
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

DOCTOR OF SCIENCES

Filter-trust-region methods for nonlinear optimization

Sainvitu, Caroline

Award date:
2007

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/ba8393b8-4f03-45a2-808e-a0f7fa413731

FACULTES UNIVERSITAIRES NOTRE-DAME DE LA PAIX NAMUR

FACULTE DES SCIENCES

DEPARTEMENT DE MATHEMATIQUE

Filter-Trust-Region Methods
for

Nonlinear Optimization

Dissertation présentée par
Caroline Sainvitu

pour l’obtention du grade
de Docteur en Sciences

Composition du Jury:

Nick GOULD

Annick SARTENAER

Jean-Jacques STRODIOT

Philippe TOINT (Promoteur)
Luís VICENTE

2007

c©Presses universitaires de Namur & Caroline Sainvitu
Rempart de la Vierge, 13

B-5000 Namur (Belgique)

Toute reproduction d’un extrait quelconque de ce livre,
hors des limites restrictives prévues par la loi,

par quelque procédé que ce soit, et notamment par photocopie ou scanner,
est strictement interdite pour tous pays.

Imprimé en Belgique

ISBN-13 : 978-2-87037-548-8
Dépôt légal: D / 2007 / 1881 / 11

Facultés Universitaires Notre-Dame de la Paix
Faculté des Sciences

rue de Bruxelles, 61, B-5000 Namur, Belgium

d a

c b

Facultés Universitaires Notre-Dame de la Paix
Faculté des Sciences

Rue de Bruxelles, 61, B-5000 Namur, Belgium

Méthodes de filtre et de région de confiance pour l’optimisation non-linéaire
par Caroline Sainvitu

Résumé: Ce travail a pour objet l’étude théorique et l’implémentation d’algorithmes per-
mettant la résolution de deux types particuliers de problèmes d’optimisation non-linéaire,
à savoir les problèmes d’optimisation sans contrainte et avec contraintes de bornes. Pour
l’optimisation sans contrainte, nous développons un nouvel algorithme qui utilise une tech-
nique de filtre et une méthode de type région de confiance dans le but de garantir une conver-
gence globale et d’améliorer l’efficacité des approches traditionnelles. Nous analysons égale-
ment l’effet de dérivées premières et secondes approximées sur la performance de l’algorithme
de filtre et de région de confiance. Nous étendons ensuite notre algorithme aux problèmes
d’optimisation avec contraintes de bornes en combinant ces idées avec une méthode de pro-
jection du gradient. Des résultats numériques accompagnent les méthodes proposées et in-
diquent qu’elles sont compétitives par rapport aux méthodes de région de confiance plus
classiques.

Filter-trust-region methods for nonlinear optimization
by Caroline Sainvitu

Abstract: This work is concerned with the theoretical study and the implementation of al-
gorithms for solving two particular types of nonlinear optimization problems, namely uncon-
strained and simple-bound constrained optimization problems. For unconstrained optimiza-
tion, we develop a new algorithm which uses a filter technique and a trust-region method in
order to enforce global convergence and to improve the efficiency of traditional approaches.
We also analyze the effect of approximate first and second derivatives on the performance of
the filter-trust-region algorithm. We next extend our algorithm to simple-bound constrained
optimization problems by combining these ideas with a gradient-projection method. Numer-
ical results follow the proposed methods and indicate that they are competitive with more
classical trust-region algorithms.

Dissertation doctorale en Sciences mathématiques (Ph.D. thesis in Mathematics)
Date: 17-04-2007
Département de Mathématique
Promoteur (Advisor): Prof. Ph. L. TOINT

Remerciements

Je tiens tout d’abord à exprimer toute ma reconnaissance à Philippe Toint, mon promoteur, pour
m’avoir acceuillie au sein de l’Unité d’Analyse Numérique ainsi que pour son encadrement, ses
nombreux conseils et son soutien constant tout au long de cette thèse. Je le remercie également
de m’avoir donné l’opportunité de participer à plusieurs conférences internationales. Ce fut
pour moi une chance d’y présenter à chaque fois notre travail et d’y rencontrer de nombreux
chercheurs.

Je tiens également à remercier Nick Gould pour sa collaboration à une partie de ce travail et
pour avoir accepté d’être dans le jury de cette thèse.

Merci aussi à Annick Sartenaer, Jean-Jacques Strodiot et Luís Vicente d’avoir accepté de faire
partie du jury de cette thèse.

Je tiens aussi à remercier Dominique Orban de m’avoir invitée à plusieurs reprises à présenter
mes recherches lors de conférences ainsi que tous les chercheurs que j’ai pu y rencontrer pour
les discussions intéressantes ainsi que les moments de détente. Je remercie notamment Andreas
Wächter pour ses suggestions pertinentes.

Merci tout particulier à Katia Demaseure pour son amitié, sa bonne humeur et sa disponibilité.
Je la remercie vivement pour toutes ces années passées ensemble au bout du couloir.
Merci aussi à mes anciens collègues d’Analyse Numérique, à savoir Benoît Colson, qui fut
toujours présent dans les moments de doutes, et Fabian Bastin, dont la distraction légendaire
nous a valu beaucoup de fous rires.

Mes plus chaleureux remerciements s’adressent également à tous les copains du midi avec qui
j’ai eu la chance de partager pas mal de repas, pauses café et sorties. Merci à Charlotte Beau-
thier, Florent Deleflie, Anne-Sophie Libert, Dimitri Tomanos, Stéphane Valk, Emilie Wanufelle,
Melissa Weber Mendonça, Sebastian Xhonneux et tous les autres.
Mes remerciements vont aussi vers tous les membres du département de Mathématique pour
leur accueil et leur convivialité durant ces cinq années. Merci notamment à Eric Cornélis,

i

ii Remerciements

Murielle Haguinet, Pascale Hermans et Martine Van Caenegem.

Mes remerciements s’adressent également à Jean-Claude Lion, mon professeur de Mathéma-
tique de secondaire, qui est sans nul doute à l’origine de mon goût pour les mathématiques.

Merci aussi à tous mes amis, mathématiciens ou non, qui m’ont aidée, parfois à leur insu, par
tous ces moments de détente passés en leur compagnie.
Je tiens également à remercier mes parents qui ont toujours été présents dans les moments dif-
ficiles et sans qui je ne serais pas où j’en suis aujourd’hui.

Enfin, pour tout le reste et bien plus encore, je remercie Olivier Jacquet. Merci d’avoir été à
mes côtés durant la longue et difficile période de la rédaction de cette thèse. Merci de m’avoir
écoutée patiemment, d’avoir supporté les sautes d’humeur très fréquentes ces derniers mois et
les remises en cause.

A tous, encore merci.

Caroline

Contents

Introduction vii

1 Generalities on optimization 1
1.1 What is optimization? . 1
1.2 Mathematical programming . 2

1.2.1 Formulation . 2
1.2.2 Classification of mathematical programs 3

1.3 Basic notions . 6
1.3.1 Mathematical background . 6
1.3.2 Generalities on convergence . 9
1.3.3 Derivatives . 11
1.3.4 Approximation to derivatives . 13
1.3.5 Automatic differentiation . 15

2 Background on nonlinear optimization 17
2.1 Characterization of solutions . 17
2.2 Optimality conditions . 18

2.2.1 Unconstrained optimization . 19
2.2.2 Constrained optimization . 20
2.2.3 Criticality measure . 24

2.3 Methods for nonlinear unconstrained optimization 24
2.3.1 Local methods . 24
2.3.2 Line-search methods . 29
2.3.3 Trust-region methods . 29
2.3.4 Conjugate-gradient methods . 32

2.4 Methods for nonlinear constrained optimization 33
2.4.1 Penalty methods . 34
2.4.2 Augmented Lagrangian methods 36

iii

iv CONTENTS

2.4.3 Sequential Quadratic Programming 38
2.5 References . 40

3 A quick survey of filter methods 41
3.1 Motivation of the filter . 41
3.2 The first filter approach . 42
3.3 Bibliographical review . 47

I Unconstrained Optimization 49

4 A filter-trust-region method for unconstrained optimization 51
4.1 The problem and the new algorithm . 52

4.1.1 Computing a trial point . 53
4.1.2 The multidimensional filter . 54
4.1.3 The filter-trust-region algorithm 56

4.2 Convergence analysis . 58
4.2.1 Assumptions and notations . 58
4.2.2 Convergence to first-order critical points 60
4.2.3 Analysis of a counter-example . 66
4.2.4 Convergence to second-order critical points 70

4.3 Conclusion . 72

5 Numerical results 73
5.1 Testing environment . 73
5.2 Performance profiles . 76
5.3 Practical aspects . 77
5.4 Performance and comparisons . 80

5.4.1 Filter versus pure trust-region variants 80
5.4.2 Comparison on quadratic programs 84
5.4.3 Comparison with LANCELOT-B 87
5.4.4 Algorithmic variants . 93
5.4.5 Unrestricted steps . 97

5.5 Conclusion . 99

6 Do approximate derivatives hurt filter methods? 101
6.1 The framework . 101
6.2 Numerical investigation . 103

CONTENTS v

6.2.1 Finite differences . 105

6.2.2 Secant updates . 113
6.2.3 Perturbation of the Hessian . 121

6.2.4 Comparison . 121

6.3 Conclusion . 125

II Bound-Constrained Optimization 127

7 A filter-trust-region method for bound-constrained optimization 129
7.1 Introduction to bound-constrained optimization 129

7.1.1 Optimality conditions . 130

7.1.2 Gradient-projection method . 132
7.2 The new algorithm . 134

7.2.1 Computing a trial point . 135

7.2.2 The multidimensional filter . 138
7.2.3 The filter-trust-region algorithm 139

7.3 Global convergence to first-order critical points 140

7.4 Conclusion . 145

8 Numerical results 147
8.1 Testing environment . 147
8.2 Practical aspects . 148

8.3 Performance and comparisons . 151

8.3.1 Filter versus pure trust-region variants 152
8.3.2 Comparison with LANCELOT-B 157

8.3.3 Signed filter entries . 162
8.4 Conclusion . 162

Conclusions and further research perspectives 165

Summary of contributions 169

Bibliography 171

Main notations and abbreviations 183

Index 187

vi CONTENTS

Appendices 191

A Results of FILTRUNC 191

B Results of FILTBOUND 199

Introduction

Optimization, also called mathematical programming, is the branch of computational sci-
ence devoted to the study of problems whose aim is to determine the best allocation of possibly
limited resources required to meet a given objective. So, an optimization problem involves min-
imizing or maximizing a function, called the objective function, of several variables, potentially
subject to some restrictions to the values of these variables defined by a set of constraints. Opti-
mization, which is a major component part of human life as well as natural processes, has been
used for centuries.
Mathematicians wish to develop appropriate tools for the study of optimization problems and in
particular for the characterization of their solutions, like the optimality conditions. Often, one
cannot solve the equations of the necessary optimality conditions analytically in an efficient
way and the goal of the researchers is then to design iterative methods for approximately solv-
ing these optimality systems. Then one looks for an algorithm that leads efficiently to a good
approximation of the problem solution. When developing algorithms, the assessment of the
computational performance is crucial; one wants the algorithms to be both efficient and robust
but they should also have good performance in terms of accuracy, run time or computer storage.
However, an important thing to realize when conceiving an algorithm for solving nonlinear pro-
grams, which are problems where the objective function and/or some of the constraints may be
nonlinear, is that it is rather impossible to have one that can solve efficiently all problems. Be-
sides, the ability to ensure convergence to the global solution of nonlinear nonconvex problems
is a very difficult task on most problems.

This thesis is concerned with the design, implementation and assessment of novel algo-
rithms for solving two particular classes of nonlinear optimization problems. More specifically,
it addresses the development of efficient and robust algorithms for finding local solutions to un-
constrained and bound-constrained nonlinear and possibly nonconvex mathematical programs,
in the context of trust-region schemes and filter techniques, both of them having proven to be
very efficient in nonlinear programming. The theoretical convergence properties of proposed
algorithms are to be explored and their numerical performances are to be validated on a large

vii

viii Introduction

set of test problems.

Contributions and structure of the thesis

We now give a brief description of the contents of this thesis and the contributions in-
cluded therein. Chapter 1 is an introduction to optimization, it also exposes the terminology
used throughout this work and the mathematical background useful for our needs. The next
chapter presents some basic concepts and results from mathematical programming as well as
an overview of different methods and algorithms designed for solving optimization problems.
However, this survey is far from being exhaustive and essentially covers tools that will be used
and discussed in the following chapters of this thesis. Chapter 3 introduces the notion of a filter,
which is at the core of algorithms we have developed in this dissertation. We motivate the use
of a filter technique, give the main ideas of algorithms based on this concept and review the
existing research related to this quite recent topic.

In Part I of this manuscript, made of three chapters, we consider unconstrained optimiza-
tion problems. This class of problems is especially interesting because a lot of methods for
constrained optimization problems are designed in a way that benefit from unconstrained opti-
mization techniques.
The classical safeguards around Newton method, as line searches or trust regions, often re-
strain the algorithmic efficiency. So researchers have been interested in the development of
less obstructive safeguards while continuing to ensure global convergence. This leads to the
relatively recent idea of the filter which is an interesting alternative to penalty functions used in
constrained optimization. The generality of this concept allows its use, for example, in trust-
region and line-search frameworks, as well as in active-set and interior-point methods. Various
algorithms using filter methods have been proposed and major contributions have been made
in this field in the last few years. Nowadays, some of the most effective nonlinear optimiza-
tion softwares are based on filter techniques. However, most filter-based algorithms proposed
in the literature are designed for constrained optimization. To our knowledge, little attention
has been paid to general unconstrained optimization. We propose to use filter techniques to
design an algorithm for solving unconstrained optimization problems. This results in an algo-
rithm, called FILTRUNC, combining the efficiency of filter techniques and the robustness of
trust-region methods. Our contributions are both theoretical and practical. Chapter 4 describes
the new filter-trust-region algorithm; global convergence properties of our method are exam-
ined in Section 4.2. The practical performance of FILTRUNC is examined in Chapter 5. We
compare our algorithm with a more classical trust-region method on a large set of test prob-
lems in terms of efficiency and reliability. Moreover, FILTRUNC is also compared with the

Introduction ix

software LANCELOT-B. In Chapter 6, we investigate the influence of using approximate first
and/or second-order derivatives of the objective function on our filter-trust-region algorithm.
Finite-difference approximations and secant updates are considered and compared.

The theoretical and practical extension of the filter-trust-region algorithm for solving simple-
bound-constrained optimization problems is the subject of Part II. Many real-world problems
include simple bounds on their variables. Therefore, treating problems of this nature is also
of importance. Moreover, unconstrained problems should often require bounds on their vari-
ables to avoid evaluations of an objective function not defined outside the box specified by these
bounds.
Our contribution is the design of an algorithm which combines in a trust-region framework fil-
ter techniques and gradient-projection methods. Chapter 7 focuses on the description and the
convergence theory of the method while the numerical experiments of our solver, called FILT-
BOUND, are reported and discussed in Chapter 8.

Finally, we conclude the thesis with a summary of the work, its contributions and some
directions for future research.

x Introduction

Chapter 1

Generalities on optimization

1.1 What is optimization?

Optimization is a mathematical discipline which can be described as follows : the action
of finding the best solution. Optimization problems arise in lots of aspects of human life and
activities. Indeed, optimization occurs every day and everywhere when people, industries or
systems want to minimize or maximize something. For instance, in a manufacturing process,
one might want to maximize the profit or minimize the cost. In designing an automobile panel,
one might want to maximize the strength. Airline companies might want to schedule crews
and airplanes in order to minimize cost. Optimization also occurs in nature, many laws of
physics being formulated as principles of minimum or maximum of some characteristics of
observed objects or systems, like, for example, energy. The most important areas of application
include biology, chemistry, economics, engineering, planning, physics, social management and
statistics.

Optimization problems are composed of three major ingredients. An objective function we
want to minimize or maximize and which measures the quality of solutions. A set of unknowns
or variables which affect the value of the objective function. Variables are things we can change,
the things we need to decide upon. The purpose is to give some values to these variables such
that minimizing or maximizing the objective function. Frequently, there is a set of constraints
that allows the variables to take some values but excludes some others. In other words, these
constraints define restrictions on the variables or interrelations of many kinds. The solution
of an optimization problem is a set of allowed values for the variables at which the objective
function takes on an optimal value.

Most problems arising from the real world are complex and require making decisions; so
optimization is needed. Determining the appropriate variables, the objective and the poten-
tial constraints so that the formalism simulates the real-life problem adequately is called the

1

2 Chapter 1. Generalities on optimization

modelling phase. In an optimization process, we typically start with a real problem, full of
complexities and details. From this, we extract the relevant elements to create a mathematical
model which is built with the help of a series of mathematical relationships. Then the best
solution to this model can be found using a suitable optimization algorithm. If the model is
accurate enough, the solution is validated and interpreted back into the real world as a solution
of the real problem. It is important to note the fact that a mathematical model is never an exact
representation of the reality and it does not make sense to consider it taken out of its context. It
is crucial to realize that optimization models can help in finding good solutions but are not the
complete solution.

Modern optimization originated in the World War II period when Georges Dantzig had to
deal with the logistical issues raised by large armies having millions of men, weapons and ma-
chines. He developed an algorithm to solve linear programming (see Section 1.2.2). Originally,
the term programming, frequently used in optimization, means preparing a schedule of activi-
ties.

It is important to underline the close relationship between operations research and opti-
mization. Operations research may be defined as the use of mathematical models, statistics and
algorithms to help in decision-making. Most of the time, operations research is applied to study
complex real-world situations, typically with the aim of improving or optimizing performance.
Operations research started just before the World War II. The scientists were charged to find
ways to make better decisions in various fields such as schedules for training, deployment of
combat units or logistical supply. After the war it began to be used for related industrial prob-
lems. Currently, some typical applications in which operations research is used are : resource
and staff allocations, road traffic management, supply chain planning, etc. In almost all opera-
tions research problems appear the minimization or the maximization of a function expressing
either the operating costs or the revenues subject to some constraints. Therefore, problems
arising in operations research may be expressed as optimization problems and then solved by
appropriate optimization methods. On the other hand, problems arising in operations research
provide a collection of test problems for the optimization field.

1.2 Mathematical programming

1.2.1 Formulation

A mathematical program is the formulation of an optimization problem in terms of an ob-
jective function and some possible constraints. The study and the use of mathematical programs

1.2 Mathematical programming 3

are called mathematical programming.
Unconstrained optimization problems can be expressed in mathematical terms as

min
x∈IRn

f(x), (1.1)

where f : IRn → IR is the objective function. In constrained optimization problems, the vari-
ables x are required to belong to the feasible region Ω, which is the set of points x that satisfy
the constraints; that is

Ω = {x ∈ IRn | x ∈ X, ci(x) = 0, i ∈ E , ci(x) ≤ 0, i ∈ I},

where E and I are two disjoint sets of indices and ci : IRn → IR (i ∈ E ∩ I). The relations
ci(x) = 0 (i ∈ E) and ci(x) ≤ 0 (i ∈ I) are called equality constraints and inequality
constraints, respectively. We consider that X is a subset of IRn and is in the domain of the
functions f and ci (i ∈ E∩I). This leads to the following statement of constrained optimization
problems

minimize f(x) (1.2a)

subject to x ∈ X, (1.2b)

ci(x) = 0, i ∈ E , (1.2c)

ci(x) ≤ 0, i ∈ I. (1.2d)

If any point x satisfies the constraints (1.2b)-(1.2d), it is said to be a feasible point. If the prob-
lem has no feasible points, it is called an infeasible problem.
More general constraints ci(x) ≤ b can be rewritten as ci(x) − b ≤ 0. Mathematical programs
also exist which are maximization problems but these can be easily reformulated as minimiza-
tion problems through the transformation

max
x

f(x) = −min
x

−f(x).

1.2.2 Classification of mathematical programs

The optimization problem as stated in (1.2a)-(1.2d) is a very general formulation and there
is a wide variety of problem classes having different structures. Mathematical programs can be
classified according to the mathematical characteristics of the objective function and the con-
straints, if any. This classification is used to enhance the efficiency of solution methods. In the
remaining part of this section, we give a non-exhaustive list of principal categories of mathe-
matical programs.

4 Chapter 1. Generalities on optimization

An important distinction, that we have already pointed out, is between mathematical pro-
grams that have constraints on their variables and those which do not. A specialized case of
constrained optimization that we shall consider in Chapter 7 is the bound-constrained optimiza-
tion. In this class of mathematical programs, the only constraints have the following form

li ≤ xi ≤ ui, i = 1, . . . , n,

where li and ui are lower and upper bounds on the ith component of x. Note that any of the
bounds may be infinite. Without loss of generality, we assume throughout this work that li < ui

for all i = 1, . . . , n. The feasible region of such a problem is sometimes called a box because
of its rectangular shape.

Possibly the most important feature of a mathematical program is whether it is continuous
or discrete. Continuous problems are those where the constraints set is infinite and where the
variables have a “continuous” character; while discrete ones are basically those that are not
continuous. Discrete optimization problems arise when the variables occurring in the problem
can only take a finite number of discrete values. This kind of problems can arise for example in
scheduling. The most important class of discrete optimization is integer programming, where
the variables must have integer values, or even only binary values. For an overview of integer
programming, we refer the reader to the books of Nemhauser and Wolsey [99] and Schrijver
[115].

Linear programming is the problem of minimizing or maximizing a linear objective function
subject to linear constraints. The feasible region for a linear program is a polytope, that is, a
convex, connected set with flat, polygonal faces. Given a polytope and a real-valued function
defined on this polytope, the aim is to find a point in the polytope where the objective function
has the smallest (or the largest) value. A linear program is usually expressed in the following
matrix form which is called the standard form

min cT x

s.t. Ax = b,

x ≥ 0,

(1.3)

where x ∈ IRn is the vector of unknowns, c ∈ IRn and b ∈ IRm are vectors of known co-
efficients and A is an m-by-n real matrix of known coefficients. Many practical problems in
operations research can be expressed as linear programming problems. Some special cases of
linear programming, such as network flow problems, are considered important enough to have
generated much research on specialized algorithms for their solutions. Two families of solution
techniques are widely used today. Linear programs can be solved using the simplex method,
introduced by Dantzig [37], which runs along polytope edges to find the best solution. There

1.2 Mathematical programming 5

are many works related to the study of the simplex method; among others, we cite the books
by Chvátal [23], Murtagh [97] and Nash and Sofer [98]. By contrast, interior-point methods
visit points within the relative interior of the feasible region. Though these techniques arise
from methods for nonlinear programming, developed in the nineteen sixties by Fiacco and Mc-
Cormick (see [45], [46]), their application to linear programming is due to Karmarkar [84] in
1984. The Wright’s monograph [129] gives a complete introduction to theoretical and practical
aspects of interior-point methods for linear programming.

When the objective function f is quadratic, that is a function of the following form

f(x) = gTx + 1

2
xT Hx,

where g ∈ IRn and H is a symmetric n-by-n matrix, and the constraints ci are all linear, the
problem belongs to the class of quadratic programming.

In convex programming, a problem has a convex objective function, the equality constraint
functions ci(·) (i ∈ E) are affine and the inequality constraint functions ci(·) (i ∈ I) are convex.
It follows that the feasible region of a convex program is a convex set (see Section 1.3.1).

If the objective function f and/or some of the equality or inequality constraints are nonlin-
ear, the mathematical program is called a nonlinear programming problem . So nonlinear pro-
gramming is identical to linear programming, except that the relationships can have a nonlinear
form, which makes the problem in general harder than a linear one. Nevertheless, nonlinearity
is nearly unavoidable in many real-world problems. Nonlinear programming lies within the
continuous problem class. Some reference works on this topic are those of Bertsekas [8], Conn,
Gould and Toint [34], Fletcher [48], Gill, Murray, and Wright [62], Luenberger [91], Nash and
Sofer [98] and Nocedal and Wright [101]. This dissertation addresses the solution of this kind
of problems.

Another way in which optimization problems can be classified is through the computable
information that may be available during the solution process. For example, it may occur that
analytic first and second derivatives of the objective function are not available, in that case one
refers to the field of nondifferentiable optimization or nonsmooth optimization (see, for example,
Dem’yanov and Vasil’ev [39]).

We finally mention stochastic programming which is a framework for modelling optimiza-
tion problems that involve uncertainty introduced by means of random variables. While de-
terministic optimization deals with known parameters, lots of real-life problems include some
unknown parameters. For a more complete treatment of stochastic programming, we refer the
reader to the books of Birge and Louveaux [10] and Kall and Wallace [83].

To conclude this section, we want to mention that, nowadays, there exist optimization prob-
lem analysers, like, for example, DrAmpl created by Fourer and Orban [58]. The purposes of

6 Chapter 1. Generalities on optimization

this meta solver are, especially, to analyse a given model, to provide bounds on expressions
appearing in the model, to assess convexity of expressions arising in the model, to classify this
model and to assist in the choice of an appropriate solver for the problem under study.

1.3 Basic notions

The remaining of this chapter will be concerned with selected basic aspects of linear algebra
and real analysis that are directly relevant to studying the mathematical programs we consider
in this dissertation.

1.3.1 Mathematical background

Vectors and matrices

We denote by IRn the real n-dimensional Euclidean space. Throughout this work, a vector
is an n-dimensional column of the following form

x =

x1

...
xn

,

where each xi (1 ≤ i ≤ n) is called the ith component of the vector x. The notation xT stands
for the transpose of x. For describing iterative algorithms, when there is no risk of confusion
with the kth component of the vector x, we will use the notation xk to designate a vector x at
the kth iteration (k ∈ IN), while the ith component of the vector x at the kth iteration will be
denoted by xk,i. The inner product of two vectors x and y ∈ IRn is defined by

xT y
def
=

n
∑

i=1

xiyi.

If the inner product of two vectors equals zero, that means that these two vectors are orthogonal.
Let A be an m-by-n matrix, the (i, j) element of this matrix will be denoted by aij . The

transpose of A, denoted by AT , is an n-by-m matrix resulting from swapping the roles of the
row and column indices. We say that an n-by-n matrix is symmetric if AT = A. A symmetric
matrix A is said to be positive semidefinite if

xT Ax ≥ 0, for any x ∈ IRn. (1.4)

We say that A is positive definite if strict inequality holds in (1.4), that is

xT Ax > 0, for any x ∈ IRn, x 6= 0.

1.3 Basic notions 7

Finally, a matrix A is called indefinite if there exists x, y ∈ IRn for which

xT Ax > 0 and yTAy < 0.

Norms

A vector norm is a function from IRn to IR which has the following properties :

1. ‖x‖ ≥ 0 for all x ∈ IRn and ‖x‖ = 0 if and only if x = 0,

2. ‖αx‖ = |α|‖x‖ for all α ∈ IR and x ∈ IRn,

3. ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ IRn.

Well-known examples of norms are `p-norms, which are defined by

‖x‖p =

(

n
∑

i=1

|xi|p
)1/p

, 1 ≤ p < ∞.

The following norms are mainly used :

‖x‖1 =
n
∑

i=1

|xi|, (1.5a)

‖x‖2 =

(

n
∑

i=1

|xi|2
)1/2

=
√

xT x, (1.5b)

‖x‖∞ = max
1≤i≤n

|xi|. (1.5c)

The norm defined by (1.5b) is called the `2-norm or the Euclidean norm. All norms in IRn are
equivalent in the sense that each one is bounded above and below by a multiple of the other. In
particular, we have that

‖x‖∞ ≤ ‖x‖2 ≤
√

n‖x‖∞ and ‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞.

Note that the Euclidean norm satisfies the Cauchy-Schwarz inequality :

|xT y| ≤ ‖x‖2‖y‖2.

A matrix norm of an m-by-n matrix A, denoted by ‖A‖, is a function from IRm×n to IR such
that

1. ‖A‖ ≥ 0 for all A ∈ IRm×n and ‖A‖ = 0 if and only if A = 0,

2. ‖αA‖ = |α|‖A‖ for all α ∈ IR and A ∈ IRm×n,

8 Chapter 1. Generalities on optimization

3. ‖A + B‖ ≤ ‖A‖ + ‖B‖ for all matrices A, B ∈ IRm×n,

4. ‖A B‖ ≤ ‖A‖ ‖B‖ for all matrices A, B ∈ IRm×n.

The most frequently used matrix norms in numerical analysis and optimization theory are the
Frobenius norm

‖A‖F =

√

√

√

√

m
∑

i=1

n
∑

j=1

|aij|2

and the `p-norms

‖A‖p = max
‖x‖p=1

‖Ax‖p = max
x6=0

‖Ax‖p

‖x‖p
·

In particular, we have

‖A‖1 = max
1≤j≤n

m
∑

i=1

|aij|,

‖A‖2 =
√

λmax(AT A), where λmax(·) denotes the largest eigenvalue,

‖A‖∞ = max
1≤i≤m

n
∑

j=1

|aij|.

Consider now an m-by-n matrix, the null space of A is defined as the subspace

Null (A)
def
= {x ∈ IRn | Ax = 0}.

Elements of topology

We now briefly present some basic aspects of topology that are useful in optimization theory.
Let be a point x ∈ IRn, an open set containing x is called a neighbourhood of x and is denoted
by N . A frequently used neighbourhood is the open ball of radius ε around x, which is denoted
and defined by

Bε(x)
def
= {y | ‖y − x‖ < ε}.

A subset S of IRn is said to be open if for each vector x ∈ S there exists a constant ε > 0 such
that Bε(x) ⊂ S. We say that a set S is closed if and only if its complement in IRn, that is IRn\S,
is open. A subset S of IRn is said to be bounded if there exists a constant κ > 0 such that

‖x‖ ≤ κ for all x ∈ S.

Finally, a set S of IRn is compact if and only if it is both closed and bounded.

1.3 Basic notions 9

Convexity

A set S of IRn is called convex if for any points x, y ∈ S and any λ ∈ [0, 1], we have that

λx + (1 − λ)y ∈ S.

This means that all points on a line connecting two points in the set S are also in S. The
intersection of a finite or infinite number of convex sets is itself a convex set; but the union of
convex sets is not necessarily convex. A function f , defined on a convex set S, is convex if for
all x, y ∈ S, we have that

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) for all λ ∈ [0, 1]. (1.7)

A function f is called strictly convex if, for x 6= y and λ ∈ (0, 1), the inequality (1.7) is strict.
We say that a function f is concave if (−f) is convex. Finally, the convex hull of a given subset
S of IRn, denoted by co{S}, is the intersection of all convex sets containing S. Formally, the
convex hull can be described as the set of convex combinations of points from S, i.e.

co{S} =

{

x̄

∣

∣

∣

∣

x̄ =

N
∑

i=1

λixi, where N ∈ IN, λi ≥ 0, xi ∈ S and
N
∑

i=1

λi = 1

}

.

Lipschitz continuity

Let S be an open subset of IRn. The function f : S → IRm is said to be Lipschitz continuous
on S if there exists a constant M > 0 such that

‖f(x) − f(y)‖ ≤ M‖x − y‖ for all x, y ∈ S.

The function f is called locally Lipschitz continuous at a point x̄ ∈ intS (1) if there exists a
neighbourhood N with x̄ ∈ N ⊂ S and a constant M > 0 such that

‖f(x̄) − f(ȳ)‖ ≤ M‖x̄ − ȳ‖ for all x̄, ȳ ∈ N .

1.3.2 Generalities on convergence

We now give some generalities on the notion of convergence which is an important tool in
optimization theory, in particular for qualifying the speed of convergence towards the solution.

(1)intS denotes the interior of the set S and is the largest open set contained in S.

10 Chapter 1. Generalities on optimization

Sequences

A sequence {xk}(k = 1, 2, . . .) in IRn is said to be convergent to x∗ ∈ IRn if for every ε > 0

there exists an index K such that

‖xk − x∗‖ < ε for all k ≥ K,

and we denote it by
xk → x∗ or lim

k→∞
xk = x∗.

A sequence {xk} is called a bounded sequence if there exists a constant κ > 0 such that ‖xk‖ ≤
κ for all k. We define the limit superior of a sequence {xk} to be

lim sup
k→∞

xk = inf
k≥0

sup
K≥k

xK,

and the limit inferior
lim inf

k→∞
xk = sup

k≥0
inf
K≥k

xK .

We can think of the limit superior as the largest value which the sequence approaches infinitely
often, and the limit inferior the smallest.

Finally, we say that x∗ ∈ IRn is a limit point or an accumulation point of the sequence {xk}
if there exists a subsequence {xk}k∈K ⊂ {xk} such that {xk}k∈K converges to x∗.

Rates of convergence

The concept of rate of convergence is of practical importance if we are concerned with
infinite sequences of iterates {xk} like in the majority of optimization processes. This is a mean
of measuring the speed of convergence of the sequences.
One of the most efficient ways for assessing the rate of convergence is to make a comparison
between the progress at each step and the progress at the previous step. We say that a sequence
{xk} converges linearly to x∗ if

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = µ with 0 < µ < 1. (1.8)

If (1.8) holds with the rate of convergence µ equals to zero, one says that the sequence converges
superlinearly. More generally, a sequence {xk} is said to be convergent with order r for r > 1

to x∗ if
lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖r

= µ with µ > 0.

In particular, convergence with order 2 is called quadratic convergence. Roughly speaking, this
means that the number of exact digits in xk doubles at each iteration. A detailed description of
the rates of convergence of iterative sequences can be found in Ortega and Rheinboldt [104].

1.3 Basic notions 11

Global and local convergence

Two types of convergence are pertinent in optimization theory. The first is the global con-
vergence. Assume that a sequence {xk} is generated by an algorithm, this latter is said to be
globally convergent when {xk} converges to “what we want” for any initial iterate. By “what
we want”, we mean a point satisfying the necessary optimality conditions (see Section 2.2) and
not necessarily a global optimum. The second is the local convergence. Suppose that {xk} has
a limit point x∗, we wish to identify the speed of convergence of xk towards x∗. This study is
performed by using the tools defined in the previous section.

1.3.3 Derivatives

This section is devoted to what is probably the most fundamental property of the functions
involved in mathematical programs, namely the differentiability. The latter is very important
because most algorithms use available information about a function at one point to deduce its
behaviour at other points. If the problem derivatives are available, the capability of an algorithm
to find a solution is strengthened compared with problems without derivatives.

First and second derivatives

Let f : IR → IR be an univariate function (that is a real-valued function of a real variable).
The first derivative is defined by

f ′(x) =
df(x)

dx
= lim

ε→0

f(x + ε) − f(x)

ε
·

The function f is said to be differentiable at x if f ′(x) exists.
Consider now the multivariate function f : IRn → IR. The first partial derivative of f with
respect to xi is defined by the following limit (if it exists) :

∂f(x)

∂xi
= lim

ε→0

f(x + εei) − f(x)

ε
,

where ei is the ith unit vector. Assuming that all of these partial derivatives exist, the function
f is said to be differentiable and the gradient of f at x is defined as the n-vector

∇xf(x) = g(x) =

∂f(x)
∂x1...

∂f(x)
∂xn

.

If f is differentiable at x, f is continuous at x. If the derivatives are further continuous functions
of x, f is said to be continuously differentiable. Assume now that x depends on y, the derivative

12 Chapter 1. Generalities on optimization

of f with respect to y can by computed by the so-called chain rule :

df(x(y))

dy
=

df

dx

dx

dy
· (1.9)

If the second partial derivatives of a function f defined by

∂2f(x)

∂xi∂xj
=

∂

∂xi

∂f(x)

∂xj

exist for all i, j (1 ≤ i, j ≤ n) and are continuous functions of x, then f is said to be twice-
continuously differentiable, that is f ∈ C2. These n2 second partial derivatives are represented
by an n-by-n, symmetric matrix known as the Hessian matrix of f or simply the Hessian :

∇2
xxf(x) =

∂2f(x)
∂2x1

∂2f(x)
∂x1∂x2

. . . ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)
∂2x2

. . . ∂2f(x)
∂x2∂xn

...
...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

. . . ∂2f(x)
∂2xn

·

We define the curvature of f at x ∈ IRn along the direction d ∈ IRn by

dT∇2
xxf(x)d

‖d‖2
·

Note that if f ∈ C2 and dT∇2
xxf(x)d < 0 (> 0, respectively), the vector d is a direction of

negative (positive) curvature.
A vector-valued function f : IRn → IRm, with component functions f1, . . . , fm is called differ-
entiable if all partial derivatives

∂fj(x)

∂xi

= lim
ε→0

fj(x + εei) − fj(x)

ε
i = 1, . . . , n, j = 1, . . . , m

exist. These partial derivatives may be gathered in an m-by-n matrix known as the Jacobian of
f :

Jxf(x) =

∂f1(x)
∂x1

∂f1(x)
∂x2

. . . ∂f1(x)
∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2

. . . ∂f2(x)
∂xn

...
...

∂fm(x)
∂x1

∂fm(x)
∂x2

. . . ∂fm(x)
∂xn

=

∇xf1(x)
...

∇xfm(x)

.

Taylor approximations

One of the results from analysis that is most frequently used in optimization theory is the
following theorem.

1.3 Basic notions 13

Theorem 1.1 (Mean value theorem)
Suppose that f : IRn → IR is continuously differentiable and that s ∈ IRn. Then we have
that

f(x + s) = f(x) + ∇xf(x + αs)T s,

for some α ∈ (0, 1). If, in addition, f is twice-continuously differentiable, we have that

∇xf(x + s) = ∇xf(x) +

∫ 1

0

∇2
xxf(x + αs)s dα,

and that
f(x + s) = f(x) + ∇xf(x)T s +

1

2
sT∇2

xxf(x + αs)s

for some α ∈ (0, 1).

This theorem shows that, if the function and its first and second derivatives are known at a
point x, then we can build approximations to that function at all points in the neighbourhood of
x. In particular, we may approximate f(x + s) by its first-order Taylor approximation

f(x + s) ≈ f(x) + ∇xf(x)T s (1.10)

or by its second-order Taylor approximation

f(x + s) ≈ f(x) + ∇xf(x)T s + 1

2
sT∇2

xxf(x)s. (1.11)

Note that equations (1.10) and (1.11) are also respectively called linear and quadratic models
of the function f around the point x and are widely used in algorithms designed for solving
optimization problems.

1.3.4 Approximation to derivatives

In many mathematical programs, it may happen that the derivatives are not available in
an explicit form or that they are formulated in a very complicated way. A common way to
approximate first and second derivatives of a function is to use finite-difference approximations.
The technique of finite differencing is inspired by Theorem 1.1. In fact, the derivatives are a
measure of the sensitivity of the function to infinitesimal changes in the values of the variables.
Note that this approach is valid only in the smooth case. Approximations to first and second
derivatives are current in optimization algorithms and complete discussions on this topic may
be found, for instance, in the books of Dennis and Schnabel [41], Gill, Murray and Wright [62]
and Nocedal and Wright [101] or in the paper of Gill et al. [61].

14 Chapter 1. Generalities on optimization

Finite-difference gradients

The first derivative ∇xf(x) of a function f may be approximated componentwise by the
forward finite-difference approximation of the gradient

∂f(x)

∂xi
≈ f(x + hiei) − f(x)

hi
, i = 1, . . . , n, (1.12)

where h ∈ IRn is a vector of stepsizes and ei is the ith unit vector. A more accurate approxima-
tion to the gradient can be obtained by using the central finite-difference approximation given
by

∂f(x)

∂xi
≈ f(x + hiei) − f(x − hiei)

2hi
, i = 1, . . . , n. (1.13)

An important issue in the implementation of these formulae is the choice of the stepsize h. Note
that the forward approximation requires n additional function evaluations while the central one
requires 2n.

Finite-difference Hessians

Finite-difference approximations are also possible for second-order derivative matrices. We
may consider two ways to estimate the Hessian ∇2

xxf(x) by finite differences, one when the
first derivative ∇xf(x) is analytically available and the other one when it is not.
If the gradient of the objective function is analytically available, the Hessian matrix can be
obtained by applying the forward finite-difference formula

∂(∇xf(x))

∂xi
≈ ∇xf(x + hiei) −∇xf(x)

hi
, 1 ≤ i ≤ n, (1.14)

or the central finite-difference one

∂(∇xf(x))

∂xi
≈ ∇xf(x + hiei) −∇xf(x − hiei)

2hi
, 1 ≤ i ≤ n. (1.15)

Remark that this column-at-a-time process does not necessarily lead to a symmetric matrix.
Nevertheless, denoting the approximation to ∇2

xxf(x) by B, we can restore the symmetry by
applying B = (B + BT)/2. The forward formula requires n additional gradient calls while, for
the central one, 2n additional gradient evaluations are needed.
Consider now the case in which even first derivatives are not available. We can use the following
finite-difference formula that uses only function values

∂2f(x)

∂xi∂xj
≈ f(x + hiei + hjej) − f(x + hiei) − f(x + hjej) + f(x)

hihj
, (1.16)

1.3 Basic notions 15

for 1 ≤ i ≤ j ≤ n. Taking symmetry into account, this approximation requires 1
2
(n2 +

3n) additional function evaluations to that of f(x). Obviously, this is relatively expensive and
therefore, in practice, this strategy is used only if the cost of a function evaluation is not too
high. So, in the situation where the first and a fortiori the second derivatives of the function
involved in the optimization problem are not available or are time-consuming, we often prefer
to consider derivative-free optimization techniques (see, for instance, Conn, Scheinberg and
Toint [35, 36]).

