
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

DOCTOR OF SCIENCES

Program analysis and transformation for data-intensive system evolution

Cleve, Anthony

Award date:
2009

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/4daf837d-0718-481a-94a6-908844d322ed

Facultés Universitaires Notre-Dame de la Paix
Faculté d’Informatique

Namur, Belgique

Program Analysis and Transformation

for Data-Intensive System Evolution

Anthony Cleve

October 2009

Thèse présentée en vue de l’obtention du grade de Docteur en Sciences
(orientation Informatique)

c© Anthony Cleve, 2009

c© Presses universitaires de Namur, 2009
Rempart de la Vierge, 13
B - 5000 Namur (Belgique)

Imprimé en Belgique
ISBN : 978-2-87037-655-3
Dépôt légal: D/2009/1881/42

Toute reproduction d’un extrait quelconque de ce
livre, hors des limites restrictives prévues par la loi,
par quelque procédé que ce soit, et notamment
par photocopie ou scanner,
est strictement interdite pour tous pays.

PhD Committee

Prof. Jean-Marie Jacquet, University of Namur (President)
Prof. Jean-Luc Hainaut, University of Namur (Promotor)
Prof. Ralf Lämmel, Universität Koblenz-Landau (External Reviewer)
Prof. Kim Mens, University of Louvain, Belgium (External Reviewer)
Prof. Vincent Englebert, University of Namur (Internal Reviewer)
Prof. Wim Vanhoof, University of Namur (Internal Reviewer)

The public PhD defence was held on the 29th October 2009, at the University of
Namur.

Abstract

Data-intensive software systems are generally made of a database (sometimes in the
form of a set of files) and a collection of application programs in strong interaction
with the former. They constitute critical assets in most enterprises, since they
support business activities in all production and management domains. Data-
intensive systems form most of the so-called legacy systems: they typically are one
or more decade old, they are very large, heterogeneous and highly complex. Many of
them significantly resist modifications and change due to the lack of documentation,
to the use of ageing technologies and to inflexible architectures. Therefore, the
evolution of data-intensive systems clearly calls for automated support.

This thesis particularly explores the use of automated program analysis and
transformation techniques in support to the evolution of the database component
of the system. The program analysis techniques aim to ease the database evolution
process, by helping the developers to understand the data structures that are to
be changed, despite the lack of precise and up-to-date documentation. The objec-
tive of the program transformation techniques is to support the adaptation of the
application programs to the new database. This adaptation process is studied in
the context of two realistic database evolution scenarios, namely database platform
migration and database schema refactoring.

Résumé

Les systèmes d’information sont généralement composés d’une base de données
(parfois sous la forme d’un ensemble de fichiers) et d’une collection de programmes
d’application en forte interaction avec celle-ci. Ces systèmes constituent des com-
posants critiques dans la plupart des entreprises et organisations, car ils supportent
leurs activités dans tous les domaines de production et de gestion. Les systèmes
d’information forment souvent ce que l’on appelle des systèmes hérités: ils ont été
développés il y a plus de dix ans, sont très volumineux, hétérogènes et hautement
complexes. La plupart d’entre eux résistent fortement au changement, de part le
manque de documentation, l’utilisation de technologies obsolètes et d’architectures
peu flexibles. C’est pourquoi l’évolution des systèmes d’information nécessite un
plus grand support automatisé.

Cette thèse se propose d’explorer l’utilisation de techniques d’analyse et de
transformation automatique de programmes, comme support à l’évolution de la
base de données d’un système d’information. Les techniques d’analyse ont pour but
de faciliter le processus d’évolution de la base de données, en aidant les développeurs
à comprendre les structures de données qui doivent évoluer, malgré le manque de
documentation. L’objectif des techniques de transformation de programmes et
de supporter l’adaptation des programmes d’applications à la nouvelle base de
données. Ce processus d’adaptation est étudié dans le contexte de deux scénarios
réalistes d’évolution: la migration de la base de données vers une nouvelle plate-
forme et la restructuration de son schéma.

Preface

It’s a sign of mediocrity when you demonstrate gratitude with moderation.
– Roberto Benigni

The PhD student paradox is the following. On the one hand, doing a PhD thesis is
typically an isolating experience, where the student often feels alone, lost and mis-
understood. On the other hand, accomplishing such a work is impossible without
the support and encouragements of numerous people, including colleagues, family
members and friends. This the reason why I would like to take the time to thank
all the persons without whom I would have never completed this thesis.

First of all, I would like to express my gratitude to my supervisor, Prof. Jean-
Luc Hainaut, who gave me the opportunity to perform this PhD research. Jean-
Luc, thank you for your trust in me. Thank you for teaching me to learn and to
teach. Thank you for providing me with a lot of freedom in my work. Thank you
for allowing me to travel a lot and, consequently, to meet so many people.

I wish to warmly thank the other members of my PhD committee, Prof. Jean-
Marie Jacquet, Prof. Ralf Lämmel, Prof Kim Mens, Prof. Vincent Englebert and
Prof. Wim Vanhoof for their very detailed comments on the preliminary version
of this thesis. Their constructive feedback and judicious advices allowed me to
significantly improve the quality of the dissertation. Obviously, any remaining
errors and inconsistencies are mine.

Most of this research would have been impossible without the cooperation of
ReVeR, our industrial partner. This partnership allowed me to improve and vali-
date my research results in the context of real-life reverse engineering and migration
projects. I would like to sincerely thank Jean Henrard, for playing the implicit role
of co-supervisor and for helping me to convert naive prototypes into scalable tools.
Special thanks are also due to Jean-Marc Hick for his coaching on the topic of
schema mapping, to Didier Roland for his project leadership, to Vincent Ciselet
for his great sense of humor, and to Dominique Orban for his enthusiasm and trust.

The SEN1 group of CWI in Amsterdam has been another essential research
partner of this work. I am very grateful to Paul Klint, who welcomed me two times
in his research team. Working in this group has been an excellent experience, from
which my taste for research definitely originates. Many thanks to all the (former)
SEN1 members, and in particular to Paul Klint, Arie van Deursen, Mark van den
Brand, Ralf Lämmel, Jurgen Vinju, Magiel Bruntink, Tijs van der storm, Rob

x

Economopoulos and Diego Ordonez. Special thanks to Arie van Deursen for the
enthusiastic supervision of my Master’s thesis internship in 2003. I also thank Niels
Veerman and Steven Klusener, from the Free University of Amsterdam, for their
precious cooperation at that time.

I would like to thank all the members of the Computer Science Faculty of the
University of Namur, for providing me with such a pleasant working atmosphere.
Special thanks to Anne-France, Virginie, Jean-Roch, Ravi and Jonathan, my (for-
mer) colleagues at the Laboratory of Database Engineering, for their positive atti-
tude at work and their encouragements. I thank all the coffee-break people for the
funny discussions we had there. Many thanks to Vincent, Laurent and Patrick,
who contributed to strengthening my motivation when needed. I am grateful to
Isabelle, Gaby, Jean-Roch and Vincent, for their friendship. I thank all the mem-
bers of the MoVES interuniversity network. Special thanks to Arnaud Hubaux,
Ragnhild Van Der Straeten, Dirk Deridder, Kim Mens, Sergio Castro, Tom Mens,
Anne Keller, and Olaf Muliawan, for their cooperation on the particular topic of
inconsistency management.

I would like to thank all my close friends for their patience, their encouragements
and their enthusiasm during our rare, yet intense distracting activities. Special
thanks are due to Loup, Valet, Bertrand and all the Stiltwalkers of Namur.

Last but not least, none of this would have been possible without the invaluable
support of my wonderful family. I thank my parents, Antoine, Loreta and Marc,
who taught me the most essential things. I warmly thank Louis and Marie-Pierre
for their precious assistance in so many occasions, especially during the last months
of writing. I am extremely grateful to my wife, Julie, for her love, her patience and
her encouragements all along the road. Julie, I sincerely apologize for my long and
frequent absences, particularly when I was home. I hope you will be able to forgive
me one day. I thank Tristan and Naomé for their beautiful smiles, that erase all
my doubts in a second. I thank Sacha for keeping me awake day and night, which
helped me to submit this dissertation in due time.

Anthony Cleve, October 2009.

This research was supported by the Belgian Région Wallonne and the European
Social Fund, in the context of the RISTART project. Partial support was also
received from the Interuniversity Attraction Poles Programme of the Belgian State,
Belgian Science Policy, in the context of the MoVES project.

à Julie, Tristan, Naomé et Sacha

Contents

List of Figures v

List of Tables ix

List of Acronyms xi

1 Introduction 1

1.1 Data-intensive software systems . 1

1.2 The database component of software systems 1

1.3 On the complexity of data-intensive software systems 2

1.4 Evolution, maintenance and reverse engineering 3

1.5 System reengineering and migration 3

1.6 Goals of the Thesis . 4

1.7 Research questions . 4

1.8 Outline of the Thesis . 5

1.9 Publications . 7

I Research Domain 9

2 Conceptual Background 11

2.1 Database design . 11

2.2 Data(base) reverse engineering . 12

2.3 The Generic Entity-Relationship model 13

2.4 The transformational approach . 18

3 A Framework for Data-Intensive System Evolution 25

3.1 The nature of consistency relationships 25

3.2 Classification of database evolution scenarios 33

3.3 Database evolution processes . 38

3.4 Thesis scope, contributions and outline revisited 39

i

ii CONTENTS

II The System Migration Problem 43

4 Strategies for Data-Intensive System Migration 45
4.1 System migration: State of the Art 45
4.2 Migration reference model . 49
4.3 Schema conversion . 52
4.4 Data conversion . 56
4.5 Program conversion . 58
4.6 Strategies comparison . 64
4.7 Conclusions . 68

III Program Analysis for Database Reverse Engineering 69

5 Static Dependency Analysis 71
5.1 Introduction . 71
5.2 Basic concepts . 72
5.3 Problem statement . 75
5.4 Slicing with embedded DML . 76
5.5 Slicing with call-based DML . 79
5.6 Tool support . 83
5.7 Industrial applications . 85
5.8 Related work . 88
5.9 Conclusions . 89

6 Dynamic Analysis of SQL Queries 91
6.1 Introduction . 91
6.2 Static VS dynamic SQL . 95
6.3 Applications of SQL statement analysis 98
6.4 SQL statement capturing techniques 101
6.5 Evaluation and applicability of SQL capturing techniques 107
6.6 Aspect-based dynamic analysis . 108
6.7 SQL trace processing . 113
6.8 Application to database reverse engineering 116
6.9 Initial experiment . 120
6.10 Conclusions and perspectives . 129

IV Adapting Programs to Database Platform Migration 131

7 Migrating Standard Files to a Relational Database 133
7.1 COBOL file management . 133
7.2 Wrapper-based program conversion 136
7.3 Statement rewriting program conversion 139
7.4 COBOL-to-SQL translation . 140

CONTENTS iii

7.5 About correctness . 151
7.6 Tool support . 154
7.7 Initial case studies . 156
7.8 Conclusions . 157

8 Migrating a CODASYL Database to a Relational Database 159
8.1 CODASYL data management . 159
8.2 Migration methodology . 162
8.3 Wrapper-based program conversion 164
8.4 CODASYL-to-SQL translation . 172
8.5 Tool Support . 210
8.6 Related Work . 214
8.7 Conclusions . 215

9 Industrial Migration Projects 217
9.1 Project 1: IDS/II to DB2 . 217
9.2 Project 2: IDS/II to DB2 with a refined methodology 220
9.3 Evaluation . 225
9.4 Conclusions and lessons learned . 226

V Adapting Programs to Database Schema Change 229

10 A Co-transformational Approach to Schema Refactoring 231
10.1 Introduction . 231
10.2 General approach . 232
10.3 The LDA language . 233
10.4 Schema transformations . 237
10.5 Program adaptation by co-transformations 237
10.6 Co-transformation rules . 242
10.7 Applications . 259
10.8 Tool support . 266
10.9 Related work . 266
10.10Discussion . 269
10.11Conclusions . 271

VI Conclusions 273

11 Conclusions 275
11.1 Summary of the contributions . 275
11.2 Lessons learned . 278
11.3 Open issues and future challenges . 279

Bibliography 283

iv CONTENTS

Appendices 297

A COBOL File Handling Statements 297
A.1 OPEN statement . 297
A.2 CLOSE statement . 297
A.3 START statement . 297
A.4 READ statement . 298
A.5 WRITE statement . 300
A.6 REWRITE statement . 300
A.7 DELETE statement . 301

B LDA Language: Syntax and Partial Semantics 303
B.1 Concrete syntax . 303
B.2 Semantics . 305

List of Figures

1.1 General structure of the thesis. 6

2.1 Standard database design processes. 11
2.2 Standard database reverse engineering processes. 12
2.3 Sample GER conceptual schema. 15
2.4 Sample GER logical schema. 17
2.5 Sample GER physical schema. 19
2.6 Schema transformation defined as a couple of mappings. 20
2.7 Structural mapping of a schema transformation. 20

3.1 Consistency relationships in data-intensive applications. 26
3.2 Semantically equivalent conceptual, logical and physical schemas. . . 28
3.3 Illustration of semantics-decreasing logical design. 29
3.4 DDL code corresponding to physical schema of Figure 3.2. 30
3.5 Consistency of a SQL query w.r.t. the underlying DML syntax. . . . 31
3.6 Consistency of a SQL query w.r.t. the underlying logical schema. . . 32
3.7 Consistency of an insert query w.r.t. an implicit foreign key. 33
3.8 Database evolution scenarios classified according to three dimensions. 35
3.9 Examples of S+, S− and S= transformations. 36
3.10 Classification of the database evolution scenarios studied in this thesis. 40
3.11 Thesis chapters VS database evolution scenarios and processes . . . 41

4.1 Overall view of the database-first system migration process 50
4.2 The six reference IS migration strategies 52
4.3 Physical schema conversion strategy (D1). 53
4.4 Example of COBOL/SQL physical schema conversion. 54
4.5 Conceptual schema conversion strategy (D2) 55
4.6 Example of COBOL/SQL conceptual schema conversion. 57
4.7 Mapping-based data migration architecture. 57
4.8 A legacy COBOL code fragment.s 59
4.9 Wrapper-based migration architecture. 60
4.10 Fragment of Fig. 4.8 converted using the Wrapper strategy. 61
4.11 Fragment of Fig. 4.8 converted using the Statement Rewriting strategy. 63

v

vi LIST OF FIGURES

4.12 Fragment of Fig. 4.8 converted using the Logic Rewriting strategy. . 65

5.1 A sample program and its corresponding SDG. 73
5.2 Sample program slice computed on the program of Figure 5.1. 74
5.3 Illustration of native, built-in, embedded, and call-based DMLs . . . 76
5.4 Methodology for slicing with embedded DML code 76
5.5 A COBOL/SQL code fragment . 78
5.6 Methodology to slice programs with call-based DML 80
5.7 Calling program code . 81
5.8 Data access module code . 82
5.9 Successive steps to analyze the DAM call of Figure 5.7 83
5.10 A sample ASF equation for embedded SQL analysis 83
5.11 A sample ASF equation for IMS calls analysis 84

6.1 Two tables including implicit constructs 92
6.2 Two implicit constructs revealed by the analysis of Query 1 93
6.3 Seven capturing techniques for SQL statement executions. 103
6.4 Logging SQL operations by program instrumentation. 103
6.5 Illustration of API overloading. 104
6.6 Program adaptation for API overloading. 105
6.7 Reconstructing a fictitious update query using an update trigger . . 106
6.8 Tracing SQL query executions . 110
6.9 Tracing SQL query executions in the presence of statement preparation111
6.10 Tracing SQL result extraction . 112
6.11 A JDBC code fragment together with a corresponding execution trace115
6.12 An execution trace with output-input dependencies. 119
6.13 An execution trace with input-input dependencies. 119
6.14 Definition of two tracing tables. 122
6.15 Definition of intermediate views for each implicit foreign key. 124
6.16 Definition of intermediate tables for each implicit foreign key. 125
6.17 Counting foreign-key based joins between tables t1 and t2. 126
6.18 Counting foreign-key based output-input dependencies. 126

7.1 Example of a SELECT clause . 134
7.2 Example of FD paragraph . 134
7.3 Sample ENVIRONMENT division. 137
7.4 Sample DATA division transformation. 138
7.5 COBOL definition of the wrapper invocation arguments. 139
7.6 Replacement of a random READ statement with a wrapper invocation.140
7.7 SQL statements used to translate COBOL file handling primitives. . 141
7.8 One-to-one translation (D1) of a COBOL file into a relational table . 142
7.9 Definition of file STUDENT. 142
7.10 Example of a one-to-one schema conversion (D1). 143
7.11 A procedure that closes the current cursor. 146
7.12 OPEN translation for file STUDENT. 147

LIST OF FIGURES vii

7.13 OPEN OUTPUT translation for file STUDENT. 147
7.14 START key usages VS SQL cursors. 148
7.15 START translation for file STUDENT. 148
7.16 READ NEXT translation for file STUDENT. 149
7.17 READ KEY IS translation for file STUDENT. 150
7.18 WRITE translation for file STUDENT. 150
7.19 REWRITE translation for file STUDENT. 151
7.20 DELETE translation for file STUDENT. 151
7.21 Example contents for file STUDENT. 152
7.22 Table STUDENT obtained from the file of Figure 7.21. 152
7.23 Tool architecture for program adaptation. 155
7.24 Case studies overview. 156

8.1 Migration architecture. 165
8.2 Example CODASYL to relational mapping. 166
8.3 CODASYL VS relational schema and instances. 169
8.4 Impact of FIND statements on the current record of a set type. 169
8.5 Example of legacy code transformation. 172
8.6 Tool architecture for program adaptation. 211
8.7 A code fragment of the wrapper generator. 213
8.8 Rewriting a FIND NEXT WITHIN set statement as a wrapper call. . . 213
8.9 Rewriting a FIND NEXT WITHIN set statement as a procedure call. . 214

9.1 Project 1: general architecture. 218
9.2 Project 2: refined methodology. 220
9.3 Project 2: Two-phase system migration. 223

10.1 Co-transformational approach. 233
10.2 Sample GER schema. 234
10.3 Approximate correspondences between data modification primitives. 236
10.4 Example LDA program allowing the creation of an ORDER. 238
10.5 Transformation of a compound attribute into an entity type. 239
10.6 Transformation of a one-to-many relationship type into a foreign key. 239
10.7 Graphical representation of a database co-transformation. 241
10.8 Propagation of the schema transformation of Figure 10.5. 242
10.9 Propagation of the schema transformation of Figure 10.6. 242
10.10Example of relational schema refactoring. 260
10.11Example CODASYL to relational schema conversion. 262
10.12Example design of a relational schema from a conceptual schema. . . 264
10.13Program of Figure 10.4 adapted to the schema of Figure 10.12. . . . 265
10.14Proof-of-concept tool support for database co-transformations. . . . 267
10.15GER constructs selection . 269

A.1 Multiple possible reference keys for a single READ NEXT statement. . 299

viii LIST OF FIGURES

List of Tables

3.1 Consistency relationships in data-intensive systems. 34
3.2 Semantic classification of GER schema modifications. 37

6.1 The SQL statements capturing techniques and their characteristics. . 109
6.2 Metrics about the SQL trace obtained. 123
6.3 Potential usage of implicit foreign keys by queries and scenarios. . . 127
6.4 Indications of the implicit foreign keys found in the SQL trace. . . . 128

8.1 SQL translation of FIND NEXT WITHIN S statements. 170

9.1 Project 1: Comparison of successive versions of the database schema. 219
9.2 Project 1: Legacy program transformation results. 219
9.3 Project 2: Legacy program refactoring results 221
9.4 Project 2: Comparison of successive versions of the database schema 222

ix

x LIST OF TABLES

List of Acronyms

ASF Algebraic Specification Formalism
AST Abstract Syntax Tree
CASE Computed Aided Software Engineering
COBOL Common Business Oriented Language
CODASYL COnference on DAta SYstems Languages
CS Conceptual Schema
DAM Data Access Module
DBCS DataBase Control System
DBMS DataBase Management System
DBRE DataBase Reverse Engineering
DDL Data Description Language
DML Data Manipulation Language
DMS Data Management System
DMS c© a Registered TradeMark of Semantic Designs Inc.
GER Generic Entity-Relationship (model)
IDS/II Integrated Data Store II
IMS Information Management System
LDA Langage de Description d’Algorithmes
PIM Platform-Independent Model
PSM Platform-Specific Model
SDG System Dependency Graph
SDF Syntax Definition Formalism
SPS Source Physical Schema
SQL Structured Query Language
3NF Third Normal Form
TPS Target Physical Schema
UWA User Working Area

xi

Chapter 1

Introduction

The best way to become acquainted with
a subject is to write a book about it.

– Benjamin Disraeli

1.1 Data-intensive software systems

Data-intensive software systems generally comprise a database (sometimes in the
form of a set of files) and a collection of application programs in strong interaction
with the former. They constitute critical assets in most entreprises, since they sup-
port business activities in all production and management domains. Data-intensive
programs form most of the so-called legacy systems : they typically are one or more
decade old, they are very large, heterogeneous and highly complex. Many of them
significantly resist modifications and change (Brodie and Stonebraker, 1995) due
to the use of ageing technologies and to inflexible architectures. Since they never-
theless are due to evolve, sophisticated techniques have been elaborated that allow
programmers and developers to identify and understand the logic of the code frag-
ments and of the data structures that are to be changed, despite the lack of precise
and up to date documentation. Recovering the required knowledge and control
of poorly documented software components is the main goal of software reverse
engineering (Chikofsky and Cross, 1990).

1.2 The database component of software systems

It is interesting to learn how the communities devoted to the database and pro-
gramming paradigms perceive the database component, both from the scientist and
practitioner points of view. These views are quite different but complementary.

According to database experts, the database must be developed independently
of the program needs. The goal of the database is to collect all the relevant data
about a definite application domain (that part of the world concerned by the soft-

1

2 Chapter 1. Introduction

ware system). The Magna Carta of a database is its conceptual schema, that
identifies and describes the domain entities, their properties and their associations
in a technology-independent way. The implementation of the database produces
data structures that organize the data according to the data model of the chosen
technology (the Database Management System or DBMS) but in strict confor-
mance with the conceptual schema. The DBMS-dependent schema is called the
logical schema of the database. In short, the conceptual schema expresses for-
mally the intended semantics of the logical schema. Once the logical schema has
been produced and coded in the Data Description Language (DDL) of the DBMS,
application programs can be developed. In the final architecture, database ex-
perts perceive the database as the system’s central component, around which the
application programs are built.

For software engineering experts, system development largely ignores the database
component. The latter appears as an encapsulated subsystem acting as a reliable
and efficient data server. The database is an appropriate data container that en-
sures persistence, limited consistency, smooth concurrency and accident resistance.
When external data are necessary, the programs invoke data extraction services
from the DBMS through some sort of data manipulation language (DML). The
same channel is used to send data to be stored in the database. The emphasis is
less on the domain modeling aspect of the database than on convenience (such as
storage transparency) and performance.

This thesis adopts a more balanced viewpoint. It argues that (1) both the
database and the programs are important artefacts, (2) understanding what the
programs are doing on the data may considerably help in understanding the database,
and (3) database evolution methods should devote much more attention to the pro-
gram adaptation problem.

1.3 On the complexity of data-intensive software systems

According to the modern description of pure software systems, a typical database
can be perceived as a software sub-system made up of several thousands of classes,
comprising dozens of thousands of attributes, and connected through several thou-
sands of inter-class associations. Each class can collect several millions of persistent
instances, so that a typical database forms a semantic network comprising billions
of nodes and edges. These instances are shared, possibly simultaneously, by thou-
sands of programs that read, create, delete and update several thousands times
per second. Any of these programs can include hundreds of database statements
of arbitrary complexity.

Since the database is supposed to include all the pertinent data about all the
static object types of the application domain and since each program is designed
to translate a business activity relying on these objects, it should not come as
a surprise that data and processing aspects are tighly intertwined in application
programs.

1.4. Evolution, maintenance and reverse engineering 3

1.4 Evolution, maintenance and reverse engineering

Database schemas, software architecture and source code are supposed to be fully
documented in order to make further maintenance and evolution easy and reli-
able. Unfortunately, development teams seldom have time to write and maintain
a precise, complete and up to date documentation. Therefore, many complex soft-
ware systems lack the documentation that would be necessary for maintenance and
evolution. Faced with the necessity of frequently changing the program code and
the database structure due to maintenance needs or to functional or technological
evolution, developers perform local code analysis to try to understand how things
work in these parts of the software and of the schema that should be modified.

The problem happens to be particularly complex for the database documenta-
tion due to prevalent developement practices. First of all, many databases have not
been developed in a disciplined way, that is, from a preliminary conceptual schema.
This was true for old systems, but loose empirical design approaches keep being
widespread for modern databases due, notably, to time constraints, poor database
education and the increasing use of object-oriented middleware that tends to con-
sider the database as the mere implementation of program classes. Secondly, the
logical (DBMS-dependent) schema, that is supposed to be derived from the concep-
tual schema and to translate all its semantics, generally misses several conceptual
constructs. This is due to several reasons, among others the poor expressive power
of DBMS models and the lazziness, awkwardness or illiteracy of some program-
mers (Blaha and Premerlani, 1995). From all this, it results that the logical model
often is incomplete and that the DDL code that expresses the DBMS schema in
physical constructs ignores important structures and properties of the data. The
missing constructs are called implicit, in contrast with the explicit constructs that
are declared in the DDL of the DBMS. Several field experiments and projects have
shown that as much as half of the semantics of the data structures is implicit.
Therefore, merely parsing the DDL code of the database, or, equivalently, extract-
ing the physical schema from the system tables, sometimes provides barely half the
actual data structures and integrity constraints.

Recovering the implicit constructs is a prerequisite to maintenance and evolu-
tion of both the database and the programs. It also proves fairly difficult. Indeed,
it relies on such complex techniques as data mining, source code analysis, graphical
interface analysis and program trace analysis.

1.5 System reengineering and migration

As defined by Chikofsky and Cross (1990), reengineering, also known as [...] ren-
ovation [...], is the examination and alteration of a subject system to reconstitute it
in a new form and the subsequent implementation of the new form. Reengineering
generally includes some form of reverse engineering (to achieve a more abstract
description) followed by some more form of forward engineering or restructuring.
Migration is a variant of reengineering in which the transformation is driven by a

4 Chapter 1. Introduction

major technology change.
A large part of this thesis addresses a particular case of system migration,

namely database platform migration. Replacing a DBMS with another one should,
in an ideal world, only impact the database component of the information system.
Unfortunately, the database most often has a deep influence on other components,
such as the application programs. Two reasons can be identified. First, the pro-
grams invoke data management services through an API that generally relies on
complex and highly specific protocols. Changing the DBMS, and therefore its pro-
tocols, involves the rewriting of the invocation code sections. Second, the database
schema is the technical translation of its conceptual schema through a set of rules
that is dependent on the DBMS data model. Porting the database to another
DBMS, and therefore to another data model, generally requires another set of
rules, that produces a significantly different database schema. Consequently, the
code of the programs often has to be adapted to this new schema. Clearly, the
renovation of an information system by replacing an obsolete DBMS with a mod-
ern data management system leads to non trivial database (schemas and data) and
programs modifications.

1.6 Goals of the Thesis

The general goal of this thesis is to contribute to the automated support of data-
intensive systems evolution. More particularly, the thesis aims at proposing method-
ologies, techniques and tools for :

1. analyzing legacy data-intensive programs in support to database reverse en-
gineering;

2. adapting legacy data-intensive programs to database evolutions in general,
and to database platform migration in particular.

1.7 Research questions

This thesis research is driven by the following research questions:

RQ1 : Can automated program analysis techniques help to recover implicit
knowledge on the structure and constraints of a database?

RQ2 : What are the possible strategies for migrating a legacy data-intensive
system towards a modern database platform? How do they compare?

RQ3 : Is it possible to automatically adapt large legacy systems to the mi-
gration of their underlying database?

RQ4 : How to preserve the consistency between an evolving database schema
and associated queries?

1.8. Outline of the Thesis 5

1.8 Outline of the Thesis

The remaining of this thesis is composed of six parts and ten chapters, as depicted
in Figure 1.1.
Part I regroups the introductory chapters of the thesis, related to its general
research domain.

• Chapter 2 provides a short introduction to the main basic concepts used in
the thesis.

• Chapter 3 presents a comprehensive reference framework for the evolution
of data-intensive systems. It identifies and describes the main consistency
relationships that hold in data-intensive applications. Based on those rela-
tionships, it proposes a classification of database evolution scenarios. This
classification is then used to revisit the thesis goals and to better position its
contributions.

Part II is dedicated to a particular case of data-intensive system evolution, namely
system migration.

• Chapter 4 discusses existing work on software-intensive system migration,
and develops a two-dimensional reference framework for database platform
migration. This framework identifies and compares six representative system
migration strategies.

Part III elaborates on the use of program analysis techniques for supporting the
typical initial phase of any database evolution, namely database reverse engineer-
ing.

• Chapter 5 concentrates on static program analysis. It presents a tool-
supported approach to extracting dataflow dependencies from database queries.
It shows that these techniques may contribute, among others, to the recovery
of implicit knowledge on the database structures and constraints.

• Chapter 6 explores the use of dynamic program analysis techniques for
reverse engineering relational databases. The static analysis techniques pre-
sented in Chapter 5 may indeed fall short in the presence of automatically
generated SQL queries. The chapter therefore presents and compares possi-
ble techniques for (1) capturing the SQL query executions at run time and
(2) extracting implicit schema constructs from SQL query execution traces.

Part IV presents DMS-specific methods and tools for the migration of legacy
data-intensive systems. In this part, we assume that a legacy database has been
migrated towards a modern platform, and we show how to automatically adapt the
legacy programs accordingly.

• Chapter 7 is dedicated to the migration of standard files towards a relational
database platform. It provides systematic program conversion rules allowing
to translate COBOL file handling primitives into equivalent SQL queries.

6 Chapter 1. Introduction

Chapter 2
Conceptual Background

Chapter 3
A Framework for Data-intensive

System Evolution

Chapter 4
Strategies for Data-intensive

System Migration

Chapter 5
Static Dependency Analysis

Chapter 6
Dynamic Analysis of SQL Queries

Chapter 7
Migrating Standard Files
to a Relational Database

Chapter 8
Migrating a CODASYL Database

to a Relational Database

Chapter 9
Industrial Migration Projects

Chapter 11
Conclusions

Part III: Program Analysis for
Database Reverse Engineering

Part I: Research Domain

Part II: The System Migration Problem

Part IV: Adapting Programs to
Database Platform Migration

Part VI: Conclusions

Chapter 10
A Co-transformational Approach

to Schema Refactoring

Part V: Adapting Programs to
Database Schema Change

Figure 1.1: General structure of the thesis.

1.9. Publications 7

• Chapter 8 addresses another popular, but much more challenging migration
scenario: the conversion of a CODASYL database towards a relational plat-
form. It presents a tool-supported approach for simulating CODASYL data
manipulation statements on top of a relational database.

• Chapter 9 discusses the application of our migration approach and tools
(presented in Chapter 8) in the context of real-size industrial migration
projects.

Part V is devoted to another particular database evolution scenario, namely
database schema change. More precisely, it aims at supporting the co-evolution of
database schema and programs.

• Chapter 10 presents a co-transformational approach to the propagation of
database schema changes on application programs. This approach consists in
systematically associating abstract program transformation rules to a set of
semantics-preserving schema transformations. The chapter then shows that
such abstract propagation rules may be reused in other database engineering
contexts such as database migration and database design.

Part VI draws the general conclusions of this thesis and anticipates future work.

• Chapter 11 summarizes and evaluates the contributions of the thesis with
respect to the above research questions. It also discusses the lessons we
learned from this work and identifies avenues for future research in the field.

Figure 1.1 depicts the general structure of the thesis and identifies the main de-
pendencies between the succesive parts and chapters.

1.9 Publications

Most of the research results presented in this thesis have been published as book
chapters or in international conferences and workshops. Below, we provide a list
of selected peer-reviewed publications, in chronological order:

1. Anthony Cleve and Jean-Luc Hainaut. Co-transformations in database ap-
plications evolution. In Ralf Lämmel, João Saraiva and Joost Visser, edi-
tors, Post-proceedings of GTTSE 2005, Generative and Transformation Tech-
niques in Software Engineering, Vol. 4143 of Lecture Notes in Computer
Science, pages 409–421. Springer, 2006.

2. Anthony Cleve. Automating program conversion in database reengineering -
a wrapper-based approach. In Proceedings of the 10th European Conference
on Software Maintenance and Reengineering (CSMR’06), pages 323–326.,
IEEE Computer Society, 2006.

8 Chapter 1. Introduction

3. Anthony Cleve, Jean Henrard, and Jean-Luc Hainaut. Data reverse engi-
neering using system dependency graphs. In Proceedings of the 13th Work-
ing Conference on Reverse Engineering (WCRE’06), pages 157–166. IEEE
Computer Society, 2006.

4. Jean Henrard, Didier Roland, Anthony Cleve, and Jean-Luc Hainaut. An
industrial experience report on legacy data-intensive system migration. In
Proceedings of the 23rd International Conference on Software Maintenance
(ICSM’07), pages 473–476. IEEE Computer Society, 2007.

5. Jean-Luc Hainaut, Anthony Cleve, Jean Henrard, and Jean-Marc Hick. Mi-
gration of legacy information systems. In Tom Mens and Serge Demeyer,
editors, Software Evolution, pages 105–138. Springer, 2008.

6. Anthony Cleve, Jean Henrard, Didier Roland, and Jean-Luc Hainaut. Wrapper-
based system evolution - application to CODASYL to relational migration.
In Proceedings of the 12th European Conference in Software Maintenance and
Reengineering (CSMR’08), pages 13–22. IEEE Computer Society, 2008.

7. Anthony Cleve and Jean-Luc Hainaut. Dynamic analysis of SQL statements
for data-intensive applications reverse engineering. In Proceedings of the 15th
Working Conference on Reverse Engineering (WCRE’08), pages 192–196.
IEEE Computer Society, 2008.

8. Jean Henrard, Didier Roland, Anthony Cleve, and Jean-Luc Hainaut. Large-
scale data reengineering: Return from experience. In Proceedings of the 15th
Working Conference on Reverse Engineering (WCRE’08), pages 305–308.
IEEE Computer Society, 2008.

Part I

Research Domain

9

Chapter 2

Conceptual Background

A journey of a thousand miles begins with a single step.
– Confucius

As its title indicates, this chapter aims at providing the reader with a conceptual
background, by introducing the main concepts manipulated in the thesis. The
following sections briefly elaborate on the database design and database reverse
engineering processes, the GER model and the transformational approach to data-
intensive systems engineering.

2.1 Database design

The process of designing and implementing a database that has to meet specific
user requirements has been described extensively in the literature (Batini et al.,
1992) and has been available for several decades in standard methodologies and
CASE tools. As shown in Figure 2.1, database design is typically made up of four
main subprocesses:

Conceptual design

Logical design

Physical design

Coding

Logical schema

Physical schema

DDL code

User requirements Conceptual schema

Figure 2.1: Standard database design processes.

11

12 Chapter 2. Conceptual Background

Physical extraction

Refinement

Cleaning

Conceptualization

Physical schema

Logical schema

Conceptual schema

DDL code Raw physical schema

Database contents

Programs

Other sources

Figure 2.2: Standard database reverse engineering processes.

(1) Conceptual design is intended to translate user requirements into a concep-
tual schema that identifies and describes the domain entities, their properties
and their associations in a technology-independent way. This abstract spec-
ification of the future database collects all the information structures and
constraints of interest.

(2) Logical design produces an operational logical schema that translates the
constructs of the conceptual schema according to a specific technology family
without loss of semantics.

(3) Physical design augments the logical schema with performance-oriented con-
structs and parameters, such as indexes, buffer management strategies or lock
management policies.

(4) Coding translates the physical schema (and some other artefacts) into the
DDL (Data Definition Language) code of the database management system.
Structural DDL declaration code as well as components such as checks, trig-
gers and stored procedures are generated to code the information structures
and constraints of the physical schema.

2.2 Data(base) reverse engineering

Chikofsky (1996) define data reverse engineering as “a collection of methods and
tools to help an organization determine the structure, function, and meaning of
its data”. Database Reverse Engineering (DBRE) is the process through which
the logical and conceptual schemas of a legacy database, or of a set of files, are
reconstructed from various information sources such as DDL code, data dictio-
nary contents, database contents or the source code of applications that use the
database. (Hainaut et al., 2009).

As depicted in Figure 2.2, DBRE typically comprises the following four sub-
processes:

2.3. The Generic Entity-Relationship model 13

(1) Physical extraction consists in parsing the DDL code in order to extract the
raw physical schema of the database.

(2) Refinement enriches the raw physical schema with additional structures and
constraints elicited through the analysis of the application programs and
other sources.

(3) Cleaning removes the physical constructs (such as indexes) for producing the
logical schema.

(4) Conceptualization aims at deriving the conceptual schema that the logical
schema obtained implements.

In this thesis, we will particularly contribute to the refinement process, by propos-
ing program analysis techniques allowing to discover implicit schema constructs.

2.3 The Generic Entity-Relationship model

The Generic Entity-Relationship model (Hainaut, 1989), GER for short, is an ex-
tended Entity-Relationship model including, among others, the concepts of schema,
entity type, domain, attribute, relationship type, key, as well as various constraints.
The GER model encompasses the three main levels of abstractions for database
schemas, namely conceptual, logical and physical. It also serves as a generic pivot
model between the major database paradigms including ER, relational, object-
oriented, object-relational, files structures, network, hierarchical, XML.

Below, we further present and illustrate the GER model according to the three
levels of abstraction.

2.3.1 Conceptual schemas

A conceptual schema mainly specifies entity types, relationship types and attributes.
Entity types represent the main concepts of the application domain. They can
be organized into is-a hierarchies, organizing supertypes and subtypes. An is-a
hierarchy can be total and/or disjoint. Total (T) means that a supertype must be
specialized in at least one subtype. Disjoint (D) means that a supertype can be
specialized in at most one subtype. A partition (noted P) corresponds to an is-a
hierarchy that is both total and disjoint.

Relationship types represent relationships between entity types. A relationship
type has two or more roles. A role has a cardinality constraint [i-j], that specifies
in how many relationships an entity can appear with this role. A relationship type
with exactly two roles is called binary, while a relationship type with more than
two roles is generally called n-ary.

Entity types and relationship types can have attributes, which can be either
atomic or compound. A compound attribute is an attribute that is made of at
least one sub-level attribute (atomic or compound).

14 Chapter 2. Conceptual Background

Attributes are also characterized with a cardinality constraint [i-j] (0 <= i
<= j) specifying how many values can be associated with a parent instance. The
minimum cardinality (i) states how many attribute values must be associated, while
the maximum cardinality (j) corresponds to maximum number of values that can
be associated.

By default, the cardinality constraint of an attribute is [1-1]. A mandatory
(resp. optional) attribute is an attribute for which the minimum cardinality is
equal 1 (resp. 0). A single-valued (resp. multivalued) attribute is an attribute for
which the maximum cardinality is 1 (resp. >1).

Entity types and relationship types may be given possibly complex constraints.
Those constraints are expressed through the concept of group. A group is a logical
set of elements (attributes, roles and/or other groups) attached to a parent object
(entity type, relationship type or compound attribute). It is used, among others,
to represent such constraints as uniqueness, exclusion and coexistence:

• primary identifier (id) The elements of the group form the main identifier of
the parent object. A parent object can have at most one primary identifier.
All components of an id group must be mandatory.

• secondary identifier (id’) The elements of the group make up a secondary
identifier of the parent object. A parent object can have several secondary
identifiers.

• coexistence (coex): Either all elements of the group have a value or none for
any instance of the parent object.

• exclusive (excl): Among the elements of the group, at most one can have a
value for any instance of the parent object.

• at-least-one (at-lst-1): Among the elements of the group, at least one must
have a value for any instance of the parent object.

• exactly-one (exact-1) Among the elements of the group, one and only one
can have a value for any instance of the parent object. This corresponds to
the combination of the exclusive and at-least-one constraints.

Figure 2.3 depicts an example of GER conceptual schema. This schema in-
cludes entity types PERSON, CUSTOMER, SUPPLIER, ORDER and PRODUCT. PERSON has
two disjoint subtypes, CUSTOMER and SUPPLIER. Relationship type from is binary
while detail is ternary. Each ORDER entity appears in exactly one from relation-
ship (cardinality [1-1]), and in at least one detail relationship (cardinality [1-N]).
For entity type PERSON, attribute Name is atomic, single-valued and mandatory.
Address is a compound attribute. Its component Num is atomic, single-valued and
optional (cardinality [0-1]). Phone is multivalued and optional: there are from 0
to 5 values per entity. {PID} is the identifier of PERSON. The identifier of ORDER

is made of external entity type from.CUSTOMER and of local attribute ONum. There
cannot exist more than one detail relationship with the same ORDER and PRODUCT

entites.

2.3. The Generic Entity-Relationship model 15

Entity type

1-1

0-N

from

0-N

0-N

1-N

detail

Quantity
id: ORDER

PRODUCT

D

SUPPLIER

Account

PRODUCT

PNum
Name
Price

id: PNum

PERSON

PID
Name
Address

Num[0-1]
Street
City

Phone[0-5]

id: PID

ORDER

ONum
Date

id: from.CUSTOMER
ONum

CUSTOMER

Category

Atomic attribute

Compound attribute

Optional, atomic attribute

Multivalued attribute

Primary identifier

Is-a hierarchy (disjoint)

Role
Binary relationship type

N-ary relationship type

Sub-type

Entity type

1-1

0-N

from

0-N

0-N

1-N

detail

Quantity
id: ORDER

PRODUCT

D

SUPPLIER

Account

PRODUCT

PNum
Name
Price

id: PNum

PERSON

PID
Name
Address

Num[0-1]
Street
City

Phone[0-5]

id: PID

ORDER

ONum
Date

id: from.CUSTOMER
ONum

CUSTOMER

Category

Atomic attribute

Compound attribute

Optional, atomic attribute

Multivalued attribute

Primary identifier

Is-a hierarchy (disjoint)

Role
Binary relationship type

N-ary relationship type

Sub-type

Figure 2.3: Sample GER conceptual schema.

16 Chapter 2. Conceptual Background

2.3.2 Logical schemas

A logical schema is a platform-dependent data structure definition, that must com-
ply with a given data model. The most commonly used families of models include
the relational model, the network model (CODASYL DBTG), the hierarchical
model (IMS), the standard file model (COBOL, C, RPG, BASIC), the shallow
model (TOTAL, IMAGE), the XML model, the object-oriented model and the
object-relational model.

A logical schema basically uses the same schema constructs as the ones pre-
sented in Section 2.3.1 for conceptual schemas. Depending on the logical model
the same schema constructs are called differently. For instance, a GER entity type
(resp. attribute) is called a table (resp. column) in the relational terminology, and
is called record type (resp. field) in a CODASYL schema.

Each logical model has its own set of allowed schema constructs. For instance, a
relational schema may not comprise relationship types, compound attributes, mul-
tivalued attributes and is-a hierarchies. Such illegal constructs must be expressed
by equivalent constructs (if any) of the target logical model. It can happen that
some fragments of a conceptual schema cannot be fully translated into the logical
schema.

In addition to the ones described above, new schema constructs may also appear
at the logical level:

• Referential constraint (ref): An inter-group constraint between an origin
group (ref group) and a target group that states that each instance of the
origin group must correspond to an instance of the target group. The target
group must represent an identifier (id or id’). A referential constraint is
called a foreign key in the relational model.

• Inclusion constraint (incl): An inter-group constraint where each instance
of the origin group must be an instance of the target group. Here, the tar-
get group does not need to be an identifier (generalization of the referential
constraint).

• Equality constraint (equ): A referential constraint between an origin group
r and a target group i, combined with an inclusion constraint defined from
the i to r.

• Typed multivalued attribute: In a conceptual schema, multivalued attributes
represent sets of values, i.e. unstructured collections of distinct values. At the
logical level, we can distinguish six possible implementations of a multivalued
attribute:

– Set : unstructured collection of distinct elements (default).

– Bag : unstructured collection of (not necessarily distinct) elements.

– Unique list : sequenced collection of distinct elements.

– List : sequenced collection of (not necessarily distinct) elements.

2.3. The Generic Entity-Relationship model 17

Referential constraint

SUPPLIER
PID
ACCOUNT

id: PID
ref

PRODUCT

PNUM
NAME
PRICE

id: PNUM

PHONE

PID
PHONE

id: PID
PHONE

ref: PID

PERSON

PID
NAME
ADD_NUM[0-1]
ADD_STREET
ADD_CITY

id: PID

ORDER
PID
ONUM
DATE

id: PID
ONUM

ref: PID

DETAIL
PID
ONUM
PRODUCT
QUANTITY
SUPPLIER

id: PID
ONUM
PRODUCT

ref: SUPPLIER
ref: PRODUCT
equ: PID

ONUM

CUSTOMER
PID
CATEGORY

id: PID
ref

Nullable column

Table

Column

Equality constraint

Referential constraint

SUPPLIER
PID
ACCOUNT

id: PID
ref

PRODUCT

PNUM
NAME
PRICE

id: PNUM

PHONE

PID
PHONE

id: PID
PHONE

ref: PID

PERSON

PID
NAME
ADD_NUM[0-1]
ADD_STREET
ADD_CITY

id: PID

ORDER
PID
ONUM
DATE

id: PID
ONUM

ref: PID

DETAIL
PID
ONUM
PRODUCT
QUANTITY
SUPPLIER

id: PID
ONUM
PRODUCT

ref: SUPPLIER
ref: PRODUCT
equ: PID

ONUM

CUSTOMER
PID
CATEGORY

id: PID
ref

Nullable column

Table

Column

Equality constraint

SUPPLIER
PID
ACCOUNT

id: PID
ref

PRODUCT

PNUM
NAME
PRICE

id: PNUM

PHONE

PID
PHONE

id: PID
PHONE

ref: PID

PERSON

PID
NAME
ADD_NUM[0-1]
ADD_STREET
ADD_CITY

id: PID

ORDER
PID
ONUM
DATE

id: PID
ONUM

ref: PID

DETAIL
PID
ONUM
PRODUCT
QUANTITY
SUPPLIER

id: PID
ONUM
PRODUCT

ref: SUPPLIER
ref: PRODUCT
equ: PID

ONUM

CUSTOMER
PID
CATEGORY

id: PID
ref

SUPPLIER
PID
ACCOUNT

id: PID
ref

PRODUCT

PNUM
NAME
PRICE

id: PNUM

PHONE

PID
PHONE

id: PID
PHONE

ref: PID

PERSON

PID
NAME
ADD_NUM[0-1]
ADD_STREET
ADD_CITY

id: PID

ORDER
PID
ONUM
DATE

id: PID
ONUM

ref: PID

DETAIL
PID
ONUM
PRODUCT
QUANTITY
SUPPLIER

id: PID
ONUM
PRODUCT

ref: SUPPLIER
ref: PRODUCT
equ: PID

ONUM

CUSTOMER
PID
CATEGORY

id: PID
ref

Nullable column

Table

Column

Equality constraint

Figure 2.4: Sample GER logical schema, approximate relational translation of the
conceptual schema of Figure 2.3.

– Unique array : indexed sequence of cells that can each contain an ele-
ment. The elements are distinct.

– Array : indexed sequence of cells that can each contain an element.

An example fragment of logical schema is given in Figure 2.4. This relational
schema corresponds to an approximate translation of the conceptual schema de-
picted in Figure 2.3.1. The schema defines seven tables. Table PERSON has manda-
tory columns (PID, NAME, ADD STREET and ADD CITY) and one optional (nullable)
column, ADD NUM. Its primary identifier is {PID}. Column {PID} of ORDER is a for-
eign key to CUSTOMER (targeting its primary id). The group {PID, ONUM} of DETAIL
is a multicomponent foreign key. In addition, there is an inclusion constraint from
{PID, ONUM} of ORDER to {PID, ONUM} of DETAIL. Combining these two constraints
translates into an equality constraint (equ). {PID} of CUSTOMER is both a primary
id and a foreign key to PERSON.

2.3.3 Physical schemas

A physical schema is a logical schema enriched with all the information needed to
implement efficiently the database on top of a given data management system. This

18 Chapter 2. Conceptual Background

includes DMS-dependent technical specifications such as indexes, physical device
and site assignment, page size, file size, buffer management or access right policies.
Due to their large variety, it is not easy to propose a general model covering all
possible physical constructs. In the scope of this thesis, we will make use of the
two following concepts:

• record collection, which is an abstraction of file, data set, tablespace, dbspace
and any record repository in which data are permanently stored;

• access key (acc), which represents any path providing a fast and selective ac-
cess to records that satisfy a definite criterion; indexes, indexed set (DBTG),
access path, hash files, inverted files, indexed sequential organizations all are
concrete instances of the concept of access key.

Figure 2.5 depicts a physical GER schema that derives from the logical schema
of Figure 2.4. This schema is made up of seven tables and three collections. Collec-
tion PERS FILE stores instances of tables PERSON, CUSTOMER, SUPPLIER and PHONE.
The primary identifiers and some foreign keys are supported by an access key
(groups denoted by acc). Access keys are also associated with two regular columns
(PERSON.NAME and PRODUCT.NAME).

2.4 The transformational approach

Any process that consists in deriving artefacts from other artefacts relies on such
techniques as renaming, translating, restructuring, replacing, refining and abstract-
ing, which basically are transformations. Most database engineering processes can
be formalized as chains of elementary schema and data transformations that pre-
serve some of their aspects, such as its information contents (Hainaut, 2006). In-
formation system evolution, and more particularly system migration as defined in
this thesis, consists of the transformation of the database and of its programs into
a new system comprising the modified database and the adapted programs. As far
as programs are concerned, the transformations must preserve the behaviour of the
interface with the database management system, although both the syntax of this
interface and/or the underlying data structure may undergo some changes.

2.4.1 Schema transformation

Roughly speaking, an elementary schema transformation consists in deriving a
target schema S′ from a source schema S by replacing construct C (possibly empty)
in S with a new construct C ′ (possibly empty). C (resp. C ′) is empty when
the transformation consists in adding (resp. removing) a construct. Adding an
attribute to an entity type, replacing a relationship type by an equivalent entity
type or by a foreign key and replacing an attribute by an entity type (Figure 2.7)
are some examples of schema transformations.

More formally, a transformation Σ is defined, as shown in Figure 2.6, as a couple
of mappings 〈T, t〉> such that, C ′ = T (C) and c′ = t(c), where c is any instance

2.4. The transformational approach 19

SUPPLIER
PID
ACCOUNT

id: PID
ref acc

PRODUCT

PNUM
NAME
PRICE
id: PNUM

acc
acc: NAME

PHONE
PID
PHONE

id: PID
PHONE
acc

ref: PID

PERSON

PID
NAME
ADD_NUM[0-1]
ADD_STREET
ADD_CITY
id: PID

acc
acc: NAME

ORDER

PID
ONUM
DATE

id: PID
ONUM
acc

ref: PID

DETAIL

PID
ONUM
PRODUCT
QUANTITY
SUPPLIER
id: PID

ONUM
PRODUCT
acc

ref: SUPPLIER
acc

ref: PRODUCT
acc

equ: PID
ONUM

CUSTOMER
PID
CATEGORY

id: PID
ref acc

Access key

PERS_FILE

PERSON
CUSTOMER
SUPPLIER
PHONE

ORD_FILE

ORDER
DETAIL

PROD_FILE

PRODUCT

Collection

SUPPLIER
PID
ACCOUNT

id: PID
ref acc

PRODUCT

PNUM
NAME
PRICE
id: PNUM

acc
acc: NAME

PHONE
PID
PHONE

id: PID
PHONE
acc

ref: PID

PERSON

PID
NAME
ADD_NUM[0-1]
ADD_STREET
ADD_CITY
id: PID

acc
acc: NAME

ORDER

PID
ONUM
DATE

id: PID
ONUM
acc

ref: PID

DETAIL

PID
ONUM
PRODUCT
QUANTITY
SUPPLIER
id: PID

ONUM
PRODUCT
acc

ref: SUPPLIER
acc

ref: PRODUCT
acc

equ: PID
ONUM

CUSTOMER
PID
CATEGORY

id: PID
ref acc

SUPPLIER
PID
ACCOUNT

id: PID
ref acc

PRODUCT

PNUM
NAME
PRICE
id: PNUM

acc
acc: NAME

PHONE
PID
PHONE

id: PID
PHONE
acc

ref: PID

PERSON

PID
NAME
ADD_NUM[0-1]
ADD_STREET
ADD_CITY
id: PID

acc
acc: NAME

ORDER

PID
ONUM
DATE

id: PID
ONUM
acc

ref: PID

DETAIL

PID
ONUM
PRODUCT
QUANTITY
SUPPLIER
id: PID

ONUM
PRODUCT
acc

ref: SUPPLIER
acc

ref: PRODUCT
acc

equ: PID
ONUM

CUSTOMER
PID
CATEGORY

id: PID
ref acc

Access key

PERS_FILE

PERSON
CUSTOMER
SUPPLIER
PHONE

ORD_FILE

ORDER
DETAIL

PROD_FILE

PRODUCT

Collection

Figure 2.5: Sample GER physical schema.

20 Chapter 2. Conceptual Background

C C’ = T(C)

c c’ = t(c)

instance-of instance-of

T

t

Figure 2.6: Schema transformation defined as a couple of structural and instance
mappings.

T

T’

A
A1
A2[0-N]
A3

1-10-N R

EA2
A2
id: R.A

A2

A
A1
A3

T

T’

A
A1
A2[0-N]
A3

1-10-N R

EA2
A2
id: R.A

A2

A
A1
A3

1-10-N R

EA2
A2
id: R.A

A2

A
A1
A3

Figure 2.7: Pattern-based representation of the structural mapping of
ATTRIBUTE-to-ET transformation that replaces a multivalued attribute (A2)
by an entity type (EA2) and a relationship type (R).

of C and c′ the corresponding instance of C ′. Structural mapping T is a rewriting
rule that specifies how to modify the schema while instance mapping t states how
to compute the instance set of C ′ from the instances of C.

There are several ways to express structural mapping T . For example, T can be
defined (1) as a couple of predicates defining the minimal source precondition and
the maximal target postcondition, (2) as a couple of source and target patterns
or (3) through a procedure made up of removing, adding, and renaming operators
acting on elementary schema objects. Mapping t will be specified by an algebraic
formula, a calculus expression or even through an explicit procedure.

Any transformation Σ can be given an inverse transformation Σ′ = 〈T ′, t′〉
such that T ′(T (C)) = C. If, in addition, we also have: t′(t(c)) = c, then Σ (and
Σ′) are called semantics-preserving1. Figure 2.7 shows a popular way to convert an
attribute into an entity type (structural mapping T), and back (structural mapping
T ′). The instance mapping, that is not shown, would describe how each instance
of source attribute A2 is converted into an entity type EA2 and a relationship type
R.

Practically, the application of a transformation will be specified by its signature,
that identifies the source objects and provides the names of the new target objects.
For example, the signatures of the transformations of Figure 2.7 are:

T : (EA2, R) ← ATTRIBUTE-to-ET (A, A2)
T ′ : (A2) ← ET -to-ATTRIBUTE(EA2)

1The concept of semantics (or information contents) preservation is more complex, but this
definition is sufficient in this context. A more comprehensive definition can be found in Hainaut
(2006).

2.4. The transformational approach 21

Transformations such as those in Figure 2.7 include names (A, A1, R, EA2, etc.)
that actually are variable names. Substituting names of objects of an actual schema
for these abstract names provides fully or partially instantiated transformations.
For example:

(’PHONE’, ’has’) ← ATTRIBUTE-to-ET (’CUSTOMER’,’ Phone’)

specifies the transformation of attribute Phone of entity type CUSTOMER. Similarly,

(EA2, R) ← ATTRIBUTE-to-ET (’CUSTOMER’, A2)

specifies the family of transformations of any attribute of CUSTOMER entity type.
The concept of transformation is valid whatever the granularity of the object

it applies to. For instance, transforming a conceptual schema CS into an equiv-
alent physical schema PS can be modelled as a (complex) semantics-preserving
transformation CS-to-PS = 〈CS-to-PS, cs-to-ps〉 in such a way that PS = CS-to-
PS(CS). This transformation has an inverse, PS-to-CS = 〈PS-to-CS, ps-to-cs〉,
so that CS = PS-to-CS(PS).

2.4.2 Compound schema transformation

A compound transformation Σ = Σ2◦Σ1 is obtained by applying Σ2 on the database
(schema and data) that results from the application of Σ1 (Hainaut, 1996). Most
complex database engineering processes, particularly database design and reverse
engineering, can be modelled as compound semantics-preserving transformations.
For instance, transformation CS-to-PS referred to here above actually is a com-
pound transformation, since it comprises logical design, that transforms a concep-
tual schema into a logical schema, followed by physical design, that transforms
the logical schema into a physical schema (Batini et al., 1992). So, the database
design process can be modelled by transformation CS-to-PS = LS-to-PS ◦ CS-
to-LS, while the reverse engineering process is modelled by PS-to-CS = LS-to-CS

◦ PS-to-LS.

2.4.3 Transformation history and schema mapping

The history of an engineering process is the formal trace of the transformations
that were carried out during its execution. Each transformation is entirely specified
by its signature. The sequence of these signatures reflects the order in which the
transformations were carried out. The history of a process provides the basis for
such operations as undoing and replaying parts of the process. It also supports the
traceability of the source and target artefacts.

In particular, it formally and completely defines the mapping between a source
schema and its target counterpart when the latter was produced by means of a
transformational process. Indeed, the chain of transformations that originates from
any definite source object precisely designates the resulting objects in the target
schema, as well as the way they were produced. However, the history approach to

22 Chapter 2. Conceptual Background

mapping specification has proved complex, essentially for three reasons (Hainaut
et al., 1996b). First, a history includes information that is useless for schema migra-
tion. In particular, the signatures often include additional information for undoing
and inverting transformations. Second, making histories evolve consistently over
time is far from trivial. Third, real histories are not linear, due to the exploratory
nature of engineering processes.

Therefore, simpler mappings are often preferred2, even though they are less
powerful. For instance, Hick and Hainaut (2006) proposed the use of the following
lighweight technique based on stamp propagation. Each source object receives
a unique stamp that is propagated to all objects resulting from the successive
transformations. When comparing the source and target schemas, the objects that
have the same stamp exhibit a pattern that uniquely identifies the transformation
that was applied on the source object. This approach is valid provided that (1)
only a limited set of transformations is used and (2) the transformation chain from
each source object is short (one or two operations). Fortunately, these conditions
are almost always met in real database design.

2.4.4 Program transformation

A program transformation is a modification or a sequence of modifications applied
to a program. Converting a program generally involves basic transformation steps
that can be specified by means of rewrite rules. Term rewriting is the exhaustive
application of a set of rewrite rules to an input term (e.g., a program) until no
rule can be applied anywhere in the term. Each rewrite rule uses pattern matching
to recognize a subterm to be transformed and replaces it with a target pattern
instance.

Automated program transformations form a sound basis for application pro-
gram adaptation in the context of data-intensive systems maintenance and evolu-
tion. Indeed, the size of such systems often calls for automated tool support for
program modification, the latter being tedious and error-prone when performed
manually.

2.4.5 Program analysis and transformation technology

There exist several generic language technology (GLT) systems that support au-
tomatic program analysis and transformation. Among such systems, let us mention
the ASF+SDF Meta-Environment (van den Brand et al., 2001), Stratego/XT (Braven-
boer et al., 2008), TXL (Cordy et al., 2002), DMS (Baxter et al., 2004) and the
Synthesizer generator (Reps and Teitelbaum, 1984).

In this research, we mainly used the ASF+SDF Meta-Environment to carry out
the automated analysis and renovation of large-scale COBOL systems. Below, we
briefly justify this choice with respect to several aspects of our application domain.

2This will be the case in this thesis

2.4. The transformational approach 23

Availability The ASF+SDF Meta-Environment is available for free (van den
Brand et al., 2003), as opposed to DMS (Baxter et al., 2004) and the Synthesizer
generator (Reps and Teitelbaum, 1984), which are commercial products.

Suitability for large-scale software analysis and renovation The ASF+SDF
Meta-Environment has been successfully used to support software renovation tasks
of various nature and for various languages (van den Brand et al., 2007), includ-
ing COBOL system prettyprinting (van den Brand et al., 2006) and restructur-
ing (Veerman, 2004), code smell detection in Java (van Emden and Moonen, 2002)
and renovation of legacy C code towards aspect-oriented programming (Bruntink,
2008a). More importantly, several industrial applications have shown its suitabil-
ity for the automated maintenance of large-scale software systems (van den Brand
et al., 1996; Bruntink, 2008b) in general, and legacy COBOL systems in particu-
lar (Veerman, 2007).

Grammar modularity The Syntax Definition Formalism (SDF) of the ASF+SDF
Meta-Environment allows the definition of a language grammar in a modular way.
This feature is very important, especially in the case of the COBOL language, for
which various dialects exist. Adapting a program analysis or transformation tool
to a new dialect is made easier when only a few syntactic modules have to be
changed.

Traversal functions The ASF+SDF Meta-Environment provides the user with
traversal functions (van Den Brand et al., 2003), that constitute a very convenient
support for generic parse tree traversal. Those functions allow to specify the anal-
ysis and rewriting of complex parse trees in a very consise way, thereby focusing
only on the nodes of interest. We made an intensive usage of such traversal func-
tions when building our analysis and transformation tools, that mainly target the
database manipulation statements occuring in legacy programs.

Layout and comment preservation The ASF+SDF Meta-Environment pre-
serves the layout and comments of the source code fragments that are not rewrit-
ten (van den Brand and Vinju, 2000). In our work, this feature is also essential,
for the several reasons. First, standard prettyprinters are usually not acceptable in
an industrial context. Second, source code comments are invaluable for the main-
tenance teams and thus cannot be lost. Last, in some programming languages like
COBOL, whitespaces are semantically relevant.

Roadmap

This chapter has briefly presented the conceptual background of the thesis. In
the next chapter (Chapter 3), we really embark on the thesis topic by presenting

24 Chapter 2. Conceptual Background

a comprehensive reference framework for the evolution of data-intensive systems.
This framework is then used to clarify the goals of the thesis.

