re-
search B, Submitted.

[77] Suwarna Hulsurkar, Mahendra P. Biswal, and Surabhi B. Sinha. Fuzzy programming
approach to multi-objective stochastic linear programming problems. Fuzzy Sets and Sys-
tems, 88(2):173–181, 1997.

[78] Bruce Jacob and Trevor Mudge. Notes on calculating computer performance. Techni-
cal Report CSE-TR-231-95, Advanced Computer Architecture Lab, EECS, University of
Michigan, Michigan, USA, 1995.

BIBLIOGRAPHY 175

[79] Miettinen Kaisa. Nonlinear Multiobjective Optimization, volume 12 of International
Series in Operations Research & Management Science. Kluwer Academic Publishers,
Boston, USA, 1999.

[80] Peter Kall and Stein W. Wallace. Stochastic Programming. John Wiley & Sons, 1994.

[81] William Karush. Minima of functions of several variables with inequalities as side condi-
tions. Master’s thesis, Department of Mathematics, University of Chicago, Illinois, USA,
1939.

[82] Tinne H. Kjeldsen. A contextualized historical analysis of the Kuhn-Tucker theorem in
nonlinear programming: the impact of World War II. Historia Mathematica, 27(4):331–
361, 2000.

[83] Pieter Klaassen, J. F. Shapiro, and D. E. Spitz. Sequential decision models for select-
ing currency options. Technical report, International Financial Services Research Center,
Massachusetts Institute of Technology, Cambridge, MA, July 1990. IFSRC Report No.
133-90.

[84] Harold W. Kuhn and Albert W. Tucker. Nonlinear programming. In J. Neyman, editor,
Proceeding of the Second Berkeley Symposium on Mathematical Statistics and Probabil-
ity, pages 481–492, Berkeley, California, USA, 1951. University of California Press.

[85] Pierre L’Ecuyer. Efficient and portable combined random number generators. Communi-
cations of the ACM, 31(6):742–774, 1988.

[86] Xinwei Liu and Jie Sun. A new decomposition technique in solving multistage stochastic
linear programs by infeasible interior point methods. Journal of Global Optimization, to
appear.

[87] Xinwei Liu and Gongyun Zhao. A decomposition method based on SQP for a class
of multistage nonlinear stochastic programs. Technical report, National University of
Singapore, Department of Mathematics, 1999. revised 2000.

[88] R. Duncan Luce. Individual Choice Behavior: A Theoretical analysis. Wiley, New York,
USA, 1959.

[89] Irvin J. Lustig, Roy E. Marsten, and David F. Shanno. On implementing Mehrotra’s
predictor-corrector interior-point method for linear programming. SIAM Journal on Opti-
mization, 2(3):435–449, 1992.

[90] Charles F. Manski. The structure of random utility models. Theory and Decision, 8:229–
254, 1977.

[91] Hatem Masri. Stochastic Programming with Partial Information on Probability Distri-
bution. PhD thesis, Institut Supérieur de Gestion, Université de Tunis, Tunis, Tunisia,
2003.

176 BIBLIOGRAPHY

[92] Daniel L. McFadden. Modelling the choice of residential location. In A. Karlquist et al.,
editor, Spatial Interaction Theory and Residential Location, pages 75–96. North Holland,
Amsterdam, The Netherlands, 1978.

[93] Daniel L. McFadden. Econometric models of probabilistic choice. In C. F. Manski and
D. L. McFadden, editors, Structural Analysis of Discrete Data with Econometric Applica-
tions, pages 198–272. MIT Press, Cambridge, Massachusetts, USA, 1981.

[94] Daniel L. McFadden. Statistical Tools for Economists. Lecture Notes, Department of
Economics, University of California, Berkeley, USA, 2000.

[95] Daniel L. McFadden and Kenneth Train. Consumers’ evaluation of new products: learning
from self and others. Journal of Political Economy, 104(4):683–703, 1996.