For the selection of the stepsize h in all those finite-difference formulae, we have to make a
compromise between large rounding errors, due to small stepsizes, and large approximation er-
rors, generated by large stepsizes. Note that possible values for h will be discussed in Chapter 6
but a typical one is hi =

√
εM for (1.12) and hi = 3

√
εM for (1.13), where εM is the machine

precision.

1.3.5 Automatic differentiation

Another conceivable approach to treat with mathematical programs involving unavailable
derivatives is the automatic differentiation, also referred to as the computational differentia-
tion. This is a set of techniques using the computational representation of a function and based
on the application of the chain rule (1.9) to construct exact values for the derivatives. Au-
tomatic differentiation techniques exploit the fact that every function executes a sequence of
simple elementary arithmetic operations involving at most two arguments at a time, such as
addition, multiplication, division, the power operation or exponential, logarithmic and trigono-
metric functions. By processing the chain rule repeatedly to these operations, derivatives of
arbitrary order can be obtained automatically. Note that such techniques do not need to know
anything about the problem. There exist two principal techniques of automatic differentiation:
the forward and the reverse modes. The reader should refer to Griewank and Corliss [79] and
Griewank [77, 78] for an introduction to this topic.

16 Chapter 1. Generalities on optimization

Chapter 2

Background on nonlinear optimization

This work principally addresses the solution of nonlinear optimization problems, also called
nonlinear programming problems (NLP). A nonlinear program consists of the optimization of
an objective function possibly subject to some constraint functions, where any of these func-
tions may be nonlinear. These kinds of problems can arise from science and engineering. For
instance, the energy dissipated in an electric circuit is a nonlinear function of the resistances;
the volume of a sphere is a nonlinear function of its radius.

In this chapter we present a brief review of some existing methods for solving optimization
problems. We first give some characterizations of solutions of optimization problems by way
of optimality conditions. We next present some well-known algorithms for unconstrained and
constrained nonlinear programming as these are at the root of methods developed in the frame-
work of this thesis. However, this survey is far from being exhaustive; we do not, for example,
discuss interior-point methods (see Wright [129]).

2.1 Characterization of solutions

Consider the general mathematical program

min
x∈S

f(x), (2.1)

where f is a function from IRn into IR and the feasible set S, is a subset of IRn. Before discussing
methods and algorithms for solving nonlinear programming problems, we must characterize a
“solution” of problem (2.1). The first thing to know is that only feasible points may be optimal.
A point x∗ is a global minimizer of f if

f(x∗) ≤ f(x) for all x ∈ S. (2.2)

17

18 Chapter 2. Background on nonlinear optimization

Nevertheless, finding the global minimizer of a problem can be a very complicated task. This
is why most practical nonlinear optimization algorithms only aim at finding a local minimizer,
which is a point that has the lowest value of f in its neighbourhood. More formally, we say that
a point x∗ is a (weak) local minimizer if there is a neighbourhood N of x∗ such that

f(x∗) ≤ f(x) for all x ∈ N ∩ S.

A strict local minimizer is a point x∗ if there exists a neighbourhood N of x∗ such that

f(x∗) < f(x) for all x ∈ N ∩ S with x 6= x∗.

We call minimum the value of the objective function f at a minimizer. The following figure
illustrates the types of minimizers defined above.

PSfrag replacements

strict local minimizers

weak local minimizers global minimizer

Figure 2.1: Examples of local and global minimizers in one dimension

Note that, in this work, we restrict our attention to the computation of local minimizers.

2.2 Optimality conditions

This section will be concerned with optimality conditions which are the mathematical tools
used to verify whether or not a given point is an optimal solution of the problem under study.
These conditions verify if a point x∗ has the smallest function value in its neighbourhood.

2.2 Optimality conditions 19

Moreover, the information given by the optimality test is often the basis for the computation of
the next trial point. In the two following sections, we state the classical optimality conditions for
general unconstrained and constrained optimization problems. Further details about optimality
conditions may be found, for instance, in the books of Bazaraa et al. [4], Conn et al. [34] and
Nocedal and Wright [101].

2.2.1 Unconstrained optimization

Let us consider the unconstrained minimization problem

min
x∈IRn

f(x), (2.3)

we begin with necessary conditions for optimality. These are deduced by assuming that a point
x∗ is a local minimizer and then establishing some properties of the first-order and second-order
derivatives.

Theorem 2.1 (First-order necessary condition)
Suppose that x∗ is a local minimizer of problem (2.3) and f is continuously differentiable
in an open neighbourhood of x∗. Then

∇xf(x∗) = 0. (2.4)

A point x∗ satisfying (2.4) is referred to as a first-order critical or first-order stationary point
of f . Note that any local minimizer must be a first-order critical point.

Theorem 2.2 (Second-order necessary conditions)
Suppose that x∗ is a local minimizer of problem (2.3) and f is twice-continuously differ-
entiable in an open neighbourhood of x∗. Then

∇xf(x∗) = 0 and ∇2
xxf(x∗) is positive semidefinite.

In this case, we say that x∗ is a second-order critical point. The following theorem states
under what conditions a point x∗ is a local minimizer of the objective function f .

20 Chapter 2. Background on nonlinear optimization

Theorem 2.3 (Second-order sufficient conditions)
Suppose that f is twice-continuously differentiable in an open neighbourhood of x∗ and
that furthermore

∇xf(x∗) = 0 and ∇2
xxf(x∗) is positive definite.

Then x∗ is a strict local minimizer of problem (2.3).

Note that, if x∗ is first-order critical but the Hessian is indefinite, we say that x∗ is a saddle
point.

In the context of convex programming (see Section 1.2.2), optimality conditions are simpler.
Indeed, if the objective function f is convex, every local minimizer of this function is also a
global minimizer. This leads to the following global optimality condition that is both necessary
and sufficient.

Theorem 2.4 (Convex programming)
Assume that the objective function f is convex and continuously differentiable. Then x∗ is
a global minimizer of (2.3) if and only if ∇xf(x∗) = 0.

Finally, we point out the fact that optimality conditions often provide the foundations for
the development and the analysis of iterative algorithms. In the case of unconstrained optimiza-
tion, algorithms search for points at which the gradient of f vanishes, as our filter-trust-region
algorithm described in Chapter 4. In practice, algorithms terminate when these optimality con-
ditions hold approximately.

2.2.2 Constrained optimization

Consider now a general constrained problem of the following form

minimize f(x)

subject to x ∈ X,

ci(x) = 0, i ∈ E ,

ci(x) ≤ 0, i ∈ I.

(2.5)

Firstly, we define the active set at any feasible point x as the set of indices of the constraints

2.2 Optimality conditions 21

at which equality holds, that is

A(x) = {i ∈ E ∪ I | ci(x) = 0}.

We say that the constraints whose indices belong to the active set are active. If j 6∈ A(x), we
say that the jth constraint is inactive at x.
The Lagrangian (or Lagrange function) for problem (2.5) is defined by

L(x, λ) = f(x) +
∑

i∈E∪I

λi ci(x),

where λi, i ∈ E ∪ I, are known as the Lagrange multipliers. Usually, the components of x are
called the primal variables and the Lagrange multipliers are known as the dual variables.

Assuming some properties of the constraint functions, known as constraint qualifications,
necessary and sufficient conditions for local minima can be established. These constraint qual-
ification conditions ensure that pathological behaviours do not occur at x∗ while analysing so-
lutions of constrained mathematical programs. They guarantee that, near to a presumed mini-
mum, any nonlinear constraint is reasonably approximated by its first-order Taylor approxima-
tion (1.10). We point out the fact that this constraint qualification is relevant only to nonlinear
constraints. One of the most frequently used constraint qualification at a local solution x∗ is the
following.

Condition 2.1 (Linear independence constraint qualification (LICQ))
Given a point x∗ and its corresponding active set A(x∗), the linear independence constraint
qualification (LICQ) holds for problem (2.5) at x∗ if the set of the gradients of active
constraints at x∗

{∇xci(x
∗) : i ∈ A(x∗)} (2.6)

are linearly independent.

Another useful constraint qualification is established below.

Condition 2.2 (Slater’s constraint qualification)
Assuming the equality constraints ci(x), i ∈ E are affine and the inequality constraints
ci(x), i ∈ I and the objective function f are convex, the Slater’s constraint qualification
holds if the gradients ∇xci(x), i ∈ E are linearly independent vectors and there exists
x̃ ∈ IRn such that ci(x̃) < 0 for all i ∈ I and ci(x̃) = 0 for all i ∈ E .

22 Chapter 2. Background on nonlinear optimization

There are other constraint qualifications, such as the Mangasarian-Fromovitz constraint
qualification (MFCQ) which is a weaker condition than LICQ. For a more complete description
of the MFCQ and other constraint qualifications, we refer the reader to the book of Nocedal
and Wright [101]. With the LICQ condition, we are now able to state the first-order necessary
conditions.

Theorem 2.5 (First-order necessary conditions)
Let x∗ be a local solution of problem (2.5) at which the LICQ condition holds. Then there
exists a Lagrange multiplier vector λ∗, with components λ∗

i (i ∈ E ∪ I), such that the
following conditions are satisfied at (x∗, λ∗):

∇xL(x∗, λ∗) = 0, (2.7a)

ci(x
∗) = 0 for all i ∈ E , (2.7b)

ci(x
∗) ≤ 0 for all i ∈ I, (2.7c)

λ∗
i ≥ 0 for all i ∈ I, (2.7d)

λ∗
i ci(x

∗) = 0 for all i ∈ E ∪ I. (2.7e)

These conditions are also known as the Karush-Kuhn-Tucker (KKT) conditions. The neces-
sary conditions for equality and inequality constrained problems were first published in Karush’s
Master’s thesis [85], and they were re-introduced by Kuhn and Tucker in [86]. The condition
(2.7a) is often referred as the stationary condition, while conditions (2.7b) and (2.7c) are called
(primal) feasibility conditions. Finally, the last equation (2.7e) is the complementarity slack-
ness condition. A point x∗ satisfying the KKT conditions is called a KKT point or a first-order
critical point for problem (2.5). As the condition (2.7e) implies that the Lagrange multipliers
associated to inactive inequality constraints are zero, we can rewrite the condition (2.7a) as

∇xL(x∗, λ∗) = ∇xf(x∗) +
∑

i∈A(x∗)

λ∗
i∇xci(x

∗) = 0.

As in the unconstrained case, we consider the particular case of convex programming. If
the Slater’s constraint qualification (2.2) holds, the KKT conditions are both necessary and
sufficient for optimality. We can derive the following theorem.

Theorem 2.6 (Convex programming)
If f is convex and the feasible region is convex, any local solution of the constrained prob-
lem (2.5) is also a global solution.

2.2 Optimality conditions 23

Further, if f and c are differentiable and if Slater’s condition (2.2) holds, (2.7a)-(2.7e) are
necessary and sufficient conditions for x∗ (and λ∗) to define a solution.
Furthermore, if f is strictly convex, the global solution is unique.

Using second-order derivatives information, we now establish the second-order optimality
conditions for the general constrained problem (2.5). In order to introduce these conditions, we
must give the following set definition where x ∈ IRn and λ ∈ IRp+m are given vectors, with
p = #I and m = #E ,

N+(x, λ) =

{

s ∈ IRn

∣

∣

∣

∣

sT∇xci(x) = 0 ∀i ∈ E ∪ {j ∈ A(x) ∩ I : λj > 0}
and sT∇xci(x) ≤ 0 ∀i ∈ {j ∈ A(x) ∩ I : λj = 0}

}

.

Theorem 2.7 (Second-order necessary conditions)
Let x∗ be a local solution of problem (2.5) at which the LICQ condition holds. Let also λ∗

be a Lagrange multiplier vector such that the KKT conditions (2.7a)-(2.7e) are satisfied.
Then

sT∇2
xxL(x∗, λ∗)s ≥ 0 for all s ∈ N+(x∗, λ∗). (2.8)

Property (2.8) states that the curvature of the Lagrangian along directions in N+(x∗, λ∗)

must be nonnegative. We say that a point x∗ satisfying (2.8) is a strong second-order critical
point.
It is possible to formulate a converse to Theorem 2.7 and derive the following second-order
sufficient conditions for optimality.

Theorem 2.8 (Second-order sufficient conditions)
Suppose that for some feasible point x∗ ∈ IRn there exists a Lagrange multiplier vector λ∗

satisfying the KKT conditions (2.7a)-(2.7e). Assume also that

sT∇2
xxL(x∗, λ∗)s > 0 for all s ∈ N+(x∗, λ∗) with s 6= 0.

Then x∗ is a strict local solution of problem (2.5).

24 Chapter 2. Background on nonlinear optimization

2.2.3 Criticality measure

In our later developments (see in particular Section 7.2), we will need the concept of criti-
cality measure. We define π(k, xk) to be a first-order criticality measure of the iterate xk if it is
a nonnegative real function of its second argument such that

‖xk − x`‖ → 0 implies that |π(k, xk) − π(`, x`)| → 0

and if the limit
lim
k→∞

π(k, xk) = 0

corresponds to asymptotically satisfying the first-order criticality conditions of the optimization
problem under study (see Conn et al. [34, Section 8.1] for further details).

2.3 Methods for nonlinear unconstrained optimization

We start our review with algorithms designed for solving unconstrained nonlinear optimiza-
tion problems, that is mathematical programs of the form (2.3). As we have already pointed out
in Section 2.2.1, unconstrained optimization algorithms search for points at which the gradient
of the objective function f vanishes. So a simple idea for solving this kind of problems is to try
to solve the system of n equations with n unknowns given by

∇xf(x) = 0. (2.9)

Usually, an iterative method is needed for solving (2.9). Such a method iteratively produces a
sequence of iterates

x1, x2, . . . , xk, . . .

hoping that this sequence converges to a solution of the problem (2.3). In order to compute the
next iterate, iterative algorithms need to know some information about the problem. First of all,
they ought to know the value of the objective function f for every x. Sometimes, the derivatives
are also required. Methods using only first-order information, like the steepest-descent method,
are not very powerful. Frequently, efficient optimization algorithms must take second-order
information into account.

2.3.1 Local methods

In this section we describe some of the best-known methods for unconstrained nonlinear op-
timization. These methods have only local convergence properties, we will see in Sections 2.3.2
and 2.3.3 that two kinds of globalization techniques may be used to enforce the convergence to
a local minimum when started far away from all local minima.

2.3 Methods for nonlinear unconstrained optimization 25

Newton’s method

We now describe Newton’s method, which is an iterative one and whose aim is to solve
equation (2.9). In order to derive Newton’s method in the variant used in optimization, we
consider the quadratic model of f at the current iterate xk

mk(xk + s) = f(xk) + ∇xf(xk)
T s +

1

2
sT∇2

xxf(xk)s. (2.10)

The idea is then to minimize the model at the current iterate. If the Hessian ∇2
xxf(xk) is positive

definite , then the quadratic model (2.10) has a unique minimizer sk at a point where the gradient
of this model vanishes, i.e. where

∇xf(xk) + ∇2
xxf(xk)s = 0.

As long as ∇2
xxf(x) remains nonsingular for all x, Newton’s method is well defined. It is

summarized by the following algorithm.

Algorithm 2.1: Newton’s method

Step 0. An initial point x0 ∈ IRn is given. Set k = 0.

Step 1. Compute the step sk by solving the system of linear equations

∇2
xxf(xk)sk = −∇xf(xk) (2.11)

Step 2. Set
xk+1 = xk + sk.

Increment k by one and go to Step1.

Equations (2.11) are called Newton equations and the solution sk is known as the Newton step
or Newton direction. If the Hessian is positive definite, it then follows from (2.11) that

∇xf(xk)
T sk = −sT

k ∇2
xxf(xk) sk ≤ −σk‖sk‖2 for some σk > 0.

Therefore, if the gradient of f is nonzero, the Newton direction is a descent direction, i.e.,
sT

k ∇xf(xk) < 0. If the gradient is zero, then the step sk is also zero. However, far from
a local minimum, the Hessian matrix may be singular or the Newton direction may not be
a descent direction if ∇2

xxf(xk) is not positive definite. For example, if the Hessian is not

26 Chapter 2. Background on nonlinear optimization

positive definite when the iterate is far from the solution, the sequence of generated iterates
may converge towards a maximum or a saddle point of f , since any first-order critical point is
a solution of the system (2.9).

Another important characteristic of Newton’s method is that, when it works, it rapidly con-
verges; the asymptotic rate of convergence is quadratic. Note the fact that Newton’s method
converges after one iteration for all quadratic objective functions. However, one of its most
serious disadvantages is the lack of global convergence. As the Taylor’s approximation (2.10)
is only valid in the proximity of the solution x∗, Newton’s method is suitable only when the
initial point is close enough to x∗. The requirement of analytic second-order derivatives of the
objective function is another drawback to Newton’s method. These derivatives may be difficult
to determine notwithstanding the fact that they are known to exist.
Finally, we say that the advantages and disadvantages of Newton’s method are the foundations
to the development and improvement of more practical algorithms.

Quasi-Newton methods

We now focus on Quasi-Newton methods, which, in opposition to Newton’s method, do not
require the computation of the exact Hessian. The basic idea of these techniques is to update
approximations of the Hessian matrices in some computational cheap ways. They use the ob-
served behaviour of the objective function and its gradient to build up curvature information to
create an approximation to the Hessian using a suitable updating technique. One of their major
advantages is, of course, that they do not require computation of second derivatives, neither
additional function or gradient evaluations. We refer the reader to the monograph of Dennis
and Schnabel [41, Chapter 9] for an introduction to this topic.

We consider here a quadratic model of the objective function f at the kth iterate, that is

mk(xk + d) = f(xk) + dT∇xf(xk) +
1

2
dT Bkd, (2.12)

where Bk is an n-by-n symmetric positive definite matrix which approximates the matrix
∇2

xxf(xk). As this model is convex, the step which minimizes (2.12) is

dk = −B−1
k ∇xf(xk).

Once the next iterate xk+1 has been computed, a new Hessian approximation Bk+1 is obtained
by updating Bk to take into account information obtained during the most recent step. An
updating formula is of the form

Bk+1 = Bk + Uk,

2.3 Methods for nonlinear unconstrained optimization 27

where Uk is called the updating matrix. This update represents a trial to enhance Bk with
information gained on the kth iteration.
Considering the Taylor approximation of the gradient of the objective function around the new
iterate xk+1, we obtain that the Hessian matrix ∇2

xxf(xk) verifies

∇2
xxf(xk)(xk+1 − xk) ≈ ∇xf(xk+1) −∇xf(xk).

Therefore, we require that the approximation Bk+1 satisfies

Bk+1sk = yk, (2.13)

where sk = xk+1 − xk and yk = ∇xf(xk+1) − ∇xf(xk). Equation (2.13) is called the Quasi-
Newton equation or the secant equation. This is why Quasi-Newton methods are sometimes
called secant methods.

One of the first updating formula was suggested by Davidon [38] in 1959. His formula
has the property of preserving positive definiteness and was later popularized by Fletcher and
Powell [56] in 1963. It is known as the DFP updating formula which is given by

Bk+1 =

(

I − yks
T
k

yT
k sk

)

Bk

(

I − sky
T
k

yT
k sk

)

+
yky

T
k

yT
k sk

·

It is to note that the DFP formula with exact line search (see Section 2.3.2) works well in
practice.

We now present probably the most effective and widespread Quasi-Newton updating for-
mula, namely the BFGS formula, which was discovered independently by Broyden [15], Fletcher
[47], Goldfarb [63] and Shanno [116] in 1970. The Hessian update can be calculated by

Bk+1 = Bk −
Bksks

T
k Bk

sT
k Bksk

+
yky

T
k

yT
k sk

· (2.14)

Note that if Bk is positive definite then the update Bk+1 will also be positive definite (when
yT

k sk > 0). Moreover, the BFGS updating formula has efficient self-correcting properties.
Indeed, if the matrix Bk erroneously approximates the curvature in the objective function f ,
and if this slows down the iterative process, then the BFGS update tends to correct this Hessian
approximation within a few steps (see Nocedal and Wright [101]).
In some situations, the updating formula can produce bad results, for example, when yT

k sk is
negative or too close to zero, we can however simply skip the Hessian update and set Bk+1 =

Bk. We also skip the update if yk is sufficiently close to Bksk.
Contrary to the BFGS technique, which is a rank-two updating formula, the SR1 formula is

a symmetric-rank-one update; and it does not guarantee to produce a positive definite matrix.

28 Chapter 2. Background on nonlinear optimization

However, the SR1 updating formula combined with a trust-region method (see Section 2.3.3)
has proved to be quite useful (see Conn, Gould and Toint [30] or Byrd, Khalfan and Schn-
abel [18]). This is an update which allows indefinite approximations. The SR1 update of the
Hessian matrix is given by

Bk+1 = Bk +
(yk − Bksk)(yk − Bksk)

T

(yk − Bksk)T sk
· (2.15)

One of the drawbacks to this method is that the denominator (yk − Bksk)
T sk can vanish or

become very small; so, in this case, we skip the update and set Bk+1 = Bk.

We also have to discuss the choice of the initial Hessian approximation B0. There is no
magic formula to determine it. It is common to start Quasi-Newton updates with an initial ap-
proximation B0 set to the identity matrix. But other choices, that we list below, are conceivable :

• a factor of the identity matrix, for example, B0 = |f(x0)| I ;

• B0 may also be rescaled before B1 is computed as B0 =
yT
0

s0

sT
0

B0s0
I (for more detail see

Shanno and Phua [117]);

• some finite-difference approximation at x0.

Note that, there is no guarantee that the finite-difference approximation to ∇2
xxf(x) is pos-

itive definite. If it is not the case, one could correct the matrix into a positive definite one by
using the techniques described in Section 5.5 of Dennis and Schnabel [41].

We can point out the fact that these Quasi-Newton methods are not directly applicable
to large-scale optimization problems since their Hessian approximations are generally dense.
Therefore, one of the major disadvantages of these methods is the large storage requirement.
To circumvent this, Nocedal [100] derived a technique that considerably reduced the storage is-
sue caused by the BFGS update. So when treating large problems, it is preferable to use limited
memory BFGS update. For a complete description of this technique, we refer the reader to Liu
and Nocedal [90] and Byrd et al. [19].

Having introduced these techniques, we will present in the next section the leading ideas
of two globalization techniques, namely line-search methods and trust-region methods. These
approaches are applied in order to enforce algorithms to converge from any initial point. When
we are far away from a solution, these globalization techniques are an active part of the process
because they avoid displacement away from the solution or even divergence. But close to an op-
timum, they will play the role of safeguards; they may be used if required, but usually they will

2.3 Methods for nonlinear unconstrained optimization 29

not be invoked. We particularly focus on trust-region methods since these are the foundations
for our algorithmic developments in Chapters 4 and 7.

2.3.2 Line-search methods

We start our survey of globalization techniques with line-search methods. After having
computed a direction dk, each iteration of a line-search method must decide how long the step
in this direction should be. The iterates are generated by

xk+1 = xk + αkdk,

where dk ∈ IRn is the direction and αk > 0 is known as the step length, computed by an
appropriate line-search method, whose goal is to sufficiently reduced the value of the objective
function f . The best choice for the step length αk is theoretically the solution of the following
minimization problem

min
α>0

f(xk + αdk). (2.16)

However, the exact minimizer of (2.16) is often expensive to compute and unnecessary. There-
fore, instead of solving (2.16) exactly and performing an exact line search, it is generally prefer-
able to solve this problem only approximately, this process is known as inexact line search.
There are several rules for choosing the step length α. In practice, one solves this problem
approximately by imposing some conditions ensuring a sufficient decrease, as, for instance,
Armijo conditions or Wolfe conditions (see Nocedal and Wright [101]). Note that, in order to
benefit from the properties of fast convergence of Newton-type methods, we always try the unit
step length α = 1 first. If it is not possible, a backtracking procedure is performed. The value
resulting from this procedure is generated by moving backwards from α = 1 to α = 0.

Further details about strategies and convergence analysis of line searches may be found in
the monographs of Dennis and Schnabel [41] and Nocedal and Wright [101].

2.3.3 Trust-region methods

We now consider the second broad class of globalization techniques, called trust regions,
which is the approach we consider in our research work to promote global convergence. The
first methods that we might consider as trust-region ones are due to Levenberg [87] and Mar-
quardt [92] and are used to solve nonlinear least-squares problems. Since then they have been
extended to more general optimization problems. While line-search methods start by finding
a direction and then compute the step length, trust-region algorithms first choose a maximum
distance, the trust-region radius, before computing a direction and a step length simultaneously.
The basic idea of trust-region methods is to accept the minimum of a quadratic model only

30 Chapter 2. Background on nonlinear optimization

as long as the latter adequately reflects the behaviour of the objective function f , in a manner
that is now well established (see Conn, Gould and Toint [34] for an extensive description of
trust-region methods and their properties). In contrast to line-search techniques, trust-region
methods do not require the positive definiteness of the Hessian of the quadratic model. Another
interesting feature of trust-region methods is that they have the possibility to naturally take ad-
vantage of directions of negative curvature when there are present. Indeed, these directions may
be taken safely to the boundary of the trust region.

At each iteration k, we built a model of the objective function f around the current iterate
xk which is easier to handle than f . The most practical choice for this model is a quadratic one
of the form

mk(xk + s) = f(xk) + gT
k s +

1

2
sT Hks, (2.17)

where

gk
def
= ∇xmk(xk) = ∇xf(xk),

and Hk is either the Hessian ∇2
xxf(xk) or some symmetric approximation to it. The purpose

of trust-region methods is to restrict the search to a neighbourhood of the iterate xk, in which
we believe the model to be sufficiently adequate. Such a vicinity, named a trust region, may be
defined as

Bk = {xk + s | ‖s‖k ≤ ∆k},

where ∆k > 0 is known as the trust-region radius and ‖ · ‖k is an iteration-dependent norm. A
classical choice is the Euclidean norm but other picks are possible according to the geometry of
the problem under study. Throughout this work, we treat the Euclidean norm unless specified.
Using the trust region we define the following subproblem

min mk(xk + s)

s.t. ‖s‖ ≤ ∆k,
(2.18)

which is called the trust-region subproblem. A trial step sk is then computed by minimizing
(2.18) (possibly only approximately). Let us denote the candidate point by x+

k = xk + sk.
Trust-region algorithms then evaluate the objective function at the candidate point and accept
x+

k as the new iterate if the reduction achieved in the objective function is at least a fraction
of that predicted by the model. The trust-region radius ∆k is also possibly enlarged if this is
the case. This iteration is then declared to be successful. The increase may indicate that longer
steps would be successful as well. Otherwise, if the achieved reduction is too small, the trial
point is rejected, the trust-region radius is reduced and the iteration is said to be unsuccessful.
We then conclude that the model is not sufficiently accurate in this trust region.
Formally, we compute the ratio between the achieved reduction (i.e. the decrease in f) versus

2.3 Methods for nonlinear unconstrained optimization 31

the predicted reduction (i.e. the reduction in mk)

ρk =
f(xk) − f(xk + sk)

mk(xk) − mk(xk + sk)
· (2.19)

If this ratio is close to one, it means that the model approximates the objective function well.

The detailed trust-region algorithm, which is one of the basic components of methods de-
veloped in this research work, is outlined in Algorithm 2.2.

Algorithm 2.2: Basic Trust-Region (BTR) algorithm

Step 0: Initialization. An initial point x0 and an initial trust-region radius ∆0 > 0 are
given. The constants η1, η2, γ1 and γ2 also given and satisfy

0 < η1 ≤ η2 < 1 and 0 < γ1 ≤ γ2 < 1. (2.20)

Compute f(x0) and set the iteration counter k to 0.

Step 1: Model definition. Compute the model mk approximating f around xk in Bk.

Step 2: Step calculation. Compute a step sk that “sufficiently reduces” the model mk and
such that xk + sk ∈ Bk.

Step 3: Acceptance of the trial point. Compute f(xk + sk) and define ρk as in (2.19). If
ρk ≥ η1, set xk+1 = xk + sk; otherwise define xk+1 = xk.

Step 4: Trust-region radius update. Update the radius as follows

∆k+1 ∈

[∆k,∞) if ρk ≥ η2

[γ2∆k, ∆k] if ρk ∈ [η1, η2)

[γ1∆k, γ2∆k] if ρk < η1,

set k = k + 1 and go to Step 1.

One of the critical tasks in such an algorithm is the computation of the trial step sk which
“sufficiently reduces” the model within the current trust region. This sufficient decrease may be
measured in terms of the Cauchy point. Consider the Cauchy arc

xC
k (t) = {x | x = xk − t ∇xf(xk), t ≥ 0 and x ∈ Bk}. (2.21)

32 Chapter 2. Background on nonlinear optimization

If our model is a quadratic one of the form (2.17), then it is possible to calculate the exact
minimum of the model mk along this arc. The computing minimizer xC

k is known as the Cauchy
point. We will see in the following chapters that the Cauchy point is of essential importance in
the convergence analysis of algorithms based on trust-region methods. Such methods are proved
to be globally convergent if steps sk give a reduction in the model that is at least a fraction of
the decrease obtained at the Cauchy point. More formally, the condition on the reduction in the
model is given by

mk(xk) − mk(xk + sk) ≥ κ
(

mk(xk) − mk(x
C
k)
)

,

for some constant κ ∈ (0, 1).
Note that, as stated, Algorithm 2.2 lacks a formal stopping criterion. In practice, one would

obviously stop the process if the objective gradient’s norm ‖∇xf(xk)‖ falls below some toler-
ance, or if some fixed maximum number of iterations is exceeded. We will discuss in Chapter 5
reasonable values for the constants η1, η2, γ1 and γ2.

Finally, a complete description of practical methods to solve, exactly or approximately, the
trust-region subproblem (2.18) is given in [34, Chapter 7].

2.3.4 Conjugate-gradient methods

To conclude this overview of methods for unconstrained optimization problems, we would
like to present another popular class of algorithms, namely conjugate-gradient methods. The
first motivation of the conjugate-gradient method consists in solving a linear system made up
with a symmetric positive definite matrix and this method is due to Hestenes and Stiefel [81].
This process is performed without storing any additional matrix, even the matrix of the system.
As a consequence one of the key properties of these methods is that they require little storage.
Especially, when the number n of variables is large, the conjugate-gradient method may surpass
Newton methods.

The basis of conjugate-gradient algorithms is the notion of conjugate directions. A set
of nonzero vectors {d1, . . . , dk} is said to be conjugate with respect to a symmetric positive
definite matrix A, if

dT
i Adj = 0, for all i and j such that i 6= j.

The conjugate directions can be used to solve a quadratic minimization problem of the form

min
x∈IRn

q(x) =
1

2
xT Hx + cT x, (2.22)

2.4 Methods for nonlinear constrained optimization 33

where H is supposed to be symmetric and positive definite. In accordance with the first-order
optimality conditions for convex functions (see Theorem 2.4), the unique solution to the prob-
lem (2.22) is also the unique solution to the system of linear equations

Hx = −c.

The conjugate-gradient algorithm is obtained by choosing the successive direction vectors as a
conjugate version of the successive gradients obtained as the method progresses. The directions
are determined sequentially at each step of the iteration. At iteration k one evaluates the current
negative gradient vector and it is added a linear combination of the previous direction vectors
to obtain a new conjugate direction vector along which to move.

The conjugate-gradient method is described in the following algorithm.

Algorithm 2.3: Conjugate-gradient method

Given a starting point x0, set g0 = Hx0 + c and d0 = −g0.
Until convergence, perform the following sequence of operations

αk =
gT

k
gk

dT
k

Hdk

xk+1 = xk + αkdk

gk+1 = gk + αkHdk

βk =
gT

k+1
gk+1

gT
k

gk

dk+1 = −gk+1 + βkdk

k = k + 1

The convergence of this method must occur by the nth iteration in exact arithmetic.

2.4 Methods for nonlinear constrained optimization

We start by restating, for the sake of clarity, the structure of most constrained nonlinear
optimization problems

min f(x)

s.t. ci(x) = 0, i ∈ E ,

ci(x) ≤ 0, i ∈ I,

(2.23)

34 Chapter 2. Background on nonlinear optimization

in which both the objective and constraint functions may be nonlinear. Constrained optimiza-
tion problems of that form arise naturally in many different disciplines. In this section, we
give the principal ideas of some of well-known methods for nonlinear constrained optimization
problems, in particular, of those that will be useful or mentioned in the remainder of this dis-
sertation. Such methods are motivated by the desire to benefit from unconstrained optimization
techniques to solve constrained problems; to this end, we can reformulate the problem (2.23) as
an unconstrained one.

2.4.1 Penalty methods

We have chosen to present penalty methods because they will be considered in the section
devoted to the motivation of filter techniques (see Section 3.1), since the latter have been intro-
duced as an alternative to penalty-based approaches.
The main idea of penalty methods is to compute an approximate solution to a constrained opti-
mization problem by successive unconstrained optimization problems defined by a combination
of the original objective function and a function that penalizes the constraint violation. In other
words, penalty methods try to solve simultaneously two issues, namely the problem of optimal-
ity and the one of feasibility. These techniques need to evaluate the “quality” of the current
iterate with respect to previous ones. So in order to decide whether a candidate point xk+1

is “better” than a current point xk, it is necessary to define a so-called penalty function (or a
merit function) which is designed to measure the balance between the often conflicting aims
of decreasing the objective function and satisfying the constraints. To this end, we consider a
function which assesses the constraint violation that we denote by θ(x) (see below for examples
of this function). An advantage of penalty methods is that they do not require the iterates to be
strictly feasible and they are thus appropriate for problems with equality constraints.

Penalty techniques then combine the two following problems

min
x

f(x) and min
x

θ(x)

in a single one. This is realized by incorporating the measure of the constraint violation into the
objective function. The function θ penalizes the constraint violation by imposing penalties for
infeasibility : θ is zero on the feasible region and positive outside. The penalty function may
then be defined as

f(x) + ρ θ(x)

where the scalar ρ is called the penalty parameter. A step will be accepted only if it results in a
sufficient reduction of this penalty function. By varying the penalty parameter, the method con-
verges iteratively to an approximate solution of the original constrained optimization problem.

2.4 Methods for nonlinear constrained optimization 35

So, more formally, we solve the following problem, where the value of the penalty parameter
depends on the iteration,

min
x

f(x) + ρj θ(x), (2.24)

with the sequence {ρj} tends to +∞, in order to penalize the constraint violation more and
more severely and to force the solution to be feasible. We hope that if the penalty parameter is
sufficiently large, the solution of the problem (2.24) should be close to a solution of the original
constrained problem (2.23). The determination of these parameters is usually a difficult task
and its role is crucial for the performance of practical algorithms.

Many penalty functions exist, we shall only introduce the most common ones. We start with
probably the most widely used, that is the quadratic penalty function

Q(x; µ)
def
= f(x) +

1

2µ

∑

i∈E

c2
i (x) +

1

2µ

∑

i∈I

[max(0, ci(x))]2, (2.25)

where the penalty parameter is µ. So, in quadratic penalty methods, we consider a sequence
of parameters {µk} such that µk tends to zero as k tends to +∞. For each k, we find an
approximate minimizer, denoted by xk, of the problem

min
x

Q(x; µk). (2.26)

Note that, when only equality constraints are present, the quadratic penalty function (that is
(2.25) without the last term) is smooth, but adding the inequality constraint term might result
in a less smooth function(1). A disadvantage of the method is that the Hessian of the penalty
function becomes increasingly ill-conditioned close to the minimizer of Q(x; µ) when µ tends
to zero. Both Quasi-Newton and conjugate-gradient methods are severely affected by this.

Another attractive merit function is the `1 exact penalty function which is defined by

`1(x; µ)
def
= f(x) +

1

µ

∑

i∈E

|ci(x)| + 1

µ

∑

i∈I

max(0, ci(x)). (2.27)

The use of the `1 exact penalty function to solve problem (2.23) is well known. It has been first
reported by Pietrzykowski [105], and has been widely studied, for example by Charalambous
[21], Conn [27], Coleman and Conn [24, 25] and Han and Mangasarian [80]. This penalty
function is called exact because, for some choices of the parameter µ, `1(x; µ) is minimized
locally by the solution x∗ to the initial problem (2.23). This means that the exact solution of
(2.23) may be obtained by one application of an unconstrained minimization procedure to the
function `1(x; µ) for µ sufficiently small. Note that the `1 exact penalty function is nonsmooth.

(1)In fact, the Hessian of Q(x; µ) is piecewise twice continuously differentiable.

36 Chapter 2. Background on nonlinear optimization

Finally, as we have already mentioned, one of the practical difficulties of penalty methods
is the adjustment of the penalty parameter; several rules for updating this parameter during the
process of the computation exist.

2.4.2 Augmented Lagrangian methods

In this section we introduce the main ideas of the augmented Lagrangian method as it is
a major component of the solver LANCELOT which will be numerically compared with our
filter-trust-region algorithms (see Sections 5.4.3 and 8.3.2).
For simplicity of presentation, we consider the problem with only equality constraints

min f(x)

s.t. ci(x) = 0, i ∈ E .
(2.28)

In methods with augmented Lagrangian function, we consider adding the penalty term to the
Lagrangian function rather than to the objective function like, for example, in quadratic penalty
methods. Therefore, the augmented Lagrangian function for the problem (2.28) is defined as

LA(x, λ; µ)
def
= f(x) +

∑

i∈E

λici(x) +
1

2µ

∑

i∈E

c2
i (x), (2.29)

where µ > 0 is the penalty parameter and λi (i ∈ E) are the Lagrange multipliers. Recalling the
KKT conditions given in (2.5) (where we now only consider equality constraints), they require
- among others - that

∇xL(x∗, λ∗) = 0 and ci(x
∗) = 0 ∀i ∈ E ,

where λ∗ denotes the optimal vector of Lagrange multipliers. Therefore the augmented La-
grangian and the Lagrangian coincide at the optimum, and we avoid the need to decrease µ to
zero.

Computing the first derivative of the augmented Lagrangian with respect to x at some non-
critical point, we obtain

∇xLA(x, λ; µ) = ∇xf(x) +
∑

i∈E

[

λi +
ci(x)

µ

]

∇xci(x).

Consequently, close to an optimal solution, we expect that

λ∗
i ≈ λi +

ci(x)

µ
for all i ∈ E .

Moreover, this formula suggests a technique to update the multipliers λi in a sequence of iterates

λk+1
i = λk

i +
ci(xk)

µk

for all i ∈ E , (2.30)

2.4 Methods for nonlinear constrained optimization 37

where λk
i denotes the ith component of the kth estimate.

This leads to the following framework for algorithms using augmented Lagrangian function.

Algorithm 2.4: Augmented Lagrangian algorithm

We are given xs
0, λ0 and µ0 > 0 and a convergence tolerance τ0 > 0. Set k = 0.

Step 1 : Inner minimization. Apply an unconstrained minimization algorithm to (ap-
proximately) solve the problem

min
x∈IRn

LA(x, λk; µk), (2.31)

starting at xs
k and terminating at xk for which

‖∇xLA(xk, λk; µk)‖ ≤ τk.

If some final convergence test holds, STOP with (approximate) solution xk.

Step 2 : Update the Lagrange multiplier estimates and the penalty parameter.
Choose λk+1 according to (2.30). Choose a new penalty parameter such that
µk+1 ∈ (0, µk]. Select the next starting point as xs

k+1 = xk. Increment k by one and
go to Step 1.

It has been proved that the convergence of the augmented Lagrangian method can be assured
without decreasing the parameter µ to a very small value (see Nocedal and Wright [101]). Some
motivations associated to these methods is that ill-conditioning is not unavoidable like in the
quadratic penalty method, and the function we want to minimize is continuously differentiable
in contrast with the `1 exact penalty function given by (2.27). As said before, a well-known
implementation of this method is that of Conn, Gould and Toint [32, 31] in the large-scale
nonlinear programming package LANCELOT (Large And Nonlinear Constrained Extended
Lagrangian Optimization Techniques) (see Section 5.4.3 for a brief description of this solver).
It is also possible to extend the augmented Lagrangian method for inequality constraints. The
problem (2.23) can be transformed into a problem including only equality constraints and bound
constraints by using slack variables (see Nocedal and Wright [101]), and it can then be solved
by LANCELOT.

38 Chapter 2. Background on nonlinear optimization

2.4.3 Sequential Quadratic Programming

Since we will often refer to sequential quadratic programming in Chapter 3, we will present
its main ideas in this section. Many of the most effective and popular methods for solving
smooth nonconvex and nonlinear minimization problems with nonlinear constraints belong to
the class of Sequential Quadratic Programming (SQP) techniques.

The SQP approach is a generalization of Newton’s method to the constrained case and has
been first introduced by Wilson in his Master’s thesis [127]. Practically, it finds a trial step by
minimizing a quadratic model of the problem. The quadratic program is a local model of the
general constrained problem (2.23) at the iterate xk, made up with a quadratic approximation
of the objective function and a linear approximation of both equality and inequality constraints
around the current iterate. The step sk is then computed by solving the following quadratic
subproblem

min
s∈IRn

∇xf(xk)
T s + 1

2
sT Hks

s.t. cE(xk) + AE(xk)s = 0,

cI(xk) + AI(xk)s ≤ 0,

(2.32)

where we gather into cE and cI the constraints functions ci(i ∈ E) and ci(i ∈ I) respectively
and AE(xk) and AI(xk) are the Jacobian of the equality and inequality constraints, respectively,
evaluated at xk.