Chapter 3

A Framework for Data-Intensive
System Evolution

Science is the systematic classification of experience.
– George Henry Lewes

This chapter aims at providing a comprehensive reference framework for the evolu-
tion of data-intensive systems. The chapter starts with an in-depth analysis of the
consistency relationships that hold between the main artefacts of data-intensive
systems. It proposes a classification of database evolution scenarios and identifies
the typical processes involved in database evolution. Finally, it makes use of the
framework for clarifying the scope, contributions and outline of the thesis in terms
of database evolution scenarios and processes.

3.1 The nature of consistency relationships

Before we can propose a classification of evolution scenarios for data-intensive sys-
tems, it is essential to identify the various dependency relationships that hold
between the system artefacts and, more importantly, to understand their nature.
The main inter-dependent artefacts, that we will consider in this thesis, are the
following:

• the database schemas, each at their underlying level of abstraction: con-
ceptual, logical and physical;

• the DDL code, translating the physical database schema;

• the data instances, i.e., the current state of the database contents;

• the application programs, manipulating the database through a given data
manipulation language (DML);

25

26 Chapter 3. A Framework for Data-Intensive System Evolution

DDL
syntax

Data
instances

Logical schema

Physical schema

Conceptual schema

DDL code

DML
syntax

Must be consistent with

Programs
source code

execution

source code

execution

Data model

Database platform

Application programs

Database Schemas

Figure 3.1: Consistency relationships in data-intensive applications.

3.1. The nature of consistency relationships 27

• the DDL syntax, expressing the platform-specific way of defining the database
structure;

• the DML syntax, i.e., the platform-specific grammar of the data manipu-
lation language.

In Figure 3.1, we identify the major consistency relationships that must hold be-
tween those artefacts. Although the consistency relationships often are symmetric,
the direction of the arrows indicates the most intuitive way of interpreting them.
Each arrow can be read as ’must be consistent with’. Below we further describe
and illustrate the nature of each relationship identified.

Logical schema VS conceptual schema

According to the MDE1 terminology, the logical schema (LS) is a platform-specific
model (PSM) derived from the conceptual schema (CS), which is a platform-
independent model (PIM). The relationship between both schemas can be modeled
by a chain of (semantics-preserving) schema transformations. The consistency be-
tween LS and CS is guaranteed if ∃ ΣC2L : LS = ΣC2L(CS), with ΣC2L a chain
of semantics-preserving transformations. Figure 3.2 illustrates the relationship be-
tween the conceptual and logical schemas in the case of semantics-preserving logical
design. In this example, all the constructs belonging to the conceptual schema have
been translated into equivalent constructs in the logical schema. In practice, how-
ever, it may happen that non-semantics-preserving transformations are applied
during the logical design process. This typically occurs when the target logical
model does not allow certain schema constructs. For instance, the COBOL model
does not include relationship types, the latter should be discarded and replaced
with so-called implicit (or undeclared) foreign keys. The same holds for early ver-
sions of MySQL, which do not support foreign keys. In both cases, the referential
constraints must be managed by the application programs themselves. Figure 3.3
illustrates such a situation, where the relationship types occuring in the conceptual
schema have not been fully translated into corresponding foreign keys in the logical
schema.

In summary, in order to qualify the nature of the consistency between a logical
schema LS and a conceptual schema CS, we will say that a LS must be semanti-
cally compatible (instead of equivalent) with CS. This means that we allow some
information loss during logical design, but we impose that every construct belong-
ing to LS derives from construct(s) of CS.

Physical schema VS logical schema

The consistency relationship that must hold between the physical schema (PS) and
the logical schema (LS) is of a similar nature as the one between LS and CS. As
illustrated in Figure 3.2, some performance-oriented physical constructs are added

1Model-Driven Engineering

28 Chapter 3. A Framework for Data-Intensive System Evolution

Logical schema

Conceptual schema

PRODUCT
reference
price
id: reference

ORDERS
num
date
cuscode
id: num
ref: cuscode

DETAIL
prodref
ordnum
quantity
id: prodref

ordnum
ref: ordnum
ref: prodref

CUSTOMER
code
name
address
phone
id: code

PRODUCT
reference
price
id: reference

acc

ORDERS
num
date
cuscode
id: num

acc
ref: cuscode

acc

DETAIL
prodref
ordnum
quantity
id: prodref

ordnum
acc

ref: ordnum
acc

ref: prodref

CUSTOMER
code
name
address
phone
id: code

acc

Physical schema

Conceptual schema

1-10-N places 0-N0-N
detail

quantity

PRODUCT

reference
price
id: reference

ORDER

num
date
id: num

CUSTOMER

code
name
address
phone
id: code

Logical schema

Conceptual schema

PRODUCT
reference
price
id: reference

ORDERS
num
date
cuscode
id: num
ref: cuscode

DETAIL
prodref
ordnum
quantity
id: prodref

ordnum
ref: ordnum
ref: prodref

CUSTOMER
code
name
address
phone
id: code

PRODUCT
reference
price
id: reference

acc

ORDERS
num
date
cuscode
id: num

acc
ref: cuscode

acc

DETAIL
prodref
ordnum
quantity
id: prodref

ordnum
acc

ref: ordnum
acc

ref: prodref

CUSTOMER
code
name
address
phone
id: code

acc

Physical schema

Conceptual schema

1-10-N places 0-N0-N
detail

quantity

PRODUCT

reference
price
id: reference

ORDER

num
date
id: num

CUSTOMER

code
name
address
phone
id: code

Figure 3.2: Semantically equivalent conceptual, logical and physical schemas.

3.1. The nature of consistency relationships 29

Logical schema hiding three implicit foreign keys

PRODUCT
reference
price
id: reference

ORDERS
num
date
cuscode
id: num

DETAIL
prodref
ordnum
quantity
id: prodref

ordnum

CUSTOMER
code
name
address
phone
id: code

Conceptual schema

Conceptual schema

1-10-N places 0-N0-N
detail

quantity

PRODUCT

reference
price
id: reference

ORDER

num
date
id: num

CUSTOMER

code
name
address
phone
id: code

Logical schema hiding three implicit foreign keys

PRODUCT
reference
price
id: reference

ORDERS
num
date
cuscode
id: num

DETAIL
prodref
ordnum
quantity
id: prodref

ordnum

CUSTOMER
code
name
address
phone
id: code

Conceptual schema

Conceptual schema

1-10-N places 0-N0-N
detail

quantity

PRODUCT

reference
price
id: reference

ORDER

num
date
id: num

CUSTOMER

code
name
address
phone
id: code

Conceptual schema

Conceptual schema

1-10-N places 0-N0-N
detail

quantity

PRODUCT

reference
price
id: reference

ORDER

num
date
id: num

CUSTOMER

code
name
address
phone
id: code

Figure 3.3: Illustration of semantics-decreasing logical design.

during the physical design process (such as indexes in this example). But those
additional constructs do not affect the semantics of the schema. Consequently, LS

and PS cover the same informational content, i.e., both schemas are semantically
equivalent.

DDL code VS physical schema

The DDL code is a translation of the physical schema structures and constraints in
the target DDL. We say that a DDL code DC is consistent with a physical schema
PS if each construct c ∈ PS corresponds to an equivalent construct cDDL ∈ DC

translating c with high-fidelity. For instance, each SQL table occuring in a rela-
tional physical schema should correspond to a create table... statement in the
DDL code. This consistency relationship is illustrated in Figure 3.4, which shows
the standard SQL DDL code corresponding to the physical schema of Figure 3.2.

DDL code VS DDL syntax

Quite naturally, the DDL code should be syntactically correct with respect to
the underlying DDL syntax. Although this consistency rule may seem obvious, it
constitutes an important practical issue. For instance, the DDL code translating
the very same relational schema may significantly differ depending on the cho-
sen DBMS, each defining its own syntactical variations with respect to the SQL
standard.

30 Chapter 3. A Framework for Data-Intensive System Evolution

create database SCHEMA;

create table CUSTOMER (
code char (6) not null ,
name char (20) not null ,
address char (40) not null ,
phone numeric (12) not null ,
constraint ID_CUSTOMER_ID primary key (code));

create table DETAIL (
prodref char (6) not null ,
ordnum char (6) not null ,
quantity numeric (6) not null ,
constraint ID_DETAIL_ID primary key (prodref , ordnum));

create table ORDERS (
num char (6) not null ,
date date not null ,
cuscode char (6) not null ,
constraint ID_ORDERS_ID primary key (num));

create table PRODUCT (
reference char (6) not null ,
price numeric (6,2) not null ,
constraint ID_PRODUCT_ID primary key (reference));

alter table DETAIL add constraint REF_DET_ORD_FK
foreign key (ordnum) references ORDERS;

alter table DETAIL add constraint REF_DET_PRO
foreign key (prodref) references PRODUCT;

alter table ORDERS add constraint REF_ORD_CUS_FK
foreign key (cuscode) references CUSTOMER;

create unique index ID_CUSTOMER_IND on CUSTOMER (code);

create unique index ID_DETAIL_IND on DETAIL (prodref , ordnum);

create index REF_DET_ORD_IND on DETAIL (ordnum);

create unique index ID_ORDERS_IND on ORDERS (num);

create index REF_ORD_CUS_IND on ORDERS (cuscode);

create unique index ID_PRODUCT_IND on PRODUCT (reference);

Figure 3.4: DDL code corresponding to physical schema of Figure 3.2.

3.1. The nature of consistency relationships 31

Select-statement :
"SELECT" Set-quantifier? Select-list From-clause Whe re-clause?

…

SELECT name,address FROM CUSTOMER WHERE code = 1345

Select-statement :
"SELECT" Set-quantifier? Select-list From-clause Whe re-clause?

…

SELECT name,address FROM CUSTOMER WHERE code = 1345

Figure 3.5: Consistency of a SQL query with respect to the underlying DML syntax.

Data instances VS DDL code

The data instances must comply with the data format and integrity constraints
declared in the DDL code. This mainly includes the type, length and number of
occurences of column/field values, as well as the uniqueness (identifiers) and refer-
ential constraints (foreign keys). Most data management systems offer mechanisms
allowing to prevent data inconsistencies to be inserted. Consequently, changing the
DDL code typically requires an (often non-trivial) Extract-Transform-Load process
for propagating DDL code modifications to the data instance level.

Program source code VS DML syntax

The data manipulation statements occuring in the program source code should
comply with the data manipulation language syntax. Indeed, database queries
are instances of corresponding syntax productions, as illustrated in Figure 3.5
for a SQL query. A straighforward way to check such a consistency consists in
parsing the DML statements against their expected grammar. Changing the DML
grammar or replacing the DML itself necessitates the adaptation of the database
queries, which may be non-trivial as we will see in this thesis (in Chapters 7 and
8 in particular).

Program source code VS logical schema

The database queries should also be consistent with the logical schema LS2. For
instance, each table name occuring in a SQL from clause should correspond to
a SQL table of the underlying LS. Similarly, each column name occuring in the
select clause of a query should correspond to a column of at least one of the
tables referenced in the from clause. This consistency relationship is illustrated in
Figure 3.6 in the case of a SQL query.

2It may seem more natural to say that queries must comply with the DDL code, which
translates the physical schema. However, as described above, the logical schema serves as a
sufficient reference for writing valid queries. The additional physical constructs do not influence
this task.

32 Chapter 3. A Framework for Data-Intensive System Evolution

SELECT address, name FROM CUSTOMER WHERE code = 134 5

PRODUCT
reference
price
id: reference

ORDERS
num
date
cuscode
id: num
ref: cuscode

DETAIL
prodref
ordnum
quantity
id: prodref

ordnum
ref: ordnum
ref: prodref

CUSTOMER
code
name
address
phone
id: code

Figure 3.6: Consistency of a SQL query with respect to the underlying logical
schema.

Program execution VS data instances

At compile time, the database queries occuring in the source code of the programs
must be consistent with the underlying database schema. At run time, the execu-
tion of those queries involves the manipulation of data instances of that schema.
Each query execution must preserve the consistency of the data with respect to the
implicit schema constructs/constraints that have to be managed by the application
programs, due to the possible semantic loss during logical design.

As an example, Figure 3.7 considers an insert query expressed on a logical
schema that hides three implicit foreign keys (ORDERS.cuscode, DETAILS.ordnum
and DETAILS.prodref). This insert query structurally complies with the SQL
syntax, and conforms to the logical schema. However, its execution introduces
an inconsistency in the database if the value of cuscode (’4321’) does not corre-
spond to the code of an existing customer. In principle, the program must prevent
this problem to arise. Two main data consistency management strategies may be
followed:

• Reactive validation, according to which verification tasks are systematically
performed before executing a database modification query that could chal-
lenge data consistency. For instance, before inserting a new order, the pro-
gram verifies that the corresponding customer already exists in the database.

• Proactive validation, that consists in enforcing data integrity rules during the
query construction process itself, in such a way that the executed database
operations never violate integrity constraints. This strategy is typically im-
plemented through user interface restrictions. For example, before placing a
new order, the customer must be identified.

3.2. Classification of database evolution scenarios 33

Logical schema hiding three implicit foreign keys

PRODUCT
reference
price
id: reference

ORDERS
num
date
cuscode
id: num

DETAIL
prodref
ordnum
quantity
id: prodref

ordnum

CUSTOMER
code
name
address
phone
id: code

INSERT INTO ORDERS (num, date, cuscode)
VALUES (’1234’, ’12-08-2009’, ’ 4321 ’)

Figure 3.7: Consistency of an insert query in the presence of an implicit foreign
key.

Summary

Table 3.1 summarizes the above discussion by characterizing the nature of the
consistency relationships that must hold between the various artefacts of data-
intensive software systems.

3.2 Classification of database evolution scenarios

We propose to classify typical database evolutions according to the three following
dimensions:

• Structural dimension, that concerns the modification of the database struc-
tures (schemas);

• Semantic dimension, which relates to the evolution of the semantics of the
schemas;

• Platform/Language dimension, addressing the replacement of the data de-
scription and manipulation languages.

As a first example, Figure 3.8 evaluates the relevance of those three dimensions
in the case of three popular evolution scenarios: database migration, database
restructuring and database integration.

• Database migration consists of the substitution of a data management tech-
nology for another one. This scenario raises two major issues. The first one
is the conversion of the database schema and instances to a new data man-
agement system. The database structure is often modified, but both source
and target schema should cover the same universe of discourse (i.e., struc-
tural modifications but no semantic change). The second problem concerns

3
4

C
h
a
p
te

r
3
.
A

F
ra

m
e
w

o
rk

fo
r

D
a
ta

-In
te

n
siv

e
S
y
ste

m
E
v
o
lu

tio
n

T
ab

le
3.1:

C
h
aracterization

of
th

e
con

sisten
cy

relation
sh

ip
s

b
etw

een
d
ata-in

ten
sive

sy
stem

s
artefacts.

Data DDL DML Conceptual Logical Physical DDL
Data

model syntax syntax schema schema schema code

Logical Meta-model Semantic
schema compliance compatibility
Physical Semantic
schema equivalence

DDL code
Language High-fidelity

consistency translation

Data
Implicit Explicit

constraints constraints
ompliance compliance

Programs
Language Structural Semantic

consistency consistency consistency

3.2. Classification of database evolution scenarios 35

Structural Semantic Platform

Database migration X X

Database restructuring X (X)
Database integration X X (X)

Figure 3.8: Database evolution scenarios classified according to three dimensions.

the adaptation of the application programs to the migrated database schema
and to the target data management system.

• Database restructuring does not involve any language replacement, but only
structural modifications. Depending on the type of schema transformations
applied, the target schema may convey another semantics. For instance,
renaming a SQL column does not induce any semantic change while adding
a new column does.

• Database integration aims at obtaining a single database from heteregeneous
databases that belong to the same application domain. The resulting database
structure and semantics typically differ from the ones of the input databases.
The databases to be integrated are not always of the same platform.

Below, we further present and analyze each of the three identified dimensions
of database evolution.

3.2.1 Structural dimension

The structural dimension is concerned with the evolution of the database struc-
tures. This regroups modifications applied to the conceptual, logical and physical
schemas. As proposed by Hick and Hainaut (2006), we can classify database schema
evolutions scenarios according to the schema initially modified:

• Conceptual modifications (CM) typically translate changes in the functional
requirements of the information system into conceptual schema changes.

• Logical modifications (LM) do not modify the requirements but adapt their
platform-dependent implementation in the logical schema.

• Physical modifications (PM) aim at adapting the physical schema to new or
evolving technical requirements, like data access performance.

3.2.2 Semantic dimension

The semantic dimension captures the impact of a given database evolution scenario
on the informational content of the target database. In other words, it aims at
indicating whether the evolution involves:

• Semantics-augmenting schema modifications (S+).

36 Chapter 3. A Framework for Data-Intensive System Evolution

Semantics-augmenting schema modification

CUSTOMER
Cust#
Name
Address

CUSTOMER
Cust#
Name
Address
Phone

⇐

Semantics-decreasing schema modification

CUSTOMER
Cust#
Name
Address
Phone

⇐CUSTOMER
Cust#
Name
Address

Semantics-preserving schema modification

CUSTOMER
Cust#
Name
Phone

⇔

1-N1-1 has
PHONE

Phone

id: Phone

CUSTOMER
Cust#
Name

Figure 3.9: Examples of semantics-augmenting, semantics-decreasing and
semantics-preserving schema modifications.

• Semantics-decreasing schema modifications (S−);

• Semantics-preserving schema modifications (S=);

A semantics-preserving schema modification (∈ S=) is commonly called schema
refactoring (Ambler and Sadalage, 2006). We will regroup the modifications be-
longing to the two other categories (S− and S+) under the term schema semantic
adaptation. Examples of the three kinds of schema modifications are given in Fig-
ure 3.9.

Table 3.2, inspired from (Hick, 2001), provides a semantic classification of the
main schema modifications. For the sake of genericity, the presented modifications
are based on the GER schema constructs.

3.2.3 Platform/Language dimension

The platform or language dimension intends to characterise a database evolution
scenario in terms of platform/language change. We can distinguish three possible
cases:

• Iso-platform evolution (P=): the database evolution does not involve the
replacement of the data management system.

• Intra-paradigmatic platform change (P δ): the database evolution requires the
replacement of the data management system with another one belonging to

3.2. Classification of database evolution scenarios 37

Schema construct
Semantic impact of construct modification
S+ S− S=

Entity type

add remove rename
convert to attribute
convert to rel. type
split/merge

Relationship type
add remove rename

convert to ent. type
convert to attribute

Role

create delete rename
increase max. card. decrease max. card.
decrease min. card. increase min. card.
add ent. type remove ent. type

Is-a relationship
add remove
change type change type

Attribute

add remove rename
increase max. card. decrease max. card. convert to ent. type
decrease min. card. increase min. card. aggregate
extend domain restrict domain disaggregate
change type change type instantiate

concatenate

Identifier
add remove rename
add component remove component change type

Constraints
add remove rename
add component remove component
change type change type

Access key
add remove rename
add attribute remove attribute

Collection
add remove rename
add ent. type remove ent. type

Table 3.2: Semantic classification of GER schema modifications.

38 Chapter 3. A Framework for Data-Intensive System Evolution

the same paradigm. A typical example is the migration of a MySQL database
to Oracle or DB2.

• Inter-paradigmatic platform change (P∆): the database evolution relies on
a database paradigm switch, i.e., the migration of the database towards a
data management system of another paradigm. This is the case, for instance,
when migrating a network database (CODASYL) to a relational platform.

3.2.4 Intra and inter-dimension relationships

The database evolution dimensions we have identified and described so far are
obviously related to each other. Based on the direct and indirect consistency rela-
tionships depicted in Figure 3.1, we can first identify intra-dimension relationships.
Indeed, an evolution classified according to one dimension may cause an existing
consistency constraint to be violated. The broken consistency link must then be
reestablished by means of a change propagation evolution, possibly of another kind,
which in turn may break another consistency relationship, etc. For instance, within
the structural dimension, it usually happens that schema modifications at a given
level of abstraction necessitate the adaptation of (1) the schemas belonging to the
other abstraction levels, (2) the DDL code, (3) the data instances and (4) the
programs.

Furthermore, we can also point out some inter-dimension relationships:

• Semantic adaptations typically correspond to conceptual schema modifica-
tions.

• Logical modifications are mainly semantics-preserving.

• Inter-paradigmatic platform changes often necessitate logical schema modifi-
cations.

3.3 Database evolution processes

Having the above discussion in mind, we will now try to identify the different pro-
cesses involved in database evolution. This will allow us to better specify the scope
and contributions of this thesis. The latter considers that a database evolution is
typically composed of the following chain of processes.

1. Database reverse engineering is the usual initial step of database evolution,
aiming at understanding the database subject to evolution. This process is
required in the (very) frequent situation in which the database is not (well-
)documented.

2. Database conversion is the evolution of the database component itself, com-
prising four subprocesses:

3.4. Thesis scope, contributions and outline revisited 39

(a) Impact analysis aims to evaluate the impact (chain) of the desired
schema modification(s) on the related artefacts (other schemas, data
instances and programs).

(b) Schema modification consists in applying the necessary change(s) to a
database schema at a given level of abstraction.

(c) Schemas adaptation aims at adapting the schemas belonging to the other
abstraction levels3.

(d) Data adaptation concerns the adaptation of the data instances to the
modified schemas.

3. Program adaptation aims to adapt the application programs to the target
database schema and platform.

Note that depending on the database evolution scenario and the chosen methodol-
ogy, some of the above processes may be useless or ignored.

3.4 Thesis scope, contributions and outline revisited

Focus on database-program consistency

This thesis aims to propose automated techniques for exploiting and preserving the
consistency relationships that hold between a database and the related programs.
As previously suggested, the nature of those relationships is threefold:

• Language consistency : the database queries of the programs must comply
with the underlying data manipulation language;

• Structural consistency : the database queries of the programs must comply
with the structures and constraints specified in the logical schema;

• Semantic consistency : the programs should not introduce data inconsisten-
cies in the database, i.e., data that violate implicit schema constructs and
constraints.

The role of program analysis and transformation

The automated techniques presented in this thesis rely on program analysis and
program transformation. In the context of the thesis:

• Program analysis techniques aim to exploit semantic consistency in order to
elicitate implicit schema constructs and constraints.

• Program transformation techniques allow to

3For instance, the modification of the conceptual schema typically necessitates the adaptation
of the logical schema, physical schemas and DDL code.

40 Chapter 3. A Framework for Data-Intensive System Evolution

Evolution scenario
Structural dim. Semantic dim. Platform dim.

CM LM PM S+ S− S= P= P δ P∆

System migration X X X

Schema refactoring X X X

Figure 3.10: Classification of the database evolution scenarios studied in this thesis.

1. preserve language consistency when the data manipulation language
changes, e.g., when migrating or upgrading the system towards a new
database platform.

2. preserve structural consistency when the database schema is refactored,
i.e., when semantics-preserving transformations are applied to the schema.

Evolution scenarios considered

The present thesis therefore considers two distinct database evolution scenarios:

• System migration, addressed in Chapters 4, 7, 8 and 9 of the thesis.

• Schema refactoring, studied in Chapter 10 of the thesis.

Figure 3.10 classifies these two scenarios according to the database evolution di-
mensions previously identified in this chapter. The considered system migration
scenario involves an inter-paradigmatic platform change, which typically necessi-
tates the adaptation of the logical schema through semantics-preserving schema
modifications. The schema refactoring scenario does not involve any platform mi-
gration, but assumes that semantics-preserving modifications are applied to the
logical schema.

Evolution processes considered

The original contributions of the thesis particularly concerns the two following
evolution processes:

• Database reverse engineering : Chapters 5 and 6 elaborate on the use of pro-
gram analysis techniques in support to the database reverse engineering pro-
cess4.

• Program adaptation: Chapters 7, 8 and 10 study the automated propagation
of database evolutions to related programs in order to preserve the global
consistency of the system.

Roadmap revisited

Figure 3.11 revisits the roadmap of the thesis, by characterizing its chapters in
terms of the evolution processes and scenarios they address.

4independently of a particular evolution scenario

3.4. Thesis scope, contributions and outline revisited 41

Scenario Process

S
y
stem

m
ig

ra
tio

n

S
ch

em
a

refa
cto

rin
g

D
a
ta

b
a
se

rev
erse

en
g
in

eerin
g

S
ch

em
a

m
o
d
ifi

ca
tio

n

D
a
ta

a
d
a
p
ta

tio
n

P
ro

g
ra

m
a
d
a
p
ta

tio
n

Chapter 4 X X X X X

Chapter 5 X

Chapter 6 X

Chapter 7 X X

Chapter 8 X X

Chapter 9 X X X X X

Chapter 10 X X

Figure 3.11: Characterization of the remaining chapters of the thesis in terms of
the database evolution processes and scenarios they address.

42 Chapter 3. A Framework for Data-Intensive System Evolution

Part II

The System Migration
Problem

43

Chapter 4

Strategies for Data-Intensive
System Migration

Any problem can be solved with a little ingenuity.
– Angus MacGyver

This chapter1 addresses the problem of platform migration of large business appli-
cations, that is, complex software systems built around a database and comprising
thousands of programs. More specifically, it studies the substitution of a modern
data management technology for a legacy one.

Database platform migration raises two major issues. The first one is the con-
version of the database to a new data management paradigm. Recent results have
shown that automated lossless database migration can be achieved, both at the
schema and data levels (Hick and Hainaut, 2006). The second problem concerns
the adaptation of the application programs to the migrated database schema and
to the target data management system.

This chapter develops a two-dimensional reference framework that identifies
six representative migration strategies. The latter are further analyzed in order
to identify methodological requirements. In particular, it appears that transfor-
mational techniques are particularly suited to drive the whole migration process.
We describe the database migration process, which is a variant of database reengi-
neering. Then, the problem of program conversion is studied. Some migration
strategies appear to minimize the program understanding effort, and therefore are
sound candidates to develop practical methodologies.

4.1 System migration: State of the Art

Technically, a legacy data-intensive system is made up of large and ageing programs
relying on legacy database systems (like IMS or CODASYL) or using primitive

1An extended version of this chapter appeared in the book Software Evolution, published by
Springer in January 2008 (Hainaut et al., 2008).

45

46 Chapter 4. Strategies for Data-Intensive System Migration

DMSs2 (a.o., COBOL file system, ISAM). Such systems often are isolated in that
they do not easily interface with other applications. Moreover, they have proved
critical to the business of organizations. To keep being competitive, organizations
must improve their legacy systems and invest in advanced technologies, specially
through system evolution. In this context, the claimed 75% cost of legacy systems
maintenance (w.r.t. total cost) is considered prohibitive (Wiederhold, 1995).

System migration is an expensive and complex process, but it greatly increases
the system control and evolution to meet future business requirements. The scien-
tific and technical literature (e.g. Bisbal et al., 1999; Brodie and Stonebraker, 1995)
mainly identifies two migration strategies, namely rewriting the legacy system from
scratch or migrating by small incremental steps. The incremental strategy allows
the migration projects to be more controllable and predictable in terms of calendar
and budget. The difficulty lies in the determination of the migration steps.

Legacy system migration is a major research domain that has yielded some
general migration methods. For example, Tilley and Smith (1995) discuss cur-
rent issues and trends in legacy system reengineering from several perspectives
(engineering, system, software, managerial, evolutionary, and maintenance). They
propose a framework to place reengineering in the context of evolutionary systems.
The butterfly methodology proposed by Wu et al. (1997) provides a migration
methodology and a generic toolkit to aid engineers in the process of migrating
legacy systems. This methodology, that does not rely on an incremental strategy,
eliminates the need of interoperability between the legacy and target systems.

Below, we gather the major migration approaches proposed in the literature
according to the various dimensions of the migration process as a whole.

4.1.1 Language dimension

Language conversion consists in translating (parts of) an existing program from a
source programming language to a target programming language. Ideally, the tar-
get program should show the same behaviour as the source program. Malton (2001)
identifies three kinds of language conversion scenarios, with their own difficulties
and risks:

• Dialect conversion is the conversion of a program written in one dialect of a
programming language to another dialect of the same programming language.

• API migration is the adaptation of a program due to the replacement of
external APIs. This problem may prove challenging, even when the source
and target APIs are similar to each other, as shown by Lämmel and van der
Storm (2009).

• Language migration is the conversion from one programming language to
a different one. It may include dialect conversion and API migration.

2DMS: Data Management System.

4.1. System migration: State of the Art 47

Two main language conversion approaches can be found in the literature. The
first one (Waters, 1988), that might be called abstraction-reimplementation, is a
two-step method. First, the source program is analyzed in order to produce a
high-level, language-independent description. Second, the reimplementation pro-
cess transforms the abstract description obtained in the first step into a program
in the target language. The second conversion approach (Terekhov and Verhoef,
2000; Malton, 2001) does not include any abstraction step. It is a three-phase
conversion process: (1) normalization, that prepares the source program to make
the translation step easier; (2) translation, that produces an equivalent program
that correctly runs in the target language; (3) optimization: that improves the
maintenability of the target source code

Terekhov and Verhoef (2000) show that the language conversion process is far
from trivial, especially when the source and the target languages belong to different
paradigms. A lot of research has been carried out on specific cases of language
conversion, among which PL/I to C++ (Kontogiannis et al., 1998), Smalltalk to
C (Yasumatsu and Doi, 1995), C to Java (Martin and Müller, 2001) and Java to
C# (El-Ramly et al., 2006).

4.1.2 User interface dimension

Migrating user interfaces to modern platforms is another popular migration sce-
nario. Such a process may often benefit from an initial reverse engineering phase, as
shown in the method proposed by Stroulia et al. (2003). This method starts from a
recorded trace of the user interaction with the legacy interface, and produces a cor-
responding state-transition model. The states represent the unique legacy interface
screens while the transitions correspond to the user action sequences enabling tran-
sitions from one screen to another. Lucia et al. (2006) propose a practical approach
to migrating legacy systems to multi-tier, web-based architectures. They present
an Eclipse-based plugin to support the migration of the graphical user interface
and the restructuring and wrapping of the original legacy code.

4.1.3 Platform and architecture dimensions

Other researches, that we briefly discuss below, examine the problem of migrating
legacy systems towards new architectural and technological platforms.

Towards distributed architectures The Renaissance project (Warren, 1999)
develops a systematic method for system evolution and re-engineering and pro-
vides technical guidelines for the migration of legacy systems (e.g. COBOL) to
distributed client/server architectures. A generic approach to reengineering legacy
code for distributed environments is presented by Serrano et al. (2002). The
methodology combines techniques such as data mining, metrics, clustering, object
identification and wrapping. Canfora et al. (2006) propose a framework supporting
the development of thin-client applications for limited mobile devices. This frame-

48 Chapter 4. Strategies for Data-Intensive System Migration

work allows Java AWT applications to be executed on a server while the graphical
interfaces are displayed on a remote client.

Towards object-oriented platforms Migrating legacy systems towards object-
oriented structures is another research domain that has led to a lot of mature
results, especially on object identification approaches (Yeh et al., 1995; Canfora
et al., 1996; van Deursen and Kuipers, 1999; Girard et al., 1999; Sahraoui et al.,
1999). Regarding the migration process itself, the approach suggested by de Lucia
et al. (1997) consists of several steps combining reverse engineering and reengi-
neering techniques. More recently, Zou and Kontogiannis (2001) have presented an
incremental and iterative migration framework for reengineering legacy procedural
source code into an object-oriented system.

Towards aspect-orientation A significant research effort was recently devoted
to the migration of legacy systems towards aspect-oriented programming (AOP).
Several authors have addressed the initial reverse engineering phase of the pro-
cess, called aspect mining, which aims at identifying crosscutting concern code in
existing systems. Among the various aspect mining techniques that have been
proposed, we mention fan-in analysis (Marin et al., 2004), formal concept analy-
sis (Tourwe and Mens, 2004), dynamic analysis (Tonella and Ceccato, 2004) and
clone detection (Bruntink et al., 2005). While those techniques still suffer from
some limitations in terms of precision and recall (Mens et al., 2008), Ceccato et al.
(2006) showed that combining them may allow to reach a more complete coverage
of concerns.

The second step of the migration process consists in refactoring the detected
cross-cutting concern code into aspects. While such a refactoring is feasible Binkley
et al. (2006), it is important to evaluate its benefits for a particular system. As
observed by Bruntink et al. (2007), the level of source code variability for “simple”
cross-cutting concerns - like tracing, parameter checking or exception handling -
may be very high in legacy systems. This situation tends to reduce the benefits
of migrating the cross-cutting concern code to aspects and is also makes such a
process more risky, especially when a strict equivalence of the source and target
systems is imposed.

Towards service-oriented architectures Migrating legacy systems towards
service-oriented architectures (SOA) appears as one of the next challenges of the
maintenance community. Sneed (2006) presents a wrapping-based approach ac-
cording to which legacy program functions are offered as web services to external
users. Liam O’Brien (2005) propose the use of architecture reconstruction to sup-
port migration to SOA. Heckel et al. (2008) present a tool-supported methodology
for migrating legacy systems towards three-tier and service-oriented architectures.
This approach is based on graph transformation technology.

4.2. Migration reference model 49

4.1.4 Database dimension

Closer to our data-centered approach, the Varlet project (Jahnke and Wadsack,
1999) adopts a typical two phase reengineering process comprising a reverse en-
gineering phase followed by a standard database implementation. The approach
of Jeusfeld and Johnen (1994) is divided into three parts: mapping of the origi-
nal schema into a meta model, rearrangement of the intermediate representation
and production of the target schema. Some works also address the migration
between two specific systems. Among those, Menhoudj and Ou-Halima (1996)
present a method to migrate the data of COBOL legacy system into a relational
database management system. The hierarchical to relational database migration is
discussed by Meier et al. (1994); Meier (1995). General approaches to migrate re-
lational database to object-oriented technology are proposed by Behm et al. (1997)
and Missaoui et al. (1998). More recently, Bianchi et al. (2000) propose an iterative
approach to database reengineering. This approach aims at eliminating the ageing
symptoms of the legacy database (Visaggio, 2001) when incrementally migrating
the latter towards a modern platform.

4.1.5 Discussion

Though the current literature on data-intensive systems migration sometimes rec-
ommends a semantics-based approach, relying on reverse engineering techniques,
most technical solutions adopted in the industry are based on the so-called one-
to-one migration of the data structures and contents, through a fully-automated
process. As we will see in the remaining of this chapter, these approaches lead
to poor quality results. Secondly, while most papers provide ad hoc solutions for
particular combinations of source/target platforms, there is still a lack of generic
and systematic studies encompassing database migration strategies and techniques.
Thirdly, the conversion of application programs in the context of database migra-
tion still remains an open problem. Although some work (e.g. Bianchi et al., 2000)
suggests the use of wrapping techniques, very little attention is devoted to the way
database wrappers are built or, better, automatically generated. In addition, the
impact of the chosen program conversion technique on target source code main-
tainability has not been sufficiently discussed.

4.2 Migration reference model

There is more than one way to migrate a data-intensive software system. Some
approaches are quite straightforward and inexpensive, but lead to poorly structured
results that are difficult to maintain. Others, on the contrary, produce good quality
data structures and code, but at the expense of substantial intelligent (and therefore
difficult to automate) code restructuring. We have built a reference model based
on two dimensions, namely data and programs. Each of them defines a series of
change strategies, ranging from the simplest to the most sophisticated. This model
outlines a solution space in which we identify six typical strategies that will be

50 Chapter 4. Strategies for Data-Intensive System Migration

Renovated IS

D

PP

schema
conversion

data
conversion

S

program
conversion

mapping

Legacy IS

D'

P'P'

S'

Renovated IS

D

PP

schema
conversion

data
conversion

S

program
conversion

mapping

Legacy IS

D'

P'P'

S'

Figure 4.1: Overall view of the database-first system migration process

described below and discussed in the remainder of the chapter. This model relies
on a frequently used scenario, called database-first (Wu et al., 1997), according
to which the database is transformed before program conversion. This approach
allows developers to cleanly build new applications on the new database while
incrementally migrating the legacy programs.

In this context, system migration consists in deriving a new database from a
legacy database and in further adapting the software components accordingly (Brodie
and Stonebraker, 1995). Considering that a database is made up of two main com-
ponents, namely its schema(s) and its contents (the data), the migration comprises
three main steps: (1) schema conversion, (2) data conversion and (3) program con-
version. Figure 4.1 depicts the organization of the database-first migration process,
that is made up of subprocesses that implement these three steps. Schema con-
version produces a formal description of the mapping between the objects of the
legacy (S) and renovated (S’) schemas. This mapping is then used to convert the
data and the programs. Practical methodologies differ in the extent to which these
processes are automated.

• Schema conversion is the translation of the legacy database structure, or
schema, into an equivalent database structure expressed in the new technol-
ogy. Both schemas must convey the same semantics, i.e., all the source data
should be losslessly stored into the target database. Most generally, the con-
version of a source schema into a target schema is made up of two processes.
The first one, called database reverse engineering (Hainaut et al., 1996a),
aims at recovering the conceptual schema that expresses the semantics of
the source data structure. The second process is standard and consists in
deriving the target physical schema from this conceptual specification. Each
of these processes can be modeled by a chain of semantics-preserving schema
transformations.

• Data conversion is the migration of the data instance from the legacy

4.2. Migration reference model 51

database to the new one. This migration involves data transformations that
derive from the schema transformations described above.

• Program conversion, in the context of database migration, is the modifi-
cation of the program so that it now accesses the migrated database instead
of the legacy data. The functionalities of the program are left unchanged,
as well as its programming language and its user interface (they can migrate
too, but this is another problem). Program conversion can be a complex
process in that it relies on the rules used to transform the legacy schema into
the target schema.

4.2.1 Strategies

We consider two dimensions, namely database conversion and program conversion,
from which we will derive migration strategies.

The Database dimension (D) We consider two extreme database conversion
strategies leading to different levels of quality of the transformed database. The first
strategy (Physical conversion or D1) consists in translating each construct of the
source database into the closest constructs of the target DMS without attempting
any semantic interpretation. The process is quite cheap, but it leads to poor quality
databases with no added value. The second strategy (Conceptual conversion or
D2) consists in recovering the precise semantic description (i.e., its conceptual
schema) of the source database first, through reverse engineering techniques, then
in developing the target database from this schema through a standard database
methodology. The target database is of high quality according to the expressiveness
of the new DMS model and is fully documented, but, as expected, the process is
more expensive.

The Program dimension (P) Once the database has been converted, several
approaches to application programs adaptation can be followed. We identify three
reference strategies. The first one (Wrappers or P1) relies on wrappers that encap-
sulate the new database to provide the application programs with the legacy data
access logic, so that these programs keep reading and writing records in (now fic-
tive) indexed files or CODASYL/IMS databases, generally through program calls
instead of through native I/O file statements. The second strategy (Statement
rewriting or P2) consists in rewriting the access statements in order to make them
process the new data through the new DMS-DML 3. For instance, a COBOL READ

statement is replaced with a select-from-where (SFW) or a fetch SQL statement.
In these two first strategies, the program logic is neither elicited nor changed. Ac-
cording to the third strategy (Logic rewriting or P3), the program is rewritten in
order to use the new DMS-DML at its full power. It requires a deep understanding
of the program logic, since the latter will generally be changed due to, for instance,

3DML: Data Manipulation Language.

52 Chapter 4. Strategies for Data-Intensive System Migration

physical

conceptual

Plogicstatementswrapper

D

<D2,P1> <D2,P3>

<D1,P1>

<D2,P2>

<D1,P2> <D1,P3>physical

conceptual

Plogicstatementswrapper

D

<D2,P1> <D2,P3>

<D1,P1>

<D2,P2>

<D1,P2> <D1,P3>

Figure 4.2: The six reference IS migration strategies

the change in database paradigm. These dimensions define six reference system
migration strategies (Figure 4.2).

4.2.2 Running example

The strategies developed in this chapter will be illustrated by a small case study in
which the legacy system comprises a standalone COBOL program and three files.
Despite its small size, the files and the program exhibit representative instances
of the most problematic patterns. This program records and displays information
about customers that place orders. The objective of the case study is to convert
the legacy files into a new relational database and to transform the application
program into a new COBOL program, with the same business functions, but that
accesses the new database.

4.3 Schema conversion

The schema conversion strategies mainly differ in the way they cope with the
explicit and implicit constructs (that is, the data structures and the integrity con-
straints) of the source schema. An explicit construct is declared in the DDL code 4

of the schema and can be identified through examination or parsing of this code.
An implicit construct has not been declared, but, rather, is controlled and man-
aged by external means, such as decoding and validating code fragments scattered
throughout the application code. Such a construct can only be identified by so-
phisticated analysis methods exploring the application code, the data, the user
interfaces, to mention the most important sources.

The schema conversion process analyzes the legacy application to extract the
source physical schema (SPS) of the underlying database and transforms it into a
target physical schema (TPS) for the target DMS. The TPS is used to generate
the DDL code of the new database. In this section, we distinguish two schema
conversion strategies. The first strategy, called the physical schema conversion,

4DDL: Data Description Language.

4.3. Schema conversion 53

Renovated schemaschema
conversionSPS

mapping

Legacy schema

target DMS-DDL

TPS

DDL
coding

DDL
parsing

source DMS-DDL

Renovated schemaschema
conversionSPS

mapping

Legacy schema

target DMS-DDL

TPS

DDL
coding

DDL
parsing

source DMS-DDL

Figure 4.3: Physical schema conversion strategy (D1).

merely simulates the explicit constructs of the legacy database into the target
DMS. According to the second one, the conceptual schema conversion, the complete
semantics of the legacy database is retrieved and represented into the technology-
neutral conceptual schema (CS), which is then used to develop the new database.

4.3.1 Physical conversion strategy (D1)

4.3.1.1 Principle

According to this strategy (Figure 4.3) each explicit construct of the legacy database
is directly translated into its closest equivalent in the target DMS. For instance,
considering a standard file to SQL conversion, each record type is translated into
a table, each top-level field becomes a column and each record/alternate key is
translated into a primary/secondary key. No conceptual schema is built, so that
the semantics of the data is ignored.

4.3.1.2 Methodology

The DDL parsing process analyzes the DDL code to retrieve the physical schema of
the source database (SPS). This schema includes explicit constructs only. It is then
converted into its target DMS equivalent (TPS) through a straightforward one-to-
one mapping and finally coded into the target DDL. The schema conversion process
also produces the source to target schema mapping, which is of great importance
for the subsequent migration steps.

4.3.1.3 Illustration

The analysis of the file and record declarations produces the SPS (Figure 4.4/left).
Each COBOL record type is translated into an SQL table, each field is converted
into a column and object names are made compliant with the SQL syntax (Fig-
ure 4.4/right). In this schema, a box represents a physical entity type (record
type, table, segment, etc.). The first compartment specifies its name, the second
one gives its components (fields, columns, attributes) and the third one declares
secondary constructs such as keys and constraints (id stands for primary identi-
fier/key, acc stands for access key, or index, and ref stands for foreign key). A
cylinder represents a data collection, commonly called a file.

54 Chapter 4. Strategies for Data-Intensive System Migration

Legacy COBOL physical schema (SPS) Renovated SQL target physical schema (TPS)

PROD
P-CODE
P-NAME
P-LEVEL
id: P-CODE

acc

ORD
O-CODE
O-CUST
O-DETAIL
id: O-CODE

acc
acc: O-CUST

CUS
C-CODE
C-DESCR
id: C-CODE

acc

 PRODUCT

PROD

 ORDER

ORD

CUSTOMER

CUS

PROD
P_CODE
P_NAME
P_LEVEL
id: P_CODE

acc

ORD
O_CODE
O_CUST
O_DETAIL
id: O_CODE

acc
acc: O_CUST

CUS
C_CODE
C_DESCR
id: C_CODE

acc

Legacy COBOL physical schema (SPS) Renovated SQL target physical schema (TPS)

PROD
P-CODE
P-NAME
P-LEVEL
id: P-CODE

acc

ORD
O-CODE
O-CUST
O-DETAIL
id: O-CODE

acc
acc: O-CUST

CUS
C-CODE
C-DESCR
id: C-CODE

acc

 PRODUCT

PROD

 ORDER

ORD

CUSTOMER

CUS

PROD
P_CODE
P_NAME
P_LEVEL
id: P_CODE

acc

ORD
O_CODE
O_CUST
O_DETAIL
id: O_CODE

acc
acc: O_CUST

CUS
C_CODE
C_DESCR
id: C_CODE

acc

Figure 4.4: Example of COBOL/SQL physical schema conversion.

4.3.2 Conceptual conversion strategy (D2)

4.3.2.1 Principle

This strategy aims at producing a target schema in which all the semantics of
the source database are made explicit, even those conveyed by implicit source
constructs. In most cases, there is no complete and up to date documentation of
the legacy system, and in particular of the database. Therefore, its logical and
conceptual schemas must be recovered before generating the target schema. The
physical schema of the legacy database (SPS) is extracted and transformed into
a conceptual schema (CS) through reverse engineering. The conceptual schema
is then transformed into the physical schema of the target system (TPS) through
standard database development techniques.

4.3.2.2 Methodology

The left part of Figure 4.5 depicts the three steps of a simplified database reverse
engineering methodology used to recover the logical and conceptual schemas of the
source database.

• As in the first strategy, the first step is the parsing of the DDL code to extract
the physical schema (SPS), which only includes the explicit constructs.

• The schema refinement step consists in refining the SPS by adding the im-
plicit constructs that are identified through the analysis of additional infor-
mation sources, such as the source code of the application programs and
the database contents, to mention the most common ones. Program code
analysis performs an in-depth inspection of the way the programs use and
manage the data. Data validation, data modification and data access pro-
gramming clichés are searched for in particular, since they concentrate the
procedural logic strongly linked with data properties. The existing data are

4.3. Schema conversion 55

Renovated schema

schema
refinement

SPS mapping

Legacy IS

target DMS-DDLDDL
parsing

TPS

schema
conceptualization

program
source code

program
source code

DB
physical design

SLS

DB
logical design

TLS

CS

data

source DMS-DDL DDL
coding

Renovated schema

schema
refinement

SPS mapping

Legacy IS

target DMS-DDLDDL
parsing

TPS

schema
conceptualization

program
source code

program
source code

DB
physical design

SLS

DB
logical design

TLS

CS

data

source DMS-DDL DDL
coding

Figure 4.5: Conceptual schema conversion strategy (D2)

also analyzed through data mining techniques, either to detect constraints,
or to confirm or discard hypotheses on the existence of constraints. This step
results in the source logical schema (SLS), that includes the explicit repre-
sentation of such constructs as record and field decomposition, uniqueness
constraints, foreign keys or enumerated domains that were absent in SPS.
The history SPS-to-SLS of the refinement process forms the first part of the
source-to-target mapping.

• The final step is schema conceptualization that semantically interprets the
logical schema. The result is expressed by the conceptual schema (CS). This
schema is technology independent, and therefore independent of both the
legacy and new DMSs. The history SLS-to-CS of this process is appended to
the source-to-target mapping.

A complete presentation of this reverse engineering methodology can be found
in Hainaut et al. (1996a) and Hainaut (2002), together with a fairly comprehensive
bibliography on database reverse engineering.

The conceptual schema is then transformed into an equivalent logical schema
(TLS), which in turn is transformed into the physical schema (TPS). TPS is then
used to generate the DDL code of the target database. These processes are quite
standard and are represented in the right part of Figure 4.5. The histories CS-to-
TLS and TLS-to-TPS are added to the source-to-target mapping. The mapping
SPS-to-TPS is now complete, and is defined as SPS-to-SLS ◦ SLS-to-CS ◦ CS-to-
TLS ◦ TLS-to-TPS.

56 Chapter 4. Strategies for Data-Intensive System Migration

4.3.2.3 Illustration

The details of this reverse engineering case study have been described in Hainaut
et al. (1997). We sketch its main steps in the following. The legacy physical schema
SPS is extracted as in the first approach (Figure 4.6/top-left).

The Refinement process enriches this schema with the following implicit con-
structs:

(1) Field O-DETAIL appears to be compound and multivalued, thanks to program
analysis techniques based on variable dependency graphs and program slicing.

(2) The implicit foreign keys O-CUST and REF-DET-PRO are identified by schema
names and structure patterns analysis, program code analysis and data anal-
ysis.

(3) The multivalued identifier (uniqueness constraint) REF-DET-PRO of O-DETAIL
can be recovered through the same techniques.

The resulting logical schema SLS is depicted in Figure 4.6/top-right.
During the data structure conceptualization, the implementation objects (record

types, fields, foreign keys, arrays,...) are transformed into their conceptual equiva-
lent to produce the conceptual schema CS (Figure 4.6/bottom-left).

Then, the database design process transforms the entity types, the attributes
and the relationship types into relational constructs such as tables, columns, keys
and constraints. Finally physical constructs (indexes and storage spaces) are de-
fined (Figure 4.6.bottom-right) and the code of the new database is generated.

4.4 Data conversion

4.4.1 Principle

Data conversion is handled by a so-called Extract-Transform-Load (ETL) processor
(Figure 4.7), which transforms the data from the data source to the format defined
by the target schema. Data conversion requires three steps. First, it performs the
extraction of the data from the legacy database. Then, it transforms these data in
such a way that their structures match the target format. Finally, it writes these
data in the target database.

Data conversion relies on the mapping that holds between the source and target
physical schemas. This mapping is derived from the instance mappings (t) of the
source-to-target transformations stored in the history.

Deriving data conversion from the physical schema conversion (D1) is straight-
forward. Indeed, both physical schemas are as similar as their DMS models permit,
so that the transformation step most often consists in data format conversion.

The conceptual schema conversion strategy (D2) recovers the conceptual schema
(CS) and the target physical schema (TPS) implements all the constraints of this
schema. Generally, both CS and TPS include constraints that are missing in SPS,

4
.4

.
D

a
ta

c
o
n
v
e
rs

io
n

5
7

Legacy COBOL physical schema (SPS) Legacy refined COBOL logical schema (SLS)

PROD
P-CODE
P-NAME
P-LEVEL
id: P-CODE

acc

ORD
O-CODE
O-CUST
O-DETAIL[0-20]

REF-DET-PRO
ORD-QTY

id: O-CODE
acc

ref: O-CUST
acc

ref: O-DETAIL[*].REF-DET-PRO
id(O-DETAIL):

REF-DET-PRO

CUS
C-CODE
C-DESCR

NAME
ADDR
FUNCT
REC-DATE

id: C-CODE
acc

Conceptual schema (CS)

1-1

0-N

place 0-N

0-20
detail

Ord-qty

PRODUCT
P-Code
P-Name
P-Level

id: P-Code

ORDER
O-Code

id: O-Code

CUSTOMER
C-Code
C-Name
C-Address
C-Function
C-Rec-date

id: C-Code

0-N0-N

1-11-1

0-N0-N

0-200-20

Renovated SQL physical schema (TPS)

PRODUCT
P_CODE
P_NAME
P_LEVEL
id: P_CODE

acc

ORDERS
O_CODE
C_CODE
id: O_CODE

acc
ref: C_CODE

acc

DETAIL
P_CODE
O_CODE
ORD_QTY
id: O_CODE

P_CODE
acc

ref: O_CODE
acc

ref: P_CODE
acc

CUSTOMER
C_CODE
C_NAME
C_ADDRESS
C_FUNCTION
C_REC_DATE
id: C_CODE

acc

PROD
P-CODE
P-NAME
P-LEVEL
id: P-CODE

acc

ORD
O-CODE
O-CUST
O-DETAIL
id: O-CODE

acc
acc: O-CUST

CUS
C-CODE
C-DESCR
id: C-CODE

acc

 PRODUCT

PROD

 ORDER

ORD

CUSTOMER

CUS

F
ig

u
re

4.
6:

E
x
am

p
le

of
C

O
B

O
L
/S

Q
L

co
n
ce

p
tu

al
sc

h
em

a
co

n
ve

rs
io

n
.

R
en

ov
at

ed
da

ta

D
da

ta
co

nv
er

si
onm

ap
pi

ng
Le

ga
cy

da
ta

D
'

R
en

ov
at

ed
da

ta

D
da

ta
co

nv
er

si
onm

ap
pi

ng
Le

ga
cy

da
ta

D
'

F
ig

u
re

4.
7:

M
ap

p
in

g-
b
as

ed
d
at

a
m

ig
ra

ti
on

ar
ch

it
ec

tu
re

.

58 Chapter 4. Strategies for Data-Intensive System Migration

and that the source data may violate. Thus data migration must include a prelim-
inary data cleaning step that fixes or discards the data that cannot be loaded in
the target database (Rahm and Do, 2000). This step cannot always be automated.
However, the schema refinement step identifies all the implicit constraints and pro-
duces a formal specification for the data cleaning process. It must be noted that
the physical schema conversion strategy (D1) makes such data cleaning useless.
Indeed, both SPS and TPS express the same constraints that the source data are
guaranteed to satisfy.

4.4.2 Methodology

Data conversion involves three main tasks. Firstly, the target physical schema
(TPS) must be implemented in the new DMS. Secondly, the mapping between the
source and target physical schemas must be defined according to one of the two
strategies described in Section 3. Finally, these mappings must be implemented
in the converter for translating the legacy data according to the format defined in
TPS.

The instance mapping sps-to-tps is automatically derived from the compound
transformation SPS-to-TPS built in the schema conversion process. The converter
is based on the structural mappings SPS-to-TPS to write the extraction and in-
sertion requests and on the corresponding instance mappings sps-to-tps for data
transformation.

4.5 Program conversion

The program conversion process aims at re-establishing the consistency relation-
ships that hold between application programs and the migrated database. As de-
scribed in Chapter 3, the nature of this consistency is twofold. First, the programs
have to comply with the API of the DMS, by using the right data manipulation
language and interaction protocols. Second, the programs have to manipulate the
data in their correct format, i.e., the format declared in the database schema.

This section analyzes the three program modification strategies specified in
Figure 4.2. The first one relies on wrapper technology (P1) to map the access prim-
itives onto the new database through wrapper invocations that replace the DML
statements of the legacy DMS. The second strategy (P2) replaces each statement
with its equivalent in the new DMS-DML. According to the P3 strategy, the access
logic is rewritten to comply with the DML of the new DMS. In strategies P2 and
P3, access statements are expressed in the DML of the new DMS.

In order to compare the three program conversion strategies, we will apply them
successively on the same legacy COBOL fragment, given in Figure 4.8. This code
fragment deletes all the orders placed by a given customer.

4.5. Program conversion 59

DELETE -CUS -ORD.
MOVE C-CODE TO O-CUST.
MOVE 0 TO END -FILE.
READ ORDERS KEY IS O-CUST

INVALID KEY MOVE 1 TO END -FILE.
PERFORM DELETE -ORDER UNTIL END -FILE = 1.

DELETE -ORDER.
DELETE ORDERS.
READ ORDERS NEXT

AT END MOVE 1 TO END -FILE
NOT AT END

IF O-CUST NOT = C-CODE
MOVE 1 TO END -FILE.

Figure 4.8: A legacy COBOL code fragment that deletes the orders corresponding
to a given customer.

4.5.1 Wrapper strategy (P1)

4.5.1.1 Principle

In migration and interoperability architectures, wrappers are popular components
that convert legacy interfaces into modern ones. Such wrappers allow the reuse
of legacy components (Sneed, 2000) (e.g., allow Java programs to access COBOL

files). The wrappers discussed in this chapter are of a different nature, in that
they simulate the legacy data interface on top of the new database. For instance,
they allow COBOL programs to read, write, rewrite records that are built from
rows extracted from a relational database. In a certain sense, they could be called
backward wrappers. An in-depth analysis of both kinds of wrappers can be found
in Thiran et al. (2006).

The wrapper conversion strategy attempts to preserve the logic of the legacy
programs and to map it on the new DMS technology (Brodie and Stonebraker,
1995). A data wrapper is a data model conversion component that is called by
the application program to carry out operations on the database. In this way,
the application programs invoke the wrapper instead of the legacy DMS. If the
wrapper simulates the modeling paradigm of the legacy DMS and its interface,
the alteration of the legacy code is minimal and largely automatable. It mainly
consists in replacing DML statements with wrapper invocations.

The wrapper converts all legacy DMS requests from legacy applications into
requests against the new DMS that now manages the data. Conversely, it captures
results from the new DMS, converts them to the appropriate legacy format (Pa-
pakonstantinou et al., 1995) (Figure 4.9) and delivers them to the application
program.

4.5.1.2 Methodology

Schemas SPS and TPS, as well as the mapping between them (SPS-to-TPS) provide
the necessary information to derive the procedural code of the wrappers. For each

60 Chapter 4. Strategies for Data-Intensive System Migration

new
DB

legacy
program
legacy

program

SPS

wrapperwrapper

new DBMSnew DBMS

new programnew program

TPS

new
DB

legacy
program
legacy

program

SPS

wrapperwrapper

new DBMSnew DBMS

new programnew program

TPS

Figure 4.9: Wrapper-based migration architecture: a wrapper allows the data man-
aged by a new DMS to be accessed by the legacy programs.

COBOL source record type, a wrapper is built that simulates the COBOL file
handling statements. The simulated behaviour must also include the management
of currency indicators (internal dynamic pointers to current records) as well as
error handling.

Once the wrappers have been built, they have to be interfaced with the legacy
programs. This can be done by replacing, in the latter, original data access oper-
ations with wrapper invocations. Such a transformation is straightforward, each
instruction being replaced with a call to the corresponding wrapper and, in some
cases, an additional test. In the case of COBOL file handling, the test checks the
value of the wrapper status in order to simulate invalid key and at end clauses.

Legacy code adaptation also requires other minor reorganizations like modifying
the environment division and the data division of the programs. The declaration of
files in the environment division can be discarded. The declaration of record types
has to be moved from the input-output section to the working storage section. The
declarations of new variables used to call the wrapper (action, option and status)
are added to the working storage section. Finally, new code sections are introduced
into the program (e.g., database connection code).

Some legacy DMS, such as MicroFocus COBOL, provide an elegant way to
interface wrappers with legacy programs. They allow programmers to replace the
standard file management library with a customized library (the wrapper). In this
case, the legacy code does not need to be modified at all.

The <D1,P1> and <D2,P1> strategies only differ in the complexity of the
wrappers that have to be generated. The program transformation is the same
in both strategies since each legacy DML instruction is replaced with a wrapper
invocation. The code of the wrappers for the <D1,P1> strategy is trivial because
each explicit data structure of the legacy database is directly translated into a
similar structure of the target database. In the <D2,P1> strategy the conceptual
schema is recovered and the new physical schema can be very different from the

4.5. Program conversion 61

DELETE -CUS -ORD.
MOVE C-CODE TO O-CUST.
MOVE 0 TO END -FILE.
SET WR-ACTION -READ TO TRUE.
MOVE "KEY IS O-CUST" TO WR-OPTION.
CALL WR-ORDERS USING WR-ACTION , ORD , WR-OPTION , WR-STATUS
IF WR-STATUS -INVALID -KEY MOVE 1 TO END -FILE.
PERFORM DELETE -ORDER UNTIL END -FILE = 1.

DELETE -ORDER.
SET WR-ACTION -DELETE TO TRUE.
CALL WR-ORDERS USING WR-ACTION , ORD , WR-OPTION , WR-STATUS.
SET WR-ACTION -READ TO TRUE.
MOVE "NEXT" TO WR-OPTION.
CALL WR-ORDERS USING WR-ACTION , ORD , WR-OPTION , WR-STATUS.
IF WR-STATUS -AT-END

MOVE 1 TO END -FILE
ELSE

IF O-CUST NOT = C-CODE
MOVE 1 TO END -FILE.

Figure 4.10: Code fragment of Fig. 4.8 converted using the Wrapper strategy (P1)

legacy one. For instance, a record can be split into two or more tables, a table may
contain data from more than one record, new constraints might be implemented
into the new DMS, etc. In this strategy, translating a READ command may require
to access more than one table and to perform additional tests and loops.

4.5.1.3 Illustration

To illustrate the way data wrappers are used, let us consider the legacy COBOL
fragment of Figure 4.8, which comprises READ and DELETE primitives. As shown
in Figure 4.10, each primitive is simply replaced with a corresponding wrapper
invocation. From the program side, the wrapper forms a black box that simulates
the behaviour of the COBOL file handling primitives on top of the SQL database.
Note that the P1 program adaptation strategy does not depend on the schema
conversion strategy. This choice only affects the complexity of the wrapper code,
since the latter is directly derived from the mapping that holds between the legacy
and new database schemas.

4.5.2 Statement rewriting strategy (P2)

4.5.2.1 Principle

This program modification technique depends on the schema conversion strategy.
It consists in replacing legacy DMS-DML statements with native DML statements
of the new DMS. For example, every file access statement in a COBOL program
has to be replaced with an equivalent sequence of relational statements. As for the
wrapper strategy, program data structures are left unchanged. Consequently, the
relational data must be stored into the legacy COBOL variables.

62 Chapter 4. Strategies for Data-Intensive System Migration

In the case of the physical schema conversion strategy (D1), the conversion
process can be easily automated, thanks to the simple SPS-to-TPS mapping. The
conceptual schema conversion strategy (D2) typically flattens complex COBOL

structures in the target relational schema. This makes the use of additional loops
necessary when retrieving the value of a compound multivalued COBOL variable.
Although the substitution process is more complex than in the D1 strategy, it can
also be fully automated.

4.5.2.2 Methodology

The program modification process may be technically complex, but does not need
sophisticated methodology. Each DML statement has to be located, its parameters
have to be identified and the new sequence of DML statements has to be defined
and inserted in the code. The main point is how to translate iterative accesses in
a systematic way. For instance, in the most popular COBOL-to-SQL conversion,
there exist several techniques to express the typical START/READ NEXT loop with SQL
statements. The task may be complex due to loosely structured programs and the
use of dynamic DML statements. For instance, a COBOL READ NEXT statement
can follow a statically unidentified START or READ KEY IS initial statement, making
it impossible to identify the record key used. A description of a specific technique
that solves this problem is provided below.

4.5.2.3 Illustration

The change of paradigm when moving from standard files to relational database
raises such problems as the identification of the sequence scan. COBOL allows the
programmer to start a sequence based on an indexed key (START/READ KEY IS),
then to go on in this sequence through READ NEXT primitives. The most obvious
SQL translation is performed with a cursor-based loop. However, since READ NEXT

statements may be scattered throughout the program, the identification of the
initiating START or READ KEY IS statement may require complex static analysis of
the program data and control flows.

The technique illustrated in Figure 4.11 solves this problem. This technique
is based on state registers, such as ORD-SEQ, that specify the current key of each
record type, and consequently the matching SQL cursor. A cursor is declared
for each kind of record key usage (equal, greater, not less) in the program. For
instance, the table ORD gives at most six cursors (combination of two record keys
and three key usages).