[96] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods for
selecting values of input variables in the analysis of output from a computer code. Tech-
nometrics, 21(2):239–245, 1979.

[97] Sanjay Merhotra. On the implementation of a primal-dual interior-point method. SIAM
Journal on Optimization, 2:575–601, 1992.

[98] Michel Minoux. Programmation Mathématique, Théorie et algorithmes, volume 1 of Col-
lection Technique et Scientifique des Télécommunications. Dunod, Paris, France, 1983.

[99] Chander Mohan and Hai Thanh NguyenMohan. An interactive satisficing method for
solving multiobjective mixed fuzzy-stochastic programming problems. Fuzzy Sets and
Systems, 117(1):61–79, 2001.

[100] Claude Montmarquette, Kathy Cannings, and Sophie Mahseredjian. How do young peo-
ple choose college majors? Economics of Education Review, 21(6):543–556, 2002.

[101] Jorge J. Moré and David J. Thuente. Line search algorithms with guaranteed sufficient
decrease. ACM Transactions on Mathematical Software, 20(3):286–307, 1994.

[102] William J. Morokoff and Russel R. Caflish. Quasi-Monte Carlo integration. Journal of
Computational Physics, 122(2):218–230, 1995.

[103] Soren S. Nielsen. GAMS Summer School Notes: Mathematical Modeling And Optimiza-
tion with Applications in Finance, 1999.

[104] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New York,
USA, 1999.

[105] Juan de Dios Ortúzar and Luis G. Willumsen. Modelling Transport. John Wiley & Sons,
3rd edition, 2001.

[106] Art B. Owen. Monte Carlo variance of scrambled net quadrature. SIAM Journal of Nu-
merical Analysis, 34(5):1884–1910, 1997.

BIBLIOGRAPHY 177

[107] Stephen K. Park and Keith W. Miller. Random number generators: good ones are hard to
find. Communications of the ACM, 31(10):1192–1201, 1988.

[108] Andras Prékopa. Programming under probabilistic constraints with a random technology
matrix. Math. Operationsforsch. Statist,Ser. Optim., 5:109–116, 1974.

[109] Andras Prékopa. Logarithmic concave measures and related topics. In M. A. H. Dempster,
editor, Stochastic Programming, pages 63–81. Academic Press, London, England, 1980.

[110] Andras Prékopa. Numerical solution of probabilistic constrained programming problems.
In Y. Ermoliev and R. J-B. Wets, editors, Numerical Techniques for Stochastic Optimiza-
tion, pages 123–139. Springer-Verlag, Berlin, Germany, 1988.

[111] Andras Prékopa. Sharp bounds on probabilities using linear programming. Operations
Research, 38:227–239, 1990.

[112] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Nu-
merical Recipes in C. Cambridge University Press, Cambridge, USA, second edition,
1992.

[113] Stephen M. Robinson. Local epi-continuity and local optimization. Mathematical Pro-
gramming, 37(2):208–222, 1987.

[114] Stephen M. Robinson. Analysis of sample-path optimization. Mathematics of Operations
Research, 21(3):513–528, 1996.

[115] R. Tyrrell Rockafellar and Roger J.-B. Wets. Scenarios and policy aggregation in opti-
mization under uncertainty. Mathematics of Operations Research, 16(1):119–147, 1991.

[116] R. Tyrrell Rockafellar and Roger J.-B. Wets. Variational Analysis. Springer Verlag, Hei-
delberg, Berlin, New York, 1998.

[117] Werner Römisch and Rüdiger Schultz. Decomposition of a Multi-Stage Stochastic Pro-
gram for Power Dispatch. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik,
76, Suppl. 3:29–32, 1996.

[118] Charles H. Rosa and Andrzej Ruszczyński. On augmented Lagrangian decomposition
methods for multistage stochastic programs. Annals of Operations Research, (64):289–
309, 1996.