In the case of constrained optimization problems, one wants the next iterate not only to re-
duce the objective function f but also to decrease some constraint violation. As these two goals
are sometimes conflicting, it is required to assess the relative weight between them. Therefore,
we use a so-called merit function defined in Section 2.4.1 as a criterion to determinate if the trial
point is “better” than the current point. So when using SQP techniques, we need a merit func-
tion to evaluate the progress in improving the objective function while maintaining feasibility.
For the sake of clarity, we focus our attention on equality-constrained problems (2.28). Two
merit functions are commonly used in the framework of SQP algorithms, that is the augmented
Lagrangian function (2.29) and the `1 merit function (2.27), which for problems involving only
equality constraints, is defined as

`1(x; µ) = f(x) +
1

µ
‖c(x)‖1.

One of these functions can be used to measure the progress towards a local minimum of the
problem. An important question relates to the choice of the matrix Hk in (2.32). One might
choose Hk to be the Hessian of the Lagrangian function, but it is also possible to set Hk to an
approximation of this Hessian.

2.4 Methods for nonlinear constrained optimization 39

For a complete survey of the topic, we refer the reader to the books of Nocedal and Wright
[101, Chapter 18] and Conn, Gould and Toint [34, Chapter 15] or to the papers of Boggs and
Tolle [12] and Gould and Toint [73]. Several software packages for solving large-scale con-
strained optimization problems use SQP methods, like, for example, SNOPT invented by Gill,
Murray and Saunders [60].

Globalization techniques

In order to ensure global convergence of SQP methods even if we start far from a solu-
tion, we must consider a globalization strategy as in the unconstrained case. The techniques
described in Sections 2.3.2 and 2.3.3 may be adapted to SQP techniques; but here we only
consider trust regions. The first trust-region SQP methods were introduced by Beale [5] and
Sargent [112]. These methods solve the QP subproblem (2.32) with the additional constraint

‖s‖ ≤ ∆k.

The numerator of the ratio ρk (2.19) must then be defined as the actual reduction in the merit
function rather than in the objective function as for the unconstrained case. There are several
ways to achieve this : one may modify the usual quadratic model (2.10) by adding a penalty
term such that it is explicitly related to the merit function; another possibility is to transform
the denominator of ρk by including a term reflecting some predicted reduction in the constraint
violation.

Active-set SQP methods

One possible approach to solve the QP subproblem (2.32) at each iteration is to use active-set
SQP methods. An active-set SQP algorithm solves a QP subproblem by using an inner process
which repeatedly updates a set of constraint indices W , known as the working set, which it
estimates to be active at the solution of the QP subproblem. The iterations of this process are
called the inner iterations and the working set at the kth inner iteration is denoted by Wk.

For each inner iteration, we solve an equality constrained QP subproblem, in which the
constraints corresponding to the current working set Wk are treated as equalities and all other
constraints are temporarily ignored. These methods typically modify the working set by at
most one constraint at each inner iteration. This is done either by adding a new constraint to the
current working set Wk or by dropping a constraint from it. This process is repeated until the
correct active set and the solution to (2.32) has been found. This limitation on the modification
of the working set by at most one constraint at a time gives a lower bound on the number of
inner iterations required to solve the QP subproblem. Indeed, if there are k0 constraints active

40 Chapter 2. Background on nonlinear optimization

at the initial working set W0 and k∗ constraints active at the solution, then at least |k∗ − k0|
iterations are needed for convergence. This feature can be an important disadvantage for large-
scale problems if the initial working set is very different from the active set at the solution.
However, some research works have led to methods allowing radical changes in the working set
at each iteration (see Chapter 7).

For more details on active-set SQP methods, we refer the reader to the books of Nocedal and
Wright [101]. Efficient implementations of active-set SQP methods such as FilterSQP [52, 50]
and SNOPT [60] have been developed.

2.5 References

Obviously, the survey of this chapter is not thorough and, for a more complete study of
methods and algorithms devoted to nonlinear optimization, we refer the reader to the books
of Bertsekas [8], Bonnans, Gilbert, Lemaréchal and Sagastizábal [14], Conn, Gould and Toint
[34], Dennis and Schnabel [41], Fletcher [48], Gill, Murray and Wright [62], Luenberg [91],
Nash and Sofer [98], Nocedal and Wright [101] and Ruszczyński [108] and to the papers of
Gould et al. [71] and Sartenaer [114].

To conclude this chapter, we give a list of online resources and tools related to nonlinear
optimization. We first mention the NEOS (Network-Enabled Optimization System) Guide and
the NEOS Server that have been developed by the Optimization Technology Center(2). They
are available at the following addresses :

http://www.mcs.anl.gov/otc/Guide/

and

http://www-neos.mcs.anl.gov/

The former contains information and educational material about optimization, including a guide
to optimization software. The NEOS Server permits to solve optimization problems remotely
over the Internet. The user can submit a problem, for example, through the World Wide Web. A
few moments later, he receives the result obtained by the chosen optimization solver. Another
interesting link is the following :

http://www.optimization-online.org/

Optimization Online is a repository of e-prints about optimization and related topics. It allows
researchers to announce their new reports.

(2)http://www.ece.northwestern.edu/OTC

Chapter 3

A quick survey of filter methods

This chapter is intended to provide an introduction to the concept of filter, which is the
discussion thread of this work. The algorithms we propose in Chapters 4 and 7 are principally
based on this notion. We will start with a motivation of the introduction of the filter in opti-
mization. Afterwards, we will give the main ideas of the first filter-based algorithm proposed
by Fletcher and Leyffer [52]. We will then conclude this chapter with a review of the existing
methods and algorithms using a filter, which is presented in Section 3.3.

3.1 Motivation of the filter

The use of a penalty function in order to reach global convergence is a common feature of
most algorithms for constrained nonlinear optimization. However, as we have seen in the previ-
ous chapter, one of the major difficulties of methods using a penalty function lies in the choice
of the sequence of penalty parameters {ρk} and, in particular, in the choice of a suitable initial
parameter ρ0. Another consequence of the application of penalty methods is the effect of the
nondifferentiability of some exact penalty functions such as those encountered in Section 2.4.1.
On the other hand, Zoppke-Donaldson presented in his PhD thesis [132] a practical SQP algo-
rithm that does not require the use of a penalty function. This indicates that a pure SQP method
can work very well and quickly in practice.

In order to get around these issues due to penalty functions, Fletcher and Leyffer [52] have
introduced, in the last nineties, a new method based on the concept of a filter. The latter allows
to avoid the use of a merit function to guarantee global convergence in algorithms for nonlinear
programming. As we have already pointed out, there are two potentially conflicting aims in
nonlinear constrained programming : the minimization of the objective function and the satis-
faction of the constraints. Filter techniques consider these two goals separately and thus allow

41

42 Chapter 3. A quick survey of filter methods

contradictory objectives. In a way, the filter can be seen as a tool inspired from multicriteria op-
timization (see, e.g. Miettinen [93]). Indeed, filter techniques borrow the concept of dominance
from this field to create the filter.

The approach of Fletcher and Leyffer aims to interfere as few as possible with the underly-
ing Newton-type method. So one of the major motivations for the development of filter methods
is to make them more permissive than approaches based on a merit function. This is why, in
filter methods for constrained optimization, a new point is accepted if either the objective func-
tion is reduced and/or the constraints violation is improved compared to all previous iterates,
contrary to penalty approaches, where a trial point is accepted if it reduces a function defined by
a weighted combination of these two measures. The most important point in filter methods is to
give up the strict monotone behaviour of usual measures, like penalty functions. The filter then
allows to increase the flexibility in optimization processes to accept new iterates and generally
allows larger steps towards the solution.

More formally, we can say that the notion of filter is based on that of dominance. To il-
lustrate this fact, imagine a situation where one would like to reduce at the same time two
potentially conflicting objectives, denoted by θ1(x) and θ2(x). We say that a point x dominates
a point y if and only if

θi(x) ≤ θi(y) for i = 1, 2.

Thus, if we focus our attention on reducing both θ1 and θ2 and if point x dominates point y, the
latter is of no real interest to us since x is at least as good as y with respect to both objectives.
So all we need to do is to remember iterates that are not dominated by other iterates by using
the filter. Algorithms based on this notion of filter have to store the pairs (θ1, θ2) corresponding
to successful previous iterations. Figure 3.1 illustrates the notion of dominance, where we have
simplified the notation by using x to represent the pair (θ1(x), θ2(x)). The point y is dominated
by x because

θ1(y) > θ1(x) and θ2(y) > θ2(x),

while the point z is not dominated by x since

θ1(z) > θ1(x) but θ2(z) < θ2(x).

3.2 The first filter approach

The first filter approach was proposed by Fletcher and Leyffer [52] and was devoted to the
solution of nonlinear constrained problems by a sequential quadratic programming (SQP) trust-

3.2 The first filter approach 43

PSfrag replacements

θ1

θ2

x

y

z

0

Figure 3.1: The notion of dominance

region algorithm (see Section 2.4.3). They wanted to replace the use of a merit function in the
SQP framework, whose goal is to guarantee a balance between decreasing the objective function
and reducing the infeasibility. This work provides the essential ideas that are the foundations of
all other filter algorithms developed in the last decade.

For simplicity, we restrict our attention to inequality-constrained problems of the form

min f(x)

s.t. ci(x) ≤ 0, i ∈ I,
(3.1)

where the objective and the constraints are smooth. In this case, the two objectives θ1 and θ2

become, respectively,
f(x) and

∑

i∈I

max(0, ci(x)).

Obviously, other choices are possible for measuring the constraint violation θ2 (see, for in-
stance, Gould and Toint [74]). So, as we have already said, the filter approach views θ1 and θ2

as individual purposes with a slight priority to the minimization of θ2 because we must find a
point x∗ satisfying θ2(x

∗) = 0. In the remaining part of this section, θ1 will be denoted by f

and θ2 by θ.
So, for inequality-constrained optimization, we say that a point xk dominates a point xl when-
ever

θ(xk) ≤ θ(xl) and f(xk) ≤ f(xl).

Hence the filter is defined as a list of pairs (θ(xi), f(xi)) such that no pair dominates another
one. We denote by (θi, fi) the (θ, f)-pair associated to xi. More formally, the filter is character-

44 Chapter 3. A quick survey of filter methods

ized by

F = {(θi, fi) such that θi < θj or fi < fj for i 6= j} . (3.2)

We thus accept a new iterate only if it is not dominated by any other iterate already in the filter.

The filter determines a forbidden region in the (θ, f)-space by memorizing some pairs from
the previous iterates. On plots of Figure 3.2, the shaded areas illustrate the region where points
have to be rejected.

PSfrag replacements

θ(x)

f(x)

0

PSfrag replacements

θ(x)

f(x)

0

Figure 3.2: Forbidden regions defined by a penalty function and a filter

The plot on the left represents the isovalue of an exact penalty function of the form

f(x) + ρ θ(x)

through the current point in the (θ, f)-space, that is a straight line with a slope equal to the
opposite of the penalty parameter ρ. Points belonging to the region to the left of this line reduce
the penalty function value. The plot on the right shows the area dominated by the filter entry.
We can clearly observe that, for an entry in the (θ, f)-space, the forbidden region defined by a
penalty function is larger than that determined by the filter, so methods using a penalty function
are generally more restrictive than filter approaches.

The basic idea of Fletcher and Leyffer is that the filter plays the role of a criterion for
accepting or rejecting a trial step in an SQP method (see Section 2.4.3). At an iteration k, SQP

3.2 The first filter approach 45

approaches solve a quadratic approximation of (3.1) within a trust region :

min
s∈IRn

∇xf(xk)
T s + 1

2
sTHks

s.t. cI(xk) + AI(xk)s ≤ 0

‖s‖∞ ≤ ∆k,

(3.3)

where Hk is some approximation of the Hessian of the Lagrangian function and AI(xk) is the
Jacobian of the constraints cI evaluated at xk. The solution of this trust-region subproblem gives
a trial step sk towards the new iterate xk+1. This trial point is accepted if it is not dominated by
the current filter; the trust region is possibly increased and the filter is updated in the sense that
the previous iterate is added to the filter and all entries dominated by this new one are removed
from it. Otherwise, if the trial point is not acceptable for the filter, the step is rejected, the
trust-region radius is decreased and we solve the new trust-region subproblem. In that way, the
common rule on the reduction of a penalty function is replaced by the restriction that the point
be acceptable for the filter.
However, many features of this simple framework have to be specified and refined so as to
produce an efficient and globally convergent algorithm. In fact, we do not wish to accept a new
point if it is arbitrarily close to being dominated by another point already in the filter. In fact,
the definition of the filter (3.2) may permit points to accumulate in the vicinity of a filter entry
where θk > 0 and hence convergence to infeasible limit points. In order to avoid this situation,
a margin may be adjusted along the filter. With this new concept, we then say that a trial point
x is acceptable for the filter F if and only if

θ(x) < β θj or f(x) < fj − γ θ(x) for all (θj, fj) ∈ F ,

where β and γ are parameters in (0, 1) with β close to one and γ close to zero. This definition
of the margin comes from Chin and Fletcher [22]. The filter may be represented in the (θ, f)-
space as illustrated in Figure 3.3. The pairs (θ(xk), f(xk)) are represented by black dots and
the margin(1) is shown by the dashed line.

In this first work on filter methods, some other refinements have been made. Fletcher and
Leyffer have also considered an upper bound on the constraint violation in order to avoid situa-
tions where a sequence of iterates satisfying

f(xk+1) < f(xk) and θ(xk+1) > θ(xk)

with θ(xk) tending to infinity is accepted. On the other hand, considering only the filter ac-
ceptance mechanism would allow convergence to a feasible but non-optimal point. Indeed, this

(1)For the sake of clarity, we have increased the margin on the figure.

46 Chapter 3. A quick survey of filter methods

PSfrag replacements
θ(x)

f(x)

0

Figure 3.3: A filter with four pairs (θ, f)

may happen if we accept a sequence of iterates {xk} such that they yield sufficient reduction
in the constraint violation, i.e. such that θ(xk+1) ≤ βθ(xk). In order to avoid this situation,
a sufficient reduction condition should be imposed whenever the constraint violation becomes
small (see, for example, Wächter and Biegler [126] and Gould and Toint [74]). Another un-
suitable effect of this technique is that the quadratic trust-region subproblem (3.3) may become
inconsistent when reducing the trust-region radius. The strategy, always proposed by Fletcher
and Leyffer, is to enter a feasibility restoration phase in which we aim to get closer to the fea-
sible region by minimizing the constraint violation θ(x). This restoration phase thus attempts
to find a new point xk+1, acceptable for the filter, at which the quadratic trust-region subprob-
lem is compatible for some radius ∆k+1 > 0. An in-depth description of the algorithm and a
discussion of these refinements may be found in the paper of Fletcher and Leyffer [52]. The
implementation of this filter method, named filterSQP, and some numerical experiments are
reported in Fletcher and Leyffer [50].

In order to obtain global convergence properties of filter methods, we shall generally require

3.3 Bibliographical review 47

that the following assumptions are satisfied :

• the functions f and c are twice continuously differentiable on IRn;

• the iterates xk remain in a closed, bounded domain of IRn;

• for all k, the model of the objective function mk is twice differentiable on IRn and has a
uniformly bounded Hessian.

The fast local convergence of filter methods has been discussed in Ulbrich [123] and in Wächter
and Biegler [125]. In this latter paper, the authors use second-order correction steps to achieve
fast local convergence.

3.3 Bibliographical review

Since filter methods have been introduced for nonlinear constrained optimization by Fletcher
and Leyffer [52], they have enjoyed considerable interest in their original domain of applica-
tion as well as in other areas of optimization. A global convergence theory for a filter-based
algorithm was first proposed in Fletcher et al. [54] : in this approach, the objective function
was locally approximated by a linear function. The authors combined the use of the filter with
a sequential linear programming (SLP) method. Chin and Fletcher [22] have analysed an SLP-
filter algorithm that takes equality constrained quadratic programming (EQP) steps. In [55],
Fletcher et al. have extended these methods to trust-region sequential quadratic programming
(SQP) techniques and global convergence has been proved supposing that the quadratic trust-
region subproblems are solved globally. In another paper of Fletcher et al. [49], the approach
allows for an approximate solution of the quadratic subproblems and the global convergence to
first-order critical points has also been proved. In this method, a Byrd-Omojokun-like approach
(see Omojokun [103]) is followed. This means that the step is viewed as the sum of two com-
ponents, a normal step nk, such that xk + nk satisfies the linearized constraints in the quadratic
subproblem, and a tangential step tk, whose goal is to decrease the value of the objective func-
tion’s model while continuing to satisfy the linearized constraints. More formally, the step is
computed as sk = nk + tk. A second algorithm is also proposed in this paper, which replaces
the decomposition into normal and tangential steps by a stronger condition on the associated
model decrease. Another filter method combined with an SQP algorithm was also proposed by
Ulbrich [123].

48 Chapter 3. A quick survey of filter methods

The generality of the filter concept also permits its adaptation to line-search techniques as
well as to interior-point and active-set methods. Wächter and Biegler [126, 125] have presented
and analysed a scheme for line-search filter methods that can be applied to barrier interior-point
and active-set SQP algorithms. The implementation of this line-search filter method and some
numerical experiments are discussed in Wächter’s PhD thesis [124]. In [64], Gonzaga, Karas
and Vanti have proposed a filter algorithm where each iteration is composed with a restoration
phase, whose aim is to reduce some measure of infeasibility, and an optimal phase, which re-
duces the objective function in a tangential approximation of the feasible set. More recently,
Ribeiro et al. [107] have extended the work of Gonzaga et al. [64]. Their general filter al-
gorithm allows a great deal of freedom in the computation of the step. As we have already
mentioned, filter methods have also been applied to interior-point frameworks by Wächter and
Biegler [126, 125], Ulbrich et al. [122] and also by Benson et al. [6]. A non-monotone variant
of the trust-region SQP-filter algorithm designed in [49] is proposed in Gould and Toint [75].
In this paper, the filter acceptance criterion for new iterates is relaxed in such a way that some
points that would be rejected are now accepted. On the other hand, it is not necessary anymore
to define a margin around the filter, rather the authors define, for a new entry of the filter, an
area that represents its contribution to the dominated region.

Filter-type techniques have also been applied in other fields of optimization. They have
been used, for example, by Fletcher and Leyffer [53] to solve a system of algebraic equations
and inequalities. Gould et al. [65] have developed a multidimensional filter algorithm for the
nonlinear feasibility problem (including systems of nonlinear equations and nonlinear least-
squares), which is to minimize the norm of the violations of a set of (possibly nonlinear and/or
nonconvex) constraints. Numerical results are also presented in [76] and indicate substantial
gains in efficiency over the traditional monotone trust-region algorithm. Fletcher and Leyffer
[51] have proposed a bundle filter method for nonsmooth optimization. Finally, in the frame-
work of derivative-free optimization, Audet and Dennis [3] have used the filter idea combined
with their pattern search algorithms (see [2]) and Colson [26] has proposed a filter-SQP algo-
rithm in his PhD thesis in 2003.

Since the filter is a recent tool, the research in this field is highly active and many works
are carried out on this topic every year. In the following chapters, filter methods based on
trust-region frameworks are proposed and analysed.

Part I

Unconstrained Optimization

49

Chapter 4

A filter-trust-region method for
unconstrained optimization

As emphasized in Chapter 3, filter methods have proved to be robust and efficient in non-
linear optimization. The focus of this chapter is the description and analysis of the filter-trust-
region algorithm we designed for solving unconstrained nonlinear optimization problems. This
approach is based on the filter technique introduced by Fletcher and Leyffer [52] (see Sec-
tion 3.2). As we have mentioned in the previous chapter, Gould, Leyffer and Toint [65, 76]
have proposed a filter method for the general smooth nonlinear feasibility problem. Formally,
this problem is finding a vector x ∈ IRn such that

cE(x) = 0 and cI(x) ≥ 0, (4.1)

where cE(x) and cI(x) are smooth functions from IRn into IRm and IRq, respectively. If this is
not possible to find such a point, we can find a local minimizer of the constraint violation. The
authors propose to find a local minimizer of the following problem

min
x∈IRn

1

2
‖θ(x)‖2

2, (4.2)

where they define

θ(x)
def
=

(

cE(x)

min(0, cI(x))

)

∈ IRm+q.

Note that when q = 0, the problem (4.1) reduces to a system of smooth nonlinear equations.

An efficient method for solving (4.1) or (4.2) is to use Newton’s method because of its
fast convergence. However, such a method has to be safeguarded in order to obtain global
convergence. As is well-known, many safeguarding techniques are possible, like line searches

51

52 Chapter 4. A filter-trust-region method for unconstrained optimization

or trust regions (see Section 2.3.2 and 2.3.3). In [65], Gould et al. propose to combine the basic
trust-region algorithm with the filter idea for solving problems (4.1) or (4.2). This algorithm can
be found in the FILTRANE package [76], which is available as part of the GALAHAD library
at

http://galahad.rl.ac.uk/

It is the purpose of this chapter to consider the further extension of filter techniques to gen-
eral unconstrained optimization problems. The filter-trust-region algorithm described in this
chapter was first introduced in the paper of Gould, Sainvitu and Toint [72].

We will start this chapter by describing the problem and its resolution by our new algorithm
proposal and we will also adapt the definition of the filter to our context. Section 4.2 will
address the theoretical aspects regarding the convergence of the proposed method.

4.1 The problem and the new algorithm

This chapter is intended to describe a novel algorithm for solving unconstrained minimiza-
tion problems, that is mathematical programs of the following form

min
x∈IRn

f(x), (4.3)

where f is a twice continuously differentiable function of the variables x ∈ IRn. The leading
ingredients of the proposed algorithm are :

• a trust-region framework for unconstrained optimization problems as described in Sec-
tion 2.3.3;

• a filter technique (as defined in Chapter 3).

This last component has proved to be important because it allows the design of new non-
monotone methods for optimization.

As we have already indicated in Section 2.3, an efficient technique for solving the uncon-
strained mathematical program (4.3) is to use Newton’s method. Unfortunately, it is well-known
that such an algorithm may not always be well-defined, when the Taylor’s model is nonconvex,
or convergent from any initial point x0. As mentioned in Section 2.3.3, these difficulties can be
circumvented by using a trust region, in a manner that is now well established (see Conn, Gould
and Toint [34] for an extensive description of trust-region methods and their properties).

4.1 The problem and the new algorithm 53

If we consider convex mathematical programs, we know from Theorem 2.4 that finding the
unique minimizer of f is equivalent to finding a zero of the gradient of the objective function.
In other words, in convex programming, solving problem (4.3) is equivalent to finding a point
x∗ such that

∇xf(x∗) = 0.

This problem can be seen as the potentially conflicting aims of zeroing each component of the
gradient [∇xf(x)]i (i = 1, . . . , n). So we propose a new unconstrained algorithm by intro-
ducing a multidimensional filter technique inspired by that presented in [65]. The aim of the
filter here is to encourage convergence of iterates to first-order critical points by driving every
component of the objective’s gradient

∇xf(x)
def
= g(x) = (g1(x), . . . , gn(x))T

to zero. So each entry of our multidimensional filter is a component of the gradient, which
corresponds to the following choice in the definition of the filter

θi(x) = |(∇xf(x))i| i = 1, . . . , n.

4.1.1 Computing a trial point

The computation of the trial point

x+
k = xk + sk

is performed by using trust-region techniques described in Section 2.3.3. At variance with
classical trust-region methods, we do not require here that

‖sk‖ ≤ ∆k (4.4)

at every iteration of our algorithm. In this definition and below, ‖ · ‖ stands for the Euclidean
norm. The convergence analysis given in Section 4.2 requires, as is common in trust-region
methods (see [34, Chapter 6]), that the step sk provides, at iteration k, a sufficient decrease on
the model, which is to say that

mk(xk) − mk(xk + sk) ≥ κmdc max

[

‖gk‖min

[‖gk‖
βk

, ∆k

]

, |τk|min[τ 2
k , ∆2

k]

]

(4.5)

where κmdc is a constant in (0, 1), βk is a positive upper bound on the norm of the Hessian of the
model mk, i.e.

βk
def
= 1 + ‖Hk‖, (4.6)

54 Chapter 4. A filter-trust-region method for unconstrained optimization

and
τk

def
= min [0, λmin(Hk)] , (4.7)

where λmin(·) denotes the smallest eigenvalue.
Although this condition on the model seems technical, there are efficient numerical methods
to compute sk that guarantee that (4.5) holds (see Section 2.3.3, Gould et al. [66], Moré and
Sorensen [95], or, more generally, [34, Chapter 7]).

4.1.2 The multidimensional filter

We now describe the way we define and use the filter idea in the context of unconstrained
nonlinear optimization. We consider using a filter mechanism to potentially accept x+

k as the
new iterate more often than in a classical trust-region method. As we have seen in Chapter 3,
the notion of filter is based on that of dominance: for the problem under study in the present
chapter, we say that a point x1 dominates a point x2 whenever

|gi(x1)| ≤ |gi(x2)| for all i = 1, . . . , n.

Thus, if iterate x1 dominates iterate x2 and if we focus our attention on convergence to first-
order critical points only, the latter is of no real interest to us since x1 is at least as good as x2

for each of the components of the gradient. All we need to do is to remember iterates that are
not dominated by other iterates by using the dynamic structure of the filter. So, in this context
of unconstrained optimization, we define a multidimensional filter F as a list of n-tuples of the
form (gk,1, . . . , gk,n), where gk,i

def
= gi(xk), such that, if gk and g` belong to F , then

|gk,j| < |g`,j| for at least one j ∈ {1, . . . , n}. (4.8)

Our filter method proposes to accept a trial iterate x+
k if it is not dominated by any other iterate

in the filter.

In the previous chapter, we have pointed out the fact that, from an algorithmic point of view,
we do not wish to accept a new point x+

k if one of the components of g(x+
k) is arbitrarily close to

being dominated by another point already in the filter. So again, in order to avoid this situation,
we slightly strengthen our acceptability test and we say that a new trial point x+

k is acceptable
for the filter F if and only if

∀g` ∈ F ∃ j ∈ {1, . . . , n} such that |gj(x
+
k)| < |g`,j| − γg‖g`‖, (4.9)

where γg ∈ (0, 1/
√

n) is a small positive constant. The margin is measured as a function of
the objective’s gradient at the existing filter point. Because of the upper limit 1/

√
n imposed

4.1 The problem and the new algorithm 55

on γg, one can be sure that the right-hand side of (4.9) is always positive for some index j and
therefore that points acceptable for the filter always exist.
In order to avoid cycling, and supposing the current point xk is acceptable for the filter in the
sense of (4.9), we may wish to add it to the filter so as to exclude other worse iterates; this is
simply done by the updating formula :

F := F ∪ {g(xk)}.

We remove from the filter every g` ∈ F such that

|gj,`| ≥ |gj,k| for all j ∈ {1, . . . , n}.

A filter and its margins(1), which increase with ‖g‖, are represented in Figure 4.1 for a two-
dimensional setup, i.e. x ∈ IR2.

PSfrag replacements

g1(x)

g2(x)

0

Figure 4.1: A filter for an unconstrained problem in IR2

(1)For the sake of clarity, we have increased the margins.

56 Chapter 4. A filter-trust-region method for unconstrained optimization

However, the process described so far only guides the iterates towards a zero of the gradient
∇xf(x). This is adequate for convex problems, where a zero gradient is both necessary and
sufficient for second-order criticality (see Theorem 2.4), but it may be unsuitable for nonconvex
ones. Indeed it might prevent progress away from a saddle point, in which case an increase
in the gradient components is acceptable. We therefore modify the filter mechanism presented
above to ensure that the filter is reset to the empty set after each iteration giving sufficient
decrease in the objective function at which the model mk was detected to be nonconvex. We
also set an upper bound on the acceptable objective function values to ensure that the achieved
decrease is permanent (see Algorithm 4.1).

4.1.3 The filter-trust-region algorithm

Now that we have presented the principal ingredients of our algorithm, we may summarize
it as follows : the main objective of our algorithm for unconstrained optimization is to let the
filter play the major role in ensuring global convergence within “convex basins” (i.e. when con-
vexity is present), and fall back on a usual trust-region method only if things do not go well or
if negative curvature is encountered during the minimization of the trust-region subproblem.

A more detailed setup of our algorithm follows :

Algorithm 4.1: Filter-Trust-Region Algorithm

Step 0: Initialization. An initial point x0 and an initial trust-region radius ∆0 > 0 are
given. The constants γg ∈ (0, 1/

√
n), η1, η2, γ1, γ2 and γ3 are also given and satisfy

0 < η1 ≤ η2 < 1 and 0 < γ1 ≤ γ2 < 1 ≤ γ3.

Compute f(x0) and g(x0), set k = 0. Initialize the filter F to the empty set and
choose fsup ≥ f(x0). Define two flags RESTRICT and NONCONVEX, the former to
be unset.

Step 1: Determine a trial step. Compute a finite step sk that “sufficiently reduces” the
model mk, i.e. that satisfies (4.5) and that also satisfies ‖sk‖ ≤ ∆k if RESTRICT
is set or if mk is nonconvex. In the latter case, set NONCONVEX; otherwise unset it.
Compute the trial point x+

k = xk + sk.

4.1 The problem and the new algorithm 57

Step 2: Compute f(x+
k) and define the following ratio

ρk =
f(xk) − f(x+

k)

mk(xk) − mk(x
+
k)

·

If f(x+
k) ≥ fsup, set xk+1 = xk, set RESTRICT and go to Step 4.

Step 3: Test to accept the trial step.

• Compute g+
k = g(x+

k).

• If x+
k is acceptable for the filter F and NONCONVEX is unset:

Set xk+1 = x+
k , unset RESTRICT and add g+

k to the filter F if either ρk < η1 or
‖sk‖ > ∆k.

• If x+
k is not acceptable for the filter F or NONCONVEX is set:

If ρk ≥ η1 and ‖sk‖ ≤ ∆k, then

set xk+1 = x+
k , unset RESTRICT and if NONCONVEX is set, set fsup =

f(xk+1) and reinitialize the filter F to the empty set;

else set xk+1 = xk and set RESTRICT.

Step 4: Update the trust-region radius. If ‖sk‖ ≤ ∆k, update the trust-region radius by
choosing

∆k+1 ∈

[γ1∆k, γ2∆k] if ρk < η1,

[γ2∆k, ∆k] if ρk ∈ [η1, η2),

[∆k, γ3∆k] if ρk ≥ η2;

(4.10)

otherwise, set ∆k+1 = ∆k. Increment k by one and go to Step 1.

Note that, as stated, our algorithm lacks a formal stopping criterion. In practice, one would
obviously stop the calculation if ‖gk‖ falls below some user-defined tolerance (see Section 5.3)
and the flag NONCONVEX is unset, or if some fixed maximum number of iterations is exceeded.
Also note that our condition on the step might impose to recompute sk within the trust region if
negative curvature was discovered for the model only after computing a step beyond the trust-
region boundary. Fortunately, this is typically a very cheap calculation and it can be achieved
by backtracking (see Nocedal and Yuan [102]) or by other suitable restriction techniques (see
Gould et al. [66]). Details about the strategy used will be given in Section 5.3.

Remark that the filter collects information on selected previous iterates. Assuming the trial

58 Chapter 4. A filter-trust-region method for unconstrained optimization

point x+
k is acceptable for the filter and the flag NONCONVEX is unset, we might include this

point in the filter in order to avoid, in the future, other iterates that are worse. Remembering
that one of the motivations of the filter is to make filter-based approaches more permissive than
penalty methods, we do not want to insert a point in the filter at each iteration. Therefore, we
augment the filter for all points acceptable for the filter and for which negative curvature has
not been detected during the computation of the trial step either if the reduction in the objective
function is not sufficient or if the trial step is outside the trust region.

However, this algorithm only yields a framework for a practical implementation. The soft-
ware resulting from the Fortran 90 implementation of this algorithm is named FILTRUNC and
its practical aspects are discussed in Section 5.3.

4.2 Convergence analysis

This section is devoted to the theoretical aspects of Algorithm 4.1. Its global convergence
properties will be proved under mild assumptions. Many of the proofs come from or are inspired
by the convergence analysis of the basic trust-region algorithm (see [34, Chapter 6]).

4.2.1 Assumptions and notations

Let us first state the general assumptions that are necessary for the global convergence anal-
ysis of our filter-trust-region algorithm for unconstrained optimization.

A1 The objective function f is twice continuously differentiable on IRn.

A2 The iterates xk remain in a closed, bounded domain of IRn.

A3 For all k, the model mk(x) is twice differentiable on IRn and has a uniformly bounded
Hessian.

Note that A1, A2 and A3 together imply that there exist constants κl, κu ≥ κl, κufh ≥ 1 and
κumh ≥ 1 such that

f(x) ∈ [κl, κu], ‖∇2
xxf(x)‖ ≤ κufh and ‖∇2

xxmk(x)‖ ≤ κumh − 1 (4.11)

for all k and all x in the convex hull of {xk}. Combining this with the definition of βk given in
(4.6), we have that

βk ≤ κumh (4.12)

4.2 Convergence analysis 59

for all k.
For the sake of simplicity, the sufficient decrease on the model mk given in (4.5) is restated in
the following assumption :

A4 For all k,

mk(xk) − mk(xk + sk) ≥ κmdc max

[

‖gk‖min

[‖gk‖
βk

, ∆k

]

, |τk|min[τ 2
k , ∆2

k]

]

where κmdc ∈ (0, 1), βk is defined in (4.6) and τk in (4.7).

Instead of requiring A2, we could have supposed conditions (4.11) separately. Furthermore,
note that Assumptions A1, A3 and A4 are typical of convergence theory for trust-region meth-
ods(2) (see [34, Chapter 6]).
For the purpose of our analysis, we shall also consider the following sets of indices :

S = {k | xk+1 = xk + sk},

the set of successful iterations,

A = {k | g+
k is added to the filter },

the set of filter iterations,

D = {k | ρk ≥ η1},

the set of sufficient descent iterations, and

N = {k | NONCONVEX is set},

the set of nonconvex iterations. Observe that A ⊆ S, because g+
k is added to the filter only if

the trial point x+
k is accepted as the new iterate xk+1. We also have that

S ∩ N = D ∩N , (4.13)

since, when the model is nonconvex, the trial point is accepted only if ρk ≥ η1 and the step is
within the trust region.
We conclude this section by stating a property of the algorithm that is of crucial importance for
the remainder of the convergence analysis.

(2)Assumption A3 in [34, Chapter 6] is made over the trust region instead of IRn.

60 Chapter 4. A filter-trust-region method for unconstrained optimization

Lemma 4.1 We have that, for all k ≥ 0,

f(x0) − f(xk+1) ≥
k
∑

j=0

j∈S∩N

[f(xj) − f(xj+1)]. (4.14)

Proof. Denoting S ∩ N = {ki}, we observe that the definition of fsup in the algorithm
ensures that

f(xki+1) − f(xki+1
) ≥ 0

for all i. This directly implies that

f(x0) − f(xk+1) =

k
∑

j=0

[f(xj) − f(xj+1)] ≥
k
∑

j=0

j∈S∩N

[f(xj) − f(xj+1)].

2

4.2.2 Convergence to first-order critical points

In this section, we will show that Assumptions A1-A4 ensure that at least one limit point
x∗ of the sequence {xk} generated by Algorithm 4.1 is a first-order critical point for problem
(4.3), that is, it satisfies

∇xf(x∗) = 0.

The first step of our convergence analysis is to prove that, as long as a first-order critical
point is not approached, we do not have infinitely many successful nonconvex iterations in the
course of the algorithm. For completeness of the convergence theory, we start by recalling three
results from [34, Chapter 6] in order to show that the trust-region radius is bounded away from
zero in this case.

The first lemma shows that the error between the objective function and the model decreases
quadratically with the trust-region radius. The proof is identical to that of Theorem 6.4.1 in
[34] but we now need to make the additional assumption ‖sk‖ ≤ ∆k explicit, instead of being
implicit, in this reference, in the definition of a trust-region step.

4.2 Convergence analysis 61

Lemma 4.2 Suppose that A1-A3 hold and that ‖sk‖ ≤ ∆k. Then we have that

|f(xk + sk) − mk(xk + sk)| ≤ κubh∆
2
k, (4.15)

where xk + sk ∈ Bk and
κubh

def
= max[κufh, κumh]. (4.16)

Proof. Using A1 and A3, we may apply the mean value theorem (cfr Theorem 1.1) on the
objective function and its model, and we obtain that

f(xk + sk) = f(xk) + sT
k gk + 1

2
sT

k ∇2
xxf(ξk)sk (4.17)

for some ξk in the segment [xk, xk + sk] and that

mk(xk + sk) = mk(xk) + sT
k gk + 1

2
sT

k ∇2
xxmk(ζk)sk (4.18)

for some ζk in the segment [xk, xk + sk]. Subtracting (4.18) from (4.17) and taking absolute
values yields that

|f(xk + sk) − mk(xk + sk)| = 1

2
|sT

k ∇2
xxf(ξk)sk − sT

k ∇2
xxmk(ζk)sk|

≤ 1

2
|sT

k ∇2
xxf(ξk)sk| + 1

2
|sT

k ∇2
xxmk(ζk)sk|

≤ 1

2
‖sk‖2‖∇2

xxf(ξk)‖ + 1

2
‖sk‖2‖∇2

xxmk(ζk)‖

≤ 1

2
(κufh + κumh − 1)∆2

k,

where we have used A1, A2, A3, the triangle and Cauchy-Schwarz inequalities, and the fact
that ‖sk‖ ≤ ∆k. Thus (4.15) holds with the definition (4.16) of κubh. 2

We now show that an iteration must be successful and the trust-region radius must increase
if the current iterate is not first-order critical and the trust-region radius is small enough.

Lemma 4.3 Suppose that A1-A4 hold and that ‖sk‖ ≤ ∆k. Suppose furthermore that
gk 6= 0 and that

∆k ≤ κmdc‖gk‖(1 − η2)

κubh

· (4.19)

Then iteration k is very successful, i.e. ρk ≥ η2, and

∆k+1 ≥ ∆k. (4.20)

62 Chapter 4. A filter-trust-region method for unconstrained optimization

Proof. Observe first that the condition η2 ∈ (0, 1) and the inequality 0 < κmdc < 1 together
imply that

κmdc(1 − η2) < 1.

Thus conditions (4.19), (4.12) and (4.16) imply that

∆k <
‖gk‖
βk

· (4.21)

As a consequence, A4 gives that

mk(xk) − mk(xk + sk) ≥ κmdc‖gk‖min

[‖gk‖
βk

, ∆k

]

= κmdc‖gk‖∆k. (4.22)

On the other hand, we may apply Lemma 4.2 and deduce from (4.22), (4.15), (4.21) and
(4.19) that

|ρk − 1| =

∣

∣

∣

∣

f(xk + sk) − mk(xk + sk)

mk(xk) − mk(xk + sk)

∣

∣

∣

∣

≤ κubh∆k

κmdc‖gk‖
≤ 1 − η2.

Therefore, ρk ≥ η2 and the iteration is very successful. Furthermore, (4.10) ensures that
(4.20) holds. 2

As a consequence, we obtain that the radius cannot become too small as long as a first-order
critical point is not approached, which is crucial for the progress of the algorithm.

Lemma 4.4 Suppose that A1-A4 hold and that there exists a constant κlbg > 0 such that
‖gk‖ ≥ κlbg for all k. Then there is a constant κlbd > 0 such that

∆k ≥ κlbd (4.23)

for all k.

Proof. Assume that iteration k is the first such that

∆k+1 ≤ γ1 min

[

∆0,
κmdc κlbg(1 − η2)

κubh

]

def
= γ1δ0. (4.24)

This means that the trust-region radius has been decreased at iteration k, which in turn
implies, from the condition in Step 4 of the algorithm, that ‖sk‖ ≤ ∆k. We also have that
γ1∆k ≤ ∆k+1, and hence that

∆k ≤ δ0 ≤
κmdc κlbg(1 − η2)

κubh

·

4.2 Convergence analysis 63

Our assumption on the norm of the gradient then implies that (4.19) holds. This and the fact
that ‖sk‖ ≤ ∆k thus give that (4.20) is satisfied. But this contradicts the fact that iteration
k is the first such that (4.24) holds, and our initial assumption is therefore impossible. This
yields the desired conclusion with κlbd = γ1δ0. 2

We now prove the crucial result that the number of successful nonconvex iterations must be
finite unless a first-order critical point is approached.

Theorem 4.5 Suppose that A1-A4 hold and that there exists a constant κlbg > 0 such that
‖gk‖ ≥ κlbg for all k. Then there can only be finitely many successful nonconvex iterations
in the course of the algorithm, i.e.

|S ∩ N | < +∞.

Proof. Suppose, for the purpose of obtaining a contradiction, that there are infinitely many
successful nonconvex iterations, which we index by S ∩ N = {ki}. It follows from (4.13)
that the algorithm also guarantees that ρk ≥ η1 for all iterations in S ∩ N , which in turn
implies, with A4, that, for k ∈ S ∩ N ,

f(xk) − f(xk+1) ≥ η1[mk(xk) − mk(xk + sk)]

≥ η1 κmdc‖gk‖min

[‖gk‖
βk

, ∆k

]

≥ η1 κmdc κlbg min

[

κlbg

κumh

, κlbd

]

,

where we have used Lemma 4.4, (4.12) and our lower bound on the gradient norm to obtain
the last inequality. Combining now this bound with (4.14), we deduce that

f(x0) − f(xk+1) ≥
k
∑

j=0

j∈S∩N

[f(xj) − f(xj+1)] ≥ ςk η1 κmdc κlbg min

[

κlbg

κumh

, κlbd

]

,

where ςk = |{1, . . . , k} ∩ S ∩ N|. As we have supposed that there are infinitely many
successful nonconvex iterations, we have that

lim
k→∞

ςk = +∞,

and [f(x0) − f(xk+1)] is unbounded above, which contradicts the fact that the objective

64 Chapter 4. A filter-trust-region method for unconstrained optimization

function is bounded below, as stated in (4.11). Our initial assumption must then be false,
and the set S ∩ N of successful nonconvex iterations must be finite. 2

We now establish the criticality of the limit point of the sequence of iterates when there are
only finitely many successful iterations.