The example of Figure 4.11 shows the <D2,P2> conversion the COBOL code
fragment of Figure 4.8. During the schema conversion process, the O-DETAIL com-
pound multivalued field has been converted into the DETAIL SQL table. So,
rebuilding the value of O-DETAIL requires the execution of a loop and a new
FILL-ORD-DETAIL procedure. This new loop retrieves the details corresponding
to the current ORD record, using a dedicated SQL cursor.

4.5. Program conversion 63

EXEC SQL DECLARE CURSOR ORD_GE_K1 FOR
SELECT O_CODE , C_CODE
FROM ORDERS WHERE C_CODE >= :O-CUST
ORDER BY C_CODE

END -EXEC.
...
EXEC SQL DECLARE CURSOR ORD_DETAIL FOR

SELECT P_CODE , ORD_QTY
FROM DETAIL WHERE O_CODE = :O-CODE

END -EXEC.
...
DELETE -CUS -ORD.

MOVE C-CODE TO O-CUST.
MOVE 0 TO END -FILE.
EXEC SQL

SELECT COUNT (*) INTO :COUNTER
FROM ORDERS WHERE C_CODE = :O-CUST

END -EXEC.
IF COUNTER = 0

MOVE 1 TO END -FILE
ELSE

EXEC SQL OPEN ORD_GE_K1 END -EXEC
MOVE "ORD_GE_K1" TO ORD -SEQ
EXEC SQL

FETCH ORD_GE_K1
INTO :O-CODE , :O-CUST

END -EXEC
IF SQLCODE NOT = 0

MOVE 1 TO END -FILE
ELSE

EXEC SQL OPEN ORD_DETAIL END -EXEC
SET IND -DET TO 1
MOVE 0 TO END -DETAIL
PERFORM FILL -ORD -DETAIL UNTIL END -DETAIL = 1

END -IF
END -IF.
PERFORM DELETE -ORDER UNTIL END -FILE = 1.

DELETE -ORDER.
EXEC SQL

DELETE FROM ORDERS
WHERE O_CODE = :O-CODE

END -EXEC.
IF ORD -SEQ = "ORD_GE_K1"

EXEC SQL
FETCH ORD_GE_K1 INTO :O-CODE ,:O-CUST

END -EXEC
ELSE IF ...

...
END -IF.
IF SQLCODE NOT = 0

MOVE 1 TO END -FILE
ELSE

IF O-CUST NOT = C-CODE
MOVE 1 TO END -FILE.

...
FIlL -ORD -DETAIL SECTION.

EXEC SQL
FETCH ORD_DETAIL
INTO :REF -DET -PRO(IND -DET),:ORD -QTY(IND -DET)

END -EXEC.
SET IND -DET UP BY 1.
IF SQLCODE NOT = 0

MOVE 1 TO END -DETAIL.

Figure 4.11: Code fragment of Fig. 4.8 converted using the Statement Rewriting
strategy (P2)

64 Chapter 4. Strategies for Data-Intensive System Migration

4.5.3 Logic rewriting strategy (P3)

4.5.3.1 Principle

The program is rewritten to explicitly access the new data structures and take
advantage of the new data system features. This rewriting task is a complex
conversion process that requires an in-depth understanding of the program logic.
For example, the processing code of a COBOL record type may be replaced with a
code section that copes with several SQL tables or a COBOL loop may be replaced
with a single SQL join.

The complexity of the problem prevents the complete automation of the con-
version process. Tools can be developed to find the statements that should be
modified by the programmer and to give hints on how to rewrite them. However,
modifying the code is generally up to the programmer.

This strategy can be justified if the whole system, that is database and pro-
grams, has to be renovated in the long term (strategy <D2,P3>). After the reengi-
neering, the new database and the new programs take advantage of the expressive-
ness of the new technology. When the new database is just a one-to-one translation
of the legacy database (<D1,P3>), this strategy can be very expensive for a poor
result. The new database just simulates the old one and takes no advantage of the
new DMS. Worse, it inherits all the flaws of the old database (bad design, design
deteriorated by maintenance, poor expressiveness, etc.). Thus, we only address the
<D2,P3> strategy in the remaining of this section.

4.5.3.2 Methodology

The P3 strategy is much more complex than the previous ones since every part of
the program may be influenced by the schema transformation. The most obvious
method consists in (1) identifying the file access statements, (2) identifying and
understanding the statements and the data objects that depend on these access
statements and (3) rewriting these statements as a whole and redefining these data
objects.

4.5.3.3 Illustration

Figure 4.12 shows the code fragment of Figure 4.8 converted using the Logic Rewrit-
ing strategy. The resulting code benefits from the full power of SQL. The two-step
position then delete pattern, which is typical of navigational DMS, can be replaced
with a single predicate-based delete statement.

4.6 Strategies comparison

Six representative strategies for data-intensive system migration have been identi-
fied. In this section, we compare them according to each dimension and we suggest
possible applications for each system migration strategy.

4.6. Strategies comparison 65

DELETE -CUS -ORD.
EXEC SQL

DELETE FROM ORDERS
WHERE C_CODE = :C-CODE

END -EXEC.
IF SQLCODE NOT = 0 THEN GO TO ERR -DEL -ORD.

Figure 4.12: Code fragment of Fig. 4.8 converted using the Logic Rewriting strategy
(P3)

4.6.1 Database conversion strategies

The physical schema conversion (D1) does not recover the semantics of the database
but blindly translates in the target technology the design flaws as well as the tech-
nical structures peculiar to the source technology. This strategy can be fully auto-
mated, and can be performed manually, at least for small to medium size databases.
Further attempts to modify the structure of the database (e.g., adding some fields
or changing constraints) will force the analyst to think in terms of the legacy data
structures, and therefore to recover their semantics. The source database was opti-
mized for the legacy DMS, and translating it in the new technology most often leads
to poor performance and limited capabilities. For example, a COBOL record that
includes an array will be transformed into a table in which the array is translated
into an unstructured column, making it impossible to query its contents. Doing
so would require writing specific programs that recover the implicit structure of
the column. Clearly, this strategy is very cheap (and therefore very popular), but
leads to poor results that will make future maintenance expensive and unsafe. In
particular, developing new applications is almost impossible.

Nevertheless, we must mention an unfrequent situation for which this strategy
can be valuable, that is, when the legacy database has been designed and im-
plemented in a disciplined way according to the database theory. For instance,
a database made up of a collection of 3NF 5 record types can be migrated in a
straighforward way to an equivalent relational database of good quality.

The conceptual schema conversion (D2) produces a high quality conceptual
schema that explicitly represents all the semantics of the data, but from which
technology and performance dependent constructs have been discarded. It has
also been cleaned from the design flaws introduced by unexperienced designers
and by decades of incremental maintenance. This conceptual schema is used to
produce the TPS that can use all the expressiveness of the new DMS model and
can be optimized for this DMS. Since the new database schema is normalized and
fully documented, its maintenance and evolution is particularly easy and safe. In
addition, making implicit constraints explicit automatically induces drastic data
validation during data migration, and increases the quality of these data. How-
ever, this strategy requires a complex reverse engineering process that can prove
expensive.

53NF stands for third normal form

66 Chapter 4. Strategies for Data-Intensive System Migration

4.6.2 Program conversion strategies

The wrapper strategy (P1) does not alter the logic of the legacy application pro-
gram. When working on the external data, the transformed program simply invokes
the wrapper instead of the legacy DMS primitives. The transformation of the pro-
gram is quite straightforward: each legacy DMS-DML is replaced with a call to the
wrapper. So, this transformation can easily be automated. The resulting program
has almost the same code as the source program, so a programmer who has mas-
tered the latter can still maintain the new version without any additional effort
or documentation. When the structure of the database evolves, only the wrapper
need be modified, while the application program can be left unchanged. The com-
plexity of the wrapper depends on the strategy used to migrate the database. In
the D1 strategy, the wrapper is quite simple: it reads one line of the table, con-
verts the column values and produces a record. In the D2 strategy, the wrapper
can be very complex, since reading one record may require complex joins and loops
to retrieve all the data. Despite the potentially complex mapping between SPS
and TPS, which is completely encapsulated into the wrapper, the latter can be
produced automatically, as shown by Thiran et al. (2006). A wrapper may induce
computing and I/O overhead compared to P2 and P3 strategies.

The statement rewriting strategy (P2) also preserves the logic of the legacy
program but it replaces each legacy DMS-DML primitive statement with its equiv-
alent in the target DMS-DML. Each legacy DMS-DML instruction is replaced with
several lines of code that may comprise tests, loops and procedure calls. In our
case study the number of lines increased from 390 to almost 1000 when we applied
the <D1,P2> strategy. The transformed program becomes difficult to read and
to maintain because the legacy code is obscured by the newly added code. If the
code must be modified, the programmer must understand how the program was
transformed to write correct code to access the database. When the structure of
the database is modified, the entire program must be walked through to change
the database manipulation statements. In summary, this technique is unexpensive
and fairly easy to automate, but degrades the quality of the code. As expected,
this migration technique is widely used, most often in the <D1,P2> combination.

The logic rewriting strategy (P3) changes the logic of the legacy program
to explicitly access the new database and to use the expressiveness of the new
DMS-DML. This rewriting task is complex and cannot be automated easily. The
programmer that performs it must have an in-depth understanding of the legacy
database, of the new database and of the legacy program. This strategy produces
a completely renovated program that will be easy to maintain at least as far as
database logic is concerned.

4.6.3 System migration strategies

By combining both dimensions, we describe below typical applications for each of
the strategies that have been described.

• <D1,P1>: This approach produces a (generally) badly structured database

4.6. Strategies comparison 67

that will suffer from poor performance but preserves the program logic, no-
tably because the database interface is encapsulated in the wrapper. It can be
recommended when the migration must be completed in a very short time,
e.g., when the legacy environment is no longer available. Developing new
applications should be delayed until the correct database is available. This
approach can be a nice first step to a better architecture such as that pro-
duced by <D2,P1>. However, if the legacy database already is in 3NF, the
result is close to that of strategy <D2,P1>.

• <D2,P1>: This strategy produces a good quality database while preserv-
ing the program logic. New quality applications can be developed on this
database. The legacy programs can be renovated later on, step by step.
Depending on the impedance mismatch between the legacy and target tech-
nologies, performance penalty can be experienced. For instance, wrappers
that simulate CODASYL DML on top of a relational database have to syn-
chronize two different data manipulation paradigms, a process that may lead
to significant data access overhead.

• <D1,P2>: Despite its popularity, due to its low cost, this approach clearly
is the worst one. It produces a database structure that is more obscure than
the source one, and that provides poorer performance. The programs are
inflated with obscure data management code that makes them complex and
more difficult to read, understand and maintain. Such a renovated system
cannot evolve at sustainable cost, and therefore has no future. If the legacy
database already is in 3NF, the result may be similar to that of strategy
<D2,P2>.

• <D2,P2>: Produces a good quality database, but the programs can be
unreadable and difficult to maintain. It can be considered if no maintenance
of the application is planned and the programs are to be rewritten in the near
future. If the wrapper overhead is acceptable, the<D2,P1> strategy should
be preferred.

• <D1,P3>: Data migration produces a very poor quality database that sim-
ulates the legacy database. Adapting, at high cost, the program to these
awkward structures is meaningless, so that we can consider this strategy not
pertinent

• <D2,P3>: This strategy provides both a database and a set of renovated
programs of high quality, at least as far as database logic is concerned. Its
cost also is the highest. This is a good solution if the legacy program language
is kept and if the programs have a clean and clear structure.

68 Chapter 4. Strategies for Data-Intensive System Migration

4.7 Conclusions

The variety in corporate requirements, as far as system reengineering is concerned,
naturally leads to a wide spectrum of migration strategies. This chapter has iden-
tified two main independent lines of decision, the first one related to the precision
of database conversion (schema and contents) and the second one related to pro-
gram conversion. From them, we were able to identify and analyze six reference
system migration strategies. The thorough development of these technical aspects
is the major contribution of this chapter since most of these aspects have only been
sketched in the literature (Brodie and Stonebraker, 1995).

Despite the fact that a supporting technology has been developed6, and there-
fore makes some sophisticated strategies realistic at an industrial level, we still lack
sufficient experience to suggest application rules according to the global corporate
strategy and to intrinsic properties of the legacy system. As is now widely accepted
in maintenance, specific metrics must be identified to score the system against typ-
ical reference patterns. Such criteria as the complexity of the database schema,
the proportion of implicit constructs, the underlying technology, or the normali-
sation level, to mention only a few, should certainly affect the feasibility of each
migration strategy. Corporate requirements like performance, early availability of
components of the renovated system, program independence against the database
structure, skills of the development team, or availability of human resources are all
aspects that could make some strategies more valuable than others.

Though some conclusions could seem obvious at first glance, such as, strategy
<D2,P3> yields better quality results than strategy <D1,P2>, we have resisted
providing any kind of decision table that would have been scientifically question-
able. Indeed, each strategy has its privileged application domains, the identification
of which would require much more analysis than we have provided in this chap-
ter. One important lesson we learned in this study is that the quality of the target
database is central in a renovated system, and is a major factor in the quality of the
programs, whatever the program conversion strategy adopted. For instance, the
performance, readability and maintenance costs of the programs to be developed
are strongly dependent on the quality of the database schema.

Roadmap

In this chapter, we have seen that the D2 database conversion strategy allows to
produce a high-quality target database, thanks to an initial reverse engineering
process. In the next part of this thesis (Part III), we will explore the use of
program analysis techniques for supporting this initial phase. Then, in Part IV, we
will present DMS-specific methods and tools for supporting the program conversion
phase of database platform migration, and discuss the application of those tool-
supported methods in the context of industrial migration projects.

6as we will see in Part IV.

Part III

Program Analysis for
Database Reverse

Engineering

69

Chapter 5

Static Dependency Analysis

Little by little, one travels far.
– J. R. R. Tolkien

This chapter1 focuses on the use of static program analysis in the context of
database reverse engineering. It presents a general, tool-supported dataflow anal-
ysis methodology dedicated to data-intensive software systems. It shows how the
approach and tools allow to contribute to the recovery of implicit schema con-
structs, by discussing their application in the context of industrial reverse engi-
neering projects.

5.1 Introduction

Data(base) Reverse Engineering (DBRE) is “a collection of methods and tools
to help an organization determine the structure, function, and meaning of its
data”(Chikofsky, 1996). In particular, DBRE aims at recovering the precise se-
mantics of the data, by retrieving implicit data constructs and constraints, i.e.,
not explicitly declared in the database declaration but verified in the procedural
code (Hainaut et al., 2000), among which:

• fine-grained structure of entity types and attributes;

• referential constraints (foreign keys);

• exact cardinalities of attributes;

• identifiers of multi-valued attributes.

Database reverse engineering is a complex and expensive task, that needs to
be supported by program understanding techniques and tools. In this chapter, we

1An earlier version of this chapter was published in the Proceedings of the 13th IEEE Working
Conference on Reverse Engineering (WCRE 2006) (Cleve et al., 2006).

71

72 Chapter 5. Static Dependency Analysis

particularly focus on the use of program slicing techniques as a means to discover/-
validate hypotheses about implicit data structures and constraints. In the DBRE
context, program slicing typically helps to reach two intermediate objectives (Hen-
rard, 2003). The first one is the more traditional objective of reducing the visual
search space when semi-automatically inspecting source code to discover complex
business rules. The second goal concerns the automatic computation of data de-
pendencies. Indeed, discovering dependencies between variables can be used as a
basis to retrieve implicit constraints such as undeclared foreign keys. To this end,
program slicing provides a very useful intermediate result: the System Dependency
Graph (SDG).

Program slicing, initially introduced by Weiser (1984), has proved to be a valu-
able technique to support both software maintenance and reverse engineering pro-
cesses (Gallagher and Lyle, 1991). However, usual slicing algorithms fail to deal
correctly with database application programs. Such programs do not only use
standard files, but also store and manipulate data from external Data Manage-
ment Systems (DMS). Therefore, a traditional slice computed from a database
application program will potentially be incomplete or imprecise, due to the data
dependencies hidden by the DMS.

In order to improve the accuracy of computed slices, additional data dependen-
cies must be taken into account when constructing the SDG. Those dependencies,
induced by the execution of database operations, arise due to the interaction be-
tween program variables and database entity types and attributes. In this chapter,
we propose an approach to compute accurate program slices in the presence of
database statements. We mainly concentrate on the core of standard program
slicing techniques, which is the construction of an SDG as precise as possible.

The remainder of this chapter is structured as follows. Section 5.2 defines some
basic concepts used in the chapter. In Section 5.3, the nature of the problem to
be tackled is described. In Section 5.4, we present a method of computing accu-
rate program slices in the presence of an embedded data manipulation language.
Section 5.5 shows how this approach can be extended to handle programs that
invoke data access modules to manipulate the database. In Section 5.6 we give an
overview of the tools that we developed to support our methodology. Industrial
reverse engineering projects are reported in Section 5.7. We discuss related work
in Section 5.8. Section 5.9 concludes the chapter and anticipates future work.

5.2 Basic concepts

5.2.1 System dependency graph

Horwitz et al. (1990) introduced a new kind of graph to represent programs, called
a system dependency graph, which extends previous dependency representations
to incorporate collections of procedures with procedure calls.

The system dependency graph (SDG) for program P is a directed graph whose
nodes are connected by several kinds of arcs. The nodes represent assignment

5.2. Basic concepts 73

begin

S1 read (A) ;
S2 if (A < 0)

then

S3 B := f1(A) ;
S4 C := g1(A) ;

else

S5 if (A = 0)

then

S6 B := f2(A) ;
S7 C := g2(A) ;

else
S8 B := f3(A) ;
S9 C := g3(A) ;

endif ;
endif ;

S10 write (B) ;
S11 write (C) ;

end.

S1

S2

S5

S8

S3

S6

S9

S4

S7
S10

S11

Data dependency

Control dependency

begin

S1 read (A) ;
S2 if (A < 0)

then

S3 B := f1(A) ;
S4 C := g1(A) ;

else

S5 if (A = 0)

then

S6 B := f2(A) ;
S7 C := g2(A) ;

else
S8 B := f3(A) ;
S9 C := g3(A) ;

endif ;
endif ;

S10 write (B) ;
S11 write (C) ;

end.

S1

S2

S5

S8

S3

S6

S9

S4

S7
S10

S11

Data dependency

Control dependency

Figure 5.1: A sample program and its corresponding SDG.

statements, control predicates, procedure calls and parameters passed to and from
procedures (on the calling side and in the called procedure).

The arcs represent dependencies among program components. An arc repre-
sents either a control dependency or a data dependency. A control dependency arc
from node v2 to node v1 means that, during execution, v2 can be executed/evalu-
ated only if v1 has been executed/evaluated2. Intuitively, a data dependency arc
from node v2 to node v1 means that the state of objects used in v2 can be de-
fined/changed by the evaluation of v1. Figure 5.13 depicts a small sample program
together with its corresponding SDG.

5.2.2 Program slicing

Program slicing (Weiser, 1984), is a well-established technique that can be used
to debug programs, maintain programs or understand program behavior (Harman
and Hierons, 2001).

The slice (or backward slicing) of a program with respect to program point p

and variable x consists of all the statements and predicates of the program that
may affect the value of x at point p. In Weiser’s terminology, a slice criterion is a
pair <p,V >, where p is a program point and V is a subset of the program variables.

2The definition is slightly different for calling arcs, but this does not change the principle.
3adapted from (Agrawal and Horgan, 1990)

74 Chapter 5. Static Dependency Analysis

begin

S1: read(A) ;
S2: if (A < 0)

then

S3 B := f1(A) ;
S4 C := g1(A) ;

else

S5 if (A = 0)

then

S6 B := f2(A) ;
S7 C := g2(A) ;

else
S8 B := f3(A) ;
S9 C := g3(A) ;

endif ;
endif ;

S10 write(B) ; �
S11 write (C) ;

end.

Figure 5.2: Program slice computed on the program of Figure 5.1, using <S10,B>
as criterion.

Figure 5.2 gives the program slice computed on the program of Figure 5.1, using
<S10,B> as criterion.

Horwitz et al. (1990) also proposed an algorithm for interprocedural slicing that
uses the system dependency graph. In their approach, a program is represented
by an SDG and the slicing problem becomes a node-reachability problem, so that
slices can be computed in linear time.

5.2.3 Host variables

Data exchanges between the program and the database is performed by means of
so-called host variables. We distinguish two kinds of host variables, depending on
their role in the database operation:

• input host variables are used by programs to pass data to the DMS. For
instance, COBOL variables occuring in the where clause of an embedded
SQL query are of that kind.

• output host variables are used by the DMS to pass data and status information
to programs. In embedded SQL, typical examples of output host variables
are the status variable SQLCODE, as well as the COBOL variables occuring in
a into clause.

5.3. Problem statement 75

5.3 Problem statement

The complexity of the database-aware program slicing task lies in the nature of the
data manipulation language (DML). We identify four categories, according to the
distance between the DML and the host programming language, which we assume
to be COBOL in the remainder of this chapter.

Native In the case of standard files, programmers use native COBOL data access
statements (e.g., READ, WRITE, DELETE,...). Since all relevant information is contained
in the program, traditional slicing on top of pure COBOL is sufficient.

Built-in For DMS like IDMS/CODASYL, the COBOL language provides built-in
instructions (i.e., FIND, STORE, ...) to access the database. Since they are seamlessly
incorporated in the COBOL language, such instructions can be analyzed by tradi-
tional COBOL slicers as well. The only needed extension is an option to load the
definition of the physical schema referenced by the SUB-SCHEMA SECTION of the DATA

DIVISION. This physical schema is obtained through an additional DDL4 analysis
process.

Embedded The third category regroups DMS such as SQL or IMS, for which
COBOL does not provide built-in data access statements. To access such DMS
programmers write embedded instructions in the COBOL program. Such embedded
code fragments belong to an external Data Manipulation Language (DML). They
are embedded as is in the main programming language, called the host language.
The DMS manufacturer provides a pre-processor (precompiler) that translates the
embedded DML instructions into COBOL calls to external functions (programs)
that implement the access to the DMS. Typical intricacies arise when analyzing
programs with embedded DML code:

• The embedded instructions are not standardized and thus vary from one DMS
to another;

• The embedded code does not conform to the host language syntax;

• The physical database schema is not explicitly declared in the program itself.

Call-based Many data-intensive programs invoke another program, often called
a Data Access Module (DAM), in order to access the database. The Call-based
DML category accounts for this frequent situation. In this case, the slicing problem
becomes very complex, especially since the DAM may in turn use a Call-based
DML. Furthermore, two additional issues must be considered:

• Unlike embedded DML instructions, the precise behaviour of DAM calls is
not explicitly specified in a user manual;

4DDL stands for Data Description Language

76 Chapter 5. Static Dependency Analysis

Native DML Built-in DML
MOVE 7 TO CUS-ID MOVE 7 TO CUS-ID
READ CUSTOMER KEY IS CUS-ID FIND CUSTOMER USING CUS-ID
DISPLAY CUS-NAME GET CUSTOMER

DISPLAY CUS-NAME

Embedded DML Call-based DML
MOVE 7 TO CUS-ID MOVE 7 TO CUS-ID
EXEC SQL MOVE "CUSTOMER" TO REC-NAME

SELECT NAME MOVE "FIND-BY-ID" TO ACTION
INTO :CUS-NAME CALL "DAM" USING ACTION
FROM CUSTOMER REC-NAME
WHERE ID = :CUS-ID CUSTOMER

END-EXEC STATUS
DISPLAY CUS-NAME DISPLAY CUS-NAME

Figure 5.3: Illustration of native, built-in, embedded, and call-based DMLs

DML Code
Analysis

Program
source code

Data dependencies

Slicing

SDG
Construction

SDG Slices

DDL
code

DML Code
Analysis

Program
source code

Data dependencies

Slicing

SDG
Construction

SDG Slices

DDL
code

Figure 5.4: Methodology for slicing with embedded DML code

• When analyzing a DAM invocation it is necessary to determine the actual
value of each of its input parameters, which is not always statically possible.

Figure 5.3 shows similar COBOL fragments illustrating the differences between
the four DML categories. Each code fragment searches for a customer based on a
specified identifier and displays its name.

5.4 Slicing with embedded DML

In this section, we develop a general methodology to build system dependency
graphs in the presence of embedded DML code. This methodology, depicted in
Figure 5.4, includes the analysis of database operations occuring in the program
as a first stage. This program analysis phase, discussed in Section 5.4.1, extracts
implicit data dependencies from DML code fragments. These dependencies are
then used as input to the SDG construction process, as explained in Section 5.4.2.

5.4. Slicing with embedded DML 77

5.4.1 DML code analysis

The DML code analysis phase consists in analyzing the database operations per-
formed by the program. This process aims at extracting data dependencies between
host program variables (input or output) and database variables. Such dependen-
cies are of two possible kinds:

• direct mappings

form: DIRECT-MAP varin TO varout

meaning: the value of variable varin directly affects the value of vari-
able varout. (varin and varout must be of compatible types). Directly
means that there exists a clear function to compute the value of varout

from the value of varin.

• indirect mappings

form: INDIRECT-MAP varsin TO varsout (with varsin being optional)

meaning: the values of variables varsout are indirectly affected by the
values of variables varsin. Indirectly means that the way the values of
varsin influence the values of varsout is less precise.

As an illustration, let us consider the COBOL/SQL program fragment shown
in Figure 5.5. COBOL instructions and host variables are in upper-case, while
embedded SQL code is in lowercase. The program fragment displays the name and
the phone number of each customer living in a given city. It first accepts a zip code
from the command-line, opens a SQL cursor and fetches each of its rows.

The open statement (lines 52-54) involves two different kinds of data dependen-
cies. First, the value of the input host variable CUS-ZIP directly affects the value of
column zip. Second, the value of column zip has an indirect influence on the values
of the columns occuring in the select clause (name and phone). In addition, the
value of status variable SQLCODE is also affected. Thus we can extract the following
mapping statements from the embedded open statement:

DIRECT-MAP CUS-ZIP TO zip

INDIRECT-MAP zip TO name phone SQLCODE

When analyzing the fetch query (lines 79-83), implicit data dependencies can
be detected. First, fetching a cursor indirectly influences the value of the status
variable SQLCODE. Second, the values of the output host variables CUS-NAME and
CUS-PHONE are directly affected by the values of the corresponding selected columns
(name and phone). These implicit dependencies can be formalized by the following
dependency pseudo-instructions:

INDIRECT-MAP TO SQLCODE

DIRECT-MAP name TO CUS-NAME

DIRECT-MAP phone TO CUS-PHONE

78 Chapter 5. Static Dependency Analysis

23 exec sql
24 declare byzip
25 cursor for
26 select name ,
27 phone
28 from customer
29 where zip = :CUS -ZIP
30 order by name
32 end -exec.

...
51 ACCEPT CUS -ZIP
52 exec sql
53 open byzip
54 end -exec.
55 MOVE 0 TO END -SEQ.
56 PERFORM DISPLAY -CUS
57 UNTIL END -SEQ = 1.

...
78 DISPLAY -CUS.
79 exec sql
80 fetch byzip
81 into :CUS -NAME ,
82 :CUS -PHONE
83 end -exec.
84 IF SQLCODE NOT = 0
85 MOVE 1 TO END -SEQ
86 ELSE
87 DISPLAY CUS -NAME "-"
88 CUS -PHONE.

Figure 5.5: A COBOL/SQL code fragment

Let us now express the general rule that can be used to extract dataflow de-
pendencies from embedded SQL code. This necessitates some definitions. Let q be
an embedded SQL query:

• in-couple(q) is the list of the couples (hv, c), such that hv is an input host
variable used in q and c is the column associated with hv in q.

• out-couple(q) is the list of the couples (hv, c), such that hv is an output host
variable used in q and c is the column associated with hv in q.

• columns(list-couples) is the list of the columns occuring in list-couples, a list
of couples (hv, c), such as hv is a host variable and c is a column.

• out-hv(q) is the list of all the output host variables used in q and that do not
appear in out-couple(q). In other words, that list contains the output host
variables that are not directly associated with a column, such as the status
variable SQLCODE or variables resulting from aggregation queries.

Having the above definitions in mind, we can specify the general rule used to
extract dataflow dependencies from an arbitrary embedded SQL query q as follows:

5.5. Slicing with call-based DML 79

for all (hv, c) ∈ in-couple(q) : extract(DIRECT-MAP hv TO c)
extract(INDIRECT-MAP columns(in-couple(q)) TO columns(out-couple(q)) out-hv(q))
for all (hv, c) ∈ out-couple(q) : extract(DIRECT-MAP hv TO c)

The first part of the rule derives direct mappings between input host variables
and their corresponding SQL columns. Those mappings typically occur in the
where clause of the query. The second part extracts the indirect mapping from
the columns associated with input host variables to the columns associated with
output host variables and the output host variables that are not associated with
any column. The last part of the rule identifies the direct mappings between the
selected columns and their corresponding output host variables. Note that, since
both in-couple and out-couple lists may be empty, the minimal data dependency
that can be extracted from an embedded SQL query is the following:

INDIRECT-MAP TO SQLCODE

This data dependency means that the execution of the query indirectly influences the

value of SQLCODE.

5.4.2 SDG construction

The first step for computing program slices is the construction of the SDG. In the
presence of embedded DML statements, this SDG must represent the control and
the dataflow of both the host language and the embedded language. In order to
produce the SDG, the results of the DML code analysis process are exploited. The
dependency pseudo-instructions (DIRECT-MAP and INDIRECT-MAP) are used (instead
of the original code) to construct the SDG nodes and the data dependency arcs
corresponding to embedded DML fragments. All SDG nodes remain linked to the
initial source code locations.

This technique allows the SDG construction process to become DML-independent.
The only language to be considered is the host language (here COBOL), augmented
with the two additional pseudo-instructions. This ad-hoc grammar augmentation
is inspired by the scaffolding technique proposed by Sellink and Verhoef (2000).

Once the full SDG has been built, program slices can be computed using the
usual algorithm.

5.5 Slicing with call-based DML

In this section, we show how our methodology, depicted in Figure 5.4, can be
extended to program slicing in the presence of a data access module (DAM). In
other words, we will show how we can adapt our approach so that we can correctly
analyse programs that use a call-based DML.

We can distinguish three possible kinds of DAM-based data access:

• Global DAM: there is only one DAM used to access all the tables/record
types and to perform all the possible actions (read, write,...);

80 Chapter 5. Static Dependency Analysis

DML Code
Analysis

Program
source code

Data dependencies

DDL
code

DAM Semantics
Recovery

Input Parameters
Resolution

DAM
source code

SDG
Construction

SlicingSDG Slices

DML Code
Analysis

Program
source code

Data dependencies

DDL
code

DAM Semantics
Recovery

Input Parameters
Resolution

DAM
source code

SDG
Construction

SlicingSDG Slices

Figure 5.6: Methodology to slice programs with call-based DML

• One DAM per table/record type: each table/record type has a dedicated
DAM, which implements all the possible actions;

• One DAM per action: each action has a dedicated DAM, which can be
called to access all the tables/record types.

Our approach to SDG construction with DAM invocations (depicted in Fig-
ure 5.6) extends the methodology described in Section 5.4. The extension is based
on the following principles:

• Any data access module can be seen as a data management system;

• Any data access module invocation can be regarded, and analyzed, as a DML
instruction.

However, analyzing DAM invocations necessitates some additional knowledge on
the DAM behavior itself. As already indicated, we cannot assume that such a
knowledge is explicitly available. Consequently, our methodology requires an extra
step that consists in recovering a deep understanding of the behaviour of the DAM.
One can consider the DAM semantics as a correspondence table, which identifies
the DML instruction(s) actually involved in each possible kind of DAM invocation.
This leads us to another issue, namely input parameter resolution. In order to make
the link between a DAM invocation and its corresponding DML instructions, one
also need to determine the actual value of each input parameter of this invocation.

Slicing in the presence of DAM invocations might lead to very imprecise results.
Indeed, we do not always know the actual value of the parameters used to call a
DAM. Typically, the table/record type to access and the action to be performed

5.5. Slicing with call-based DML 81

203 ACCEPT AN-ID.
204 MOVE AN-ID TO CUS -ID.
205 MOVE "read" TO ACTION.
206 MOVE "CUSTOMER" TO REC -NAME.
207 CALL "DAM"
208 USING ACTION
209 REC -NAME
210 CUSTOMER
211 STATUS.
212 IF (STATUS -OK)
213 DISPLAY CUS -NAME CUS -PHONE
214 ELSE
215 DISPLAY "UNKNOWN CUSTOMER ".

Figure 5.7: Calling program code

are unknown. In this situation, the computed slices will typically contain a lot of
noise (in the worst case, all the possible execution paths of the DAM).

Let us consider the code fragment shown in Figure 5.7. In this example, a pro-
gram invokes a data access module in order to retrieve a customer record based on
the customer identifier. The DAM code is provided in Figure 5.8. If the customer is
found, the calling program displays its name and phone number. In this example,
if the slice w.r.t. the DISPLAY instruction (line 213 of Figure 5.7) was computed,
it would include both select instructions (lines 956 and 1125 of Figure 5.8), since
the static slicer cannot make any assumption about the value of input variables
REC-NAME and ACTION. Replacing DAM invocations with corresponding DML in-
structions can significantly improve the accuracy of computed slices. Indeed, this
may allow the SDG construction process to consider relevant control and data flows
only. For instance, if one replaced the DAM call (lines 207-211 of Figure 5.7) with
the corresponding select clause of Figure 5.8 (lines 955-960), then the slice w.r.t.
the DISPLAY instruction would become minimal.

5.5.1 DAM semantics recovery

Analyzing a DAM invocation obviously calls for a correct understanding of the way
the DAM is implemented. This requires, among others, to determine the meaning
of the different DAM call parameters. The name of the DAM and the value of
the input parameters are usually sufficient to translate a DAM invocation into
corresponding DML instructions. Unfortunately, no universal method exists for
recovering the semantics of the parameters. As usual in program understanding,
this typically relies on the combination of (partial) program analysis results, domain
knowledge, DAM construction knowledge and user/programmer interviews.

In our example of Figure 5.7, the program invokes the data access module using
four parameters. Through the DAM semantics recovery phase, we can learn that:

• the first parameter (ACTION) specifies the database operation to be performed
(read, write, etc.);

82 Chapter 5. Static Dependency Analysis

113 IF (ACTION = "read")
114 IF REC -NAME = "CUSTOMER"
115 PERFORM READ -CUSTOMER
116 END -IF
117 IF REC -NAME = "ORDERS"
118 PERFORM READ -ORDERS
119 END -IF

...
231 END -IF

...
954 READ -CUSTOMER.
955 exec sql
956 select name , phone
957 into :CUS -NAME , :CUS -PHONE
958 from customer
959 where id = :CUS -ID
960 end -exec.
961 MOVE SQLCODE TO STATUS.

...
1123 READ -ORDERS.
1124 exec sql
1125 select ...

from orders
...

11XX end -exec.
...

Figure 5.8: Data access module code

• the second parameter (REC-NAME) contains the name of the record type to be
accessed;

• the third parameter (CUSTOMER) is the resulting record itself;

• the last parameter (STATUS) is an output status variable.

5.5.2 Input parameters resolution

In order to correctly analyze a DAM invocation, one also needs to determine the
actual value of each input argument (here, ACTION and REC-NAME). This process can
be supported by a customized backward slicing phase, searching for predecessor
instructions that initialize DAM input parameters.

In our example, the MOVE statement of line 205 (resp. 206) will be found and
analyzed, to determine the actual value of ACTION (resp. REC-NAME) at the time of
calling the DAM.

5.5.3 DAM Call Analysis

Figure 5.9 summarizes the successive steps that may be needed when analyzing
DAM invocations. First, input parameters are resolved. Second, the DAM call
is replaced by its corresponding DAM code fragment, including the actual DML
instructions. Finally, the DML code is analyzed as described in Section 5.4.1. The

5.6. Tool support 83

CALL "DAM"

Original USING ACTION

Code REC-NAME

CUSTOMER

STATUS

CALL "DAM"

Parameters USING "read"

Resolution "CUSTOMER"

CUSTOMER

STATUS

exec sql

select name, phone

DAM Semantics into :CUS-NAME, :CUS-PHONE

Recovery from customer

where id = :CUS-ID

end-exec.

MOVE SQLCODE TO STATUS.

DIRECT-MAP CUS-ID TO id

INDIRECT-MAP id TO name

DML Code phone SQLCODE

Analysis DIRECT-MAP name TO CUS-NAME

DIRECT-MAP phone TO CUS-PHONE

MOVE SQLCODE TO STATUS.

Figure 5.9: Successive steps to analyze the DAM call of Figure 5.7

[select -into -analysis]
dataflow -analysis(exec sql at-db-clause? select -stat end -exec)
= gen -direct -map -hv2c(in-couple)

INDIRECT -MAP columns(in-couple) TO columns(out -couple) SQLCODE
gen -direct -map -c2hv(out -couple)

when in-couple := in-couple(select -stat),
out -couple := out -couple(select -stat)

Figure 5.10: A sample ASF equation for embedded SQL analysis

resulting code/pseudo-code will be used, instead of the original DAM invocation,
to build the SDG.

5.6 Tool support

5.6.1 Program analysis

We implemented DML code analyzers for embedded SQL and call-based IMS. Both
analyzers rely on the ASF+SDF Meta-Environment (van den Brand et al., 2001).
We reused an SDF version of the IBM-VSII COBOL grammar, which was obtained
by Lämmel and Verhoef (2001). We wrote SDF modules specifying (a sufficient
subset of) the syntax of embedded SQL (resp. IMS calls). On top of this augmented
COBOL grammar, we implemented a set of ASF equations (i.e., rewrite rules), that
analyse DML fragments and accumulate implicit data dependencies.

84 Chapter 5. Static Dependency Analysis

[get -unique -nalysis]
dataflow -analysis(CALL ’CBLTDLI ’ USING GET -UNIQUE param1 segment params ssa ,

ssa -segment -tbl , ssa -field -tbl , ssa -value -tbl)
= DIRECT -MAP value TO field

INDIRECT -MAP field TO segment
when field := lookup(ssa -field -tbl ,ssa),

value := lookup(ssa -value -tbl ,ssa)

Figure 5.11: A sample ASF equation for IMS calls analysis

Figures 5.10 and 5.11 provide examples of such rewrite rules. The rewrite rule
of Figure 5.10 analyzes a select query and extracts its direct and indirect data
dependencies. It implements the general rule specified in Section 5.4 in the par-
ticular case of a select statement. The rule can be applied to the example shown
in Figure 5.9, for which the value of in-couple is [<CUS-ID,id>], while the value
of out-couple is [<CUS-NAME,name>,<CUS-PHONE,phone>]. Figure 5.11 shows an ex-
ample rewrite rule for analyzing a GET UNIQUE IMS call. In this case, the dataflow
analyzer takes three correspondence tables as additional arguments. Those addi-
tional arguments correspond to the result of the DAM semantics recovery step.
They allow the rewrite rules to retrieve, for each segment search argument (ssa)
(1) the name of the associated IMS segment5, (2) the name of the reference field
and (3) the name of the field containing the reference value for the search.

The result of the dataflow analysis process consists of a set of lines. Each line
represents a single data dependency extracted from a given DML fragment, and
provides the following information:

• full path name of the program;

• source code location of the DML fragment (file name, begin and end line
numbers);

• dependency sequence number in the fragment;

• kind of mapping (direct or indirect);

• input variables (host variables or database fields);

• output variables (host variables or database fields).

The dataflow dependencies extracted from the code are then loaded in a rela-
tional database, which is taken as an input by the SDG construction process.

5.6.2 SDG construction and slicing

The program slicing tool (Henrard, 2003) analyzes COBOL programs with pro-
cedures (PERFORM), sub-routines calls (CALL) and arbitrary control flows (GO TO). A

5a record type is called a segment in IMS

5.7. Industrial applications 85

program is represented by a graph (the system dependency graph) and the slicing
problem is simply a vertex-reachability problem. Therefore, slices may be com-
puted in linear time in the number of edges when the graph has already been
computed.

The construction of the graph is much more costly. For the interprocedural slice,
we use the SDG to represent the program and the algorithm that was described
by Horwitz et al. (1990) to compute the slice. This algorithm can handle procedures
and sub-routines.

The SDG construction algorithm can only manipulate variables that are local
to procedures but cannot handle global variables present in COBOL programs.
Therefore, for each procedure, we recover all the variables used (referenced and
modified) by the procedure and create corresponding formal-in and formal-out
parameters.

We use the augmented system dependency graph as proposed by Ball and Hor-
witz (1992) to solve the orthogonal problem of slicing procedures with arbitrary
control flows. The variables are represented by their physical position and their
length. Indeed, we cannot use the names of the variables because they can be made
of sub-level variables and can be redefined.

Both the SDG construction and the slicing algorithm are implemented in C++.

5.6.3 Parameter resolution

During the construction of the SDG, both the variables used (referenced and modi-
fied) by each instruction and the constants used are stored. This allows to automate
the resolution of DAM input parameters by querying the SDG for the possible val-
ues of each input parameter of a DAM invocation. To determine which values
(constants) can be stored in an input parameter, the dataflow edges of the SDG
are followed backwards starting form the DAM call instruction until a constant is
reached. If the parameter resolution process identifies several possible values for
the same input parameter at the same program point, then a set of corresponding
DML statements are considered when building the SDG.

5.7 Industrial applications

The approach and tools described in this chapter have been used for supporting
several industrial reverse engineering projects. Three of them are presented in this
section.

5.7.1 COBOL/embedded SQL

The first project consisted of the reverse engineering of a relational database for a
Belgian insurance company. The company planned the migration of its information
system towards a new database platform, and needed to evaluate the complexity

86 Chapter 5. Static Dependency Analysis

and cost of the database migration process. In this context, our goal was to demon-
strate that automated program analysis techniques could allow to recover relevant
data dependencies in the database schema.

The original relational schema included 27 tables and 784 columns, but did not
declare any explicit foreign key. The implicit knowledge of the database integrity
constraints was almost completely lost.

Our methodology and tools were applied to a small subset of the application
consisting of 95 programs and totalizing 150 thousands lines of COBOL code. The
embedded SQL fragments include 112 cursor declarations, 114 open statements,
114 fetch statements, 17 delete queries, 38 insert queries and 41 update queries.

The analysis of the embedded SQL code resulted in the extraction more than
5000 implicit dependencies. The construction and analysis of the SDG allowed to
derive the following information:

• the set of tables (only 15) actually used by the 95 programs;

• the set of colums of these tables accessed by each program;

• 32 implicit data dependencies between columns, that proved to be undeclared
foreign keys.

This project confirmed that the analysis of embedded SQL fragments may help
to recover implicit referencial constraints between tables based on the detection of
(indirect) dataflows between columns of distinct tables. From such dataflows we
can derive foreign key candidates, to be confirmed through a validation phase.

5.7.2 COBOL/call-based CODASYL

The second project concerned the reverse engineering of a large COBOL system
for a Belgian public administration. The system was built on top of an IDS/II
(CODASYL) database comprising 232 record types, 150 set types6 and 648 fields.
The analyzed application consisted of 2287 programs, totalizing more than 2 million
lines of code.

In this application, database operations were performed through a single data
access module, providing reading and writing access to all the record types. Each
DAM invocation should specify as parameters (1) the corresponding record name,
(2) a variable to store the record and (3) the type of access to be performed (get
first, get next, store, ...).

The DAM also computed a physical position (DB-KEY) before inserting a new
record in the database. This physical position served as a basis for storing records
in different areas (files) according to a complicated rule aiming to optimize data
access speed.

Thanks to the analysis of the DAM invocations occuring in the programs (5952
COBOL CALL statements) it was possible to:

6In CODASYL, one-to-many relationship types are called set types, as we will see in Chapter 8.

5.7. Industrial applications 87

• draw the usage graph, specifying which program uses which record type;

• enrich each record type with a finer-grained structural decomposition;

• discover more than 2000 implicit data dependencies.

In this particular project, the resolution of the input parameters of the DAM
calls proved essential for building a precise usage graph. Without this step, it would
have been impossible to determine which record is accessed nor which operation is
performed. Indeed, the program slice computed from any DAM invocation (without
resolving its parameters) would have contained all read and write accesses to each
record type.

Regarding schema enrichment, the dependencies extracted from the DAM calls
also revealed very usefull. Originally, each record type definition in the DDL code
consisted of only two declared fields: (1) the access key to the record and (2) a
second large field containing the remainder of the data. In contrast, the COBOL
variable used to store the record (output argument of DAM invocations) exhibited
a much more precise decomposition than the corresponding record type.

5.7.3 COBOL/call-based IMS

The third industrial project aimed at redocumenting a hierarchical database (IMS)
for an american private company. This project made use, among others, of our
dataflow analysis approach for call-based DML statements.

The physical schema of the IMS database comprised 40 segment types and 107
fields. This schema was quite obsure and imprecise. First, the fields declared in
the DDL code were mainly those used as indexes. Second, the physical names for
segment types and fields were limited to eight characters, which made them hardly
understandable.

The system to analyse consisted of 226 COBOL programs (500 000 lines of
code), accessing the IMS database in a call-based manner. Through the automated
analysis of 1488 database calls, we extracted the set of COBOL variables used to
manipulate each IMS segment. The precise declarations of the identified variables
allowed us to significantly enrich the physical schema with more meaningfull names
and finer-grained segment type decompositions.

5.7.4 Lessons learned

The industrial projects presented above clearly demonstrate that it is possible to
construct accurate SDGs from programs involving database operations, especially
when database access is performed using an extension of the programming language
(embedded SQL) or through a data access module.

Our approach is based on the divide and conquer principle. It consists in
analyzing separately the database manipulation fragments, and then in using the
results of this analysis, instead of the original fragments, for producing the SDG.
From that point it is possible to use traditional SDG querying or program slicing.

88 Chapter 5. Static Dependency Analysis

One important lesson is thus it may be necessary to analyse/pre-process a program
(leading to an intermediate, incomplete SDG), in order to construct, in a second
stage, a complete and accurate SDG. This is especially true in the presence of data
access module invocations, for which input parameter resolution is often required.

Experience also confirmed that every reverse engineering project is different
from other ones. Hence the need for programmable, extensible and customizable
tools. In this context, the reusability of our slicing approach and tools appears as an
important advantage. For instance, when programs based on a new embedded lan-
guage must be analyzed, the main necessary adaptation concerns the dependency
analysis rules. The SDG construction and the slicing algorithm remain unchanged.
Our tool-supported approach is also capable to deal with programs that use several
embedded languages or that use embedded languages in combination with one or
several data access module.

5.8 Related work

5.8.1 Previous work

Program slicing has long been considered as a valuable technique to support var-
ious software maintenance tasks such as debugging, regression testing, program
understanding, and reverse engineering (Gallagher and Lyle, 1991; Beck and Eich-
mann, 1993). A lot of researchers have extended the SDG to represent various
language features and proposed variations of dependence graphs that allow finer-
grained slicing. Among them, we mention the work by Agrawal (1994) and Jackson
and Rollins (1994).

Tan and Ling (1998) recognise that traditional slicing methods cannot cor-
rectly deal with programs involving database operations. To face this limitation,
they suggest the introduction of implicit pseudo-variables to capture the influence
among I/O statements that operate on COBOL files. For each COBOL record
type, a pseudo-variable is assumed to exist and to be updated when the file access
statements are executed. Such pseudo-variables allow to introduce additional data
dependencies at the record level.

More recently, Willmor et al. (2004) propose a novel approach to program slicing
in the presence of database states, which considers new forms of data dependencies.
The first category, called program-database dependencies, accounts for interactions
between program statements and database statements. The database-database de-
pendencies capture the situation in which the execution of a database statement
affects the behaviour of another database statement.

As already indicated, the way we simulate the dataflow behavior of DML code
with pseudo-instructions is similar to the scaffolding technique proposed by Sell-
ink and Verhoef (2000). Within the context of software renovation, source-code
scaffolding consists in inserting some markup in the source code in order to store
intermediate results of analysis/transformation processes and to share information
between tools. In our case, we do not transform or scaffold the source code itself,

5.9. Conclusions 89

but we store extracted dependencies into an external database.

5.8.2 Discussion

As Tan and Ling, we consider additional data dependencies involved in the ex-
ecution of database operations. But our approach aims at extracting variable
dependencies at a finer-grained level. For instance, when analyzing an embedded
SQL update statement, it is not sufficient to conclude that a table is updated. One
must also determine the set of columns that are actually affected and, if relevant,
one should make the link between these columns and the corresponding COBOL
input host variables.

Our approach complements the work by Willmor et al. (2004). Indeed, we focus
on recovering dependencies between program and database variables, while they
consider additional dependencies between program and database statements. It is
obvious that the data dependencies our tools automatically extract from database
statements allow, in a second stage, to compute inter-statement dependencies in the
style of Willmor et al. (2004). Our dataflow dependency results allow to determine
the set of variables that are used and defined by each database statement. In
addition, those dependencies capture the implicit links that hold between program
variables and corresponding database variables. Another important difference lies
on the fact that we clearly separate the analysis of the database operations from
the SDG construction phase. This allows the latter to become DML-independent,
and thus increases its reusability.

This chapter also constitutes an extension of Jean Henrard’s PhD thesis (Hen-
rard, 2003), that proposes slicing-based program analysis techniques and tools in
support to database reverse engineering. In the same thesis, a set of dataflow de-
pendency extraction rules for embedded SQL are already suggested. The major
contributions of this chapter concern (1) the automation of the latter rules resulting
in a dataflow analyser for embedded SQL, (2) the extension of the methodology to
call-based DML statements analysis, (3) the developpement of a dataflow analyser
for call-based IMS, and (4) the application of the methods and tools to large-scale
legacy systems.

5.9 Conclusions

In this chapter, we presented a general methodology that allows to compute accu-
rate system dependency graphs in the presence of embedded database operations.
The methodology is based on the combination of embedded code analysis and
DML-independent SDG construction. We showed how this methodology can be
generalized to the analysis of programs invoking data access modules (DAM).

While industrial reverse engineering projects have shown the suitability and
usefullness of our dependency analysis approach and tools, precisely measuring
the positive effect of our methodology on the accuracy of constructed SDGs still
remains to be done. Unfortunately, such an evaluation proved particularly compli-

90 Chapter 5. Static Dependency Analysis

cated in an industrial context. Indeed, case studies are very costly and require the
cooperation of a customer ready to invest in comparative experiments.

We anticipate several directions for future work in database-aware dataflow
analysis. In particular, we would like to explore the use of SDG querying techniques
for database applications reengineering and evolution. For instance, SDG analysis
appears as a promising candidate technique for understanding the data access logic
of a program, before adapting it to an evolving database schema or platform7.

Roadmap

This chapter described a dataflow analysis approach for database queries relying
on static program analysis, thus taking as input the source code of the programs.
Obviously, this approach may fall short in the presence of dynamically generated
database queries. Chapter 6 will attempt to partially face this limitation, by ex-
ploring the use of dynamic program analysis techniques for SQL queries. In the
latter case, query analysis is based on the execution trace of the application pro-
grams. In contrast with the present chapter, which mainly focused on intra-query
dependency analysis, the next chapter will also take inter-query dependencies into
account.

7in the style of the Logic Rewriting program conversion strategy (P3) presented in Chapter 4

Chapter 6

Dynamic Analysis of SQL Queries

The most exciting phrase to hear in science, the one that
heralds new discoveries, is not ’Eureka!’ but ’That’s funny...’

– Isaac Asimov

This chapter1 explores the use of dynamic analysis techniques for analyzing SQL
statements in the context of database reverse engineeering. It identifies, illus-
trates and compares possible techniques for (1) capturing SQL query executions at
run time and (2) extracting implicit schema constructs from SQL query execution
traces. Finally, it discusses the usefullness of such techniques based on an initial
experiment.

6.1 Introduction

Data-intensive systems exhibit an interesting symmetrical property due to the mu-
tual dependency of the database and the programs. When no useful documentation
is available, it appears that (1) understanding the database schema is necessary to
understand the procedural code and, conversely, (2) understanding what the proce-
dural code is doing on the data considerably helps in understanding the properties
of the data.

Procedural code analysis has long been considered a complex but rich informa-
tion source to redocument database schemas. Even in ancient programs based on
standard file data managers, identifying and analysing the code sections devoted
to the validation of data before storing them in a file allows developers to detect
constructs as important as actual record decomposition, uniqueness constraints,
referential integrity or enumerated field domains. In addition, navigation patterns
in source code can help identify such important constructs as semantic associations
between record types.

1A short version of this chapter was published in the Proceedings of the 15th IEEE Working
Conference on Reverse Engineering (WCRE 2008) (Cleve and Hainaut, 2008).

91

92 Chapter 6. Dynamic Analysis of SQL Queries

ORDERS
OrdNum: num (10)
OrdDate: date (1)
Reference: char (12)
Sender: num (8)
id: OrdNum

CUSTOMER
CustNum: num (8)
CustName: varchar (30)
CustAddress: char (120)
id: CustNum

Figure 6.1: Two tables including implicit constructs

When, as has been common for more than two decades, data are managed by
relational DBMSs, the database/program interactions are performed through the
SQL language and protocols. Based on the relational algebra and the relational
calculus, SQL is a high-level language that allows programmers to describe in a
declarative way the properties of the data they instruct the DBMS to provide them
with.

By contrast, navigational DMLs (also called one-record-at-a-time DML) access
the data through procedural code that specifies the successive operations neces-
sary to get these data. Therefore, a single SQL statement can be the declarative
equivalent of a procedural section of several hundreds of lines of code (LoC). Un-
derstanding the semantics of an SQL statement is often much easier than that of
this procedural fragment. The analysis of SQL statements in application programs
is a major program understanding technique in database reverse engineering (Petit
et al., 1994; Andersson, 1998; Embury and Shao, 2001; Willmor et al., 2004; Cleve
et al., 2006).

6.1.1 SQL code analysis

We illustrate the importance of SQL statement analysis on a small but representa-
tive example based on the schema of Figure 6.1 made up of two tables describing
customers and orders. This schema graphically translates the constructs of the
DDL code. Query 1 obviously extracts the customer city and the ordered product
for a definite order. It asks the DBMS to extract these data from the row built by

select substring(CustAddress from 61 for 30), Reference
into :CITY , :PRODUCT
from CUSTOMER C, ORDERS O
where C.CustNum = O.Sender
and OrdNum = :ORDID

Query 1. Extracting hidden City and Product information (predicative join)

joining tables CUSTOMER and ORDERS for that order. It exhibits the main features of
the program/query interface: the program transmits an input value through host
variable ORDID and the query transmits result values in host variables CITY and
PRODUCT. The analysis of this query brings to light some important hidden infor-
mation, two of which are essential for the understanding of the database schema.

6.1. Introduction 93

ORDERS
OrdNum: num (10)
OrdDate: date (1)
Reference: char (12)
Sender: num (8)
id: OrdNum
ref: Sender

CUSTOMER
CustNum: num (8)
CustName: varchar (30)
CustAddress: compound (120)

Data1: char (60)
City: char (30)
Data2: char (30)

id: CustNum

Figure 6.2: Two implicit constructs revealed by the analysis of Query 1

1. The join is performed on columns CustNum and Sender. The former is the
primary key (the main identifying column) of table CUSTOMER while the second
one plays no role so far. Now, we know that most joins found in application
programs are based on the matching of a foreign key (a column that is used
to reference a row in another table) and a primary key. As a consequence,
Query 1 strongly suggests that column Sender is a foreign key to CUSTOMER.
Further analysis will confirm or reject this hypothesis.

2. The seemingly atomic column CustAddress appears to actually be a com-
pound field, since its substring at positions 61 to 90 is extracted and stored
into a variable named CITY2.

Translating this new knowledge in the original schema leads to the more precise
schema of Figure 6.2.

The SQL code of Query 1 explicitly exhibits the input and output variables
through which the host statements interact with the query. These variables are
important since, on the one hand, input variables define the variable parts of the
query and, on the other hand, input and output variables potentially weave links
with other SQL queries. The code fragment Query 2, that develops the same join
as that of Query 1 in a procedural way, illustrates such an inter-query dependency.
Naming Q21 and Q22 the two fragments, we observe that the host variable CUST

select Sender into :CUST
from ORDERS where OrdNum = :ORDID
<host statements >
select CustName , CustAddress into :CNAME , :CADDRESS
from CUSTOMER where C.CustNum = :CUST

Query 2. Extracting hidden City and Product information (procedural join)

is the output variable of query Q21 and the input variable of the query Q22. If the
intermediate host statements do not change the value of CUST (this invariance can
be checked through a dependency analysis), then these queries can be considered

2In practice, it might happen that several variables with different names are used to store the
value of the same column fragment. In this case, the analyst is in charge of choosing the most
meaningful name for the new sub-level attribute.

94 Chapter 6. Dynamic Analysis of SQL Queries

as a global query. Such inter-query analysis has been suggested by Petit et al.
(1994) for example.

The analysis of SQL statements in a program can address each statement in-
dependently (Query 1) or can extend the understanding to chains of dependent
statements (Query 2).

6.1.2 Static vs dynamic SQL

These introductory examples are expressed in static SQL, a variant of the lan-
guage in which the SQL statements are hard-coded in the source program. There
is another family of SQL interfaces, called dynamic SQL, with which the SQL
statements are built at runtime and sent to the database server through a specific
API. Typically, these programs build each query as a character string, then ask the
DBMS to prepare the query (i.e., to compile it) and finally execute it. The only
point in the program at which the actual query exists is at runtime, when, or just
before, the query string is sent to the DBMS for compilation and/or execution.
Query 3 is a simple example of the use of dynamic SQL to extract the name of
customer ’C400’.

CNUM = "C400";
QUERY = "select CustName from CUSTOMER where CustNum = ’" + CNUM + "’";
exec SQL prepare Q from :QUERY;
exec SQL execute Q into :NAME;

Query 3. First example of dynamic SQL

6.1.3 Static vs dynamic analysis of (dynamic) SQL statements

With some disciplined programming styles (Query 3 is an example), the mere
examination of the code of the program provides enough information to infer the
actual content of the query string before execution. However, the way this string
is computed can be so complex and tricky that only runtime analysis can yield this
value. Capturing, saving and processing the values of the query string at runtime
resorts to dynamic program analysis.

6.1.4 Structure of the chapter

The objective of this chapter is to identify, study and apply dynamic analysis tech-
niques of static and dynamic SQL statements, in the particular context of database
reverse engineering. Section 6.2 describes in further detail the dynamic SQL inter-
face as well as the scope of its static and dynamic analyses. Section 6.3 identifies
important objectives and applications to which dynamic analysis of SQL can con-
tribute significantly. Section 6.4 identifies and describes ten different techniques
for capturing SQL statements traces, a comparative evaluation of which is given
in Section 6.5. Section 6.6 particularly focuses on the use of aspect-based dynamic

6.2. Static VS dynamic SQL 95

analysis of SQL statements. Technical aspects of SQL trace processing are dis-
cussed in Section 6.7. In Section 6.8, we show how SQL traces can be analyzed in
the context of database reverse engineering. Section 6.9 presents an initial experi-
ment aiming to evaluate the suitability of SQL trace analysis for detecting implicit
referential constraints. Concluding remarks are given in Section 6.10.

6.2 Static VS dynamic SQL

The introductory examples of Queries 1 and 2 are expressed in static SQL, which
is a variant of the language in which the SQL statements are hard-coded in the
source program. The code of static SQL explicitly shows the architecture of the
query according to the SQL native syntax. It mentions the schema constructs
concerned and identifies the input and output variables through which the host
statements interact with the query. Static SQL will appear in standard languages
under the name embedded SQL (ESQL) and in Java as SQLJ. Many proprietary
database languages, such as InterBase, Oracle (PL/SQL) or Sybase and SQL Server
(Transact SQL) are based on static SQL as well, though some of them provide some
form of dynamicity.

6.2.1 Dynamic SQL

Dynamic SQL or call-level interface (CLI), that has been standardized in the eight-
ies and implemented by most relational DBMS vendors, is illustrated in Queries
3 and 4. The most popular DBMS-independent APIs are ODBC, proposed by
Microsoft, and JDBC, proposed by SUN. Dynamic SQL provides a high level of
flexibility but the application programs that use it may be difficult to analyse and
to understand. Most major DBMS, such as Oracle and DB2, include interfaces for
both static and dynamic SQL.

QUERY = "select CustName from CUSTOMER where CustNum = :v1";
exec SQL prepare Q from :QUERY;
exec SQL execute Q into :NAME using :CNUM;

Query 4. Another common usage pattern of dynamic SQL

The examples in Queries 3 and 4 are written in dynamic SQL for C/C++.
The first one shows the build time injection of constants from variable CNUM, while
Query 4 illustrates the binding of formal variable v1 with the actual host variable
CNUM at execution time.

The ODBC and JDBC interfaces provide several query patterns, differing no-
tably on the binding technique, that we refer to in this study. The most general
form is illustrated in Query 5, where the iteration structure for obtaining results
has been ignored for simplicity. Line 1 creates database connection con. Line 2
builds the SQL query in host variable SQLquery. This statement includes input
placeholder ? which will be bound to an actual value before execution. Line 3

96 Chapter 6. Dynamic Analysis of SQL Queries

creates and prepares statement SQLstmt from string SQLquery. This statement in
completed in Line 4, by which the first (and unique) placeholder is replaced with
value C400. The statement can then be executed (Line 5), which creates the set of
rows rset. Method next of rset positions its cursor on the first row (Line 6) while
Line 7 extracts the first (and unique) output value specified in the query select list
and stores it in host variable Num. Line 8 closes the result set.

CNum = "C400";
1 Connection con = DriverManager.getConnection(DBurl , Login , Password);
2 String SQLquery = "select OrdNum from ORDERS where Sender = ?";
3 PreparedStatement SQLstmt = con.prepareStatement(SQLquery);
4 SQLstmt.setString(1, CNum);
5 ResultSet rset = SQLstmt.executeQuery ();
6 rset.next();
7 Num = rset.getInt (1)
8 rset.close();

Query 5. Standard JDBC database interaction

When input binding is performed by build time value injection, the prepare
and execute steps can be merged, as illustrated in Query 6, which is equivalent to
Query 5 (operations of Lines 1 and 8 omitted).

String SQLquery = "select OrdNum from ORDERS where Sender = ’"+"C400 "+" ’";
Statement SQLstmt = con.createStatement ();
ResultSet rset = SQLstmt.executeQuery(SQLquery);
rset.next();
Num = rset.getInt (1)

Query 6. Concise JDBC database interaction

6.2.2 Static vs dynamic analysis of dynamic SQL statements

In some disciplined programming styles, the building step is written as a sequence
of explicit substring concatenations just before the prepare/execute section, so
that significant fragments of the SQL query, if not the whole query itself, can be
recovered through careful static analysis (van den Brink et al., 2007) or symbolic
execution (Ngo and Tan, 2008). However, some fragments of the query may be
initialized long before, and far away from the execution point, or computed, or
extracted from external sources (file, database, user interface, web pages, etc.) in
such a way that discovering the intended query by code examination alone may
prove impossible. The JDBC fragment of Query 7 illustrates the problem. There
obviously is no realistic static analysis procedure that could provide us with the
actual SQL queries that will be executed. The only way to know the actual query
is to capture it at runtime, when the executeQuery method is executed.