[119] Charles H. Rosa and David N. Yates. Addressing the issue of uncertainty within the Egyp-
tian agricultural sector. Technical Report WP-94-97, International Institute for Applied
Systems Analysis, Laxenburg, Austria, 1994.

[120] Reuven Y. Rubinstein and Alexander Shapiro. Discrete Event Systems. John Wiley &
Sons, Chichester, England, 1993.

[121] Andrzej Ruszczyński. Parallel decomposition of multistage stochastic programming prob-
lems. Mathematical programming, 58:201–228, 1993.

178 BIBLIOGRAPHY

[122] Masatoshi Sakawa. Fuzzy Sets and Interactive Multiobjective Optimization. Plenion Press,
New York, 1993.

[123] Zsolt Sándor and Kenneth Train. Quasi-random simulation of discrete choice models.
Transportation Research B, Forthcoming.

[124] Ronald Schoenberg. Optimization with the quasi-Newton method. Aptech Systems, Inc.,
Maple Valley, WA, USA, 2001.

[125] Alexander Shapiro. Probabilistic constrained optimization: Methodology and applica-
tions. In S. Uryasev, editor, Statistical inference of stochastic optimization problems,
pages 282–304. Kluwer Academic Publishers, 2000.

[126] Alexander Shapiro. Stochastic programming by Monte Carlo simulation methods. SPEPS,
2000.

[127] Alexander Shapiro. Monte Carlo sampling methods. In A. Shapiro and A. Ruszczyński,
editors, Stochastic Programming, volume 10 of Handbooks in Operations Research and
Management Science, pages 353–425. Elsevier, 2003.

[128] Alexander Shapiro and Andrzej Ruszczyński, editors. Stochastic Programming, vol-
ume 10 of Handbooks in Operations Research and Management Science. Elsevier, 2003.

[129] Yosef Sheffi. Urban Transportation Networks. Prentice-Hall, Englewood Cliffs, New
Jersey, USA, 1985.

[130] Marc C. Steinbach. Hierarchical sparsity in multistage convex stochastic programs. In
S. P. Uryasev and P. M. Pardalos, editors, Stochastic Optimization: Algorithms and Appli-
cations, pages 385–410. Kluwer Academic Publishers, 2001.

[131] Wilson A. Sutherland. Introduction to Metric and Topological Spaces. Oxford University
Press, Oxford, England, 1975.

[132] Joffre Swait. Probabilistic choice set formulation in transportation demand models. PhD
thesis, Department of Civil and Environmental Engineering, Massachusetts Institute of
Technology, Cambridge, Massachussetts, USA, 1984.

[133] TRACE, Costs of private road travel and their effects on demand, including short and
long term elasticities. Final report to the European Commission, HCG, Den Haag, The
Netherlands, 1999.

[134] Kenneth Train. Halton sequences for mixed logit. Working paper No. E00-278, Depart-
ment of Economics, University of California, Berkeley, 1999.

[135] Kenneth Train. Discrete Choice Methods with Simulation. Cambridge University Press,
New York, USA, 2003.

Bibliography 179

[136] M. Ulbrich, S. Ulbrich, and Luís N. Vicente. A globally convergent primal-dual interior-
point filter method for nonlinear programming. Technical Report TR00-12, Department of
Computational and Applied Mathematics, Rice University, Houston, Texas, USA, 2000.
Revised February 2002.

[137] Robert J. Vanderbei and David F. Shanno. An interior point algorithm for nonconvex non-
linear programming. Technical Report SOR-97-21, Statistics and Operations Research,
Princeton University, Princeton, New Jersey, USA, 1997.

[138] Luís N. Vicente. Trust-Region Interior-Point algorithms for a Class of Nonlinear Pro-
gramming Problems. PhD thesis, Department of Computational and Applied Mathemat-
ics, Rice University, Houston, Texas, USA, March 1996.

[139] Andreas Wächter. An Interior Point Algorithm for Large-Scale Nonlinear Optimization
with Applications in Process Engineering. PhD thesis, Carnegie Mellon University, Jan-
uary 2002.