Theorem 4.6 Suppose that A1-A4 hold and that there are only finitely many successful
iterations, i.e. |S| < +∞. Then xk = x∗ for all sufficiently large k, and x∗ is a first-order
critical point, that is

∇xf(x∗) = 0.

Proof. Let k0 be the index of the last successful iterate. Then x∗ = xk0+1 = xk0+j for all
j > 0. Furthermore,

ρk0+j < η1 for all j > 1. (4.25)

Now observe that RESTRICT is set by Algorithm 4.1 in the course of every unsuccessful
iteration. This flag must thus be set at the beginning of every iteration of index k0 + j + 1

for j > 0. As a consequence, ‖sk0+j+2‖ ≤ ∆k0+j+2 for all j > 0. This, (4.25) and the
mechanism of Step 4 of the algorithm then imply that

lim
k→∞

∆k = 0. (4.26)

Assume now, for the purpose of establishing a contradiction, that ‖gk0+1‖ ≥ ε for some
ε > 0. Then Lemma 4.4 implies that (4.26) is impossible and we deduce that

‖gk0+j‖ = 0

for all j > 0 and we obtain the desired conclusion. 2

Having proved the desired convergence property for the case where S is finite, we restrict
our attention, for the rest of this section, to the case where there are infinitely many successful
iterations, i.e. |S| = +∞. We first investigate what happens if infinitely many values are added
to the filter in the course of the algorithm, i.e. |A| = +∞.

4.2 Convergence analysis 65

Theorem 4.7 Suppose that A1-A4 hold and that |A| = |S| = +∞. Then

lim inf
k→∞

‖gk‖ = 0. (4.27)

In other words, there exists a limit point x∗ of the sequence {xk} generated by the algorithm
which is a first-order critical point for problem (4.3).

Proof. Assume, for the purpose of obtaining a contradiction, that, for all k large enough,

‖gk‖ ≥ κlbg (4.28)

for some κlbg > 0 and define {ki} = A. The bound (4.28) and Theorem 4.5 then imply
that |S ∩ N | is finite and therefore that the filter is no longer reset to the empty set for k

sufficiently large. Moreover, since our assumptions imply that {‖gki+1
‖} is bounded above

and away from zero, there must exist a subsequence {k`} ⊆ {ki+1} such that

lim
`→∞

gk`
= g∞ with ‖g∞‖ ≥ κlbg. (4.29)

By definition of {k`}, xk`
is acceptable for the filter in each iteration ` − 1. This implies,

since the filter is not reset for ` large enough, that, for each ` sufficiently large, there exists
an index j` ∈ {1, . . . , n} such that

|gk`,j`
| − |gk`−1,j`

| < −γg‖gk`−1
‖. (4.30)

But (4.28) implies that ‖gk`−1
‖ ≥ κlbg for all ` sufficiently large. Hence we deduce from

(4.30) that
|gk`,j`

| − |gk`−1,j`
| < −γgκlbg

for all ` sufficiently large. But the left-hand side of this inequality tends to zero when ` tends
to infinity because of (4.29), yielding the desired contradiction. Hence (4.27) holds. 2

Consider now the case where the number of iterates added to the filter in the course of the
algorithm is finite, i.e. |A| < +∞.

Theorem 4.8 Suppose that A1-A4 hold and that |S| = +∞ but |A| < +∞. Then (4.27)
holds.

66 Chapter 4. A filter-trust-region method for unconstrained optimization

Proof. Assume, again for the purpose of obtaining a contradiction, that (4.28) holds for
all k large enough and for some κlbg > 0. The finiteness of |A| then implies that ρk ≥ η1

and that ‖sk‖ ≤ ∆k for all k ∈ S sufficiently large. If we define ς̄p,k = |{p, . . . , k} ∩ S|, we
then obtain that

f(xp) − f(xk+1) =

k
∑

j=p

j∈S

[f(xj) − f(xj+1)] ≥ ς̄p,k η1 κmdc κlbg min

[

κlbg

κumh

, κlbd

]

,

for p and k sufficiently large, where, as above, we used A4, (4.12), (4.23) and (4.28) to
derive the inequality. But ς̄p,k tends to infinity with k for a fixed p sufficiently large since
|S| is infinite, and we again derive a contradiction from the fact that f(xk+1) then becomes
unbounded below. The limit (4.27) then follows. 2

By the last two theorems, we have that at least one of the limit points of the sequence of iter-
ates generated by the algorithm satisfies the first-order necessary condition (see Section 2.2.1).
As the following counter-example shows, it is not possible to obtain a stronger result in Theo-
rems 4.7 and 4.8 such as

lim
k→∞

‖gk‖ = 0

without modifying the algorithm.

4.2.3 Analysis of a counter-example

This counter-example has been suggested by Nick Gould. Consider the objective function

f(x) = x3(3x − 4),

which is represented in Figure 4.2.

We can see that this function has a degenerate critical point at x = 0, i.e., both its first and
second derivatives vanish, and its global minimizer at x = 1. We will show that it is possible
for Algorithm 4.1 to construct iterates for which

x2k = − 1

2

k and x2k+1 = 5

4
,

for k = 0, 1, 2, . . . Clearly there are two limit points, x∗
L = 0 and x∗

R = 5

4
, but only the first is

critical.
Let ∆0 > 3, and suppose that γg < 1

2
and that the trust-region updating scheme (2.7) is

specifically

∆k+1 =

1

2
∆k if ρk < η1,

∆k if η1 ≤ ρk < η2 and
2∆k if η2 ≤ ρk.

(4.31)

4.2 Convergence analysis 67

−1 −0.5 0 0.5 1 1.5
−1

0

1

2

3

4

5

6

7

Figure 4.2: The plot of the function f(x) = x3(3x − 4)

Now suppose that

F = {f ′(x2k)} ≡ {−12(1 + 1

2

k) 1

2

2k} and ∆2k > 3. (4.32)

We then show that the above iteration is possible for Algorithm 4.1, and that (4.32) will persist.

Consider first x2k = − 1

2

k, and the convex model

m2k(x2k + s) = f(x2k) + sf ′(x2k) + 1

2
s2h2k,

where
h2k = − f ′(x2k)

5

4
− x2k

> 0.

Then the unconstrained global minimizer of m2k is s2k = 5

4
− x2k, and s2k will sufficiently

reduce the model within the trust region since ∆2k > 3 > 5

4
+ (1

2
)k. In Figure 4.3, the dashed

line represents the model built at x0 and the star its minimum.
Moreover,

m2k(x2k) − m2k(x2k + s2k) = −s2kf
′(x2k) − 1

2
s2
2kh2k

= 1
2

(f ′(x2k))2

h2k

= −1
2
(5

4
− x2k)f

′(x2k) → 0

68 Chapter 4. A filter-trust-region method for unconstrained optimization

−1 −0.5 0 0.5 1 1.5

−20

−15

−10

−5

0

5

10

x
0

x
1

Figure 4.3: The first two iterates and the model around x0

while

f(x2k) − f(x2k + s2k) = f(x2k) − f

(

5

4

)

> f(0) − f

(

5

4

)

=
125

256
> 0

and thus
ρ2k ≥ η2 (4.33)

for large enough k. The trial point x2k + s2k is not acceptable for the filter since its gradient is

f ′

(

5

4

)

=
75

16
� f ′(x2k),

but it is an acceptable point because the trust-region bound is inactive and because of (4.33).
Thus x2k+1 = x2k + s2k = 5

4
, while (4.31) and (4.33) ensure that ∆2k+1 = 2∆2k.

Now consider x2k+1 = 5

4
, and the convex model

m2k+1(x2k+1 + s) = f(x2k+1) + sf ′(x2k+1) + 1

2
s2h2k+1,

where
h2k+1 =

f ′(x2k+1)

x2k+1 + 1

2

k+1
> 0.

As before, the unconstrained global minimizer of m2k+1 is s2k+1 = −x2k+1 − 1

2

k+1, and s2k+1

will sufficiently reduce the model within the trust region since ∆2k+1 > 6 > 5

4
+(1

2
)k. Figure 4.4

illustrates the first three iterates.

4.2 Convergence analysis 69

−1 −0.5 0 0.5 1 1.5
−5

0

5

10

x
0

x
1

x
2

Figure 4.4: The first three iterates and the model around x1

Remark that, although

m2k+1(x2k+1) − m2k+1(x2k+1 + s2k+1) = 1
2

(f ′(x2k+1))2

h2k+1

= 1
2
(x2k+1 + 1

2

k+1)f ′(x2k+1) > 0

and

f(x2k+1) − f(x2k+1 + s2k+1) < f

(

5

4

)

− f(0) = −125

256
< 0

and hence
ρ2k+1 < 0, (4.34)

x2k+1 + s2k+1 = − 1

2

k+1 is acceptable for the filter since it is easy to check that

|f ′(x2k+1 + s2k+1)| = |f ′(− 1

2

k+1)| < 1

2
|f ′(x2k)|.

Hence x2k+2 = x2k+1 + s2k+1 = − 1

2

k+1. Moreover (4.31) and (4.34) imply that f ′(x2k+2)

replaces f ′(x2k) in the filter, and that ∆2k+2 = 1

2
∆2k+1 = ∆2k, and thus that (4.32) persists. If

we continue, the iterates will converge towards two limit points, namely 0 and 5

4
, as suggested

on the plots of Figure 4.5.

It is unclear how to enforce the property that all limit points are first-order critical without
adversely affecting the algorithm’s numerical behaviour. We have considered not allowing filter

70 Chapter 4. A filter-trust-region method for unconstrained optimization

−1 −0.5 0 0.5 1 1.5
−4

−2

0

2

4

6

8

10

x
0

x
1
=x

3

x
2

−1 −0.5 0 0.5 1 1.5
−5

0

5

10

x
0

x
1
=x

3

x
2

x
4

Figure 4.5: The next iterates

iterations when the ratio between the current gradient norm and the smallest gradient norm
found so far exceeds some prescribed (large) constant. While such a modification does not
appear to affect the results of our numerical experiments, we have been unable to show that the
modification yields the desired conclusion. Since we believe that the likelihood of the algorithm
converging to more than a single limit point is very small (as with every trust-region method we
are aware of), the issue really is of mostly theoretical interest.

4.2.4 Convergence to second-order critical points

We thus pursue our analysis by examining convergence to second-order critical points under
the assumption that there is only one limit point. As in [34], we also assume the following :

A5 The matrix Hk is arbitrarily close to ∇2
xxf(xk) whenever a first-order critical point is

approached, i.e.

lim
k→∞

‖∇2
xxf(xk) − Hk‖ = 0 whenever lim

k→∞
‖gk‖ = 0.

Remark that h2k tends to zero, and thus that A5 holds in the counter-example of Section 4.2.3.
Given this assumption on the quality of the model of the objective function, we are then able to
derive the following theorem.

Theorem 4.9 Suppose that A1-A5 hold and that the complete sequence of iterates {xk}
produced by Algorithm 4.1 converges to the unique limit point x∗. Then x∗ is a second-
order critical point.

4.2 Convergence analysis 71

Proof. Our proof is strongly inspired by Theorem 6.6.4 of [34]. Observe that our previous
results imply that

g(x∗) = 0. (4.35)

For the purpose of deriving a contradiction, assume now that

τ∗
def
= λmin(∇2

xxf(x∗)) < 0. (4.36)

Then, using A5 and (4.35), we deduce that there exists an index k0 such that, for k ≥ k0,

λmin(Hk) < 1

2
τ∗ < 0,

and, consequently, that k ∈ N and
‖sk‖ ≤ ∆k (4.37)

for k ≥ k0. Our sufficient decrease condition given in A4 then ensures that, for k ≥ k0,

mk(xk) − mk(xk + sk) ≥ 1

2
κmdc|τ∗|min[1

4
τ 2
∗ , ∆2

k]. (4.38)

Consider now the ratio of achieved versus predicted reduction ρk in the case where ∆k ≤
1

2
|τ∗|. This, (4.38) and (4.37) imply that

mk(xk) − mk(xk + sk) ≥ 1

2
κmdc|τ∗|∆2

k ≥ 1

2
κmdc|τ∗|‖sk‖2 (4.39)

for k ≥ k0. Using the mean value theorem and the Cauchy-Schwarz inequality successively,
we obtain that, for some ξk in the segment [xk, xk + sk],

|ρk − 1| =

∣

∣

∣

∣

f(xk + sk) − mk(xk + sk)

mk(xk) − mk(xk + sk)

∣

∣

∣

∣

(4.40a)

≤ 2
|sT

k∇2
xxf(ξk)sk − sT

k Hksk|
κmdc|τ∗|‖sk‖2 (4.40b)

≤ 2

κmdc|τ∗|
‖∇2

xxf(ξk) − Hk‖ (4.40c)

for k ≥ k0. Since ‖ξk − xk‖ ≤ ‖sk‖ ≤ ∆k for k ≥ k0, A1, (4.35) and A5 imply that (4.40c)
must be arbitrarily small for ∆k sufficiently small and k sufficiently large. Thus, there must
exist an index k1 ≥ k0 and a δ1 ∈ (0, 1

2
|τ∗|] such that

ρk ≥ η2 for all k ≥ k1 such that ∆k ≤ δ1.

As a consequence, each iteration where these two conditions hold must be very successful
and the algorithm then guarantees that ∆k+1 ≥ ∆k. This and the inequality γ1δ1 < δ1 ≤
1

2
|τ∗| in turn imply that

∆k ≥ min[γ1δ1, ∆k0
]

def
= δ2 (4.41)

72 Chapter 4. A filter-trust-region method for unconstrained optimization

for all k ≥ k1. For every successful iteration k ≥ k1, we then obtain from (4.38) that

f(xk) − f(xk+1) ≥ 1

2
η1κmdc|τ∗|min[1

4
τ 2
∗ , δ2

2] > 0.

Remembering now that k ∈ N for k ≥ k1 (and thus that |N | = ∞), we obtain from (4.14)
that |S ∩N |, and hence |S|, must be finite, which in turn implies that the trust-region radius
tends to zero. But this contradicts (4.41). Hence our initial assumption (4.36) must be false
and the proof is complete. 2

4.3 Conclusion

We have presented in this chapter a novel filter-trust-region algorithm for solving uncon-
strained optimization problems. We have shown, under standard assumptions in trust-region
framework, that our algorithm produces at least a first-order critical point, irrespective of the
chosen starting point. Under mild additional conditions, we have also proved that convergence
of the complete sequence of iterates can only occur to a second-order critical point. The perfor-
mance of this algorithm will be discussed in the next chapter.

Chapter 5

Numerical results

This chapter will be devoted to the practical performance of the algorithm presented in
Section 4.1. The implementation of this algorithm is called FILTRUNC (FILter Trust-Region
algorithm for UNConstrained optimization) and is based on the code FILTRANE [76] from the
GALAHAD library.
We will start this chapter by considering the testing environment in which our numerical tests
are performed. Section 5.2 will briefly introduce performance profiles, a recent tool for the
assessment and comparison of numerical packages, while in Section 5.3 some practical aspects
of the implementation of our algorithm are discussed. Numerical comparisons of our software
with LANCELOT-B will be given in Section 5.4, attesting the reliability and the efficiency
of our method, and several algorithmic variants will also be discussed and compared in this
section. We will close the chapter with a short conclusion on the numerical experience.

5.1 Testing environment

In order to assess the potential of our method in solving unconstrained nonlinear optimiza-
tion problems, we have tested our implementation on the CUTEr (Constrained and Uncon-
strained Testing Environment, revisited) set of test problem [69]. This collection of nonlinear
problems has originally been built by Bongartz et al. [13] and is now widely used by the com-
munity of optimization researchers interested in the development of new software. The source
and documentations for this project are publicly available at the following address :

http://cuter.rl.ac.uk/cuter-www/

One of the most important parts of the CUTEr environment is its decoder, called SifDec. In
fact, the problems of this test set are formulated in the Standard Input Fortran (SIF)(1). Once

(1)Note that a version of these problems translated in AMPL is available.

73

74 Chapter 5. Numerical results

they have been decoded and translated into a set of Fortran routines, these files may be linked to
the optimization code and provide tools for it, like, for example, subroutines allowing to eval-
uate the objective and constraint functions, or their derivatives. It is also possible to obtain the
number of variables involved or statistics concerning function evaluation, CPU time and so on.

With the select utility, we have extracted from the CUTEr collection problems sharing
the following features (where * means “anything goes”) :

Objective function type : *

Constraints type : U (no constraint), X (fixed variables only)

Regularity : R (regularity)

Degree of available derivatives : 2 (analytical second derivatives)

Problem interest : *

Explicit internal variables : *

Number of variables : *

Number of constraints : *

Table 5.1: The unconstrained problem selection

Note that we include problems with fixed variables. These choices result in 160 problems.
Our numerical results are thus obtained by running our implementation of Algorithm 4.1 on this
set of 159 unconstrained(2) problems from the CUTEr collection.

Problem names and their dimensions(3) are detailed in Table 5.3, while Table 5.2 gives the
distribution of problem dimension in the CUTEr collection. It can be seen that the size of the
problems varies significantly. The user is allowed to modify the dimension of many of these
problems.

of free # of problems
variables from the CUTEr set

2 ≤ n ≤ 9 61
10 ≤ n ≤ 99 15

100 ≤ n ≤ 999 16
1000 ≤ n ≤ 9999 57

10000 ≤ n ≤ 20000 10

Table 5.2: The distribution of problem dimension in the CUTEr collection

(2)We excluded problem BROYDN7D because of its multiple local minima.
(3)The number of free variables.

5.1 Testing environment 75

Problem n Problem n Problem n

AIRCRFTB 5 DQRTIC 5000 OSBORNEA 5
ALLINITU 4 EDENSCH 10000 OSBORNEB 11
ARGLINA 200 EG2 1000 PALMER1C 8
ARGLINB 200 EIGENALS 2550 PALMER1D 7
ARGLINC 200 EIGENBLS 2550 PALMER2C 8
ARWHEAD 5000 EIGENCLS 2652 PALMER3C 8
BARD 3 ENGVAL1 10000 PALMER4C 8
BDQRTIC 5000 ENGVAL2 2 PALMER5C 6
BEALE 2 ERRINROS 50 PALMER6C 8
BIGGS3 3 EXPFIT 2 PALMER7C 8
BIGGS5 5 EXTROSNB 1000 PALMER8C 8
BIGGS6 6 FMINSRF2 5625 PARKCH 15
BOX2 2 FMINSURF 49 PENALTY1 1000
BOX3 3 FREUROTH 5000 PENALTY2 200
BRKMCC 2 GENROSE 500 PENALTY3 200
BROWNAL 200 GROWTHLS 3 POWELLSG 5000
BROWNBS 2 GULF 3 POWER 100
BROWNDEN 4 HAIRY 2 QUARTC 5000
BRYBND 5000 HATFLDD 3 RAYBENDL 2046
CHAINWOO 4000 HATFLDE 3 RAYBENDS 2046
CHNROSNB 50 HEART6LS 6 ROSENBR 2
CLIFF 2 HEART8LS 8 S308 2
CLPLATEA 10100 HELIX 3 SBRYBND 500
CLPLATEB 4970 HIELOW 3 SCHMVETT 5000
CLPLATEC 4970 HILBERTA 2 SCOSINE 5000
COSINE 10000 HILBERTB 10 SCURLY10 100
CRAGGLVY 5000 HIMMELBB 2 SCURLY20 100
CUBE 2 HIMMELBF 4 SCURLY30 100
CURLY10 10000 HIMMELBG 2 SENSORS 100
CURLY20 10000 HIMMELBH 2 SINEVAL 2
CURLY30 1000 HYDC20LS 99 SINQUAD 10000
DECONVU 61 JENSMP 2 SISSER 2
DENSCHNA 2 KOWOSB 4 SNAIL 2
DENSCHNB 2 LIARWHD 5000 SPARSINE 5000
DENSCHNC 2 LMINSURF 5329 SPARSQUR 10000
DENSCHND 3 LOGHAIRY 2 SPMSRTLS 4900
DENSCHNE 3 MANCINO 100 SROSENBR 5000
DENSCHNF 2 MARATOSB 2 SSC 4900
DIXMAANA 9000 MEXHAT 2 STRATEC 10
DIXMAANB 9000 MEYER3 3 TESTQUAD 5000
DIXMAANC 9000 MINSURF 36 TOINTGOR 50
DIXMAAND 9000 MOREBV 5000 TOINTGSS 5000
DIXMAANE 9000 MSQRTALS 1024 TOINTPSP 50
DIXMAANF 9000 MSQRTBLS 1024 TOINTQOR 50
DIXMAANG 9000 NCB20 5010 TQUARTIC 5000
DIXMAANH 9000 NCB20B 5000 TRIDIA 5000
DIXMAANI 9000 NLMSURF 5329 VARDIM 200
DIXMAANJ 9000 NONCVXU2 5000 VAREIGVL 50
DIXMAANK 9000 NONCVXUN 5000 VIBRBEAM 8
DIXMAANL 9000 NONDIA 5000 WATSON 12
DIXON3DQ 10000 NONDQUAR 5000 WOODS 10000
DJTL 2 NONMSQRT 100 YFITU 3
DQDRTIC 5000 ODC 4900 ZANGWIL2 2

Table 5.3: The test problems and their dimension

76 Chapter 5. Numerical results

All experimental tests of this chapter were performed in double precision on a workstation
with a 3.2 GHz Pentium IV biprocessor and 2 Gbytes of memory under Suse Professional 9.0
Linux and the Lahey Fortran compiler (version L6.10a) with default options. All attempts to
solve the test problems were limited to a maximum of 1000 iterations or 1 hour of CPU time. In
some situations where problems are solved very quickly, comparative CPU time results may be
unreliable because these timings may be dominated by noise. Note that throughout this work,
the variability of CPU time for small times is taken into account by repeatedly solving the same
problem until a threshold of ten seconds is exceeded and then taking the average time per solve.

5.2 Performance profiles

In order to compare different variants of FILTRUNC or our code versus another solver,
we will use performance profiles proposed by Dolan and Moré [43]. The goal of these pro-
files, which are now quite useful in benchmarking and for comparisons between softwares, is
to capture in a single plot a summary of both efficiency and robustness of several methods or
algorithmic variants on a set of test problems. The graph has as many curves as the number of
codes we want to compare and each curve gives the efficiency of each code with respect to the
other ones.

Suppose that we want to compare a set of solvers S, such as different solvers or several
algorithmic options for one solver, on a set of test problems P . Let qp,s denote the quantities we
want to compare for problem p and run s. These performance measures may be, for instance,
iteration count, number of function evaluations or computing time. For these latter statistics,
the smaller the value, the better the considered variant. The performance ratio is defined as

rp,s
def
=

qp,s

min{qp,s | s ∈ S} ,

in order to compare the performance of solver s on problem p with the best performance by any
solver in S on p. Note that if the run s has failed on problem p, we set the ratio rp,s to infinity.
Then, we define the performance profile for each solver s as

ps(σ)
def
=

card(p ∈ P | rp,s ≤ σ)

card(P)
, σ ≥ 1.

So performance profiles give, for every σ ≥ 1, the proportion p(σ) of test problems on which
each considered code has a performance within a factor σ of the best. For example, the value
ps(1) is the probability that the solver or algorithmic option s is the best. ps(2) gives the
percentage of test problems for which code s is within a factor of 2 of the best. And the limit

lim
σ→∞

ps(σ)

5.3 Practical aspects 77

gives the fraction of test problems of P for which the code s succeeded. As a consequence, the
values on the left of the plot represent the efficiency of each solver and the values on the right
give information about the robustness of the solvers. So visually speaking, the “best” solver is
the highest on the plot.

5.3 Practical aspects

We now consider some practical details about the implementation of Algorithm 4.1. Note
that, in each case, the starting point supplied with the problem in the CUTEr collection has
been used. While there exist specific strategies for choosing the initial trust-region radius (see,
for example, Sartenaer [113]), we have chosen here to start with ∆0 = 1. The algorithm also
depends on parameters that are defined in Step 0 of Algorithm 4.1, in our implementation, they
have been set to the following values

γ1 = 0.0625, γ2 = 0.25, γ3 = 2.0, η1 = 0.01, η2 = 0.9,

and

γg = min

[

0.001,
1

2
√

n

]

.

We also have to choose a procedure to compute the next trial point. So, at each iteration,
the step sk is computed by approximately minimizing the model mk(xk + s) within the trust
region by using the Generalized Lanczos Trust-Region (GLTR) algorithm proposed by Gould,
Lucidi, Roma and Toint [66] as implemented in the GALAHAD library [70]. This subroutine is
built with the aim of finding a better approximation to the solution of the trust-region subprob-
lem (2.18) than that obtained by the Steihaug-Toint algorithm. This latter strategy, proposed
separately by Steihaug [118] and Toint [119] and widely-used for large-scale problems, consists
of following the path of conjugate-gradient iterates. The iterates generated by the conjugate-
gradient algorithm (see Section 2.3.4) are thus used until either they leave the trust region or
a negative curvature is detected. In both cases, the last conjugate-gradient step is truncated on
the trust-region boundary. So one stops because either convergence or trust-region boundary is
reached. The GLTR code allows to continue the process when the boundary has been encoun-
tered. It is based on solving the subproblem within a subspace defined by the Krylov space(4)

generated by the conjugate-gradient and Lanczos methods (see [34, Chapter 5]). We refer the
reader to the paper of Gould et al. [66] for further details. We have used this method with-
out preconditioning. Some large-scale optimization softwares use this routine as a subproblem

(4)The Krylov subspace of degree j for r0 is defined as K(H, r0, j)
def
= span {r0, Hr0, H

2r0, . . . , H
jr0}.

78 Chapter 5. Numerical results

solver (see Byrd, Gould, Nocedal and Waltz [17] and Gould, Orban and Toint [70]).
The procedure is terminated here at the first s for which

‖∇xmk(xk + s)‖ ≤ min [0.01, max(‖∇xmk(xk)‖,
√

εM)] ‖∇xmk(xk)‖, (5.1)

where εM is the machine precision. This stopping criterion allows an adaptive accuracy in the
solution of the trust-region subproblem. It imposes the subproblem to be solved more accurately
when gradients are small. Also note that the step obtained by this procedure guarantees the
Cauchy point condition

mk(xk) − mk(xk + sk) ≥ κmdc‖gk‖min

[‖gk‖
βk

, ∆k

]

,

where κmdc ∈ (0, 1) and βk is defined in (4.6).

As already mentioned in the previous chapter, the step might be recomputed within the trust
region if negative curvature was discovered for the model after having computed a step outside
the trust region. This can be achieved by re-entering the GLTR subroutine with the new trust-
region radius but with all other data unchanged. The subroutine determines the best solution
within the Krylov space investigated in the previous minimization (see Gould et al. [66] for
more details).

Two particular variants of our algorithm have been tested. The first one, called filter, is the
algorithm as described in Section 4.1, where exact first and second derivatives are used.
In our algorithm, we choose

fsup = min(106|f(x0)|, f(x0) + 1000)

at Step 0.
Based on practical experience (see Section 2.4.3.2 in Gould and Toint [76]), we also impose
that

‖sk‖ ≤ 1000 ∆k (5.2)

at all iterations following the first one at which a restricted step was taken. Note that, in Step 1
of Algorithm 4.1, we have to compute a finite step sk; otherwise it could happen that the step
is infinite if, for instance, the flag RESTRICT is unset and the model is linear, i.e. Hk = 0. In
practice, in order to prevent such a situation, we impose a large upper bound on the step, that is

‖sk‖ ≤ κ∆ ∆k,

5.3 Practical aspects 79

where κ∆ is the factor by which the trust region is enlarged on unrestricted steps. This factor is
initially put to 1020 until a first restricted step has occurred, afterwards this factor is put to 103

(cfr (5.2)).
Another feature of our filter variant is that we consider the values of the g(xk) themselves,

instead of their absolute values, in the filter test acceptance mechanism. A consequence of this
is that the filter is no longer restricted to the positive orthant, and trial points are potentially
accepted more often as the new filter acceptance condition is weaker than (4.9). It is interest-
ing to note that the extension of our convergence theory to the use of unsigned filter entries
(which means that filter entries can take positive or negative values) is simple and straightfor-
ward(5). We will present a comparison between variants with unsigned and signed filter entries
in Section 5.4.4.

Finally, as already said in the previous chapter, dominated filter points are, in our algorithm,
always removed from the filter. We would like to point out that, while the removal of points
dominated by a new entry in the filter helps in keeping filter storage low and the amount of
comparisons in checking for filter acceptability reasonable, it is not directly relevant to the the-
ory. It is clear that if a point x, which dominates a point y, is dominated by a new point, say a,
the point y is also dominated by a. We could consider not to remove dominated filter points in
our algorithm. In this case, the filter acceptance test would be a bit slower and the inclusion of
a new point in the filter a bit faster.

The second algorithmic variant we have considered is the pure trust-region variant, which
is the same algorithm with the exception that no trial point is ever accepted for the filter and
the flag RESTRICT is always set, hence trial points are always restricted to the trust region.
So, in this version, the filter mechanism is not invoked to decide whether or not a trial point is
accepted and it is then similar to a usual monotone trust-region method (see Section 2.3.3 or
[34, Chapter 6]).

Note that the Euclidean norm is used to define the trust region for both variants.

As said in Section 4.1, our algorithm stops if the norm of the gradient falls below some
tolerance, that is

‖∇xf(xk)‖ ≤ 10−6
√

n, (5.3)

and the flag NONCONVEX is unset. But, in practice, the algorithm will not necessarily de-
tect nonconvexity: our implementation relies on detecting negative curvature in the embedded
Krylov subspaces that are used in the GLTR subroutine. What the theory in Section 4.2 says is

(5)The proof of Theorem 4.7 can be easily derived for the filter acceptance condition with unsigned entries.

80 Chapter 5. Numerical results

that, if negative curvature can be detected reliably, then the convergence to a second-order criti-
cal point can be proved. Some difficulties with the termination of the algorithm could thus pos-
sibly occur, in the sense that the algorithm might, in the worst case, terminate at an iterate with a
small gradient norm but undetected negative curvature. Barring more expensive computations,
this situation seems difficult to avoid. However such trouble is, we believe, somewhat unlikely
to occur because our accuracy strategy imposes the trust-region subproblem to be solved more
accurately when gradients are small (see condition (5.1)) which in turn causes a more thorough
exploration of the space, itself increasing the probability of detecting negative curvature, if any.

5.4 Performance and comparisons

In the remainder of this chapter, several algorithmic variants are considered and compared
on the set of CUTEr test problems. We also present a numerical comparison of FILTRUNC
with another widely used package for large-scale optimization, namely LANCELOT-B. A brief
description of this software is given in Section 5.4.3. These various comparisons are, in partic-
ular, based on number of iterations, conjugate-gradient iterations and total CPU time.

The numerical results of this section will be presented using the performance profiles de-
scribed in Section 5.2.

5.4.1 Filter versus pure trust-region variants

Our first concern is to see if the use of a multidimensional filter technique combined with
a trust-region scheme provides benefit compared to a more classical trust-region approach. We
then start by analysing the performance of our algorithm by comparing the filter variant of FIL-
TRUNC with the pure trust-region one, both described in Section 5.3.

Our first observation is that the filter variant is just as reliable as the pure trust-region one.
Indeed, on the 159 problems, both the filter and the pure trust-region versions successfully solve
143 problems (within the prescribed iteration and CPU limitations).
For problems where both variants succeed, they report the same final objective function value.
Appendix A presents, for the filter and the pure trust-region variant of FILTRUNC, the details
of the runs for problems listed in Table 5.3, in particular the number of iterations and conjugate-
gradient iterations, the CPU time and the final objective function value. Failure occurs because
the maximal iteration count is reached before convergence is declared, except for problems
ARGLINB and ARGLINC that are judged to be too ill-conditioned by both variants, and for
problem MEYER3 where the pure trust-region variant stops for the same reason. Both variants

5.4 Performance and comparisons 81

fail on CHAINWOO, HYDC20LS, LMINSURF, LOGHAIRY, MEYER3, NLMSURF, NONCVXU2,
NONCVXUN,SBRYBND, SCOSINE and SCURLY10 because the maximum number of iterations
has been reached. Furthermore, if we closely analyse the results, it can be seen that, for some
problems, the solution given by the pure trust-region variant is very close to the problem solution
although it reports that the step is too short to allow for further progress. This is often caused
by the ill-conditioning of the problems. This situation occurs for problems DJTL, FREUROTH,
JENSMP, PALMER1D, PENALTY2 and PENALTY3. This is well-known that, for instance,
PENALTY3 is ill-conditioned. These failures could possibly be avoided by using precondition-
ing. But note that we have counted these occurrences as successful in the discussion of this
chapter. The filter variant also fails on the three following problems FMINSRF2, FMINSURF
and MINSURF, while the pure trust-region one breaks down on MARATOSB, RAYBENDL and
RAYBENDS because they have reached the maximum number of iterations.

Figures 5.1, 5.2, and 5.3 give the performance profiles for both variants for number of iter-
ations, CPU time, and the total number of conjugate-gradient iterations, respectively.

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter
Pure trust region

Figure 5.1: Iteration performance profile

82 Chapter 5. Numerical results

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter
Pure trust region

Figure 5.2: CPU performance profile

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter
Pure trust region

Figure 5.3: CG iteration performance profile

5.4 Performance and comparisons 83

In Figure 5.1, it can be seen that the filter variant is the best solver, in terms of number of
iterations, on 80% of the problems while the pure trust-region one is the best in more or less
45% of the cases. Figure 5.2 shows that the filter variant is the faster on approximately 66% of
the test problems.

Note that, for simplicity of presentation, we have limited the ratio of performance to a
maximum value on the graphs (generally smaller or equal to ten). The right-hand part of the
performance curves is therefore not always directly related to overall reliability of the variants;
this is why we have mentioned above the exact number of problems solved by both variants.
So the filter variant is significantly more efficient than the pure trust-region one in terms of num-
ber of iterations (which is identical to the number of function evaluations minus one). While
Figures 5.2 and 5.3 show that its advantage is smaller though still significant in terms of CPU
time and conjugate-gradient iterations.

Interestingly, the cost of managing the filter does not appear to dominate the calculation, de-
spite the potentially large number of entries. A closer look at the results shows that the number
of filter entries is distributed as indicated in Table 5.4.

of filter entries # of problems
0 ≤ nf ≤ 5 117

6 ≤ nf ≤ 10 11
11 ≤ nf ≤ 50 11

nf > 50 4

Table 5.4: The distribution of the number of filter entries

We can see that the number of filter entries exceeds 50 for 4 problems only: EIGENBLS
(85 entries), RAYBENDS (103 entries), SCURLY20 (217 entries), and SCURLY30 (221 en-
tries). Note that the problem RAYBENDS could not be solved by the pure trust-region method.
Moreover, we did not observe any obvious correlation between filter size and number of vari-
ables. Indeed, the largest problem CLPLATEA, which has 10100 variables, needs only 7 filter
entries and, for the 9 problems for which the dimension is equal to 10000, the number of filter
entries does not exceed 11. Furthermore, problems which require the most filter entries, namely
SCURLY20 and SCURLY30, have both only 100 variables. Finally, we want to point out that
filter resets do not occur very often, so the number of filter entries is not small because the filter
is often emptied. If we closely analyse the results, we can observe that the number of times a
non-empty filter is reset is zero for more than 70% of the problems, is 1 for more or less 15%

84 Chapter 5. Numerical results

and is smaller than 4 for 5 problems. The number of resets is large for very few problems. For
example, 61 resets have occurred for problem GENROSE.

5.4.2 Comparison on quadratic programs

Here we compare the performance of the filter and the pure trust-region variants on quadratic
programming problems. This time, we have extracted from the CUTEr collection problems
with the following features :

Objective function type : Q (quadratic)

Constraints type : U (no constraint), X (fixed variables only)

Regularity : R (regularity)

Degree of available derivatives : 2 (analytical second derivatives)

Problem interest : *

Explicit internal variables : *

Number of variables : *

Number of constraints : *

This results in the 14 problems given in the following table.

Problem n Problem n

DIXON3DQ 10000 PALMER2C 8
DQDRTIC 5000 PALMER3C 8
HILBERTA 2 PALMER4C 8
HILBERTB 10 TESTQUAD 5000
MARATOSB 2 TOINTQOR 50
PALMER1C 8 TRIDIA 5000
PALMER1D 7 ZANGWIL2 2

Table 5.5: The quadratic problems and their dimension

Figures 5.4, 5.5 and 5.6 illustrate, as it can be expected, that the filter variant performs very
well on this set of unconstrained quadratic problems in terms of number of iterations, CPU time
and conjugate-gradient iterations, respectively(6).

This indicates that the underlying method works very well on quadratic programs without
the restriction to the trust region. So, for quadratic problems, the use of unrestricted steps is

(6)In Figures 5.4, 5.5 and 5.6, the curve corresponding to the filter variant coincides with the vertical axis.

5.4 Performance and comparisons 85

1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter
Pure trust region

Figure 5.4: Iteration performance profile for quadratic problems

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter
Pure trust region

Figure 5.5: CPU performance profile for quadratic problems

86 Chapter 5. Numerical results

1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter
Pure trust region

Figure 5.6: CG iteration performance profile for quadratic problems

crucial. The three figures show that the filter variant is the best solver on 100% of the quadratic
problems for the three considered criteria. We can observe in Figure 5.7 the evolution of the
objective function value for the quadratic problem DQDRTIC. We clearly see that the pure trust-
region method is slowed down by the trust-region restriction on the step.

0 2 4 6 8 10 12
−15

−10

−5

0

5

10

iterations

lo
g

10
 o

f o
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Filter
Pure trust region

Figure 5.7: The objective function value as a function of the iteration progress on the DQDRTIC
problem. The filter variant converges first followed by the pure trust-region one.

Obviously, if we performed the pure trust-region variant with a very large initial trust-region

5.4 Performance and comparisons 87

radius, the pure trust-region variant would be more competitive with the filter variant.

5.4.3 Comparison with LANCELOT-B

We now include a comparison with LANCELOT-B, one of the codes available in the GALA-
HAD library [70].

Before presenting the results, we give a brief description of LANCELOT, which is a Fortran
package for solving large-scale nonlinearly constrained optimization problems and which has
been developed by Conn, Gould and Toint [33]. This algorithm combines the objective func-
tion and constraints more complicated than simple bounds on the variables in an augmented
Lagrangian function as explained in Section 2.4.2. Then it solves a sequence of subproblems
by approximately minimizing the current augmented Lagrangian function within the feasible
region defined by the simple bounds. The algorithm used to solve this bounded problem com-
bines a trust region, a gradient-projection method and special data structures to exploit the group
partially separable structure of the problem under study. Among other algorithmic options, the
LANCELOT package proposes direct or iterative linear solvers for solving the subproblem,
analytic or finite-difference derivatives, a lot of preconditioning and scaling techniques, Quasi-
Newton methods, and so on.

We found interesting to compare our numerical results with those obtained with LANCELOT-
B [68], an updated version of LANCELOT, because this latter allows a non-monotone be-
haviour in the trust-region algorithm (see Toint [121] or Conn et al. [34, Section 10.1]). We
have used this solver without preconditioning, with the initial trust-region radius ∆0 equals to
one and with exact first and second derivatives. The trust region was defined by the Euclidean
norm as in our algorithm. The solver LANCELOT-B was processed with its other settings at
their default values.

Figures 5.8, 5.9, and 5.10 give the performance profiles for both variants and LANCELOT-
B for iteration count, CPU time, and the total number of conjugate-gradient iterations, respec-
tively.

LANCELOT-B, which successfully solves 140 out of 159 problems, is marginally less ro-
bust than the other two variants (both solve 143 problems). It does not solve the same list
of problems common to both variants and also fails(7) on FMINSRF2 like the filter variant,

(7)Failures occur because the maximal iteration count has been reached.

88 Chapter 5. Numerical results

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter
Pure trust region
LANCELOT B

Figure 5.8: Iteration performance profile for both variants and LANCELOT-B

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter
Pure trust region
LANCELOT B

Figure 5.9: CPU performance profile for both variants and LANCELOT-B

5.4 Performance and comparisons 89

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter
Pure trust region
LANCELOT B

Figure 5.10: CG iteration performance profile for both variants and LANCELOT-B

on RAYBENDL and RAYBENDS like the pure trust-region one and finally on SCURLY20,
SCURLY30 and VIBRBEAM. In view of the graphs depicted in Figures 5.8, 5.9, and 5.10, this
solver appears to be consistently inferior to the new filter algorithm and also to our pure trust-
region variant. So, in our tests, the filter variant is clearly the winner compared to LANCELOT-
B, both in reliability and efficiency.