6.2. Static VS dynamic SQL 97

String query , SQLv , SQLa , SQLs , SQLc;
SQLv = currentAction; SQLa = keyboard.readString ();
SQLs = userDefaultTable; SQLc = getFilter(currentDate , filterNumber);
Connection con = DriverManager.getConnection(url , login , pwd);
Statement stmt = con.createStatement ();
query = SQLv + SQLa + SQLs + SQLc;
ResultSet rset = SQLstmt.executeQuery(query);

Query 7. An example of dynamic SQL (JDBC)

6.2.3 Capturing results of SQL statement execution

Dynamic analysis has been considered so far as a means to get the actual SQL
code at execution time in order to examine it. This technique can also be used to
examine the results of SQL query executions. The information is captured after
code execution. The format of the output data is defined by the form of the SQL
query and the information of the logical schema. Result analysis often is the only
technique to trace the link between two SQL queries through shared host variables
when the intermediate host statements cannot be analysed statically (see Query 2
for example).

6.2.4 Dynamic SQL patterns

Any dynamic statement can be seen as a partially filled frame. Some parts are
constant and will appear at the same place in all the instances of the statement
while the other parts are drawn from variables or computed to complete the frame.
There are two extreme cases: all the parts of the frame are variable and the whole
frame is a pure constant. The most interesting cases are in between, depending on
which SQL syntactic component is variable from one execution to the other. We
will briefly describe five of them.

• Constant variability. The only variable parts are the constant values of the
query. They appear in the where clause of select/update/delete queries
(as the constants with which column values, or any scalar expression value,
are compared) and in insert queries (as the column values of the row to
insert). This form has been illustrated in Query 4. A dynamic query can
only appear in three successive states:

1. Unbound static query, in which the variable tokens still appear as place-
holders or formal variable names (see Queries 4 and 5);

2. Bound static query, in which the variable tokens have been replaced with
actual host variable names, providing a pure ESQL query (Query 1);

3. Instantiated static query, in which the variable tokens have been replaced
with constants.

• Column variability. The select list, that is, the list of data items in each
row of the result set, may vary from one execution to the other. This form

98 Chapter 6. Dynamic Analysis of SQL Queries

encompasses also insert queries, in which the value list can be variable. It
generally includes constant variability as well.

• Table variability. The table(s) on which the statement operates may vary.
All the tables must have the same structure. This form may include the first
two variabilities.

• Condition/order variability. The selection criteria specified in the where

clause of select, update and delete queries, or the order by clause of a
select query, may vary.

• Action variability. The other parts of the SQL may vary. We can consider
that the successive instantiations of the frame build quite different queries.
This pattern will be found in highly interpretative applications, for instance in
widespread interactive Java SQL client applications allowing users to submit
any SQL statement to a database engine.

It is important to observe that a constant variability pattern can be losslessly
replaced with a static SQL statement and that this property does not hold for the
other patterns. For the latter, the building sequence dedicated to a given dynamic
statement generates in fact a family of syntactically different static statements.

6.3 Applications of SQL statement analysis

The introduction has motivated the dynamic analysis of SQL statements as a con-
tribution to program understanding, in particular for implicit data structure elici-
tation. In fact, these analysis techniques have a wider range of applications, some
of which will be discussed in this section. We will develop the role of dynamic
analysis in program understanding and in process control and monitoring.

6.3.1 Program understanding

SQL statement analysis contributes significantly to the more global process of pro-
gram understanding. In addition, it is a major instrument to database structure
understanding.

Dependency graph analysis The dependency graph of the variables of a pro-
gram is a popular way to understand the coupling of different components of this
program, notably for change impact analysis. This graph comprises nodes, that
represent variables and constants, and edges, each of which specifies that the state
of a variable depends on the state of another variable or constant. While this
analysis is quite common for assignment, comparison, computing and simple in-
put/output statements, understanding variable dependencies from rich middleware
API may prove more complex. In such a context, an SQL statement can be reduced
to a simple function. If only host variable dependencies are considered, Query 1

6.3. Applications of SQL statement analysis 99

can be reduced to the following peudo-code, in which sql1 and sql2 are syntac-
tic functions merely expressing uninterpreted dependencies between variables: the
values of CITY depend, among others, on the values of ORDID.

CITY = sql1(ORDID);

PRODUCT = sql2(ORDID);

This transformation has been used to build the dependency graphs of program
slices (Henrard et al., 1998; Cleve et al., 2006), as discussed in Chapter 5. It can
be strongly improved by considering the properties of external data as expressed
in the database schema. For instance, the schema of Figure 6.2 shows that (1) a
functional dependency (FD) holds from column OrdNum to column Sender in table
ORDERS, (2) an inclusion dependency holds between column Sender and column
CustNum and (3) a FD holds from column CustNum to subcolumn City in table
CUSTOMER. The transitivity rule implies that a FD also holds from column OrdNum

to subcolumn City in the join CUSTOMER*ORDER. As a consequence, syntactical
functions sql1 and sql2 are proved to be mathematical functions as well (the
value of CITY depends on the value of ORDID only), so that we have proved that
the result set of Query 1 will never include more than one row. This property
should considerably enrich the program understanding process. As far as the we
know, this approach has not been explored yet.

Implicit construct elicitation The exploitation of Query 1 illustrates the con-
tribution of the analysis of SQL queries to the elicitation of implicit constructs and
contraints of a database (Hainaut et al., 1993; Signore et al., 1994; Petit et al.,
1995; Yang and Chu, 1999; Lopes et al., 1999; Shao et al., 2001; Hainaut, 2002).
In addition, the enriched dependency graph that can be built by considering SQL
statement interactions are used to propagate information on a node to other nodes,
in particular database constructs. This is exactly the approach followed in Chap-
ter 5 of this thesis.

Static code reconstruction Another possible application of dynamic analysis
is the reconstruction of the static equivalent of dynamic SQL queries. Static anal-
ysis of static SQL statements has long been studied and analytical techniques and
tools have been developed and are now available, in particular in database reverse
engineering, as illustrated in Chapter 5. Rebuilding the static code can be per-
formed at two levels of scope, namely local and global. Local SQL code analysis
consider each SQL statement independently of its environment, and in particular
of the other SQL statements executed before and after it. In contrast, global SQL
code analysis consider also the inter-relations between successive SQL statements,
mainly through shared host variables. Query 2 is a simple example of dependencies
that can hold between two distant SQL statements. The latter analysis is much
more powerful than the former, but it must rely on complex program understanding
techniques such as program slicing (Weiser, 1984). This dynamic/static conversion
can be used to reengineer complex programs in order to improve their readability
and to ease their maintenability and evolvability.

100 Chapter 6. Dynamic Analysis of SQL Queries

Quality assessment Logging all the SQL statements issued by a program in a
definite period provides a fairly comprehensive sample of all the SQL forms that
the program actually uses. This information can be used to identify the SQL
programming style and, in particular, bad smells (Mantyla, 2003) that should be
reengineered.

Database usage matrix Statement analysis provides partial information that
can be used to redocument the programs. A simple though quite useful derived
information is the usage matrix (van Deursen and Kuipers, 1998) that specifies
which tables and which columns each program unit uses and modifies. Formal
concept analysis can then be applied to identify potential program clustering or
database schema partitioning.

6.3.2 Process control and monitoring

Analysing the statement flow and the data flow in specific critical program points
can yield precise information on the behaviour of the program at execution time.
Five applications are described below.

Statistics Logging SQL statements produces a data collection that can be mined
to extract aggregated information and statistics on the behaviour of the program as
far as database interaction is concerned. According to the additional data recorded
with these statements, useful information can be derived such as database failure
rate at each program point (update rejected, access denied, empty result set, etc.),
most frequently used SQL forms, complexity of SQL statements, programming
idiosyncrasies, awkward and inefficient SQL patterns and non-standard syntax (in-
ducing portability vulnerability). These derived data can be used to monitor the
program behaviour but also for refactoring purpose, for instance to improve the
quality and the portability of the source code. The analysis of selection criteria
in select, delete and update statements can be used to define and tune the data
access mechanisms such as indexes and clusters.

Accounting The execution of a program can be charged information access cost.
This cost can depend on the value of the information, on the volume of the data
extracted from the database or on the time the database engine spent on executing
the queries.

Performance analysis Time recording before and after each SQL statement
execution allows a precise evaluation of that part of program execution spent on
data exchange with the database. Analysing these data can be used to fine tune
both the application program and the database for better performance.

6.4. SQL statement capturing techniques 101

Transaction management The DBMS takes in charge transaction management
according to the policy defined by the database administrator. Ad hoc, customized,
transaction management can be necessary in some critical situation. Capturing all
the data modification SQL statements submitted to the DBMS at run time and
recording them in a log make it possible to redo (and in some circumstances to
undo) their effect when some adverse events or conditions occur.

Security The main database application vulnerability is SQL code injection (Hal-
fond and Orso, 2005; Merlo et al., 2006; Lam et al., 2008). It occurs when an exter-
nal user is requested to provide data (typically its user ID and password) that are
injected at building time into an incomplete SQL query. However, the user actually
provides, instead of the expected data, spurious but syntactically valid data in such
a way that a malware query is formed. This query is then executed with privileges
that the user has not been granted. For instance, a user who logs in a system is
requested to provide its password through a dialog box. When aquired, the value
is injected into an SQL query to form a valid statement that checks the existence
of this password in the authorization table. The instantiated statement gener-
ally looks like the following: "select count(*) from USERS where PASSWORD =

’x1123bz’;", and is expected to return a zero (access denied) or non-zero (access
granted) value. It has been built by injecting the value x1123bz provided by the
user according to the frame "select count(*) from USERS where PASSWORD =

’" + "x1123bz" + "’;". If the user enters the string "X’ or ’A’ = ’A" instead
of a valid password, the statement built becomes the unexpected but valid state-
ment "select count(*) from USERS where PASSWORD = ’X’ or ’A’ = ’A’;".
Since this query returns the number of rows in the table, the unauthorized user is
given access to the system. Interestingly, the problem can be formalised as the ille-
gal transformation of the constant variability pattern written by the programmer
into an unexpected condition variability pattern. Most common attack detection
techniques rely on the analysis of the value provided by the user, but dynamic
analysis of the actual (vs intended) SQL query may prove easier and more reliable.
In the same domain, SQL code analysis can detect unauthorized queries and up-
dates. For instance, a query including the fragment "from REPORT where STATUS

= ’classified’" can be identified as suspect and blocked until official authoriza-
tion notification. The analysis of the result set of SQL queries can also be used to
identify the presence of sensitive information.

6.4 SQL statement capturing techniques

At runtime, the SQL protocol relies on a dataflow that starts and ends at the host
program point defined by an SQL statement. The successive steps define the flow
points at which capture instruments can be installed. The following eleven steps
are identified.

• Step d1. (Building step, client side) The SQL statement is formed by the

102 Chapter 6. Dynamic Analysis of SQL Queries

concatenation of statement fragments. The resulting string generally includes
constant placeholders.

• Step d2. (Preparation step, client side) The statement is sent to the database
engine for preparation.

• Step d3. (Binding step, client side) The placeholders, if any, are bound with
host variables so that the statement is now complete.

• Step d4. (Transmission step, client side) The host program transmits the
SQL statement to the client API for execution. The program passes control
to the API and suspends itself.

• Step d5. (Statement sending step, link side) The client API receives the SQL
statement and sends it to the database engine.

• Step d6. (Statement receiving step, link side) The database engine receives
the statement and writes it on its log.

• Step e1. (Recompilation step, server side) The database engine checks the
validity of execution plan of the query by comparing the compilation date of
the query with the last update time of the schema.

• Step e2. (Execution step, server side) The database engine executes the
query.

• Step b1. (Result step, server side) The database engine sends the status
messages to the client and, if needed, the result set is extracted from the
database.

• Step b2. (Receiving step, link side) The client API receives the message and
result set.

• Step b3. (Extraction step, client side) The client receives control from the
API and extracts the results to store them in its host variables.

It is important to note that each API variant executes a subset only of these steps.
For instance, in static SQL, steps d1, d2, d3 are performed at writing time and
compile time; similarly, b3 is a compile time step. In dynamic SQL, step e1 is
absent.

Below, we describe ten techniques to capture the SQL statements that are ex-
ecuted in a data-intensive application program. Among them, seven techniques
(summarized in Figure 6.3) are intended to understand the behaviour of the clien-
t/server system at execution time. The three other techniques rely on static anal-
ysis.

6.4. SQL statement capturing techniques 103

DatabasePrograms API

DBMS logs
Tracing triggers
Tracing stored procedures

DBMS

API substitution

API overloading

CLIENT side SERVER side

Program instrumentation
Aspect-based tracing

DatabasePrograms API

DBMS logs
Tracing triggers
Tracing stored procedures

DBMS

API substitution

API overloading

CLIENT side SERVER side

Program instrumentation
Aspect-based tracing

Figure 6.3: Seven capturing techniques for SQL statement executions.

Statement stmt = connection.createStatement();
ResultSet rs = stmt.executeQuery(SQLstmt);
SQLlog.write(”132;SQLexec;”+stmt.hashCode()+”;”+SQLstmt);
rs.next();
vName = rs.getString(1);
SQLlog.write(”133;SQLgetS1;”+rs.getStatement().hashCode()+”;”+vName);
vSalary = rs.getInt(2);
SQLlog.write(”134;SQLgetI2;”+rs.getStatement().hashCode()+”;”+vSalary);

Figure 6.4: Logging SQL operations by program instrumentation.

6.4.1 Program instrumentation

The capture of a dynamic SQL statement is performed by a dedicated code section
inserted before the program point of this statement. Similarly, the result of an
SQL statement will be captured by a code section inserted after it. This technique
requires code analysis to identify and decode database API statements and entails
source code modification and recompilation. It provides a temporal list of state-
ment instances. In the example of Figure 6.4, the tracing statement writes in the
log file the program point id (132), the event type (SQLexec), the statement ob-
ject id (stmt.hashCode() or rs.getStatement().hashCode()) followed by the
SQL statement (building time constant injection is assumed) or the output variable
contents. According to the information that needs to be extracted from the trace,
program id, process id and/or timestamp can be output as well. This technique
may involve more complex source code restructuring when the SQL statement is
built in the SQL prepareStatement argument (as in prepareStatement(A+B+C)).
Indeed, this building can invoke functions with side effects such as acquiring state-
ment fragments from external sequential sources. It should be noted that static
SQL can be processed in the same way. Since the statement explicitly appears in

104 Chapter 6. Dynamic Analysis of SQL Queries

package myAPI;
...
public class Statement{

java.sql.Statement stat;

public Statement(java.sql.Connection con){
stat = con.createStatement ();
}
...
public ResultSet executeQuery(String sql){

log.traceQuery(sql);
return new ResultSet(stat.executeQuery(sql));

}
...

}

Figure 6.5: Illustration of API overloading.

the source code, only the values of input and output variables need to be captured.
The advantage of dynamic analysis of static SQL is that it provides information
on statement instances. However, it does not yield any information on statements
that are not executed.

6.4.2 Aspect-based tracing

Aspect technology, if available for the programming language of interest, allows
triggers to be added to an existing program without source code modification. The
introduction of tracing aspects simply requires the programs to be recompiled. In
the case of Java/JDBC applications, AspectJ pointcuts and advices can be defined
in order to capture the successive events involved in dynamic database manipula-
tion like query preparation, input value definition, query execution and result extra-
tion (Cleve and Hainaut, 2008). Aspect-oriented support is now available for several
programming languages among which Java, C, C++, ... and COBOL (Lämmel and
De Schutter, 2005).

6.4.3 API overloading

The API overloading technique consists in encapsulating (part of) the client side
API within dedicated classes which provide similar public methods but produce,
in addition, the required SQL execution trace. For instance, we could write our
own Statement, PreparedStatement and ResultSet classes which, in turn, make
use of the JDBC corresponding classes, as shown in Figure 6.5. This technique re-
quires a minimal program adaptation (illustrated in Figure 6.6) and, consequently,
recompilation.

6.4.4 API substitution

If the source code of the client side API is available, which is the case for ODBC and
JDBC drivers of Open Source RDBMSs, tracing statements can be inserted directly

6.4. SQL statement capturing techniques 105

import java.sql.PreparedStatement; import myAPI.PreparedStatement;
import java.sql.ResultSet; import myAPI.ResultSet;
import java.sql.Statement; import myAPI.Statement;
... --> ...
Statement sta = con.createStatement (); Statement sta = new Statement(con);
ResultSet rsl = sta.executeQuery(q); ResultSet rsl = sta.executeQuery(q);

Figure 6.6: Program adaptation for API overloading.

in this API. The latter is then recompiled and bound to the client applications.
The client program need not be modified nor recompiled. This technique records
the statement instances but ignores the program points.

6.4.5 DBMS logs

Most database engines store the requests received from the client application pro-
grams in a specific file or table. For example, MySQL writes, in the order it
received them, all the client queries in its general query log. Each record comprises
the client process id, the time stamp the query is received and the text of the query
as it was executed, in particularly with input variables replaced with their values.
As compared to the trace obtained by the insertion of tracing statement technique,
DBMS log does not provide program points and can be processed off-line only.
This technique does not require source code modification.

6.4.6 Tracing triggers

A tracing trigger is an SQL trigger created to capture and record data update
activities on a definite table. The body of the trigger is executed before or after
each data modification query. It is not provided with the original text of the
query but its effect can be recovered by the comparison of the states of the data
before and after query execution. By combining for-each-statement and for-each-
row triggers, elementary fictitious queries can be reconstructed and recorded for
further analysis. This technique is weaker than most others since it cannot capture
the actual statements and since it ignores consultation queries, but it implies no
source code modification. For instance, let us consider an update trigger executed
for each update query instance. An equivalent fictitious query can be built as
follows: for each column C for which new.C <> old.C, a set clause "set C=" +

new.C is defined. A trigger monitoring update queries with invariant primary key
for the table ORDERS of Figure 6.1 would be defined by the pseudocode shown in
Figure 6.7.

6.4.7 Tracing stored procedures

Another possible technique consists in replacing some or all SQL statements in
client programs by the invocation of equivalent SQL procedures created in the
database. The set of these procedures acts as an ad hoc API that can be augmented

106 Chapter 6. Dynamic Analysis of SQL Queries

create trigger LOG_ORDER_UPDATE before update on ORDERS
for each row
begin
declare S varchar (500);
S := "update ORDERS ";
if new.ORDDATE <> old.ORDDATE

then S := S + "set ORDDATE =" + new.ORDDATE;
if new.REFERENCE <> old.REFERENCE

then S:= S + ", set REFERENCE =" + new.REFERENCE;
if new.SENDER <> old.SENDER

then S:= S + ", set SENDER=" + new.SENDER;
S = S + " where ORDNUM=" + old.ORDNUM + ";";

end;

Figure 6.7: Reconstructing a fictitious update query using an update trigger

with tracing instructions that maintain a log of the instances of SQL statements
that are executed. This technique can be considered in architectures that already
rely on SQL procedures. When client programs include explicit SQL statements, it
entails in-depth and complex code modification. However, since it replaces complex
input and output variable binding with mere procedure arguments, this reengineer-
ing can provide a better code that will be easier to maintain and evolve.

6.4.8 Static analysis of dynamic SQL statements

When SQL statements are built according to a disciplined and systematic proce-
dure, static analysis techniques such as mere sequential parsing or program slicing
can be used to understand this procedure and reconstruct the static query. This
technique allows to retrieve the source code locations of the queries, but it cannot
trace query instances (i.e., queries where each variable/placeholder is replaced with
a value). The example of Query 3 provides a clear illustration of such a scenario,
that has been studied by van den Brink et al. (2007) in the context of quality
assessment.

6.4.9 Static analysis of static SQL statements

As Query 1 shows, the identification of static SQL statements is immediate, all
the more since these statements are signalled by specific meta-instructions such as
exec SQL and end-exec in COBOL, #SQL{...} in SQLJ or equivalent in other
languages. Their further analysis poses no hard problems since the statements
are guaranteed to be correct. This technique provides statement program points
but does not trace their instances. Global static analysis consists in identifying
the dependency relationships between SQL statements. Query 2 illustrates the
point by explicitly showing that output variable CUST of the first query is used
as input variable in the second one. However, this identification may prove much
more complex than local analysis when there is no simple and transparent path
from the output variables of a statement and the input variable of a subsequent
statement (Willmor et al., 2004).

6.5. Evaluation and applicability of SQL capturing techniques 107

6.4.10 Extraction of compiled queries from system tables

Programs relying on static SQL must be precompiled. Through this process, each
SQL statement is analysed by a precompiler that stores both the source statement
and its compiled equivalent in a DBMS system table (step e1 above). Generally,
this table can be read off-line, so that all the SQL statements of a program can
be examined. This procedure does not provide statement instances, host variable
values nor program points. It does not apply to dynamic SQL statements, that are
compiled for each execution of the client program.

6.5 Evaluation and applicability of SQL capturing techniques

In this section, we will evaluate and compare the SQL capturing techniques iden-
tified in Section 6.4. To this aim, they will be evaluated and compared against
functional and operational criteria that we will study first. The evaluation criteria
will be classified into four property families, namely the nature of the information
captured, completeness, host languages and operational characteristics.

Nature of information captured. Each technique captures information that
will be further processed. This information can be the static SQL statement, which
comes in three variants, namely unbound (with variable placeholders), bound (with
actual host variable names) and instantiated (with constants). The technique can
also return the result of the execution of the statement as data values and/or
execution status. The program point of the statement can be returned as well. It
appears that some techniques cannot cope with all the SQL, the class of statement
that can be captured will be specified: DDL (create, drop, alter), data extraction
(select), data modification (insert, update and delete), control (grant, revoke,
etc.) and binding statements that connect host variables to the unbound input and
output placeholders.

Completeness. The question is, can all the SQL statements of the client pro-
gram be captured by the technique. Due to its complexity in the context of dynamic
SQL, this question will only be mentioned for static SQL statements. We will dis-
tinguish the identification of statements and that of statement instances. Ngo and
Tan (2008) define an automatic procedure to identify as many as possible SQL
statement instances (they call them concrete statements) through static analysis
techniques based, notably on symbolic execution of program paths that include
database interactions. Actual case studies show that about 80% of instantiated
statements can be identified. None of the techniques described in this chapter ad-
dress this problem, so that we will discuss the completeness characteristic for static
statements only.

Host languages. A technique may be applicable to some host languages and
not to others. We will examine whether each technique is applicable to COBOL,

108 Chapter 6. Dynamic Analysis of SQL Queries

C, C++ and Java.

Operational characteristics. Some techniques impose more or less strong re-
quirements on the following aspects:

- Database schema: does the technique require schema examination, schema
modification?

- Client source code: does the technique require code examination, code mod-
ification, code recompiling?

- Cost : each technique induces various kinds of additional cost. We distin-
guish preparation cost, client runtime cost and server runtime cost. In each
category, a coarse-grain score of 0 (no to low cost), 1 (medium cost) and 2
(high cost) will be assigned.

- Processing time: the information captured allow real-time processing (RT) or
requires deferred processing (D). This property is crucial for such applications
as security control.

Table 6.1 synthetizes the characteristics of each SQL statements capturing tech-
nique according to these properties.

6.6 Aspect-based dynamic analysis

In this section, we will particularly elaborate on the use of tracing aspects for cap-
turing SQL execution traces (Cleve and Hainaut, 2008). This technique has many
advantages. First, it does not require any source code modification, but a recom-
pilation only. Second, an aspect may retrieve corresponding source code locations
when capturing an execution event. Finally, it allows iterative and incremental
analysis to be performed with minimal effort.

Aspect-based tracing consists in specifying separately the tracing functionality
by means of aspects, without any alteration of the original source code. An aspect
typically consists of pointcuts and associated advices, which can be seen as program-
side triggers. A pointcut picks out certain join points in the program flow, which
are well-defined moments in the execution of a program, like method call, method
execution or object instantiation. An advice is associated to a pointcut. It declares
that certain code should execute at each of the join points specified by the pointcut.
Depending of the kind of advice, the code is run before, after, or around the specified
join point.

In this chapter, the tracing aspects are written in AspectJ (Kiczales et al.,
2001), an aspect-oriented extension to Java. The pointcuts used refer to method
call join points that correspond to SQL statement construction and execution.

6.6. Aspect-based dynamic analysis 109

Table 6.1: The SQL statements capturing techniques and their characteristics.

X

110 Chapter 6. Dynamic Analysis of SQL Queries

1 public aspect SQLTracing {
2
3 private MySQLLog log = new MySQLLog ();
4
5 pointcut queryExecution(String query):
6 call(ResultSet Statement.executeQuery(String)) && args(query);
7
8 before(String query): queryExecution(query){
9 String file = thisJoinPoint.getSourceLocation().getFileName ();

10 int LoC = thisJoinPoint.getSourceLocation().getLine ();
11 Statement statement = (Statement) thisJoinPoint.getTarget ();
12 log.traceQuery(file , LoC , statement.hashCode (), query);
13 }
14 }

Figure 6.8: Tracing SQL query executions

6.6.1 Capturing query executions

Figure 6.8 shows a simple tracing aspect that captures and records the execution of
an SQL query (without statement preparation). The declared pointcut (lines 5-6)
refers to the invocation of method executeQuery of class Statement. Before each
occurence of query execution, the advice (lines 8-13) writes a log entry indicating
(1) the class name, (2) the line of code, (3) the object id of the statement and (4)
the query string itself.

The way of tracing SQL query executions is a bit more complicated in the
presence of statement preparation. In order to reconstruct the full query string
to be traced, the aspect code must be able to maintain the link between three
successive events: statement preparation, value injection and query execution. This
can be done using the technique illustrated in Figure 6.9, and that we detail below.

Statement preparation At statement preparation time, an around advice (lines
9-18) captures the created statement as well as the incomplete query string passed
as an argument. This information is stored in a correspondence table, that maps
each statement to an instance of class PreparedStatementInfo. The latter con-
tains (1) the initial query string (2) the values corresponding to its placeholders
(these values are still undefined at preparation time, they will be initialized at value
injection time).

Value injection Another pointcut/advice couple (lines 20-29) is defined for log-
ging the injection of query input values, performed through the invocation of a
set method on an object of class PreparedStatement. The advice updates the
information corresponding to the statement in which the value is injected, so that
placeholder at position pos is now associated to input value val.

6.6. Aspect-based dynamic analysis 111

1 public aspect SQLTracingWithStatementPreparation{
2
3 private MySQLLog log = new MySQLLog ();
4 private MyStatementTable statementTable = new MyStatementTable ();
5
6 pointcut statementPreparation(String query) :
7 call (PreparedStatement Connection.prepareStatement(String))
8 && args(query);
9

10 Object around(String query) : statementPreparation(query){
11 String file= thisJoinPoint.getSourceLocation().getFileName ();
12 int LoC = thisJoinPoint.getSourceLocation().getLine ();
13 Object stat = proceed(query);
14 PreparedStatementInfo info = new PreparedStatementInfo(query);
15 statementTable.store(stat , info);
16 log.traceStatementPreparation(file , LoC , stat.hashCode (), query);
17 return stat;
18 }
19
20 pointcut valueInjection(PreparedStatement stat , int pos , Object val) :
21 call (void PreparedStatement.set*(int , *))

&& target(stat) && args(pos , val);
22
23 before(PreparedStatement stat , int pos , Object val) : valueInjection(stat ,

pos , val){
24 String file = thisJoinPoint.getSourceLocation().getFileName ();
25 int LoC = thisJoinPoint.getSourceLocation().getLine ();
26 String methodName = thisJoinPoint.getSignature ().getName ();
27 statementTable.lookup(stat).set(pos , val);
28 log.traceValueInjection(file , LoC , stat.hashCode (), methodName , pos , val);
29 }
30
31 pointcut queryExecution(PreparedStatement stat) :
32 call(ResultSet PreparedStatement.executeQuery ()) && target(stat);
33
34 before(PreparedStatement stat) : queryExecution(stat) {
35 String file= thisJoinPoint.getSourceLocation().getFileName ();
36 int LoC = thisJoinPoint.getSourceLocation().getLine ();
37 PreparedStatementInfo info = statementTable.lookup(stat);
38 String fullQuery = info.getFullQuery ();
39 log.traceQuery(file , LoC , stat.hashCode (), fullQuery);
40 }
41 }

Figure 6.9: Tracing SQL query executions in the presence of statement preparation

112 Chapter 6. Dynamic Analysis of SQL Queries

1 pointcut resultExtraction(ResultSet rSet) :
2 call (** ResultSet.get *(**)) && target(rSet);
3 Object around(ResultSet rSet) throws SQLException : resultExtraction(rSet){
4 String file= thisJoinPoint.getSourceLocation().getFileName ();
5 int LoC = thisJoinPoint.getSourceLocation().getLine ();
6 String methodName = thisJoinPoint.getSignature ().getName ();
7 Object colNameOrInd = thisJoinPoint.getArgs ()[0];
8 Object res = proceed(rSet);
9 Statement stat = rSet.getStatement ();

10 log.traceResult(file , LoC , stat.hashCode (), methodName , colNameOrInd , res);
11 return res;
12 }

Figure 6.10: Tracing SQL result extraction

Query execution The query execution advice (lines 34-40) has almost the same
behaviour as the one of Figure 6.8, except that the full query string first has to be
produced from the statement information stored in the correspondence table.

6.6.2 Capturing query results

Dynamic analysis can also be used to examine the results of SQL code execution.
The format of the output data is defined by the form of the SQL query and the
information of the logical schema. Result analysis often is the only technique to
trace the link between two SQL queries through shared host variables when the
intermediate host statements cannot be analysed statically.

Figure 6.10 gives an example of aspect code capturing SQL query results, what-
ever the statement class used (Statement or PreparedStatement). The pointcut
is associated to a get method on an instance of class ResultSet. The advice logs
(1) the source code location, (2) the statement identifier (3) the name of the get
method invoked, (4) the name or index of the corresponding column and (5) the
result value itself.

6.6.3 Detecting query imbrication

Tracing aspects such as those presented above may also be used to dynamically
detect potential dependencies between successive query executions. A possible
technique consists in analyzing the imbrication relationship between the SQL state-
ments. A query q2 is said to be imbricated if its execution is performed before the
result set of the preceding query q1 has been completely emptied. Such a situation
strongly suggests that a data dependency holds between the output values of q1

and the input values of q2.
Detecting imbricated queries can be performed using the following technique.

The aspect makes use of two status fields while tracing SQL executions. The
first field represents the query imbrication level, and the other one consists of a
FIFO pile of recorded queries. Each time a query is executed, the imbrication level
is incremented, and the query (together with its source code location) is put on

6.7. SQL trace processing 113

top of the pile. Conversely, each time a ResultSet object is emptied (i.e., when a
ResultSet.next() invocation returns false), the aspect decrements the imbrication
level, and removes the top element from the pile. Thus, if the imbrication level
is greater than zero at the time of executing a new query q, it means that q is
imbricated. We can then make the hypothesis that there exists a dependency
between the query being at the top of the current pile, and query q. Unfortunately,
this technique fails in case the program does not use the complete result set of
(some of) the queries it executes, which can be considered as unfrequent.

6.6.4 Analyzing input and output values

Another way to detect inter-dependent successive queries is to analyse the link
between their respective input and output values. This can be done easily in
the presence of statement preparation. The tracing aspect can store the values
extracted from a resultset in order to compare them to the values injected as
inputs of the following queries. The same analysis can be performed by comparing
input values of a query with input values of another subsequent query.

6.7 SQL trace processing

Once one or several SQL traces have been produced from program executions, they
need to be further analyzed and interpreted. The complexity of the process obvi-
ously depends on its objective. Applications of dynamic analysis of dynamic SQL
statements rely on lower-level, intermediate objectives that can be classified in two
major categories, namely identification of the varying components in constant vari-
ability patterns and the reconstruction of static statements equivalent to dynamic
patterns.

As discussed by Ngo and Tan (2008), identifying all the variants of static state-
ments that can be generated by the dynamic SQL statements of a program still
is an open problem. In the framework developed in this chapter, this means that,
in general, as long as we are not able to generate the set of instantiated static
statements that could be generated at a given program point, we cannot determine
the category of variability patterns a dynamic statement generation code section
belongs to. The following analysis considers trace examination and mining only.
They could be refined by taking into account the contribution of (partial) static
analysis. For instance, the category of variability can sometimes be determined by
static analysis (van den Brink et al., 2007; Ngo and Tan, 2008), as illustrated by
Query 3.

6.7.1 Constant/variable identification

The objective is to identify, in instantiated statements, the constants that may vary
depending on the execution and to establish the link between these constants and
the host variables. The trace of any SQL statement that is, or has been, submitted
for execution is an instantiated static statement.

114 Chapter 6. Dynamic Analysis of SQL Queries

Variable constants in constant variability pattern. If a significantly large
set of traces produced at the same program point vary on the constants only, they
can be considered as generated by a constant variability pattern. A problem arises
for slowly varying constants. This phenomenon concerns query parameters related
to spatio-temporal aspects of program execution. If a query includes a condition
on the current year or on the branch of the company, dynamic analysis of the trace
generated from a given workstation during a given month cannot identify such
constants as possibly varying. However, if the trace also includes variable binding
statements, as in Query 5, matching the placeholder or formal variable and the
binding couple allows variability to be explicitly identified.

Input and output host variables of a constant variability pattern. Once
the constants have been identified as varying, it can be necessary to identify their
data sources in the program code, that is, in most case, the host input variables.
When static analysis fails, as in Query 7, data analysis can detect constant equality
in the traces from different program points. If the first constant belongs to the
result of query q1, if the second constant is an input value of query q2 and if both
constants are equal throughout the traces, then the probability that both constants
come from the same variable is high. Studying input and output constants may
also reveal another kind of inter-query dependency, according to which the result
of a query q1 influences the fact that another query q2 is executed or not. This is
typically the case when a program first verifies an implicit integrity constraint (as
a foreign key) before inserting or updating an SQL row.

6.7.2 Static statements reconstruction

Several major applications of SQL analysis require the reconstruction of the static
statement(s) generated by a definite dynamic pattern. Therefore, techniques for
deriving these statements from the trace are essential when static analysis cannot
completely identify them from the source code.

• Instantiated statements in constant variability pattern. As long as the exe-
cuted statements are traced, all instantiated statements are included in the
trace. All is needed is to check that there is no other variability than constant
variability.

• Bound statements in constant variability pattern. Replacing constants by
their data sources yields the exact static equivalent of a dynamic SQL state-
ment. This process, that leads to the identification of the program constructs
that supply the constants, is based on both static analysis and trace process-
ing. It can be particularly complex when a constant is built by an expression
in situ (CustNum = ’C’ + :CODE) instead of merely extracted from a vari-
able (CustNum = :CNUM). Introducing an additional variable in the host code
will solve the problem.

6.7. SQL trace processing 115

12 query = "select Address from CUSTOMER where Num = ?";
13 SQLstmt = connection.prepareStatement(query);
14 SQLstmt.setInt(1, vCNUM);
15 rset = SQLstmt.executeQuery ();
16 rset.next();
17 vADDRESS = rset.getString (1);

File Line# Statement# Details

AClass.java; 13; 123456; select Address from CUSTOMER where Num = ?
AClass.java; 14; 123456; setString(1, ’C400 ’)
AClass.java; 15; 123456; executeQuery ()
AClass.java; 17; 123456; getString (1) = ’10, Downing Street , London ’

Figure 6.11: A JDBC code fragment together with a corresponding execution trace

• Unbound statements in constant variability pattern. Though less useful in
program understanding, it can be used to standardize programming style.
Aligning all dynamic patterns of a program on Query 5 or Query 6 styles is
an example. If the unbound statements have not been traced, then they can
easily be derived from their bound versions.

• Family of constant variability patterns. When statement parts other than the
constants are varying, then the dynamic pattern generates a family of static
statements instead of a single statement. Considering a definite execution
(or preparation) program point, the syntactic analysis of its instantiated (or
bound/unbound) static statement produces a set of constant variability pat-
terns. If each pattern is induced from a significantly large subset of traces,
then each pattern can be considered, with a high probability, as a pertinent
static statement. As already mentioned, the completeness problem of the set
of constant variability patterns is still unsolved.

Illustration

SQLJ was designed to compensate for the poor readability of JDBC program pat-
terns. For example, the dynamic code section of Query 5 could be rewritten as the
following static SQLJ statement:

#sql{Select OrdNum into :Num from ORDERS where Sender = :CNum}

Statement preparation, input variable binding, execution and result extraction
statements are merged into a single statement that explicitly shows the query
architecture as well as the input and output host variables. The resulting program
is much more readable and far easier to maintain.

Figure 6.11 shows a JDBC code fragment together with a corresponding exe-
cution trace obtained with a tracing aspect. Each entry of the trace contains the
object id of the Statement involved in the query execution (such an id is obtained
via SQLstmt.hashCode()). This allows the correct recovery of all the steps in-
volved in a given query execution at a specific program point. By combining and

116 Chapter 6. Dynamic Analysis of SQL Queries

exploiting the information provided by each inter-related event, both the query
instance and, as a second step, the static query can be reconstructed. We illustrate
this process by analyzing the trace of Figure 6.11. We first notice that a query was
executed at line 15. Based on the statement number, we can go backward in the
trace to understand the way the executed query was constructed. The statement
preparation trace entry provides us with a query string including an input value
placeholder, while the value injection entry reveals the source code location where
this placeholder was replaced with an actual input value using method setInt. At
this point, we are able to produce the query instance which was actually executed
at line 15:

select CustAddress from CUSTOMER where Num = ’C400’

Concerning the static form of the query, we can derive from the trace that
method executeQuery() of line 15 actually executes an SQL statement of the
form select CustAddress from CUSTOMER where Num = v, where v is the vari-
able/constant used as second argument of method setInt of line 14. This line
shows that v actually is host variable (vCNUM). Similarly, the into clause of the
static query can be obtained by retrieving the variable to which the result of method
getString(1) of line 17 is assigned (vADDRESS). We now obtain the following com-
plete static SQLJ query:

#sql {select Address into :vADDRESS from CUSTOMER where Num = :vCNUM}

6.8 Application to database reverse engineering

As illustrated in the introduction, analyzing SQL queries can help eliciting implicit
database schema constructs and constraints among which undeclared foreign keys,
identifiers and functional dependencies (Petit et al., 1995; Lopes et al., 1999; Tan
et al., 2002; Tan and Zhao, 2003). In this section, we will illustrate the use of SQL
execution trace analysis as a basis for formulating hypotheses on the existence of an
undeclared foreign key. These hypotheses will still need to be validated afterwards
(e.g., via data analysis or user/programmer interviews).

We can distinguish two different approaches to detecting implicit referential
constraints between columns of distinct tables. We can either observe the way
such referential constraints are used or the way they are managed.

• Referential constraint usage consists in exploiting the referential constraint.
For instance, within the same execution, an output value o1 of an SQL state-
ment s1 querying table T1 is used as an input value of another SQL statement
s2 accessing another table T2. A more direct usage of a foreign key consists
in a join of T1 and T2 within a single query. In both cases, this could suggest
the existence of an implicit foreign key between tables T1 and T2.

• Referential constraint management aims at verifying that the referential con-
straint keeps being respected when updating the database. For instance, be-
fore modifying the content of a table T2 (by an insert or update statement
s2), the program executes a verification query q1 on table T1. According to

6.8. Application to database reverse engineering 117

the result of q1, s2 is executed or not. When both q1 and s2 are executed,
they contain at least one common input value. Similarly, when deleting a
row of a table T1 using a delete statement d2, the program also deletes a
possibly empty set of rows of another table T2 via a another delete statement
d1 (procedural delete cascade).

In summary, we can identify three main heuristics for implicit foreign key con-
straints detection from SQL execution traces, namely join, output-input dependency
and input-input dependency.

6.8.1 Joins

As already suggested above, SQL joins often rely on the matching of a foreign key
and a primary key. The join of Query 1 corresponds to an standard join, where
several tables occur in the from clause of the query. It combines the rows of those
tables, typically based on a given join condition. The SQL language also provides
the programmer with explicit join operators for building the join of two or more
tables.

There exist two main categories of SQL joins, namely inner joins and outer
joins.

Inner joins An inner join represents the default join type. The outcome of an
inner join can be obtained by first taking the cartesian product of all rows of the
tables, and then selecting all the resulting rows which satisfy the join condition.
We can distinguish several sub-categories of inner joins, including:

• Cross-join, where the join condition is absent (or always evaluated to true).
For instance, one can write:

select *

from CUSTOMER cross join ORDERS

where ...

which is equivalent to the following implicit join:

select *

from CUSTOMER, ORDERS

where ...

• Equi-join, where the join condition is based on the equality of columns from
the joined tables, as in the following query:

select *

from CUSTOMER C join ORDERS O

on (C.ncus = O.ncus)

where ...

118 Chapter 6. Dynamic Analysis of SQL Queries

The above query can also be expressed as follows:

select *

from CUSTOMER C, ORDERS O

where C.ncus = O.ncus

and ...

• Natural join, which is a special kind of equi-join where the join condition
is implicit, i.e., relying on the comparison of all the columns that have the
same column name in the joined tables. An example of a natural join is given
below:

select *

from CUSTOMER natural join ORDERS

where ...

Outer joins An outer join, as opposed to an inner join, does not require each
row in the joined tables to have a matching row. The joined table retains each
row, even if no other matching row exists. Outer joins subdivide further into left
outer joins, right outer joins, and full outer joins, depending on which table(s) one
retains the orphan rows from. The left (resp. right) outer joins retain the orphan
rows form the table occuring at the left (resp. right) of the join operator. The full
outer join preserves the orphan rows of all the joined tables in the result.

In the context of implicit foreign key discovery, equi-joins are of particular
interest. Indeed, join conditions expressing the equality between columns of several
tables may be seen as an indication of a referential constraint usage.

6.8.2 Output-input dependency

Notations Let q be a SQL query. Let q.in be the set of input values of q, and
q.out be the set of output values of q. Let q.seq be the sequence number of query
q in the trace.

Definition 1 A query q2 is output-input dependent on another query q1 iff

• q2.in ∩ q.out 6= ∅

• q2.seq > q1.seq.

In the case of a procedural join between the source and target tables of an
implicit foreign key, the value of the foreign key column(s) may be used to retrieve
the target row using a subsequent query, as shown in Figure 6.12. Conversely, the
value of the identifier of a given target row can be used to extract all the rows
referencing it.

6.8. Application to database reverse engineering 119

select Sender from ORDERS where Date = ’2008-20-06’

getString(1) = C400

select Name, Address from CUSTOMERS where Num = ’ C400’

getString(1) = B314

select Name, Address from CUSTOMERS where Num = ’ B314’

getString(1) = C891

select Name, Address from CUSTOMERS where Num = ’ C891’

Figure 6.12: An execution trace with output-input dependencies that may reveal
the existence of the implicit foreign key of Figure 6.1

select count(*) from CUSTOMER where Num = ’C400’

getInt(1) = 1

insert into ORDERS(…,…,…, Sender) values (…,…,…, ’C400’)

select count(*) from CUSTOMER where Num = ’C152’

getInt(1) = 0

select count(*) from CUSTOMER where Num = ’C251’

getInt(1) = 1

insert into ORDERS(…,…,…, Sender) values (…,…,…, ’C251’)

Figure 6.13: An execution trace with input-input dependencies that may reveal
the existence of the implicit foreign of Figure 6.1

120 Chapter 6. Dynamic Analysis of SQL Queries

6.8.3 Input-input dependency

Definition 2 A query q1 is input-input dependent on another query q2 iff q1.in∩
q2.in 6= ∅.

As an example, let us consider the execution trace given in Figure 6.13. This
trace strongly suggests the existence of an implicit foreign key between column
Sender of table ORDERS and column Num of table CUSTOMER. Indeed, each row in-
sertion on table ORDERS is preceded by the execution of a validation query that (1)
counts the number of rows of table CUSTOMER having c as value of column Num –
where c corresponds to the value of column Sender of the inserted row of ORDERS
– and (2) returns 1 as a result. In other words, it seems that the program checks
that the provided value of column Sender does correspond to the identifier (Num)
of an existing customer.

6.9 Initial experiment

An initial experiment was conducted based on an e-learning application, called
WebCampus3, that is used at the University of Namur.

6.9.1 The application

WebCampus is an instantiation of Claroline4, an open-source Learning Manage-
ment System (LMS) allowing teachers to offer online courses and to manage learn-
ing and collaborative activities on the web. The platform is written in PHP and
manipulates a MySQL database. WebCampus consists of more than a thousand
source code files, amounting to 460 thousands lines of code.

The database manipulated by WebCampus consists of two distinct database
schemas:

• the main database schema, made up of 33 tables and 198 columns, represents
the data on available online courses, course users, university departments,
etc. ;

• the course database schema, made up of around 50 tables per course.

The MySQL DDL code of the database does not explicitly declare any foreign key.
Indeed, the database makes use of the MyISAM storage engine, which does not
support foreign key management. However, the Claroline developers community is
aware of all the implicit referential constraints.

3see http://webcampus.fundp.ac.be
4see http://www.claroline.net

http://webcampus.fundp.ac.be
http://www.claroline.net

6.9. Initial experiment 121

6.9.2 Goal of the experiment

Our experiment particularly focused on the main database schema of WebCam-
pus, which hides 35 undeclared foreign key constraints. The general goal of the
experiment was to evaluate the usefullness of SQL execution traces as a basis for
the detection of implicit foreign keys. More precisely, it aimed to check whether it
was possible to discover indications of the 35 foreign keys using dynamic analysis
of SQL queries.

6.9.3 Methodology

The experiment involved the two following steps:

Step 1. Collecting SQL execution traces corresponding to typical interaction
scenarios within WebCampus;

Step 2. Analyzing those traces in relation to the list of implicit foreign keys.

6.9.3.1 Trace collection

The SQL traces collected correspond to the following 14 execution scenarios, which
translate typical actions that can be performed on top of the WebCampus platform:

• an administrator creates a course (create_course)

• an administrator deletes a course (delete_course)

• an administrator tries to delete a referenced department (delete_dpt_attempt)

• a course manager adds another manager to a course (add_course_manager)

• a course manager adds a user to an course (add_course_user)

• a course manager unregisters a user from a course (delete_course_user)

• an administrator creates a user account (register_user)

• a user registers to WebCampus (user_register_to_webcampus)

• a user registers to a course (user_register_to_course)

• a user unregisters from a course (user_unregister_from_course)

• an administrator installs a tool to the platform (install_tool)

• an administrator uninstalls a tool from the platform (uninstall_tool)

• an administrator installs an applet (install_applet)

• an administrator uninstalls an applet (uninstall_applet)

122 Chapter 6. Dynamic Analysis of SQL Queries

CREATE TABLE sql_trace(
id int (10) unsigned NOT NULL ,
statement text NOT NULL ,
script varchar (128) default NULL ,
scenario varchar (45) NOT NULL ,
PRIMARY KEY USING BTREE (id, scenario));

CREATE TABLE sql_trace_results(
id int (10) unsigned NOT NULL ,
id_statement int (10) unsigned NOT NULL ,
row int (10) unsigned NOT NULL ,
column varchar (64) NOT NULL ,
value text NOT NULL ,
call_type varchar (45) NOT NULL ,
scenario varchar (45) NOT NULL ,
PRIMARY KEY USING BTREE (id_statement , scenario , row , column));

Figure 6.14: Definition of two tracing tables used to store executed SQL queries
and their results.

Trace collection was realized through source code instrumentation. The output of
the tracing process was stored in a MySQL database composed of two tables:

• table sql_trace, each row of which corresponds to an executed SQL query;

• table sql_trace_results, that contains information on the results of those
queries.

Figure 6.14 gives the declaration of those two tables in MySQL.
Table 6.2 provides size metrics about the trace obtained by indicating, for each

execution scenario, the number and the nature of the corresponding queries and
query results.

6.9.3.2 Trace analysis

The trace analysis process started from the schema of the main WebCampus
database, augmented with the 35 implicit foreign keys. This schema served as
a basis for automatically deriving SQL queries that analyze the contents of the
tracing tables. The goal of this analysis is to find indications of the undeclared
foreign keys in the execution traces.

Trace reduction and pre-processing The full SQL trace obtained obviously
contained queries that are useless for our experiment. This holds for (1) the queries
accessing the course database and (2) the queries that do not access the tables
involved in an undeclared foreign key. Therefore, the first step of the analysis
consisted in subdividing the trace in smaller traces, based on the tables accessed
by the queries. For each implicit foreign key from a table t1 to a table t2 , two
intermediate SQL views were defined:

• view sql_trace_t1_t2, that contains only the queries accessing t1 and/or t2;

6.9. Initial experiment 123

Execution scenario T
o
t
a
l
#

o
f
q
u
e
r
ie

s

#
o
f
q
u
e
r
ie

s
o
n

m
a
in

D
B

#
o
f
s
e
l
e
c
t

o
n

m
a
in

D
B

#
o
f
i
n
s
e
r
t

o
n

m
a
in

D
B

#
o
f
d
e
l
e
t
e

o
n

m
a
in

D
B

#
o
f
u
p
d
a
t
e

o
n

m
a
in

D
B

T
o
t
a
l
#

o
f
r
e
s
u
lt
s

#
o
f
r
e
s
u
lt
s

fr
o
m

m
a
in

D
B

register_user 27 27 24 3 0 0 163 163
add_course_manager 364 194 190 4 0 0 2 643 2 391
add_course_user 289 155 151 4 0 0 2 112 1 908
create_course 70 29 20 9 0 0 319 299
delete_course 329 132 123 1 7 0 1 865 1 700
delete_course_user 159 84 83 0 1 0 1 110 996
delete_dpt_attempt 37 37 37 0 0 0 423 419
install_applet 92 88 82 4 0 2 729 721
install_tool 4 894 2 169 2 039 126 4 0 26 002 24 180
uninstall_applet 82 78 68 0 9 1 581 573
uninstall_tool 3 713 1 896 1 888 0 8 0 23 333 22 419
user_register_to_course 64 64 63 1 0 0 721 708
user_register_to_webcampus 35 32 30 2 0 0 188 184
user_unregister_from_course 24 19 17 1 1 0 169 155

Total 10 179 5 004 4 815 155 30 3 60 358 56 816

Table 6.2: Some metrics about the SQL trace obtained, classified by execution
scenario.

124 Chapter 6. Dynamic Analysis of SQL Queries

CREATE VIEW sql_trace_t1_t2 as
SELECT * FROM sql_trace
WHERE statement like ’%t1%’ or

statement like ’%t2%’";

CREATE VIEW sql_trace_results_t1_t2 as
SELECT * FROM sql_trace_results
WHERE (id_statement , scenario) in (SELECT id, scenario FROM sql_trace_t1_t2);

Figure 6.15: Definition of intermediate views for each implicit foreign key (pseudo-
code).

• view sql_trace_results_t1_t2, that contains the results of those queries.

Figure 6.15 gives the pseudo-code of the definition of those views, where t1 and t2

are, respectively, the source and target tables of an undeclared foreign key.
From those views, several intermediate tables were produced5, including:

• table augmented_sql_trace_t1_t2, that stores the result of the join between
sql_trace_t1_t2 and sql_trace_results_t1_t2;

• table select_statement_t1_t2_t1, that contains the select queries on t1
having an equality condition on the implicit foreign key column fk referencing
t2;

• insert_statement_t1_t2_t1, that contains the insert queries on t1, assigning
a value to the implicit foreign key column fk referencing t2;

• table delete_statement_t1_t2_t1, that contains the delete queries on t1
having an equality condition on the implicit foreign key column fk referencing
t2.

Figure 6.16 gives the definition of the structure of those intermediate tables, as
well as data inserted into them.

Trace querying The trace querying step aimed at extracting implicit foreign
key indications from the intermediate views and tables defined so far. This trace
analysis process made use of SQL queries automatically generated from the main
database schema of WebCampus, augmented with the 35 implicit foreign keys. We
mainly considered two kinds of foreign key indications, namely joins and output-
input dependencies.

The pseudo-query of Figure 6.17 allows to count the number of SQL joins
between tables t1 and t2 occuring in the SQL trace where the join condition is
based on the equality between the implicit foreign key column t1.fk and the target
column t2.id. Figure 6.18 gives a pseudo-query allowing to count the number of
output-input dependencies between a query q1 on table t2 and a subsequent select

5mainly for performance reasons

6.9. Initial experiment 125

CREATE TABLE augmented_sql_trace_t1_t2(
id int (10) unsigned NOT NULL ,
statement text NOT NULL ,
script varchar (128),
scenario varchar (45) NOT NULL ,
row int (10) unsigned NOT NULL ,
column varchar (64) NOT NULL ,
value text NOT NULL ,
call_type varchar (45) NOT NULL ,
PRIMARY KEY USING BTREE (id, scenario , row , column));

INSERT INTO augmented_sql_trace_t1_t2(
SELECT t.id, t.statement , t.script , t.scenario ,

r.row , r.column , r.value , r.call_type
FROM sql_trace_t1_t2 t, sql_trace_results_t1_t2 r
WHERE t.id = r.id_statement and

t.scenario = r.scenario);

CREATE TABLE select_statement_t1_t2_t1(
id int (10) unsigned NOT NULL ,
statement text NOT NULL ,
script varchar (128) default NULL ,
scenario varchar (45) NOT NULL ,
PRIMARY KEY USING BTREE (id, scenario));

INSERT INTO select_statement_t1_t2_t1(
SELECT id, statement , script , scenario
FROM sql_trace_t1_t2
WHERE statement like ’SELECT%FROM%t1%’ and

statement regexp ’(fk)([]*)(=) ’);

CREATE TABLE insert_statement_t1_t2_t1(
id int (10) unsigned NOT NULL ,
statement text NOT NULL ,
script varchar (128) default NULL ,
scenario varchar (45) NOT NULL ,
PRIMARY KEY USING BTREE (id, scenario));

INSERT INTO select_statement_t1_t2_t1(
SELECT id, statement , script , scenario
FROM sql_trace_t1_t2
WHERE statement like ’INSERT%INTO%t1%’ and

statement like ’%fk%’);

CREATE TABLE delete_statement_t1_t2_t1(
id int (10) unsigned NOT NULL ,
statement text NOT NULL ,
script varchar (128) default NULL ,
scenario varchar (45) NOT NULL ,
PRIMARY KEY USING BTREE (id, scenario));

INSERT INTO delete_statement_t1_t2_t1(
SELECT id, statement , script , scenario
FROM sql_trace_t1_t2
WHERE statement like ’DELETE%FROM%t1%’ and

statement regexp ’(fk)([]*)(=) ’);

Figure 6.16: Definition of intermediate tables for each implicit foreign key t1.fk →
t2.id (pseudo-code).

126 Chapter 6. Dynamic Analysis of SQL Queries

SELECT count(statement)
FROM sql_trace_t1_t2
WHERE (statement like ’%t1%t2%’ or

statement like ’%t2%t1%’) and
(statement regexp ’([^]*) (\.)(id)([]*) ([=])([]*)([^]*) (\.)(fk)’ or
statement regexp ’([^]*) (\.)(fk)([]*) ([=])([]*)([^]*) (\.)(id)’)

Figure 6.17: Counting foreign-key based joins between tables t1 and t2, that occur
in the SQL trace (pseudo-code).

SELECT count(distinct(concat(concat(q1.id, ’-’), q2.id)))
FROM augmented_sql_trace_t1_t2 q1, select_statement_t1_t2_t1 q2
WHERE q2.id > q1.id and

q2.scenario = q1.scenario and
q1.column = ’id’ and
q1.statement like ’%t2%’ and
q2.statement regexp concat(’(fk)([]*)(=)([]*) ([\ ’]*) ’,q1.value)

Figure 6.18: Counting foreign-key based output-input dependencies between a
query q1 on t2 and a subsequent select query q2 on t1 (pseudo-code).

query q2 on table t1, where an output value of q1 corresponding to t2.id is used as
input value of q2 for t1.fk.

6.9.4 Results

Table 6.3 indicates, for each implicit foreign key fk from table t1 to table t2:

(1) the number of queries referencing t1;

(2) the number of queries referencing t2;

(3) the number of distinct scenarios where both t1 and t2 are accessed.

From (3), we can derive that only 27 implicit foreign keys (those in light grey) are
potentially detectable in the SQL trace we obtained. Indeed, the minimal require-
ment for detecting an undeclared foreign key t1 → t2 in the SQL trace is that both
t1 and t2 must be involved in at least one execution scenario considered. If this is
the case, then the SQL trace obtained could contain indications of the foreign key.

Table 6.4 summarizes the indications of implicit foreign key that have been
found in the SQL trace by our analyzer. For each undeclared foreign key (t1 → t2),
we provide:

(1) the number of SQL joins between t1 and t2;

(2) the number of output-input dependencies between a query q1 accessing t2
and a subsequent query q2 accessing t1, further subdivided according to the
nature of q2.

6.9. Initial experiment 127

Implicit foreign key (t1 → t2) # q(t1) # q(t2) # scenarios(t1 & t2)

class → class 0 0 0
cours → right_profile 1927 51 12
cours_user → user 55 41 9
cours_user → right_profile 55 51 9
desktop_portlet_data → user 0 41 0
FUNDP_user_ADDONS → user 11 41 3
FUNDP_user_ADDONS → FUNDP_program 11 5 3
im_message_status → user 4 41 3
im_message_status → im_message 4 3 3
im_recipient → user 4 41 3
im_recipient → im_message 4 3 3
log → user 3 41 3
module_contexts → module 38 496 14
notify → user 9 41 6
notify → course_tool 9 452 2
rel_class_user → user 0 41 0
rel_class_user → class 0 0 0
rel_course_class → class 1 0 0
right_rel_profile_action → right_profile 161 51 7
right_rel_profile_action → right_action 161 178 7
sso → user 0 41 0
tracking_event → user 3 41 2
user_property → user 1 41 1
cours → faculte 1927 1840 12
cours_user → cours 55 1927 9
dock → module 244 496 14
faculte → faculte 1840 1840 12
FUNDP_course_program → cours 0 1927 0
FUNDP_cours_ADDONS → cours 1838 1927 9
im_message → cours 3 1927 3
module_info → module 17 496 4
notify → cours 9 1927 6
property_definition → user_property 0 1 0
rel_course_class → cours 1 1927 1
right_rel_profile_action → cours 161 1927 6

Conventions : q(t) = queries accessing table t;
scenarios(t1 & t2) = execution scenarios where both t1 and t2 are accessed.

Table 6.3: Number of queries and number of scenarios accessing the tables involved
in undeclared foreign keys.

From (1) and (2), we notice that 23 implicit foreign keys (those in light grey) proved
to be detectable in the trace we obtained, which represents:

• about 65% of the total number of implicit foreign keys in the main database;

• about 85% of the foreign keys identified as potentially detectable in the trace
we obtained.

6.9.5 Discussion

The experiment presented above clearly confirms that SQL execution traces may
contain usefull information about implicit schema constraints, in particular about
undeclared foreign keys. In our results, we simply observe that if there is an
implicit foreign key, then the trace probably contains indications of this foreign key

128 Chapter 6. Dynamic Analysis of SQL Queries

Implicit foreign key (t1 → t2) t
o
t
a
l
#

jo
in

s
b
e
tw

e
e
n

t 1
a
n
d

t 2

#
o
u
t
p
u
t
-i
n
p
u
t

d
e
p
.

q
(
t 2

)
→

q
(
t 1

)

#
o
u
t
p
u
t
-i
n
p
u
t

d
e
p
.
s
e
l
e
c
t
(
t 2

)
→

s
e
l
e
c
t
(
t 1

)

#
o
u
t
p
u
t
-i
n
p
u
t

d
e
p
.
s
e
l
e
c
t
(
t 2

)
→

i
n
s
e
r
t
(
t 1

)

#
o
u
t
p
u
t
-i
n
p
u
t

d
e
p
.
s
e
l
e
c
t
(
t 2

)
→

d
e
l
e
t
e
(
t 1

)

class → class 0 0 0 0 0
cours → right_profile 0 1 0 1 0
cours_user → user 7 50 44 4 2
cours_user → right_profile 0 9 0 9 0
desktop_portlet_data → user 0 0 0 0 0
FUNDP_user_ADDONS → user 0 15 15 0 0
FUNDP_user_ADDONS → FUNDP_program 0 0 0 0 0
im_message_status → user 0 2 0 2 0
im_message_status → im_message 0 0 0 0 0
im_recipient → user 0 2 0 2 0
im_recipient → im_message 0 0 0 0 0
log → user 0 1 0 1 0
module_contexts → module 34 11 0 6 5
notify → user 0 11 11 0 0
notify → course_tool 0 0 0 0 0
rel_class_user → user 0 0 0 0 0
rel_class_user → class 0 0 0 0 0
rel_course_class → class 0 0 0 0 0
right_rel_profile_action → right_profile 0 711 91 600 20
right_rel_profile_action → right_action 32 810 0 810 0
sso → user 0 0 0 0 0
tracking_event → user 0 2 0 2 0
user_property → user 1 0 0 0 0
cours → faculte 1 832 87 86 1 0
cours_user → cours 9 47 37 7 3
dock → module 58 297 291 3 3
faculte → faculte 3 0 0 0 0
FUNDP_course_program → cours 0 0 0 0 0
FUNDP_cours_ADDONS → cours 0 3 842 3 839 0 3
im_message → cours 0 5 0 5 0
module_info → module 13 11 0 6 5
notify → cours 0 3 0 0 3
property_definition → user_property 0 0 0 0 0
rel_course_class → cours 0 3 0 0 3
right_rel_profile_action → cours 0 22 19 0 3

Conventions : q(t) = queries accessing table t;
select(t) = select queries on table t;
insert(t) = insert queries on table t;
delete(t) = delete queries on table t.

Table 6.4: Indications of the implicit foreign keys found in the SQL execution trace.

6.10. Conclusions and perspectives 129

if both involved tables are accessed. However, the experiment does not allow to
claim that if the trace contains indications of an implicit foreign key constraint,
then this constraint probably holds. In other words, we are not able (yet) to draw
conclusions regarding the suitability of the different heuristics (joins, output-input
dependencies, input-input dependencies) as a means to discover implicit foreign
keys in SQL execution traces. Other experiments are still needed in order to
evaluate the amount of false-negatives and false-positives induced by the use of
those heuristics for implicit foreign key detection.