[140] Xiaoqun Wang and Fred J. Hickernell. Randomized Halton sequences. Math. Comput.
Modelling, 32:887–899, 2000.

[141] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical optimization
of software and the ATLAS project. Parallel Computing, 27(1–2):3–35, 2001.

[142] Stephen J. Wright. Primal-Dual Interior-Points Methods. SIAM Publications, Philadel-
phia, Pa, USA, 1997.

[143] Jianzhong Zhang and Chengxian Xu. A projected indefinite dogleg-path method for equal-
ity constrained optimization. BIT, 39(3):555–578, 1999.

[144] Yin Zhang. On the convergence of a class of infeasible interior-point methods for the
horizontal linear complementarity problem. SIAM Journal on Optimization, 4(1):208–
227, 1994.

180 Bibliography

Index

affine
hull, 9
set, see set

almost
everywhere, 19
surely, 18

alternative, 122
AMLET, see software
ATLAS, see software
attribute, 122

ball
closed or open, 8

barrier
function, 36
logarithmic, 36, 40, 66, 70
parameter, 36, 70, 82, 90

BFGS, 142
Borel field, 14, 19, 20
boundary, see relative boundary
BTR, see trust region
BTRDA, see trust region with dynamic accuracy

c.d.f., see cumulative distribution function
cardinality, 14
Cauchy point, 75
Cauchy-Schartz inequality, 79
central limit theorem, 23, 108, 125
central path, 39
centring parameter, 39
chain rule, 11
chance-constraint

programming, see probabilistic programming
choice

reduced choice set, 122
set, 122
universal choice set, 122

Cholesky, 21
CLAPACK, see software

closure, 9, 101
complementarity condition, 37, 73
complementary set, 13
cone, 29

normal, 29, 50, 97
polar, 29
tangent, 30

constraint, 3, 4
active, 28, 103
probabilistic, 58

constraint qualification, 28
linear independence, 28, 103–105
Slater, 28, 49

continuous
absolutely, 19

convergence
in distribution, 23
in probability, 23
weak, 23
with probability one, 23

convex
combination, 9
function, 9
hull, 9
programming, 10
set, 9

covariance matrix, 21
cumulative distribution function, 19
curvature, 11, 29

decision
first-stage, 44
second-stage, 44

decision-maker, 122
delta method, 133
density, see probability
derivative, 11

directional, 12
partial, 11, 47

182 INDEX

descent direction, 32, 75
deterministic equivalent, 6
differentiable, 11
discrete choice

model, 122
normal probability unit model, see probit model
probit model, 125

distribution
Gumbel, 20, 125
logistic, 125
marginal, 22
normal, 20
rectangular, see uniform
uniform, 19

dogleg path, 78
dual decomposition structure, see extensive form
duality measure, 39

eigenvalue, 8
error component formulation, 130
event, 18, 19
expectation

conditional, 17
expected value

method, see expected value problem
problem, 59

expected value problem, 130
extensive form, 48
extreme value type I distribution, see Gumbel

distribution

feasible, 4
feasible set, 4, 45, 66

elementary, 45
first-stage, 45
second-stage, 45
strictly, 5, 36

Fubini’s theorem, 17, 21
function

characteristic, 16
forcing, 13
integrable, 16
mod zero, 16

fuzzy programming, 7

Gauss, see software
generalized extreme value, 127

GEV, see generalized extreme value

Halton, 151
horizon, 51

i.i.d., see independent and identically distributed
IIA, see independence from irrelevant alternatives
implementability, 5
independence, 21