This comparison is interesting in that it suggests not only that the improved performance of
the new algorithm might be due to the non-monotone nature of the mechanism to accept new
iterates, but also that the capability to use steps that extend beyond the trust-region boundaries
is crucial (see also Section 5.4.5).

We next present in Figure 5.11, 5.12 and 5.13 some plots of the evolution of the objec-
tive function value for the filter and pure trust-region variants, as well as for LANCELOT-B.
These plots are typical of the cases where the new algorithm outperforms the others. For this
algorithm, we note, especially in Figure 5.11, the large oscillations in objective value prior to
convergence. Looking at these figures, it is remarkable that the algorithm is nevertheless prov-
ably convergent.

90 Chapter 5. Numerical results

0 50 100 150 200 250 300
−6

−4

−2

0

2

4

6

iterations

lo
g

10
 o

f o
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Filter
Pure trust region
LANCELOT B

Figure 5.11: The objective function value as a function of the iteration progress on the
EXTROSNB problem for both variants and LANCELOT-B. The filter variant oscillates the most
and converges first, followed by the moderately non-monotone LANCELOT-B, itself followed
by the monotone pure trust-region variant.

It can also been remarked in Figure 5.11 that, for the LANCELOT-B solver, there is a notion
similar to “decrease in the long run” that we do not have with the filter variant.

However, this behaviour is not observed for all problems and sometimes the filter variant,
although there are large oscillations in objective function value, is the last to converge. This
happens, for example, for the problem TOINTPSP for which the evolution of the objective
function value is represented in Figure 5.14. For this problem, the filter variant has added 40
points in the filter.

The last plots of this section represent the evolution of the gradient norm for problem
EXTROSNB. For the sake of clarity, we have divided the presentation into two pictures. Fig-
ure 5.15 gives the evolution of the gradient norm for the filter and the pure trust-region variants,
while Figure 5.16 is the comparison of the filter variant against LANCELOT-B. Obviously, the
behaviour in terms of gradient norm is non-monotone for the three solvers, but again, we can
observe the larger oscillations in gradient norm value described by the filter variant.

5.4 Performance and comparisons 91

0 5 10 15 20 25 30 35 40 45 50
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

iterations

lo
g

10
 o

f o
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Filter
Pure trust region
LANCELOT B

Figure 5.12: The objective function value as a function of the iteration progress on the
OSBORNEA problem for both variants and LANCELOT-B

0 10 20 30 40 50 60
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

iterations

lo
g

10
 o

f o
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Filter
Pure trust region
LANCELOT B

Figure 5.13: The objective function value as a function of the iteration progress on the
SINEVAL problem for both variants and LANCELOT-B

92 Chapter 5. Numerical results

0 10 20 30 40 50 60 70 80 90
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

iterations

lo
g

10
 o

f o
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Filter
Pure trust region
LANCELOT B

Figure 5.14: The objective function value as a function of the iteration progress on the
TOINTPSP problem for both variants and LANCELOT-B

0 50 100 150 200 250 300
−5

−4

−3

−2

−1

0

1

2

3

4

5

iterations

lo
g

10
 o

f g
ra

di
en

t n
or

m

Filter
Pure trust region

Figure 5.15: The gradient norm as a function of the iteration progress on the EXTROSNB prob-
lem for both variants

5.4 Performance and comparisons 93

0 20 40 60 80 100 120 140 160 180
−6

−4

−2

0

2

4

6

iterations

lo
g

10
 o

f g
ra

di
en

t n
or

m

Filter
LANCELOT B

Figure 5.16: The gradient norm as a function of the iteration progress on the EXTROSNB prob-
lem for the filter variant and LANCELOT-B

5.4.4 Algorithmic variants

In what follows, we will compare the filter variant of FILTRUNC with two other algorith-
mic variants for reliability and efficiency.

We first consider what happens if we limit the number of filter entries to 50, this is the
variant we call limited. We have already discussed in Section 5.4.1 some statistics about the
maximum number of filter entries observed in our numerical results. These observations sug-
gest that the filter size typically remains very modest. Furthermore, the cost of the acceptance
tests associated with filter entries is typically not too high; indeed it is enough to find a single
decreasing gradient component to decide acceptability of a trial point with respect to a filter en-
try. Moreover, keeping track of the Euclidean norm of the various filter entries helps in avoiding
unnecessary comparisons. The details of these strategies, known as pre-filtering, are discussed
in Gould and Toint [76].

Nevertheless, at least in theory, nothing prevents the filter size from growing, possibly to
infinity. Practically, a very large number of points might therefore be required, although this
does not happen in our tests, and this could, again in principle, be a serious drawback, especially
for large-scale problems where each filter point has itself a large number of components. For-

94 Chapter 5. Numerical results

tunately, this problem can be fixed without sacrificing our convergence guarantee. Should the
problem arise in that, at some iteration, the total storage for filter points reaches a user-defined
upper limit, two different techniques can be used to continue the calculation. The first idea is
simply to revert to a pure trust-region scheme from that iteration on. Admittedly, we would
then loose some of the potential benefits of using a filter technique, but convergence is not put
at risk. The second strategy is a progressive form of the first. As indicated in the paper of filter
methods for nonlinear equations of Gould et al. [65], the components of the gradient can be
grouped in progressively larger sets and the filter entries are now defined as the Euclidean norm
of the sub-vector of components belonging to the set. This results in a progressive decrease of
the amount of storage required to store the entire filter. In the limit where a single component
set is considered and assuming dominated filter points are removed, the filter reduces to a single
number, i.e. an upper bound on the Euclidean norm of the gradient, thus eliminating all storage
problems.

Here we have considered to limit the number of filter entries to 50 and to go back to a
classical trust-region method if this number is reached. It can be seen in Figures 5.17, 5.18
and 5.19 a slight improvement obtained by the limited variant. This is mostly due to problems
FMINSURF, FMINSURF2 and MINSURF for which this variant ensures convergence in less
than 150 iterations while the default filter variant fails to converge in 1000 iterations. Note that
the unlimited filter variant has added more than 400 points to the filter for these three problems.

We also discuss the effect on our numerical results of considering signed filter entries (which
means that we consider the absolute values of filter entries) instead of unsigned ones as de-
scribed in Section 5.3. So we now use the filter test acceptance mechanism (4.9). This algorith-
mic variant is referred as the signed variant.

The relative efficiency and robustness of these two algorithmic variants compared to the
default filter variant are illustrated by the performance profiles of Figures 5.17, 5.18 and 5.19.
Our numerical experiments show a slightly increased reliability for the limited variant, in fact

this latter successfully solved 146 problems out of 159 while the default filter variant solved
143. We also obtain a modest gain in efficiency, in terms of iterations, CPU time and conjugate-
gradient iterations. On the other hand, the signed variant appears to be a little less reliable
(142/159 versus 143/159) and also less efficient. Signed and unsigned variants successfully
solved the same problems except that the signed variant fails to solve the problem SCURLY30

because the maximum number of iterations is reached before convergence is declared. But
note that the unsigned variant solves this problem in 906 iterations. The benefit achieved by
the unsigned default variant compared to the signed variant is obtained at the cost of including
more entries in the filter, as shown in Figure 5.20.

5.4 Performance and comparisons 95

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter
Limited (50 filter entries)
Signed

Figure 5.17: Iteration performance profile for the three filter variants

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter
Limited (50 filter entries)
Signed

Figure 5.18: CPU performance profile for the three filter variants

96 Chapter 5. Numerical results

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter
Limited (50 filter entries)
Signed

Figure 5.19: CG iteration performance profile for the three filter variants

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Unsigned
Signed

Figure 5.20: Filter size performance profile for the filter variants using unsigned and signed
filter entries

5.4 Performance and comparisons 97

5.4.5 Unrestricted steps

In this last section, we will compare the filter and the pure trust-region variants with a ver-
sion of our code without the filter mechanism but with the possibility of taking unrestricted
steps. This comparison will permit to see if the use of unrestricted steps that extend beyond
the trust-region boundary is an important feature of our filter algorithm. Figures 5.21, 5.22 and
5.23 give the performance profiles for number of iterations, CPU time, and the total number of
conjugate-gradient iterations, respectively.

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter
Unrestricted steps
Pure trust region

Figure 5.21: Iteration performance profile

We can see that the fact of allowing unrestricted steps improves the performance of the tra-
ditional trust-region method (especially in terms of number of iterations). However, we can
observe that our filter method remains the best variant for all considered performance mea-
sures. This indicates that this is the combination of the multidimensional filter with the use of
unrestricted steps which allows to obtain the good performance of our method.

98 Chapter 5. Numerical results

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter
Unrestricted steps
Pure trust region

Figure 5.22: CPU performance profile

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter
Unrestricted steps
Pure trust region

Figure 5.23: CG iteration performance profile

5.5 Conclusion 99

5.5 Conclusion

In conclusion, our numerical experience on the set of unconstrained test problems from
the CUTEr collection indicates that the efficiency gains introduced by the combination of the
multidimensional filter technique and a trust-region method appear to be significant in terms
of number of iterations, CPU time and number of conjugate-gradient iterations. Finally, we
emphasize the fact that the use of unrestricted steps is a filter technique’s crucial feature, and
that only allowing a non-monotone behaviour in the objective function value is not likely to be
as successful. This is clearly shown when comparing the results of the filter variant to those of
LANCELOT-B, which is itself a non-monotone trust-region method but with restricted steps.

100 Chapter 5. Numerical results

Chapter 6

Do approximate derivatives hurt filter
methods?

In this chapter we will present an experimental study performed to determine the influence
of using approximate first and/or second derivatives of the objective function on our filter-trust-
region algorithm designed for solving unconstrained nonlinear optimization problems. Our aim
is to answer the following question :

Does the use of approximate derivatives damage the efficiency and the robustness
of methods based on the filter mechanism ?

Numerical experiments presented below and carried out on small-scale unconstrained problems
from the CUTEr collection describe the effect of using approximate derivatives on the perfor-
mance of Algorithm 4.1; this study is also presented in Sainvitu [110].

6.1 The framework

As most algorithms for nonlinear optimization, the filter-trust-region algorithm proposed in
Chapter 4 for solving the following unconstrained minimization problem

min
x∈IRn

f(x) (6.1)

requires knowledge of first and second derivatives of f . In the implementation used to perform
our numerical experiments in Chapter 5, the derivatives need to be calculated analytically and
supplied by the user. However, in some situations, the first and a fortiori the second derivatives
of the function involved in problem (6.1) may be unavailable. This may be due to the fact that
the evaluation of these derivatives is very difficult, time-consuming or their calculation requires

101

102 Chapter 6. Do approximate derivatives hurt filter methods?

the solution of another problem. Notwithstanding, the unavailability of the derivatives does not
necessarily imply that the objective function we consider is not differentiable. Actually, in the
remainder of this chapter, we assume that the objective function f is indeed twice continuously
differentiable.

One way to fix the issue of unavailability of derivatives is to use finite-difference approxi-
mations to the gradient and the Hessian matrix (see Section 1.3.4). Another one, which is more
widespread, is to use secant approximations to the second derivative matrices by applying, for
instance, BFGS or SR1 updates (see Section 2.3.1). It is also possible, as mentioned in Sec-
tion 1.3.5, to treat problems with unavailable derivatives by way of automatic differentiation
techniques. But we have decided not to consider this approach in our numerical analysis. We
have also explored the influence of a perturbation of second-order derivatives on the efficiency
and the robustness of our algorithm.

Our first step in this investigation is to see where the first and second derivatives appear in
the filter-trust-region algorithm. They are both present in different positions of Algorithm 4.1.
The gradient and the Hessian are obviously taken into account in the definition of the model of
the objective function and are thus important for the computation of the next trial point.
We can guess that the approximation to the gradient will be a very critical issue because it is pre-
cisely the quantity we are trying to make zero. So, as in classical unconstrained minimization
algorithms, the gradient of the objective function must be known accurately both for computing
the next trial point and for the stopping criterion. In our algorithm, the first derivative has also a
major role because it determines the filter. Indeed, the gradient appears in the definition of the
filter and thus in the filter test acceptance mechanism (4.9).
The second derivatives notably influence the fact that the algorithm chooses to use the filter tech-
nique or not. When a negative curvature is detected, we just fall back to a classical trust-region
method and the step is restricted to the trust region. Therefore, if the second-order information
is not exact and the algorithm detects erroneous negative curvature, the convergence may be
slowed down by smaller steps.

Before examining the impact of using approximate derivatives, we briefly discuss the con-
vergence of methods where the model is made up with estimate first and/or second derivatives.
For inexact gradients, we have to require that the absolute error on the objective gradient must
go to zero when the gradient of the model itself converges to zero. This condition was proposed
and analysed by Carter [20] in the context of trust-region methods using inexact gradient in-
formation. For Hessian approximations, we have to impose bounds on the growth of the norm

6.2 Numerical investigation 103

of these approximations as the iterations proceed. We refer the reader to the books of Conn,
Gould and Toint [34, Section 8.4] and Dennis and Schnabel [41, Chapter 9] and to the article of
Dennis and Moré [40] for more details about convergence analysis of such methods. Local con-
vergence properties of Quasi-Newton methods are studied in Broyden, Dennis and Moré [16].
Convergence of the Hessian approximation matrix to the exact Hessian of the objective function
has notably been studied by Conn, Gould and Toint [30] and Byrd, Khalfan and Schnabel [18]
for the SR1 update. Interesting discussions on finite-difference approximations can be found in
the book of Dennis and Schnabel [41, Section 5.6] or in the paper of Gill et al. [61]. Boggs and
Dennis [11] have analysed the error inherent in using finite-difference gradients in minimization
algorithms.

6.2 Numerical investigation

As mentioned above, the exact first and second derivatives are used in our first implemen-
tation of the filter-trust-region algorithm. So the question we are interested in here is : is the
behaviour of the filter-trust-region algorithm directly related to the use of exact derivatives ?
The aim of this section is to answer this question by studying the performance of the algo-
rithm over a set of test problems if we do not use exact derivatives. We will consider two
kinds of derivatives estimations : firstly, we will examine what happens if we approximate the
derivatives by finite-difference techniques, and secondly, if we estimate them by secant approx-
imations. The numerical results are again examined by means of performance profiles proposed
by Dolan and Moré in [43] and briefly presented in Section 5.2. In this framework, the number
of iterations and the total CPU time are naturally the criteria we have chosen for comparing the
performances.
It occurs that some variants are very close to the problem solution despite them declaring that
no further progress seems possible. As in Chapter 5, we have flagged these occurrences as
successful in the discussion of this section. And again we have limited the ratio of performance
to some maximum value on the graphs and therefore the right-hand part of the performance
profiles does not always directly represent the overall reliability of the different variants.

We now discuss the framework in which our numerical experiments are performed. Obvi-
ously, several of our choices are not the only ones possible or even the only ones used and our
numerical investigation is thus not perfect.
Our results are obtained by running our algorithm on 66 unconstrained small-scale problems
from the CUTEr collection. We have selected problems of small dimension(1) from the list of

(1)The maximum number of variables is 12.

104 Chapter 6. Do approximate derivatives hurt filter methods?

test problems given in Table 5.3. Note that our aim here is only to see if the advantageous
behaviour of filter methods described in many references and, in particular, in Chapter 5, is
directly dependent on the use of exact derivatives; this is why we have just considered problems
of small size. The numerical study presented in this chapter is intended to demonstrate the im-
portance or not of the exact derivatives in our filter-based approach and not to provide a high
performance solver in the case where derivatives are unavailable, which is beyond the scope
of this dissertation. The names of the problems with their dimension (i.e. the number of free
variables) are detailed in Table 6.1.

Problem n Problem n Problem n

AIRCRFTB 5 EXPFIT 2 MEYER3 3
ALLINITU 4 GROWTHLS 3 OSBORNEA 5
BARD 3 GULF 3 OSBORNEB 11
BEALE 2 HAIRY 2 PALMER1C 8
BIGGS3 3 HATFLDD 3 PALMER1D 7
BIGGS5 5 HATFLDE 3 PALMER2C 8
BIGGS6 6 HEART6LS 6 PALMER3C 8
BOX2 2 HEART8LS 8 PALMER4C 8
BOX3 3 HELIX 3 PALMER5C 6
BRKMCC 2 HIELOW 3 PALMER6C 8
BROWNBS 2 HILBERTA 2 PALMER7C 8
BROWNDEN 4 HILBERTB 10 PALMER8C 8
CLIFF 2 HIMMELBB 2 ROSENBR 2
CUBE 2 HIMMELBF 4 S308 2
DENSCHNA 2 HIMMELBG 2 SINEVAL 2
DENSCHNB 2 HIMMELBH 2 SISSER 2
DENSCHNC 2 HUMPS 2 SNAIL 2
DENSCHND 3 JENSMP 2 STRATEC 10
DENSCHNE 3 KOWOSB 4 VIBRBEAM 8
DENSCHNF 2 LOGHAIRY 2 WATSON 12
DJTL 2 MARATOSB 2 YFITU 3
ENGVAL2 2 MEXHAT 2 ZANGWIL2 2

Table 6.1: The test problems and their dimension

6.2 Numerical investigation 105

In each case, the starting point supplied with the problem was used. As for the numerical
results of the previous chapter, all tests were performed in double precision on a workstation
with a 3.2 GHz Pentium IV biprocessor and 2 Gbytes of memory under Suse Professional 9.0
Linux and the Lahey Fortran compiler (version L6.10a) with default options.

In practice, we stop the algorithm if

‖gk‖ ≤ 10−6
√

n,

where gk stands for ∇xf(xk) or an approximation to this gradient, and the flag NONCONVEX

is unset. Again, all attempts to solve the test problems were limited to a maximum of 1000
iterations or 1 hour of CPU time. As in Chapter 5, the variability of CPU times for small times
is taken into account by repeatedly solving the same problem until a threshold of ten seconds
is exceeded and then taking the average per run. The different parameters defined in Step 0 of
Algorithm 4.1 are set to the values given in Section 5.3. The other practical aspects about the
implementation detailed in this latter section remains valid here.

We have also considered both algorithmic variants of the previous chapter, namely the filter
variant and the pure trust-region one. Incorporating our two algorithmic variants in the different
techniques used to approximate the derivatives, we obtain about 70 tested variants. For com-
pleteness, the behaviour of the two variants using the exact first and second derivatives (referred
as the exact variants) is also shown in the performance profiles.

6.2.1 Finite differences

Firstly, we consider the effect of substituting finite-difference approximations for the ana-
lytic derivatives on the algorithm. We also discuss the practical choice of stepsizes in computing
these approximations.

Finite-difference Hessians

We start by analysing the case where exact first derivatives are available. In Section 1.3.4,
we have seen two formulae to approximate the Hessian matrices, the forward (1.14) and the
central one (1.15). An important issue in the implementation of these formulae is the choice of
the finite-difference stepsize h. For this selection, we have to make a compromise between large
rounding errors, corresponding to small stepsizes, and large approximation errors, generated by
large stepsizes. We have tested different choices for the stepsize components hj(j = 1, . . . , n)

from the literature which are given in Table 6.2.

106 Chapter 6. Do approximate derivatives hurt filter methods?

forward central
stepsize 1

√
εM

3
√

εM

stepsize 2 sign (xj)
√

εM max(|xj|, 1) sign (xj) 3
√

εM max(|xj|, 1)

stepsize 3
√

εM max(|xj|, 1) 3
√

εM max(|xj|, 1)

stepsize 4
√

εM(1 + |xj|) 3
√

εM(1 + |xj|)
stepsize 5 - 10−4(1 + |xj|)

Table 6.2: The different stepsizes

On our test problem set, the best results are obtained with the third stepsize for the forward
formula and with the first stepsize for the central one; therefore, we present in this dissertation
the performance profiles with these choices for the stepsizes. However, the selected stepsize
rules are not very significantly better than the others and the performance profiles would not be
very different with other stepsizes. Figures 6.1 and 6.2 show the efficiency in terms of num-
ber of iterations and CPU time for filter and pure trust-region variants, both with exact second
derivatives and forward or central finite-difference approximations to them.

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter exact
TR exact
Filter central
TR central
Filter forward
TR forward

Figure 6.1: Iteration performance profile with exact derivatives and approximate second deriva-
tives by finite differences when the gradient is available

6.2 Numerical investigation 107

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter exact
TR exact
Filter central
TR central
Filter forward
TR forward

Figure 6.2: CPU time performance profile with exact derivatives and approximate second
derivatives by finite differences when the gradient is available

Figure 6.1 indicates that the three filter variants are better than the three corresponding pure
trust-region variants if we use the number of iterations as performance criterion. So even the
filter versions using approximate Hessian matrices by means of finite differences are more effi-
cient (in terms of number of iterations) than the pure trust-region method with exact derivatives.
Both exact variants are obviously the more robust ones.
However, the situation is not the same if we now consider the CPU time for comparing the
different variants. It can be observed in Figure 6.2 that the finite-difference variants are, as
expected, much more computationally expensive than the exact variants. As we have already
mentioned in Section 1.3.4, the finite-difference techniques require additional gradient evalua-
tions. Variants using such approaches are thus much more costly than variants where derivatives
are analytically available. Furthermore, approximating the Hessian matrices by the central for-
mula (1.15) requires twice more gradient evaluations than using the forward one (1.14). In
Figure 6.2, we can observe that the filter variant with forward finite-difference approximations
is the less computationally expensive among all variants with finite differences.

Some small negative curvature in the Hessian matrix may remain undetected when it is
approximated by finite-difference formulae. However, we can point out the fact that the fil-

108 Chapter 6. Do approximate derivatives hurt filter methods?

ter algorithmic variant with approximate second derivatives by finite-difference techniques is
significantly better as well in terms of iteration count as in terms of CPU time than the corre-
sponding pure trust-region variant. The use of approximate Hessians by finite differences within
a filter-trust-region framework does not seem to have more influence than such an approxima-
tion in the more classical trust-region scheme. The plots in Figures 6.3 and 6.4, showing the
iteration and CPU time performance profiles for the filter and the pure trust-region variants with
Hessians approximated by forward finite differences, clearly illustrate this fact.

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter forward
TR forward

Figure 6.3: Iteration performance profile with approximate second derivatives by forward finite
differences when the gradient is available

Finite-difference gradients and Hessians

We now examine the case where even the gradient of the objective function is not avail-
able; so both first and second derivatives are to be approximated by finite-difference formulae.
The gradient ∇xf(x) is approximated either by the forward formula (1.12) or by the central
one (1.13) while the approximation of the Hessian matrix is built with (1.16), which uses only
function values.

The tested stepsizes in the case where the first derivative is approximated by a forward for-

6.2 Numerical investigation 109

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter forward
TR forward

Figure 6.4: CPU time performance profile with approximate second derivatives by forward
finite differences when the gradient is available

mula are stated in Table 6.3, while those for a central finite-difference formula are given in
Table 6.4.

stepsize for ∇xf stepsize for ∇2
xxf

stepsize 1
√

εM
4
√

εM

stepsize 2
√

εM
4
√

εM max(|xj|, 1)

stepsize 3
√

εM sign (xj) 4
√

εM max(|xj|, 1)

stepsize 4
√

εM 10−4(1 + |xj|)
stepsize 5 sign (xj)

√
εM max(|xj|, 1) sign (xj) 4

√
εM max(|xj|, 1)

Table 6.3: The different stepsizes for a forward finite-difference approximation to the gradient
and a finite-difference approximation to the Hessian using only function values

The stepsizes that give the best performances on our test problem set are the third one when
the first derivatives are approximated by forward finite differences and again the third one for

110 Chapter 6. Do approximate derivatives hurt filter methods?

stepsize for ∇xf stepsize for ∇2
xxf

stepsize 1 3
√

εM
4
√

εM

stepsize 2 3
√

εM
4
√

εM max(|xj|, 1)

stepsize 3 3
√

εM sign (xj) 4
√

εM max(|xj|, 1)

stepsize 4 sign (xj) 3
√

εM max(|xj|, 1) sign (xj) 4
√

εM max(|xj|, 1)

stepsize 5 10−4(1 + |xj|) 10−4(1 + |xj|)

Table 6.4: The different stepsizes for a central finite-difference approximation to the gradient
and a finite-difference approximation to the Hessian using only function values

central finite differences. Figures 6.5 and 6.6 give the iteration and CPU time performance
plots for the filter and the pure trust-region variants with exact derivatives, and first and second
derivatives approximated by finite differences.

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter exact
TR exact
Filter central
TR central
Filter forward
TR forward

Figure 6.5: Iteration performance profile with exact derivatives and approximate first and sec-
ond derivatives by finite differences

As expected in Section 1.3.4, the variants with both derivatives approximated by finite dif-
ferences using only function values pay a heavy price in computing time and are less efficient
and robust than those where the gradient is available. This CPU time penalty is, for a part, due
to the fact that more iterations are now needed but also to the fact that lots of function evalua-

6.2 Numerical investigation 111

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter exact
TR exact
Filter central
TR central
Filter forward
TR forward

Figure 6.6: CPU time performance profile with exact derivatives and approximate first and
second derivatives by finite differences

tions are required to approximate the gradient and the Hessian.
Since the first derivative is exactly the criticality measure we are trying to drive to zero, these
results prove its importance in our algorithm as in other algorithms for unconstrained minimiza-
tion. However, we can point out the fact that, even with these approximations to both first and
second derivatives, each filter variant is significantly better than its corresponding pure trust-
region variant as well as regards number of iterations as for CPU time. This can be distinctly
observed in Figures 6.7 and 6.8.

Finally, we would like to remind our readers that, when both derivatives are not available
or are time-consuming, it is generally preferable to use DFO techniques. Derivative-free op-
timization is concerned with the study of mathematical programs for which it is assumed that
the first and (a fortiori) the second derivatives of the functions involved in the problem are not
available. DFO methods generally approximate the objective function without approximating
its derivatives. For complete surveys on this topic, we refer the reader to the papers by Conn,
Scheinberg and Toint [35, 36], Lewis, Torczon and Trosset [106] and Wright [128]. In his
PhD thesis [26], Colson has proposed a derivative-free algorithm for unconstrained optimiza-
tion and a filter-SQP algorithm for the solution of derivative-free constrained problems. Audet
and Dennis [3] also use the filter in the framework of derivative-free optimization.

112 Chapter 6. Do approximate derivatives hurt filter methods?

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter forward
TR forward

Figure 6.7: Iteration performance profile with approximate first and second derivatives by finite
differences

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter forward
TR forward

Figure 6.8: CPU time performance profile with approximate first and second derivatives by
finite differences

6.2 Numerical investigation 113

6.2.2 Secant updates

We now present numerical experiments with secant updates to Hessian matrices : these
techniques are advantageous due to the absence of second-order derivatives computation and
additional gradient evaluations. In this section we consider the BFGS and the SR1 secant updat-
ing formulae which are recalled in (2.14) and (2.15) (see Dennis and Schnabel [41, Chapter 9]
for further details). We have already discussed in Section 2.3.1 different choices for the initial
matrix B0 and indicated that there is no choice that can be made to work well in all cases.

BFGS updating formula

For the BFGS update, it is not convenient to set B0 to a finite-difference approximation
to ∇2

xxf(x0). The reason is that secant methods based on this updating formula perform on
beginning with and keeping a positive definite Hessian approximation. But with an initial ap-
proximation matrix computed by finite differences, there is no guarantee that B0 will be pos-
itive definite. So, if one wants to use this initial approximation, the approximate matrix must
be perturbed into a positive definite one by applying, for instance, the techniques described in
Section 5.5 of Dennis and Schnabel [41]. However, it is interesting to note that, in practice,
our filter-trust-region algorithm using BFGS updates behaves very well with an initial finite-
difference approximation without correction. But applying BFGS techniques with an indefinite
starting matrix is not standard in the literature, although the use of a trust region allow for this.
On the other hand, a version with a correction of the initial matrix to be positive definite does
not yield better results than simply setting the initial matrix to the identity and implies a higher
cost in function and/or gradient evaluations. Therefore the results presented below are obtained
by setting B0 = I . The plots in Figures 6.9 and 6.10 show the performances in terms of number
of iterations and CPU time for this kind of Hessian approximations compared to the exact vari-
ants. We have excluded problems where variants do not report the same final objective function
value(2).

Both BFGS versions are obviously less efficient and robust than the exact ones. It can be
seen that the BFGS filter variant and the BFGS pure trust-region one are essentially comparable
as well as in terms of iteration count as in CPU time, indicating that using a BFGS approx-
imation of the Hessian matrix in our filter-trust-region algorithm implies a larger increase in
the number of iterations (and thus in the computation time) than using the same approximation
within a classical trust-region scheme. However, it can be remarked that the BFGS variants are
more competitive in terms of CPU time efficiency with the exact ones than the finite-difference

(2)Problems BIGGS6, GROWTHLS, GULF and JENSMP have been excluded.

114 Chapter 6. Do approximate derivatives hurt filter methods?

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter exact
TR exact
Filter BFGS
TR BFGS

Figure 6.9: Iteration performance profile with exact derivatives and BFGS updates

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter exact
TR exact
Filter BFGS
TR BFGS

Figure 6.10: CPU time performance profile with exact derivatives and BFGS updates

6.2 Numerical investigation 115

variants were. It is important to mention that, since the BFGS update only produces positive
definite matrices, the flag NONCONVEX in Algorithm 4.1 is never set because negative curvature
is never detected while solving the trust-region subproblem. This simplifies our test acceptance
mechanism in Step 3 of the algorithm, and, furthermore, the filter is never reinitialized to the
empty set. We think that, as our algorithm directly relies on detecting negative curvature, it is
more appropriate to use an updating formula which allows to generate indefinite Hessian ap-
proximations, like the symmetric-rank-one update. This should indicate that the ability of using
nonconvex models for the computation of the trial step might be important in our filter-trust-
region algorithm.
Finally, we want to mention that the BFGS update is not very often skipped. A closer look at
the results shows that, among successfully solved problems, the BFGS update is never skipped
except for problems listed in Table 6.5.

problem # of skips

AIRCRFTB 1
BIGGS6 1
BOX2 8
BROWNBS 1
DENSCHNC 61
DENSCHND 1
DENSCHNE 2
DJTL 35
GROWTHLS 1
HAIRY 14
HEART8LS 1
HIELOW 1
HUMPS 42
JENSMP 1

Table 6.5: The number of times the BFGS update is skipped

SR1 updating formula

We thus consider the SR1 update given in (2.15). As with the BFGS approach, the SR1 up-
date builds an approximate Hessian using gradient information. Nevertheless, unlike the BFGS
update, the SR1 Hessian approximation is not restricted to be positive definite. Therefore we
can now estimate the initial approximation B0 by a finite-difference technique as this matrix

116 Chapter 6. Do approximate derivatives hurt filter methods?

does not need to be positive definite. We guess that, for our algorithm, the SR1 approximation
may be a better strategy, compared to the BFGS one, if there is many negative curvature in the
problem since it may be able to maintain a better approximation to the true Hessian in this case
then reflecting nonconvexity if it is present. The best results are obtained with a finite-difference
estimation of the Hessian matrix at x0 and these results are displayed in Figures 6.11 and 6.12(3).

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter exact
TR exact
Filter SR1
TR SR1

Figure 6.11: Iteration performance profile with exact derivatives and SR1 updates

It can be seen in Figures 6.13 and 6.14, which illustrate the iteration and CPU time perfor-
mances for both variants with SR1 updates, that the filter variant with SR1 updating formula
is a little more efficient both in terms of iterations and CPU time than the corresponding pure
trust-region variant, but this latter is a little more reliable. We can deduce from Figure 6.13 that
the filter variant with SR1 update is the best solver, in terms of iteration count, on 74% of the
problems while the corresponding pure trust-region one is the best in more or less 58% of the
cases. For simplicity of presentation, we have truncated the horizontal axis in Figure 6.11, so
the right-hand side does not indicate the overall reliability. In fact, the pure-trust-region variant
solved 61 problems out of 65 against 60 for the filter variant.

(3)We have excluded problem VIBRBEAM because all variants do not report the same final objective function
value.

6.2 Numerical investigation 117

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter exact
TR exact
Filter SR1
TR SR1

Figure 6.12: CPU time performance profile with exact derivatives and SR1 updates

1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter SR1
TR SR1

Figure 6.13: Iteration performance profile with the second derivatives approximated by SR1
updating formulae

118 Chapter 6. Do approximate derivatives hurt filter methods?

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter SR1
TR SR1

Figure 6.14: CPU time performance profile with the second derivatives approximated by SR1
updating formulae

A closer look at the results shows that, with the SR1 update, the filter is more often reset
to the empty set than with exact derivatives(4) (while it obviously never happens with BFGS
techniques). Table 6.6 gives, for some problems, the iteration count (# iter) and the number
of times (# nfilt) the filter is thrown away(5) for variants with exact derivatives and with Hes-
sians computed by SR1 updating formulae. It suggests that the SR1 filter variant frequently
falls within a region where the updated model is detected to be nonconvex while this is not
necessarily the case of the true function. It can be observed that problems for which the filter
is very often emptied with SR1 updates also require a larger number of iterations than when
they are solved using exact derivatives. Then the ability of SR1 updating techniques to produce
nonconvex models may, for some cases, slow down the convergence of the filter-based method.

(4)Recall that the filter is reinitialized after each iteration giving sufficient decrease in the objective function f at
which the model mk was detected to be nonconvex.

(5)In fact, we count the number of times a negative curvature is encountered on successful iterations, it may
happen that an already empty filter has to be reinitialized.

6.2 Numerical investigation 119

exact SR1

Problem # iter # nfilt # iter # nfilt

AIRCRFTB 21 5 39 11
CUBE 31 0 166 18
DJTL 106 40 215 86
ENGVAL2 13 1 36 8
GROWTHLS 160 28 196 64
GULF 29 9 115 21
HEART8LS 98 53 381 98
OSBORNEA 22 2 128 26
OSBORNEB 16 5 141 30
ROSENBR 22 0 114 14
SNAIL 77 5 245 61
YFIT 42 1 635 19

Table 6.6: Number of iterations and number of times the filter is reinitialized

For the SR1 update, we have also considered to reinitialize the Hessian update at the same
time as the filter is reset to the empty set. We can see in Figure 6.15 that the variant with this
reinitialization is the best in iteration count on 75% of the problems while the variant with a
classical SR1 update is the best on 52% of them, and the pure trust-region one on 35% of the
cases. So this modification in the implementation of the SR1 updating technique improves the
efficiency of the filter variant.

BFGS versus SR1

To conclude this section on secant approximations, we show a comparison between filter
variants with BFGS or SR1 updating formulae. Both secant approximations are used with the
initial matrix set to the identity. Note, in Figure 6.16, that the variant with SR1 updates is
more efficient but the BFGS variant is more reliable. On the whole, the filter variant with SR1
updates is better (in terms of iteration count) than the one with BFGS approximations. But, for
some problems, like CUBE, DJTL, HAIRY, HATFLDD, OSBORNEA, OSBORNEB, ROSENBR or
SINEVAL, the SR1 filter variant requires lots of iterations and, furthermore, for these problems,
the number of times the filter is emptied is large. So the choice between BFGS or SR1 updates
is sometimes problem-dependent. For instance, the SR1 filter algorithmic variant is by far the
best for all PALMER* problems. Figure 6.17 illustrates the CPU time performance of both
variants.

120 Chapter 6. Do approximate derivatives hurt filter methods?

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter SR1
Filter SR1 with reinitilization
TR SR1

Figure 6.15: Iteration performance profile for filter variants with SR1 updating formulae with
reinitialization or not and for the trust-region variant with SR1 updates

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

BFGS
SR1

Figure 6.16: Iteration performance profile for the filter variant with BFGS or SR1 updates

6.2 Numerical investigation 121

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

BFGS
SR1

Figure 6.17: CPU time performance profile for the filter variant with BFGS or SR1 updates

6.2.3 Perturbation of the Hessian

We have also measured the effect of disturbing the exact Hessian matrices. We will examine
two types of perturbation: either we modify all elements of the matrix by a small constant or
only the diagonal elements. We have tried 10−4 and 10−6 as disturbance values. This sensitivity
analysis in terms of number of iterations is shown in Figure 6.18 for 10−4, where we have only
considered the filter variant with either exact or perturbed derivatives.

6.2.4 Comparison

We now present a comparison of the different filter variants. As the number of curves
would be very high in a performance profile, we prefer to display our comparison by using a
combined performance plot (see Gould et al. [67]), where each point consists of the average
iteration count and the average CPU time of each tested variant. Note that we only consider
problems for which all variants were successful. Therefore, Figure 6.19, which represents the
combined performance of all filter tested variants, does not give indication about the robustness
of the different variants.
Note that problem STRATEC, which is a logit model, has been weeded out when plotting Fig-

122 Chapter 6. Do approximate derivatives hurt filter methods?

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter
All + 10−4
Diagonal + 10−4

Figure 6.18: Iteration performance profile for the filter variant with exact and perturbed second
derivatives

ure 6.19 in order not to mislead the statistics. However, results for this problem will be presented
later.

10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

iterations

C
P

U
 ti

m
e

(s
)

exact
perturbation
finite differences in g
finite differences in f
BFGS
SR1

Figure 6.19: Combined performance of all filter variants

6.2 Numerical investigation 123

It can be clearly seen that the perturbed variants, examined in the previous section, are very
close to the variant with exact first and second derivatives. So the disturbance of the Hessian
matrix has not a large impact on the performance of the filter-trust-region algorithm.
One can observe that there are two main “clusters”. The first one contains the finite-difference
variants (with first derivatives available or not, with forward or central formulae, and with dif-
ferent stepsizes); as expected, the variants using these techniques are relatively close to the exact
variant in terms of number of iterations but are more computationally expensive. The second
cluster includes the secant approximation variants (BFGS and SR1 updates with different initial
matrices); these require more iterations but they are very competitive in terms of CPU time with
the version using exact derivatives.
As we have excluded problems for which at least one variant has failed, the plot in Figure 6.19
does not give overall information about performance of the variants. For example, BFGS up-
dates are not always better than SR1 ones in terms of iteration count as one may think when
observing Figure 6.19.

We now present more accurate results for problem STRATEC, which has 10 variables.
Again, we only consider the filter variant. As expected by the literature (see, for instance,
Bierlaire [9]), Quasi-Newton techniques work well for this kind of problems. It can be noticed
in Figure 6.20 that using a secant approximation to the second derivatives implies an important
increase of the number of iterations. However, computational time per iteration is drastically
reduced, while this measure of time is much higher for the finite-difference versions using gradi-
ent values. This is due to the fact that the evaluation of first derivatives is very expensive for this
problem. As implemented in the CUTEr distribution, the computation of the gradient is approx-
imately twenty times more expensive than the evaluation of the objective function. Globally, we
obtain a significant gain by using secant updates when the evaluations of the derivatives are too
expensive. Despite requiring more than 20 additional iterations and more than 80 respectively,
the SR1 and BFGS variants remain very competitive from a computational time point of view(6).

To conclude this practical study, we reproduce a last plot of some results obtained for prob-
lem HIELOW which is also a logit model like STRATEC. In Figure 6.21 we show the computa-
tional time per iteration for the variant with exact derivatives and for two variants with an SR1
update starting with a forward finite-difference approximation to the Hessian but one of them
considering the suggestion made in Section 6.2.2, that is the reinitialization of the Hessian each
time the filter is reset to the empty set.

(6)The SR1 update is performed with the initial matrix estimated by finite differences while the BFGS updating
formula is started with the identity.

124 Chapter 6. Do approximate derivatives hurt filter methods?

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

450

iterations

C
P

U
 ti

m
e

(s
)

exact
forward finite differences in g
central finite differences in g
finite differences in f
BFGS update
SR1 update

Figure 6.20: Comparison of computational time per iteration between exact and approximate
filter variants for problem STRATEC

0 2 4 6 8 10 12 14 16
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

iterations

C
P

U
 ti

m
e

(s
)

exact
SR1 update
SR1 update with reinitialization

Figure 6.21: Comparison of computational time per iteration between exact and approximate
Hessian by SR1 update with reinitialization or not for problem HIELOW

6.3 Conclusion 125

For this problem, the use of a classical SR1 update allows to reduce the computational
time per iteration, except for the first iteration where we have to estimate the Hessian by fi-
nite differences. While the SR1 update with the reinitialization requires less iterations than
the variant without this heuristic, it is more time-consuming because it requires some possible
finite-difference computations to reinitialize the Hessian. However, this variant remains less
expensive than that using exact derivatives. So, to avoid spending too much time in the compu-
tation of the second-order derivatives of such problems, it is generally cheaper to approximate
the Hessian using only first-order information (like with the SR1 updates).

6.3 Conclusion

We have presented in this chapter a practical study of the influence of approximate deriva-
tives on the filter-trust-region algorithm designed for unconstrained optimization. In view of
the numerical experiments carried out on small-scale problems, we can say that the filter-trust-
region algorithm does not suffer more than a classical trust-region method from the use of finite-
difference approximations to derivatives. But using finite differences to approximate derivatives
appears to be justifiable only if the price to perform differencing is slight, and this happens when
the cost of evaluating the objective function and its first-order derivatives is also small. As one
might expect, the use of exact derivatives in our filter-trust-region algorithm gives in general
significantly better results than approximations, both in terms of number of iterations and in
terms of total CPU time. So we would recommend our algorithm with exact derivatives when
these latter are available. However, for problems where the evaluation of derivatives is costly,
like, for instance, complex problems with large data sets, we would recommend a secant update
technique. However, in our test set, most problems do not have particularly complicated deriva-
tives, and the computation of the exact Hessian matrix is thus less expensive than performing a
secant update.