Our SQL trace analysis tool aims to check whether the SQL trace contains
indications of existing implicit foreign keys. As an interesting side effet, the same
tool may also be used for confirming candidate implicit foreign keys. For instance,
we could discover such candidate foreign keys through an initial schema analysis
process, based on the comparison of column names and types. However, our trace
analysis tool does not allow (yet) to detect implicit foreign keys from scratch. To
this aim, the tool should consider, for instance, all the SQL joins rather than only
some of them.

Another interesting application of SQL trace analysis concerns the identification
of unsafe data access paths (Cleve et al., 2008b), i.e., program fragments where
an implicit constraint is not correcly managed. For instance, based on the list of
implicit foreign keys, one could detect in the SQL trace that an insert or an update

statement is performed without prior verification of the referential constraints. In
this case, the analysis would be based on the absence of output-input or input-input
dependency.

6.10 Conclusions and perspectives

SQL statements appear to be a particularly rich source of information in program
and data structure understanding and therefore their analysis must improve such
essential processes as program and database maintenance, evolution and reengi-
neering. Though some encouraging results have been obtained in the 90’s, par-
ticularly to support database reverse engineering, systematically exploring and
mastering this information source still is a largely unexplored research and techni-
cal domain. The goal of this chapter is, quite modestly, to mark this engineering
domain out by identifying and discussing its basic concepts, its specific techniques
and some of its representative applications. It particularly provided an in-depth
exploration of the use of dynamic program analysis techniques for reverse engi-
neering relational databases. Those techniques particularly target the analysis of
data-intensive systems in the presence of automatically generated SQL queries.

We first identified, illustrated and compared a set of techniques for capturing
the SQL queries executed at runtime. Then, we elaborated on the analysis of
SQL traces in the context of database reverse engineering. We identified possi-
ble heuristics for the detection of implicit foreign key from SQL execution traces.
Those heuristics combine both intra-query dependencies (SQL joins) and inter-
query dependencies (input-input and output-input dependencies). An initial ex-

130 Chapter 6. Dynamic Analysis of SQL Queries

periment, based on a real-life application, allowed us to establish the analysis of
SQL execution traces as a very promising technique for relational database reverse
engineering.

While this chapter basically is exploratory, we have the feeling that the frame-
work we have designed describes adequately this software analysis domain. How-
ever, much remains to be done to validate, evaluate and instrument the presented
techniques. Three main paths of further research can be identified and will be ex-
plored in the future: (1) applying and evaluating our dynamic analysis techniques
to other real-world, data-intensive applications; (2) exploring the combination of
schema analysis, static analysis and dynamic analysis techniques and (3) developing
supporting tools and integrating them in CASE environments.

Roadmap

This chapter concludes the thesis part dedicated to the use of program analysis
techniques in support to the initial step of database evolution, namely database
reverse engineering. In Part IV, we assume that a legacy database has been mi-
grated towards a modern platform, and we show how to automatically adapt the
legacy programs accordingly. Part V is dedicated to another particular database
evolution scenario, namely database schema change.

Part IV

Adapting Programs to
Database Platform

Migration

131

Chapter 7

Migrating Standard Files to a
Relational Database

The use of COBOL cripples the mind; its teaching should,
therefore, be reguarded as a criminal offense1.

– E.W. Dijkstra

In this chapter, we focus on a particular case of database evolution scenario, namely
the migration of COBOL applications manipulating standard files towards a rela-
tional database platform. We assume that (some of) the files have been migrated
to a relational database and we describe how the COBOL programs can be trans-
formed accordingly, so that they access the new relational database instead of the
migrated files.

The chapter is organized as follows. Section 7.1 first provides a brief introduc-
tion to COBOL file management. Section 7.2 discusses the application of a Wrap-
per program conversion strategy (P1) in the context of the migration of COBOL
files towards a relational platform. Section 7.3 briefly elaborates on the State-
ment Rewriting program conversion strategy (P2) in the same context. Systematic
translation rules allowing to simulate COBOL file handling primitives on top of a
relational database are specified and illustrated in Section 7.4. Those rules are suit-
able whatever the chosen program conversion strategy. Section 7.6 presents a rapid
overview of the tools we have developped in support to both program conversion
strategies. Concluding remarks are given in Section 7.8.

7.1 COBOL file management

7.1.1 File

A COBOL file is an organized collection of related data (Johnson, 1986). A COBOL
program can read and write files. Each file is defined in two distinct parts of the

1The author obviously disagrees...

133

134 Chapter 7. Migrating Standard Files to a Relational Database

SELECT ORDERS ASSIGN TO "c:\ORDERS.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS ORD-CODE
ALTERNATE RECORD KEY IS ORD-CUSTOMER

WITH DUPLICATES
ALTERNATE RECORD KEY IS ORD-DATE

WITH DUPLICATES.

Figure 7.1: Example of a SELECT clause

FD ORDERS.
01 ORD.
02 ORD-CODE PIC 9(10).
02 ORD-DATE PIC X(8).
02 ORD-CUSTOMER PIC X(12).
02 ORD-DETAIL PIC X(200).

Figure 7.2: Example of FD paragraph

program source code (Henrard, 2003):

• The FILE-CONTROL paragraphs of the INPUT-OUTPUT section of the ENVIRONMENT
division declare the files used, their organization, their access mode, their
access keys and their identifiers. Figure 7.1 shows an example of such a
paragraph, also called ”SELECT clause”.

• The FD paragraphs of the FILE section of the DATA division declare the record
types, their field decomposition and the type and the length of the fields.
Figure 7.2 shows an example of FD paragraph.

7.1.2 Record type

A COBOL file is made up of records. A record is a collection of related data items
treated as a single unit. The record type associated with a file consists of the set of
indivisible data, read or written during the access to that file. The data items that
make up a record type are called fields. In the case of file ORDERS in Figure 7.2,
the record type is ORD. Actually, the record type of a COBOL file f corresponds to
the data item declared at level 01 in the FD paragraph of f .

7.1.3 File organization

A COBOL file can be organized according to three different ways (Brown, 1998):

• SEQUENTIAL: the records are sequenced and are stored and accessed in con-
secutive order according to this sequence.

• RELATIVE: each record is identified with its order number in the file.

• INDEXED: the records may be accessed based on a given key value.

7.1. COBOL file management 135

7.1.4 File access mode

The ACCESS MODE of a COBOL file is one of the following:

• SEQUENTIAL (default), according to which the records are read or written
sequentially;

• RANDOM, that requires the programmer to supply a key to read or write a
record;

• DYNAMIC, which allows the programmer to read the file with both SEQUENTIAL

and RANDOM accesses, while record writing is performed on a RANDOM basis.

7.1.5 Access keys

For each SEQUENTIAL or INDEXED file, the programmer declares a RECORD KEY, that
is one of the fields allowing to uniquely identify each record. In our example of
Figures 7.1 and 7.2, field ORD-CODE is declared as the RECORD KEY of file ORDERS.

For each RELATIVE file having a RANDOM or a DYNAMIC access mode, the pro-
grammer declares a RELATIVE KEY. The RELATIVE KEY is a data item apart from
the record. Given the current record, the value of its number order in the file is
stored in the RELATIVE KEY (Clarinval, 1981).

The primary key of a file is the data item used to identify each record in the
file. This identifier corresponds to:

• The RECORD KEY, for a sequential or an indexed file.

• The RELATIVE KEY, for a relative file.

Other data items used as keys are called ALTERNATE RECORD KEYs. These keys
provide alternate paths for retrieval of records and are not required to be unique.
An ALTERNATE RECORD KEY clause can indeed be used WITH DUPLICATES, as shown
in Figure 7.1, for record key ORD-CUSTOMER and ORD-DATE.

7.1.6 DML statements

The main COBOL file handling primitives are the following:

• The OPEN statement, that allows to open a file in reading and/or writing
mode;

• The START statement, that positions the reading sequence on a given record;

• The READ statement, that allows to access the records sequentially or ran-
domly;

• The WRITE statement, that inserts new records in a file;

• The REWRITE statement, used to update records of a file;

136 Chapter 7. Migrating Standard Files to a Relational Database

• The DELETE statement, allowing to discard records from a file;

• The CLOSE statement, that closes the files and makes them available for pro-
cessing by another application.

A precise definition of the syntax and effect of each file handling primitive is pro-
vided in Appendix A.

7.2 Wrapper-based program conversion

As seen in Chapter 4, the wrapper-based program conversion strategy (P1) assumes
that a wrapper encapsulates the new database obtained through the database con-
version step. The P1 conversion strategy applied to COBOL programs mainly
consists in replacing the COBOL DML statements (accessing the files that have
been migrated) with a corresponding wrapper invocation. In addition, other parts
of the programs must be reorganized like, for instance, the declaration of the mi-
grated files and record types.

A COBOL program is composed of four main divisions:

• The IDENTIFICATION division, containing comments identifying the program,
its author, and the date it was written.

• The ENVIRONMENT division, that gives a name to the source and object com-
puter and describes each file used by the program.

• The DATA division, that declares all the data items manipulated by the pro-
grams (record types or variables).

• The PROCEDURE division, which regroups the executable program statements.

The wrapper-based program conversion strategy affects the last three divisions.
Below, we describe more precisely what these divisions contain, and how they can
be modified according to wrapper-based strategy.

7.2.1 Environment division

The ENVIRONMENT division, an example of which is given in Figure 7.3, consists of
two optional sections: the CONFIGURATION section and the INPUT-OUTPUT section.
The latter regroups the file definitions. Each file corresponds to a SELECT clause,
that associates the external name of the file with the name used to reference it in
the program. This association is made through the ASSIGN clause. The SELECT

clause may also provide information on the file organization, the file access mode,
the corresponding record key and alternate record keys.

Once the programs have been transformed, they do not access the migrated
files anymore. Thus, the SELECT clauses declaring those files can be removed from
the ENVIRONMENT division.

7.2. Wrapper-based program conversion 137

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT CUSTOMER ASSIGN TO "c:\CUSTOMER.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS CUS-CODE.

SELECT ORDERS ASSIGN TO "c:\ORDERS.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS ORD-CODE
ALTERNATE RECORD KEY IS ORD-CUSTOMER
WITH DUPLICATES
ALTERNATE RECORD KEY IS ORD-DATE
WITH DUPLICATES.

SELECT STOCK ASSIGN TO "c:\STOCK.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS STK-CODE.

Figure 7.3: Sample ENVIRONMENT division.

7.2.2 Data division

The DATA division consists of the main following sections:

• The FILE section: where the record structure of files is defined;

• The WORKING-STORAGE section: that describes all data items belonging to the
program;

• The LINKAGE section: which describes the invocation parameters of the pro-
gram.

Two modifications of the DATA division are required. First, the record type
definitions of the migrated files have to be moved from the FILE section to the
WORKING-STORAGE section. Second, several new variables have to be declared in
the WORKING-STORAGE section. Figure 7.4 gives an example of a DATA division
adaptation. In this example, three files CUSTOMER, ORDERS and STOCK are consid-
ered for migration. The three corresponding record type definitions (CUS, ORD and
STK), initially located in the FILE section (lines [4-7], [10-14] and [17-20] of Fig-
ure 7.4a), are moved to the WORKING-STORAGE section (lines [3-6], [8-12] and [14-17]
of Figure 7.4b). In this way, the three old file buffers are now considered as any
other variable of the program. The FD paragraphs of the files CUSTOMER, ORDERS
and STOCK, are removed from the FILE section, making this section useless.

7.2.3 Procedure division

The wrapper-based program conversion strategy consists in replacing each legacy
DML statement with a corresponding wrapper invocation. In COBOL, calling an
external program is performed through the execution of a CALL statement. Since

138 Chapter 7. Migrating Standard Files to a Relational Database

1 DATA DIVISION. DATA DIVISION.
2 FILE SECTION. WORKING-STORAGE SECTION.
3 FD CUSTOMER. 01 CUS.
4 01 CUS. 02 CUS-CODE PIC X(12).
5 02 CUS-CODE PIC X(12). 02 CUS-DESCR PIC X(110).
6 02 CUS-DESCR PIC X(110). 02 CUS-HIST PIC X(1000).
7 02 CUS-HIST PIC X(1000).
8 01 ORD.
9 FD ORDERS. 02 ORD-CODE PIC 9(10).
10 01 ORD. 02 ORD-DATE PIC X(8).
11 02 ORD-CODE PIC 9(10). 02 ORD-CUSTOMER PIC X(12).
12 02 ORD-DATE PIC X(8). 02 ORD-DETAIL PIC X(200).
13 02 ORD-CUSTOMER PIC X(12).
14 02 ORD-DETAIL PIC X(200). 01 STK.
15 02 STK-CODE PIC 9(5).
16 FD STOCK. 02 STK-NAME PIC X(100).
17 01 STK. 02 STK-LEVEL PIC 9(5).
18 02 STK-CODE PIC 9(5).
19 02 STK-NAME PIC X(100). 01 DESCRIPTION.
20 02 STK-LEVEL PIC 9(5). 02 NAME PIC X(20).
21 02 ADDR PIC X(40).
22 WORKING-STORAGE SECTION. 02 COMPANY PIC X(30).
23 01 DESCRIPTION. 02 FUNCT PIC X(10).
24 02 NAME PIC X(20). 02 REC-DATE PIC X(10).
25 02 ADDR PIC X(40). ...
26 02 COMPANY PIC X(30).
27 02 FUNCT PIC X(10).
28 02 REC-DATE PIC X(10).

...

a) before transformation b) after transformation

Figure 7.4: Sample DATA division transformation.

7.3. Statement rewriting program conversion 139

01 WR-ACTION PIC 99.
88 WR-ACTION-OPEN VALUE 0.
88 WR-ACTION-WRITE VALUE 1.
88 WR-ACTION-READ VALUE 2.
88 WR-ACTION-START VALUE 3.
88 WR-ACTION-REWRITE VALUE 4.
88 WR-ACTION-DELETE VALUE 5.
88 WR-ACTION-CLOSE VALUE 6.

01 WR-OPTION PIC X(100).

01 WR-STATUS PIC 9(3).
88 WR-STATUS-NO-ERR VALUE 0.
88 WR-STATUS-INVALID-KEY VALUE 1.
88 WR-STATUS-AT-END VALUE 2.
88 WR-STATUS-SQLCODE VALUE 3.

Figure 7.5: COBOL definition of the wrapper invocation arguments.

we consider one wrapper per migrated record type, the wrapper to be invoked
depends on the file accessed by the legacy DML statement. A wrapper invocation
in COBOL has the following general form:

CALL wrapper-name USING wr-action, record-name, wr-option, wr-status

where:

• wr-action specifies the type of access to perform;

• record-name is the COBOL record type involved in the operation;

• wr-option specifies an option associated with the operation;

• wr-status indicates whether the operation has been successfully performed.

Such an invocation causes a given wrapper to simulate a particular file handling
primitive (wr-action) related to a given record type (record-name) on top of the
relational database, and according to a given option (wr-option). The first, third
and fourth arguments of the wrapper invocation must be declared as new variables
in the WORKING-STORAGE section. Figure 7.5 shows the COBOL definitions of these
new variables.

The replacement of COBOL file handling primitives with wrapper invocations is
illustrated in Figure 7.6. A random read statement is rewritten as a code fragment
that invokes the corresponding wrapper and simulates the initial INVALID KEY and
NOT INVALID KEY phrases based on the resulting value of WR-STATUS.

7.3 Statement rewriting program conversion

The Statement rewriting program conversion strategy (P2) aims at replacing each
COBOL file handling primitive with a code fragment translating this primitive on
top of SQL.

140 Chapter 7. Migrating Standard Files to a Relational Database

Transformed code fragment

SET WR-ACTION-READ TO TRUE
MOVE "KEY IS CUS-CODE" TO WR-OPTION
CALL WR-CUS USING WR-ACTION,

CUS, WR-OPTION, WR-STATUS
IF WR-STATUS-INVALID-KEY

PERFORM ERR-READ
ELSE

DISPLAY CUS-NAME
END-IF.

Initial code fragment

READ CUSTOMER KEY IS CUS-CODE
INVALID KEY

PERFORM ERR-READ
NOT INVALID KEY

DISPLAY CUS-NAME
END-READ.

Figure 7.6: Replacement of a random READ statement with a wrapper invocation.

Similarly to the P1 strategy, the P2 strategy also necessitates the adaptation
of the ENVIRONMENT and DATA divisions. This adaptation consists in reorganizing
the file and data declarations in these divisions.

According to our approach, the conversion of the PROCEDURE division is per-
formed in two steps:

1. The SQL translation of each possible COBOL DML statement is specified as
an additional procedure of the legacy program.

2. Each occurence of a COBOL DML statement is replaced with the invocation
of the corresponding procedure, through a PERFORM statement.

For instance, DELETE ORDERS is replaced with PERFORM DELETE-ORDERS”, where
DELETE-ORDERS is a generated procedure that executes the corresponding SQL
delete statement. This approach allows to preserve the readability of the con-
verted code, since the SQL-based code fragments are not duplicated multiple times
in the target program.

7.4 COBOL-to-SQL translation

We will now further define how the COBOL file handling primitives can be trans-
lated into SQL statements. The provided translation rules are valid whatever the
program conversion strategy chosen (Wrapper (P1) and Statement rewriting (P2)).
The main difference between both strategies is the target location of the generated
SQL-based code (external program for P1, internal procedure for P2).

7.4.1 Overview

Figure 7.7 briefly summarizes the SQL statements involved in the translation of
COBOL DML statements.

7.4. COBOL-to-SQL translation 141

COBOL statements SQL statements involved

OPEN OPEN cursor
OPEN (output) DELETE, OPEN cursor
START SELECT, OPEN cursor
READ (sequential) FETCH cursor
READ (random) SELECT, OPEN, FETCH cursor
WRITE INSERT

REWRITE UPDATE

DELETE DELETE

CLOSE –

Figure 7.7: SQL statements involved in the translation of COBOL file handling
primitives.

• Translating an OPEN statement consists in opening the cursor that selects all
the rows of the table in the ascending order based on the primary key. If
used with the OUTPUT mode, the corresponding SQL table must be emptied
beforehand.

• A START KEY IS statement is simulated by opening the cursor corresponding
to the specified record selection criteria.

• Simulating the READ NEXT statement involves a FETCH on the last accessed
cursor.

• A random READ KEY IS can be seen as a READ NEXT that immediately follows
a START KEY IS EQUAL. So a random READ can be simulated by (1) opening
the corresponding cursor and (2) executing a FETCH on this cursor.

• A WRITE statement is replaced with a SQL INSERT statement.

• A REWRITE statement is simulated using a SQL UPDATE statement.

• A COBOL DELETE statement becomes a SQL DELETE statement.

• There is no SQL translation for the COBOL CLOSE statement.

7.4.2 Preliminaries

One-to-one mapping

For the sake of clarity, we will consider a one-to-one mapping between the source
COBOL schema and the target relational schema (i.e., a D1 schema conversion
strategy). In principle, the D1 conversion strategy translates each COBOL record
type into a relational table and each top-level field into one column of this table,
thereby ignoring its possible decomposition. Figure 7.8 shows an example of such
a one-to-one translation. COBOL file ORDERS, declared in Figure 7.3, is converted

142 Chapter 7. Migrating Standard Files to a Relational Database

SELECT ORDERS ASSIGN TO "c:\ORDERS.DAT" create table ORD(
ORGANIZATION IS INDEXED ORD CODE numeric(10) not null,
ACCESS MODE IS DYNAMIC ORD DATE char(8) not null,
RECORD KEY IS ORD-CODE ORD CUSTOMER char(12) not null,
ALTERNATE RECORD KEY IS ORD-CUSTOMER ORD DETAIL char(200) not null,

WITH DUPLICATES primary key (ORD CODE));
ALTERNATE RECORD KEY IS ORD-DATE

WITH DUPLICATES. create index ORD CUSTOMER
... on ORD(ORD CUSTOMER);
FD ORDERS.

01 ORD. create index ORD DATE
02 ORD-CODE PIC 9(10). on ORD(ORD DATE);
02 ORD-DATE PIC X(8).
02 ORD-CUSTOMER PIC X(12).
02 ORD-DETAIL PIC X(200).

a) COBOL file declaration b) SQL table declaration

Figure 7.8: One-to-one translation (D1) of a COBOL file into a relational table

SELECT STUDENT FD STUDENT.
ASSIGN TO "c:\student" 01 STUD.
ORGANIZATION IS INDEXED 02 NAME.
ACCESS MODE IS DYNAMIC 03 FIRST-NAME PIC X(12).
RECORD KEY IS NAME 03 LAST-NAME PIC X(16).
ALTERNATE RECORD KEY IS LAST-NAME 02 ADDRESS.

WITH DUPLICATES 03 STREET PIC X(20).
03 NUMBER PIC X(5).
03 CITY PIC X(10).

02 SCHOOL PIC X(20).

Figure 7.9: Definition of file STUDENT.

into table ORD. We can observe that this conversion does not affect the data struc-
ture, and preserves the access keys declaration. The primary key of file ORDERS

(ORD-CODE) is translated into a column declared as primary key of table ORD. The
alternate keys ORD-CUSTOMER and ORD-DATE are translated into two indexes defined
on table ORD. The columns are required to be not null since the COBOL fields
they translate must always have a value in each record (especially for the access
keys).

However, the above example corresponds to the default D1 conversion scheme.
Let us now consider file STUDENT declared in Figure 7.9. In this particular case,
the D1 default rule should not be applied. Translating the three top-level fields
into three relational columns would prevent to declare sub-level field LAST-NAME as
an access key. Therefore, when a top-level field contains a sub-level field defined
as an access key, it is disaggregated before being translated into columns. The
requirement is that each COBOL access key must correspond to one or several
relational columns, in order to permit its declaration as an access key. In our
example of Figure 7.9, record description STUD would be translated into a table
made of four columns, as shown in Figure 7.10. The top-level field NAME has been
disaggregated. Its two sub-level fields have been translated into two corresponding

7.4. COBOL-to-SQL translation 143

STUDENT (COBOL)
NAME

FIRST-NAME
LAST-NAME

ADDRESS
STREET
NUMBER
CITY

SCHOOL
id: NAME
acc: NAME.LAST-NAME

STUDENT (SQL)
FIRST-NAME
LAST-NAME
ADDRESS
SCHOOL
id: FIRST-NAME

LAST-NAME
acc

acc: LAST-NAME

STUDENT (COBOL)
NAME

FIRST-NAME
LAST-NAME

ADDRESS
STREET
NUMBER
CITY

SCHOOL
id: NAME
acc: NAME.LAST-NAME

STUDENT (SQL)
FIRST-NAME
LAST-NAME
ADDRESS
SCHOOL
id: FIRST-NAME

LAST-NAME
acc

acc: LAST-NAME

Figure 7.10: Example of a one-to-one schema conversion (D1).

columns. This allows to declare both the record key and the alternate key as
indexes in the relational DDL code.

More formally, the one-to-one mapping holding between the legacy COBOL
record types and the target SQL tables can be defined as follows. Let Scob be the
source COBOL schema. Let Srel be the target relational schema. Let file be a
COBOL file of Scob. Let record be the record type associated with file. We then
assume that:

• table is the relational table of Srel translating record type record.

• table contains n columns, called c1, c2, ..., cn, that translate fields f1, f2, ..., fn

of record. When file is a relative file, one column ci translates the RELATIVE
KEY.

• file has one primary key, denoted by prim-key.

• file has m ALTERNATE RECORD KEY’s, called ak1, ak2, ..akm.

• Each access key (prim-key or aki) has been translated into one or several
columns of table.

Help variables

Our COBOL-to-SQL translation rules will make use of several variables, that we
briefly describe below.

• SQLCODE: is one of the fields of the SQLCA structure. It is used as a status
returning value for each executed SQL operation. For instance, when its value
is equal to zero, it means that the operation was performed successfully.

• STATUS: is used to simulate the exceptions associated the COBOL file han-
dling primitives. The INVALID KEY and AT END exceptions are associated

144 Chapter 7. Migrating Standard Files to a Relational Database

to a particular value of variable STATUS, as shown in Figure 7.5. In such a
way, the INVALID KEY and AT END phrases can be replaced with a conditional
statement based on the value of STATUS.

• ”LAST-CURSOR-t : allows to keep track of the last SQL cursor open on a
particular table t. This runtime information is needed in order to correctly
simulate a START/READ NEXT sequence through a cursor-based loop.

SQL cursors

Below, we specify the SQL cursors that are used for simulating COBOL file han-
dling primitives in SQL. For each access key (prim-key or aki), three SQL cursors
are declared: order by, greater than and not less.

order by cursor The order by cursor has the following general form:

EXEC SQL

DECLARE cursor-name CURSOR FOR

SELECT c1,c2,...,cn

FROM table

ORDER BY ck1,ck2,...,ckp

END-EXEC

where ck1,ck2,...,ckp are the SQL columns the access key has been translated into2.

Note that the ck1,ck2,...,ckp appearing in the order by clause should be correcly
ordered with respect to the COBOL access key they translate As an example, here
below is the ”order by” cursor declaration for the access key NAME described in
Figure 7.9. In this case, the access key has been split into two columns FIRST_NAME
and LAST_NAME (p = 2):

EXEC SQL

DECLARE ORDER_NAME CURSOR FOR

SELECT FIRST_NAME, LAST_NAME, ADDRESS, SCHOOL

FROM STUD

ORDER BY FIRST_NAME, LAST_NAME

END-EXEC

greater than cursor The greater than cursor has the following general form:

EXEC SQL

DECLARE cursor-name CURSOR FOR

SELECT c1, c2, ..., cn

FROM table

WHERE (ck1 > fk1) OR

((ck1 = fk1) AND (ck2 > fk2)) OR

...

2Most of the time, p = 1

7.4. COBOL-to-SQL translation 145

((ck1 = fk1) ... AND (ckp−1 = fkp−1) AND (ckp > fkp))
ORDER BY ck1, ck2,..., ckp

END-EXEC

As an example, here below is the greater than cursor corresponding to Figure 7.9.

EXEC SQL

DECLARE GREATER_NAME CURSOR FOR

SELECT FIRST_NAME, LAST_NAME, ADDRESS, SCHOOL

FROM STUD

WHERE (FIRST_NAME > :FIRST-NAME) OR

((FIRST_NAME = :FIRST-NAME) AND (LAST_NAME > :LAST-NAME))

ORDER BY FIRST_NAME, LAST_NAME

END-EXEC

Note that the same COBOL field names can be used in several record type de-
scriptions. For instance, a another field FIRST-NAME could be defined in an-
other record type such as TEACHER. This is the reason why we should use the
complete ”path-names” of the fields used in the cursor declarations. For in-
stance, in the case of the example above, we should replace ":FIRST-NAME" with
":STUD.NAME.FIRST-NAME". However, we will not use the complete names in our
examples, in order to make them more readable.

not less cursor The not less cursor is similar to the greater than cursor, but
the ”>” of the last alternative is replaced with ”>=”:

EXEC SQL

DECLARE cursor-name CURSOR FOR

SELECT c1, c2, ..., cn

FROM table

WHERE (ck1 > fk1) OR

((ck1 = fk1) AND (ck2 > fk2)) OR

...

((ck1 = fk1) ... AND (ckp−1 = fkp−1) AND (ckp >=fkp))
ORDER BY ck1, ck2,..., ckp

END-EXEC

Current cursor closing For each relational table t, a COBOL procedure that
closes the current open cursor associated with t (LAST-CURSOR-t), if any. Fig-
ure 7.11 shows an example of such a paragraph in the case of the relational table
STUD in Figure 7.10.

7.4.3 OPEN statement

We have seen that the result of a COBOL OPEN statement depends on the opening
mode, which can be INPUT, OUTPUT, I-O or EXTEND.

There is an important difference between the OUTPUT mode and the other modes.
When a COBOL file is opened with the OUTPUT mode, it is created (if necessary)

146 Chapter 7. Migrating Standard Files to a Relational Database

CLOSE-LAST-CURSOR-STUD.
IF (LAST-CURSOR-STUD = "ORDER_BY_NAME")

THEN
EXEC SQL

CLOSE ORDER_BY_NAME
END-EXEC

END-IF
IF (LAST-CURSOR-STUD = "GREATER_NAME")

THEN
EXEC SQL

CLOSE GREATER_NAME
END-EXEC

END-IF
IF (LAST-CURSOR-STUD = "NOT_LESS_NAME")

THEN
EXEC SQL

CLOSE NOT_LESS_NAME
END-EXEC

END-IF
IF (LAST-CURSOR-STUD="ORDER_BY_LAST_NAME")

THEN
EXEC SQL

CLOSE ORDER_BY_LAST_NAME
END-EXEC

END-IF
IF (LAST-CURSOR-STUD="GREATER_LAST_NAME")

THEN
EXEC SQL

CLOSE GREATER_LAST_NAME
END-EXEC

END-IF
IF (LAST-CURSOR-STUD="NOT_LESS_LAST_NAME")

THEN
EXEC SQL

CLOSE NOT_LESS_LAST_NAME
END-EXEC

END-IF.

Figure 7.11: A COBOL procedure that closes the current cursor associated with
table STUD.

7.4. COBOL-to-SQL translation 147

OPEN-STUDENT.
PERFORM CLOSE-LAST-CURSOR-STUD.
MOVE "ORDER_BY_NAME" TO LAST-CURSOR-STUD.
EXEC SQL

OPEN ORDER_BY_NAME
END-EXEC.

Figure 7.12: OPEN translation for file STUDENT.

OPEN-OUTPUT-STUDENT.
PERFORM CLOSE-LAST-CURSOR-STUD.
MOVE "ORDER_BY_NAME" TO LAST-CURSOR-STUD.
EXEC SQL

DELETE FROM STUD
END-EXEC.
EXEC SQL

OPEN ORDER_BY_NAME
END-EXEC.

Figure 7.13: OPEN OUTPUT translation for file STUDENT.

and positioned to its starting point for writing. In other words, if the file already
exists, it is overwritten. The other opening modes allow the file to be either read
or updated.

Another important aspect to take into account is the file access mode. When
the access mode is SEQUENTIAL, the records are read in the ascending order of
their primary key. When the access mode is RANDOM or DYNAMIC, COBOL assumes
the primary key of the file is used if the programmer does not specifies any access
key. In summary, in all the cases, the first "READ file" statement executed by
the program retrieves the record of the file having the lowest primary key value.
Therefore, a COBOL OPEN statement can be simulated by opening the order by
cursor associated with the primary key of the target table. When the open option
is OUTPUT, the contents of the table are deleted. Figure 7.12 shows the COBOL
procedure that simulates the OPEN statement for file STUDENT discussed above.
Figure 7.13 illustrates the SQL translation of the OPEN OUTPUT statement on the
same example.

7.4.4 START statement

As seen above, the START statement allows to position an indexed or relative file
to a specific record. In SQL, this can also be simulated by opening a cursor on the
corresponding table. There are three key usages that can be used with the start
statement: equal, greater than and not less. Since the START statement may also
specify an INVALID KEY phrase, the translation starts by checking whether there
exists at least one row in the table where the key value is equal to/greater than/not
less than the current value of the supplied key. If there is no such row in the table,
an INVALID KEY exception must be simulated, based on variable STATUS. If there

148 Chapter 7. Migrating Standard Files to a Relational Database

key usage cursor

equal not less

greater than greater than

not less not less

Figure 7.14: START key usages VS SQL cursors.

START-STUDENT-GREATER-NAME.
PERFORM CLOSE-LAST-CURSOR-STUD.
EXEC SQL

SELECT COUNT(*)
INTO :COUNTER
FROM STUD
WHERE (FIRST-NAME > :FIRST-NAME) OR

((FIRST_NAME = :FIRST-NAME) AND
(LAST_NAME > :LAST-NAME))

END-EXEC.
IF (SQLCODE NOT = 0) %% SQL error

SET STATUS-SQL-ERROR TO TRUE
ELSE

IF (COUNTER = 0) %% invalid key
SET STATUS-INVALID-KEY TO TRUE

ELSE
EXEC SQL

OPEN GREATER_NAME
END-EXEC
MOVE "GREATER-NAME" TO LAST-CURSOR-STUD
MOVE SQLCODE TO STATUS

END-IF
END-IF.

Figure 7.15: START translation for file STUDENT.

is at least one such row, the corresponding cursor can be opened. Figure 7.14
indicates the SQL cursor that is opened for each START key usage. Figure 7.15
illustrates the simulation of the START key is greater than statement in SQL, in the
case of file STUDENT of Figure 7.9.

7.4.5 READ NEXT statement

The sequential READ statement can be translated into a SQL FETCH statement
executed on the current cursor of the corresponding table. Based on the value of
the LAST-CURSOR variable, the name of the current open cursor can be determined.
The INTO clause of the FETCH statement contains the COBOL record fields that
have been translated into SQL columns (f1, f2, ..., fn), in the correct order.

Figure 7.16 shows the procedure translating the READ NEXT statement for the file
STUDENT described above. The last statement of this procedure (MOVE SQLCODE TO

STATUS) allows to simulate the AT END exception. Indeed, if the end of the cursor is
reached when executing the fetch statement3, the resulting value of SQLCODE is

3which corresponds to an end of file exception

7.4. COBOL-to-SQL translation 149

READ-STUDENT-NEXT.
IF(LAST-CURSOR-STUD = "ORDER_BY_NAME")

EXEC SQL
FETCH ORDER_BY_NAME
INTO :FIRST-NAME, :LAST-NAME, :ADDRESS, :SCHOOL

END-EXEC.
IF(LAST-CURSOR-STUD = "GREATER_NAME")

EXEC SQL
FETCH GREATER_NAME
INTO :FIRST-NAME, :LAST-NAME, :ADDRESS, :SCHOOL

END-EXEC.
IF(LAST-CURSOR-STUD = "NOT_LESS_NAME")

EXEC SQL
FETCH NOT_LESS_NAME
INTO :FIRST-NAME, :LAST-NAME, :ADDRESS, :SCHOOL

END-EXEC.
IF(LAST-CURSOR-STUD = "ORDER_BY_LAST_NAME")

EXEC SQL
FETCH ORDER_BY_LAST_NAME
INTO :FIRST-NAME, :LAST-NAME, :ADDRESS, :SCHOOL

END-EXEC.
IF(LAST-CURSOR-STUD = "GREATER_NAME")

EXEC SQL
FETCH GREATER_LAST_NAME
INTO :FIRST-NAME, :LAST-NAME, :ADDRESS, :SCHOOL

END-EXEC.
IF(LAST-CURSOR-STUD = "NOT_LESS_NAME")

EXEC SQL
FETCH NOT_LESS_LAST_NAME
INTO :FIRST-NAME, :LAST-NAME, :ADDRESS, :SCHOOL

END-EXEC.
MOVE SQLCODE TO STATUS.

Figure 7.16: READ NEXT translation for file STUDENT.

equal to 100. Assigning this value to the STATUS variable causes the STATUS-AT-END
boolean flag to be set to TRUE.

7.4.6 READ KEY IS statement

As already mentioned, the ramdom READ statement can be seen as a START state-
ment with an equal key usage, combined with a READ NEXT. So, the SQL translation
of a READ KEY IS statement consists in opening the not less cursor before fetching
it. Obviously, one first need to check that an INVALID KEY exception does not hold
based on a SELECT COUNT query, as shown in Figure 7.17.

7.4.7 WRITE statement

Simulating the WRITE statement in SQL simply consists in inserting a new row
in the table that translates the record type of interest, using an INSERT query.
Figure 7.18 gives an example of such a WRITE procedure for file STUDENT described
above.

150 Chapter 7. Migrating Standard Files to a Relational Database

READ-STUDENT-KEY-NAME.
PERFORM CLOSE-LAST-CURSOR-STUD.
EXEC SQL

SELECT COUNT(*)
INTO :COUNTER
FROM STUD
WHERE FIRST_NAME = :FIRST-NAME AND

LAST_NAME = :LAST-NAME
END-EXEC.
IF (SQLCODE NOT = 0) %% SQL error !

SET STATUS-SQL-ERROR TO TRUE
ELSE

IF (COUNTER = 0) %% invalid key !
SET STATUS-INVALID KEY TO TRUE

ELSE
EXEC SQL

OPEN NOT_LESS_NAME
END-EXEC
MOVE "NOT_LESS_NAME" TO LAST-CURSOR-STUD
EXEC SQL

FETCH NOT_LESS_NAME
INTO :FIRST-NAME,

:LAST-NAME,
:ADDRESS,
:SCHOOL

END-EXEC
MOVE SQLCODE TO STATUS

END-IF
END-IF.

Figure 7.17: READ KEY IS translation for file STUDENT.

WRITE-STUD.
EXEC SQL

INSERT
INTO STUD(FIRST_NAME,

LAST_NAME,
ADDRESS,
SCHOOL)

VALUES (:FIRST-NAME,
:LAST-NAME,
:ADDRESS,
:SCHOOL)

END-EXEC.
MOVE SQLCODE TO STATUS.

Figure 7.18: WRITE translation for file STUDENT.

7.5. About correctness 151

REWRITE-STUD
EXEC SQL

UPDATE STUD
SET FIRST_NAME = :FIRST-NAME,

LAST_NAME = :LAST-NAME,
ADDRESS = :ADDRESS,
SCHOOL = :SCHOOL

WHERE FIRST_NAME = :FIRST-NAME AND
LAST_NAME = :LAST-NAME

END-EXEC.
MOVE SQLCODE TO STATUS.

Figure 7.19: REWRITE translation for file STUDENT.

DELETE-STUDENT.
EXEC SQL

DELETE
FROM STUD
WHERE FIRST_NAME = :FIRST-NAME AND

LAST_NAME = :LAST-NAME
END-EXEC.
MOVE SQLCODE TO STATUS.

Figure 7.20: DELETE translation for file STUDENT.

7.4.8 REWRITE statement

The translation of the REWRITE statement consists of a SQL update of the record
(i.e., the row) with the current primary key value. This behaviour is valid for both
sequential and random access. In the case of sequential access mode, the record
must be read before it can be rewritten. In random access mode, the programmer
must assign a value to the primary key field before the REWRITE statement can be
issued. In Figure 7.19, we illustrate the SQL translation of the REWRITE statement
in the case of file STUDENT described above.

7.4.9 DELETE statement

The DELETE statement can be easily translated into a SQL delete query. The
record (i.e., the row) to be deleted is the one having the same primary key value
as the current record. This is true for both sequential and random variants of the
DELETE statement. In sequential access mode, the record must be read before it
can be deleted. In random access mode, the programmer must assign a value to
the primary key field before the delete statement can be issued.

7.5 About correctness

The translation rules presented above aim at simulating the different COBOL file
handling primitives by means of corresponding SQL queries. Each translation rule
actually replaces one primitive p by a sequence s of statements. Thus, in order to

152 Chapter 7. Migrating Standard Files to a Relational Database

NAME ADDRESS
SCHOOL

FIRST-NAME LAST-NAME STREET NUMBER CITY

Vincent Englebert Metacase Boulevard 32 Berck FUNDP
Jean-Luc Hainaut Relational Street 17 Namur FUNDP

Jean-Marie Jacquet Linda Avenue 631 Nivelles FUNDP
Ralf Lämmel Grammar Square 9 Koblenz GTTSE
Kim Mens Intensive Street 74 Brussels UCL
Wim Vanhoof Mercury Avenue 319 Leuven FUNDP

Figure 7.21: Example contents for file STUDENT.

FIRST NAME LAST NAME ADDRESS SCHOOL

Vincent Englebert Metacase Boulevard 32 Berck FUNDP
Jean-Luc Hainaut Relational Street 17 Namur FUNDP

Jean-Marie Jacquet Linda Avenue 631 Nivelles FUNDP
Ralf Lämmel Grammar Square 9 Koblenz GTTSE
Kim Mens Intensive Street 74 Brussels UCL
Wim Vanhoof Mercury Avenue 319 Leuven FUNDP

Figure 7.22: Table STUDENT obtained from the file of Figure 7.21.

show that a translation rule is correct, we have to demonstrate that s, seen as a
black box, has the same behaviour as p in all cases.

Formally proving the correctness of the translation rules would necessitate to
define both the formal semantics of COBOL and the formal semantics of Embedded
SQL. Due to space and time limitations, we will rather try to convince the reader,
based on the small running example of Figure 7.10, that our translation rules are
behaviour-preserving.

Let us consider the example file STUDENT depicted in Figure 7.21, that has been
migrated to a relational table STUDENT given in Figure 7.22.

OPEN statement The rule allowing to translate the OPEN STUDENT statement
is quite trivial. It mainly consists in opening the order by name cursor, which
selects all the rows from table STUDENT in ascending order of their FIRST NAME and
LAST NAME columns. In the case of an OUTPUT file opening mode, the content of
the relational table is emptied beforehand. The open cursor is then stored as the
current cursor for table STUDENT. This means that the very same cursor would
be fetched in order to simulate the execution of a subsequent READ STUDENT NEXT

statement.

START statement For assessing the correctness of a START statement, we have
to show that the target source code (1) correctly simulates potential invalid key
exceptions; and (2) always positions the reading sequence on the right record, in
the absence of invalid key exception. Regarding (1), the way of detecting an invalid
key exception is to count the number of rows in the table that respect the selection

7.5. About correctness 153

criteria of the START statement. For instance, in the case of a START STUDENT

KEY IS > NAME, we will count the number of rows in table STUDENT, for which the
combined value of columns FIRST NAME and LAST NAME is greater than the value
of field NAME of the record buffer. If this number is equal to zero, it means that
there exists no remaining rows in the reading sequence, which causes an invalid
key exception to be simulated through variable STATUS. Regarding requirement
(2), we can observe that the target code always positions the reading sequence on
the first row of the table respecting the selection criteria (if any). This is done
by opening a corresponding SQL cursor (see Figure 7.14) in which the rows are
ordered according to the value of the provided access key. For instance, if the
current value of field NAME is ”Jean-Luc Hainaud”, the reading sequence would be
positionned on the student whose name is ”Jean-Luc Hainaut”. This corresponds
to the desired behaviour. In this example, the open greater-than-name cursor is
then stored as the current cursor for table STUDENT.

READ NEXT statement The translation of a READ NEXT statement is correct only
if the target source code (1) correctly simulates potential at end exceptions; and (2)
always retrieve the next record with respect to the current reading sequence, if such
a record exists. This behaviour is correctly implemented by our translation rule,
since the concept of current reading sequence is represented by the current cursor of
the table. For instance, the translation of a READ STUDENT NEXT primitive simply
consists in fetching the current cursor associated to table STUDENT. If there is no
remaining row to be fetched, the execution of the fetch statement returns 100 as
value of SQLCODE. In this case, an AT END exception is simulated.

READ KEY IS statement Since the READ KEY IS corresponds to the combination
of a START KEY IS = statement followed by a corresponding READ NEXT statement,
the way to show that the translation rule is correct is to demonstrate that the target
code simulating a READ x KEY IS y statement is equivalent to the code simulating
the following fragment:

START x KEY IS = y

READ x NEXT

The analysis of the READ KEY IS translation rule for our running example (Fig-
ure 7.17) reveals that this is the case.

WRITE statement The translation rule associated to the WRITE statement is quite
trivial. It simply consists in inserting a new row in the target table, from the current
value of the corresponding record buffer. In case the specified value of the record
key corresponds to an existing row of the table, the INSERT statement fails and
the returned value of SQLCODE is different from zero, based on which an invalid key
exception can simulated.

154 Chapter 7. Migrating Standard Files to a Relational Database

REWRITE statement The REWRITE statement modifies at most one row in the
target table. This row is the one having the same record key value as the record
buffer. If such a record does not exist, the UPDATE statement fails, which in turn
results in a SQLCODE value different from zero. In the latter case, an invalid key
exception is simulated.

DELETE statement The SQL translation of a DELETE statement is similar to the
one of the REWRITE statement, except that at most one row is removed from the
table. The deleted row, if any, is the one having the same record key value as
the record buffer. If no such record can be located, an invalid key exception is
returned.

7.6 Tool support

In this section, we give a brief overview of the tools allowing to support the P1 and
P2 program conversion strategies in the context of COBOL-to-relational database
migration. The tool architecture (see Figure 7.23) is based on the combination
of DB-MAIN (DB-MAIN, 2006) and the ASF+SDF Meta-Environment (van den
Brand et al., 2001).

Schema mapping management The propagation of the schema mappings
is managed by DB-MAIN during the successive transformations applied to the
schema. The schema mapping relationships are expressed by means of schema an-
notations. A dedicated mapping assistant has been implemented as a Java plugin
of DB-MAIN. This assistant allows the user to define and visualize the structural
correspondences that exist between two database schemas. In the context of migra-
tion the mapping assistant can also be used to validate the (automatically derived)
mapping and to adapt it when necessary.

Wrapper and procedure generation The wrapper and procedure generators
are DB-MAIN plug-ins developed in Voyager 24. Both code generators take as
inputs (1) the legacy COBOL schema, (2) the target relational schema, and (3)
the mapping between these two schemas. The wrapper generator produces a set of
wrappers, each corresponding to a migrated COBOL record type. The generated
wrappers are COBOL programs including embedded SQL commands. The pro-
cedure generator produces a COBOL copybook5 that regroups all the procedures
allowing to simulate the COBOL file handling primitives on top of the relational
database.

4Voyager 2 (Englebert, 2002) is a 4th-generation, semi-procedural language which offers pred-
icative access to the repository of DB-MAIN.

5a copybook is a kind of include file.

7.6. Tool support 155

DB-MAIN

COBOL log. schema

Conceptual schema

Relational log. schema

ASF+SDF
Meta-Environment

COBOL
programs

COBOL
copybooks

COBOL
programs*

COBOL
copybooks*

Wrapper
generator

Program
transformers

(P1 & P2)

Parameters Wrappers

COBOL phys. schema

Mapping
assistant

Additional
copybooks

Relational phys. schema

Figure 7.23: Tool architecture for program adaptation in standard files to relational
migration.

156 Chapter 7. Migrating Standard Files to a Relational Database

Application 1 Application 2
Source Target Source Target

Record types/tables 3 5 8 18
Fields/columns 10 18 291 276
Foreign keys - 5 - 15
Programs 1 1 15 15
Wrappers - 3 - 8
Wrapper calls - 26 - 365
Legacy code size (KLOC) 0.4 0.5 7 8.2
Wrapper code size (KLOC) - 1.6 - 6.1

Figure 7.24: Case studies overview.

Program transformation The program transformation tools are written on top
of the ASF+SDF Meta-Environment (van den Brand et al., 2001). We reused and
adapted an SDF version of the IBM VS COBOL II grammar obtained by Lämmel
and Verhoef (2001). We specified a set of rewrite rules (ASF equations) on top of
this grammar in order our main program transformation tool. The rewrite rules
make an intensive usage of traversal functions van Den Brand et al. (2003). The
transformation tool chain also comprises lexical processors (typically Perl scripts)
for source-code preprocessing, post-processing and pretty-printing.

7.7 Initial case studies

The approach and tools presented in this chapter have been successfully used to
reengineer two small but realistic COBOL applications. Figure 7.24 summarizes
the results obtained in those initial case studies, for which we used a wrapper-based
program conversion strategy (P1). The first application we migrated corresponds
to a variant of the running example used in Chapter 4. In this small example,
the application is made up of a single COBOL program manipulating three files,
without explicit links between them. The reverse engineering phase allowed us to
significantly enrich the legacy schema with (1) finer-grained record type decomposi-
tions and (2) implicit foreign keys between the record types. The target relational
schema obtained was composed of 5 tables and 5 explicit foreign keys. The file
contents were migrated towards the relational database and three corresponding
wrappers were automatically generated. The last step consisted in interfacing the
small COBOL program with the wrappers, by means of our program transforma-
tion tool.

As a second experiment, we followed the same tool-supported approach to con-
vert an academic COBOL application that was in use at the University of Namur.
This application, made up of 15 programs and about 7 000 lines of code, managed
8 large files containing data about students, registrations, results of exams, etc.
The migration of those files resulted in a target relational database comprising 18
tables. The legacy programs were then interfaced with 8 generated wrappers, the

7.8. Conclusions 157

latter totaling more than 6 000 lines of COBOL code.
For both case studies, the program conversion phase (wrapper generation +

legacy code transformation) was fully automated. As expected, we observed a small
increase of the legacy source code size. Indeed, each wrapper invocation typically
necessitates several lines of code and the rewritten statements are preserved as
comments in the target programs. Systematic tests confirmed that (1) the wrappers
were correcly generated, (2) the programs were correcly transformed and (3) the
converted programs had the same behaviour as the original programs.

7.8 Conclusions

In this chapter, we have studied the automated adaptation of legacy programs in
the context of the migration of COBOL files towards a relational database. We
have described the instantiation of the wrapper (P1) and statement rewriting (P2)
strategies, presented in Chapter 4, in this particular migration scenario. A set of
COBOL-to-SQL conversion rules have been proposed and illustrated. A set of tools
supporting the program adaptation process have been presented.

The main conclusion we can draw from this chapter is that the combination
of transformational and generative techniques provides a sound basis for legacy
source code migration. The generated code sections, which are not supposed to
be manually maintained, capture the major complexity of the conversion process
which originates from the database paradigm change. We also observed that the
more significant difference between the P1 and P2 strategies concerns the way of
interfacing the legacy programs with the generated code fragments (program code
sections or wrappers).

Roadmap

In Chapter 8, we will address another popular, yet much more challenging system
migration scenario, that is, the conversion of a CODASYL database towards a re-
lational platform. In particular, we will present a tool-supported, wrapper-based
approach for adapting the legacy programs to the target database, i.e., for simu-
lating CODASYL data manipulation statements on top of a relational database.
Chapter 9 then presents the application of the approach and tools in support to
industrial database migration projects.

158 Chapter 7. Migrating Standard Files to a Relational Database

Chapter 8

Migrating a CODASYL Database
to a Relational Database

Success is to be measured not so much by the position that one
has reached in life as by the obstacles which he has overcome.

– Booker T. Washington

This chapter1 describes a generic methodology to migrate all the components of a
large software system due to database porting towards a modern platform. This
methodology is discussed through a popular specific scenario, that is, the migration
of a large COBOL system based on a CODASYL DBMS to a relational database.
The chapter shows how a wrapper-based approach can minimize the program adap-
tation effort. It analyzes the main challenges posed by the simulation of the CO-
DASYL API on top of the relational interface.

The chapter is organized as follows. Section 8.1 briefly presents the basic con-
cepts of CODASYL database management. In Section 8.2 we summarize our global
migration methodology. Section 8.3 provides an in-depth analysis of the wrapper-
based approach to program conversion. In Section 8.4, we propose systematic
translation rules allowing to simulate CODASYL database statements in SQL. Sec-
tion 8.5, describes a set of tools providing an automated support to most migration
processes of our approach. A related work discussion is provided in Section 8.6 and
Section 8.7 concludes the chapter.

8.1 CODASYL data management

This section presents an overview of CODASYL data management systems. For
further details about the network data model we refer to the overviews by Elmasri
and Navathe (1999) and Hainaut (2009), from which the present section is inspired.

1An earlier version of this chapter was published in the Proceedings of the 12th European
Conference on Software Maintenance and Reengineering (CSMR 2008) in April 2008 (Cleve et al.,
2008a).

159

160 Chapter 8. From a CODASYL Database to a Relational Database

8.1.1 General DBMS architecture

CODASYL DBMSs typically include the three following components:

• the database control system (DBCS), which executes orders received from
the application programs.

• the DDL compiler, which translates the data description code into internal
tables that are stored in the database, so that they can be exploited by the
DML compiler at program compile time and by the DBCS at program run
time.

• the DML compiler, that parses applications programs and replaces DML
statements with calls to DBMS procedures. Either this compiler is inte-
grated into the host language compiler (typically COBOL) or it acts as a
precompiler.

Each program has its own user working area (UWA) in which data to and from
the database are stored.

8.1.2 Records, record types and fields

CODASYL databases are made of records, each consisting of a group of data values.
Records are classified into record types. Each record type describes the structure
of a group of records storing the same type of information. We give each record
type a name, and we also give a name and format for each field (a.k.a. data item)
of the record type.

8.1.3 Areas

An area (a.k.a. realm) is a named logical repository of records of one or several
types. An area may contain records of more than one record type. Converserly,
records of the same record type may be stored in more than one area. Areas provide
a way to partition the set of the database records either logically (e.g., according
to geographic, organizational or temporal dimensions) or physically (e.g., across
disk drives).

8.1.4 Set types

A set type describes a one-to-many relationship between two record types: an owner
record type and a member record type. In the database itself, there can be many
set instances (a.k.a. set occurences) corresponding to a given set type. Each set
instance is composed of:

• one owner record from the owner record type;

• zero or more member records from the member record type.

8.1. CODASYL data management 161

As indicated above, a set type represents a one-to-many relationship. Consequently,
for a given set type, a record from the member record type cannot belong to more
than one set instance.

Note that a set instance in CODASYL differs from the concept of set in mathe-
matics. First, the set instance typically contains two kinds of elements: the owner
record and the member records. Second, the member records of a set instance are
ordered according to a user-specified ordering criteria. Such an order of elements
is not considered in a mathematical set.

8.1.5 Record keys

CODASYL DBMSs allow to retrieve records based on access keys. Those access
keys have to be declared in the DDL code as record keys. A declared record key
has a name and specify the set of record fields used as access key.

8.1.6 Currency indicators

Since CODASYL DML commands manipulate data on a one-record-at-a-time ba-
sis, it is necessary to identify specific records in the database as current records.
CODASYL DBMSs keep track (in the UWA) of the most recently accessed records
and set occurences by means of a mechanism called currency indicators. Those in-
dicators represent static predefined cursors that form the basis for the navigational
facilities across the data. They include:

• Current of run unit : the current record of the run unit is the last record
involved in a successful query;

• Current of record type : a current record is associated to each record type;
it corresponds to the last accessed record of that type;

• Current of set type : for each set type, there is a current record representing
the last record accessed in the set (this can be either the owner or a member
of the current set);

• Current of area : the current record of an area refers to the last record
accessed in the area;

• Current of record key : the current record of a record key is the the last
record that was accessed through that particular key type.

8.1.7 Status indicators

The UWA also comprises registers that inform the program on the status of the
DML operations. The execution of any database manipulation statement causes the
DBCS to insert a value into the special database status register (e.g., DB-STATUS).
If no exceptions are encountered during the execution of the statement, the status
indicator is set to zero. If an exception is encountered, it is set to the appropriate
value depending on the statement and the exception type.

162 Chapter 8. From a CODASYL Database to a Relational Database

8.1.8 DML statements

The main CODASYL DML statements are the following:

• The READY statement makes the contents of an area available for processing.

• The FIND statement locates a record in the database subject to a variety
of selection expression options. This statement aims to establish a specific
record occurrence in the database as the object of subsequent statements.

• The GET statement obtains (a part of) the contents of a located database
record and makes them available to the program through its UWA. The
object of the GET is the current record of the run unit.

• The MODIFY statement alters the contents of one or more data items in a
record and/or changes its set relationships. The object of the MODIFY state-
ment is the current record of the run unit.

• The ERASE statement removes one record from the data base, as well as all
subordinate member records, if any. The current record of the run unit is
the object of the statement.

• The STORE statement causes a new record to be stored in the database. This
statement establishes the current record of the run unit.

• The CONNECT causes, under certain conditions, a record stored in the database
to become a member of a particular set. The current record of the run unit
is the object of the statement.

• The DISCONNECT removes, under certain conditions, a record from a specified
set in which it resides as a member. The current record of the run unit is the
object of the statement.

• The FINISH statement makes an area unavailable for further accesses.

8.2 Migration methodology

The general migration methodology discussed in this chapter is made of two main
phases, namely system reverse engineering and system conversion. The underlying
approach combines analysis, transformational and generative techniques. With
respect to the reference model presented in Chapter 4, the adopted migration
strategy is <D2,P1>: the database conversion process relies on an initial reverse
engineering phase (D1) and the program conversion process makes use of wrappers
(P2).

8.2. Migration methodology 163

8.2.1 System reverse engineering

In most cases, there is no complete and up-to-date documentation of the legacy
system, and in particular of the database. Therefore, the initial phase of our
methodology consists in recovering sufficient information about the legacy system.
This knowledge will then serve as a basis for the migration process itself.

Inventory The reverse engineering phase starts with an inventory process which
has two main objectives. First, it checks that the system is made of a complete
and consistent set of source code files. Second, it allows to get a rapid overview of
the application architecture in order to evaluate the complexity of the migration
task (van Deursen and Kuipers, 1998), as well as the part of the work that cannot be
automated. The results of the inventory step include the call graph, the database
usage graph together with detailed statistics about the legacy database instructions
(format, location, record types accessed).

Database reverse engineering The second main step concerns the reverse en-
gineering of the database. This step aims at recovering the conceptual schema that
expresses the exact information structure and meaning of the source database.
Our database reverse engineering methodology (Hainaut, 2002) starts with the
DDL (Data Definition Language) analysis process, parsing the legacy DDL code to
retrieve the source physical schema. The schema refinement step (Henrard, 2003)
consists of an in-depth inspection of the way the application programs use and
manage the data, in order to produce the legacy logical schema. Through this
process, additional structures and constraints are identified, such as foreign keys or
finer-grained data structures, which are not explicitly declared in the DDL code but
coped with in the procedural code. The legacy data may also be analyzed, either
to detect constraints, or to confirm or discard hypotheses on the existence of such
constraints. The final step is the data structure conceptualization, that interprets
the legacy logical schema into the conceptual schema. The logical and the con-
ceptual schemas have the same semantics, i.e., they cover the same informational
content, but the latter is platform-independent.

8.2.2 System conversion

Database schema conversion The database schema conversion step trans-
lates the results obtained during the database reverse engineering process, that
is, the conceptual schema of the database, into an equivalent database structure
expressed in the target technology. The schema conversion process is driven by
standard database design techniques, and can be modeled by a chain of semantics-
preserving schema transformations (Hainaut, 2006). It is important to observe that
this schema reengineering approach allows to obtain a native, fully-normalised re-
lational schema, rid of the technical constructs of the legacy database.

164 Chapter 8. From a CODASYL Database to a Relational Database

Data migration Once the legacy schema has been converted, the data instances
can be migrated towards the target platform. This is the goal of the data migration
step, which involves data transformations deriving from the way the legacy schema
was transformed into the target schema.

Program conversion In the context of database migration, program conversion
is the modification of the programs so that they now access the renovated database
instead of the legacy data. The functionalities of the program are left unchanged,
as well as its programming language and its user interface (they can migrate inde-
pendently). High quality program conversion generally is a complex process in that
it relies on the rules used to transform the legacy schema into the target schema.
In this chapter, we particularly elaborate on a wrapper-based approach to program
conversion. While the discussion is based on the particular case of the conversion
of a CODASYL database into a relational database, the approach is, to a large
extent, valid to support other migration scenarios.

8.3 Wrapper-based program conversion

When the data management system (DMS) and the structure of the database
change, the programs (more specifically the database manipulation statements)
must be changed accordingly. Our strategy attempts to keep the legacy program
logic unchanged and to map it on the new DMS technology, by means of data
wrappers. A data wrapper is a data model conversion component that is called by
the application program to carry out operations on the database. Its goal is gener-
ally to provide application programs with a modern interface to a legacy database
(e.g., allowing Java programs to access COBOL files). In the migration context,
the wrapper is actually a backward wrapper (Thiran et al., 2006), which allows
the renovated data to be transformed into the legacy format in order to allow
programs to read (FIND/GET), modify (MODIFY), write (STORE/CONNECT) and delete
(ERASE) records that are built from rows extracted from a relational database. In
this way, the application programs invoke the wrapper instead of the legacy DMS.
If the wrapper simulates the modeling paradigm of the legacy database and its
interface, the alteration of the legacy code is minimal. It mainly consists in re-
placing the data manipulation statements with wrapper invocations. The wrapper
converts all legacy DMS requests from legacy applications into requests against the
new DMS that now manages the data. Conversely, it captures results from the new
DMS, converts them to the appropriate legacy format (Papakonstantinou et al.,
1995) and delivers them to the application program. According to our approach,
depicted in Figure 8.1, we develop one wrapper per legacy migrated record type.
The wrappers may need to call each other in order to correctly simulate some
legacy data manipulation primitives.

8.3. Wrapper-based program conversion 165

Legacy
DB

Legacy System

Legacy
progams
Legacy

progams

Legacy DMS

New
DB

Legacy
progams *
Legacy

progams *

New DMS

WrapperWrapper

Renovated System

WrapperWrapper

WrapperWrapper
WrapperWrapper

WrapperWrapper

Legacy
DB

Legacy System

Legacy
progams
Legacy

progams

Legacy DMS

New
DB

Legacy
progams *
Legacy

progams *

New DMS

WrapperWrapper

Renovated System

WrapperWrapper

WrapperWrapper
WrapperWrapper

WrapperWrapper

Figure 8.1: Migration architecture.

8.3.1 Schema mapping

The starting point of our wrapper-based methodology is the mapping between the
source and target databases. In practice, such a mapping often necessitates three
schemas:

• The source physical schema is the structure of the legacy database as
defined in the DDL code. This schema contains the names of the different
objects as they are used to navigate through the database, including access
keys, identifiers and sorting keys.

• The source logical schema is the schema that programmers need to know
in order to write or modify programs manipulating the database. The logical
schema improves the physical schema by including implicit constructs such
as finer-grained record structure, unique keys and foreign keys.

• The target physical schema is the structure of the migrated database.

The reason why both source and target physical schemas are necessary is easy
to understand. The legacy physical schema is used to analyse the queries in the
legacy code and the new physical schema serves as a basis for writing equivalent
queries on top of the new database. However, these two schemas are not sufficient
when the gap between them is so important that some information is missing when

166 Chapter 8. From a CODASYL Database to a Relational Database

Legacy Logical SchemaLegacy Physical Schema

REC
REC-KEY: char (5)
REC-DATA: char (100)
id: REC-KEY

REC
REC-KEY: char (5)
REC-DATA: compound (100)

REC-DATA1: char (20)
REC-DATA2: char (30)
FILLER: char (10)
REC-DATA3: char (40)

id: REC-KEY

New Physical Schema

TAB
KEY: char (5)
DATA1: char (20)
DATA2: char (30)
DATA3: char (40)
id: KEY

Legacy Logical SchemaLegacy Logical SchemaLegacy Physical SchemaLegacy Physical Schema

REC
REC-KEY: char (5)
REC-DATA: char (100)
id: REC-KEY

REC
REC-KEY: char (5)
REC-DATA: compound (100)

REC-DATA1: char (20)
REC-DATA2: char (30)
FILLER: char (10)
REC-DATA3: char (40)

id: REC-KEY

New Physical SchemaNew Physical Schema

TAB
KEY: char (5)
DATA1: char (20)
DATA2: char (30)
DATA3: char (40)
id: KEY

Figure 8.2: Mapping between legacy physical record, legacy logical record and new
relational table.

transforming the data instances from one format to the other. For instance, the
legacy physical schema may contain large fields that are transformed into several
columns in the target physical schema. The intermediate logical schema contains
the exact decomposition of the legacy fields, allowing to properly link the source
and target physical schemas. Such a case is illustrated in Figure 8.2, where REC-DATA

is decomposed (in the logical schema) into four sub-fields among which one is a
filler. This is a usual practice in legacy systems: the filler is used as a reserved
space for future use. This is a way to avoid the modification of the structure of a
record, which may be a complex and time-consuming task.