from irrelevant alternatives, 125
pairwise, 21
total, 21

independent and identically distributed, 22, 94,
125

inertia, 8, 84
integral, 16

Lebesgue, 17
interior, 9
interior point method, 37, 63–91

Jacobian, 12

Karush-Kuhn-Tucker conditions, 28, 37, 40, 73,
99

KKT, see Karush-Kuhn-Tucker conditions

Lagrange
function, see Lagrangian
multiplier, 27

Lagrangian, 27
augmented, 35

law of large numbers, 102
uniform, 94

level set, 10
LICQ, see constraint qualification
linesearch, 32, 38, 149
log-barrier, see logarithmic barrier
logarithmic barrier, see barrier
Lp space, 17

matrix
Hessian, 11
identity, 57
Jacobian, 12
nonanticipativity, see nonanticipativity ma-

trix
positive definite, 8, 27
positive semidefinite, 8, 27

INDEX 183

second-order nonsingular, 8
second-order sufficient, 8

maximum likelihood, 130
MC, see Monte Carlo
mean

arithmetic, 160
geometric, 160
harmonic, 160
value problem, see expected valued problem

measurable
function, 15, 51
index, 20
rectangle, 15
set, see set
space, 14

measure, 14
σ-finite, 14
counting, 14
finite, 14
Lebesgue, 20
marginal, 15
probability, see probability measure
product, 15
space, 14

MFCQ, see constraint qualification
minimizer

global, 25
isolated local, 104
local, 25
strict local, 105

minizer
strong, 26
weak, 25

Mobidrive, 156, 161
model

disaggregate, 122
modelling, 3
moment, 46
Monte Carlo, 93–117
multiobjective programming, 6

nested logit, 126
Newton

direction, 31
method, 31

nonanticipativity
constraints, 54

matrix, 55–57
normal

cone, 29
null space, see space

objective, 3, 4
optimality

conditions, 26
Pareto, 6

optimization problem, 4
constrained, 4
unconstrained, 4

Ox, see software

p.d.f., see probability distribution function
p.m., see probability measure
Pareto, see optimality
penalty

function, 34
possibility interpretation, 46
probability

axioms, 18
density, 19, 20
measure, 18
space, 19, 43

process
decision, 51
history, 51

program
mathematical, 4

progressive hedging, 57

QR factorization, 68
quasi-convexity, 10
quasi-Newton, 32, 63

Radon-Nikodym, 19
random

element, 18
support, 21
variable, 19
vector, 20

random utility, 123
ratio of arithmetic means, 160
realization, 22
recourse, 44

complete, 46
fixed, 46

184 INDEX

matrix, 46
program, 44
relatively complete, 46
simple, 46

relative
boundary, 9, 66
interior, 9, 66

SAA, see sample average approximation
sample average approximation, 94, 130
sample space, 18
scenario, 19, 52

tree, 52
Schur complement, 86
set

active, 28, 104
affine, 9
bounded, 8
choice, see choice set
compact, 9, 93, 129, 131
complete local minimizing, 101
feasible, see feasible set
measurable, 14
power, 14

σ-algebra, 13
σ-field, see σ-algebra
software

AMLET, 145–159
ATLAS, 145
CLAPACK, 67, 145
Gauss, 146
Ox, 146
LANCELOT, 36

SP, see stochastic programming
space

null, 8, 66, 104
probability, see probability
product, 15

split-variable, 54, 64
SR1 update, see symmetric rank-one update, 145
stage, 44, 51, 55
stationary point, 27
Steihaug-Toint method, 142
stochastic

process, 51
stochastic programming, 7

multistage, 51

two-stage, 44
stochastic variational inequality, 97
strict complementarity, 103
sub-algebra, 14
sub-field, see sub-algebra
subdifferential, 12
subgradient, 12
symmetric rank-one update, 141

time period, 51
tree of scenarios, see scenario
trust region, 32, 33, 70

radius, 32
with dynamic accuracy, 109, 140

two stage
stochastic program with recourse, 44

ULLN, see law of large numbers
unknown, see variable
utility

maximization principle, 124
random, 123

variable, 3
dual, 27
primal, 27
slack, 40

VSS, see stochastic solution

with probability 0, 19
with probability one, see almost surely
WS, see wait-and-see