126 Chapter 6. Do approximate derivatives hurt filter methods?

Part II

Bound-Constrained Optimization

127

Chapter 7

A filter-trust-region method for
bound-constrained optimization

We now turn to the second particular type of nonlinear optimization problems investigated
in this dissertation, namely bound-constrained optimization problems. We propose a theoreti-
cal and practical extension of the filter-trust-region algorithm described in Chapter 4 for solving
nonlinear and possibly nonconvex optimization problems with simple bounds. The two main
ingredients of the method are a filter-trust-region algorithm and a gradient-projection method.
Note that the choice of a projection-type method is one of the possible ways to adapt this tech-
nique to bound-constrained optimization, but not the only one. We could, for example, use an
interior-point method to deal with bounds.

We will start this chapter with a section whose aim is to provide an introduction to simple-
bound-constrained optimization and to introduce some tools related to this particular class of
mathematical programs. We will describe our method in Section 7.2 while the global conver-
gence to first-order critical points is considered in Section 7.3. The numerical assessment of
the proposed method will be reported in Chapter 8. The algorithm described in this chapter as
well as its numerical performance analysis were first introduced in the paper of Sainvitu and
Toint [111].

7.1 Introduction to bound-constrained optimization

Having studied an algorithm for unconstrained optimization problems in the first part of
this work, we now consider the special case where the only constraints are restrictions on the

129

130 Chapter 7. A filter-trust-region method for bound-constrained optimization

variables. The mathematical program is the following

min f(x)

s.t. l ≤ x ≤ u,
(7.1)

where f is a twice continuously differentiable function of the variables x ∈ IRn and l and u rep-
resent lower and upper bounds on the variables. Note that any of these bounds may be infinite.
Without loss of generality, we assume that li < ui for all i = 1, . . . , n.

Bound-constrained optimization problems of the form (7.1) have an important role in the
design of computer codes for general constrained optimization problems. Indeed, many soft-
wares solve a general constrained mathematical program by finding solutions of a sequence
of bound-constrained problems (as seen in Section 2.4). Furthermore, unconstrained problems
should involve bounds to avoid bad effects due to computer arithmetic and many real-life prob-
lems include simple bounds. For example, it is common, in applications, that parameters which
describe physical quantities are constrained to lie in a given range.
Note that we have to make a distinction between soft bounds and hard bounds. These names
illustrate that hard bounds are to be necessarily satisfied, because, for instance, the objective
function can not be evaluated outside the feasible set, while soft bounds only express some
restrictions we want to impose on the values taken by the variables, but, in these cases, the
function is defined outside the feasible region determined by the soft bounds. When constraints
involving in the problem are hard ones, feasible-type approaches are to be used, like interior-
point methods, because the iterates remain in the interior of the feasible set. On the other hand,
treating problems subject to soft constraints is possible, for instance, by using penalty methods.
In this dissertation, we consider the bounds to be hard.

7.1.1 Optimality conditions

The set of points which satisfy the constraints in problem (7.1) is the feasible box and is
denoted by

Ω = {x ∈ IRn | l ≤ x ≤ u}. (7.2)

Any point belonging to this box is said to be feasible. An active constraint indicates here that a
variable lies on one of its bounds. The active set is then defined as the following set

A(x)
def
= {i | xi = li or xi = ui}. (7.3)

The optimality conditions presented in Section 2.2 are simplified in bound-constrained opti-
mization. The first-order necessary condition can be expressed as the following theorem.

7.1 Introduction to bound-constrained optimization 131

Theorem 7.1 (First-order necessary condition for a bound-constrained problem)
Suppose that x∗ is a local minimizer of problem (7.1) and f is continuously differentiable
in an open neighbourhood of x∗. Then, defining the binding set as

B(x∗)
def
=

{

i | x∗
i = li and

∂f(x∗)

∂xi
≥ 0

}

∪
{

i | x∗
i = ui and

∂f(x∗)

∂xi
≤ 0

}

,

we have
∂f(x∗)

∂xi
= 0, i 6∈ B(x∗).

The latter theorem essentially requires that all partial derivatives of f with respect to xi which
are not at their upper or lower bounds be zero, and those partial derivatives with respect to xi

which are at a bound must be larger than zero at the lower bound and less than zero at the upper
one.
Second-order sufficient conditions for x∗ to be a local minimizer of problem (7.1) are stated as
follows.

Theorem 7.2 (Second-order sufficient conditions for a bound-constrained problem)
Suppose that the first-order condition (7.1) holds and that, furthermore,

sT∇2
xxf(x∗)s > 0 for all vectors s, s 6= 0, si = 0 for i ∈ Bs(x

∗),

where Bs(x
∗) is known as the strictly binding set at x∗ and is defined as

Bs(x
∗)

def
= B(x∗) ∩

{

i

∣

∣

∣

∣

∂f(x∗)

∂xi
6= 0

}

.

Then x∗ is a local minimizer of problem (7.1).

Considering the set of indices of free variables (variables which are not at one of their
bounds), which is of the form

F(x)
def
= {i | li < xi < ui},

the restricted gradient and the restricted Hessian are, respectively, the gradient and the Hessian
of the objective function with respect to free variables, i.e. to xi (i ∈ F(x)). So algorithms
designed for the solution of box-constrained optimization problems typically perform by iden-

132 Chapter 7. A filter-trust-region method for bound-constrained optimization

tifying these free variables and then using unconstrained minimization methods described in
Section 2.3 to explore the corresponding “restricted” problem in order to drive the restricted
gradient to zero.

7.1.2 Gradient-projection method

Many algorithms developed for bound-constrained problems belong to the class of active-
set methods(1)(see Gill, Murray and Wright [57] or Fletcher [48] for more details). However,
one major criticism of classical active-set methods is that the working set changes very slowly
at each iteration. Such methods may thus require many iterations to converge on large-scale
problems. The gradient-projection method (see e.g. Conn et al. [28, 29], Lin and Moré [89],
Moré [94] and Moré and Toraldo [96]) is designed to allow rapid changes in the active set at
each iteration.

Given an iterate xk, naive gradient-projection methods (see, for example, Levitin and Polyak
[88], Conn et al. [34] or Nocedal and Wright [101]) search along the projected-gradient path or
the piecewise linear path defined as

xk(t)
def
= P [xk − t∇xf(xk)],

where t ≥ 0 and P [·] is the projection onto the feasible region. This path is the projection
of the steepest-descent direction onto the feasible region. Note that the projection P of any
vector x onto the feasible region is extremely easy to compute when the region is a box. So,
in presence of simple-bound constraints, the projection operator, denoted by P [·, l, u], can be
defined componentwise by

P [x, l, u]i
def
=

li if xi ≤ li,

xi if li < xi < ui,

ui if ui ≤ xi.

(7.4)

A projected-gradient path is illustrated in Figure 7.1 by the bold line.

A new point
xk+1 = P [xk − tk∇xf(xk), l, u]

is obtained when an appropriate tk > 0 is found. The gradient-projection algorithm ensures that
the active set at a solution is determined in a finite number of iterations (see Bertsekas [7]). Once
the active set is identified, this method reduces to the simple steepest-descent method on the

(1)Basic ideas of active-set methods have been described in Section 2.4.3 for sequential quadratic programming.

7.1 Introduction to bound-constrained optimization 133

PSfrag replacements

xk − t∇xf(xk)

xk

∇xf(xk)

xk(t)

Figure 7.1: A projected-gradient path xk(t) in IR3

subspace of free variables. Because of the poor rate of convergence of this latter technique, the
gradient-projection method described above is usually combined with other algorithms having
faster rate of convergence (see Section 7.2.1).

The globalization technique presented in Section 2.3.3, namely the trust region, can also be
extended to bound-constrained optimization problems. Within a trust-region scheme, the trial
step sk is now computed by (possibly only approximately) solving the following trust-region
subproblem

min mk(xk + s)

s.t. ‖s‖ ≤ ∆k

l ≤ xk + s ≤ u,

where ‖ · ‖ is a suitably chosen norm and mk(xk + s) is defined in (2.17). We will describe this
approach in detail in the following section.

Note that it is possible to use interior-point methods as an alternative to gradient-projection
methods for solving bound-constrained optimization problems.

There are several robust and efficient softwares available for the bound-constrained opti-
mization. LANCELOT (Conn, Gould and Toint [33]) is a gradient-projection method in a trust-
region framework and combined with a conjugate-gradient algorithm to accelerate the conver-

134 Chapter 7. A filter-trust-region method for bound-constrained optimization

gence. TRON developed by Lin and Moré [89] is a trust-region Newton method; it also uses
a gradient-projection method combined with a preconditioned conjugate-gradient method. The
LBFGS-B software (see Zhu et al. [131]) is a limited-memory Quasi-Newton code for large-
scale bound-constrained or unconstrained optimization and uses a line-search technique. Other
reliable codes, as IPOPT, KNITRO and LOQO, can also solve bound-constrained problems.

7.2 The new algorithm

In this section we present a new filter-trust-region algorithm for the solution of optimization
problems subject to simple bounds. To this end, we need to define some concepts.
The “projected” gradient of the objective function f onto the feasible box (7.2) is defined by

ḡ(x)
def
= x − P [x −∇xf(x), l, u], (7.5)

where the operator P [·, l, u] is defined in (7.4). This projected gradient can be used to charac-
terize first-order critical points; a point x∗ ∈ Ω is a first-order critical point for problem (7.1) if
and only if

ḡ(x∗) = 0. (7.6)

In what follows, we will use the following first-order criticality measure of the kth iterate

π(k, xk) = π(xk)
def
= ‖xk − P [xk −∇xf(xk), l, u]‖∞ = ‖ḡ(xk)‖∞ (7.7)

(see e.g. Conn, Gould and Toint [34, Chapter 8] and [28]). The nonnegative real function de-
fined in (7.7) is a criticality measure because of its continuity (see Section 2.2.1).

In this second part of the dissertation, we propose a extension of the filter-trust-region algo-
rithm presented in Chapter 4 to cover the bound-constrained case. The major ingredients of the
proposed algorithm are :

• a trust-region framework (see Section 2.3.3);

• a multidimensional filter technique (see Section 4.1.2);

• a gradient-projection method (see Section 7.1).

In the context of bound-constrained optimization, the optimality condition (7.6) suggests that
an iterative method for solving the problem (7.1) must drive the projected gradient ḡ(xk) to

7.2 The new algorithm 135

zero for some sequence of feasible xk’s. Therefore, the aim of the filter here is to encourage
convergence to first-order critical points by driving every component of the projected gradient

ḡ(x) = (ḡ1(x), ḡ2(x), . . . , ḡn(x))T

to zero. So each entry of the multidimensional filter is a component of ḡ(x). A filter is repre-
sented in Figure 7.2 for a two-dimensional setup, i.e. x ∈ IR2.

PSfrag replacements

ḡ1(x)

ḡ2(x)

0

Figure 7.2: A filter for a bound-constrained problem in IR2

7.2.1 Computing a trial point

The focus of this section is to describe how to compute the trial point

x+
k = xk + sk

from a current feasible iterate xk. We now use the `∞-norm to define the trust region

Bk = {xk + s | ‖s‖∞ ≤ ∆k}.

136 Chapter 7. A filter-trust-region method for bound-constrained optimization

A trial step sk is then computed by finding an approximation to the solution of the following
trust-region subproblem

minimize mk(xk + s)

subject to l − xk ≤ s ≤ u − xk

‖s‖∞ ≤ ∆k.

(7.8)

As suggested in Section 7.1, solving this subproblem could be achieved by using a gradient-
projection method to identify the set of active bounds, A(x), followed by a minimization of
the quadratic model over the subspace of remaining free variables (i.e. xi such that i 6∈ A(x)).
The geometry of the “box” shapes of the `∞-norm and of the simple bounds may be simply
exploited. We can rewrite the bounds in (7.8) by the following “box” constraints

lk,i
def
= max (li − xk,i,−∆k) ≤ si ≤ min (ui − xk,i, ∆k)

def
= uk,i ∀ i = 1, . . . , n. (7.9)

As for our filter-trust-region algorithm for unconstrained optimization, we do not require the
step to lie within the trust region at every iteration of our algorithm.

At each iteration, the solution of the trust-region subproblem (7.8) is thus achieved in two
stages. At the first one, we use the gradient-projection method to compute the Generalized
Cauchy Point (GCP) (or only an approximation to it), denoted by xC

k . As it is common in
trust-region methods [34, Chapter 6 and 8], the convergence analysis of Section 7.3 requires
that the step provides, at every iteration k, a sufficient decrease on the model of the objective
function. So we need to find a feasible point that gives as much reduction in the model mk as
the generalized Cauchy point, that is

mk(xk) − mk(xk + sk) ≥ κmdcπk min

[

πk

βk
, ∆k

]

, (7.10)

where κmdc is a constant in (0, 1), πk
def
= π(xk) and

βk
def
= 1 + ‖Hk‖. (7.11)

In order to compute the generalized Cauchy point (see Conn, Gould and Toint [29], Moré [94]
or Toint [120]), we consider the generalization of the Cauchy arc xC

k (t) (2.21)

xC
k (t)

def
= {x | x = P [xk − tgk, lk, uk], t ≥ 0},

where gk
def
= g(xk) = ∇xf(xk). Note that this definition depends on the trust-region boundary

because of (7.9). The scalar tk that determines the GCP xC
k is chosen so that the Cauchy step

sC
k = xC

k − xk

7.2 The new algorithm 137

produces a sufficient reduction of the objective model. The generalized Cauchy point xC
k is then

defined as the first local minimizer of the univariate, piecewise quadratic function

mk(x
C
k (t)), for t ≥ 0,

that is the first local minimizer of the model of the objective function along the Cauchy arc
xC

k (t), which is is continuous and piecewise linear. The generalized Cauchy point is thus com-
puted by investigating the model behaviour between successive pairs of breakpoints, that are
points at which a bound is encountered along the Cauchy arc, until the model starts to rise. So
further progress along the boundary of the trust region is thus only possible if the model con-
tinues to reduce. The variables which lie on one of their bounds at the GCP are fixed thereafter.
This process to calculate the GCP allows to add and drop many bounds from the active set de-
fined in (7.3) at each iteration, which can be important for large-scale problems.
There are efficient numerical algorithms for the computation of the generalized Cauchy point
which ensure that the model reduction (7.10) is satisfied. We refer the reader to Conn, Gould
and Toint [29] and [34, Section 17.3] or Nocedal and Wright [101, Section 16.6] for a detailed
description of an algorithm for finding the GCP. Lin and Moré [89] have considered to compute
an approximation to the generalized Cauchy point, which is sufficient to ensure convergence.

However, this choice for the step may lead to slow convergence, as the method simply re-
duces to a version of the steepest-descent method. A further reduction of the quadratic model
mk, beyond that guaranteed by the generalized Cauchy point, is often desirable if fast conver-
gence is sought. Therefore, at the second stage of the step computation, attempts are made to
further reduce the quadratic model mk by modifying the values of the remaining free variables,
that is, those which are not fixed at one of their bounds at the end of the GCP computation. This
could be achieved, for instance, by applying a conjugate-gradient algorithm (see Section 2.3.4),
starting from the generalized Cauchy point, to the subproblem (7.8) with the additional restric-
tion that the variables fixed at the GCP remain fixed throughout the process (see Andretta et
al. [1], Conn et al. [29, 34], Dostál [44] or Lin and Moré [89]). This conjugate-gradient process
is stopped if one of the following occurrences happens :

• the norm of the restricted gradient of the quadratic model with respect to the variables
which are not fixed at the generalized Cauchy point, denoted by (∇xmk(xk + s)) free , falls
below some user-defined tolerance, that is

‖(∇xmk(xk + s)) free ‖ ≤ εk,

where some value for εk will be given in Section 8.2;

• some fixed maximum number of conjugate-gradient iterations is exceeded;

138 Chapter 7. A filter-trust-region method for bound-constrained optimization

• at least one of the remaining free variables violates one of the bounds defined in (7.9).

Note that, in the latter case, if the bound encountered is a problem bound and not a trust-region
one, we continue the minimization of the model; otherwise, the process is terminated at the
point where the boundary is encountered. Our strategy is the following : if a free variable
has encountered a true bound of the problem, this offending variable is fixed to the bound and
we restart the conjugate-gradient algorithm. We have decided to stop the conjugate-gradient
method when a trust-region bound is encountered because we do not want to spend additional
time to find a better solution on this trust-region boundary as it is an artificial bound and not a
real bound of the problem.

To summarize, each iteration of the above-described technique used to solve the subproblem
consists of choosing a face by the gradient-projection method before exploring that face by the
conjugate-gradient algorithm. As already said, the advantage of this kind of methods is that
the working set is allowed to change rapidly from one iteration to another, which is especially
important for large-scale optimization problems.

7.2.2 The multidimensional filter

By contrast to traditional trust-region algorithms, we use, as in our algorithm for uncon-
strained problems, a filter mechanism to assess the suitability of the trial point x+

k . Our strategy
is inspired by that of Chapter 4: we decide that a trial point x+

k is acceptable for the filter F if
and only if

∀ ḡ` ∈ F ∃ j ∈ {1, . . . , n} such that |ḡj(x
+
k)| < |ḡ`,j| − γḡ‖ḡ`‖, (7.12)

where γḡ ∈ (0, 1/
√

n) is a small positive constant and where ḡ`,j
def
= ḡj(x`). We then say that

x+
k is not dominated by x`. If an iterate xk is acceptable in the sense of (7.12), we may wish

to add it to the multidimensional filter, which is a list of n-tuples of the form (ḡk,1, . . . , ḡk,n),
such that none of the corresponding iterates is dominated by any other. We also remove from
the filter every ḡ` ∈ F such that |ḡ`,j| ≥ |ḡk,j| for all j ∈ {1, . . . , n}. We refer the reader to
Chapter 4 and the mechanisms described therein for further details.

Again the above-described mechanism is adequate for convex problems because the fact
that

ḡ(x∗) = 0 and then π(x∗) = 0

is both necessary and sufficient for second-order criticality. However, it may be inappropriate
for nonconvex problems for which an increase in the projected gradient components is desirable.

7.2 The new algorithm 139

Therefore, as in Chapter 4, we modify the filter mechanism to ensure that the filter is reset to
the empty set after each iteration giving sufficient descent on the objective function (in the
sense of (7.10)) at which the model mk was discovered to be nonconvex, and we again set an
upper bound on the acceptable objective function values in order to guarantee that the obtained
decrease is permanent.

7.2.3 The filter-trust-region algorithm

We are now in a position to summarize these ideas into a complete algorithm, where the
main goal of the filter is to ensure the convergence when convexity is present and where we
resort to a classical trust-region algorithm if negative curvature is encountered during the reso-
lution of the subproblem (7.8) or if things do not go well.

A more detailed setup for our algorithm is given hereunder :

Algorithm 7.1: Filter-Trust-Region Algorithm for bound-constrained optimization

Step 0 : Initialization. Let be given an initial point x0 ∈ Ω and an initial trust-region
radius ∆0 > 0. The constants γḡ ∈ (0, 1/

√
n), η1, η2, γ1, γ2 and γ3 are also given and

satisfy
0 < η1 ≤ η2 < 1 and 0 < γ1 ≤ γ2 < 1 ≤ γ3.

Compute f(x0) and ḡ(x0), set k = 0. Initialize the filter F to the empty set and
choose fsup ≥ f(x0). Define two flags RESTRICT and NONCONVEX, the former to
be unset.

Step 1: Determine a trial step. Compute a finite step sk such that xk + sk ∈ Ω, that
“sufficiently reduces” the model mk, i.e. that satisfies (7.10), and that also satis-
fies ‖sk‖∞ ≤ ∆k if RESTRICT is set or if mk is nonconvex. In the latter case, set
NONCONVEX; otherwise unset it. Compute the trial point x+

k = xk + sk.

Step 2: Compute f(x+
k) and define the following ratio

ρk =
f(xk) − f(x+

k)

mk(xk) − mk(x
+
k)

·

If f(x+
k) ≥ fsup, set xk+1 = xk, set RESTRICT and go to Step 4.

140 Chapter 7. A filter-trust-region method for bound-constrained optimization

Step 3: Tests to accept the trial step.

• Compute ḡ+
k = ḡ(x+

k).

• If x+
k is acceptable for the filter F and NONCONVEX is unset:

Set xk+1 = x+
k , unset RESTRICT and add ḡ+

k to the filter F if either ρk < η1 or
‖sk‖∞ > ∆k.

• If x+
k is not acceptable for the filter F or NONCONVEX is set:

If ρk ≥ η1 and ‖sk‖∞ ≤ ∆k, then

set xk+1 = x+
k , unset RESTRICT and if NONCONVEX is set, set fsup =

f(xk+1) and reinitialize the filter F to the empty set;

else set xk+1 = xk and set RESTRICT.

Step 4: Update the trust-region radius. If ‖sk‖∞ ≤ ∆k, update the trust-region radius
by choosing

∆k+1 ∈

[γ1∆k, γ2∆k] if ρk < η1,

[γ2∆k, ∆k] if ρk ∈ [η1, η2),

[∆k, γ3∆k] if ρk ≥ η2;

(7.13)

otherwise, set ∆k+1 = ∆k. Increment k by one and go to Step 1.

As it stands, the algorithm lacks formal stopping criteria. In practice, we obviously stop
the calculation if the infinity norm of the projected gradient (7.7) falls below some user-defined
tolerance and the flag NONCONVEX is unset; or if some fixed maximum number of iterations is
exceeded. More details about the practical aspects of the implementation of this algorithm can
be found in Section 8.2.

7.3 Global convergence to first-order critical points

This section is devoted to the convergence analysis of Algorithm 7.1. We will establish
that at least one limit point x∗ of the sequence {xk} generated by Algorithm 7.1 is a first-order
critical point for problem (7.1). The theoretical results from this section are mostly derived from
results known for general trust-region methods [34, Chapter 6] and from those of Section 4.2.
We will devote this section to a discussion of the modifications of the convergence analysis of
Section 4.2 that are required to cover the bound constrained case, using notably the equivalence
between the `2- and `∞-norms.

7.3 Global convergence to first-order critical points 141

Firstly, we need to make the following assumptions, which are very similar to those es-
tablished for the convergence analysis of basic trust-region methods (see Conn, Gould and
Toint [34, Chapter 6]) and to those stated in the unconstrained case (see Section 4.2.2).

A1 The objective function f is twice continuously differentiable on IRn.

A2 The iterates xk remain in a closed, bounded domain of IRn.

A3 For all k, the model mk(x) is twice differentiable on IRn and has a uniformly bounded
Hessian.

The combination of these assumptions again implies that there exist constants κl, κu ≥ κl,
κufh ≥ 1 and κumh ≥ 1 such that

f(x) ∈ [κl, κu], ‖∇2
xxf(x)‖ ≤ κufh and ‖∇2

xxmk(x)‖ ≤ κumh − 1 (7.14)

for all k and all x in the convex hull of {xk}. And again we have that

βk ≤ κumh (7.15)

for all k.
We also restate the sufficient decrease on the model mk given in (7.10) in the following assump-
tion :

A4 For all k,

mk(xk) − mk(xk + sk) ≥ κmdcπk min

[

πk

βk
, ∆k

]

,

where κmdc ∈ (0, 1), πk
def
= π(xk) and βk is defined in (7.11).

In what follows, we shall use the same notations and definitions for the set S,D and N as
those of Section 4.2.1, but now the set of filter iterations is given by

A = {k | ḡ+
k is added to the filter }.

Observe that A ⊆ S, i.e. that ḡ+
k is included into the filter only at successful iterations. We also

have that the mechanism of our algorithm imposes that

S ∩ N = D ∩N . (7.16)

With these definitions, we should derive Lemma 4.1 exactly in the same manner.

142 Chapter 7. A filter-trust-region method for bound-constrained optimization

We start our convergence analysis to first-order critical points by proving that, as long as a
first-order critical point is not approached, we do not have infinitely many successful nonconvex
iterations in the course of the algorithm, i.e. the set S ∩N is always finite. Firstly, we recall two
results from Conn, Gould and Toint [34] in order to show that the trust-region radius is bounded
away from zero.

The following lemma is the same as Lemma 4.2 except that we now consider a trust region
defined by the infinity norm.

Lemma 7.3 Suppose that A1-A3 hold and that ‖sk‖∞ ≤ ∆k. Then we have that

|f(xk + sk) − mk(xk + sk)| ≤ κubh∆
2
k, (7.17)

where xk + sk ∈ Bk and
κubh

def
= n max[κufh, κumh]. (7.18)

Proof. The proof is inspired by [34, Theorem 6.4.1] but, in our context, we need to
make the additional assumption that ‖sk‖∞ ≤ ∆k explicit (instead of being implicit, in
this reference, in the definition of a trust-region step) and we have to use the equivalence
between the `2- and `∞-norms. 2

We next show that the trust-region radius must increase if the current iterate is not first-order
critical and the trust-region radius is small enough.

Lemma 7.4 Suppose that A1-A4 hold and that ‖sk‖∞ ≤ ∆k. Suppose furthermore that
ḡk 6= 0 and that

∆k ≤ κmdcπk(1 − η2)

κubh

· (7.19)

Then we have that ρk ≥ η2 and
∆k+1 ≥ ∆k. (7.20)

Proof. The proof is the same as for Theorem 6.4.2 in [34] when ‖sk‖∞ ≤ ∆k except that
we now have to replace ‖gk‖ by the criticality measure πk and that we use A4 instead of the
model decrease defined in [34, Chapter 6]. The idea of the proof is to show that, as long as
the current iterate is not a first-order critical point, and that the radius satisfies (7.19), the

7.3 Global convergence to first-order critical points 143

iteration must be very successful, and the trust-region radius is enlarged according to (7.13).
2

Consequently, we may now obtain that the trust-region radius cannot become arbitrarily
small if the iterates stay away from first-order critical points.

Lemma 7.5 Suppose that A1-A4 hold and that there exists a constant κlbg > 0 such that
πk ≥ κlbg for all k. Then there is a constant κlbd > 0 such that

∆k ≥ κlbd (7.21)

for all k.

Proof. The proof is by contradiction and uses Lemma 7.4. It is identical to that of
Lemma 4.4 except that we use the `∞-norm of the step instead of the `2-norm and that
we now have to replace ‖gk‖ by the criticality measure πk. 2

We now state the essential result that the number of successful nonconvex iterations must
be finite unless a first-order critical point is approached.

Theorem 7.6 Suppose that A1-A4 hold and that there exists a constant κlbg > 0 such that
πk ≥ κlbg for all k. Then there can only be finitely many successful nonconvex iterations in
the course of the algorithm, i.e.

|S ∩ N | < +∞.

Proof. The proof is inspired by Theorem 4.5 except that ‖gk‖ is replaced by πk and we
now use condition (7.10) on the model reduction. 2

We now establish the criticality of the limit point of the sequence of iterates when there are
only finitely many successful iterations.

144 Chapter 7. A filter-trust-region method for bound-constrained optimization

Theorem 7.7 Suppose that A1-A4 hold and that there are only finitely many successful
iterations, i.e. |S| < +∞. Then xk = x∗ for all sufficiently large k, and x∗ is first-order
critical, i.e.

π(x∗) = 0.

Proof. The proof is identical to that of Theorem 4.6 except that we have to replace ‖gk‖
by the criticality measure πk and that we use the `∞-norm of the step instead of the `2-norm.
2

We restrict our attention, for the remainder of this section, to the case where there are in-
finitely many successful iterations, i.e. |S| = +∞. We start by investigating what happens if
the filter is updated an infinite number of times in the course of the algorithm, i.e. |A| = +∞.

Theorem 7.8 Suppose that A1-A4 hold and that |A| = |S| = +∞. Then

lim inf
k→∞

πk = 0. (7.22)

In other words, there exists a limit point x∗ of the sequence {xk} generated by Algo-
rithm 7.1 which is a first-order critical point for problem (7.1).

Proof. The proof is the same as for Theorem 4.7 except that ‖gk‖ is replaced by πk and
that we use the new filter acceptance definition (7.12). The proof is by contradiction. We
suppose that, for all k large enough, πk ≥ κlbg for some κlbg > 0. Theorem 7.6 implies that
the filter is no longer reset to the empty set for k sufficiently large. By using the filter test
acceptance mechanism and our initial assumption, we can derive a contradiction exactly as
in Theorem 4.7. 2

Consider now the case where the number of iterates added to the filter in the course of the
algorithm is finite, that is |A| < +∞.

Theorem 7.9 Suppose that A1-A4 hold and that |S| = +∞ but |A| < +∞. Then (7.22)
holds.

7.4 Conclusion 145

Proof. Again the proof is identical to that of Theorem 4.8. 2

The preceeding two results show that at least one of the limit points of the sequence of
iterates generated by Algorithm 7.1 satisfies the first-order necessary condition. However, as in
Chapter 4 (cfr counter-example of Section 4.2.3), this result cannot be improved to obtain that
all limit points are first-order critical, that is

lim
k→∞

πk = 0,

without an important modification of our algorithm (see the discussion at the end of Sec-
tion 4.2.3).

7.4 Conclusion

In this chapter, we have proposed an algorithm for the minimization of simple-bound-
constrained optimization problems. The underlying idea of this algorithm is to combine three
tools of nonlinear programming, namely trust regions, gradient-projection methods and filter
techniques. We have shown that, under standard assumptions, it produces at least a first-order
critical point, irrespective of the chosen starting point. For the second-order convergence anal-
ysis, difficulties are expected since one knows that possibly only one limit point is first-order
critical. We can hope that, under the additional assumption that there is only one limit point,
we should derive properties about the optimal active-set identification since this identification
is mostly a geometric consequence of convergence and of using the generalized Cauchy point.
But, in the current state of the work, we have not been able to produce a theory for the iden-
tification of the optimal active set and thus for the second-order convergence. This does not
seem straightforward and this work remains to be done. However, it does not seem to affect the
numerical results of our algorithm, which will be discussed in the next chapter.

146 Chapter 7. A filter-trust-region method for bound-constrained optimization

Chapter 8

Numerical results

We conclude this part on bound-constrained optimization with the numerical assessment of
the filter-trust-region algorithm described in the previous chapter. In order to investigate the
behaviour of our algorithm, we have tested our implementation, named FILTBOUND (FILter
Trust-region algorithm for BOUND-constrained optimization), on a set of test problems from
the CUTEr collection. Some practical aspects of the implementation will be the subject of
Section 8.2. Some algorithmic variants will be discussed in Section 8.3 and, as in Chapter 5,
our code will be compared with the software LANCELOT-B, the latter having been introduced
in Section 5.4.3. We will end the chapter with a short conclusion on the numerical experience.

8.1 Testing environment

From a practical point of view, we again use the CUTEr collection [69] to perform our
numerical experiments. We have selected from this test set problems sharing the following
characteristics (where * means “anything goes”) :

Objective function type : *

Constraints type : B (bounds only)

Regularity : R (regularity)

Degree of available derivatives : 2 (analytical second derivatives)

Problem interest : *

Explicit internal variables : *

Number of variables : *

Number of constraints : *

Table 8.1: The problem selection

147

148 Chapter 8. Numerical results

These requirements lead to a list of 109 simple-bound constrained problems(1). We did not
consider problems whose only constraints are fixed variables because these problems can be
efficiently solved by FILTRUNC (see Chapter 5). Problem names and dimensions are given
in Table 8.3. Since a variable can be fixed (i.e. its upper and lower bounds are equal, and
therefore the variable is not allowed to change), we consider the dimension of a problem as the
number of variables minus the number of fixed ones. The size of the problems lies between 1
and 11130. Table 8.2 gives the dimension distribution for the bound-constrained problems we
have selected.

of free # of problems
variables from the CUTEr set

1 ≤ n ≤ 9 54
10 ≤ n ≤ 99 5

100 ≤ n ≤ 999 5
1000 ≤ n ≤ 9999 38

10000 ≤ n ≤ 20000 5

Table 8.2: The distribution of box-constrained problem dimension in the CUTEr collection

All tests presented in this chapter were performed in double precision on a workstation with
a 3.2 GHz Pentium IV biprocessor and 2 Gbytes of memory under Suse Professional 9.0 Linux
and the Lahey Fortran compiler (version L6.10a) with default options. We have limited all
attempts to solve the test problems to a maximum of 1000 iterations or 1 hour of CPU time.
Again the variability of CPU times for small times is taken into account by repeatedly solving
the same problem until a threshold of ten seconds is exceeded and then taking the average time
per run.

8.2 Practical aspects

In this section, we give a brief outline of implementation aspects of our filter-trust-region
algorithm for box-constrained problems. We focus on discussing the choices for the different
parameters involved in Algorithm 7.1, the computation of the trial step and some other algorith-
mic considerations. Some comments given in Section 5.3 are always valid in this context and
are therefore not repeated here.

(1)Two problems, namely CHARDIS0 and HARKERP2, were removed because they could not be run within the
memory limits of the testing machine by any of the codes.

8.2 Practical aspects 149

Problem n Problem n Problem n

3PK 30 JNLBRNGB 9604 PALMER5B 9
ALLINIT 3 LINVERSE 1999 PALMER5D 8
BDEXP 5000 LOGROS 2 PALMER5E 8
BIGGSB1 5000 MAXLIKA 8 PALMER6A 6
BQP1VAR 1 MCCORMCK 5000 PALMER6E 8
BQPGABIM 46 MDHOLE 2 PALMER7A 6
BQPGASIM 50 MINSURFO 5002 PALMER7E 8
BQPGAUSS 2003 NCVXBQP1 10000 PALMER8A 6
CAMEL6 2 NCVXBQP2 10000 PALMER8E 8
CHEBYQAD 100 NCVXBQP3 10000 PENTDI 5000
CHENHARK 5000 NOBNDTOR 5184 PROBPENL 500
CVXBQP1 10000 NONSCOMP 5000 PSPDOC 4
DECONVB 61 OBSTCLAE 9604 QR3DLS 610
EG1 3 OBSTCLAL 9604 QRTQUAD 5000
EXPLIN 1200 OBSTCLBL 9604 QUDLIN 5000
EXPLIN2 1200 OBSTCLBM 9604 S368 8
EXPQUAD 1200 OBSTCLBU 9604 SCOND1LS 5000
HADAMALS 380 OSLBQP 8 SIM2BQP 1
HART6 6 ODNAMUR 11130 SIMBQP 2
HATFLDA 4 PALMER1 4 SINEALI 1000
HATFLDB 4 PALMER1A 6 SPECAN 9
HATFLDC 25 PALMER1B 4 TORSION1 5184
HIMMELP1 2 PALMER1E 8 TORSION2 5184
HS1 2 PALMER2 4 TORSION3 5184
HS110 200 PALMER2A 6 TORSION4 5184
HS2 2 PALMER2B 4 TORSION5 5184
HS25 3 PALMER2E 8 TORSION6 5184
HS3 2 PALMER3 4 TORSIONA 5184
HS38 4 PALMER3A 6 TORSIONB 5184
HS3MOD 2 PALMER3B 4 TORSIONC 5184
HS4 2 PALMER3E 8 TORSIOND 5184
HS45 5 PALMER4 4 TORSIONE 5184
HS5 2 PALMER4A 6 TORSIONF 5184
JNLBRNG1 9604 PALMER4B 4 WEEDS 3
JNLBRNG2 9604 PALMER4E 8 YFIT 3
JNLBRNGA 9604 PALMER5A 8

Table 8.3: The test problems and their dimension

150 Chapter 8. Numerical results

First of all, note that we always use the starting point supplied with the problem in the
CUTEr collection. However, if this initial point is not feasible, we project it onto the feasible
box (7.2). For the initial trust-region radius, we have chosen ∆0 = 1. The values of the
parameters involved in Algorithm 7.1 used in our implementation are

γ1 = 0.0625, γ2 = 0.25, γ3 = 2.0, η1 = 0.01, η2 = 0.9,

and

γḡ = min

[

0.001,
1

2
√

n

]

.

We also choose
fsup = min(106|f(x0)|, f(x0) + 1000)

at Step 0 of the algorithm.

At each iteration of our code, the trial point is computed by approximately minimizing the
subproblem (7.8). As explained in Section 7.2.1, this computation is accomplished in a two-
stage approach: first, we use the gradient-projection method to identify variables that will be
fixed at their bounds; then the quadratic model of the objective function is further reduced with
respect to the free variables by using a conjugate-gradient algorithm. This iterative method is
terminated at the first s for which

‖(∇mk(xk + s)) free ‖∞ ≤ min [0.1, max(
√

εM , ‖ ḡ(xk)‖∞)] ‖ḡ(xk)‖∞,

where (∇mk(xk + s)) free denotes the restricted gradient of the quadratic model with respect to
the remaining free variables(2) at the beginning of the conjugate-gradient iteration and εM is the
machine precision.
Note that, if the step is not restricted to the trust region, we find the GCP without the trust-region
bounds but with the real bounds of the problem and then we run the conjugate-gradient algo-
rithm (again without the trust region). Practically, when the step is unrestricted, the algorithm
is run with a huge trust-region radius.

If negative curvature is discovered for the model on an unrestricted step or if the computed
trial point is unsuccessful, then the step should be recomputed with a (smaller) restriction on its
length. In this case, if the distance from the current point to the previously computed general-
ized Cauchy point lies within the new box defined by the problem bounds and the trust-region
radius, the GCP may be reused.

(2)Recall that the remaining free variables are those which are not fixed at the generalized Cauchy point.

8.3 Performance and comparisons 151

As in the chapter devoted to the numerical assessment of FILTRUNC (Chapter 5), we have
tested two particular variants of our code FILTBOUND. The first one, named filter, is the al-
gorithm as described in Section 7.2.3, where exact first and second derivatives are used. For
this variant, we have considered unsigned filter entries, that is, we use the values of the ḡ(xk)

themselves, instead of their absolute values, in the filter test acceptance mechanism (7.12). We
will present in Section 8.3.3 results for a variant with signed filter entries.

Based on practical experience presented in Gould and Toint [76], we also impose that

‖sk‖∞ ≤ 1000 ∆k

at all iterations following the first one at which a restricted step is taken. Moreover, dominated
filter points are always removed from the filter in our tests (see Section 5.3 for more explana-
tions).

The second algorithmic variant is the pure trust-region one, that is the same algorithm with
the exception that trial points are never acceptable for the filter and the flag RESTRICT is al-
ways set. This variant is therefore analogous to a classical trust-region method.

Finally, every run of the algorithm is terminated if the infinity norm of the projected gradient
falls below some tolerance, i.e, if

‖ḡ(xk)‖∞ ≤ 10−6, (8.1)

and the flag NONCONVEX is unset. As discussed at the end of Section 5.3, it could happen that
the filter variant stops at a point where the norm of the projected gradient is sufficiently small
but with undetected negative curvature. However, we believe that, in practice, the likelihood of
this situation is very small.

8.3 Performance and comparisons

This section is intended to present details of the numerical results obtained with the imple-
mentation of our algorithm for bound-constrained optimization. We will present a comparison
of some algorithmic variants of our code and also a comparison with LANCELOT-B. All nu-
merical results presented in this section will be compared by means of performance profiles
(see Section 5.2) with the number of iterations, the number of conjugate-gradient iterations or
the total CPU time as performance measures.

152 Chapter 8. Numerical results

8.3.1 Filter versus pure trust-region variants

We first compare the two main algorithmic variants of FILTBOUND, namely the filter and
the pure trust-region ones, both described in Section 8.2.

In order to produce the performance profiles given in this section, we have excluded four
problems from the 107 box-constrained problems. We have first removed HS25 from the test
set because the starting point supplied in the SIF file is already a stationary point. Three other
problems have also been taken away because both variants did not report the same final objec-
tive function value for them. For problem MAXLIKA, the filter variant converges in 8 iterations
towards a point x∗ at which the objective function equals to 1149.3 while the pure trust-region
one stopped at a point x∗ satisfying f(x∗) = 1136.3 in 29 iterations. The other two problems
are : PALMER3 that stopped at f(x∗) = 2417 for the filter variant and at f(x∗) = 2266 for the
pure trust-region one, and PALMER4 that stopped at f(x∗) = 2424 for the filter variant and at
f(x∗) = 2285.4 for the pure trust-region one(3). The fact that filter and pure trust-region variants
stop at different solutions is probably due to ill-conditioning.

We first examine the reliability of both variants. The filter variant is just marginally more
robust than the pure trust-region one. Indeed, on the 107 problems, the filter variant success-
fully solve 101 problems and the pure trust-region one 100. Having excluded the three above-
mentioned problems, both variants report the same final objective function value for problems
where they both succeed. Appendix B presents, for the filter and the pure trust-region variants
of FILTBOUND, the details of the runs for problems listed in Table 8.3, in particular the num-
ber of iterations and conjugate-gradient iterations, the CPU time and the final objective function
value. Both variants fail on BIGGSB1, PALMER5A, PALMER7A, QRTQUAD and SCOND1LS
because the maximum number of iterations has been reached before convergence is declared.
The filter variant also fails, for the same reason, on MINSURFO, and the pure trust-region al-
gorithm stalls on PALMER5B and PALMER5E. Furthermore, the pure trust-region variant is
unable, for some problems, to reduce the infinity norm of the projected gradient sufficiently to
meet the stopping criterion (8.1) even though the objective function value obtained is very close
to the problem solution. These problems are : EXPLIN that stopped with ‖ḡ(xk)‖∞ = 1.686E-
03; EXPQUAD that stopped with ‖ḡ(xk)‖∞ = 1.453E-02 and PALMER1A that stopped with
‖ḡ(xk)‖∞ = 3.035E-06. However, these occurrences have been counted as successful in the
performance analysis presented below.