8.3.2 Wrapper development

The wrappers are the central part of the program conversion phase. They simulate
the legacy DML 2, such that the logic of the legacy programs need not be adapted.
As mentioned above, we use one distinct wrapper for each legacy record type that
is migrated. Each wrapper implements all the actions that can be performed on
its associated record type. To do so, it may call other wrappers when necessary.
The responsability of the wrappers is twofold:

• structure conversion: the wrappers adapt the legacy database queries to
the target structure;

• language conversion: the wrappers translate the legacy DML primitives
using target DML commands;

8.3.2.1 Structure conversion

The first and most obvious function of the wrapper is to convert data structures.
It reads the data from the relational database and presents them to the programs

2Data Manipulation Language

8.3. Wrapper-based program conversion 167

according to the legacy format. Conversely, it receives data from the programs in
the legacy format and stores them in the relational database. This conversion is
based on the mapping that holds between the source and target database schemas.
Here below, we discuss three typical issues occuring when mapping CODASYL
data structures to the relational model.

Record types and fields In the easiest mapping pattern, called one-to-one
mapping, each legacy record type is mapped to an SQL table and each field is
mapped to a column. This scenario mainly requires data type conversion.

The second typical mapping pattern captures the situation when one record
is mapped with one table, but some fields are translated into several columns (or
conversely), and some (parts of the) fields may not be migrated. To cope with this
mapping pattern, we use the logical schema. Each field of the physical schema is
mapped with one (compound) field of the logical schema, and each column derives
from one field of the logical schema (Figure 8.2). Now, the logical schema is in
a one-to-one relationship with the relational structures, since each of its fields
corresponds to one column at most.

The third mapping pattern occurs when one legacy field is converted into an
additional table. This transformation is applied when the field is multivalued, i.e.,
when it represents an array or a list of values. The mapping is used to identify the
SQL table that translates the field in order to generate queries retrieving/updating
rows from/of the table. The table representing the field must be connected to
the table translating its record type through a foreign key. The last two mapping
patterns can also be combined.

Set types Each CODASYL set type is translated into an SQL foreign key from
the member table to the owner table. According to the nature of the set type, the
corresponding foreign key columns are declared nullable or not. Using this way of
translating set types, CODASYL conditions related to sets are easy to simulate.
For instance, the conditions of the form IF setName MEMBER that verify that the
current record is a member of a given set, can be simulated by checking that
the foreign key associated to setName is not null for the corresponding row. As
another example, the setName IS NOT EMPTY condition, verifying that the current
record of a given set has member records connected to it, can be translated by
counting the rows of the member table that reference the current owner through
the corresponding foreign key.

DB-KEY In CODASYL the special register DB-KEY can be used to identify a
record in the database. This technical reference is global to the database (i.e.,
unique for all records whatever their type). This functionality is not available in
SQL. Some RDBMS provide a row-id that is local to a table only. A possible
solution consists in adding a db-key column to each SQL table translating a legacy
record type. This column identifies a row in the table and is usually implemented by
a auto-num data type. The DB-KEY concept is then represented by a compound

168 Chapter 8. From a CODASYL Database to a Relational Database

variable that contains the name of the record type together with the value of the
db-key column. This compound value is thus unique in the database.

8.3.2.2 Language conversion

Simulating the CODASYL language on top of a relational database poses non
trivial challenges such as the following:

• currency indicators management: the wrappers are statefull in that
they must store, manage and synchronize the CODASYL currency indica-
tors, which represent current states of reading sequences;

• sequence management: the wrappers simulate the CODASYL reading and
writing sequences on top of the target relational database;

• error management: the wrappers detect and report errors back to the
legacy programs. The errors are detected on top of the relational database,
but are reported by means of CODASYL status indicators;

Currency indicators management A wrapper associated to a record type
stores and manages (1) the current record of the record type, (2) the current
records of the set types for which the record type is a member, and (3) the current
record of the key belonging to the record type. Each currency indicator comprises
(1) a flag, indicating the current record status (null, not null, erased3), and (2) the
value of the current record itself.

The major difficulty when simulating CODASYL primitives in SQL is to prop-
erly position the currency indicators in case of crosscutting reading sequences. Let
us illustrate this issue by a small example. The top-left part of Figure 8.3 depicts
a fragment of a CODASYL database schema, where record type ORDERS (member)
is connected to record type CUSTOMER (owner) through set type S. The bottom-left
part of the figure represents sample data instances of that schema (C1 and C2 are
of type CUSTOMER and O1 , ..., O5 are of type ORDERS). The top-right side of the
same figure represents the corresponding relational schema fragment, where (1)
table CUSTOMER translates record type CUSTOMER, (2) table ORDERStranslates record
type ORDERS, and (3) set type S is translated into a foreign key column ORDERS.Owner

targeting CUSTOMER.ID. The bottom-right part of the figure depicts how the data
instances are organized in the relational database.

Let us now assume that, at some point of the program execution, the current
record of set type S is C1. From that point, Figure 8.4 considers a sequence of FIND

statements, together with their impact on the current record of S.
The record identified by statements of the form FIND NEXT WITHIN S is the next

record in the set, relative to the current record of the set type S according to the
ordering criteria specified for set type S. We notice that when record O4 is directly
accessed through its DB-KEY , the program switches to a different set occurence since

3In CODASYL, when a record is erased, its ghost keeps being the current record!

8.3. Wrapper-based program conversion 169

CODASYL schema

member
1-1

owner
0-N

S

CUSTOMER

ID

id: ID

ORDERS

O1

C1

O2

O3

C2

O4 O5

CODASYL instances

Relational schema

CUSTOMER

ID

id: ID

ORDERS

Owner

ref: Owner

O1

C1

O2 O3

C2

O4 O5

Relational instances

CODASYL schema

member
1-1

owner
0-N

S

CUSTOMER

ID

id: ID

ORDERS

O1

C1

O2

O3

C2

O4 O5O1

C1

O2

O3O1

C1

O2

O3

C2

O4 O5

C2

O4 O5

CODASYL instances

Relational schema

CUSTOMER

ID

id: ID

ORDERS

Owner

ref: Owner

O1

C1

O2 O3

C2

O4 O5

Relational instances

Figure 8.3: A CODASYL schema fragment and its corresponding relational schema,
together with sample data instances.

Executed FIND statement Current record of S

... C1

FIND NEXT WITHIN S O1

FIND NEXT WITHIN S O2

FIND ORDERS DB-KEY <db-key(O4)> O4

FIND NEXT WITHIN S O5

Figure 8.4: Impact of successive FIND statements on the current record of a set type

170 Chapter 8. From a CODASYL Database to a Relational Database

Set current record Set cursor state Set cursor action(s)

member open fetch
member closed re-position to current, fetch
owner closed open, fetch

Table 8.1: SQL translation of FIND NEXT WITHIN S statements.

O4 has another owner than O2. From that point, the next record of the set is not
O3 anymore, but is now O5.

Our approach for simulating such a behaviour in SQL is as follows. For each
set type S , a dedicated SQL cursor is used for traversing the set occurences of S .
In our example of Figure 8.3, the SQL cursor would be of the following form:

DECLARE S CURSOR FOR

SELECT <columns>

FROM ORDERS

WHERE Owner = <current_owner_id>

ORDER BY <set_ordering_criteria>

This cursor selects the rows representing all the members of the current set.
Indeed, all these rows refer to the owner of the current set through the associated
foreign key (Owner). The rows belonging to the set cursor are ordered in accordance
with the specified set ordering criteria. Each set cursor is used within the wrapper
associated to the member record (ORDERS in our example).

Table 8.1 summarizes the SQL translation of statements of the form FIND NEXT

WITHIN S. Most of the time, the wrapper only needs to execute a fetch S command,
provided that cursor S is already open. The wrapper closes the set cursor each
time the program switches to a new set. This can happen either when the current
member changes (from O2 to O4 in our example), or when the current owner is
modified. In the second case, the wrapper of the owner calls the wrapper of the
member, and the latter closes the corresponding set cursor.

Re-positioning the reading sequence to the current record of a set type S can
be done by re-opening cursor S and fetching it until the current record of S is
reached. An alternative solution consists in opening another cursor S’, similar to
cursor S, which selects all the remaining members of the current set starting from
the current record of S. The latter solution is preferable for performance reasons.

Note that the wrappers must deal with another complication: FIND primitives
provide an option (called retaining phrase) that allows programmers to select cur-
rency indicators to be left unchanged when executing the primitive.

Sequence management An important difference between CODASYL and SQL
concerns the management of reading and writing sequences. In CODASYL, when
records are retrieved from the database, they are read according to the physical
order, no sorting is done at the time of database reading. Consequently, the order in
which the elements are written in the database is very important and is specified in

8.3. Wrapper-based program conversion 171

the DDL code. For example, INSERTION NEXT (resp. LAST) means that a new record
is inserted right after the current record (resp. as the last element). A sorting
key may also be specified, which causes the records to be stored according to the
corresponding order.

By contrast, in SQL the physical order of the data is immaterial, the order in
which the rows appear being explicitly specified in the order by clause. Therefore,
in order to retrieve the SQL rows in the same order as the CODASYL records,
the sorting criteria must be made explicit. If a sorting key is declared in the DDL
code, translating this condition in SQL is straightforward. But in case no explicit
sorting key was specified, two main situations can arise. First, the programs may
use an implicit sorting key that was not declared in the DDL code (typically for
performance reasons). In this case, this implicit key can be used, provided that
it is recovered. The second possible situation is when the programmer does not
expect the data to be read in a particular order. In this situation, we use the table
identifier as sorting key. Indeed, due to currency indicators management issues
(e.g., cursor re-positioning) we have to make sure that the order be always the
same, which is not guaranteed by SQL.

Error management The execution of any CODASYL statement causes the data
management system to insert a value into the special register DB-STATUS. This
value is made up of a statement code in the leftmost two character positions,
and a status code in the rightmost five character positions. If the execution of
the data manipulation statement results in an exception condition, the statement
code indicates which type of database manipulation statement caused the exception
condition (e.g., 05 for FIND statements), and the status code indicates which type of
database exception condition occurred. If the statement execution does not result
in an exception, the indicator DB-STATUS is set to zero.

The wrappers must reproduce this behaviour when accessing the relational
database. As an example, let us assume that the current record of set type S is O3.
If FIND NEXT WITHIN S is executed, the end of the set is reached. In CODASYL,
such an exception condition is indicated by a status code value equal to 02100. Thus
the invoked wrapper should return an exception status value equal to 0502100. In
terms of the SQL language, this corresponds to the end of the set cursor, which is
indicated by a SQLCODE value equal to 100.

8.3.3 Program transformation

During the program transformation step, the legacy application programs are in-
terfaced with the wrappers. The source code adaptation involves the combination
of the following transformations:

• replacing legacy database primitives with corresponding wrapper invocations
(db-2-wrap);

• renaming some variables (var-rename);

172 Chapter 8. From a CODASYL Database to a Relational Database

Initial code fragment Transformed code fragment

* FIND NEXT WITHIN S
SET WR-ACTION-FIND4NR TO TRUE
MOVE “ORDERS" TO WR-CALL-NAME
MOVE "S" TO WR-OPTION
PERFORM WRAPPER-CALL
IF WR-STATUS= ZEROS

PERFORM GET-RECORD
ELSE

PERFORM DB-ERROR.

FIND NEXT WITHIN S
IF DB-STATUS = ZEROS

PERFORM GET-RECORD
ELSE

PERFORM DB-ERROR.

Figure 8.5: Example of legacy code transformation.

• adapting the type of some variables (type-adapt);

• adding new variable declarations (var-insert);

• adding new code sections (code-insert).

The exact combination chosen depends on the kind of source code file to be trans-
formed, as identified during the reverse engineering phase. For instance, the db-
2-wrap transformation is useless when converting programs that do not directly
access the legacy database.

The main input parameters of the program transformation tools are automat-
ically derived from the source, intermediate and target database schemas. These
parameters include (1) the list of the record types; (2) the list of the migrated record
types; (3) the list of the area’s; (4) the correspondence table between set types,
members and owners; (5) additional variable declarations and code fragments.

Figure 8.5 illustrates the program transformation step. It shows how FIND

NEXT WITHIN S statements are rewritten as corresponding wrapper invocations (db-
2-wrap). In this particular case, the transformed program specifies the action to
perform (SET WR-ACTION-FIND4NR TO TRUE), as well as the set type involved (MOVE
"S" TO WR-OPTION). The wrapper to invoke is the one associated to the member of
the given set type S, namely ORDERS (MOVE "ORDERS" TO WR-CALL-NAME). Figure 8.5
also gives an example of variable renaming (var-rename): CODASYL status indi-
cator DB-STATUS is renamed as wrapper status indicator (WR-STATUS). The wrappers
use the renamed variable to report status indicators to the application programs.

8.4 CODASYL-to-SQL translation

In this section, we systematically present conversion rules for simulating the main
CODASYL data manipulation primitives on top of the SQL language. Accord-
ing to the approach presented in this chapter, those rules serve as a basis for the

8.4. CODASYL-to-SQL translation 173

automatic generation of backward wrappers. The variant of the CODASYL lan-
guage considered is IDS/II, the implementation of CODASYL used on Bull GCOS
mainframes.

8.4.1 Preliminaries

One-to-one mapping As for the COBOL-to-SQL rules of Chapter 7, we will
assume a one-to-one mapping holding between the CODASYL schema and the
relational schema. This mapping can be expressed as follows. Let Scod be the
CODASYL schema. Let Srel be its relational translation. We assume that:

• ∀ record type R ∈ Scod : ∃ a corresponding table tR ∈ Srel;

• ∀ record type R ∈ Scod : ∀ field fi of R : ∃ a corresponding column cfi
∈ tR;

• ∀ set type S ∈ Scod between a member record type mem and an owner
record type own : ∃ a foreign key fkS from tmem to town. We will note idS

the identifier of table town corresponding to foreign key fkS in tmem.

Currency and status registers We assume the program fragments (wrappers
or additional procedures) in charge of simulating the IDS/II primitives in SQL
make use of the following variables:

• cur denotes the current record of the run unit;

• ∀ record type R ∈ Scod : UWA-R represents the record R of the user working
area (UWA), i.e., at the program side;

• ∀ record type R ∈ Scod : WK-R represents a working variable for storing a
record of type R;

• ∀ record type R ∈ Scod : CUR-R represents the current record of R;

• ∀ set type S ∈ Scod : CUR-S represents the current record of S;

• ∀ access key type K ∈ Scod : CUR-K represents the current record of K;

• ∀ set record type R ∈ Scod : INIT-FLAG-R is a flag indicating whether the
current record of R is null (= 0) or initialized (= 1).

• ∀ set type S ∈ Scod : INIT-FLAG-S is a flag the value of which indicates
whether the current record of S:

– is null (= 0);

– is a member record and the set cursor is well-positioned (= 1);

– is the owner record and the set cursor is closed (= 2);

– was deleted (= 3);

174 Chapter 8. From a CODASYL Database to a Relational Database

– is a member record but the set cursor is not well-positioned (= 4);

– is the owner record and the set cursor is open (= 5).

• STATUS is the status variable indicating the IDS/II exceptions, it simulates
the IDS/II register DB-STATUS;

• ∀ cursor c : LC-c is a boolean variable that indicates whether c is the last
opened cursor or not.

Help COBOL paragraphs The translation rules below will make use of the
following COBOL procedures:

• MOVE-UWA-TO-WK-R: moves the program-side record UWA-R from the UWA
to the working variable WK-R.

• MOVE-WK-R-TO-CUR: moves the working variable WK-R to cur, to CUR-R, and
to CUR-S (∀ set type S : R is member/owner of S), according to the retaining
phrase if any.

• MOVE-WK-R-TO-CUR-K: moves the working record WK-R to the current record
of key type K (CUR-K).

• MOVE-CUR-TO-UWA-R: delivers the current record of the run unit, which is of
type R, to the user working area of the program (i.e., to UWA-R).

• CLOSE-LAST-CURSOR-recName: closes the last opened database cursor used
to access record type recName.

• CLOSE-LAST-CURSOR-keyName: closes the last opened cursor based on record
key type keyName.

• UPDATE-STATUS: updates the value of the status variable (STATUS) and of the
INIT-FLAG-x variables, if necessary.

8.4.2 FIND statement

This section is dedicated to the simulation of FIND statements in SQL.

General format

Syntax FIND recordSelectionExpression

[RETAINING CURRENCY FOR { REALM |SETS |RECORD |{setName1 [,setName2] ...}]

8.4. CODASYL-to-SQL translation 175

Effect The FIND statement causes the record referenced by the record selection
expression to become the current record of the run unit.

If the RETAINING phrase is not specified, the referenced record also becomes the
current record of its area, the current record of its record type, and the current
record of all sets in which it is a tenant (owner or member).

If the RETAINING phrase is specified with:

• REALM: the area currency indicators are left unchanged;

• SETS: no set type currency indicators are changed;

• RECORD: the record type currency indicators remains unchanged;

• setName1, setName2, ...: the set currency indicators for the named sets are
not changed.

Below, we describe how the various kinds of FIND statements can be simu-
lated by means of corresponding select queries or SQL cursor manipulation state-
ments4.

Format 1

Syntax FIND [recName] DB-KEY IS identifier

Effect This statement identifies the record of type recName whose database key
value is equal to the value of the data item referenced by identifier. If such
a record is found, it becomes the current record. If a record with the specified
database key value is not found, an exception status (0502400) is returned and the
currency indicators are left unchanged.

SQL translation Translating this statement in SQL can be done provided that
the database key has been explicitly defined as a column (e.g., dbkey) of the rela-
tional table translating recName (trecName). If it is the case, the SQL translation
consists in selecting the corresponding row as follows:

FIND1-recName.

MOVE ZERO TO STATUS.

MOVE identifier TO DBK.

EXEC SQL

SELECT dbkey, cf1
, . . . cfn

INTO :WK-recName-dbkey, :WK-recName-f1, . . . :WK-recName-fn

FROM trecName

WHERE dbkey = :DBK

END-EXEC.

IF SQLCODE NOT = ZERO

4For readability reasons, we will ignore some exception cases in the provided translation rules.
Those cases are taken into account by our wrapper generator.

176 Chapter 8. From a CODASYL Database to a Relational Database

MOVE 0502400 TO STATUS

ELSE

PERFORM MOVE-WK-recName-TO-CUR

END-IF.

END-FIND1-recName.
PERFORM UPDATE-STATUS.

Format 2

Syntax FIND {ANY |DUPLICATE } recName

Rules The location mode corresponding to record type recName must be calcu-
lation.

Variants We distinguish two possible instructions from the syntax:

• FIND ANY recName (FIND2A);

• FIND DUPLICATE recName (FIND2D).

Effect

• FIND2A: If the ANY phrase is specified, the calculation key values for the
record named by recName (i.e., its identifying field values) are used to locate
the record in the database. The values must be moved into the corresponding
fields of the UWA before the FIND statement is issued. If more than one record
of type recName contains calculation key values equal to those in the record
area, the record identified is the one whose database key is the lowest.

• FIND2D: If the DUPLICATE phrase is specified, the first record found after
the current record of the run unit, with the proper calculation key values is
the record identified. If a record with the proper calculation key values is not
found an exception status (0502400) is returned and the currency indicators
are left unchanged.

SQL translation The SQL translation of both instructions makes use of the calc
key cursor defined as follows:

EXEC SQL

DECLARE CK recName CURSOR FOR

SELECT dbkey, cf1
, . . . cfn

FROM trecName

WHERE cf1ck
= :WK-recName-f1ck

AND

. . .

cfpck
= :WK-recName-fpck

ORDER BY dbkey

END-EXEC.

8.4. CODASYL-to-SQL translation 177

where the calculation key of recName is computed from fields f1ck
. . . fpck

. The
calc key cursor selects the rows of the table translating recName having the proper
value(s) of the column(s) cick

corresponding to fields fick
.

• FIND2A. The FIND ANY recName primitives may then be simulated as
follows:

FIND2A-recName.
MOVE ZERO TO STATUS.

PERFORM CLOSE-LAST-CURSOR-recName.

MOVE UWA-recName-f1ck
TO WK-recName-f1ck

.

. . .

MOVE UWA-recName-fpck
TO WK-recName-fpck

.

EXEC SQL

OPEN CK recName

END-EXEC.

IF SQLCODE NOT = ZERO

GO TO END-FIND2A-recName

END-IF.

EXEC SQL

FETCH CK recName

INTO :WK-recName-dbkey, :WK-recName-f1, . . . :WK-recName-fn

END-EXEC.

IF SQLCODE NOT = ZERO

MOVE 0502400 TO STATUS

ELSE

PERFORM MOVE-WK-recName-TO-CUR

END-IF.

END-FIND2A-recName.

PERFORM UPDATE-STATUS.

The translation consists in opening the calc key cursor, before fetching it. If
the record is found, then it becomes the current record. By contrast, if the
cursor is empty (end of cursor), the exception status (0502400) is returned.

• FIND2D. The FIND DUPLICATE recName primitives may be simulated as
follows:

FIND2D-recName.

MOVE ZERO TO STATUS.

IF NOT(LC-CK recName)

PERFORM FIND2A

END-IF.

EXEC SQL

FETCH CK recName

INTO :WK-recName-dbkey, :WK-recName-f1, . . . :WK-recName-fn

END-EXEC.

IF SQLCODE NOT = ZERO

178 Chapter 8. From a CODASYL Database to a Relational Database

MOVE 0502400 TO STATUS

ELSE

PERFORM MOVE-WK-recName-TO-CUR

END-IF.

END-FIND2D-recName.

PERFORM UPDATE-STATUS.

In case the last opened cursor is not the calc key cursor, the FIND2D pro-
cedure simply calls the FIND2A procedure before fetching again the cursor.
If the cursor is already open, the procedure simply fetches it. If the record
is found, then it becomes the current record. By contrast, if there is no re-
maining row (end of cursor), an exception status code (0502400) is returned.

Format 3

Syntax FIND DUPLICATE WITHIN setName USING field1 [,field2] ...

Effect The record identified (1) is a member of the set occurrence identified by
the currency indicator for setName, and (2) has the contents of the data items
referenced by field1, field2,... equal to those in the current record of setName.
The search begins at the next record in the order defined by the set ordering criteria
of setName.

SQL translation Translating this primitive, the code name of which is FIND3,
necessitates another cursor which selects all the records that (1) are a member of
the current set occurence of setName, and (2) are located after the current record
of the set according to the set ordering criteria. This cursor, that we call set after
current cursor, is defined as follows:

EXEC SQL

DECLARE FK setName AC CURSOR FOR

SELECT dbkey, cf1
, . . . cfn

FROM trecName

WHERE fksetName = :CUR-setName-fksetName AND

orderingCriteriasetName > :CUR-setName-orderingCriteriasetName

ORDER BY orderingCriteriasetName

END-EXEC.

where recName is the member record type of set type setName, and order-
ingCriteriasetName denotes the field(s)/column(s) involved in the set ordering cri-
teria of setName.

Simulating the FIND3 primitive basically consists in opening the FK setName AC
cursor (if it is not already open), before fetching it until a record with the proper
values of field1 [,field2]... is found. If such a record cannot be found, the ex-
ception status code 0502400 (no record found to satisfy record selection criteria) is
returned. We give below the pseudo-code of this translation:

8.4. CODASYL-to-SQL translation 179

FIND3-setName.
MOVE ZERO TO STATUS.

IF INIT-FLAG-setName = 0

MOVE 0503100 TO STATUS

GO TO END-FIND3-setName

END-IF.

IF INIT-FLAG-setName = 2 OR 3 OR 5

MOVE 0503800 TO STATUS

GO TO END-FIND3-setName

END-IF.

IF NOT(LC-FK setName AC)

EXEC SQL

OPEN FK setName AC

END-EXEC

END-IF.

IF SQLCODE NOT = ZERO

GO TO END-FIND3-setName

END-IF.

MOVE 0 TO FOUND.

PERFORM

UNTIL FOUND = 1 OR SQLCODE NOT = ZERO

EXEC SQL

FETCH FK setName AC

INTO :WK-recName-dbkey, :WK-recName-f1, . . . :WK-recName-fn

END-EXEC

IF SQLCODE NOT = ZERO

GO TO END-FIND3-setName

END-IF

IF WK-recName-field1 = CUR-recName-field1 AND

WK-recName-field2 = CUR-recName-field2 AND

...

MOVE 1 TO FOUND

END-IF

END-PERFORM.

IF SQLCODE NOT = ZERO

MOVE 0502400 TO STATUS

GO TO END-FIND3-setName

ELSE

PERFORM MOVE-WK-recName-TO-CUR

END-IF.

END-FIND3-setName.
PERFORM UPDATE-STATUS.

where recName is the member record type of set type setName.

The exception cases are the following. If the current record of set type setName

is not initialized, the exception status 0503100 (current record is null) is returned.

If the current record of setName is owner of the set (INIT-FLAG-setName = 2

OR 5) or was deleted (IF INIT-FLAG-setName = 3), the exception status 0503800

180 Chapter 8. From a CODASYL Database to a Relational Database

(current record set is not correct record type) is returned.

Format 4

Syntax FIND {FIRST |NEXT |LAST |PRIOR} [recName] WITHIN {setName |areaName}

Variants We can distinguish two main categories of FIND4 statements:

• FIND ... WITHIN setName statements, that navigate in the current set oc-
curence of setName;

• FIND ... WITHIN areaName statements, which target the records belonging
to a specified area areaName.

We will ignore here the translation of the second category of statements since we
assume the areas are not translated in the target relational database. Indeed, such
physical collections of records do not usually make sense in the relational model.
Actually, we identify two typical cases. In the most frequent case, the areas are
simply ignored when migrating the database. In this case, the ”WITHIN areaName”
clause can be ignored as well in the SQL translation, which then considers all the
records of type recName. The second possible situation is when the areas actually
classify the records according to logical criteria. In this second case, one must
specify which (additional) columns of the corresponding tables allow to determine
to which area a record belong, such that an appropriate cursor can be defined.
Note that in both cases, the SQL translation is possible if and only if recName is
specified.

We will therefore only present the translation of the first category of FIND4
statements, which can be further subdivided in eight variants.

Effect

• FIND4FR: FIND FIRST recName WITHIN setName.
The record identified is the first member of the set in which the current
record of the set type referenced by setName is a tenant (owner or member),
according to the set ordering criteria for that set type.

• FIND4NR: FIND NEXT recName WITHIN setName.
The record identified is the next record in the set, relative to the current
record of the set type referenced by setName according to the set ordering
criteria for that set type.

• FIND4LR: FIND LAST recName WITHIN setName.
The record identified is the last member of the set in which the current
record of the set type referenced by setName is a member, according to the
set ordering criteria for that set type.

8.4. CODASYL-to-SQL translation 181

• FIND4PR: FIND PRIOR recName WITHIN setName.
The record identified is the prior record in the set, relative to the current
record of the set type referenced by setName according to the set ordering
criteria for that set type.

• FIND4F: FIND FIRST WITHIN setName.
This variant is equivalent to FIND4FR, where recName is the member record
type of setName.

• FIND4N: FIND NEXT WITHIN setName.
This variant is equivalent to FIND4NR, where recName is the member record
type of setName.

• FIND4L: FIND LAST WITHIN setName.
This variant is equivalent to FIND4LR, where recName is the member record
type of setName.

• FIND4P: FIND PRIOR WITHIN setName.
This variant is equivalent to FIND4PR, where recName is the member record
type of setName.

SQL translation

• FIND4FR. The SQL translation of the FIND4FR primitive makes use of
the following cursor.

EXEC SQL

DECLARE FK setName CURSOR FOR

SELECT dbkey, cf1
, . . . cfn

FROM trecName

WHERE fksetName = :CUR-setName-fksetName

ORDER BY orderingCriteriasetName

END-EXEC.

This cursor selects all the member records of the set occurence of setName in
which the current record of setName is a member. The records are ordered
according to the set ordering criteria associated to setName.

Translating the FIND4FR primitive simply consists in opening and fetching
this cursor, as performed in the following pseudo-code fragment:

FIND4FR-setName.
IF INIT-FLAG-setName = 0

MOVE 0503100 TO STATUS

GO TO END-FIND4FR-setName

END-IF.

MOVE ZERO TO STATUS.

PERFORM CLOSE-LAST-CURSOR-recName.

182 Chapter 8. From a CODASYL Database to a Relational Database

EXEC SQL

OPEN FK setName

END-EXEC.

IF SQLCODE NOT = ZERO

GO TO END-FIND4FR-setName

END-IF.

EXEC SQL

FETCH FK setName

INTO :WK-recName-dbkey, :WK-recName-f1, . . . :WK-recName-fn

END-EXEC.

IF SQLCODE NOT = ZERO

MOVE 0502100 TO STATUS

PERFORM CLOSE-LAST-CURSOR-recName

GO TO END-FIND4FR-setName

ELSE

PERFORM MOVE-WK-recName-TO-CUR

END-IF.

END-FIND4FR-setName.
PERFORM UPDATE-STATUS.

If the current record of the set type referenced by setName is not initialized,
the exception status code 0503100 (current record is null) is returned.

If the set is empty, the exception status code 0502100 (end of set) is returned.

• FIND4NR. Translating FIND4NR primitives is a bit more complex, as al-
ready suggested in Section 8.3.2.2. The pseudo-code of the translation is
provided below:

FIND4NR-setName.
MOVE ZERO TO STATUS.

IF INIT-FLAG-setName = 0

MOVE 0503100 TO STATUS

GO TO END-FIND4NR-setName

END-IF.

IF INIT-FLAG-setName = 2 OR 5

PERFORM FIND4FR-setName

GO TO END-FIND4NR-setName

END-IF.

IF NOT(LC-FK setName) OR INIT-FLAG-setName = 4

PERFORM OPEN-AND-POSITION-FK setName

IF SQLCODE NOT = ZERO

MOVE 0502100 TO STATUS

GO TO END-FIND4NR-setName

END-IF

END-IF.

EXEC SQL

FETCH FK setName

INTO :WK-recName-dbkey, :WK-recName-f1, . . . :WK-recName-fn

8.4. CODASYL-to-SQL translation 183

END-EXEC.

IF SQLCODE NOT = ZERO

MOVE 0502100 TO STATUS

PERFORM CLOSE-LAST-CURSOR-recName

GO TO END-FIND4NR-setName

ELSE

PERFORM MOVE-WK-recName-TO-CUR

END-IF.

END-FIND4NR-setName.
PERFORM UPDATE-STATUS.

If the current record of set type setName is not initialized (INIT-FLAG-setName

= 0), the exception status code 0503100 (current record is null) is returned.

If the current record of set type setName is the owner (INIT-FLAG-setName

= 2 OR 5), the translation is (almost) the same as for the corresponding
FIND4FR primitive. Indeed, the next record relative to the owner is the first
member record of the set. The only difference is that one first has to move the
value of the identifier of the current owner (CUR-setName-idsetName) to the
foreign key value used as input of the set cursor (CUR-setName-fksetName).

If the current record of the set type referenced by setName is a member
record m, we must distinguish two main cases:

1. the set cursor is either closed (NOT(LC-FK setName)) or not correctly
positioned on m (INIT-FLAG-setName = 4): in this case, the transla-
tion must first re-open the set cursor and reposition it on the current
record m5. Once this re-positioning has been done, an additional fetch
of the set cursor is performed.

2. the set cursor is open and position on m: in this case, the translation
simply consists in performing an additional fetch of the set cursor.

If the last fetch reaches the end of the set cursor, the exception status 0502100
(end of set) is returned.

• FIND4LR. The SQL translation of the FIND4LR uses the reverse set cursor
defined as follows.

EXEC SQL

DECLARE FK setName REVERSE CURSOR FOR

SELECT dbkey, cf1
, . . . cfn

FROM trecName

WHERE fksetName = :CUR-setName-fksetName

ORDER BY reverse(orderingCriteriasetName)
END-EXEC.

5this is done through procedure OPEN-AND-REPOSITION-FK setName.

184 Chapter 8. From a CODASYL Database to a Relational Database

where reverse(orderingCriteriasetName) corresponds to the inverse ordering
of orderingCriteriasetName.

The translation consists in opening and fetching the reverse set cursor, in
order to retrieve the last member record of the current set occurence of
setName.

FIND4LR-setName.
MOVE ZERO TO STATUS.

IF INIT-FLAG-setName = 0

MOVE 0503100 TO STATUS

GO TO END-FIND4LR-setName

END-IF.

PERFORM CLOSE-LAST-CURSOR-recName.

EXEC SQL

OPEN FK setName REVERSE

END-EXEC.

IF SQLCODE NOT = ZERO

GO TO END-FIND4LR-setName

END-IF.

EXEC SQL

FETCH FK setName REVERSE

INTO :WK-recName-dbkey, :WK-recName-f1, . . . :WK-recName-fn

END-EXEC.

IF SQLCODE NOT = ZERO

MOVE 0502100 TO STATUS

PERFORM CLOSE-LAST-CURSOR-recName

GO TO END-FIND4LR-setName

ELSE

PERFORM MOVE-WK-recName-TO-CUR

END-IF.

END-FIND4LR-setName.
PERFORM UPDATE-STATUS.

If the current record of set type setName is not initialized, the exception
status code 0503100 (current record is null) is returned.

• FIND4PR. The way of translating the FIND4PR primitives depends on the
availability of the FETCH PRIOR statement in the target relational DBMS. If
it is available, the set cursor can be fetched backwards. If it is not available,
one can use either the reverse set cursor, which necessitates re-positioning,
or the reverse set before current cursor, which selects all the member records
of the current set occurence that are located before the current record, in the
reverse order of the set ordering criteria. In both cases, the translation is
very similar to the one of the FIND4NR primitive.

Format 5

Syntax FIND CURRENT [recName] [WITHIN {setName |areaName}]

8.4. CODASYL-to-SQL translation 185

Rules If recName and areaName are specified, then recName must be the
record type of the current record of areaName. If recName and setName are
specified, then recName must be the record type of the current record of setName.

Effect The effect of the FIND5 statement obviously depends on the variant used:

• FIND5: FIND CURRENT

The record identified is the current record of the run unit.

• FIND5R: FIND CURRENT recName

The record identified is the current record of the record type referenced by
recName.

• FIND5S and FIND5RS: FIND CURRENT [recName] WITHIN setName

The record identified is the current record of the set type referenced by
setName.

• FIND5A and FIND5RA: FIND CURRENT [recName] WITHIN areaName

The record identified is the current record of the area referenced by areaName.

For the same reasons as those explained above, we will ignore below the translation
FIND5A and FIND5RA statements, since we assume the areas are not relevant,
and therefore not translated, in the relational database.

SQL translation

• FIND5: the translation of the FIND CURRENT statement consists in making
the current record of the run unit (cur) the current record of its record type
and set types. In case cur is null, the exception status code 0503200 is
returned (current record of the run unit is null).

FIND5.

MOVE ZERO TO STATUS.

IF cur = null

MOVE 0503200 TO STATUS

GO TO END-FIND5

ELSE

MOVE cur TO WK-recName

PERFORM MOVE-WK-recName-TO-CUR

END-IF.

END-FIND5.

PERFORM UPDATE-STATUS.

where recName refers to the record type of cur.

• FIND5R: the translation of the FIND CURRENT recName consists in making
the current record of record type recName the current record the run unit and
of its set types. If the current record of the specified record type recName is
null, the exception status code 0503100 (current record of record type is null)
is returned. This behaviour can be simulated as follows:

186 Chapter 8. From a CODASYL Database to a Relational Database

FIND5R-recName.

MOVE ZERO TO STATUS.

IF INIT-FLAG-recName = 0

MOVE 0503100 TO STATUS

GO TO END-FIND5R-recName

ELSE

MOVE CUR-recName TO WK-recName

PERFORM MOVE-WK-recName-TO-CUR

END-IF.

END-FIND5R-recName.

PERFORM UPDATE-STATUS.

• FIND5S: the translation of the FIND CURRENT WITHIN setName consists
in making the current record of set type setName the current record the run
unit and of its record type. If the current record of setName is null or was
deleted, the exception status code 0503100 (current record of set type is null)
is returned.

FIND5S-setName.

MOVE ZERO TO STATUS.

IF INIT-FLAG-setName = 0 OR 3

MOVE 0503100 TO STATUS

GO TO END-FIND5S-setName

ELSE

MOVE CUR-setName TO WK-recName

PERFORM MOVE-WK-recName-TO-CUR

END-IF.

END-FIND5S-setName.

PERFORM UPDATE-STATUS.

where recName refers to the record type of CUR-setName.

• FIND5RS: the translation of the FIND CURRENT recName WITHIN setName
is similar to the one of the FIND5S statement. The only difference is the fol-
lowing: if the specified recName does not correspond to the record type of
the current record of setName, the exception status code 0503300 (current
record not of correct type) is returned.

FIND5RS-recName-setName.

MOVE ZERO TO STATUS.

IF INIT-FLAG-setName = 0 OR 3

MOVE 0503100 TO STATUS

GO TO END-FIND5RS-recName-setName

END-IF.

IF recordType(CUR-setName) NOT = recName

MOVE 0503300 TO STATUS

GO TO END-FIND5RS-recName-setName

END-IF.

8.4. CODASYL-to-SQL translation 187

MOVE CUR-setName TO WK-recName.

PERFORM MOVE-WK-recName-TO-CUR.
END-FIND5RS-recName-setName.

PERFORM UPDATE-STATUS.

where recordType(CUR-setName) refers to the record type of CUR-setName.

Format 6

Syntax FIND OWNER WITHIN setName

Effect The record identified is the owner of the set occurrence of the current
record of setName.

SQL translation If the current record of setName is null (INIT-FLAG-setName
= 0), the exception status code 0503100 is returned. If the current record of
setName is a member record (INIT-FLAG-setName ∈ {1, 3, 4)), the owner record
to be returned can be identified based on the value of the foreign key translating the
set type. If the current record of the set already is the owner (INIT-FLAG-setName
= 3 OR 5), the translation simply makes it the current record of the run unit and
of its record type, similarly to the corresponding FIND5S statement.

FIND6-setName.

MOVE ZERO TO STATUS.

IF INIT-FLAG-setName = 0

MOVE 0503100 TO STATUS

GO TO END-FIND6-setName

END-IF.

IF INIT-FLAG-setName = 1 OR 3 OR 4

EXEC SQL

SELECT dbkey, cf1
, . . . cfn

INTO :WK-recName-dbkey, :WK-recName-f1, . . . :WK-recName-fn

FROM trecName

WHERE idsetName = :CUR-setName-fksetName

END-EXEC.

IF SQLCODE = ZERO

PERFORM MOVE-WK-recName-TO-CUR

END-IF

END-IF.

IF INIT-FLAG-setName = 3 OR 5

MOVE CUR-setName TO WK-recName

PERFORM MOVE-WK-recName-TO-CUR

END-IF.

END-FIND6-setName.

PERFORM UPDATE-STATUS.

where recName is the owner record type of setName.

188 Chapter 8. From a CODASYL Database to a Relational Database

Format 7

Syntax FIND recName WITHIN setName [USING field1 [, field2] ...]

Effect The record identified has a type equal to that of the record referenced by
recName.

If the USING phrase is not specified, the record identified is the first member
of the set setName according to the set ordering criteria for that set (like the
FIND4FR statement).

If the USING phrase is specified, the record identified has the contents of the
data items referenced by field1, field2,... equal to these data items in the UWA.
So, in this case, the FIND7 statement is similar to the FIND3 statement, except
that the reference values of field1, field2,... are not those of the current record of
setName, but those of the UWA.

SQL translation The SQL translation of this statement is not provided below
since it does not necessitate anything new compared to the FIND3 and FIND4FR
statements.

Format 8

Syntax FIND [{ FIRST |NEXT }] recName USING keyName

Rules keyName must be defined in a key description entry in the subschema.
recName must be defined in the subschema and must be a record type whose
record key is identified by keyName.

Effect Records are maintained in ascending order of sequence by record key con-
tent for each keyName specified for record types in the subschema.

• FIND8R: FIND recName USING keyName

The value of the data item in the record area for recName, which constitutes
the record key referred to by keyName, is used to identify the record of type
recName to be selected. If a record of the named record type with the
specified key values is not found, two cases are possible.

1. There are no records of the named record type whose key value is greater
than the specified key value. In this case, the exception status code
0502400 (no record found to satisfy record selection criteria) is returned
and currency indicators are left unchanged.

2. A record of the named record type whose key value is greater than the
specified key value is found. In this case, the execution of the statement
is successful but the exception status code 0502401 (record returned
whose key value is greater than the specified key value) is returned.

8.4. CODASYL-to-SQL translation 189

• FIND8FR: FIND FIRST recName USING keyName

The record selected is the record whose record key value is the lowest within
the logical ordering of records specified for keyName. If such a record is
not found, the exception status code 0502100 is returned and the currency
indicators are left unchanged.

• FIND8NR: FIND NEXT recName USING keyName

The record selected is the record whose record key value is next higher relative
to the current record of record key keyName. If such a record is not found,
the exception status code 0502100 is returned and the currency indicators
are left unchanged.

Upon successful completion of the FIND8 statement, the record identified is
established as the current record of keyName, of the run unit, of its record type
and of its set types. Currency indicators for all other record keys remain unchanged.

Assumption We assume here that recName is the only record type associated
to key type keyName.

SQL translation The translation of the FIND8 statement makes use of two
cursors, which are similar to the order by and not less cursors used in the COBOL-
to-SQL translation rules of Chapter 7. Let f1key

...fpkey
be the fields of record type

recName on top of which key type keyName is defined.
The ORDER BY keyName cursor selects all the records of type recName ordered

in ascending order of the record key value keyName:

EXEC SQL

DECLARE ORDER BY keyName CURSOR FOR

SELECT dbkey, cf1
, . . . cfn

FROM trecName

ORDER BY cf1key
, . . . cfpkey

END-EXEC.

The NOT LESS keyName cursor selects all the records of type recName whose
record key value keyName is higher or equal relative to the working record of
recName. The records of this cursor are ordered in ascending order of the record
key value.

EXEC SQL

DECLARE NOT LESS keyName CURSOR FOR

SELECT dbkey, cf1
, . . . cfn

FROM trecName

WHERE cf1key
> :WK-recName-f1key

OR

(cf1key
= :WK-recName-f1key

AND cf2key
> :WK-recName-f2key

) OR

...

(cf1key
= :WK-recName-f1key

AND

...

190 Chapter 8. From a CODASYL Database to a Relational Database

cfp−1key
= :WK-recName-fp−1key

AND cfpkey
>= :WK-recName-fpkey

)

ORDER BY cf1key
, . . . cfpkey

END-EXEC.

• FIND8R: The SQL translation of the FIND8R statement basically consists
in opening and fetching the NOT LESS keyName cursor, before doing a test
on the record key value of the record obtained.

FIND8R-keyName.

PERFORM CLOSE-LAST-CURSOR-keyName.

MOVE UWA-recName-f1key
TO WK-recName-f1key

.

...

MOVE UWA-recName-fpkey
TO WK-recName-fpkey

.

EXEC SQL

OPEN NOT LESS keyName

END-EXEC.

IF SQLCODE NOT = ZERO

GO TO END-FIND8R-keyName

END-IF.

EXEC SQL

FETCH NOT LESS keyName

INTO :WK-recName-dbkey, :WK-recName-f1, . . . :WK-recName-fn

END-EXEC.

IF SQLCODE NOT = ZERO

MOVE 0502400 TO STATUS

PERFORM CLOSE-LAST-CURSOR-recName

GO TO END-FIND8R-keyName

END-IF.

IF (WK-recName-f1key
= UWA-recName-f1key

) AND

...

(WK-recName-fpkey
= UWA-recName-fpkey

)

MOVE ZERO TO STATUS

ELSE

MOVE 0502401 TO STATUS

END-IF.

PERFORM MOVE-WK-recName-TO-CUR.

PERFORM MOVE-WK-recName-TO-CUR-keyName.

END-FIND8R-keyName.

PERFORM UPDATE-STATUS.

If the end of the cursor is reached, the exception status code 0502400 (no
record found to satisfy record selection criteria) is returned. If a record with
the proper record key value is found, the normal status code 0 is returned.
If a record with a higher record key value is found, the exception status code
0502401 is returned.

• FIND8FR: The FIND8FR statement can be easily simulated by opening and
fetching the ORDER BY keyName cursor. Indeed, the record whose record key

8.4. CODASYL-to-SQL translation 191

value is the lowest is located at the first position of the cursor. If the end of
the cursor is reached, the exception status code 0502100 is returned.

FIND8FR-keyName.

MOVE ZERO TO STATUS.

PERFORM CLOSE-LAST-CURSOR-keyName.

EXEC SQL

OPEN ORDER BY keyName

END-EXEC.

IF SQLCODE NOT = ZERO

GO TO END-FIND8FR-keyName

END-IF.

EXEC SQL

FETCH ORDER BY keyName

INTO :WK-recName-dbkey, :WK-recName-f1,... :WK-recName-fn

END-EXEC.

IF SQLCODE NOT = ZERO

MOVE 0502100 TO STATUS

PERFORM CLOSE-LAST-CURSOR-recName

GO TO END-FIND8FR-keyName

END-IF.

PERFORM MOVE-WK-recName-TO-CUR.

PERFORM MOVE-WK-recName-TO-CUR-keyName.

END-FIND8FR-keyName.

PERFORM UPDATE-STATUS.

• FIND8NR: Translating the FIND8NR statement consists in fetching the
last opened cursor for key type keyName, either ORDER BY keyName or
NOT LESS keyName. If both cursors are closed, the exception 0503100 (cur-
rent record of key type is null) is returned.

FIND8NR-keyName.

MOVE ZERO TO STATUS.

IF keyName-CURSOR-NONE

MOVE 0503100 TO STATUS

GO TO END-FIND8NR-keyName

END-IF.

IF keyName-CURSOR-NOT-LESS

EXEC SQL

FETCH NOT LESS keyName

INTO :WK-recName-dbkey, :WK-recName-f1,... :WK-recName-fn

END-EXEC

END-IF.

IF keyName-CURSOR-ORDER-BY

EXEC SQL

FETCH ORDER BY keyName

INTO :WK-recName-dbkey, :WK-recName-f1,... :WK-recName-fn

END-EXEC

192 Chapter 8. From a CODASYL Database to a Relational Database

END-IF.

IF SQLCODE NOT = ZERO

MOVE 0502100 TO STATUS

GO TO END-FIND8NR-keyName

END-IF.

PERFORM MOVE-WK-recName-TO-CUR.

PERFORM MOVE-WK-recName-TO-CUR-keyName.

END-FIND8NR-keyName.

PERFORM UPDATE-STATUS.

8.4.3 GET statement

Syntax GET [{ recName |field1 [,field2] ... }]

Effect Execution of a GET statement causes the DBMS to place all or part of the
current record of the run unit in its associated record area in the UWA.

The three following variants can be identified:

• GET0: GET
The entire contents of the current record of the run unit are moved to the
UWA.

• GETR: GET recName

This form is equivalent to the GET0 variant: all fields in the current record of
the run unit (cur) are moved to the UWA. But if the specified recName does
not correspond to the record type of cur, the exception status code 0803300
is returned (current record of the run unit is not correct record type).

• GETF: GET field1 [,field2] ...
Only those data items listed (field1 [,field2] ...) are moved to the record
area for the current record in the UWA. All other fields for the record remains
unchanged.

SQL translation The simulation of those three statements is straightforward.

For the GET0 statement, it basically consists in moving the current record of the
run unit cur to the corresponding record of the UWA. If cur is not initialized, the
exception status code 0803200 (current record of the run unit is null) is returned.

GET.

MOVE ZERO TO STATUS.

IF cur = null

MOVE 0803200 TO STATUS

ELSE

MOVE cur TO UWA-recName

END-IF.

8.4. CODASYL-to-SQL translation 193

where recName is the record type of the current record of the run unit (cur).

The translation of the GETR variant is almost the same as for the GET0 state-
ment. An additional test has to be performed regarding the specified record type
recName, which must correspond to the record type of the current record of the
run unit cur. If this is not the case, the exception status code 0803300 (current
record of the run unit is not of correct record type) is returned.

GETR-recName.

MOVE ZERO TO STATUS.

IF cur = null

MOVE 0803200 TO STATUS

GO TO END-GETR-recName

END-IF.

IF recordType(cur) NOT = recName

MOVE 0803300 TO STATUS

GO TO END-GETR-recName

ELSE

MOVE cur TO UWA-recName

END-IF.

END-GETR-recName.

PERFORM UPDATE-STATUS.

where recordType(cur) denotes the record type of the current of the run unit
cur.

In the case of the GETF statement, only the specified fields are moved to the
corresponding record in the UWA. This can simulated as follows:

GETF.

MOVE ZERO TO STATUS.

IF cur = null

MOVE 0803200 TO STATUS

ELSE

MOVE cur-field1 TO UWA-recName-field1

MOVE cur-field2 TO UWA-recName-field2

...

END-IF.

where recName is the record type of the current record of the run unit (cur).

8.4.4 STORE statement

Syntax STORE recName

[RETAINING CURRENCY FOR { REALM |SETS |RECORD |{setName1 [,setName2] ...}]

Effect The STORE statement causes a record to be inserted in the database. It
also establishes that record as the current record of the run unit. The record
referenced by recName:

194 Chapter 8. From a CODASYL Database to a Relational Database

• becomes a member of each set type in which recName has been declared to
be an automatic member.

• is established as the owner of an empty set for each set type in which recName

is defined as an owner.

If the RETAINING phrase is not specified, the record referenced by recName

becomes the current record of its area, the current record of its record type, the
current record of all set types in which it has been declared to be a tenant (owner
or member), and the current of all record key types that are defined for the record.

If the RETAINING phrase is specified with:

• REALM: the area currency indicators are left unchanged;

• SETS: no set type currency indicators are changed;

• RECORD: the record type currency indicators remains unchanged;

• setName1, setName2, ...: the set currency indicators for the named sets are
not changed.

Assumption We assume that set ownership is identified by application, i.e., the
set occurence of a set type s in which a new member record is inserted is the one
of the current record of s.

SQL translation The SQL translation of the STORE statement obviously makes
use of an INSERT statement. In addition, three issues are to be taken into account
before the record can be inserted:

1. For each set type s in which the inserted record is declared an automatic
member, one needs to retrieve the identifier of the current owner of s in order
to use it as foreign key value.

2. One has to make sure that the inserted record does respect the uniqueness
constraints (calc key, etc..).

3. If the DB-KEY has been translated as a SQL column, a unique value of this
column has to be produced beforehand.

This leads to the following pseudo-code procedure:

STORE-recName.

MOVE ZERO TO STATUS.

PERFORM MOVE-UWA-TO-WK-recName.

MOVE ownerID(CUR-S1) TO WK-recName-fkS1
.

...

MOVE ownerID(CUR-Sk) TO WK-recName-fkSk
.

EXEC SQL

SELECT COUNT(*)

8.4. CODASYL-to-SQL translation 195

INTO :MYCOUNTER

FROM trecName

WHERE cufg1
= :WK-recName-ufg1 OR

...

cufgw = :WK-recName-ufgw

END-EXEC

IF MYCOUNTER NOT = ZERO

MOVE 1505100 TO STATUS

GO TO END-STORE-recName

END-IF.

EXEC SQL

SELECT MAX(dbkey)

INTO :WK-recName-dbkey

FROM trecName

END-EXEC

ADD 1 TO WK-recName-dbkey.

EXEC SQL

INSERT INTO trecName

(dbkey, fkS1
, ... fkSk

, cf1
, ... cfn)

VALUES

(:WK-recName-dbkey,:WK-recName-fkS1
,... :WK-recName-fkSk

,

:WK-recName-f1,... :WK-recName-fn)

END-EXEC.

IF SQLCODE NOT = ZERO

MOVE 1505100 TO STATUS

GO TO END-STORE-recName

END-IF.

PERFORM CLOSE-LAST-CURSOR-recName.

PERFORM MOVE-WK-recName-TO-CUR.

PERFORM MOVE-WK-recName-TO-CUR-K1.

...

PERFORM MOVE-WK-recName-TO-CUR-Km.

END-STORE-recName.

PERFORM UPDATE-STATUS.

where:

• ufg1 ... ufgw denote the w groups of fields of record type recName that are
declared unique;

• S1, . . . Sk are the k set types in which record type recName has been declared
to be an automatic member;

• ownerID(CUR-Si) denotes the identifier value of the owner of the current set
occurence of set type Si;

• K1, . . . Km are the m key types that are defined for the record type recName.

196 Chapter 8. From a CODASYL Database to a Relational Database

8.4.5 MODIFY statement

Format 1

Syntax MODIFY [recName]

[{INCLUDING |ONLY} {ALL |setName1 [,setName2]...} MEMBERSHIP]

Rules recName, if specified, must be the record type name of the current record
of the run unit. The current record of the run unit must be defined in the schema
DDL as a member of the set types referenced by setName1, setName2 ... , if any.

Effect The execution of a MODIFY statement alters the contents of the data items
in a record and/or changes the set membership of the record. The contents of the
data items in the database are replaced with the contents of the corresponding
items in the UWA. The object of the statement is the current record of the run
unit.

If the ONLY phrase is specified no data items are to be updated. If the ONLY

phrase is not specified, all data items in the current record of the run unit are to
be updated.

If no INCLUDING or ONLY phrase is present, no set membership is changed. If
an INCLUDING or ONLY phrase is specified with:

• ALL: the record’s membership is changed in every set in which it is a member.

• setName1, setName2,...: the record’s membership is changed in these set
types.

In addition, the current record of the run unit becomes the current record of
its area, the current record of its record type, and the current record of all sets in
which it is a tenant.

Assumption As for the STORE statement, we assume that set ownership is iden-
tified by application, i.e., the set occurence of a set type s to which a member record
is moved is the one of the current record of s.

SQL translation As for the STORE statement, some verification queries are
needed in order to make sure that the new field values provided respect the unique-
ness constraints. For the sake of clarity, we will ignore them in the provided trans-
lations.

The translation of format 1 of the MODIFY statement depends on the variant
used:

• MODIFYR: MODIFY recName
Without ONLY nor INCLUDING phrase, the translation of the statement is as
follows. One first checks that the specified recName does correspond to the
record type of the current record of the run unit (cur). If this is not the case,

8.4. CODASYL-to-SQL translation 197

the exception status code 1103300 is returned. If this is the case, all the data
items of the record are then modified according to the values of the UWA
fields. Then the modified record becomes the current record.

MODIFY-recName.

MOVE ZERO TO STATUS.

IF recordType(cur) NOT = recName

MOVE 1103300 TO STATUS

GO TO END-MODIFY-recName

END-IF.

MOVE cur TO WK-recName.

PERFORM MOVE-UWA-TO-WK-recName.

EXEC SQL

UPDATE trecName

SET cf1
= :WK-recName-f1,

...

cfn = :WK-recName-fn,

WHERE dbkey = :cur-dbkey

END-EXEC.

IF SQLCODE NOT = ZERO

GO TO END-MODIFY-recName

END-IF.

PERFORM MOVE-WK-recName-TO-CUR.
END-MODIFY-recName.

PERFORM UPDATE-STATUS.

where recordType(cur) denotes the record type of the current of the run
unit cur.

• MODIFY0: MODIFY
This variant is similar to MODIFYR, where recName is implicitly the record
type of the current record of the run unit.

MODIFY0.

PERFORM MODIFYR-recName.

where recName denotes the record type of the current of the run unit cur.

• MODIFYRIA: MODIFY recName INCLUDING ALL MEMBERSHIP
In the presence of an INCLUDING ALL phrase, the behaviour is similar except
that the set membership of the member record are also changed. This trans-
lates in updating the values of the corresponding foreign keys such that they
now refer to the owners of the current set occurences.

MODIFYRIA-recName.

MOVE ZERO TO STATUS.

IF recordType(cur) NOT = recName

198 Chapter 8. From a CODASYL Database to a Relational Database

MOVE 1103300 TO STATUS

GO TO END-MODIFYRIA-recName

END-IF.

MOVE cur TO WK-recName.

PERFORM MOVE-UWA-TO-WK-recName.

MOVE ownerID(CUR-S1) TO WK-recName-fkS1
.

...

MOVE ownerID(CUR-Sk) TO WK-recName-fkSk
.

EXEC SQL

UPDATE trecName

SET fkS1
= :WK-recName-fkS1

,

...

fkSk
= :WK-recName-fkSk

,

cf1
= :WK-recName-f1,

...

cfn = :WK-recName-fn,

WHERE dbkey = :cur-dbkey

END-EXEC.

IF SQLCODE NOT = ZERO

GO TO END-MODIFYRIA-recName

END-IF.

PERFORM MOVE-WK-recName-TO-CUR.
END-MODIFYRIA-recName.

PERFORM UPDATE-STATUS.

where:

– recordType(cur) denotes the record type of the current of the run unit
cur.

– S1, . . . Sk are the k set types in which record type recName has been
declared to be a member.

– ownerID(CUR-Si) denotes the identifier value of the owner of the current
set occurence of set type Si;

• MODIFYRIS: MODIFY recName INCLUDING setName1, setName2 ... MEMBERSHIP
The MODIFYRIS statement is simulated in the same way as MODIFYRIA,
except that only the foreign keys translating set types setName1, setName2

... are updated.

MODIFYRIS-recName.

MOVE ZERO TO STATUS.

IF recordType(cur) NOT = recName

MOVE 1103300 TO STATUS

GO TO END-MODIFYRIS-recName

END-IF.

MOVE cur TO WK-recName.

PERFORM MOVE-UWA-TO-WK-recName.

MOVE ownerID(CUR-setName1) TO WK-recName-fksetName1
.

8.4. CODASYL-to-SQL translation 199

MOVE ownerID(CUR-setName2) TO WK-recName-fksetName2
.

...

EXEC SQL

UPDATE trecName

SET fksetName1
= :WK-recName-fksetName1

,

fksetName2
= :WK-recName-fksetName2

,

...

cf1
= :WK-recName-f1,

...

cfn = :WK-recName-fn,

WHERE dbkey = :cur-dbkey

END-EXEC.

IF SQLCODE NOT = ZERO

GO TO END-MODIFYRIS-recName

END-IF.

PERFORM MOVE-WK-recName-TO-CUR.
END-MODIFYRIS-recName.

PERFORM UPDATE-STATUS.

where:

– recordType(cur) denotes the record type of the current of the run unit
cur.

– ownerID(CUR-Si) denotes the identifier value of the owner of the current
set occurence of set type Si;

• MODIFYROA: MODIFY recName ONLY ALL MEMBERSHIP
The MODIFYROA variant is similar to MODIFYRIA, but only the set for-
eign keys are updated while the other columns are left unchanged.

MODIFYROA-recName.

MOVE ZERO TO STATUS.

IF recordType(cur) NOT = recName

MOVE 1103300 TO STATUS

GO TO END-MODIFYROA-recName

END-IF.

MOVE cur TO WK-recName.

MOVE ownerID(CUR-S1) TO WK-recName-fkS1
.

...

MOVE ownerID(CUR-Sk) TO WK-recName-fkSk
.

EXEC SQL

UPDATE trecName

SET fkS1
= :WK-recName-fkS1

,

...

fkSk
= :WK-recName-fkSk

WHERE dbkey = :cur-dbkey

END-EXEC.

IF SQLCODE NOT = ZERO

200 Chapter 8. From a CODASYL Database to a Relational Database

GO TO END-MODIFY-recName

END-IF.

PERFORM MOVE-WK-recName-TO-CUR.
END-MODIFYROA-recName.

PERFORM UPDATE-STATUS.

where:

– recordType(cur) denotes the record type of the current of the run unit
cur.

– S1, . . . Sk are the k set types in which record type recName has been
declared to be a member.

– ownerID(CUR-Si) denotes the identifier value of the owner of the current
set occurence of set type Si;

• MODIFYROS: MODIFY recName ONLY setName1, setName2 ... MEMBERSHIP
The MODIFYROS variant is similar to MODIFYROA, but only the set for-
eign keys corresponding to setName1, setName2 ... are updated while the
other columns are left unchanged.

MODIFYROS-recName.

MOVE ZERO TO STATUS.

IF recordType(cur) NOT = recName

MOVE 1103300 TO STATUS

GO TO END-MODIFYROS-recName

END-IF.

MOVE cur TO WK-recName.

MOVE ownerID(CUR-setName1) TO WK-recName-fksetName1
.

MOVE ownerID(CUR-setName2) TO WK-recName-fksetName2
.

...

EXEC SQL

UPDATE trecName

SET fksetName1
= :WK-recName-fksetName1

,

fksetName2
= :WK-recName-fksetName2

...

WHERE dbkey = :cur-dbkey

END-EXEC.

IF SQLCODE NOT = ZERO

GO TO END-MODIFY-recName

END-IF.

PERFORM MOVE-WK-recName-TO-CUR.
END-MODIFYROS-recName.

PERFORM UPDATE-STATUS.

where:

– recordType(cur) denotes the record type of the current of the run unit
cur.

8.4. CODASYL-to-SQL translation 201

– ownerID(CUR-setNamei) denotes the identifier value of the owner of
the current set occurence of set type setNamei;

Format 2

Syntax MODIFY field1 [,field2]...
[INCLUDING {ALL |setName1 [,setName2]...} MEMBERSHIP]

Rules field1, field2,... must reference data items contained within the current
record of the run unit. The current record of the run unit must be defined in the
schema DDL as a member of the set types referenced by setName1, setName2 ...
, if any.

Assumption As for the STORE statement, we assume that set ownership is iden-
tified by application, i.e., the set occurence of a set type s to which a member record
is moved is the one of the current record of s.

Effect The MODIFY statement alters the contents of field1, field2, ... in a record
and/or changes the set membership of the record. The object of the statement is
the current record of the run unit.

If no INCLUDING phrase is present, no set membership is changed. If an INCLUDING

phrase is specified with:

• ALL: the record’s membership is changed in every set in which it is a member.

• setName1, setName2,...: the record’s membership is changed in these set
types.

In addition, the current record of the run unit becomes the current record of
its area, the current record of its record type, and the current record of all sets in
which it is a tenant.

SQL translation As for the STORE statement, some verification queries are
needed in order to make sure that the new field values provided respect the unique-
ness constraints. For the sake of clarity, we will ignore them in the provided trans-
lations.

The translation of format 2 of the MODIFY statement depends on the variant
used:

• MODIFYF: MODIFY field1, field2 ...
This variant causes the data items field1, field2, ... of the current record of
the run unit cus to be updated.

MODIFYF.

MOVE ZERO TO STATUS.

MOVE cur TO WK-recName.

202 Chapter 8. From a CODASYL Database to a Relational Database

MOVE UWA-recName-field1 TO WK-recName-field1.

MOVE UWA-recName-field2 TO WK-recName-field2.

...

EXEC SQL

UPDATE trecName

SET cfield1
= :WK-recName-field1,

cfield2
= :WK-recName-field2,

...

WHERE dbkey = :cur-dbkey

END-EXEC.

IF SQLCODE NOT = ZERO

GO TO END-MODIFYF

END-IF.

PERFORM MOVE-WK-recName-TO-CUR.
END-MODIFYF

PERFORM UPDATE-STATUS.

where recName denotes the record type of the current record of the run unit
cur.

• MODIFYFIA: MODIFY field1, field2 ... INCLUDING ALL MEMBERSHIP
The MODIFYFIA variant is similar to the MODIFYF form where, in addi-
tion, the memberships of the current record are updated for each set in which
the record is a member. This translates as follows:

MODIFYFIA.

MOVE ZERO TO STATUS.

MOVE cur TO WK-recName.

MOVE UWA-recName-field1 TO WK-recName-field1.

MOVE UWA-recName-field2 TO WK-recName-field2.

...

MOVE ownerID(CUR-S1) TO WK-recName-fkS1
.

...

MOVE ownerID(CUR-Sk) TO WK-recName-fkSk
.

EXEC SQL

UPDATE trecName

SET cfield1
= :WK-recName-field1,

cfield2
= :WK-recName-field2,

...

fkS1
= :WK-recName-fkS1

,

...

fkSk
= :WK-recName-fkSk

WHERE dbkey = :cur-dbkey

END-EXEC.

IF SQLCODE NOT = ZERO

GO TO END-MODIFYFIA

END-IF.

PERFORM MOVE-WK-recName-TO-CUR.

8.4. CODASYL-to-SQL translation 203

END-MODIFYFIA

PERFORM UPDATE-STATUS.

where:

– recName denotes the record type of the current record of the run unit
cur.

– S1, . . . Sk are the k set types in which record type recName has been
declared to be a member.

– ownerID(CUR-Si) denotes the identifier value of the owner of the current
set occurence of set type Si;

• MODIFYFIS: MODIFY field1, field2 ... INCLUDING setName1, setName2,
... MEMBERSHIP
This variant is equivalent to the MODIFYFIA statement, except that the
record set memberships are changed only for set types setName1, setName2,
... The other set memberships remain unchanged.

MODIFYFIS.

MOVE ZERO TO STATUS.

MOVE cur TO WK-recName.

MOVE UWA-recName-field1 TO WK-recName-field1.

MOVE UWA-recName-field2 TO WK-recName-field2.

...

MOVE ownerID(CUR-setName1) TO WK-recName-fksetName1
.

MOVE ownerID(CUR-setName2) TO WK-recName-fksetName2
.

...

EXEC SQL

UPDATE trecName

SET cfield1
= :WK-recName-field1,

cfield2
= :WK-recName-field2,

...

fksetName1
= :WK-recName-fksetName1

,

...

fksetNamek
= :WK-recName-fksetNamek

WHERE dbkey = :cur-dbkey

END-EXEC.

IF SQLCODE NOT = ZERO

GO TO END-MODIFYFIS

END-IF.

PERFORM MOVE-WK-recName-TO-CUR.
END-MODIFYFIS

PERFORM UPDATE-STATUS.

where:

– recName denotes the record type of the current record of the run unit
cur.

204 Chapter 8. From a CODASYL Database to a Relational Database

– ownerID(CUR-Si) denotes the identifier value of the owner of the current
set occurence of set type Si;

8.4.6 ERASE statement

Syntax ERASE [recName] [ALL MEMBERS]

Rules If specified, recName must be the record type of the current record of the
run unit.

Effect Execution of the ERASE statement causes one or more records to be re-
moved from the database.

If the ALL phrase is not specified, two cases are considered:

• the current record of the run unit is not the owner of a set that currently
has members. In this case, the record is removed from the database and
disconnected from all sets of which it is a member.

• the current record of the run unit is the owner of a set that currently has
members. Then, an exception condition results.

If the ALL phrase is specified and the current record of the run unit is the owner
of a set that currently has members all of these member records are also removed
from the database. Any record so removed is treated as it were the record subject of
the ERASE statement. The process is repeated until all records have been removed
from the database that are hierarchically related to the current record of the run
unit. If the current record of the run unit is not the owner of a set that currently
has members, execution proceeds as if the ALL phrase had not been specified. If
any erased record is currently the member of another set, the record is obviously
disconnected from that set.

Currency indicators are affected as follows:

• The current record of the run unit is nulled.

• If any record removed from the database is the current record of its record
type, the currency indicator for the record type is nulled.

• If any record removed from the database is the current record of a set type
that it is the owner of, the currency indicator for the set type is nulled.

• If any record removed from the database is the current record of a set type
that it is a member of, the currency indicator for the set type is updated to
identify the position between the two records where the removed record had
been.

• If an entire set occurrence is removed from the data base as a result of an
ERASE ALL statement and the current record of the set type was one of the
records removed, the currency indicator for the set type is nulled.

8.4. CODASYL-to-SQL translation 205

• If any record removed from the data base is the current record of its area, the
currency indicator for the area is updated to identify the position between
the two database keys where the removed record had been.

• If any record from the database is the current record of a record key type,
the currency indicator for the key type is updated to identify the position
between the two records where the removed record had been.

Note that the current record of a set type, even when deleted, remains valid
for subsequent DML statements requiring a current record of a set (except FIND
CURRENT WITHIN setName). For example, the following sequence is valid:

ERASE B.

FIND NEXT WITHIN A-B.

where B is the member record type of set type A-B.

SQL translation

• ERASE0: ERASE
This variant is translated as follows. If the current record of the run unit cur
is null, the exception code 0403200 (current record of the run unit is null)
is returned. If cur is the owner of a set that currently has members, the
exception status code 0407200 (deletion of a non-empty set was requested is
returned. If cur is the current record of a set type setOi that it is an owner
of, the current record of the set is nulled and the corresponding set currency
flag INIT-FLAG-setOi is set to 3 (current record of the set was deleted). If cur
is the current record of a set type setMi that it is a member of, its member
position in its set occurence is recorded and the corresponding set currency
flag INIT-FLAG-setOi is set to 3 (current record of the set was deleted)

ERASE.

MOVE ZERO TO STATUS.

IF cur = null

MOVE 0403200 TO STATUS

GO TO END-ERASE

END-IF.

EXEC SQL

SELECT COUNT(*)

INTO :NBR-MEMBERS

FROM tmemRec(setO1)

WHERE fksetO1
= :cur-idsetO1

END-EXEC.

IF NBR-MEMBERS > 0

MOVE 0407200 TO STATUS

GO TO END-ERASE

END-IF.

...

EXEC SQL

206 Chapter 8. From a CODASYL Database to a Relational Database

SELECT COUNT(*)

INTO :NBR-MEMBERS

FROM tmemRec(setOk)

WHERE fksetOk
= :cur-idsetOk

END-EXEC.

IF NBR-MEMBERS > 0

MOVE 0407200 TO STATUS

GO TO END-ERASE

END-IF.

EXEC SQL

DELETE FROM trecName

WHERE dbkey = :cur-dbkey

END-EXEC.

IF SQLCODE = ZERO

IF CUR-setO1 = cur

MOVE null TO CUR-setO1

MOVE 3 TO INIT-FLAG-setO1

END-IF

...

IF CUR-setOk = cur

MOVE null TO CUR-setOk

MOVE 3 TO INIT-FLAG-setOk

END-IF

IF CUR-setM1 = cur

PERFORM RECORD-POSITION-CUR-setM1

MOVE 3 TO INIT-FLAG-setM1

END-IF

...

IF CUR-setMw = cur

PERFORM RECORD-POSITION-CUR-setMw

MOVE 3 TO INIT-FLAG-setMw

END-IF

ELSE

MOVE 0407200 TO STATUS

END-IF

END-ERASE.

PERFORM UPDATE-STATUS.

where:

– recName denotes the record type of the current record of the run unit
cur.

– memRec(setName) denotes the member record type of set type setName.

– setO1 ... setOk are the k set types in which the current record of the
run unit is an owner.

– setM1 ... setMw are the w set types in which the current record of the
run unit is an member.

8.4. CODASYL-to-SQL translation 207

– procedure RECORD-POSITION-CUR-setName allows to record the posi-
tion of the current (member) record of set type setName in its set
occurence. This can be using the following query:

EXEC SQL

SELECT COUNT(*)

INTO :POSITION-CUR-setName

FROM trecName

WHERE orderCriteriasetName <= CUR-setName-orderCriteriasetName AND

fksetName = :CUR-setName-fksetName

END-EXEC

• ERASER: ERASE recName

The SQL translation of this variant is very similar to the one of the ERASE0
statement. An additional test checks that recName corresponds to the record
type of the current record of the run unit. If this is not the case, the exception
status code 0403300 (current record of the run unit is not of correct record
type) is returned.

• ERASEALL: ERASE ALL MEMBERS
The SQL translation of the ERASEALL variant is much more complicated.
It makes use of cursors of the following form, which selects, for a particular set
type setName, the member records attached to a given owner to be deleted:

EXEC SQL

DECLARE setName MEMBERS TO ERASE CURSOR FOR
SELECT dbkey, cf1

, . . . cfn

FROM tmemRec(setName)

WHERE fksetName = :WK-ownerRecord(setName)-idsetName

END-EXEC.

where:

– memRec(setName) denotes the member record type associated to set
type setName.

– ownerRecord(setName) denotes the owner record type associated to
set type setName.

In addition, a recursive procedure is used for removing all records from the database
that are hierarchically related to the a given owner of a set type setName.

ERASE-MEMBERS-OF(setName, ownerID).

MOVE ownerID to = :WK-ownerRecord(setName)-idsetName.

EXEC SQL

OPEN setName MEMBERS TO ERASE

END-EXEC.

PERFORM UNTIL SQLCODE NOT = ZERO

EXEC SQL

208 Chapter 8. From a CODASYL Database to a Relational Database

FETCH setName MEMBERS TO ERASE

INTO :WK-memRec(setName)-dbkey,
:WK-memRec(setName)-f1,

. . .

:WK-memRec(setName)-fn

END-EXEC

IF SQLCODE = ZERO

ERASE-MEMBERS-OF(setO1(memRec(setName)),WK-memRec(setName)-idsetO1
)

...

ERASE-MEMBERS-OF(setOk(memRec(setName)),WK-memRec(setName)-idsetOk
)

EXEC SQL

DELETE FROM tmemRec(setName)

WHERE dbkey = :WK-memRec(setName)-dbkey
END-EXEC

END-IF

IF SQLCODE = ZERO

IF CUR-setO1(memRec(setName)) = WK-memRec(setName)
MOVE null TO CUR-setO1(memRec(setName))
MOVE 3 TO INIT-FLAG-setO1(memRec(setName))

END-IF

...

IF CUR-setOk(memRec(setName)) = WK-memRec(setName)
MOVE null TO CUR-setOk(memRec(setName))
MOVE 3 TO INIT-FLAG-setOk(memRec(setName))

END-IF

IF CUR-setM1(memRec(setName)) = WK-memRec(setName)
PERFORM RECORD-POSITION-CUR-setM1(memRec(setName))
MOVE 3 TO INIT-FLAG-setM1(memRec(setName))

END-IF

...

IF CUR-setMw(memRec(setName)) = WK-memRec(setName)
PERFORM RECORD-POSITION-CUR-setMw(memRec(setName))
MOVE 3 TO INIT-FLAG-setMw(memRec(setName))

END-IF

END-IF

END-PERFORM.

EXEC SQL

CLOSE setName MEMBERS TO ERASE

END-EXEC.

where:

• memRec(setName) denotes the member record type associated to set type
setName.

• ownerRecord(setName) denotes the owner record type associated to set type
setName.

8.4. CODASYL-to-SQL translation 209

• setO1(recName) ... setOk(recName) denote the k set types of which recName

is declared as the owner record type.

• setM1(recName) ... setMw(recName) denote the w set types of which
recName is declared as the member record type.

Consequently, the ERASE ALL MEMBERS statement can be simulated as follows:

ERASE-ALL-MEMBERS.

MOVE ZERO TO STATUS.

IF cur = null

MOVE 0403200 TO STATUS

GO TO END-ERASE-ALL-MEMBERS

END-IF.

PERFORM ERASE-MEMBERS-OF(setO1, cur-idsetO1
).

...

PERFORM ERASE-MEMBERS-OF(setOp, cur-idsetOp).

EXEC SQL

DELETE FROM trecName

WHERE dbkey = :cur-dbkey

END-EXEC.

IF SQLCODE = ZERO

IF CUR-setO1 = cur

MOVE null TO CUR-setO1

MOVE 3 TO INIT-FLAG-setO1

END-IF

...

IF CUR-setOp = cur

MOVE null TO CUR-setOp

MOVE 3 TO INIT-FLAG-setOp

END-IF

IF CUR-setM1 = cur

PERFORM RECORD-POSITION-CUR-setM1

MOVE 3 TO INIT-FLAG-setM1

END-IF

...

IF CUR-setMw = cur

PERFORM RECORD-POSITION-CUR-setMw

MOVE 3 TO INIT-FLAG-setMw

END-IF

ELSE

MOVE 0407200 TO STATUS

END-IF

END-ERASE-ALL-MEMBERS.

PERFORM UPDATE-STATUS.

where:

• recName denotes the record type of the current record of the run unit cur.

210 Chapter 8. From a CODASYL Database to a Relational Database

• setO1 ... setOp are the p set types in which the current record of the run
unit is an owner.

• setM1 ... setMw are the w set types in which the current record of the run
unit is an member.

• procedure RECORD-POSITION-CUR-setName allows to record the position of
the current (member) record of set type setName in its set occurence.

8.5 Tool Support

This section describes the tools that support the migration approach developed
in this chapter. The tool architecture is based on the combination of two com-
plementary transformational environments, namely DB-MAIN (DB-MAIN, 2006)
and the ASF+SDF Meta-Environment (van den Brand et al., 2001). Below, we
describe a set of tools that support the different processes. Figure 8.6 depicts the
tools that allow the automatic adaptation of the legacy COBOL programs. Those
tools constitute our personal contribution.

Reverse engineering The inventory step is supported by four tools. The first
one cleans the COBOL source code (e.g., removes the line numbers), resolves the
copybooks and produces a report summarizing the missing programs and copy-
books. The second tool parses the source code to check that all the code fragments
can be analyzed and to list all program calls and data manipulation instructions.
The third tool analyzes the JCL to find out which (physical) files are used by each
program. Lastly, DB-MAIN allows to store and manipulate the call and usage
graphs that are created from the report produced by the second tool.

The database reverse engineering process is also supported by a mixture of
different tools. DB-MAIN is used to parse the DDL code, and to successively refine
and conceptualize the database schema. Data analysis programs are automatically
generated from the mapping that holds between the physical and logical database
schemas. Those programs browse the legacy database and verify several properties
by answering, among others, the following questions: (1) do the various data fields
match their supposed type; (2) are filler items used as reserved space or do they
hide relevant information;(3) do the data instances verify some explicit or potential
constraints.

Schema conversion DB-MAIN offers general functions and components sup-
porting the schema conversion phase, among which, (1) a generic model of schema
representation based on the GER (Generic Entity/Relationship) model to describe
data structures in all abstraction levels and according to all popular modelling
paradigms; (2) a graphical interface to view the repository and apply operations;
(3) a transformational toolbox rich enough to encompass most database engineer-
ing and reverse engineering processes; (4) A 4GL (Voyager2) as well as a Java API
that allow analysts to quickly develop their own customized processors.

8.5. Tool Support 211

DB-MAIN

CODASYL log. schema

Conceptual schema

Relational log. schema

ASF+SDF
Meta-Environment

COBOL
programs

COBOL
copybooks

COBOL
programs*

COBOL
copybooks*

Wrapper
generator

Program
transformers

Parameters Wrappers

CODASYL phys. schema

Mapping
assistant

Additional
copybooks

Relational phys. schema

Figure 8.6: Tool architecture for program adaptation in CODASYL to relational
migration.

212 Chapter 8. From a CODASYL Database to a Relational Database

Data migration The data migration process derives from the mapping that is
maintained between the successive database schemas. We use a data migration
program generator that takes such a mapping as input, and produces the corre-
sponding data migration program. The generated data migrator reads the legacy
database entirely, converts the data when necessary, and fills the new relational
database.

Wrapper generation The wrapper generator is a plug-in of DB-MAIN written
in Java. It takes as inputs (1) the legacy CODASYL (IDS/II) physical schema, (2)
the refined CODASYL (IDS/II) logical schema, (3) the target relational schema,
and (4) the mapping between these three schemas. The generation produces (1) a
set of wrappers, each corresponding to a migrated record type, (2) a set of related
copybooks (variable declarations and new code fragments), (3) the necessary in-
put arguments of the program transformation tools. The generated wrappers are
COBOL programs including embedded SQL commands. The wrapper generator
allows the user to select the target database and execution platforms among the
following:

• DBSP-DB2/COBOL Bull GCOS 8

• Oracle/COBOL Bull GCOS 7

• DB2/COBOL IBM

• PostgreSQL/COBOL Microfocus

Figure 8.7 shows a simplified code fragment allowing to generate a procedure that
simulates a FIND4NR statement (FIND NEXT recName WITHIN setName).

Program transformation The conversion of the legacy application programs
relies on the ASF+SDF Meta-Environment (van den Brand et al., 2001). We reused
an SDF version of the IBM VS COBOL II grammar obtained by Lämmel and Ver-
hoef (2001). We added an SDF module specifying the syntax of the CODASYL
(IDS/II) statements. We then specified a set of rewrite rules (ASF equations) on
top of this enriched grammar in order to obtain several program transformation
tools. The first tool allows to convert IDS/II primitives into wrapper invocations6.
Figure 8.8 provides an example ASF equation, which specifies the general conver-
sion rule applied in Figure 8.5. The second tool supports the refactoring of the
legacy programs, which mainly consists in the replacement of each IDS/II primitive
with a procedure call7, as the rewrite rule of Figure 8.9 illustrates. The invoked
procedure executes/simulates the legacy primitive. The third tool is designed to
convert programs that indirectly access the legacy database (via calls to other pro-
grams). The transformation tool chain also comprises lexical processors (typically
Perl scripts) for source-code preprocessing, post-processing and pretty-printing.

6In the style of the Wrapper strategy (P1)
7In the style of the Statement rewriting strategy (P2)

8.5. Tool Support 213

public void genFind4NR(CobWriter wrapper , DBMEntityType idsRec ,
DBMRelationshipType set){

String setName = set.getName ();
String recName = idsRec.getName ();
wrapper.printSectionHead ("Find Next Rec Within Set <"+ setName + ">", "

FIND4NR -" + setName);
wrapper.printL(" MOVE ZERO TO WR-STATUS .");
String setCursor = "FK" + setName;
wrapper.printL(" IF INIT -FLAG -" + setName + " = 0");
wrapper.printL(" MOVE 0503100 TO WR-STATUS");
wrapper.printL(" GO TO END -FIND4NR -" + setName);
wrapper.printL(" END -IF.");
wrapper.printL(" IF INIT -FLAG -" + setName + " = 2 OR 5");
wrapper.printL(" PERFORM FIND4FR -"+ setName);
wrapper.printL(" GO TO END -FIND4NR -" + setName);
wrapper.printL(" END -IF.");
wrapper.printL(" IF NOT(" + "LC -"+ setCursor + ") OR INIT -FLAG -"+ setName

+" = 4");
wrapper.printL(" PERFORM OPEN -AND -POSITION -"+ setCursor);
wrapper.printL(" IF SQLCODE NOT = ZERO");
wrapper.printL(" MOVE 0502100 TO WR-STATUS");
wrapper.printL(" GO TO END -FIND4NR -" + setName);
wrapper.printL(" END -IF");
wrapper.printL(" END -IF.");
wrapper.printL(" PERFORM FETCH -" + setCursor + ".");
wrapper.printL(" IF SQLCODE NOT = ZERO");
wrapper.printL(" MOVE 0502100 TO WR-STATUS");
wrapper.printL(" PERFORM CLOSE -LAST -CURSOR");
wrapper.printL(" GO TO END -FIND4NR -" + setName);
wrapper.printL(" END -IF.")
wrapper.printL(" PERFORM MOVE -WK-TO-CUR.");
wrapper.printL(" END -FIND4NR -" + setName + ".");
wrapper.printL(" PERFORM UPDATE -WR-STATUS .");

}

Figure 8.7: A (simplified) code fragment of the wrapper generator.

[equ -FIND4N]
db -2-wrap(FIND NEXT WITHIN setName , record -types , set -member -tbl , key -names ,

area -list)
= to-comment(FIND NEXT WITHIN setName)

SET WR-ACTION -FIND4NR TO TRUE
MOVE to-literal(memberRecordName) TO WR-CALL -NAME
MOVE to-literal(setName) TO WR-OPTION
PERFORM CALL -WRAPPER

when element(set -member -tbl , setName) == true ,
memberRecordName := lookup(set -member -tbl , setName)

Figure 8.8: A (simplified) ASF equation that rewrites a FIND NEXT WITHIN

setName statement as a corresponding wrapper invocation.

214 Chapter 8. From a CODASYL Database to a Relational Database

[equ -FIND4N -bis]
db -2-proc(FIND NEXT WITHIN setName , record -types , set -member -tbl , key -names ,

area -list)
= to-comment(FIND NEXT WITHIN setName)

PERFORM to-paragraph(WR-FNXW , setName)
when element(set -member -tbl , setName) == true

Figure 8.9: A (simplified) ASF equation that rewrites a FIND NEXT WITHIN

setName statement as a corresponding procedure call.

8.6 Related Work

The use of wrapping techniques is not new in software maintenance, particularly
in the context of system migration. The use of wrappers have been proposed by
many authors to support the migration of software systems towards various new
architectures and platforms. The existing wrapping techniques concern different
components of the legacy system including the graphical user interface, the un-
derlying database or the legacy applications. The encapsulated components may
belong to different levels of granularity (Sneed, 2000). Among the specific works
on wrapping, Lucia et al. (2006) propose a practical approach to migrating legacy
systems to multi-tier, web-based architectures. This approach consists in (1) mi-
grating the graphical user interface and (2) restructuring and wrapping the original
legacy code. In the challenging context of migration to SOA, Sneed (2006) presents
a wrapping-based approach according to which legacy program functions are of-
fered as web services to external users. As seen above, the major specificity of the
wrappers discussed in this chapter is that they encapsulate a brand new system
component (i.e., the target database) in order to reuse the legacy applications.

Concerning database reengineering, several approaches have been proposed in
the literature. The approach by Jeusfeld and Johnen (1994) is divided into three
parts: mapping of the original schema into a meta model, rearrangement of the
intermediate representation and production of the target schema. The Varlet
project (Jahnke and Wadsack, 1999) adopts a typical two phase reengineering pro-
cess comprising a reverse engineering process phase followed by a standard database
implementation. Bianchi et al. (2000) propose an iterative approach to database
reengineering which eliminates the ageing symptoms of the legacy database (Vis-
aggio, 2001) when incrementally migrating the latter towards a modern platform.
Although all those approaches are, in some point, similar to the schema reengineer-
ing method discussed in this chapter, they mainly focus on the database conversion
phase. Technical aspects of program conversion in the case of inter-paradigmatic
database migration receive much more attention in the present chapter.

Some other research results address particular database migration scenarios,
as we do in this chapter. Among those works, Menhoudj and Ou-Halima (1996)
present a method to migrate the data of COBOL legacy system into a relational
database management system. The hierarchical to relational database migration is
discussed by Meier et al. (1994). General approaches to migrate relational database

8.7. Conclusions 215

to OO technology are proposed by Behm et al. (1997) and Missaoui et al. (1998).
Finally, our approach to program transformation shares similar points with the

work by Veerman 2004; 2006, in which maintenance transformations are applied to
large legacy systems. In (Veerman, 2006), the author presents a method allowing
to upgrade COBOL applications to a new version of the underlying database sys-
tem. The transformation processs comprises several steps including pre-processing,
transformation, post-processing and pretty-printing. The main rewrite rules are
specified by means of the ASF+SDF Meta-Environment.

8.7 Conclusions

This chapter presented a tool-supported approach to migrating CODASYL databases
towards a relational database platform. The discussion focused on the program
conversion phase, by suggesting the use of backward data wrappers. We further
adressed technical issues related to the proposal, and we specified a set of systematic
translation rules for the simulation of CODASYL data manipulation statements in
SQL.

Roadmap

Chapter 9 presents and discusses two industrial migration projects, for which the
migration approach and tools described in the current chapter have been used.

216 Chapter 8. From a CODASYL Database to a Relational Database

Chapter 9

Industrial Migration Projects

Experience is a hard teacher because she
gives the test first, the lesson afterwards.

– Vernon Sanders Law

This chapter1 presents the application of our migration approach and tools pre-
sented in Chapter 8 in the context of real-size industrial migration projects. Those
projects were carried out in collaboration with ReVeR, a spin-off company originat-
ing from the database engineering laboratory of the University of Namur, that pro-
vides its customers with, among others, database reverse-engineering and reengi-
neering services. The customer was the IT department of a Belgian federal ministry.
For both projects, the author was personnally in charge of the program conversion
phase.

9.1 Project 1: IDS/II to DB2

The goal of the first proof-of-concept project was to migrate a large COBOL system
towards a relational (DB2) database platform. The legacy system runs on a Bull
GCOS8 mainframe and is made of nearly 2 300 programs, totaling more than 2 mil-
lion lines of COBOL code. The legacy applications make use of an IDS/II database.
The source physical database schema comprises 231 record types, 213 sets and 648
fields. The target system is made up of a subset of the legacy application programs,
which now accesses a DB2 database running through a DBSP gateway. DBSP is
a database management service designed to enable GCOS8 applications to access
relational databases on a remote system (BULL, 2001).

Below, we describe the process followed as well as the results obtained during
the successive steps of the project.

1This chapter extends two industrial track papers. The first paper (Henrard et al., 2007)
appeared in the proceedings of the 23rd International Conference on Software Maintenance
(ICSM’07). The second paper (Henrard et al., 2008) was published in the proceedings of the
15th Working Conference on Reverse Engineering (WCRE’08). Both papers are co-authored by
Jean Henrard, Didier Roland and Jean-Luc Hainaut.

217

218 Chapter 9. Industrial Migration Projects

Solaris

Legacy System
GCOS8

COBOL
programs
COBOL

programs

Legacy
DB

IDS/II

Legacy
DB

IDS/II

COBOL
programs *

COBOL
programs *

New
DB

DB2

New
DB

DB2

WrapperWrapper

Renovated System
GCOS8

WrapperWrapper

WrapperWrapperWrapperWrapper
WrapperWrapper

DBSP

DBSP

Figure 9.1: Project 1: general architecture.

Reverse engineering

The first phase was the reverse engineering of the system. This process was first
performed on a small, consistent subset of the system in order to better under-
stand the peculiarities of the system and to allow the customer to evaluate the
results early in the process. Then the whole database has been reverse engineered
gradually.

The inventory step allowed us to colllect all the necessary sources and to com-
pute both the call and usage graphs. Although only a subset of the applications
were selected for migration, the reverse engineering process analyzed the complete
system, in order to obtain as precise results as possible. This involved a total of
2 273 programs, 64 809 program calls, 105 097 IDS/II verbs and 25 163 file access
verbs. The resulting call graph contains 2 273 nodes (programs) and 9 527 call
relationships. The usage graph contains 313 (programs) + 218 (records) nodes and
2 887 usage vertices.

During the database reverse engineering process, system dependency graphs
analysis techniques, as those presented in Chapter 5, allowed us to identify the
program variables used to manipulate database records, in order to deduce a more
precise record decomposition. Dataflow analysis was also used to elicit implicit data
dependencies that hold between database fields, among which potential foreign
keys. The data validation step revealed that many implicit referential constraints
were actually violated by the legacy data. This is explained by the fact that most
of those constraints are simply encoding rules which are not always checked again
when data are updated, and by the fact that users find tricks to bypass some rules.

9.1. Project 1: IDS/II to DB2 219

Physical Logical Conceptual Relational
schema schema schema schema

(IDS/II) (IDS/II) (DB2)

entity types 159 159 156 171
rel. types 148 148 90 0
attributes 458 9 027 2 176 2 118
max. # att/ent.type 8 104 61 94

Table 9.1: Project 1: Comparison of successive versions of the database schema.

Transformed Manually adapted Source code size (kLOC)

programs 669 17 705
copybooks 3 917 68 35
IDS/II inst. 5 314 420 -

Table 9.2: Project 1: Legacy program transformation results.

Schema conversion

Table 9.1 gives a comparison of the successive versions of the database schema. The
physical IDS/II schema is the initial schema extracted from the DDL code (here
we consider the subset actually migrated). The logical IDS/II schema is the phys-
ical schema with a finer-grained structure. It was obtained by resolving numerous
copybooks in which structural decompositions of physical attributes are declared.
In the logical schema, most attributes were declared several times through rede-
fines clauses, hence the huge total number of attributes. The conceptual schema
comprised only one declaration per attribute. When a conflict occured, the cho-
sen attribute decomposition was the one considered as the most expressive by the
analyst. In addition, the number of entity types is different since some technical
record types were discarded while other ones were split (sub-types). Finally, the
relational schema shows (1) an increase in the number of entity types due to the
decomposition of arrays, and (2) a reduction of the number of attributes due to
the aggregation of compound fields.

Wrapper-based program conversion

The wrapper generation phase produced 159 database wrappers, totalizing 450
thousands lines of code. The results obtained during the legacy code adaptation
are summarized in Table 9.2. A total of 669 programs and 3 917 copybooks were
actually converted. We notice that around 92% of the IDS/II verbs were trans-
formed automatically, while the manual work concerned only 85 distinct source
code files. The automated transformation of the legacy code took a bit less than
95 minutes.

220 Chapter 9. Industrial Migration Projects

IDS/II DB

IDS/II DB
Legacy

programs*

Legacy
programs*

Legacy
programs

DB2 DB

wrappersprocedures*

procedures

Initial systemInitial system

After refactoringAfter refactoring

After migrationAfter migration

IDS/II DB

IDS/II DB
Legacy

programs*

Legacy
programs*

Legacy
programs

DB2 DB

wrappersprocedures*

procedures

Initial systemInitial system

After refactoringAfter refactoring

After migrationAfter migration

Figure 9.2: Project 2: refined methodology.

9.2 Project 2: IDS/II to DB2 with a refined methodology

Convinced by the results obtained during the first project, the customer asked us to
carry out a second migration project. The goal of this second project was to migrate
another CODASYL database (IDS/II) towards a relational platform (DB2). The
legacy COBOL system also runs on a Bull GCOS8 mainframe and is made of about
1000 programs, totaling more than one million lines of code. Similarly to the first
project, the target system must consist of the same COBOL programs running on
the mainframe but remotely accessing a DB2 database through a DBSP gateway.

The methodology used in this second project slightly differs from the first one.
The migration process comprised two main stages, as shown in Figure 9.2. The first
phase involved the refactoring of the legacy application programs, while the second
phase aimed at migrating the system towards the relational database platform.
Both steps are summarized below.

9.2.1 System refactoring

The initial system refactoring stage consisted in centralizing the data manipulation
statements within additional procedures. Each procedure was dedicated to a par-
ticular database operation applied to a particular record type. These procedures
were generated from the legacy database schema. The application programs were
then automatically transformed in such a way that each database operation was
replaced with the corresponding procedure call.

9.2. Project 2: IDS/II to DB2 with a refined methodology 221

Transformed Manually adapted Source code size (kLOC)

programs 996 10 800
copybooks 300 0 43
IDS/II inst. 22 395 15 -

Table 9.3: Project 2: Legacy program refactoring results

The main purpose of the refactoring step was to facilitate the migration phase
itself by isolating the data manipulation primitives from the legacy source code.
Indeed, no further alteration of the refactored legacy programs was necessary at
the time of actually migrating the database.

The system refactoring step was supported by two distinct tools. The first one is
a plugin of DB-MAIN (DB-MAIN, 2006) allowing to generate the additional proce-
dures from the source IDS/II schema. The generated procedures are COBOL code
sections distributed in a set of COBOL copybooks. Each copybook corresponds to
an independent subset of the legacy schema.

The second tool, presented in Chapter 8, supports the transformation of the
legacy programs. The source code transformation involved (1) the replacement
of each IDS/II primitive with a procedure call, (2) the insertion of new variable
declarations and (3) the introduction of the generated procedures by means of
COPY statements. The program transformation tool takes as inputs (1) a COBOL
program, (2) specific information on the legacy schema and (3) naming conventions
related to the additional procedures.

Table 9.3 summarizes the results obtained during source code refactoring. A
total of 22 395 IDS/II statements have been rewritten as procedure calls (PERFORM
statements). We notice that 99% of the legacy programs were fully transformed
without manual intervention. The automated transformation of the programs and
copybooks took around 90 minutes2. Manual transformations were necessary in the
presence of some variants of the FIND statement. For instance, as seen in Chapter 8,
a record can be retrieved based on its technical identifier (DB-KEY) that is global to
the entire database. It is not always possible to identify the record type accessed
by such a statement through static program analysis. For instance, the statement
FIND DB-KEY IS var identifies the record whose database key value is equal to
the value of variable var . The type of the identified record thus depends on the
value of var , which is rarely possible to determine through source code analysis.

The generated procedures consisted of around 42 000 lines of code. We observed
an increase of the legacy source code size of about 4%. This small expansion is
mainly due to the fact that each rewritten IDS/II statement is kept as a comment
in the target programs.

2In this second project, the program transformation tool was executed on a more powerful
machine than the one used in the first project.

222 Chapter 9. Industrial Migration Projects

Physical Logical Conceptual Relational
schema schema schema schema

(IDS/II) (IDS/II) (DB2)

entity types 120 112 105 148
rel. types 73 68 110 0
attributes 1 283 1 509 1 204 1 841
max. # att/ent.type 43 42 35 56

Table 9.4: Project 2: Comparison of successive versions of the database schema

9.2.2 System migration

In the (system migration) process, the legacy database was migrated towards the
DB2 platform. This was done in two phases, as depicted in Figure 9.3. Phase
I was a transition phase, during which both the legacy and the target databases
were maintained. The generated procedures were used to record each modification
of the IDS/II database in a log file. On a daily basis, this log file served as in-
put for replicating the modifications on top of the target DB2 database, allowing
both databases to remain synchronized. During phase I, new applications were
developped and tested on top of the target DB2 database.

During the second phase, database wrappers were generated from the source-
to-target schema mapping. The additional procedures were then re-generated in
order to make them access the target database through the generated wrappers.

Schema conversion based on database reverse engineering

The schema conversion results obtained in this project are summarized in Table 9.4.
For each schema, the table gives the number of (1) entity types (record types or
tables), (2) relationship types (set types or foreign keys) and (3) attributes (fields
or columns). Multiple implicit constructs were discovered including 76 foreign keys,
finer-grained attribute decompositions, as well as attribute format and cardinality
constraints. The refined schema contains a total of 1509 fields among which 655
revealed to be optional !

Data analysis

A systematic data analysis phase was necessary before the data migration process
could be performed. Indeed, the data must comply with the DDL3 constraints
of the target database in order to be succesfully migrated. In this project, we
particularly focused on implicit foreign keys and format constraints. The data
analysis process involved the following steps

1. The legacy IDS/II data were loaded into an intermediate DB2 database,
in which each column was defined of type string, allowing error-free data

3DDL stands for Data Definition Language.

9
.2

.
P

ro
je

c
t

2
:

ID
S
/
II

to
D

B
2

w
ith

a
re

fi
n
e
d

m
e
th

o
d
o
lo

g
y

2
2
3

COBOL
programs *

COBOL
programs *

Log

Renovated System (Phase I)
GCOS8

Procedure

Legacy
DB

IDS/II

Legacy
DB

IDS/II

ExtractExtract

ProcedureProcedureProcedure

Solaris

New
DB

DB2

New
DB

Load

GCOS8

DB

IDS/II

DB

IDS/II

Queries.sql

Legacy System
GCOS8

COBOL
programs
COBOL

programs

Legacy
DB

IDS/II

Legacy
DB

IDS/II

COBOL
programs *

COBOL
programs *

Renovated System (Phase II)
GCOS8

Procedure*

Legacy
DB

New
DB

DBSP

Procedure*

Wrapper Wrapper WrapperWrapper

Procedure* Procedure*

DB2

Solaris

DBSP

DB2

COBOL
programs *

COBOL
programs *

Log

Renovated System (Phase I)
GCOS8

ProcedureProcedure

Legacy
DB

IDS/II

Legacy
DB

IDS/II

ExtractExtract

ProcedureProcedureProcedureProcedureProcedureProcedure

Solaris

New
DB

DB2

New
DB

LoadLoad

GCOS8

DB

IDS/II

DB

IDS/II

Queries.sql

Legacy System
GCOS8

COBOL
programs
COBOL

programs

Legacy
DB

IDS/II

Legacy
DB

IDS/II

COBOL
programs *

COBOL
programs *

Renovated System (Phase II)
GCOS8

Procedure*Procedure*

Legacy
DB

New
DB

DBSPDBSP

Procedure*Procedure*

WrapperWrapper WrapperWrapper WrapperWrapperWrapperWrapper

Procedure*Procedure* Procedure*Procedure*

DB2

Solaris

DBSPDBSP

DB2

F
igu

re
9.3:

P
ro

ject
2:

T
w

o-p
h
ase

sy
stem

m
igration

.

224 Chapter 9. Industrial Migration Projects

migration. The resulting DB2 database contained more than 415 millions of
rows.

2. The underlying database schema was then enriched with the following anno-
tations:

• The expected format of each DB2 column;

• The validity constraints associated to each column (expressed as SQL
where clauses);

• The implicit foreign keys recovered during the reverse engineering phase;

3. Starting from this annotated schema, a data analysis program generated a set
of SQL queries for inspecting the intermediate DB2 database. This analysis
produced an html document reporting on the detected data errors.

The data analysis tool considered 76 implicit foreign keys, among which 24 proved
to be violated by the legacy data. Regarding data format, a total of 3497 SQL
queries were executed, allowing the detection of data inconsistencies in almost 70%
of the record types.

A typical problem regarding format constraints was the presence of invalid
dates. In the IDS/II database, date fields were represented as numeric values of
the form ‘YYYYMMDD‘. In the target DB2 database, they are now expressed as
columns of SQL type Date. We encountered a significant amount of inconsistent
dates like ’20070931’ (31th of September). These errors were due to the behavior
of some application programs considering day ’31’ as the last day of the current
month, whatever the month. We also identified special date values like ’00000000’
or ’99999999’ that were used by programs for simulating the null value and a future
date, respectively.

For several reasons, all the detected data inconsistencies could not be corrected
by the customer, which obliged us to relax some constraints. For instance, some
recovered foreign keys have not been explicitly declared in the target DDL code.
Instead, fault-tolerant triggers were defined that produce a warning in a dedicated
log table each time the referential constraint is violated by a database operation.
This approach, which temporarily tolerates inconsistency (Balzer, 1991), allowed
to improve referential integrity management, without being obliged to correct all
the data nor to modify all the legacy programs.

Data migration

The data migration itself could also be automated, based on the mapping holding
between the source and target database schemas. According to our approach,
such a mapping is maintained and propagated while successive transformations
are applied to the source schema. Thus both the IDS/II and the DB2 schemas
were annotated with correspondence information which allows us to automatically
generate the data migration program.

9.3. Evaluation 225

Wrapper generation and interfacing

Similarly, the source code of the wrappers was derived from the source-to-target
schema mapping by a dedicated DB-MAIN plugin. The generated wrappers sim-
ulate each legacy DML statement on top of the target database. In the context
of the present project, the wrappers translate IDS/II primitives using Embedded
SQL code fragments.

Interfacing the generated wrappers with the legacy code was simply done by
replacing the procedures introduced during the system refactoring phase with new,
automatically generated procedures. Instead of accessing the IDS/II database,
those new procedures now invoke the wrappers in order to access the DB2 database.

The target system is currently in use in the Belgian ministry on a day-to-day
basis. The overall project was considered as a success by the customer.

9.3 Evaluation

Target database quality The database conversion approach we used, based on
an initial database reverse engineering process, has the merit of producing a high-
quality, fully-documented target database. In both projects, the DB2 database
was designed as a native, normalized relational database, which does not look like
the network database it was derived from. This means that new applications (in
this particular case, web applications) can now directly access the DB2 database
without invoking the wrappers. In addition, this approach will allow to smoothly
migrate or rewrite the legacy code, until the wrappers become useless.

Flexibility The program conversion methodology used in the second project per-
mits much more flexibility in the migration process itself. The main advantage is
that the transformation of the legacy code is decoupled from the migration of the
database. Recompiling and testing the automatic transformation of the programs
can be done very early in the migration process. Furthermore, once the additional
procedures (copybooks) have been introduced, the database can be incrementally
migrated towards the target platform (subset by subset), while iteratively replacing
the corresponding procedures. Finally, the legacy programs refactoring preserves
the readability of the target source code. The developers of the legacy applica-
tion still recognize their programs and can maintain them more easily. The only
difference is that each IDS/II instruction is now written as a procedure call. The
logic of the legacy programs remains unchanged. The new database (and its new
paradigm) is fully hidden behind the generated wrappers.

Correctness In both projects, a systematic testing phase has shown the correct-
ness of the program conversion step. This testing process was done in collaboration
with IDS/II experts from the customer side. Two kinds of tests have been con-
ducted. First, dedicated testing programs were written and executed, in order to

226 Chapter 9. Industrial Migration Projects

verify that each kind of IDS/II statement was correctly simulated by the gener-
ated wrappers. This verification paid a particular attention to the management
of both currency and exception status indicators. Second, a non-regression test
was performed, during which the behaviour of the programs before and after their
migration were systematically compared (based on reports produced and database
state).

Performance The main drawback of our system conversion approach concerns
performance. Indeed, we observed a significant performance degradation in both
projects, the execution of some programs becoming up to 5 times slower than
before. We explain the degradation by several factors among which (1) the database
technology change, (2) the introduction of the wrapper layer and (3) the remote
access to the target database through DBSP. As expected, the level of performance
degration proved to be largely dependent on the data manipulation logic of the
legacy programs. In case some programs become too slow, it is possible to rewrite
them such that they directly access the migrated relational database in a more
natural way. In the first project, some sequential reading loops were replaced with
native random accesses, by including the searching criteria in the where clause.
This allowed the adapted programs to reach the same level of performance as the
original programs.

9.4 Conclusions and lessons learned

This chapter illustrated the reality of large-scale database migration projects, and
showed that such projects may greatly benefit from a systematic, tool-supported
methodology. The migration approach we used relies on a balanced combination
of analysis, generative and transformational techniques. It allowed us to reach a
good tradeoff between a high-level of automation of the migration process, and the
maintainability of the target database and programs. Below, we briefly elaborate
on the major lessons we learned from the two migration projects.

Full automation is not realistic Large-scale database migration projects ob-
viously calls for scalable tool support. Although the above projects show that a
high level of automation can be reached, fully-automating the process is clearly
unrealistic. Indeed, such projects generally require several iterations and involve
multiple human decisions.

Forward engineering is not straightforward Deriving a relational DDL code
from a conceptual database schema can theoretically be performed automatically.
In practice, when dealing with real schemas, external constraints must be taken into
account during the schema design process. In this project, several decisions were
guided by customer preferences like column type selection, naming conventions,
and conversion strategies for compound and multivalued fields.

9.4. Conclusions and lessons learned 227

Data analysis is essential While data reverse engineering allows to discover
implicit schema constraints, making all these rules explicit in the target schema is
not always achievable. We observed, in both projects, that a significant subset of
the legacy data instances actually violate the implicit rules recovered by program
inspection. In addition, We also learned that database reverse engineering may
greatly benefit from data analysis. Indeed, analyzing database contents does not
only allow to detect errors or to validate integrity rules. It may also serve as a basis
for formulating new hypotheses about potential implicit constraints. The main
limitation is that, as just explained, we cannot assume that the legacy database is
in a consistent state.

Wrapper development is challenging Developing correct wrappers requires
a precise knowledge of the legacy data manipulation system. In both projects, the
task was challenging due to the paradigm shift between CODASYL and relational
database systems. Indeed, the generated wrappers must precisely simulate the
behaviour of the IDS/II primitives, which includes the management of currency
indicators, reading sequences and returning status codes (as seen in Chapter 8).
Another challenge, as for the data migrators, was to correctly deal with IDS/II
record types that had been split into several tables.

Roadmap

This chapter concludes the part dedicated to the automated adaptation of programs
under database platform migration. This part mainly focused on the language con-
sistency problem of database evolution, by elaborating on how to translate queries
expressed in the source query language into equivalent queries expressed in the tar-
get query language. In the next part (Part V), we will concentrate on the structural
consistency relationship that must hold between the application programs and the
schema of their database. Chapter 10 will present a co-transformational approach
to database schema refactoring, according to which semantics-preserving schema
transformations are associated to program transformations. The latter aim to con-
vert the database queries expressed on the source schema into equivalent queries
expressed on the target schema.

228 Chapter 9. Industrial Migration Projects

Part V

Adapting Programs to
Database Schema Change

229

Chapter 10

A Co-transformational Approach
to Schema Refactoring

Each problem that I solved became a rule, which
served afterwards to solve other problems.1

– Rene Descartes

This chapter2 addresses the problem of consistency preservation in data-intensive
system evolution. When the database structure evolves, the application programs
must be changed to interface with the new schema. The latter modification can
prove very complex, error prone and time consuming. We describe a comprehensive
co-transformational approach according to which automated program transforma-
tions can be derived from schema transformations.

10.1 Introduction

Software evolution consists in keeping a software system up-to-date and responsive
to ever changing business and technological requirements. This chapter focuses on
the evolution of complex database applications, that is, data-intensive software sys-
tems comprising a database. Database migration, database merging and database
restructuring are popular evolution scenarios that involve not only changing the
data components of applications, but also rewriting some parts of the programs
themselves, even when no functional change occurs. In general, such evolution
patterns induce the modification of three mutually dependent system components,
namely the data structures (i.e., the schema), the data instances and the applica-
tion programs (Hick and Hainaut, 2006). When the system evolves, the consistency
that exists between these three artefacts must be preserved.

1Citation translated from French
2An earlier version of this chapter (Cleve and Hainaut, 2006) appeared in the tutorial book

Generative and Transformational Techniques in Software Engineering, published as volume 4143
of Lecture Notes in Computer Science, Springer, 2006.

231

232 Chapter 10. Schema Refactoring through Co-transformations

In this chapter, we focus on the consistency relationship that holds between the
application programs and their database schema. We assume that the evolution
process starts with a schema modification, potentially challenging this consistency.
Our main question is the following: how can a change in a database schema be
propagated to the application programs manipulating its data instances?

Based on the observation that (1) any schema change can be modelled by a
schema transformation, and (2) any program modification can be carried out us-
ing program transformation rules, this chapter elaborates on the possible coupling
of schema transformations and program transformations for supporting the co-
evolution of database schema and associated programs.

The chapter is structured as follows. Section 10.2 briefly summarizes our general
approach. Section 10.3 presents the LDA language on top of which the program
transformation rules of this chapter are defined. Section 10.4 recalls the concept
of schema transformation. The way program transformations can be derived from
schema transformations is discussed in Section 10.5. Section 10.6 systematically
associate a set of abstract program transformation rules to standard schema trans-
formations. In Section 10.7, we illustrate the application of our general approach
in three particular evolution contexts, namely schema refactoring, database design
and database migration. Section 10.8 gives an overview of a tool architecture that
support the whole process. We discuss related work in Section 10.9, while Sec-
tion 10.10 further clarifies the actual objectives and contributions of the chapter.
Concluding remarks are given in Section 10.11.

10.2 General approach

The general approach presented in this chapter is summarized in Figure 10.1. For
the sake of genericity, we will consider (1) the GER data model as a generic model
for database schemas and (2) the LDA language as an abstract data manipula-
tion language. Each representative GER-to-GER schema transformation will be
associated with LDA program transformations allowing to preserve the structural
consistency that must hold between the programs and the evolving schema.

The proposed approach considers (1) a limited subset of the GER model con-
structs and (2) a limited subset of the schema transformations that can be applied
to those constructs:

• The GER constructs not considered are is-a hierarchies, relationship types
with attributes, many-to-many relationship types and n-ary relationship types
(with n > 2).

• The GER-to-GER transformations not considered are (1) those that are not
semantics-preserving and (2) those that produce or apply to GER constructs
not considered.

The subset of GER constructs considered still encompasses the major existing data
models including the relational model, the COBOL file model, and the CODASYL

10.3. The LDA language 233

transformations

LDA Program

Host/DML
Program

GER Schema

DDL
Code

abstraction

transformations
Co-transformations

abstraction

transformations

LDA Program

Host/DML
Program

GER Schema

DDL
Code

abstraction

transformations
Co-transformations

abstraction

Figure 10.1: Co-transformational approach based on the GER model and the LDA
language.

model. Consequently, the abstract co-transformation rules we will define below
can be instantiated in the context of relational schema refactoring, COBOL file
structures refactoring or CODASYL schema refactoring. Similarly, the same co-
transformation rules can serve as a basis for supporting the conversion of a COBOL
or a CODASYL schema into a relational schema.

10.3 The LDA language

The LDA language is a semi-procedural language including database manipulation
primitives. A LDA program is associated to a GER schema G. It may manipulate
the instances of any object specified in G via host variables of corresponding types.
The navigation through the database always starts from an entity type.

LDA has been adapted from a similar language defined by Hainaut (1986). It
now combines usual language constructs of a query language and a programming
language, among which:

• Data manipulation primitives for selecting, creating, deleting and modifying
database records3;

• Types: integers, strings, booleans, and GER types4

• Conditional statements: If-then-else, For-loops, While-loops

• I/O statements: input, print

3Here, record means entity type instance.
4i.e., references to possibly complex data types specified in the underlying GER schema.

234 Chapter 10. Schema Refactoring through Co-transformations

1-1

0-N

ORD-DET

0-N

1-1 DET-PRO

1-10-N CUS-ORD

PRODUCT
NUMBER
DESCRIPTION
STOCK_QTY
id: NUMBER

ORDER

NUMBER
DATE
id: NUMBER

DETAIL

QUANTITY

CUSTOMER

NUMBER
NAME
ADDRESS
CITY
CATEGORY
ACCOUNT
id: NUMBER

1-1

0-N

ORD-DET

0-N

1-1 DET-PRO

1-10-N CUS-ORD

PRODUCT
NUMBER
DESCRIPTION
STOCK_QTY
id: NUMBER

ORDER

NUMBER
DATE
id: NUMBER

DETAIL

QUANTITY

CUSTOMER

NUMBER
NAME
ADDRESS
CITY
CATEGORY
ACCOUNT
id: NUMBER

Figure 10.2: Sample GER schema.

10.3.1 Database manipulation in LDA

In this section, we briefly describe the main features of the LDA language as far
as database manipulation is concerned. Our examples will be based on the sam-
ple GER schema of Figure 10.2, describing customers, orders, order details and
products.

Record selection expression

A record selection expression has the following general form:

entityTypeName [selectionCondition]

where:

• entityTypeName is the name of an entity type of the underlying schema;

• selectionCondition expresses the condition under which a record is selected.

The result of the evaluation of such an expression consists of a set of records of
type entityTypeName that satisfy selectionCondition. Some examples of record
selection expressions, defined on top of the schema of Figure 10.2, are given below:

• the set of customers...
CUSTOMER

• the set of customers living in Namur...
CUSTOMER (:CITY = ’Namur’)

• the set of orders placed by a customer who lives in Namur...
ORDER(CUS-ORD:CUSTOMER(:CITY = ’Namur’))

• the set of products for which the stock quantity is greater than 10...
PRODUCT(:STOCK-QTY > 10)

10.3. The LDA language 235

Assignment of record selection expression

A record selection expression can be assigned to a variable, as illustrated below:

cus := CUSTOMER(:CITY = ’Namur’);

If the set resulting from the evaluation of the record selection expression:

• is empty, the variable is set to null.

• contains only one element, the variable refers to this element for subsequent
statements.

• contains more than one element, one record of the set is randomly chosen
and its reference is assigned to the variable.

Typically, such assignments are used when the record selection expression returns
a singleton (i.e., one record).

Conditional statement based on record selection expression

A record selection expression used as a condition evaluates to true if the corre-
sponding set of records is non-empty. For instance, the following if statement
displays ’yes’ if at least one customer lives in Namur, and displays ’no’ otherwise.

if (CUSTOMER(:CITY = ’Namur’))

then print(’yes’)

else print(’no’)

endif

The above code fragment is equivalent to:

cus := (CUSTOMER(:CITY = ’Namur’))

if (cus = null)

then print(’yes’)

else print(’no’)

endif

For loops based on record selection expression

When the program needs to iterate on a set of records, it makes use of a for loop.
As an example, the following code fragment displays the name of each customer
living in Namur.

for cus := CUSTOMER(:CITY = ’Namur’) do

print(cus.NAME)

endfor;

In this case, the record selection expression is evaluated before the first iteration.
The body of the loop is executed n times, where n is the number of elements of the
resulting set of records. At each iteration, the loop variable (here, cus) references
a different record of this set.

236 Chapter 10. Schema Refactoring through Co-transformations

LDA COBOL CODASYL SQL

create WRITE STORE INSERT

delete DELETE ERASE DELETE

update REWRITE MODIFY UPDATE

Figure 10.3: Approximate correspondences between data modification primitives.

Data modification primitives

The LDA language provides the following usual data modification primitives al-
lowing to create, delete and update database records:

• create var := entityTypeName condition: creates a record of type entityTypeName

satisfying condition. Variable var references the created record for further
manipulation.

• delete var [condition]: deletes the record referenced by var if it satisfies
condition. If the record is deleted, variable var is set to null.

• update var condition: updates the record referenced by var such that it
satisfies condition.

Figure 10.3 presents the approximate correspondences between the above abstract
LDA primitives and concrete DML statements in COBOL, CODASYL and SQL.
Access (reading) primitives are both more simple and more complex than modifi-
cation primitives. In the one hand, the instance mapping states how instances can
be extracted from the database according to the new schema. On the other hand,
the way currency registers are implemented in various DMS can be quite different5.
Abstracting them in a DMS-independent manner is too complex to be addressed
in this chapter. Therefore, we assume, without loss of generality, that propagating
schema transformations to reading primitives requires DMS-specific rules. As far
as reading database access is concerned, we will only consider the record selection
expressions presented above, that allow to select one or more instances of a given
entity type based on (1) the value of their attributes and (2) their relationships
with other records.

10.3.2 Illustration

Figure 10.4 shows a sample LDA program allowing the creation of a new instance
of entity type ORDER of Figure 10.2. The head of an LDA program comprises
(1) the name of the program; (2) a reference to the associated GER schema; and
(3) program variable declarations. As previously mentionned, the type of a LDA
variable can be either a simple type (integer, boolean, string,..), or a GER type. For
instance, the type of variable prod and prod-code reference entity type PRODUCT

and attribute PRODUCT.NUMBER, respectively. Regarding the source code body itself,

5As it can be observed in Chapters 7 and 8 of this thesis.

10.4. Schema transformations 237

the program first accepts the identification number of the new order together with
its date, then it verifies that the provided customer number exists and creates the
order itself. Finally, it creates one detail per ordered product (the specified product
number should also exist).

10.4 Schema transformations

A schema transformation consists in deriving a target schema S′ from a source
schema S by replacing construct C (possibly empty) in S with a new construct C ′

(possibly empty) (Hainaut, 2006). C (resp. C ′) is empty when the transforma-
tion consists in adding (resp. removing) a construct. A more formal definition is
provided below:

Definition 3 A schema transformation Σ is a couple of mappings 〈T, t〉 such that
: C ′ = T (C) and c′ = t(c), where c is any instance of C and c′ the corresponding
instance of C ′. Structural mapping T explains how to modify the schema while
instance mapping t states how to compute the instance set of C ′ from instances of
C.

Semantics preservation Any transformation Σ can be given an inverse trans-
formation Σ−1 = 〈T−1, t−1〉 such that T−1(T (C)) = C. If, in addition, there also
exists an instance mapping t−1 such that: t−1(t(c)) = c, then Σ (and Σ−1) are said
semantics-preserving or reversible. If 〈T−1, t−1〉 is also reversible, Σ and Σ−1 are
called symmetrically reversible. If a schema transformation is reversible, then the
source schema can be replaced with the target one without loss of information. We
refer to (Hainaut, 2006) for a more detailled analysis of semantics preservation in
schema transformations.

As already identified in Chapter 3, three schema transformation categories exist:
(1) semantics-augmenting schema transformations (S+), (2) semantics-decreasing
schema transformations (S−) and (3) semantics-preserving schema transformations
(S=).

Examples Figure 10.5 graphically illustrates the structural mapping T1 of the
transformation of a compound attribute into an entity type and a relationship type
R. Figure 10.6 depicts the structural mapping T2 of the transformation of a one-
to-one relationship type R into a foreign key. Both transformations can be proved
to be semantics-preserving.

10.5 Program adaptation by co-transformations

The feasibility of automatically adapting a program to a schema transformation
depends on the nature of the latter. In the general case, the transformations of S+

and S− categories do not allow automatic program modifications. The task remains
under the responsibility of the programmer. However, it is generally possible to

238 Chapter 10. Schema Refactoring through Co-transformations

// program identification
program NEW_ORDER.

// reference to the underlying GER schema
schema ’create_ord.lun ’;

// declaration of program variables
ord : ORDER;
ord -num : ORDER.NUMBER;
ord -date : ORDER.DATE;
cus : CUSTOMER;
cus -num : CUSTOMER.NUMBER;
det : DETAIL;
ord -qty : DETAIL.QUANTITY;
prod : PRODUCT;
prod -code : PRODUCT.NUMBER;
is-ok, stop : boolean;
integer : i;

begin
print(’Creating a new order ...’);
print(’Enter order number:’);
input(ord -num);
print(’Enter order date:’);
input(ord -date);
is-ok := false;
// verification loop: the specified customer should exist
while (is-ok = false) do

print(’Enter customer id:’);
input(cus -num);
if (CUSTOMER (: NUMBER = cus -num))

then is-ok := true;
cus := CUSTOMER (: NUMBER = cus -num)

else print(’Unknown customer !’)
endif

endwhile;
// creation of the new order
create ord := ORDER ((: NUMBER = ord -num)

and (:DATE = ord -date)
and (CUS -ORD : cus));

print(’Order ’, ord.NUMBER , ’ created for customer ’, cus.NUMBER);
stop := false;
// creation of one order detail per ordered product
while (stop = false) do

print(’Add order detail? (yes=1, no <>1):’);
input(i);
if (i = 1)

then is-ok := false;
// verification loop: the specified product should exist
while (is-ok = false) do

print(’Enter product code:’);
input(prod -code);
if (PRODUCT (: NUMBER = prod -code))

then is-ok := true;
prod := PRODUCT (: NUMBER = prod -code)

else print(’Unknown product!’)
endif

endwhile;
print(’Enter quantity ordered:’);
input(ord -qty);
create det := DETAIL ((: QUANTITY = ord -qty)

and (ORD -DET : ord)
and (DET -PRO : prod))

else stop := true
endif

endwhile
end.

Figure 10.4: Example LDA program allowing the creation of an ORDER.

10.5. Program adaptation by co-transformations 239

⇒
T1

E

A
A1
A2
...
An

B
C

1-11-1 R

EA
A1
A2
...
An

E
B
C

Figure 10.5: Structural mapping T1 of a semantics-preserving schema transforma-
tion that transforms a compound attribute A into entity type EA and a relationship
type R. (instance representation)

1-10-N R
E2

B1
B2

E
Id1
...
Idn
A1
A2
id: Id1

...
Idn

⇒
T2

E
Id1
...
Idn
A1
A2
id: Id1

...
Idn

E2
B1
B2
RId1
...
RIdn
ref: RId1

...
RIdn

1-10-N R
E2

B1
B2

E
Id1
...
Idn
A1
A2
id: Id1

...
Idn

⇒
T2

E
Id1
...
Idn
A1
A2
id: Id1

...
Idn

E2
B1
B2
RId1
...
RIdn
ref: RId1

...
RIdn

Figure 10.6: Structural mapping T2 of a semantics-preserving schema transfor-
mation that transforms a one-to-many relationship type R into a foreign key
RId1 · · ·RIdn.

240 Chapter 10. Schema Refactoring through Co-transformations

evaluate the impact of such semantic evolutions by automatically locating the pro-
gram sections where occurrences of modified object types are processed (Henrard,
2003).

In contrast, semantics-preserving schema transformations (S=) can be propa-
gated to the program level more easily. Indeed, they allow the programming logic
to be left unchanged, since the application programs still manipulate the same in-
formational content. Program conversion mainly consists in adapting the related
DMS6 statements to the modified data structure.

Co-transformational approach

When modelling schema modifications as schema transformations, the program
adaptation problem translates as follows. Given a semantics-preserving schema
transformation Σ applicable to data construct C, how can it be propagated to the
database queries that select, create, delete and update instances of construct C?
Our approach consists in associating with structural mapping T of Σ, in addition
to instance mapping t, a query rewriting mapping stating how to adapt the related
queries accordingly. In other words, we propose to extend the concept of schema
transformation to the more general term of database co-transformation, as formally
defined below.

Notations The following notations will be used:

• S denotes the set of all possible database schemas.

• D(S) denotes the set of all possible database states complying with schema
S ∈ S.

• Q(S) denotes the set of all possible queries that can be expressed on schema
S ∈ S.

• R(S) denotes the set of all possible results of reading queries on database
states complying with schema S.