Figures 8.1, 8.2, and 8.3 illustrate the performance profiles (for both variants) for the number
of iterations, the total CPU time, and the number of conjugate-gradient iterations, respectively.

(3)For these two problems, the filter variant stops at the same solution than LANCELOT-B.

8.3 Performance and comparisons 153

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter
Pure trust region

Figure 8.1: Iteration performance profile

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter
Pure trust region

Figure 8.2: CPU performance profile

154 Chapter 8. Numerical results

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter
Pure trust region

Figure 8.3: CG iteration performance profile

It can be observed in Figure 8.1 that the filter variant is the best, in terms of number of
iterations, on 83% of the problems, while the pure trust-region one is the best in 69% of the
cases. Although the gain in iteration count is substantial, it is less impressive than the im-
provement with respect to the pure trust-region method obtained for the unconstrained case (see
Figure 5.1). For the unconstrained case, the benefit due to the filter mechanism is considerable
in iteration count and significant but smaller in terms of conjugate-gradient iterations. The gains
in terms of number of conjugate-gradient iterations and CPU time are slight here because the
improvement is already smaller in terms of iterations. Filter variant is just as efficient as the
pure trust-region one if we consider the CG iterations as performance measure. And the latter
is just marginally more expensive in computing time than the filter variant. The high number of
conjugate-gradient iterations obtained for some problems by the filter algorithm is notably due
to the fact that, if a negative curvature is detected for the model during the step computation,
either in the algorithm for finding the GCP or in the conjugate-gradient process, and the step
is not restricted, we have to recompute a step within the intersection of the trust region and the
simple bounds.

The number of filter entries for problems the filter variant can solve is distributed as indi-
cated in Table 8.4.

8.3 Performance and comparisons 155

of filter entries # of problems
0 ≤ nf ≤ 5 76

6 ≤ nf ≤ 10 12
11 ≤ nf ≤ 50 13

Table 8.4: The distribution of the number of filter entries

The maximum number of filter entries is moderate and never exceeds 50. As in the un-
constrained case, we did not observe any relation between the filter size and the problem di-
mension. Indeed, successfully solved problems which introduce the most entries in the filter
are : PALMER5B (30 entries) and PALMER5E (50 entries), which have, respectively, only 9
and 8 variables and EXPQUAD (31 entries), whose dimension is 1200. Furthermore, the pure
trust-region variant could not solve the first two problems within the prescribed iteration lim-
itations. It should be observed that, for the majority of problems where the filter variant fails,
the algorithm puts a large number of entries in the filter. However, for those problems(4), the
pure trust-region variant also fails. In Section 5.4.4, we have tested to limit the number of filter
entries to 50 and to resort to a pure trust-region method if this number is reached. Here, as the
size of the filter never exceeds 50, this algorithmic variant has no sense. We have tried the same
idea with a limitation of 20 entries, but the results obtained by this variant are slightly worse
than those obtained with the default filter variant.

We now detail the results (given in Table 8.5) of a problem for which the pure trust-region
variant requires fewer iterations and conjugate-gradient iterations than the filter one; this prob-
lem is HS5, which is a nonlinear problem in two dimensions with its variables bounded from
below and above.

filter pure TR
iterations 10 4
CG iterations 12 4

Table 8.5: Filter and pure trust-region runs for problem HS5

(4)Except for MINSURFO.

156 Chapter 8. Numerical results

The level curves of the objective function of problem HS5 and its bounds are displayed in
Figure 8.4.

−2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Figure 8.4: The contour lines and the box defined by the simple bounds for problem HS5

The plots of Figure 8.5 show the contour lines of the model around the initial point, x0. The
figure on the right also displays the trust region defined in `∞-norm around x0. It can be seen
that the first iterate of the filter variant moves until it reaches the boundary of the box defined
by the constraints while the iterate generated by the pure trust-region algorithm is stopped by
the frontier of the trust region. Furthermore, the iterate produced by the filter algorithm enters
a nonconvex region.

−2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

−2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Figure 8.5: The model around the initial point and the first iterate for the filter variant (left) and
the pure trust-region one (right)

8.3 Performance and comparisons 157

The sequence of iterates is illustrated in Figure 8.6.

−2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

−2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Figure 8.6: The sequence of iterates for both variants (filter on the left, pure trust region on the
right)

For the iterations of the filter algorithm where negative curvature is detected in the resolution
of the subproblem, we now resort to a traditional trust-region method. The following steps are
then restricted to the trust region and it takes few iterations for the filter variant to converge
towards the local minimum (see the picture on the left in Figure 8.6).

8.3.2 Comparison with LANCELOT-B

In order to assess the numerical performance of FILTBOUND, we have also compared it
against LANCELOT-B (see Section 5.4.3 for a short description of this software or Conn et
al. [33] for more details). Note that the computation of the trial step in LANCELOT-B and in
our implementation is very similar as both of them first compute the generalized Cauchy point
and then apply a conjugate-gradient method to further reduce the quadratic model mk. Here we
have used LANCELOT-B unpreconditioned, with exact first and second derivatives and with the
initial trust-region radius equals to one. In order to be comparable with FILTBOUND for which
the stopping criterion is given in (8.1), the accuracy on the projected gradient in LANCELOT-B
is set to 10−6. Apart from this, we have used the default options. Note that, as previously said,
LANCELOT-B is a non-monotone trust-region algorithm while our pure trust-region variant is
monotone.

158 Chapter 8. Numerical results

LANCELOT-B successfully solves 99 out of 107 problems. So it is marginally less reliable
than the filter and the pure trust-region variants. Like the filter variant, LANCELOT-B does
not solve BIGGSB1, PALMER5A, PALMER7A, QRTQUAD and SCOND1LS because the max-
imum allowed number of iterations is reached. It also fails on CHENHARK, PALMER5B and
PALMER5E. Again, we have excluded MAXLIKA, PALMER3 and PALMER4 because all vari-
ants do not report the same final solution. Figures 8.7, 8.8, and 8.9 show the performance for
both variants and LANCELOT-B for iteration count, CPU time, and total amount of conjugate-
gradient iterations, respectively.

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter
Pure trust region
LANCELOT B

Figure 8.7: Iteration performance profile for both variants and LANCELOT-B

The LANCELOT-B solver appears to be slightly inferior to the new filter algorithm in terms
of number of iterations. Indeed, if we consider iteration count as performance criterion, the
filter variant is the best solver for 71.8% of the problems, while LANCELOT-B is the best in
66% of the cases. Nevertheless, this latter is more efficient in terms of conjugate-gradient it-
erations. In order to have a better overview of the comparison between our two variants and
LANCELOT-B, we should analyse the plot where the performance measurement is the CPU
time. In Figure 8.8, it can be seen that the filter variant is faster than LANCELOT-B in 58% of

8.3 Performance and comparisons 159

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter
Pure trust region
LANCELOT B

Figure 8.8: CPU performance profile for both variants and LANCELOT-B

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Filter
Pure trust region
LANCELOT B

Figure 8.9: CG iteration performance profile for both variants and LANCELOT-B

160 Chapter 8. Numerical results

the problems whereas LANCELOT-B is the quickest in 24% of the cases.

Although the numerical results are not as significant as for our filter-trust-region algorithm in
the unconstrained case (see performance profiles of Section 5.4.3), we obtain interesting results.

In Figure 8.10, 8.11 and 8.12, we present some plots depicting the evolution of the objective
function value for both variants and LANCELOT-B. As it was the case for similar graphs in
Chapter 5, it can be observed the ample oscillations in objective function value for the filter
variant. For LANCELOT-B, we can also detect a non-monotone behaviour in function value
but the swings are generally smaller.

0 5 10 15 20 25 30 35
−20

−15

−10

−5

0

5

iterations

lo
g

10
 o

f o
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Filter
Pure trust region
LANCELOT B

Figure 8.10: The objective function value as a function of the iteration progress on the HS1
problem for both variants and LANCELOT-B. The filter variant oscillates the most and con-
verges first, followed by the moderately non-monotone LANCELOT-B, itself followed by the
monotone pure trust-region variant.

But again, this highly non-monotone behaviour sometimes results in poor convergence as for
problem PSPDOC, for which the filter variant requires 14 iterations to converge while the pure
trust-region one and LANCELOT-B, which coincide in Figure 8.13, require only 6 iterations.
The first iteration generated by applying our filter algorithm on PSPDOC is acceptable because
of the filter.

8.3 Performance and comparisons 161

0 20 40 60 80 100 120
−4

−3

−2

−1

0

1

2

3

4

iterations

lo
g

10
 o

f o
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Filter
Pure trust region
LANCELOT B

Figure 8.11: The objective function value as a function of the iteration progress on the
PALMER6E problem for both variants and LANCELOT-B

0 10 20 30 40 50 60 70
−14

−12

−10

−8

−6

−4

−2

0

2

4

iterations

lo
g

10
 o

f o
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Filter
Pure trust region
LANCELOT B

Figure 8.12: The objective function value as a function of the iteration progress on the YFIT
problem for both variants and LANCELOT-B

162 Chapter 8. Numerical results

0 2 4 6 8 10 12 14
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

iterations

lo
g

10
 o

f o
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Filter
Pure trust region
LANCELOT B

Figure 8.13: The objective function value as a function of the iteration progress on the PSPDOC
problem for both variants and LANCELOT-B

8.3.3 Signed filter entries

The last section of the performance analysis is intended to compare the default filter variant
of FILTBOUND with a variant using signed filter entries, called signed variant in contrast with
the unsigned default one. So we now use the absolute values of the ḡ(xk) in the filter acceptance
test.

The efficiency and robustness of the signed and unsigned variants are illustrated in Fig-
ure 8.14. It can be shown that the signed variant is a little less reliable(5) (100/107 versus
101/107) and also a little bit less efficient than the unsigned one. However, we can notice in
Figure 8.15 that the gain obtained by the unsigned variant results in a higher number of inclu-
sions in the filter.

8.4 Conclusion

The preliminary numerical results obtained on the set of box-constrained problems from the
CUTEr collection show a general good behaviour of our filter-trust-region algorithm. Although
the numerical improvement with respect to the pure trust-region method is less significant than
for the unconstrained case, we still believe that the resulting method is of interest, and that it is

(5)The signed variant failed to solve PALMER5E.

8.4 Conclusion 163

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Unsigned
Signed

Figure 8.14: Iteration performance profile for the filter variants using unsigned and signed filter
entries

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Unsigned
Signed

Figure 8.15: Filter size performance profile for the filter variants using unsigned and signed
filter entries

164 Chapter 8. Numerical results

potentially useful. This study indicates that, in terms of computing time, the new algorithm is
very competitive with LANCELOT-B on many problems. Finally, we believe that it should be
interesting to introduce our filter mechanism in LANCELOT-B.

Conclusions and further research
perspectives

Nonlinear optimization is a highly active research field. The purpose of the research work
described in this thesis was the design and implementation of algorithms for solving two classes
of mathematical programs, namely unconstrained and bound-constrained nonlinear optimiza-
tion problems. For both of them, we have developed algorithms using a filter mechanism within
a trust-region scheme.

In the next two paragraphs, both kinds of mathematical problems we have been investigating
are reviewed and we summarize our results. At the same time, we also suggest some possible
directions for future research.

Filter-trust-region method for unconstrained optimization

In the first part of this thesis, we have presented and analyzed a novel algorithm for solving
unconstrained optimization problems. The method uses a trust-region scheme combined with a
multidimensional filter technique whose aim is to be more permissive in the acceptance of trial
points than classical trust-region methods. One of the advantages of our filter-based algorithm
is the possibility of accepting steps whose norm exceeds the trust-region boundary, i.e. such
that

‖sk‖ > ∆k,

without affecting the convergence properties of the method. Another important feature of our
approach is the non-monotone behaviour in objective function values. Our algorithm was shown
to produce, under mild assumptions, at least a first-order critical point, irrespective of the cho-
sen starting point. Under additional conditions, it has also been proved that convergence of the
complete sequence of iterates generated by our algorithm can only occur to a second-order crit-
ical point. The numerical tests performed on the CUTEr collection presented in Sections 5.4.1
to 5.4.3 show that our new algorithm for unconstrained optimization is very competitive with
traditional trust-region algorithms. While the numerical results are very encouraging, there is

165

166 Conclusions and further research perspectives

always room for improvement. Continued testing and better adjustments of parameter values
should be necessary.
An idea of future work should be to consider the objective function as an entry of the filter as in
most filter methods for constrained optimization.

In Chapter 6, we have presented a numerical investigation of the influence of approximate
derivatives on the robustness and efficiency of our filter-trust-region method. This study is per-
formed on small-scale problems of the CUTEr test set. In general, we would recommend our
algorithm with exact derivatives when the latter are available. However, if second-order infor-
mation is not available or too expensive, our algorithm allows the approximation of the Hessian
either by means of finite differences or secant updates, namely BFGS and SR1. The compar-
ison of both secant approximations in Section 6.2.2 indicates that, mostly, the variant of our
algorithm using SR1 updates has better performance than a variant with BFGS techniques, but,
for some problems, it is the other way round. The best updating scheme is therefore problem-
dependent, which underlines the importance of flexibility of an optimization code. Typically
variants with second-order derivatives updated by secant formulae require more iterations to
converge than the version with exact Hessian. However, since it is only computing gradients
rather than Hessians, this approach may be more efficient in some cases. Our implementation
stores a dense Hessian approximation so it is only recommended for small to medium problems.
In order to provide a high performance solver for large-scale problems in the case where deriva-
tives are unavailable, we could conceive the use of a limited-memory quasi-Newton technique
as in the code L-BFGS-B.

Filter-trust-region method for bound-constrained optimization

The second main contribution builds up on the first. It was shown how to extend our filter-
trust-region algorithm to bound-constrained optimization problems. A new algorithm, mak-
ing use of three tools of nonlinear programming, namely filter techniques, trust regions and
gradient-projection methods, has been proposed. Our algorithm has been shown, under stan-
dard assumptions, to produce at least a first-order critical point, irrespective of the initial point.
However, the optimal active-set identification and the second-order convergence analysis re-
mains to be done.
The proposed algorithm has been tested on a large collection of test problems and compared
with LANCELOT-B. Given the variety and difficulty of nonlinear optimization problems, it is
unlikely that a unique best algorithm will emerge. Although the numerical results reported with
our filter-trust-region algorithm for bound-constrained optimization is less impressive than for
the unconstrained case, we still believe that the resulting method is of interest, and that it is

Conclusions and further research perspectives 167

potentially useful. We also guess that some improvements may be obtained to enhance the per-
formance of this code. We should, in particular, modify the solution method for the trust-region
subproblem to try to decrease the number of conjugate-gradient iterations and CPU time. This
number can possibly be reduced by using appropriate preconditioners. An inexact generalized
Cauchy point may also be computed instead of an exact one. Furthermore, in our computation
of the trial step, when the conjugate-gradient iterates attempt to go out the feasible box, we
fix variables to their bounds and restart the conjugate-gradient process. However, there exist
more sophisticated algorithms allowing infeasible conjugate-gradient iterates. During the sub-
problem computation, the infeasible iterates are, at regular intervals, projected back onto the
feasible region. A similar technique could be tried in our implementation in order to improve
the performances.

A further work should be the inclusion of a multidimensional filter mechanism similar to
those presented in this dissertation in the LANCELOT-B software.

Another potential extension of our filter-trust-region method should be its use for nonlinear
complementarity problems (NCP), that is problems of the following form

〈F (x), x〉 F (x) ≥ 0 x ≥ 0,

where F : IRn → IRn. This kind of problems may be treated by reformulating the problem as
an unconstrained minimization problem of the form

min
x∈IRn

1

2
‖Φ(x)‖2,

where (Φ(x))i
def
= ϕ(xi, Fi(x)) ∀i and ϕ(·, ·) is an NCP function, like, for instance, the Fisher-

Burmeister function. We then should apply a modified version of our multidimensional filter
algorithm to this unconstrained reformulation. However, our implementation as it stands re-
quires the problem to be written in SIF and, actually, there is no NCP problems written in SIF
in the CUTEr collection. So either we would have to translate existing nonlinear complemen-
tarity problems in SIF in order to obtain a collection of problems to test the algorithm, or we
would have to adapt our software to allow problems written, for example, in AMPL.

Finally, it is our hope that the work described in this thesis can be useful in future algorithmic
developments for nonlinear optimization.

168 Conclusions and further research perspectives

Summary of contributions

Our contributions are the design, the theoretical study and the implementation of algorithms
for solving two classes of mathematical programs, namely nonlinear unconstrained optimiza-
tion problems (see Part I) and nonlinear bound-constrained optimization problems (see Part II).
We summarize our contributions below.

• Unconstrained optimization

∗ The filter-trust-region algorithm for solving unconstrained nonlinear mathematical
programs (Section 4.1) as well as its convergence analysis (Section 4.2) and the
numerical results (Chapter 5) obtained with our code FILTRUNC have been first
presented in [72]. This algorithm represents one of the first applications of filter
techniques to general unconstrained optimization.

∗ The investigation on the use of approximate derivatives in our filter-trust-region algo-
rithm (Chapter 6) has been discussed in [110].

• Bound-constrained optimization

The design of the filter-trust-region algorithm for solving bound-constrained optimiza-
tion problems (Section 7.2), its convergence properties (Section 7.3) and the numerical
experience presented in Chapter 8 are the subject of the paper [111].

From a practical point of view, we have implemented our algorithms in Fortran 90, tested
them on large set of test problems and compared their performances with LANCELOT-B.

Note that a comparison of some existing filter-based methods can be found in our Master’s
thesis [109], published in 2002.

169

170 Summary of contributions

Bibliography

[1] M. Andretta, E. G. Birgin, and J. M. Martínez. Practical active-set euclidian trust-region
method with spectral projected gradients for bound-constrained optimization. Optimiza-
tion, 54(3):305–325, 2005.

[2] C. Audet and J. E. Dennis. Analysis of generalized pattern searches. SIAM Journal on
Optimization, 13(3):889–903, 2003.

[3] C. Audet and J. E. Dennis. A pattern search filter method for nonlinear programming
without derivatives. SIAM Journal on Optimization, 14(4):980–1010, 2004.

[4] M. S. Bazaraa, H. Sherali, and C. Shetty. Nonlinear Programming: Theory and Applica-
tions. J. Wiley and Sons, Chichester, England, 1993.

[5] E. M. L. Beale. Numerical methods. In J. Abadie, editor, Nonlinear programming, pages
135–205. North Holland, Amsterdam, The Netherlands, 1967.

[6] H. Y. Benson, R. J. Vanderbei, and D. F. Shanno. Interior-Point Methods for Nonconvex
Nonlinear Programming: Filter Methods and Merit Functions. Computational Optimiza-
tion and Applications, 23:257–272, 2002.

[7] D. P. Bertsekas. On the Goldstein-Levitin-Polyak gradient projection method. IEEE
Transactions on Automatic Control, 21:174–184, 1976.

[8] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, Massachussetts,
USA, 1995.

[9] M. Bierlaire. A robust algorithm for the simultaneous estimation of hierarchical logit
models. TRG Report 95/3, Transportation Research Group, Department of Mathematics,
University of Namur, Namur, Belgium, 1995.

[10] J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer Verlag,
Heidelberg, Berlin, New York, 1997.

171

172 BIBLIOGRAPHY

[11] P. T. Boggs and J. E. Dennis. A stability analysis for perturbed nonlinear iterative meth-
ods. Mathematics of Computation, 30(134):199–215, 1976.

[12] P. T. Boggs and J. W. Tolle. Sequential quadratic programming. Acta Numerica, 4:1–51,
1995.

[13] I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint. CUTE: Constrained and
Unconstrained Testing Environment. ACM Transactions on Mathematical Software,
21(1):123–160, 1995.

[14] J. F. Bonnans, J. Ch. Gilbert, C. Lemaréchal, and C. A. Sagastizábal. Numerical Opti-
mization : Theoretical and Practical Aspects. Springer Verlag, Heidelberg, Berlin, New
York, 2002.

[15] C. G. Broyden. The convergence of a class of double-rank minimization algorithms.
Journal of the Institute of Mathematics and its Applications, 6:76–90, 1970.

[16] C. G. Broyden, J. E. Dennis, and J. J. Moré. On the local and superlinear convergence
of quasi-Newton methods. Journal of the Institute of Mathematics and its Applications,
12:233–246, 1973.

[17] R. H. Byrd, N. I. M. Gould, J. Nocedal, and R. A. Waltz. An algorithm for nonlinear opti-
mization using linear programming and equality constrained subproblems. Mathematical
Programming, Series B, 100(1):27–48, 2004.

[18] R. H. Byrd, H. F. Khalfan, and R. B. Schnabel. Analysis of a symmetric rank-one trust
region method. SIAM Journal on Optimization, 6(4):1025–1039, 1996.

[19] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound con-
strained optimization. SIAM Journal on Scientific Computing, 16(5):1190–1208, 1995.

[20] R. G. Carter. On the global convergence of trust region methods using inexact gradient
information. SIAM Journal on Numerical Analysis, 28(1):251–265, 1991.

[21] C. Charalambous. A lower bound for the controlling parameter of the exact penalty
functions. Mathematical Programming, 15(3):278–290, 1978.

[22] Ch. M. Chin and R. Fletcher. Convergence properties of SLP-filter algorithms that takes
EQP steps. Mathematical Programming, Series A, 96(1):161–177, 2003.

[23] V. Chvátal. Linear Programming. W. H. Freeman and Company, New York and San
Francisco, 1983.

BIBLIOGRAPHY 173

[24] T. F. Coleman and A. R. Conn. Nonlinear programming via an exact penalty function
method : Asymptotic analysis. Mathematical Programming, 24(1):123–136, 1982.

[25] T. F. Coleman and A. R. Conn. Nonlinear programming via an exact penalty function
method: Global analysis. Mathematical Programming, 24(1):137–161, 1982.

[26] B. Colson. Trust-Region Algorithms for Derivative-Free Optimization and Nonlinear
Bilevel Programming. PhD thesis, Department of Mathematics, University of Namur,
Namur, Belgium, 2003.

[27] A. R. Conn. Constrained optimization via a nondifferentiable penalty function. SIAM
Journal on Numerical Analysis, 10(4):760–779, 1973.

[28] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Global convergence of a class of trust
region algorithms for optimization with simple bounds. SIAM Journal on Numerical
Analysis, 25(182):433–460, 1988. See also same journal 26:764–767, 1989.

[29] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Testing a class of methods for solving min-
imization problems with simple bounds on the variables. Mathematics of Computation,
50:399–430, 1988.

[30] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Convergence of quasi-Newton matrices
generated by the symmetric rank one update. Mathematical Programming, 50(2):177–
196, 1991.

[31] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. A globally convergent Lagrangian barrier
algorithm for optimization with general inequality constraints and simple bounds. Tech-
nical Report 92/07, Department of Mathematics, University of Namur, Namur, Belgium,
1992.

[32] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Intensive numerical tests with LANCELOT
(Release A): the complete results. Technical Report 92/15, Department of Mathematics,
University of Namur, Namur, Belgium, 1992. Also issued as Research Report RC 18750,
IBM T.J. Watson Center, Yorktown Heights, USA, and as Research Report 92-069, RAL,
Chilton, Oxfordshire, England.

[33] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. LANCELOT: a Fortran package for
large-scale nonlinear optimization (Release A). Number 17 in Springer Series in Com-
putational Mathematics. Springer Verlag, Heidelberg, Berlin, New York, 1992.

174 BIBLIOGRAPHY

[34] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. Number 01 in
MPS-SIAM Series on Optimization. SIAM, Philadelphia, USA, 2000.

[35] A. R. Conn, K. Scheinberg, and Ph. L. Toint. On the convergence of derivative-free meth-
ods for unconstrained optimization. In A. Iserles and M. Buhmann, editors, Approxima-
tion Theory and Optimization: Tributes to M. J. D. Powell, pages 83–108, Cambridge,
England, 1997. Cambridge University Press.

[36] A. R. Conn, K. Scheinberg, and Ph. L. Toint. Recent progress in unconstrained nonlinear
optimization without derivatives. Mathematical Programming, Series B, 79(3):397–414,
1997.

[37] G. B. Dantzig. Linear Programming and Extensions. Princeton Uinversity Press, Prince-
ton, USA, 1963.

[38] W. C. Davidon. Variable metric method for minimization. Report ANL-5990(Rev.),
Argonne National Laboratory, Research and Development, 1959.

[39] V. F. Dem’yanov and L.V. Vasil’ev. Nondifferentiable Optimization. Springer Verlag,
New York, 1985.

[40] J. E. Dennis and J. J. Moré. Quasi-Newton methods, motivation and theory. SIAM
Review, 19:46–89, 1977.

[41] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1983.
Reprinted as Classics in Applied Mathematics 16, SIAM, Philadelphia, USA, 1996.

[42] G. Di Pillo and A. Murli, editors. High Performance Algorithms and Software in Non-
linear Optimization, Dordrecht, The Netherlands, 2003. Kluwer Academic Publishers.

[43] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance
profiles. Mathematical Programming, 91(2):201–213, 2002.

[44] Z. Dostál. Box constrained quadratic programming with proportioning and projections.
SIAM Journal on Optimization, 7(3):871–887, 1997.

[45] A. V. Fiacco and G. P. McCormick. Programming under nonlinear constraints by uncon-
strained optimization: a primal-dual method. Technical Report RAC-TP-96, Research
Analysis Corporation, McLean, Virginia, USA, 1963.

BIBLIOGRAPHY 175

[46] A. V. Fiacco and G. P. McCormick. The sequential unconstrained minimization technique
for nonlinear programming: a primal-dual method. Management Science, 10(2):360–
366, 1964.

[47] R. Fletcher. A new approach to variable metric algorithms. Computer Journal, 13:317–
322, 1970.

[48] R. Fletcher. Practical Methods of Optimization. J. Wiley and Sons, Chichester, England,
second edition, 1987.

[49] R. Fletcher, N. I. M. Gould, S. Leyffer, Ph. L. Toint, and A. Wächter. Global conver-
gence of trust-region SQP-filter algorithms for nonlinear programming. SIAM Journal
on Optimization, 13(3):635–659, 2002.

[50] R. Fletcher and S. Leyffer. User manual for filterSQP. Numerical Analysis Report
NA/181, Department of Mathematics, University of Dundee, Dundee, Scotland, 1998.

[51] R. Fletcher and S. Leyffer. A bundle filter method for nonsmooth nonlinear optimization.
Numerical Analysis Report NA/195, Department of Mathematics, University of Dundee,
Dundee, Scotland, 1999.

[52] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function. Mathe-
matical Programming, 91(2):239–269, 2002.

[53] R. Fletcher and S. Leyffer. Filter-type algorithms for solving systems of algebraic equa-
tions and inequalities. In Di Pillo and Murli [42], pages 259–278.

[54] R. Fletcher, S. Leyffer, and Ph. L. Toint. On the global convergence of a SLP-filter
algorithm. Technical Report 98/13, Department of Mathematics, University of Namur,
Namur, Belgium, 1998.

[55] R. Fletcher, S. Leyffer, and Ph. L. Toint. On the global convergence of a filter-SQP
algorithm. SIAM Journal on Optimization, 13(1):44–59, 2002.

[56] R. Fletcher and M. J. D. Powell. A rapidly convergent descent method for minimization.
Computer Journal, 6:163–168, 1963.

[57] A. Forsgren, P. E. Gill, and M. H. Wright. Interior-point methods for nonlinear optimiza-
tion. SIAM Review, 44:525–597, 2002.

[58] R. Fourer and D. Orban. The DrAmpl meta solver for optimization. Technical report,
GERAD, Montreal, Canada, 2007.

176 BIBLIOGRAPHY

[59] P. E. Gill and W. Murray, editors. Numerical Methods for Constrained Optimization,
London, 1974. Academic Press.

[60] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for large-scale
constrained optimization. SIAM Journal on Optimization, 12(4):979–1006, 2002.

[61] P. E. Gill, W. Murray, M. A. Saunders, and M. Wright. Computing forward-difference
intervals for numerical optimization. SIAM Journal on Scientific and Statistical Comput-
ing, 4:310–321, 1983.

[62] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press,
London, 1981.

[63] D. Goldfarb. A family of variable metric methods derived by variational means. Mathe-
matics of Computation, 24:23–26, 1970.

[64] C. C. Gonzaga, E. Karas, and M. Vanti. A globally convergent filter method for nonlinear
programming. SIAM Journal on Optimization, 14(3):646–669, 2003.

[65] N. I. M. Gould, S. Leyffer, and Ph. L. Toint. A multidimensional filter algorithm for non-
linear equations and nonlinear least-squares. SIAM Journal on Optimization, 15(1):17–
38, 2005.

[66] N. I. M. Gould, S. Lucidi, M. Roma, and Ph. L. Toint. Solving the trust-region subprob-
lem using the Lanczos method. SIAM Journal on Optimization, 9(2):504–525, 1999.

[67] N. I. M. Gould, D. Orban, A. Sartenaer, and Ph. L. Toint. Sensitivity of trust-region al-
gorithms on their parameters. 4OR, Quarterly Journal of the Italian, French and Belgian
OR Societies, 3, 2005.

[68] N. I. M. Gould, D. Orban, and Ph. L. Toint. Results from a numerical evaluation of
lancelot b. Technical Report 02/09, Department of Mathematics, University of Namur,
Namur, Belgium, 2002.

[69] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEr, a constrained and unconstrained
testing environment, revisited. ACM Transactions on Mathematical Software, 29(4):373–
394, 2003.

[70] N. I. M. Gould, D. Orban, and Ph. L. Toint. GALAHAD—a library of thread-safe Fortran
90 packages for large-scale nonlinear optimization. ACM Transactions on Mathematical
Software, 29(4):353–372, 2003.

BIBLIOGRAPHY 177

[71] N. I. M. Gould, D. Orban, and Ph. L. Toint. Numerical methods for large-scale nonlinear
optimization. Acta Numerica, 14:299–361, 2005.

[72] N. I. M. Gould, C. Sainvitu, and Ph. L. Toint. A filter-trust-region method for uncon-
strained optimization. SIAM Journal on Optimization, 16(2):341–357, 2005.

[73] N. I. M. Gould and Ph. L. Toint. SQP methods for large-scale nonlinear programming. In
M. J. D. Powell and S. Scholtes, editors, System Modelling and Optimization, Methods,
Theory and Applications, pages 149–178, Dordrecht, The Netherlands, 2000. Kluwer
Academic Publishers.

[74] N. I. M. Gould and Ph. L. Toint. Global convergence of a hybrid trust-region SQP-filter
algorithm for general nonlinear programming. In E. Sachs and R. Tichatschke, editors,
System Modeling and Optimization XX, pages 23–54, Dordrecht, The Netherlands, 2003.
Kluwer Academic Publishers.

[75] N. I. M. Gould and Ph. L. Toint. Global convergence of a non-monotone trust-region
filter algorithm for nonlinear programming. In W. Hager, editor, Proceedings of the 2004
Gainesville Conference on Multilevel Optimization, Dordrecht, The Netherlands, 2005.
Kluwer Academic Publishers.

[76] N. I. M. Gould and Ph. L. Toint. FILTRANE, a Fortran 95 filter-trust-region package
for solving nonlinear least-squares problems and nonlinear feasibility problems. ACM
Transactions on Mathematical Software, 2007.

[77] A. Griewank. On automatic differentiation. In Iri and Tanabe [82], pages 83–108.

[78] A. Griewank. Computational differentiation and optimization. In J. R. Birge and K. G.
Murty, editors, Mathematical Programming: State of the Art 1994, pages 102–131, Ann
Arbor, USA, 1994. The University of Michigan.

[79] A. Griewank and G. Corliss. Automatic Differentiation of Algorithms: Theory, Imple-
mentation and Application. SIAM, Philadelphia, USA, 1991.

[80] S. P. Han and O. L. Mangasarian. Exact penalty functions in nonlinear programming.
Mathematical Programming, 17(3):251–269, 1979.

[81] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems.
Journal of the National Bureau of Standards, 49:409–436, 1952.

[82] M. Iri and K. Tanabe, editors. Mathematical Programming: Recent Developments and
Applications, Dordrecht, The Netherlands, 1989. Kluwer Academic Publishers.

178 BIBLIOGRAPHY

[83] P. Kall and S. W. Wallace. Stochastic Programming. J. Wiley and Sons, Chichester,
England, 1994.

[84] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinator-
ica, 4:373–395, 1984.

[85] W. Karush. Minima of functions of several variables with inequalities as side conditions.
Master’s thesis, Department of Mathematics, University of Chicago, Illinois, USA, 1939.

[86] H. W. Kuhn and A. W. Tucker. Nonlinear programming. In J. Neyman, editor, Pro-
ceedings of the second Berkeley symposium on mathematical statistics and probability,
California, USA, 1951. University of Berkeley Press.

[87] K. Levenberg. A method for the solution of certain problems in least squares. Quarterly
Journal on Applied Mathematics, 2:164–168, 1944.

[88] E. S. Levitin and B. T. Polyak. Constrained minimization problems. U.S.S.R. Comput.
Math. Math. Phys., 6:1–50, 1966.

[89] C. Lin and J. J. Moré. Newton’s method for large bound-constrained optimization prob-
lems. SIAM Journal on Optimization, 9(4):1100–1127, 1999.

[90] D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale opti-
mization. Mathematical Programming, Series B, 45(1):503–528, 1989.

[91] D. G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley Publishing
Company, Reading, Massachusetts, USA, second edition, 1984.

[92] D. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. SIAM
Journal on Applied Mathematics, 11:431–441, 1963.

[93] K. Miettinen. Nonlinear Multiobjective Optimization, volume 12 of Internationals Series
in Operations Research & Management Science. Kluwer Academic Publishers, Boston,
USA, 1999.

[94] J. J. Moré. Trust regions and projected gradients. In M. Iri and K. Yajima, editors,
System Modelling and Optimization, volume 113, pages 1–13, Heidelberg, Berlin, New
York, 1988. Springer Verlag. Lecture Notes in Control and Information Sciences.

[95] J. J. Moré and D. C. Sorensen. Computing a trust region step. SIAM Journal on Scientific
and Statistical Computing, 4(3):553–572, 1983.

BIBLIOGRAPHY 179

[96] J. J. Moré and G. Toraldo. On the solution of large quadratic programming problems
with bound constraints. SIAM Journal on Optimization, 1(1):93–113, 1991.

[97] B. A. Murtagh. Advanced Linear Programming. McGraw-Hill, New York, USA, 1981.

[98] S. G. Nash and A. Sofer. Linear and nonlinear Programming. McGraw-Hill, New York,
USA, 1996.

[99] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. J. Wiley
and Sons, Chichester, England, 1988.

[100] J. Nocedal. Updating quasi-Newton matrices with limited storage. Mathematics of Com-
putation, 35:773–782, 1980.

[101] J. Nocedal and S. J. Wright. Numerical Optimization. Series in Operations Research.
Springer Verlag, Heidelberg, Berlin, New York, 1999.

[102] J. Nocedal and Y. Yuan. Combining trust region and line search techniques. In Yuan
[130], pages 153–176.

[103] E. O. Omojokun. Trust region algorithms for optimization with nonlinear equality and
inequality constraints. PhD thesis, University of Colorado, Boulder, Colorado, USA,
1989.

[104] J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several
Variables. Academic Press, London, 1970.

[105] T. Pietrzykowski. An exact potential method for constrained maxima. SIAM Journal on
Numerical Analysis, 6(2):299–304, 1969.

[106] M. W. Trosset R. M. Lewis, V. Torczon. Direct search methods: Then and now. Journal
of Computational and Applied Mathematics, 124:191–207, 2000.

[107] A. A. Ribeiro, E. W. Karas, and C. C. Gonzaga. Global convergence of filter meth-
ods for nonlinear programming. Technical report, Department of Mathematics, Federal
University of Panamá, Curitiba, Brazil, 2006.

[108] A. Ruszczyński. Nonlinear Optimization. Princeton Uinversity Press, Princeton, USA,
2006.

[109] C. Sainvitu. Les méthodes de filtre en optimisation non-linéaire : une comparaison des
variantes avec recherche linéaire et région de confiance. Master’s thesis, Department of
Mathematics, University of Namur, Namur, Belgium, 2002.

180 BIBLIOGRAPHY

[110] C. Sainvitu. A numerical investigation of the influence of approximate derivatives on
the filter-trust-region method for unconstrained optimization. Technical Report 06/03,
Department of Mathematics, University of Namur, Namur, Belgium, 2006. (Submitted
to RAIRO-Recherche Opérationnelle—Operations Research).

[111] C. Sainvitu and Ph. L. Toint. A filter-trust-region method for simple-bound constrained
optimization. Optimization Methods and Software, (accepted for publication), 2007.

[112] R. W. H. Sargent. Reduced-gradient and projection methods for nonlinear programming.
In Gill and Murray [59], pages 149–174.

[113] A. Sartenaer. Automatic determination of an initial trust region in nonlinear program-
ming. SIAM Journal on Scientific Computing, 18(6):1788–1803, 1997.

[114] A. Sartenaer. Some recent developments in nonlinear optimization algorithms. In
ESAIM: Proceedings, volume 13, pages 41–64. Actes des Journées MODE, 2003.

[115] A. Schrijver. Theory of Linear and Integer Programming. J. Wiley and Sons, Chichester,
England, 1986.

[116] D. F. Shanno. Conditioning of quasi-Newton methods for function minimization. Math-
ematics of Computation, 24:647–657, 1970.

[117] D. F. Shanno and K. H. Phua. Matrix conditionning and nonlinear optimization. Mathe-
matical Programming, 14:149–160, 1978.

[118] T. Steihaug. The conjugate gradient method and trust regions in large scale optimization.
SIAM Journal on Numerical Analysis, 20(3):626–637, 1983.

[119] Ph. L. Toint. Towards an efficient sparsity exploiting Newton method for minimization.
In I. S. Duff, editor, Sparse Matrices and Their Uses, pages 57–88, London, 1981. Aca-
demic Press.

[120] Ph. L. Toint. Global convergence of a class of trust region methods for nonconvex mini-
mization in Hilbert space. IMA Journal of Numerical Analysis, 8(2):231–252, 1988.

[121] Ph. L. Toint. A non-monotone trust-region algorithm for nonlinear optimization subject
to convex constraints. Mathematical Programming, 77(1):69–94, 1997.

[122] M. Ulbrich, S. Ulbrich, and L. N. Vicente. A globally convergent primal-dual interior
point filter method for nonconvex nonlinear programming. Mathematical Programming,
Series B, 100(2):379–410, 2004.

BIBLIOGRAPHY 181

[123] S. Ulbrich. On the superlinear local convergence of a filter-SQP method. Mathematical
Programming, Series B, 100(1):217–245, 2004.

[124] A. Wächter. An Interior Point Algorithm for Large-Scale Nonlinear Optimization with
Applications in Process Engineering. PhD thesis, Department of Chemical Engineering,
Carnegie Mellon University, Pittsburgh, USA, 2002.

[125] A. Wächter and L. T. Biegler. Line search Filter methods for nonlinear programming:
local convergence. SIAM Journal on Optimization, 16(1):32–48, 2005.

[126] A. Wächter and L. T. Biegler. Line search Filter methods for nonlinear programming:
motivation and global convergence. SIAM Journal on Optimization, 16(1):1–31, 2005.

[127] R. B. Wilson. A simplicial algorithm for concave programming. PhD thesis, Harvard
University, Massachusetts, USA, 1963.

[128] M. H. Wright. Direct search methods: once scorned, now respectable. In D. F. Grif-
fiths and G. A. Watson, editors, Proceedings of the 1995 Dundee Biennal Conference in
Numerical Analysis, Reading, Massachusetts, USA, 1996. Addison-Wesley Publishing
Company.

[129] S. J. Wright. Primal-Dual Interior-Point Methods. SIAM, Philadelphia, USA, 1997.

[130] Y. Yuan, editor. Advances in Nonlinear Programming, Dordrecht, The Netherlands,
1998. Kluwer Academic Publishers.

[131] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. Algorithm 778: L-BFGS-B: Fortran subrou-
tines for large-scale bound constrained optimization. ACM Transactions on Mathemati-
cal Software, 23(4):550–560, 1997.

[132] C.A. Zoppke-Donaldson. A tolerance-tube approach to sequential quadratic program-
ming with applications. PhD thesis, Department of Mathematics, University of Dundee,
Dundee, Scotland, 1995.

182 BIBLIOGRAPHY

Main notations and abbreviations

General
IN set of nonnegative integers
IR set of real numbers
IRn real n-dimensional Euclidean space
| · | absolute value of a scalar
|| · || vector norm (Euclidean unless otherwise specified)
|S| cardinality of the set S
∇xf(x) gradient of f

∇2
xxf(x) Hessian matrix of f

Jxc(x) Jacobian of c

P [·] projection operator
εM machine precision

Mathematical programming
E set of equality constraints
I set of inequality constraints
x∗ optimal solution
Ω feasible region
strcit{Ω} strictly feasible region
N neighbourhood
co{S} convex hull
Null(A) null space of A

A(x) active set at x

L(x, λ) Lagrangian function
B(x∗) binding set at the solution
Bs(x

∗) strictly binding set at the solution

183

184 Main notations and abbreviations

Algorithms
xk kth iterate (vector)
Bk trust region at iteration k

∆k trust-region radius at iteration k

gk gradient of the objective function at xk

ḡk “projected” gradient of the objective function at xk

Hk symmetric approximation to the objective Hessian at xk

sk step at iteration k

xC
k (generalized) Cauchy point

mk(·) model of f at the kth iteration
ρk ratio of actual to predicted decrease
F filter
S set of indices of successful iterations
A set of indices of filter iterations
D set of indices of sufficient descent iterations
N set of indices of nonconvex iterations

Main mathematical notations

Main notations and abbreviations 185

BFGS Broyden-Fletcher-Goldfarb-Shanno
BTR Basic Trust Region
CG Conjugate Gradient
DFO Derivative-Free Optimization
DFP Davidon-Fletcher-Powell
EQP Equality-constrained Quadratic Programming
GCP Generalized Cauchy Point
GLTR Generalized Lanczos Trust Region
KKT Karush-Kuhn-Tucker
LICQ Linear Independence Constraint Qualfication
MFCQ Mangasarian-Fromovitz Constraint Qualfication
NLP Nonlinear Programming
SLP Sequential Linear Programming
SQP Sequential Quadratic Programming
SR1 Symmetric-Rank-One

Main abbreviations

186 Main notations and abbreviations

Index

N+(x, λ), 23

acceptable for the filter, 45, 54, 138
accumulation point, 10
achieved reduction, 30, 39
active constraint, see constraint
active set, 20, 130
active-set SQP methods, 39–40
actual reduction, see achieved reduction
algorithms

augmented Lagrangian algorithm, 37
basic trust-region algorithm (BTR), 31
filter-trust-region algorithm, 56, 139

augmented Lagrangian
function, 36
method, 36–37

automatic differentiation, 15

backtracking, 29
binding set, 131

strictly, 131
bound

hard, 130
simple, 130
soft, 130

bound-constrained optimization, 4, 129–134
problem, 130

bounded set, 8
breakpoint, 137

Cauchy
arc, 31, 136
point, 31, 32

Cauchy-Schwartz inequality, 7

chain rule, 12

closed set, 8

combined performance, 121

compact set, 8

complementary slackness condition, 22

concave, 9

conjugate

directions, 32

gradients, see conjugate-gradient methods

conjugate-gradient methods, 32–33, 137, 150

constrained optimization

methods for, 33–40

optimality conditions for, 20–24

problems, 3
constraint, 1

active, 21, 130

equality, 3
inactive, 21

inequality, 3, 43

qualification, 21
linear independence (LICQ), 21

Mangasarian-Fromovitz (MFCQ), 22

Slater, 21

convergence, 10

global, 11

linear, 10

local, 11

order r, 10

quadratic, 10

superlinear, 10

convex

function, 9, 22, 23

187

188 INDEX

hull, 9
programming, 5, 20
set, 9

critical point
first-order, 19, 22, 60, 140
second-order, 19, 70
strong second-order, 23

criticality measure, 24, 134
curvature, 12

direction of negative curvature, 12
direction of positive curvature, 12

derivative
first, 11
first partial, 11
second partial, 12

derivative-free optimization, 111
descent direction, 25
differentiability, 11

continuously differentiable function, 11
differentiable function, 11
twice-continuously differentiable function,

12
discrete optimization, 4
dominance, 42, 43, 54, 138
dual variables, 21

feasibility condition, 22
feasible

box, 130
point, 3, 23, 130
region, 3, 22

convex, 22
filter, 41, 42, 43, 54–56, 138–139

algorithms, 56, 139
methods, 41–48

for bound-constrained optimization, 129–
145

for unconstrained optimization, 51–72
multidimensional, 53, 54, 135, 138

finite differences, 13–15, 105–111
central, 14
forward, 14

first-order conditions, 19, 22, 131
free variable, 131

generalized Cauchy point, 136, 137, 157
globalization techniques, 24, 28, 29, 39, 133
GLTR subroutine, 77
gradient, 11
gradient-projection method, 132–134, 150

Hessian matrix, 12
approximate, 26

indefinite matrix, 7
infeasible problem, 3
inner product, 6
integer programming, 4
interior-point methods, 5

Jacobian, 12

Karush-Kuhn-Tucker (KKT)
conditions, 22, 23
point, 22

Lagrange
function, see Lagrangian
multipliers, 21, 22, 23

Lagrangian, 21
augmented, see augmented Lagrangian

limit
inferior, 10
point, 10
superior, 10

line search
exact, 29
inexact, 29

line-search methods, 29
linear

INDEX 189

program, 4

programming, 4

linear conjugate-gradient methods, 32

linear independence

constraint qualification (LICQ), 21

Lipschitz continuous, 9

locally, 9

margin, 45, 54

mathematical

program, 2, 3–6

programming, 2–6

mean value theorem, 13

merit function, 34, 38, 39, 41, 43

minimizer

global, 17, 20

local, 18, 19, 20, 51, 131

strict local, 18

minimum, 18

model, 2

linear, 13

quadratic, 13, 25, 26, 30, 102, 136, 137

modelling, 2

neighbourhood, 8

Newton

direction, 25

equations, 25

step, 25

Newton’s method

for unconstrained optimization, 25–26, 52

nondifferentiable optimization, 5

nonlinear programming, 5, 24–40

norm

Euclidean, 7

Frobenius, 8

matrix, 7

vector, 7

null space, 8

objective function, 1, 3

open set, 8

operations research, 2

optimality

conditions, 18

for bound-constrained optimization, 130,
131

for constrained optimization, 20–24

for unconstrained optimization, 19–20

optimization, 1, 1–15

constrained, see constrained optimization

unconstrained, see unconstrained optimiza-
tion

orthogonal, 6

penalty

`1 exact, 35

function, 34, 41, 44, 45

methods, 34–36

parameter, 34, 36, 44

quadratic, 35

performance profiles, 76–77

piecewise linear path, 132

polytope, 4

positive definite matrix, 6, 25

positive semidefinite matrix, 6

pre-filtering, 93

predicted reduction, 31

primal variables, 21

programming, 2

projected gradient, 134

projected-gradient path, 132

projection operator, 132

quadratic

model, see model

quadratic programming, 5, 38

Quasi-Newton equation, 27

Quasi-Newton methods

190 INDEX

for unconstrained optimization, 26–28, 113–
119

restoration phase, 46
restricted

gradient, 131
Hessian, 131

saddle point, 20
secant

equation, 27
methods, see quasi-Newton methods

secant approximations, 113–119
second-order conditions, 19, 20, 23, 131
sequential quadratic programming (SQP), 38, 38–

40, 44
signed filter entries, 94, 151, 162
simplex method, 4
Slater’s constraint qualification, 21
softwares

FILTBOUND, 147, 152
FILTRANE, 52
FILTRUNC, 58, 73, 80, 191
IPOPT, 134
KNITRO, 134
LANCELOT, 37, 73, 87, 133, 147, 157
LBFGS-B, 134
LOQO, 134
SNOPT, 39, 40
TRON, 134
filterSQP, 40, 46

solution
global, 22, 23
local, 22, 23, 131

standard form, 4
stationarity condition, 22
stochastic programming, 5
symmetric matrix, 6

Taylor approximation

first-order, 13
sesond-order, 13

transpose, 6
trust region, 30, 52, 135
trust-region

methods, 29
for constrained problems, 39
for unconstrained problems, 29–32

radius, 30
subproblem, 30

unconstrained optimization
methods for, 24–33, 51–72
optimality conditions for, 19–20
problems, 3

unsigned filter entries, 79, 94, 151, 162
updating formula, 26

BFGS, 27, 113–115
DFP, 27
limited memory BFGS, 28
SR1, 27, 115–119

variable, 1
vector, 6

working set, 39, 132

Appendix A

Results of FILTRUNC

Tables A.1-A.6 document the runs for the filter and pure trust-region variants of our code
FILTRUNC on the unconstrained problems from the CUTEr collection. For each test problem,
the tables list the following characteristics :

• number of variables (n);

• number of iterations (# iter);

• number of conjugate-gradient iterations (# cgiter);

• required CPU time in seconds (CPU);

• final value of the objective function (f(x∗)).

For the filter variant, we also indicate the maximum number of filter entries (# nfilt). Note that
the symbol - indicates that the variant failed to solve the problem within the prescribed iteration
and CPU limitations.

191

19
2

R
es

ul
ts

of
FI

LT
R

U
N

C

filter variant pure trust-region variant
Problem n # iter # cgiter # nfilt CPU f(x∗) # iter # cgiter CPU f(x∗)

AIRCRFTB 5 21 78 1 0.0020 6.8926E-14 18 56 0.0014 5.8503E-15
ALLINITU 4 7 21 0 0.0007 5.7444E+00 7 21 0.0007 5.7444E+00
ARGLINA 200 1 1 1 1.9893 2.0000E+02 5 5 2.0182 2.0000E+02
ARGLINB 200 - - - - - - - - -
ARGLINC 200 - - - - - - - - -
ARWHEAD 5000 5 6 0 0.1044 1.1100E-12 5 6 0.1043 1.1100E-12
BARD 3 13 34 2 0.0036 8.2149E-03 11 25 0.0032 8.2149E-03
BDQRTIC 5000 12 80 2 0.6161 2.0006E+04 13 84 0.6421 2.0006E+04
BEALE 2 9 14 0 0.0006 6.2978E-15 8 14 0.0006 6.2978E-15
BIGGS3 3 14 37 1 0.0014 4.1398E-17 9 27 0.0010 4.1100E-17
BIGGS5 5 30 136 2 0.0043 3.7511E-11 44 169 0.0054 8.7526E-13
BIGGS6 6 410 775 4 0.0380 2.4268E-01 273 737 0.0277 2.4269E-01
BOX2 2 6 7 0 0.0005 1.6056E-13 6 7 0.0005 1.6056E-13
BOX3 3 7 19 1 0.0006 6.5695E-12 7 18 0.0006 2.3700E-12
BRKMCC 2 3 6 0 0.0003 1.6904E-01 3 6 0.0003 1.6904E-01
BROWNAL 200 2 3 1 0.9897 1.4731E-09 5 6 1.0195 1.4731E-09
BROWNBS 2 4 5 1 0.0004 1.9722E-31 25 39 0.0022 0.0000E+00
BROWNDEN 4 9 28 6 0.0008 8.5822E+04 11 35 0.0010 8.5822E+04
BRYBND 5000 11 89 0 0.5224 8.6725E-13 11 70 0.3715 9.3465E-13
CHAINWOO 4000 - - - - - - - - -
CHNROSNB 50 41 558 30 0.0133 1.2602E-13 60 723 0.0213 4.5672E-16
CLIFF 2 27 28 1 0.0010 1.9979E-01 28 31 0.0011 1.9979E-01
CLPLATEA 10100 20 1285 7 10.9350 -1.2931E-02 15 1130 6.3750 -1.2931E-02
CLPLATEB 4970 2 420 1 1.6702 -5.0512E-03 4 491 2.4030 -5.0512E-03
CLPLATEC 4970 2 7680 1 30.9090 -5.0147E-03 4 13072 71.6170 -5.0147E-03
COSINE 10000 11 21 0 0.2435 -9.9990E+03 11 16 0.2007 -9.9990E+03
CRAGGLVY 5000 14 146 8 0.4487 1.6882E+03 16 138 0.4443 1.6882E+03

Ta
bl

e
A

.1
:

N
um

er
ic

al
re

su
lts

fo
r

th
e

fil
te

r
an

d
pu

re
tr

us
t-

re
gi

on
va

ri
an

ts
of

FI
LT

R
U

N
C

(c
on

-
tin

ue
d

on
ne

xt
pa

ge
)

R
esults

ofFILTR
U

N
C

193

filter variant pure trust-region variant
Problem n # iter # cgiter # nfilt CPU f(x∗) # iter # cgiter CPU f(x∗)

CUBE 2 31 51 8 0.0013 7.3587E-20 36 60 0.0015 2.5721E-20
CURLY10 10000 14 62714 4 202.6020 -1.0032E+06 16 62674 250.4370 -1.0032E+06
CURLY20 10000 15 75234 2 312.0390 -1.0032E+06 17 75432 334.5440 -1.0032E+06
CURLY30 1000 16 7397 1 3.4927 -1.0032E+05 17 7007 3.4300 -1.0032E+05
DECONVU 61 22 360 1 0.0514 2.9591E-08 23 407 0.0516 1.7111E-08
DENSCHNA 2 6 12 0 0.0004 1.1028E-23 6 12 0.0004 1.1028E-23
DENSCHNB 2 3 6 0 0.0004 1.5777E-30 3 5 0.0004 1.5777E-30
DENSCHNC 2 11 21 1 0.0006 1.1329E-22 11 19 0.0007 9.9024E-15
DENSCHND 3 34 95 0 0.0018 2.5550E-09 34 93 0.0017 2.5644E-09
DENSCHNE 3 19 23 1 0.0010 1.8548E-14 18 23 0.0010 1.6624E-14
DENSCHNF 2 6 12 0 0.0005 6.5132E-22 6 12 0.0005 6.5132E-22
DIXMAANA 9000 11 25 0 0.3009 1.0000E+00 11 20 0.2451 1.0000E+00
DIXMAANB 9000 7 12 1 0.1614 1.0000E+00 11 19 0.2264 1.0000E+00
DIXMAANC 9000 8 16 1 0.1948 1.0000E+00 12 20 0.2668 1.0000E+00
DIXMAAND 9000 9 19 1 0.2210 1.0000E+00 13 23 0.2698 1.0000E+00
DIXMAANE 9000 13 391 0 1.8045 1.0000E+00 13 373 1.6234 1.0000E+00
DIXMAANF 9000 17 442 2 3.4257 1.0000E+00 27 451 3.4543 1.0000E+00
DIXMAANG 9000 22 438 1 3.1785 1.0000E+00 26 481 3.8567 1.0000E+00
DIXMAANH 9000 19 380 2 2.5920 1.0000E+00 28 449 3.5217 1.0000E+00
DIXMAANI 9000 14 7788 0 28.2500 1.0000E+00 14 7667 27.7570 1.0000E+00
DIXMAANJ 9000 31 718 2 9.2960 1.0000E+00 40 640 7.0225 1.0000E+00
DIXMAANK 9000 35 893 2 11.7360 1.0000E+00 42 913 10.3870 1.0000E+00
DIXMAANL 9000 31 624 3 8.0215 1.0000E+00 38 605 6.5845 1.0000E+00
DIXON3DQ 10000 3 17065 3 34.3660 2.1775E-12 9 22563 69.9030 2.0487E-09
DJTL 2 106 158 5 0.0054 -8.9515E+03 111 164 0.0054 -8.9515E+03
DQDRTIC 5000 4 11 1 0.0382 6.7298E-12 11 18 0.0787 1.4185E-13
DQRTIC 5000 33 202 28 0.4184 3.6250E-06 48 196 0.3001 3.5818E-06

Table
A

.2:
N

um
ericalresults

for
the

filter
and

pure
trust-region

variants
of

FILTR
U

N
C

(con-
tinued

on
nextpage)

19
4

R
es

ul
ts

of
FI

LT
R

U
N

C

filter variant pure trust-region variant
Problem n # iter # cgiter # nfilt CPU f(x∗) # iter # cgiter CPU f(x∗)

EDENSCH 10000 12 29 5 0.3480 6.0003E+04 19 47 0.5208 6.0003E+04
EG2 1000 3 3 0 0.0052 -9.9895E+02 3 3 0.0052 -9.9895E+02
EIGENALS 2550 44 1838 8 112.6 4.2691E-10 54 1900 119.5 6.0437E-10
EIGENBLS 2550 262 33950 85 2139.3 4.9966E-09 522 32065 2126.6 5.3324E-06
EIGENCLS 2652 518 28155 26 2097.1 2.7628E-11 808 48811 3549.6 1.2440E-10
ENGVAL1 10000 8 25 2 0.2448 1.1099E+04 13 30 0.3153 1.1099E+04
ENGVAL2 2 13 38 0 0.0008 2.4805E-16 13 38 0.0008 2.4805E-16
ERRINROS 50 55 549 16 0.0187 3.9904E+01 66 653 0.0238 3.9904E+01
EXPFIT 2 9 16 0 0.0007 2.4051E-01 9 16 0.0007 2.4051E-01
EXTROSNB 1000 56 407 26 0.1585 1.9242E-06 267 2300 6.4000 6.8479E-06
FMINSRF2 5625 - - - - - 639 4752 32.3660 1.0000E+00
FMINSURF 49 - - - - - 15 114 0.0057 5.4376E+02
FREUROTH 5000 16 41 1 0.2700 6.0816E+05 67 73 0.7300 6.0816E+05
GENROSE 500 533 5328 3 1.5157 1.0000E+00 360 4068 1.0911 1.0000E+00
GROWTHLS 3 160 304 4 0.0125 1.0040E+00 139 283 0.0105 1.0040E+00
GULF 3 29 59 2 0.0131 1.3258E-12 32 65 0.0174 1.2193E-10
HAIRY 2 104 184 2 0.0051 2.0000E+01 105 184 0.0051 2.0000E+01
HATFLDD 3 20 57 1 0.0015 6.6151E-08 22 55 0.0015 6.6151E-08
HATFLDE 3 20 55 0 0.0019 5.1204E-07 20 55 0.0019 5.1204E-07
HEART6LS 6 921 3521 6 0.1045 7.1941E-14 968 3265 0.0871 5.6037E-12
HEART8LS 8 98 579 0 0.0155 5.0318E-17 98 575 0.0146 1.9061E-18
HELIX 3 11 27 0 0.0008 6.2667E-18 11 27 0.0008 6.2667E-18
HIELOW 3 9 23 0 0.1630 8.7417E+02 9 22 0.1621 8.7417E+02
HILBERTA 2 1 2 1 0.0003 2.6046E-28 3 5 0.0004 7.3956E-32
HILBERTB 10 3 6 1 0.0005 6.7627E-17 6 11 0.0007 8.5991E-18
HIMMELBB 2 7 11 0 0.0006 2.9031E-17 7 11 0.0006 2.9031E-17
HIMMELBF 4 107 424 0 0.0087 3.1857E+02 107 422 0.0086 3.1857E+02

Ta
bl

e
A

.3
:

N
um

er
ic

al
re

su
lts

fo
r

th
e

fil
te

r
an

d
pu

re
tr

us
t-

re
gi

on
va

ri
an

ts
of

FI
LT

R
U

N
C

(c
on

-
tin

ue
d

on
ne

xt
pa

ge
)

R
esults

ofFILTR
U

N
C

195

filter variant pure trust-region variant
Problem n # iter # cgiter # nfilt CPU f(x∗) # iter # cgiter CPU f(x∗)

HIMMELBG 2 6 11 0 0.0005 1.3959E-22 6 11 0.0005 1.3959E-22
HIMMELBH 2 4 6 0 0.0004 -1.0000E+00 4 6 0.0004 -1.0000E+00
HYDC20LS 99 - - - - - - - - -
JENSMP 2 10 20 1 0.0007 1.2436E+02 16 21 0.0009 1.2436E+02
KOWOSB 4 11 35 2 0.0011 3.0780E-04 11 35 0.0011 3.0780E-04
LIARWHD 5000 13 24 7 0.1449 9.0726E-21 16 29 0.1615 1.0691E-22
LMINSURF 5329 - - - - - - - - -
LOGHAIRY 2 - - - - - - - - -
MANCINO 100 17 69 0 0.8219 3.4970E-20 18 41 0.8962 2.2697E-21
MARATOSB 2 743 1101 3 0.0309 -1.0000E+00 - - - -
MEXHAT 2 22 32 4 0.0009 -4.0010E-02 28 38 0.0012 -4.0010E-02
MEYER3 3 - - - - - - - - -
MINSURF 36 - - - - - 8 36 0.0025 1.0000E+00
MOREBV 5000 1 98 0 0.1464 2.1341E-10 1 98 0.1474 2.1341E-10
MSQRTALS 1024 42 8394 0 41.1135 7.9382E+03 40 6211 24.6770 7.9382E+03
MSQRTBLS 1024 33 6135 0 27.2500 7.9264E+03 32 4276 20.2610 7.9264E+03
NCB20 5010 75 740 3 30.1680 -1.4661E+03 58 564 24.3380 -1.4566E+03
NCB20B 5000 30 1334 1 57.0450 7.3513E+03 29 916 36.4690 7.3513E+03
NLMSURF 5329 - - - - - - - - -
NONCVXU2 5000 - - - - - - - - -
NONCVXUN 5000 - - - - - - - - -
NONDIA 5000 4 5 1 0.0408 9.3264E-09 5 6 0.0467 9.2570E-09
NONDQUAR 5000 53 1502 14 1.8023 2.5472E-06 38 439 1.0087 4.6370E-05
NONMSQRT 100 77 2464 24 0.3817 1.8054E+01 320 1132 2.3160 1.8054E+01
ODC 4900 29 2218 1 7.2580 -1.1372E-02 30 2261 7.4595 -1.1372E-02
OSBORNEA 5 22 81 6 0.0030 5.4649E-05 50 181 0.0072 5.4649E-05
OSBORNEB 11 16 142 0 0.0128 4.0138E-02 16 140 0.0125 4.0138E-02

Table
A

.4:
N

um
ericalresults

for
the

filter
and

pure
trust-region

variants
of

FILTR
U

N
C

(con-
tinued

on
nextpage)

19
6

R
es

ul
ts

of
FI

LT
R

U
N

C

filter variant pure trust-region variant
Problem n # iter # cgiter # nfilt CPU f(x∗) # iter # cgiter CPU f(x∗)

PALMER1C 8 5 28 4 0.0007 9.7605E-02 11 71 0.0017 9.7605E-02
PALMER1D 7 4 19 3 0.0006 6.5267E-01 17 58 0.0017 6.5267E-01
PALMER2C 8 4 24 4 0.0006 1.4369E-02 9 61 0.0013 1.4369E-02
PALMER3C 8 4 24 4 0.0006 1.9538E-02 9 61 0.0014 1.9538E-02
PALMER4C 8 4 23 4 0.0006 5.0311E-02 11 72 0.0016 5.0311E-02
PALMER5C 6 4 14 1 0.0005 2.1281E+00 9 24 0.0007 2.1281E+00
PALMER6C 8 4 23 3 0.0005 1.6387E-02 10 71 0.0014 1.6387E-02
PALMER7C 8 4 31 4 0.0006 6.0199E-01 13 98 0.0018 6.0199E-01
PALMER8C 8 4 27 4 0.0005 1.5977E-01 10 71 0.0014 1.5977E-01
PARKCH 15 28 257 4 126.1790 1.6237E+03 24 216 101.1600 1.6237E+03
PENALTY1 1000 37 44 3 0.6537 9.6862E-03 56 69 0.6752 9.6862E-03
PENALTY2 200 12 283 2 0.0346 4.7116E+13 54 332 0.0683 4.7116E+13
PENALTY3 200 25 110 1 3.2267 1.0010E-03 35 101 3.2765 9.9928E-04
POWELLSG 5000 16 63 9 0.1273 1.2357E-06 20 71 0.1322 7.0643E-07
POWER 100 23 203 1 0.0071 1.9404E-09 24 216 0.0075 1.8990E-09
QUARTC 5000 33 202 28 0.4159 3.6250E-06 48 196 0.3019 3.5818E-06
RAYBENDL 2046 252 114390 0 186.3400 9.6242E+01 - - - -
RAYBENDS 2046 315 27889 103 165.0300 9.6242E+01 - - - -
ROSENBR 2 22 38 7 0.0011 9.1504E-15 27 48 0.0012 8.0428E-22
S308 2 10 20 1 0.0006 7.7320E-01 10 18 0.0006 7.7320E-01
SBRYBND 500 - - - - - - - - -
SCHMVETT 5000 4 48 2 0.2589 -1.4994E+04 7 45 0.3088 -1.4994E+04
SCOSINE 5000 - - - - - - - - -
SCURLY10 100 - - - - - - - - -
SCURLY20 100 582 451200 217 19.0700 -1.0032E+04 452 404859 14.3700 -1.0032E+04
SCURLY30 100 906 750334 221 34.7020 -1.0032E+04 694 638656 25.8390 -1.0032E+04
SENSORS 100 29 145 0 0.9086 -1.9668E+03 29 139 0.8847 -1.9668E+03

Ta
bl

e
A

.5
:

N
um

er
ic

al
re

su
lts

fo
r

th
e

fil
te

r
an

d
pu

re
tr

us
t-

re
gi

on
va

ri
an

ts
of

FI
LT

R
U

N
C

(c
on

-
tin

ue
d

on
ne

xt
pa

ge
)

R
esults

ofFILTR
U

N
C

197

filter variant pure trust-region variant
Problem n # iter # cgiter # nfilt CPU f(x∗) # iter # cgiter CPU f(x∗)

SINEVAL 2 9 12 3 0.0005 1.3924E-16 59 100 0.0024 1.1805E-15
SINQUAD 10000 16 40 1 0.7977 -2.6423E+07 16 35 0.7149 -2.6423E+07
SISSER 2 14 25 0 0.0007 4.2061E-10 14 25 0.0007 4.2061E-10
SNAIL 2 77 113 2 0.0029 1.0215E-19 62 120 0.0026 1.9560E-17
SPARSINE 5000 35 81833 3 272.4800 2.2832E-10 49 100999 458.3750 3.1017E-11
SPARSQUR 10000 20 135 4 1.7432 1.2227E-07 23 120 1.7105 1.3168E-07
SPMSRTLS 4900 25 547 2 3.2902 3.4634E-11 19 416 1.7560 5.8338E-10
SROSENBR 5000 7 12 2 0.0470 7.6325E-12 9 15 0.0553 1.0349E-15
SSC 4900 2 141 1 0.9595 -2.0782E+00 4 158 1.2306 -2.0782E+00
STRATEC 10 28 198 5 52.1180 2.2123E+03 31 205 56.1620 2.2123E+03
TESTQUAD 5000 6 1769 4 1.8488 4.2524E-13 11 1787 1.8563 4.2353E-13
TOINTGOR 50 7 152 3 0.0026 1.3739E+03 9 157 0.0033 1.3739E+03
TOINTGSS 5000 4 12 1 0.0862 1.0004E+01 13 26 0.1850 1.0002E+01
TOINTPSP 50 85 316 40 0.0132 2.2556E+02 17 103 0.0030 2.2556E+02
TOINTQOR 50 4 44 1 0.0010 1.1755E+03 7 56 0.0016 1.1755E+03
TQUARTIC 5000 1 2 1 0.0156 5.5847E-21 11 18 0.0938 1.8857E-16
TRIDIA 5000 5 1124 2 1.0509 7.2945E-14 11 1315 1.2708 1.2573E-13
VARDIM 200 29 29 3 0.0151 1.1665E-24 29 29 0.0151 4.7159E-19
VAREIGVL 50 16 501 2 0.0193 7.1497E-11 16 290 0.0150 1.6682E-10
VIBRBEAM 8 46 196 7 0.0155 1.7489E+00 59 265 0.0240 1.7489E+00
WATSON 12 9 48 0 0.0033 8.0778E-10 9 49 0.0035 8.0312E-10
WOODS 10000 53 169 11 1.2684 1.2982E-13 58 180 1.2191 3.4171E-12
YFITU 3 42 104 17 0.0033 6.4285E-10 66 157 0.0051 6.6720E-13
ZANGWIL2 2 1 1 1 0.0003 -1.8200E+01 2 2 0.0003 -1.8200E+01

Table
A

.6:N
um

ericalresults
forthe

filter
and

pure
trust-region

variants
ofFILTR

U
N

C

198 Results of FILTRUNC

Appendix B

Results of FILTBOUND

Tables B.1-B.4 document the runs for the filter and pure trust-region variants of our code
FILTBOUND on the bound-constrained problems from the CUTEr collection. For each test
problem, the tables list the following characteristics :

• number of variables (n);

• number of iterations (# iter);

• number of conjugate-gradient iterations (# cgiter);

• required CPU time in seconds (CPU);

• final value of the objective function (f(x∗)).

For the filter variant, we also indicate the maximum number of filter entries (# nfilt). Note that
the symbol - indicates that the variant failed to solve the problem within the prescribed iteration
and CPU time limitations.

199

20
0

R
es

ul
ts

of
FI

LT
B

O
U

N
D

filter variant pure trust-region variant
Problem n # iter # cgiter # nfilt CPU f(x∗) # iter # cgiter CPU f(x∗)

3PK 30 12 459 7 0.0108 1.7201E+00 18 544 0.0127 1.7201E+00
ALLINIT 3 7 13 1 0.0009 1.6706E+01 6 15 0.0008 1.6706E+01
BDEXP 5000 13 73 0 0.4006 2.4047E-04 12 69 0.3868 2.4047E-04
BIGGSB1 5000 - - - - - - - - -
BQP1VAR 1 1 0 0 0.0003 0.0000E+00 1 0 0.0003 0.0000E+00
BQPGABIM 46 3 25 0 0.0021 -3.7903E-05 3 24 0.0021 -3.7903E-05
BQPGASIM 50 3 22 0 0.0020 -5.5198E-05 3 22 0.0020 -5.5198E-05
BQPGAUSS 2003 6 8966 0 13.7020 -3.6258E-01 6 8966 13.7700 -3.6258E-01
CAMEL6 2 6 8 0 0.0006 -1.0316E+00 6 7 0.0006 -1.0316E+00
CHEBYQAD 100 75 3117 19 3.0350 8.7162E-03 115 5859 5.3150 8.7158E-03
CHENHARK 5000 304 1103584 0 2109.0649 -2.0000E+00 301 1107770 2111.1121 -2.0000E+00
CVXBQP1 10000 1 1 0 19.6260 2.2502E+06 1 1 19.4990 2.2502E+06
DECONVB 61 18 637 1 0.0521 4.2827E-09 14 250 0.0251 5.5886E-12
EG1 3 5 5 0 0.0006 -1.1328E+00 5 5 0.0006 -1.1328E+00
EXPLIN 1200 15 405 1 1.2072 -7.1925E+07 31 325 1.3283 -7.1925E+07
EXPLIN2 1200 12 199 1 1.1440 -7.1999E+07 12 191 1.1184 -7.1999E+07
EXPQUAD 1200 160 884 31 13.0540 -3.6849E+09 134 208 33.7250 -3.6849E+09
HADAMALS 380 9 34 1 0.1022 7.3118E+03 9 24 0.0985 7.3118E+03
HART6 6 9 18 0 0.0013 -3.3229E+00 9 18 0.0013 -3.3229E+00
HATFLDA 4 29 66 1 0.0025 2.4401E-12 28 71 0.0026 3.3473E-14
HATFLDB 4 25 44 1 0.0020 5.5728E-03 25 52 0.0021 5.5728E-03
HATFLDC 25 4 33 0 0.0013 7.4939E-14 4 33 0.0013 7.4939E-14
HIMMELP1 2 10 5 0 0.0008 -6.2054E+01 10 5 0.0008 -6.2054E+01
HS1 2 11 14 3 0.0010 5.5402E-15 33 45 0.0022 5.3596E-17
HS110 200 7 0 1 0.0008 -4.5778E+01 7 0 0.0008 -4.5778E+01
HS2 2 6 3 0 0.0006 4.9412E+00 6 3 0.0006 4.9412E+00
HS25 3 0 0 0 0.0003 3.283E+01 0 0 0.0003 3.283E+01

Ta
bl

e
B

.1
:N

um
er

ic
al

re
su

lts
fo

rt
he

fil
te

r
an

d
pu

re
tr

us
t-

re
gi

on
va

ri
an

ts
of

FI
LT

B
O

U
N

D
(c

on
-

tin
ue

d
on

ne
xt

pa
ge

)

R
esults

ofFILTB
O

U
N

D
201

filter variant pure trust-region variant
Problem n # iter # cgiter # nfilt CPU f(x∗) # iter # cgiter CPU f(x∗)

HS3 2 1 0 1 0.0003 2.1065E-20 4 0 0.0005 0.0000E+00
HS38 4 49 179 6 0.0046 2.4984E-18 56 171 0.0049 3.7798E-13
HS3MOD 2 2 0 1 0.0004 7.8886E-31 4 4 0.0005 0.0000E+00
HS4 2 1 0 0 0.0003 2.6667E+00 1 0 0.0003 2.6667E+00
HS45 5 2 0 0 0.0004 1.0000E+00 2 0 0.0004 1.0000E+00
HS5 2 10 12 1 0.0009 -1.9132E+00 4 4 0.0005 -1.9132E+00
JNLBRNG1 9604 19 1746 0 15.4620 -1.8057E-01 19 1750 15.5400 -1.8057E-01
JNLBRNG2 9604 11 1788 0 15.0310 -4.1487E+00 11 1788 15.2270 -4.1487E+00
JNLBRNGA 9604 18 1929 0 16.2910 -2.7110E-01 18 1929 16.3300 -2.7110E-01
JNLBRNGB 9604 7 5652 1 44.3230 -6.3007E+00 7 4531 35.4890 -6.3007E+00
LINVERSE 1999 11 1860 1 3.6007 6.8100E+02 23 1977 3.8677 6.8100E+02
LOGROS 2 42 36 7 0.0028 0.0000E+00 57 66 0.0036 0.0000E+00
MAXLIKA 8 8 37 3 0.0164 1.1493E+03 29 133 0.0593 1.1363E+03
MCCORMCK 5000 9 19 3 1.0651 -4.5666E+03 5 11 0.3148 -4.5666E+03
MDHOLE 2 54 85 5 0.0035 0.0000E+00 53 87 0.0035 0.0000E+00
MINSURFO 5002 - - - - - 13 929 5.3090 2.5069E+00
NCVXBQP1 10000 4 0 0 84.3350 -1.9855E+10 4 0 84.9720 -1.9855E+10
NCVXBQP2 10000 8 109 1 81.5080 -1.3340E+10 8 109 80.9630 -1.3340E+10
NCVXBQP3 10000 9 186 1 57.0800 -6.5594E+09 8 187 57.6960 -6.5594E+09
NOBNDTOR 5184 23 1316 0 6.8315 -4.4993E-01 23 1316 6.8255 -4.4993E-01
NONSCOMP 5000 8 58 1 0.2486 1.8981E-14 8 44 0.2482 2.6382E-14
OBSTCLAE 9604 4 4734 0 42.5860 1.8865E+00 5 4795 43.1040 1.8865E+00
OBSTCLAL 9604 20 788 0 6.4845 1.8865E+00 20 788 6.5685 1.8865E+00
OBSTCLBL 9604 15 1651 0 21.0760 7.2722E+00 15 1686 21.5600 7.2722E+00
OBSTCLBM 9604 5 895 0 18.1620 7.2722E+00 5 895 18.1710 7.2722E+00
OBSTCLBU 9604 16 692 0 11.6760 7.2722E+00 16 692 11.7500 7.2722E+00
ODNAMUR 8 13 47821 10 317.6420 9.2366E+03 13 45604 308.6610 9.2366E+03

Table
B

.2:N
um

ericalresults
forthe

filter
and

pure
trust-region

variants
ofFILTB

O
U

N
D

(con-
tinued

on
nextpage)

20
2

R
es

ul
ts

of
FI

LT
B

O
U

N
D

filter variant pure trust-region variant
Problem n # iter # cgiter # nfilt CPU f(x∗) # iter # cgiter CPU f(x∗)

OSLBQP 11130 1 0 0 0.0004 6.2500E+00 1 0 0.0004 6.2500E+00
PALMER1 4 24 15 3 0.0030 1.1755E+04 30 32 0.0038 1.1755E+04
PALMER1A 6 89 349 16 0.0150 8.9883E-02 188 801 0.0318 8.9883E-02
PALMER1B 4 33 59 16 0.0043 3.4473E+00 38 68 0.0048 3.4473E+00
PALMER1E 8 150 1357 10 0.0411 8.3523E-04 138 922 0.0315 8.3523E-04
PALMER2 4 35 34 4 0.0039 3.6511E+03 17 27 0.0021 3.6511E+03
PALMER2A 6 45 147 9 0.0068 1.7110E-02 80 292 0.0114 1.7110E-02
PALMER2B 4 26 60 5 0.0031 6.2327E-01 23 59 0.0028 6.2327E-01
PALMER2E 8 183 1600 6 0.0417 2.0650E-04 231 1598 0.0450 2.0650E-04
PALMER3 4 28 41 1 0.0034 2.4170E+03 26 32 0.0029 2.2660E+03
PALMER3A 6 64 228 15 0.0089 2.0431E-02 126 530 0.0181 2.0431E-02
PALMER3B 4 22 40 2 0.0025 4.2276E+00 26 67 0.0032 4.2276E+00
PALMER3E 8 110 969 10 0.0255 5.0741E-05 131 982 0.0264 5.0741E-05
PALMER4 4 28 41 1 0.0034 2.4240E+03 25 35 0.0029 2.2854E+03
PALMER4A 6 42 152 7 0.0063 4.0606E-02 60 211 0.0085 4.0606E-02
PALMER4B 4 35 76 7 0.0041 6.8351E+00 26 64 0.0031 6.8351E+00
PALMER4E 8 133 1127 19 0.0305 1.4800E-04 113 807 0.0239 1.4800E-04
PALMER5A 8 - - - - - - - - -
PALMER5B 9 419 3992 30 0.0885 9.7525E-03 - - - -
PALMER5D 8 2 7 2 0.0005 8.7339E+01 8 17 0.0010 8.7339E+01
PALMER5E 8 749 4607 50 0.1178 2.2113E-02 - - - -
PALMER6A 6 227 990 16 0.0283 5.5949E-02 214 815 0.0265 5.5949E-02
PALMER6E 8 38 355 5 0.0083 2.2395E-04 118 833 0.0206 2.2395E-04
PALMER7A 6 - - - - - - - - -
PALMER7E 8 664 4245 16 0.1060 1.0154E+01 566 3019 0.0849 1.0154E+01
PALMER8A 6 49 184 16 0.0061 7.4010E-02 50 124 0.0059 7.4010E-02
PALMER8E 8 35 263 6 0.0065 6.3393E-03 60 385 0.0100 6.3393E-03

Ta
bl

e
B

.3
:N

um
er

ic
al

re
su

lts
fo

rt
he

fil
te

r
an

d
pu

re
tr

us
t-

re
gi

on
va

ri
an

ts
of

FI
LT

B
O

U
N

D
(c

on
-

tin
ue

d
on

ne
xt

pa
ge

)

R
esults

ofFILTB
O

U
N

D
203

filter variant pure trust-region variant
Problem n # iter # cgiter # nfilt CPU f(x∗) # iter # cgiter CPU f(x∗)

PENTDI 5000 1 0 0 0.0173 -7.5000E-01 1 0 0.0174 -7.5000E-01
PROBPENL 500 1 0 0 0.0788 3.9920E-07 1 0 0.0788 3.9920E-07
PSPDOC 4 14 28 6 0.0013 2.4142E+00 6 16 0.0007 2.4142E+00
QR3DLS 610 137 134882 21 166.3570 1.1050E-10 212 18794 24.9150 1.0985E-10
QRTQUAD 5000 - - - - - - - - -
QUDLIN 5000 4 0 0 30.9030 -1.2500E+09 4 0 25.3180 -1.2500E+09
S368 8 4 5 0 0.0010 -6.2500E-01 4 5 0.0010 -6.2500E-01
SCON1DLS 5000 - - - - - - - - -
SIM2BQP 1 1 0 0 0.0003 0.0000E+00 1 0 0.0003 0.0000E+00
SIMBQP 2 1 0 1 0.0003 0.0000E+00 4 0 0.0005 0.0000E+00
SINEALI 1000 6 39 0 0.0370 -9.9901E+04 6 39 0.0370 -9.9901E+04
SPECAN 9 10 74 2 0.5989 1.6600E-13 10 61 0.5451 1.6469E-13
TORSION1 5184 23 815 0 3.9717 -4.3028E-01 23 815 4.0007 -4.3028E-01
TORSION2 5184 9 808 0 6.5025 -4.3028E-01 9 808 6.5215 -4.3028E-01
TORSION3 5184 11 224 0 1.0275 -1.2170E+00 11 224 1.0157 -1.2170E+00
TORSION4 5184 9 347 0 8.5040 -1.2170E+00 9 347 8.6290 -1.2170E+00
TORSION5 5184 6 75 0 0.3584 -2.8634E+00 6 75 0.3672 -2.8634E+00
TORSION6 5184 5 96 0 6.7630 -2.8634E+00 5 96 6.7945 -2.8634E+00
TORSIONA 5184 23 817 0 4.2703 -4.1830E-01 23 817 4.2707 -4.1830E-01
TORSIONB 5184 9 875 0 7.1060 -4.1830E-01 9 875 7.1420 -4.1830E-01
TORSIONC 5184 11 224 0 1.0995 -1.2042E+00 11 224 1.1121 -1.2042E+00
TORSIOND 5184 9 332 0 9.0220 -1.2042E+00 9 332 9.1570 -1.2042E+00
TORSIONE 5184 6 75 0 0.3861 -2.8502E+00 6 75 0.3969 -2.8502E+00
TORSIONF 5184 5 96 0 7.2495 -2.8502E+00 5 96 7.2455 -2.8502E+00
WEEDS 3 34 59 4 0.0033 2.5873E+00 35 62 0.0038 2.5873E+00
YFIT 3 39 90 14 0.0043 4.8261E-10 68 172 0.0076 6.7413E-13

Table
B

.4:N
um

ericalresults
forthe

filter
and

pure
trust-region

variants
ofFILTB

O
U

N
D

204 Results of FILTBOUND