Definition 4 A database query q expressed on a schema S is a function q :
D(S)→ D(S)×R(S), that takes a database state d ∈ D(S) as input, and returns a
(possibly updated) database state d′ ∈ D(S) together with a (possibly empty) result
r ∈ R(S).

Reading primitives typically leave the database state unchanged, in contrast with
modification primitives (create, delete, update) that affect the database contents.

Definition 5 A database co-transformation Φ = 〈T, td, tq〉 is a 3-tuple of trans-
formations where:

• T : S → S transforms the schema;

6Data Management System

10.5. Program adaptation by co-transformations 241

d

d�
q

r�

d’

q ’t�t�
d�
r�t�

t�

S S ’T

Figure 10.7: Graphical representation of a database co-transformation.

• td : D(S)→ D(T (S)) transforms the data instances;

• tq : (D(S)→ 〈D(S)×R(S))→ (D(T (S))→ D(T (S))×R(T (S))) transforms
the database queries such that ∀d ∈ D(S) : ∀q ∈ Q(S) :

– tq(q) ∈ Q(T (S))

– let q(d) = 〈d1, r1〉 ∧ tq(q)(t(d)) = 〈d2, r2〉
then d2 = td(d1) ∧ r2 = td(r1) and, conversely, d1 = t−1

d (d2) ∧ r1 =
t−1
d (r2).

Figure 10.7 graphically summarizes the above definitions.

Illustrations Figure 10.8 illustrates the query transformation mapping tq1 that
can be associated with structural mapping T1 of Figure 10.5. Since attribute A of
entity type E has become entity type EA, the way of creating an instance of E

must be adapted accordingly. It now involves the creation of an instance of entity
type EA corresponding to the old A instance. The created EA instance must be
linked with the instance (e) of E through relationship type R.

Figure 10.9 illustrates the query transformation mapping tq2 associated with
structural mapping T2 of Figure 10.6. The relationship condition R : e of the create
primitive is now expressed as an equality condition between the foreign key value
and the target identifier value.

242 Chapter 10. Schema Refactoring through Co-transformations

create e := E(:A.A1 = a1 create e := E(:B = b and :C = c);

. . . tq1 create ea := EA(:A1 = a1

and :A.An = an ⇒ . . .

and :B = b and :An = an

and :C = c) and R:e)

Figure 10.8: Query transformation mapping tq1 associated with structural mapping
T1 of Figure 10.5, when applied to a create primitive.

create e2 := E2(:B1 = b1 create e2 := E2(:B1 = b1

and :B2 = b2 tq2 and :B2 = b2

and R : e) ⇒ and :RId1 = e.Id1

. . .

and :RIdn = e.Idn)

Figure 10.9: Query transformation mapping tq2 associated with structural mapping
T2 of Figure 10.6, when applied to a create primitive.

10.6 Co-transformation rules

In this section, we specify a set of co-transformation rules, according to which a
set7 of semantics-preserving GER-to-GER schema transformations are associated
with corresponding program transformation rules defined on the LDA language.
For each specified co-transformation Φ = 〈T, td, tq〉, we successively present:

• the signature of T ;

• the graphical representation of T ;

• the program transformation rules (tq) associated to T .

• the intuitive justification of the correctness of those program transformation
rules.

Assumptions

• The initial program is assumed (1) to be correct, (2) to comply with the initial
database schema and (3) to respect to underlying data integrity constraints.

• Each program transformation rule assumes that its right-hand side consti-
tutes an indivisible sequence of primitives, similarly to a code fragment falling
within the scope of a database transaction. This assumption is required since
some of the program transformation rules replace a single instruction by a
sequence of instructions.

7The co-transformation rules do not claim to cover all possible semantics-preserving transfor-
mations, but rather consider the most representative ones.

10.6. Co-transformation rules 243

10.6.1 Entity type renaming

Signature E′ ← Rename-ET (E)

Structural mapping The Rename-ET transformation changes the name of an
entity type E as E′.

E'
A
B
C

E
A
B
C

⇒
T

E'
A
B
C

E
A
B
C

⇒
T

Program transformation The adaptation of the queries is straightforward. It
consists in replacing each reference to entity type E with a reference to E′.

• variable declaration :
e : E; ⇒ e : E′;

• record selection expressions:
E(cond) ⇒ E′(cond)

• create primitives:
create e := E(cond) ⇒ create e := E′(cond)

Correctness Since the Rename-ET transformation does not involve any mod-
ification of the data instances, the correctness proof of the associated program
transformation rules is immediate.

10.6.2 Attribute renaming

Signature A′ ← Rename-ATT (E,A)

Structural mapping The Rename-ATT transformation gives a new name A′

to an attribute A of an entity type E.

E

A
B
C

⇒
T

E
A'
B
C

E

A
B
C

⇒
T

E
A'
B
C

Program transformation Each reference to attribute E.A must then be re-
placed with a reference to attribute E.A′.

• variable declaration :
a : E.A; ⇒ a : E.A′;

244 Chapter 10. Schema Refactoring through Co-transformations

• record selection expressions:
E(. . . :A rel exp . . .) ⇒ E(. . . :A′ rel exp . . .)

• create primitives:
create e := E(. . . :A = exp . . .) ⇒ create e := E(. . . :A′ = exp . . .)

• delete primitives:
delete e(. . . :A rel exp . . .) ⇒ delete e(. . . :A′ rel exp . . .)

where type(e) = E

• update primitives:
update e(. . . :A = exp . . .) ⇒ update e(. . . :A′ = exp . . .)

where type(e) = E

• attribute reference:
e.A ⇒ e.A′

where type(e) = E

Correctness Similarly to the previous transformation, Rename-ATT does not
necessitate the alteration of the data instances. The program transformation rules
simply consists in changing the name of the attribute accordingly.

10.6.3 Attribute aggregation

Signature A← Aggregate-ATT (E, {A1, A2, ..., An})

Structural mapping The Aggregate-ATT transformation groups a set of first-
level attributes {A1, A2, ..., An} of an entity type E within a single compound
attribute A of the same entity type.

E
A

A1
A2
...
An

B
C

E
A1
A2
...
An
B
C

⇒
T

Program transformation Each reference to first-level attribute E.Ai must be
rewritten as a reference to the corresponding sub-level attribute of A.
∀i : 1 <= i <= n :

• variable declaration :
ai : E.Ai; ⇒ ai : E.A.A′

i;

• record selection expressions:
E(. . . :Ai rel exp . . .) ⇒ E(. . . :A.Ai rel exp . . .)

10.6. Co-transformation rules 245

• create primitives:
create e := E(. . . :Ai = exp. . .) ⇒ create e := E(. . . :A.Ai = exp . . .)

• delete primitives:
delete e(. . . :Ai rel exp . . .) ⇒ delete e(. . . :A.Ai rel exp . . .)

where type(e) = E

• update primitives:
update e(. . . :Ai = exp . . .) ⇒ update e(. . . :A.Ai = exp . . .)

where type(e) = E

• attribute reference:
e.Ai ⇒ e.A.Ai

where type(e) = E

Correctness The way the Aggregate-ATT transformation is propagated to the
programs is easy to justify. This transformation involves, for each record, the
aggregation of the values of simple attributes A1, A2, ..., An within a single com-
pound attribute A, itself composed of sub-level attributes A.A1, A.A2, ..., A.An. A
reference to a simple attribute Ai in the source schema translates into a reference
to the corresponding sub-level attribute A.Ai in the target schema.

10.6.4 Compound attribute disaggregation

Signature {A1, A2, ..., An} ← Disaggregate-ATT (E,A)

Structural mapping The Disaggregate-ATT transformation can be seen as the
inverse of Aggregate-ATT . It discards a first-level compound attribute A, each of
its sub-level attributes {A1, A2, ..., An} becoming a first-level attribute.

E
A

A1
A2
...
An

B
C

E
A1
A2
...
An
B
C

⇒
T

Program transformation The program adaptation consists in replacing each
reference to sub-level attribute E.A.Ai with a reference to the corresponding first-
level attribute E.Ai.
∀i : 1 <= i <= n :

• variable declaration :
ai : E.A.Ai; ⇒ ai : E.Ai;

246 Chapter 10. Schema Refactoring through Co-transformations

• record selection expressions:
E(. . . :A.Ai rel exp . . .) ⇒ E(. . . :Ai rel exp . . .)

• create primitives:
create e := E(. . . :A.Ai = exp. . .) ⇒ create e := E(. . . :Ai = exp . . .)

• delete primitives:
delete e(. . . :A.Ai rel exp . . .) ⇒ delete e(. . . :Ai rel exp . . .)

where type(e) = E

• update primitives:
update e(. . . :A.Ai = exp . . .) ⇒ update e(. . . :Ai = exp . . .)

where type(e) = E

• attribute reference:
e.A.Ai ⇒ e.Ai

where type(e) = E

Correctness The justification of correctness for the Disaggregate-ATT is the
exact converse of the one given for the Aggregate-ATT transformation.

10.6.5 Attribute to entity type (instance representation)

Signature 〈R,EA〉 ← ATT -to-ET -inst(E,A)

Structural mapping The ATT -to-ET -inst transforms an attribute A into an
entity type EA and a relationship type R, by instance representation. This means
that there may exist multiple instances of entity type EA having the same value
of attribute A, but each instance of EA is linked to exactly one instance of entity
type E.

E

A
B
C

⇒
T 1-11-1 R EA

A

E
B
C

E

A
B
C

⇒
T
⇒
T 1-11-1 R EA

A

E
B
C

Program transformation The adaptation of the data manipulation primitives
is as follows:

• variable declaration :
a : E.A; ⇒ a : EA.A;

• record selection expressions:
E(. . . :A rel exp . . .) ⇒ E(. . . R:EA(:A rel exp). . .)

10.6. Co-transformation rules 247

• create primitives: the creation of one instance of E now involves the creation
of one instance of EA, linked to the created instance of E through relationship
type R.
create e := E(:A = exp1 and :B = exp2 and :C = exp3)

⇒
create e := E(:B = exp2 and :C = exp3);

create ea(:A = exp1 and R:e)

• delete primitives: deleting an instance of E now implies to remove the asso-
ciated instance of EA from the database.

delete e(:A rel exp) where type(e) = E

⇒
ea = EA(R:e);

if (ea.A rel exp) then

delete ea;

delete e

endif

• update primitives: updating the value of attribute A for an instance e of E

now consists in updating the instance of EA associated to e.

update e(:A = exp) where type(e) = E

⇒
ea = EA(R:e);

update ea(:A = exp);

• attribute reference:
e.A ⇒ e.R.A

where type(e) = E

Correctness The ATT -to-ET -inst transformation simply extracts an attribute
A from an entity type E. For each record of type E, the value of attribute A is
converted into a distinct record of type EA having the same value of attribute
A. This created record is linked to its corresponding record of type E. Thus,
referencing attribute A of an instance e of entity type E on the source schema, can
be simulated through a reference to the value of attribute A for the record of type
EA that is linked to e. Deleting a record e of type E on the target schema now
necessitates the deletion of the instance of EA associated to e.

10.6.6 Attribute to entity type (value representation)

Signature 〈R,EA〉 ← ATT -to-ET -value(E,A)

248 Chapter 10. Schema Refactoring through Co-transformations

Structural mapping The ATT -to-ET -value transforms an attribute A into an
entity type EA and a relationship type R, by value representation. In contrast with
the instance representation, the same instance of entity type EA may be associated
to multiple instances of entity type E, but there cannot exist two instances of EA

having the same value of attribute A.

E

A
B
C

⇒
T 1-N1-1 R

EA
A
id: A

E
B
C

E

A
B
C

⇒
T
⇒
T 1-N1-1 R

EA
A
id: A

E
B
C

Program transformation The data manipulation primitives can be adapted as
follows:

• variable declaration :
a : E.A; ⇒ a : EA.A;

• record selection expressions:
E(. . . :A rel exp . . .) ⇒ E(. . . R:EA(:A rel exp). . .)

• create primitives: when creating a new instance of E, one must now check
whether an instance ea of EA already exists with the proper value of at-
tribute A. If it is the case, the created instance of E is linked to ea through
relationship type R. If this is not the case, an instance of EA must be created
beforehand.

create e := E(:A = expA and :B = expB and :C = expC)

⇒
ea = EA(:A = expA);

if (ea = null) then

create ea := EA(:A = expA)

endif;

create e := E(R:ea and :B = expB and :C = expC);

• delete primitives: deleting an instance of E now necessitates the deletion of
the instance ea of EA associated to e. This is done only if ea is not also
linked to other instances of E.

delete e(:A rel exp)

where type(e) = E

⇒
ea = EA(R:e);

if (ea.A rel exp) then

delete e;

if not(E(R:ea)) then

delete ea;

10.6. Co-transformation rules 249

endif

endif

• update primitives: updating the value of former attribute A for an instance
e of E now consists in replacing the instance of EA associated to e. In case
an instance ea-new of EA with the new value of A already exists, then this
instance can be linked to e. Otherwise, a corresponding new instance of EA

must be created. The instance ea-old of EA previously linked to e can be
deleted if it is not linked to other instances of E.

update e(:A = exp)

where type(e) = E

⇒
ea-old = EA(R:e);

ea-new = EA(:A = exp);

if (ea-new = null) then

create ea-new := EA(:A = exp)

endif;

update e(R:ea-new);

if not(E(R:ea-old)) then

delete ea-old

endif

• attribute reference:
e.A ⇒ e.R.A

where type(e) = E

Correctness The justification of correctness is similar to the one of the ATT -to-
ET -inst transformation except that, in this case, the same instance of EA can be
linked to several instances of E. This means that when inserting an instance of E,
one should first verify that an instance of EA with the desired value of attribute
A does not already exist. Similar ad-hoc operations are also necessary (1) when
updating the value of attribute A linked to a given instance of E and (2) when
deleting an instance of E.

10.6.7 Compound attribute to entity type (instance representation)

Signature 〈R,EA〉 ← CoATT -to-ET -inst(E,A)

Structural mapping The CoATT -to-ET -inst transformation replaces a com-
pound attribute A of an entity type E with an entity type EA having the same
decomposition as A. The conversion is performed by instance representation, which
means that each instance of new entity type EA corresponds to exactly one in-
stance of entity type E through relationship type R. Duplicate values of attribute
A among the instances of EA are allowed.

250 Chapter 10. Schema Refactoring through Co-transformations

⇒
T

E

A
A1
A2
...
An

B
C

1-11-1 R

EA
A1
A2
...
An

E
B
C⇒

T
⇒
T

E

A
A1
A2
...
An

B
C

1-11-1 R

EA
A1
A2
...
An

E
B
C

Program transformation Each reference to sub-level attribute E.A.Ai must
then be rewritten as a reference to the corresponding first-level attribute EA.Ai

∀i : 1 <= i <= n :

• variable declaration :
a : E.A.Ai; ⇒ a : EA.Ai;

• record selection expressions:
E(. . . :A.Ai rel exp . . .) ⇒ E(. . . R:EA(:Ai rel exp). . .)

• create primitives: the creation of one instance of E now involves the creation
of one instance of EA, linked to the created instance of E through relation-
ship type R.
create e := E(:A.A1 = expA1

. . . and :A.An = expAn
and :B = exp2

and :C = exp3)

⇒
create e := E(:B = exp2 and :C = exp3);

create ea(:A1 = expA1
. . . and An = expAn

and R:e)

• delete primitives: deleting an instance of E now implies to remove the asso-
ciated instance of EA from the database.

delete e(A.Ai rel exp)

where type(e) = E

⇒
ea = EA(R:e);

if (ea.Ai rel exp) then

delete ea;

delete e

endif

• update primitives: updating the value of sub-level attribute A.Ai for an
instance e of E now consists in updating the instance of EA associated to e

accordingly.

update e(:A.Ai = exp)

where type(e) = E

⇒

10.6. Co-transformation rules 251

ea = EA(R:e);

update ea(:Ai = exp);

• attribute reference:
e.A.Ai ⇒ e.R.Ai

where type(e) = E

Correctness The intuitive justification is exactly the same as for the ATT -to-
ET -inst transformation. The only difference is that the extracted attribute A is a
compound attribute.

10.6.8 Multi-valued attribute to entity type (instance representation)

Signature 〈R,EA〉 ←MultiATT -to-ET -inst(E,A)

Structural mapping The MultiATT -to-ET -inst(E,A) replaces a multivalued
attribute A of an entity type E with another entity type EA, by instance represen-
tation. Each instance of entity type E may thus correspond to multiple instances
of EA, while each instance of EA is associated to exactly one instance of E. As
specified in Chapter 2, by default, multivalued attributes represent sets of val-
ues, i.e. unstructured collections of distinct values. Therefore, there cannot exist
two distinct instances of EA associated with the same instance of E and having
the same value of atomic attribute A. This constraint is expressed through the
identifier of EA.

E

A[0-N]
B
C

1-10-N R

EA
A
id: R.E

A

E
B
C

⇒
T

E

A[0-N]
B
C

1-10-N R

EA
A
id: R.E

A

E
B
C

⇒
T
⇒
T

Program transformation The adaptation of the data manipulation primitives
involving attribute A is specified below:

• variable declaration :
a : E.A; ⇒ a : EA.A;

• record selection expressions: we consider the following abstract selection con-
dition which returns true when the set A contains a given value exp (exp ∈:A).
This condition is now expressed based on the existence of an instance of EA

with the proper value of attribute A.
E(. . . exp ∈:A . . .) ⇒ E(. . . R:EA(:A = exp). . .)

• create primitives: the creation of one instance of E assigning a set of values
to attribute A now involves the creation of corresponding instances of EA,
linked to the created instance of E through relationship type R.
create e := E(:A = {expA1

, . . . , exprAN
} and :B = expB and :C = expC)

252 Chapter 10. Schema Refactoring through Co-transformations

⇒
create e := E(:B = expB and :C = expC);

create ea(:A = expA1
and R:e);

...

create ea(:A = expAN
and R:e)

• delete primitives: deleting an instance of E now implies to remove the asso-
ciated instances of EA from the database.

delete e

where type(e) = E

⇒
for ea := EA(R:e) do

delete ea

endfor;

delete e

• update primitives: We consider three possible update actions on a multival-
ued attribute A representing a set: (1) assigning a set of values to A (A =
{v1, . . . , vN}), (2) adding a value to the set (A∪{v}) and (3) removing a value
from the set (A \ {v}). We show below how those update actions translates
when expressed on the target schema:

– assigning a new set of values to attribute A for an instance e of E now
necessitates to remove of all instances of EA associated to e, before
creating new instances of EA.

update e(:A = {expA1
, . . . , expAN

})
where type(e) = E

⇒
for ea := EA(R:e) do

delete ea

endfor;

create ea(:A = expA1
and R:e);

...

create ea(:A = expAN
and R:e)

– adding a value to multivalued attribute A for an instance e of E now
translates into the creation of a new instance of EA associated to e.
This instance is created only if no instance of EA attached e already
exists with the same value of A.

update e(:A ∪ {exp})
where type(e) = E

⇒
if not(EA(:A = exp and R:e)) then

10.6. Co-transformation rules 253

create ea := EA(:A = exp and R:e)

endif

– removing a value v from multivalued attribute A for an instance e of E

can be simulated by deleting the instance of EA associated to e having
v as value of attribute A, if any.

update e(:A \ {exp})
where type(e) = E

⇒
ea := EA(:A = exp and R:e);

if (ea 6= null) then

delete ea

endif

Correctness The intuitive justification is exactly the same as for the ATT -to-
ET -inst transformation, except that the extracted attribute A is a multivalued
attribute. As a consequence, simulating the creation of an instance of E potentially
necessitates the creation of several instances of EA. Conversely, all the instances of
EA, that are linked to an instance of E subject to removal, should also be removed.

10.6.9 Compound, multi-valued attribute to entity type (instance rep-
resentation)

Signature 〈R,EA〉 ← CoMultiATT -to-ET -inst(E,A)

Structural mapping The CoMultiATT -to-ET -inst(E,A) replaces a multival-
ued, compound attribute A of an entity type E with another entity type EA, by
instance representation. Each instance of entity type E may thus correspond to
multiple instances of EA, while each instance of EA is associated to exactly one
instance of E. As specified in Chapter 2, by default, multivalued attributes rep-
resent sets of values, i.e. unstructured collections of distinct values. Therefore,
there cannot exist two distinct instances of EA associated with the same instance
of E and having the same combination of values of atomic attributes Ai. This
constraint is expressed through the identifier of EA.

E

A[0-N]
A1
A2
...
An

B
C

1-10-N R

EA
A1
A2
...
An
id: R.E

A1
A2
...
An

E
B
C

⇒
T

E

A[0-N]
A1
A2
...
An

B
C

1-10-N R

EA
A1
A2
...
An
id: R.E

A1
A2
...
An

E
B
C

⇒
T
⇒
T

254 Chapter 10. Schema Refactoring through Co-transformations

Program transformation

• record selection expressions: we consider the following abstract selection con-
dition which returns true when the set A contains a tuple of values for which
value of attribute Ai corresponds to value of expression exp (exp ∈:A.Ai).
This condition is now related to the existence of an instance of EA with the
proper value of attribute Ai.
E(. . . exp ∈:A.Ai . . .) ⇒ E(. . . R:EA(:Ai = exp). . .)

• create primitives: the creation of one instance of E assigning a set of tuples
to attribute A now involves the creation of corresponding instances of EA,
linked to the created instance of E through relationship type R.

create e := E(:A = {〈expA11
, . . . , exprAn1

〉
. . .

〈expA1N
, . . . , exprAnN

〉} and

:B = expB and

:C = expC)

⇒
create e := E(:B = expB and :C = expC);

create ea(:A1 = expA11
and. . . :An = expAn1

and R:e);

...

create ea(:A1 = expA1N
and. . . :An = expAnN

and R:e)

• delete primitives: deleting an instance of E now implies to remove the asso-
ciated instances of EA from the database.

delete e

where type(e) = E

⇒
for ea := EA(R:e) do

delete ea

endfor;

delete e

• update primitives: We consider three possible update actions on a multival-
ued compound attribute A representing a set: (1) assigning a set of tuples
to A (A = {〈v11

, . . . , vn1
〉, . . . , 〈v1N

, . . . , vnN
〉}), (2) adding a tuple to the set

(A∪{〈v1, . . . , vn〉}) and (3) removing a tuple from the set (A\{〈v1, . . . , vn〉}).
We show below how those update actions translates when expressed on the
target schema:

– assigning a new set of tuples to attribue A for an instance e of E now
necessitates to remove of all instances of EA associated to e, before
creating new instances of EA.

10.6. Co-transformation rules 255

update e(:A = {〈expA11
, . . . , expAn1

〉
...

〈expA1N
, . . . , expAnN

〉})
where type(e) = E

⇒
for ea := EA(R:e) do

delete ea

endfor;

create ea(:A1 = expA11
and . . . :An = expAn1

and R:e);

...

create ea(:A1 = expA1N
and . . . :An = expAnN

and R:e)

– adding a tuple to multivalued, compound attribute A for an instance e of
E now translates into the creation of a new instance of EA associated to
e. This instance is created only if no instance of EA attached e already
exists with the same values of A1, . . . , An.

update e(:A ∪ {〈expA1
, . . . , expAn

〉})
where type(e) = E

⇒
if not(EA(:A1 = expA1

and . . . :An = expAn
and R:e)) then

create ea := EA(:A1 = expA1
and . . . :An = expAn

and R:e)

endif

– removing a tuple of values from multivalued attribute A for an instance
e of E can be simulated by deleting the instance of EA associated to e

having those values for attributes A1, . . . , An, if any.

update e(:A \ {〈expA1
, . . . , expAn

〉})
where type(e) = E

⇒
ea := EA(:A1 = expA1

and . . . :An = expAn
and R:e);

if (ea 6= null) then

delete ea

endif

Correctness The program adaptation rules defined for the CoMultiATT -to-
ET -inst transformation actually combine the rules propagating the CoATT -to-
ET -inst and the MultiATT -to-ET -inst transformations, but the general principles
remain the same.

10.6.10 One-to-one relationship type to foreign key

Signature 〈{RId1, .., RIdn}, {Id1, ..., Idn}〉 ← One2OneRT -to-FK(R,E2)

256 Chapter 10. Schema Refactoring through Co-transformations

Structural mapping The One2OneRT -to-FK transformation replaces a one-
to-one relationship type R between entity types E and E2 with an identifying for-
eign key {RId1, ..., RIdn} in entity type E2 that references the identifier {Id1, ..., Idn}
of entity type E. The foreign key is subject to an equality constraint with its target
identifier. Indeed, the one-to-one relationship type express that each instance of
E2 corresponds to exactly one instance of E and, conversely, each instance of E

corresponds to exactly one instance of E2.

1-11-1 R
E2

B1
B2

E
Id1
...
Idn
A1
A2
id: Id1

...
Idn

⇒
T

E
Id1
...
Idn
A1
A2
id: Id1

...
Idn

E2
RId1
...
RIdn
B1
B2
id: RId1

...
RIdn
equ

1-11-1 R
E2

B1
B2

E
Id1
...
Idn
A1
A2
id: Id1

...
Idn

⇒
T

E
Id1
...
Idn
A1
A2
id: Id1

...
Idn

E2
RId1
...
RIdn
B1
B2
id: RId1

...
RIdn
equ

Program transformation

• record selection expressions: The use of relationship type R in a relationship
condition must be replaced with a condition based on the equality of the
created foreign key and the target identifier. We distinguish two cases: (1)
the relationship condition is used for selecting instances of E2 and (2) it is
used for selecting instances of E:

– E2(R:e) ⇒ E2(:RId1 = e.Id1 and . . . and :RIdn = e.Idn)

where type(e) = E

– E(R:e2) ⇒ E(:Id1 = e2.RId1 and . . . and :Idn = e2.RIdn)

where type(e2) = E2

The rules above assume relationship conditions of the form R:var. More
complex conditions of the form R:recordSelectionExpression necessitate
pre-processing. For instance, the following code fragment:

for e2 := E2(R:E(:A1 = exp)) do

sequence

endfor

can be rewritten as follows:

for e := E(:A1 = exp) do

e2 := E2(R:e);

if (e2 6= null) then

sequence

endif

endfor

10.6. Co-transformation rules 257

• create primitives: the creation of one instance of E2 in relationship with an
instance of E through relationship type R can be translated as follows.

create e2 := E2(:B1 = expB1
and :B2 = expB2

and R:e)

where type(e) = E

⇒
create e2 := E2(:B1 = expB1

and :B2 = expB2

and :RId1 = e.Id1

. . .

and :RIdn = e.Idn)

• delete primitives: deleting an instance of E obviously implies to remove the
associated instance of E2 from the database. However, no transformation is
needed since this delete propagation behaviour was already required in the
source schema. Any delete e primitive should already by preceded by the
following code fragment:

e2 := E2(R:e);

delete e2

According to the rule applying to record selection expressions, this code frag-
ment would be translated as follows:

e2 := E2(:RId1 = e.Id1 and . . . and :RIdn = e.Idn);

delete e2

• update primitives: changing the value of the identifier of an instance of E

must be propagated on the foreign key value of the corresponding instance
of E2.

update e(:RIdi = exp)

where type(e) = E

⇒
e2 := E2(:RId1 = e.Id1 and . . . :RIdn = e.Idn);

update e(:RIdi = exp);

update e2(:RIdi = exp)

Correctness The One2OneRT -to-FK transformation propagate to the data
level as follows. Each record of type E2 now has an additional set of attributes,
that constitutes a reference to the instance of E it is associated with. As a conse-
quence, each condition based on the relationship between an instance e of E and
an instance e2 of E2 now translates as the equality between the foreign key value
of e2 and the identifier value of e.

258 Chapter 10. Schema Refactoring through Co-transformations

10.6.11 One-to-many relationship type to foreign key

Signature 〈{RId1, .., RIdn}, {Id1, ..., Idn}〉 ← One2ManyRT -to-FK(R,E2)

Structural mapping The One2ManyRT -to-FK transformation replaces a one-
to-many relationship type R between entity types E and E2 with a foreign key
{RId1, .., RIdn} in entity type E2 that references the identifier {Id1, ..., Idn} of
entity type E.

1-10-N R
E2

B1
B2

E
Id1
...
Idn
A1
A2
id: Id1

...
Idn

E
Id1
...
Idn
A1
A2
id: Id1

...
Idn

E2
B1
B2
RId1
...
RIdn
ref: RId1

...
RIdn

⇒
T

Program transformation

• record selection expressions: The use of relationship type R in a relationship
condition must be replaced with a condition based on the equality of the
created foreign key and the target identifier. We distinguish two cases: (1)
the relationship condition is used for selecting instances of E2 and (2) it is
used for selecting instances of E:

– E2(R:e) ⇒ E2(:RId1 = e.Id1 and . . . and :RIdn = e.Idn)

where type(e) = E

– E(R:e2) ⇒ E(:Id1 = e2.RId1 and . . . and :Idn = e2.RIdn)

where type(e2) = E2

• create primitives: the creation of one instance of E2 in relationship with an
instance of E through relationship type R can be translated as follows.

create e2 := E2(:B1 = expB1
and :B2 = expB2

and R:e)

where type(e) = E

⇒
create e2 := E2(:B1 = expB1

and :B2 = expB2

and :RId1 = e.Id1)

. . .

and :RIdn = e.Idn)

10.7. Applications 259

• delete primitives: deleting an instance of E obviously implies to remove the
associated instances of E2 from the database. However, no transformation is
needed since this delete propagation behaviour was already required in the
source schema. Any delete e primitive should already by preceded by the
following code fragment:

for e2 := E2(R:e) do

delete e2

endfor

According to the rule applying to record selection expressions, this code frag-
ment would be translated as follows:

for e2 := E2(:RId1 = e.Id1 and . . . and :RIdn = e.Idn) do

delete e2

endfor

• update primitives: changing the value of the identifier of an instance of E

must be propagated on the foreign key value of the corresponding instances
of E2.

update e(:RIdi = exp)

where type(e) = E

⇒
for e2 := E2(:RId1 = e.Id1 and . . . :RIdn = e.Idn) do

update e2(:RIdi = exp)

endfor;

update e(:RIdi = exp)

Correctness The justification is similar to the one given for the One2OneRT -
to-FK transformation. The difference in this case is that several instances of E2

may reference the same instance of E.

10.7 Applications

The general co-transformational approach proposed in this chapter can be ap-
plied in various contexts, among which schema refactoring, database migration
and database design. Indeed, each of those database engineering and evolution
processes typically involves a chain of semantics-preserving schema transforma-
tions. The associated co-transformation rules defined above have to be successively
composed such that, at the end of the transformation process, the resulting data
manipulation code fragment complies with the target database schema.

260 Chapter 10. Schema Refactoring through Co-transformations

⇒

CUSTOMER
CusId
Name
Street
Number
ZipCode
City
id: CusId

CUSTOMER
CusId
Name
id: CusId

ADDRESS
Customer
Street
Number
ZipCode
City
id: Customer

equ

CUSTOMER
CusId
Name
Address

Street
Number
ZipCode
City

id: CusId

⇒

⇒

⇒

T3 ◦ T2 ◦ T1

T1

T2

T3

1-11-1 R

CUSTOMER
CusId
Name
id: CusId

ADDRESS

Street
Number
ZipCode
City

⇒

CUSTOMER
CusId
Name
Street
Number
ZipCode
City
id: CusId

CUSTOMER
CusId
Name
id: CusId

ADDRESS
Customer
Street
Number
ZipCode
City
id: Customer

equ

CUSTOMER
CusId
Name
Address

Street
Number
ZipCode
City

id: CusId

⇒

⇒

⇒

T3 ◦ T2 ◦ T1

T1

T2

T3

1-11-1 R

CUSTOMER
CusId
Name
id: CusId

ADDRESS

Street
Number
ZipCode
City

Figure 10.10: Refactoring of a relational logical schema through a chain of GER-
to-GER schema transformations.

10.7.1 Application to schema refactoring

Figure 10.10 gives an example of compound schema transformation (or macro-
transformation), which allows to restructure a relational logical schema. Table
CUSTOMER is split into two tables. Columns Street, Number, ZipCode and City of
table CUSTOMER are moved to the new table ADDRESS. The latter also contains an
identifying foreign key column Customer, that references the identifier (CusId) of
the corresponding customer.

This transformation, as depicted in the figure, can be decomposed into three
successive primitive transformations:

1. T1 ≡ Address←Aggregate-ATT (CUSTOMER,{Street,Number,ZipCode,City}),
which consists of the aggregation of columns Street, Number, ZipCode and
City within an additional compound attribute Address.

2. T2 ≡ 〈R,ADDRESS〉 ← CoATT -to-ET -inst(CUSTOMER,Address), that replaces
compound attribute ADDRESS with an entity type by instance representation.

3. T3 ≡ 〈{Customer},{CusId}〉 ← One2OneRT -to-FK(R,ADDRESS), which con-
verts one-to-one relationship type R into foreign key ADDRESS.Customer.

Let us now assume that the following INSERT statement occurs in the programs:

INSERT INTO CUSTOMER (CusId, Name, Street, Number, ZipCode, City)

VALUES (’C400’,’Bob’,’Bob Street’,’125a’,’5000’,’Namur’)

10.7. Applications 261

In LDA, this would be expressed through the following create statement:

create cus := CUSTOMER(:CusId = ’C400’ and

:Name = ’Bob’ and

:Street = ’Bob Street’ and

:Number = ’125a’ and

:ZipCode = ’5000’ and

:City = ’Namur’)

The co-transformation rules associated to transformation T1 states how to adapt
the create statement accordingly. References to first-level attributes Street,
Number, ZipCode and City are now expressed as sub-level attribute references.

create cus := CUSTOMER(:CusId = ’C400’ and

:Name = ’Bob’ and

:Address.Street = ’Bob Street’ and

:Address.Number = ’125a’ and

:Address.ZipCode = ’5000’ and

:Address.City = ’Namur’);

Applying the query transformation mapping associated to T2 leads to the following
code fragment, made up of two create statements. The second statement creates
an instance of entity type ADDRESS which now replaces compound attribute Address
of CUSTOMER.

create cus := CUSTOMER(:CusId = ’C400’ and :Name = ’Bob’);

create add := ADDRESS(:Street = ’Bob Street’ and

:Number = ’125a’ and

:ZipCode = ’5000’ and

:City = ’Namur’ and

R : cus)

Propagating schema transformation T3 to this code fragment finally produces a
SQL-compliant LDA code fragment, where the relationship condition is re-expressed
as the equality between the foreign key of the created ADDRESS and the identifier
of the created CUSTOMER:

create cus := CUSTOMER(:CusId = ’C400’ and :Name = ’Bob’);

create add := ADDRESS(:Street = ’Bob Street’ and

:Number = ’125a’ and

:ZipCode = ’5000’ and

:City = ’Namur’ and

:Customer = cus.CusId)

The SQL translation of the LDA code fragment consists of the two following
INSERT statements:

INSERT INTO CUSTOMER(CusId, Name) VALUES (’C400’,’Bob’);

INSERT INTO ADDRESS(Street, Number, ZipCode, City, Customer)

VALUES (’Bob Street’,’125a’,’5000’,’Namur’, ’C400’);

262 Chapter 10. Schema Refactoring through Co-transformations

⇒
⇒T1 T2

ORDERS
OrdId
Date
Customer
id: OrdId
ref: Customer

CUSTOMER
CusId
Name
Street
Number
ZipCode
City
id: CusId

⇒
T2 ◦ T1

1-10-N C-O

ORDERS

OrdId
Date
id: OrdId

CUSTOMER
CusId
Name
Address

Street
Number
ZipCode
City

id: CusId

1-10-N C-O

ORDERS

OrdId
Date
id: OrdId

CUSTOMER

CusId
Name
Street
Number
ZipCode
City
id: CusId

⇒
⇒T1 T2

ORDERS
OrdId
Date
Customer
id: OrdId
ref: Customer

CUSTOMER
CusId
Name
Street
Number
ZipCode
City
id: CusId

⇒
T2 ◦ T1

1-10-N C-O

ORDERS

OrdId
Date
id: OrdId

CUSTOMER
CusId
Name
Address

Street
Number
ZipCode
City

id: CusId

ORDERS
OrdId
Date
Customer
id: OrdId
ref: Customer

CUSTOMER
CusId
Name
Street
Number
ZipCode
City
id: CusId

⇒
T2 ◦ T1

1-10-N C-O

ORDERS

OrdId
Date
id: OrdId

CUSTOMER
CusId
Name
Address

Street
Number
ZipCode
City

id: CusId

1-10-N C-O

ORDERS

OrdId
Date
id: OrdId

CUSTOMER

CusId
Name
Street
Number
ZipCode
City
id: CusId

1-10-N C-O

ORDERS

OrdId
Date
id: OrdId

CUSTOMER

CusId
Name
Street
Number
ZipCode
City
id: CusId

Figure 10.11: Conversion of a CODASYL schema into a relational schema through
a chain of GER-to-GER schema transformations.

10.7.2 Application to database migration

Another obvious application of our co-transformational approach is database plat-
form migration. Indeed, this database evolution scenario mainly involves the ap-
plication of semantics-preserving schema modifications at the logical level. Both
the source and target schemas implement the same conceptual schema but in dif-
ferent platform-dependent models. Figure 10.11 considers a simple example of the
conversion of a CODASYL schema into an equivalent relational schema. As the
Figure shows it, this conversion process consists of two successive GER-to-GER
transformations:

1. T1 ≡ {Street, Number, ZipCode, City} ← Disaggregate-ATT (CUSTOMER,
Address), that disaggregate compound field Address.

2. T2 ≡ 〈{Customer}, {CusId}〉 ← One2ManyRT-to-FK(C-O, ORDERS), that
replaces set type C-O with a corresponding foreign key between the member
table ORDERS and the owner table CUSTOMER.

Let us now consider the following STORE statement:

STORE ORDERS

The approximate translation of this statement in LDA is as follows:

create ord := ORDERS(:OrdId := uwa-ORDERS-OrdId

and :Date := uwa-ORDERS-Date

and C-O : curCustomer(C-O))

10.7. Applications 263

where:

• uwa-ORDERS-OrdId denotes the current value of field OrdId of record ORDERS

in the user working area (i.e., at the program side);

• uwa-ORDERS-Date denotes the current value of field Date of record ORDERS

in the user working area (i.e., at the program side);

• curCustomer(C-O) denotes the current owner of the current set occurence
of set type C-O.

This statement is not affected by transformation T1. The co-transformation rules
associated to transformation T2 allow us to adapt the above create statement ac-
cordingly. The condition expressed on the one-to-many relationship type C-O must
be translated into an equality condition between the corresponding foreign key and
its target identifier:

create ord := ORDERS(:OrdId := uwa-ORDERS-OrdId

and :Date := uwa-ORDERS-Date

and :Customer = curCustomer(C-O).CusId)

The translation of the resulting create statement into SQL is compatible with
the CODASYL-to-SQL translation rule for the STORE statement defined in Sec-
tion 8.4.4:

EXEC SQL

INSERT INTO ORDERS (OrdId, Date, Customer)

VALUES (:uwa-ORDERS-OrdId, :uwa-ORDERS-Date, curCustomer(C-O).CusId)

END-EXEC

10.7.3 Application to database design

In the context of database design, producing a logical schema from a conceptual
schema usually involves a chain of semantics-preserving schema transformations.
Figure 10.12 depicts an example of such a scenario, where a conceptual schema
(the same as in Figure 10.2) expressed in English is translated into a relational
logical schema, expressed in French. This logical design process consists of a chain
of twenty schema transformations, most of which are renaming transformations:

〈{ORD NUM},{NUMBER}〉 ← One2ManyRT-to-FK(ORD-DET, DETAIL)

〈{PRO NUM},{NUMBER}〉 ← One2ManyRT-to-FK(DET-PRO, DETAIL)

〈{CUS NUM},{NUMBER}〉 ← One2ManyRT-to-FK(CUS-ORD, ORDER)

(NUM PRO) ← RenameATT(PRODUCT,NUMBER)

(NUM CUS) ← RenameATT(CUSTOMER,NUMBER)

(NUM ORD) ← RenameATT(ORDER,NUMBER)

(CLIENT) ← RenameET(CUSTOMER)

(COMMANDE) ← RenameET(ORDER)

(PRODUIT) ← RenameET(PRODUCT)

(QUANT STOCK) ← RenameATT(PRODUIT,STOCK QTY)

(NUM CLI) ← RenameATT(CLIENT,NUM CUS)

264 Chapter 10. Schema Refactoring through Co-transformations

1-1

0-N

ORD-DET

0-N

1-1 DET-PRO

1-10-N CUS-ORD

PRODUCT
NUMBER
DESCRIPTION
STOCK_QTY
id: NUMBER

ORDER
NUMBER
DTE
id: NUMBER

DETAIL
QUANTITY

CUSTOMER
NUMBER
NAME
ADDRESS
CITY
CATEGORY
ACCOUNT
id: NUMBER

1-1

0-N

ORD-DET

0-N

1-1 DET-PRO

1-10-N CUS-ORD

PRODUCT
NUMBER
DESCRIPTION
STOCK_QTY
id: NUMBER

ORDER
NUMBER
DTE
id: NUMBER

DETAIL
QUANTITY

CUSTOMER
NUMBER
NAME
ADDRESS
CITY
CATEGORY
ACCOUNT
id: NUMBER

PRODUIT
NUM_PRO
DESCRIPTION
QUANT_STOCK
id: NUM_PRO

DETAIL
QUANTITE
COM_NUM
PRO_NUM
ref: COM_NUM
ref: PRO_NUM

COMMANDE
NUM_COM
DATE
CLI_NUM
id: NUM_COM
ref: CLI_NUM

CLIENT
NUM_CLI
NOM
ADRESSE
VILLE
CATEGORIE
COMPTE
id: NUM_CLI

⇒

T20 ◦ … ◦ T1

Figure 10.12: Design of a relational logical schema in French from a conceptual
schema in English through a chain of GER-to-GER schema transformations.

(NOM) ← RenameATT(CLIENT,NAME)

(ADRESSE) ← RenameATT(CLIENT,ADDRESS)

(VILLE) ← RenameATT(CLIENT,CITY)

(CATEGORIE) ← RenameATT(CLIENT,CATEGORY)

(COMPTE) ← RenameATT(CLIENT,ACCOUNT)

(NUM COM) ← RenameATT(COMMANDE,NUM ORD)

(CLI NUM) ← RenameATT(COMMANDE,CUS NUM)

(QUANTITE) ← RenameATT(DETAIL,QUANTITY)

(COM NUM) ← RenameATT(DETAIL,ORD NUM)

Figure 10.13 shows the LDA program of Figure 10.4, to which the above schema
transformation chain was propagated. This resulting program has the same be-
haviour as the original program: it still creates a new order (commande in French),
but it now complies with the relational logical schema of Figure 10.12. In the con-
text of database design, such an transformation-based co-evolution of schema and
programs would have interesting benefits. For instance, it would allow program-
mers to develop platform-independent data manipulation algorithms expressed on
top of a conceptual schema, those algorithms being then translated into executable
programs for a specific database platform. In such an ideal situation, database
platform migration would then (simply) require to re-translate the conceptual al-
gorithm by taking into account (1) the new schema transformation chain and (2)
the new target query language.

10.7. Applications 265

// program identification
program NEW_ORDER.

// reference to the underlying GER schema
schema ’create_ord_relational_french .lun ’;

// declaration of program variables
ord : COMMANDE;
ord -num : COMMANDE.NUM_COM;
ord -date : COMMANDE.DATE;
cus : CLIENT;
cus -num : CLIENT.NUM_CLI;
det : DETAIL;
ord -qty : DETAIL.QUANTITE;
prod : PRODUIT;
prod -code : PRODUIT.NUM_PRO;
is-ok, stop : boolean;
integer : i;

begin
print(’Creating a new order ...’);
print(’Enter order number:’);
input(ord -num);
print(’Enter order date:’);
input(ord -date);
is-ok := false;
// verification loop: the specified customer should exist
while (is-ok = false) do

print(’Enter customer id:’);
input(cus -num);
if (CLIENT (: NUM_CLI = cus -num))

then is-ok := true;
cus := CLIENT (: NUM_CLI = cus -num)

else print(’Unknown customer !’)
endif

endwhile;
// creation of the new order
create ord := COMMANDE ((: NUM_COM = ord -num)

and (:DATE = ord -date)
and (: CLI_NUM = cus.NUM_CLI));

print(’Order ’, ord.NUM_COM , ’ created for customer ’, cus.NUM_CLI);
stop := false;
// creation of one order detail per ordered product
while (stop = false) do

print(’Add order detail? (yes=1, no <>1):’);
input(i);
if (i = 1)

then is-ok := false;
// verification loop: the specified product should exist
while (is-ok = false) do

print(’Enter product code:’);
input(prod -code);
if (PRODUIT (: NUM_PRO = prod -code))

then is-ok := true;
prod := PRODUIT (: NUM_PRO = prod -code)

else print(’Unknown product!’)
endif

endwhile;
print(’Enter quantity ordered:’);
input(ord -qty);
create det := DETAIL ((: QUANTITE = ord -qty)

and (: COM_NUM = ord.NUM_COM)
and (: PRO_NUM = prod.NUM_PRO))

else stop := true
endif

endwhile
end.

Figure 10.13: LDA program of Figure 10.4 adapted to the database logical schema
of Figure 10.12.

266 Chapter 10. Schema Refactoring through Co-transformations

To this end, the extension of our approach would be needed, in order to make
it consider (1) the conceptual schema constructs ignored so far (like is-a hierar-
chies, many-to-many relationship types, and relationship types with attributes)
and (2) the GER-to-GER schema transformations that produce and apply to those
constructs.

Remark We emphasize the fact that, in practice, we do not make use of an in-
termediate language (like LDA) for supporting the automated adaptation of real
programs. The only purpose of the examples given in Section 10.7 is to illus-
trate the genericity and the usefullness of the asbtract co-transformation rules
provided in this chapter. By instantiating and composing those rules, one can de-
rive macro-transformation rules that are suitable for supporting a particular real-
life database engineering process (GER-to-relational logical design, relational-to-
relational schema refactoring, COBOL-to-relational database migration, CODASYL-
to-relational database migration, etc.).

10.8 Tool support

A proof-of-concept implementation of the approach presented in this chapter has
been developed. As depicted in Figure 10.14, it is based on the ASF+SDF Meta-
Environment and DB-MAIN. We defined the syntax of the LDA language using
SDF. This allowed us to obtain a working parser for LDA. Then, we specified a set
of rewrite rules (in ASF) implementing a limited subset of the co-transformation
rules presented in Section 10.6.

The resulting tool takes as input (1) a LDA program complying with a GER
schema S0 and (2) a sequence of n GER transformation signatures expressing
the refactoring of schema S0 into schema Sn. The tool iteratively propagates the
schema transformations to the input LDA program, and returns an equivalent
output LDA program which conforms to schema Sn.

The automated support also includes a consistency checker, which checks that
a LDA program conforms to its underlying GER schema. If this is not the case, it
returns a list of structural inconsistencies between the program and the schema, to-
gether with the corresponding source-code locations. This consistency checking tool
combines the ASF+SDF Meta-Environment (program analysis) and DB-MAIN
(schema analysis). In the context of schema evolution, such a tool contributes to
analyzing the impact of a schema change on associated programs.

10.9 Related work

The general concept of coupled software transformation was defined by Lämmel as
follows:

”A co-transformation transforms mutually dependent software arti-
facts of different kinds simultaneously, while the transformation is cen-

10.9. Related work 267

ASF+SDF
Meta-Env.

Program adaptor

DB-MAIN

GER schema 1

…

GER schema n-1

GER schema 0 GER schema n

…

T1

T2 Tn-1

Tn

Ti

Consistency
checker

inconsistencies

Schema transformation history
T1 T2 …Ti …Tn-1 Tn

Schema transformation history
T1 T2 …Ti …Tn-1 Tn

LDA program LDA program*

Figure 10.14: Proof-of-concept tool support for database co-transformations.

tred around a grammar (or schema, API, or a similar structure) that
is shared among the artifacts”(Lämmel, 2004b).

”(...) two or more artifacts of potentially different types are in-
volved, while transformation at one end necessitates reconciling trans-
formations at other ends such that global consistency is reestablished”(Lämmel,
2004a).

The 2LT project (Cunha et al., 2006; Berdaguer et al., 2007; Alves et al., 2008;
Visser, 2008) aims to formalize and to support a particular instance of coupled
transformations, namely two-level transformations, which involve a transformation
on the level of types with transformations on the level of values and operations.
The solutions offered by the 2LT project combine existing techniques of data re-
finement, typed strategic rewriting, point-free program transformation and ad-
vanced functional programming. This generic approach revealed to be applicable
to the coupled transformation of database schemas, data instances, queries, and
constraints (Visser, 2008).

Lämmel and Lohmann (2001) propose a systematic approach to XML-based
format evolution. According to this approach (1) format evolution is modelled
as step-wise transformations of DTDs and (2) the migration of the corresponding
XML documents is largely induced by the DTD-level transformations. The authors
identify several categories of transformation steps including renaming, introduction
and elimination, folding and unfolding, generalization and restriction, enrichment
and removal.

268 Chapter 10. Schema Refactoring through Co-transformations

Another application domain of coupled transformations is grammar evolution.
In this context, Lohmann and Riedewald (2003) tackle the problem of automati-
cally adapting transformation rules after a change in the associated grammar. This
general problem typically occurs when trying to adapt an existing program trans-
formation tool to a new version of the programming language of interest. This is
particularly true in the case of COBOL program transformation (addressed in this
thesis), since there exist a myriad of COBOL dialects.

More recently, Vermolen and Visser (2008) suggest to unify several co-evolution
scenarios as format evolution, schema evolution and grammar evolution under the
more generic term of heterogeneous coupled evolution of software languages. The
authors target a systematic approach to the automated support of coupled evolu-
tion for any of those scenarios. They propose a generic architecture which takes as
input a coupled evolution scenario and a mapping from a top-level transformation
to a bottom-level transformation. Based on these two inputs, a structured approach
allows (1) the automatic derivation of a transformation language TL for the par-
ticular domain, (2) the automatic generation of an interpreter for transformations
in TL and (3) the automated propagation of transformation at the top-level to
artefacts belonging at the bottom-level.

In our approach, although the modelling language (GER) and the transfor-
mation language (GER-to-GER transformations) are fixed, their genericity still
allows to cover a large set of schema evolution scenarios. Our co-transformation
rules provide an explicit mapping between schema transformations and related pro-
gram transformations. This mapping relies on horizontal consistency preservation
rather than on vertical consistency preservation as mainly targeted by Vermolen
and Visser (2008).

The PRISM system (Curino et al., 2008a) provides a highly integrated support
to relational schema evolution. This advanced tool suite provides (1) a language
for the concise specification of modification operators for relational schemas, (2)
impact analysis tools that allow to evaluate the effects of such schema changes,
(3) automatic data migration support, (4) optimized translation of old queries
to work on the new schema and (5) full documentation of the changes involved
by the schema evolution. The schema modifications operators considered are not
all semantics-preserving. Query adaptation derives from the schema modification
operators and combines (1) a technique called chase and back-chase for query
rewriting and (2) the generation of SQL views.

With respect to the PRISM system, our co-transformational approach con-
siders finer-grained and more generic schema modifications, that are formally ex-
pressed as GER-to-GER transformations. The composition of these basic and
generic transformations allow to model several database evolution scenarios among
which relational schema refactoring. However, since our rules are based on an
abstract data manipulation language, the proof-of-concept implementation of our
approach cannot be directly applied to concrete database evolution processes, as
the PRISM system can be.

10.10. Discussion 269

GER constructs
Relational COBOL file CODASYL

Selected?
model model model

Entity types X X X X

Is-a hierarchies

Simple attributes X X X X

Compound attributes X X X

Multivalued attributes X X X

One-to-one rel. types X

One-to-many rel. types X X

Many-to-many rel.types

N-any rel. types (X)

Rel. types with attrib.

Foreign keys X X

Figure 10.15: The GER constructs necessary to represent relational, COBOL and
CODASYL schemas, as compared to the GER constructs we selected.

10.10 Discussion

In this discussion section, we will (1) try to clarify the actual objectives and scope
of this chapter, (2) justify the successives choices we have made and (3) better
highlight the existing links between this work and the previous chapters.

What are the exact goals of this chapter?

The main objective of this chapter is to address the general problem of adapting
programs to database schema refactoring. The term database schema refactoring
is defined here as the application of semantics-preserving transformations to a
database schema. Such semantics-preserving transformations:

1. may be involved in various contexts, including database design, database
restructuring and database migration;

2. may be applied to different kinds of schemas, including entity-relationship
schemas, relational schemas, CODASYL schemas, or COBOL file structures.

Therefore, this chapter aimed to propose a generic approach based on the use of
a generic pivot data model: the GER model. As depicted in Figure 10.15, we
actually selected a subset of the GER constructs, that is sufficient to represent the
three main kinds of schemas we have encountered in this thesis, namely relational
schemas, COBOL schemas and CODASYL schemas. The main restriction we made
was to ignore multi-member CODASYL set types (kinds of n-ary relationship types)
that are rarely used in practice8.

8Note that it was proposed to remove this complex schema construct from the CODASYL
model. This was subject to intense discussions in the late 70’s (Bachman, 1977)

270 Chapter 10. Schema Refactoring through Co-transformations

Another important requirement was to reach a fine-level of granularity, by con-
sidering the main primitive schema transformations that real-life schema refac-
toring scenarios generally involve (see Figures 10.10, 10.11 and 10.12 for concrete
examples). Our goal was then to associate a set of elementary program transfor-
mation rules to those primitive schema transformations. The elementary program
adaptation rules obtained may then be composed in order to propagate chains of
schema transformations to the program level.

In summary, the schema transformations considered in this chapter are primi-
tive, semantics-preserving, GER-to-GER schema transformations that are (directly
or indirectly) applicable to the subset of GER schema constructs we selected (and
thus to relational, COBOL and CODASYL schemas).

Why an intermediate data manipulation language?

The desired levels of genericity and granularity motivated the use of an interme-
diate data manipulation language for specifying our co-transformation rules. For
instance, applying a primitive GER schema transformation to a relational schema
may result in a schema that is (temporarily) not relational anymore (see Fig-
ure 10.10 for a concrete example). In this case, the corresponding query adaptation
rules cannot be expressed on top of the SQL language.

Hence the need for an intermediate data manipulation language that could be
used to specify queries against any schemas complying with the GER model subset
defined above. This intermediate language should, at least, allow the selection,
creation, deletion and modification of database records according to entity-based,
attribute-based and relationship-based predicates.

Why LDA?

The LDA language has the merit to meet the above requirement. However, we
emphasize the fact that LDA should not be regarded as an attempt to abstract
all possible data manipulation languages within a single generic language (this is
probably impossible). For instance, this language largely ignores such DML-specific
aspects as reading sequence order, error handling or currency indicator manage-
ment, by focussing on the structural aspects shared among most data manipulation
languages. In addition, LDA is a navigational language where records are accessed
on a one-record-at-a-time basis. Nested queries are allowed, but more powerful
constructs such as joins are not supported.

Actually, LDA is not only a data manipulation language. It also plays the role
of host programming language, by offering usual language constructs like types,
assignments, conditional statements and loops. Some of those additional constructs
proved to be useful for expressing our program adaptation rules. For instance,
converting a multivalued, compound attribute into a new entity type typically
requires the introduction of additional loops in related programs.

In summary, the only purpose of the LDA language is to serve as a concep-
tual tool on top of which co-transformation rules can be specified in an abstract,

10.11. Conclusions 271

yet readable way. Obviously, various other languages and higher-level formalisms
could have been used in this work, among which logical languages, functional lan-
guages9, query languages for extended ER schemas (Hohenstein and Engels, 1992;
Lawley and Topor, 1994), first-order logic, OCL and description logics. Further
investigations are needed to assess and compare the suitability of those alterna-
tive formalisms for our purpose. We do not claim that LDA is the best choice we
could make, but we believe it constitutes a good tradeoff between mathematical
formalisms and executable languages.

Such a tradeoff is required, since the ultimate objective of our co-transformation
rules is to serve as generic reference when building automated program adapta-
tion support for plaform-specific schema refactoring scenarios. At the time of
writing this thesis, this objective seemed to be (partially) reached. Indeed, our
co-transformational approach was recently recognized by the developers of the
PRISM system, as one of “the most relevant approaches to the general problem of
schema evolution” providing “solid theoretical foundations and interesting method-
ological approaches” (Curino et al., 2008a). In addition, as already mentionned,
we also implicitly made use of our co-transformation rules during the development
of COBOL-to-relational and CODASYL-to-relational wrapper generators.

How does this chapter relate to previous chapters?

Depending on the point of view adopted, our co-transformational approach to
schema refactoring can be seen either as a generalisation or as a specialisation of
our results on database platform migration (Chapters 4, 7 and 8). On the one hand,
it is more generic, since it does not make any assumption about the source and
target data models. Indeed, the GER model allows to cover most of the existing
database paradigms, while the considered schema transformations are reusable in
various database evolution scenarios, including database migration. On the other
hand, it is more specific, since the general scenario studied does not involve the
replacement of the data manipulation language. The program adaptation rules are,
indeed, defined on top of the LDA language.

10.11 Conclusions

This chapter has presented a general co-transformational approach to database
schema refactoring. According to this approach a semantics-preserving schema
transformation is defined as the application of coupled transformations, that modify
the database schema, the data instances and the related programs so that the global
consistency is preserved. A set of representative co-transformation rules and a
prototype tool have been presented. The application of the approach was illustrated
in three particular scenarios, namely schema refactoring, database migration and
database design.

9as in the 2LT project (Visser, 2008).

272 Chapter 10. Schema Refactoring through Co-transformations

Part VI

Conclusions

273

Chapter 11

Conclusions

I love it when a plan comes together
– Colonel John ”Hannibal” Smith

This chapter concludes the thesis. It summarizes the research contributions made
while trying to answer our research questions and elaborated on the main lessons we
learned from this work. Avenues for future research in the domain of data-intensive
systems evolution are also discussed.

11.1 Summary of the contributions

Research question 1

Can automated program analysis techniques help to recover implicit knowledge
on the structure and constraints of a database?

Chapter 5 presented a tool-supported dataflow analysis approach in the context
of database reverse engineering. This approach consists in statically analyzing
intra-query data dependencies, i.e, dependencies that are involved in the execution
of database queries. Through the generalization of the term database query, the
approach has been extended in order to face the frequent situation where one or
several data access module(s) are used to access the database. Industrial reverse
engineering projects has shown that the suggested approach, and its supporting
tools, may allow the recovery of implicit knowledge on the database structures
and constraints (undeclared foreign keys, finer-grained decomposition and more
expressive names for record types and fields).

In Chapter 6, we provided an in-depth exploration of the use of dynamic pro-
gram analysis techniques for reverse engineering relational databases. Those tech-
niques particularly target the analysis of data-intensive systems in the presence of
automatically generated SQL queries. First, we identified, illustrated and compared
a set of techniques for capturing the SQL queries executed at runtime. Then, we

275

276 Chapter 11. Conclusions

elaborated on the analysis of SQL traces in the context of database reverse engi-
neering. We particularly focused on implicit foreign key detection, by identifying
related heuristics for trace analysis, which combine both intra-query dependencies
(SQL joins) and inter-query dependencies (input-input and output-input depen-
dencies). An initial experiment, based on a real-life application, allowed us to
establish the analysis of SQL execution traces as a very promising technique for
relational database reverse engineering.

Both chapters showed that automated program analysis techniques may signif-
icantly contribute to the enrichment of the database schema, especially through
the identification of intra-query and inter-query dependencies. Analyzing those
dependencies allow, in a second stage, to reveal implicit links (1) between schema
constructs and (2) between schema constructs and program variables. We also
clearly observed the interesting complementarity of static program analysis and
dynamic program analysis for database reverse engineering. Static analysis has the
merit of considering the complete set of source code files, but its scope is limited to
what is statically decidable. Dynamic analysis naturally yields to partial results,
since it is limited to particular execution scenarios, but the underlying techniques
may allow to capture information that is out of the scope of static analysis.

Research question 2

What are the possible strategies for migrating a legacy data-intensive system
towards a modern database platform? How do they compare?

Chapter 4 addressed this question, by developping a comprehensive framework
for the migration of legacy data-intensive systems. This framework identifies six
representative migration strategies, relying on two dimensions: database dimension
and program dimension. Based on a common running example, the two database
conversion strategies and the three program conversion strategies identified have
been illustrated and compared. We learned, in particular, that database conver-
sion may greatly benefit from an initial database reverse engineering process, as
opposed to a one-to-one schema conversion strategy. As far as program conversion
is concerned, the more seducing strategy (Logic rewriting or P3), that consists in
adapting the logic of the programs to the target database structure and language,
is also the only one that cannot be (easily) automated. By contrast, the Wrapper
strategy (P1) permits a high level of automation while minimizing the adaptation
of the legacy programs.

Research question 3

Is it possible to automatically adapt large legacy systems to the migration of
their underlying database?

The only way to prove that it is possible to automatically adapt a system to the
migration of its database it to develop methods and tools allowing to do so, and to

11.1. Summary of the contributions 277

apply them to convincing case studies. This thesis considered two representative
migration scenarios, COBOL-to-relational migration (Chapter 7) and CODASYL-
to-relational migration (Chapter 8). For each scenario, (1) we illustrated to main
challenges involved by the scenario, (2) we provided systematic translation rules for
simulating the legacy data manipulation primitives on top of a relational database,
and (3) we described a set of tools supporting the automated migration of the legacy
programs. As far as validation is concerned, Chapter 9 reported on two industrial
migration projects for which the approach and tools presented of Chapter 8 have
been used successfully. Both projects aimed at migrating a CODASYL (IDS/II)
database towards a relational (DB2) database platform. Although we were able
to adapt the legacy programs with a high level of automation, the replacement of
some CODASYL primitives required manual intervention.

Research question 4

How to preserve the consistency between an evolving database schema and
associated queries?

In Chapter 10, we presented a tool-supported co-transformational approach
to the propagation of database schema changes on application programs. This
approach consists in systematically associating abstract program transformation
rules to a set of semantics-preserving schema transformations. A generic model
(GER) was chosen as an pivot model for database schemas and an abstract language
(LDA) was used for specifying the program transformation rules. We showed the
this combination allows our abstract rules to be instantiated in the context of
several database engineering and evolution processes, including schema refactoring,
database migration and database design. From this work, we learned that coupled
transformations form a sound basis for supporting the co-evolution of databases
and related programs.

Links between research questions

More generally, this thesis has shown that automated program analysis and trans-
formation techniques may significantly contribute to the general process of database
evolution. The program analysis techniques support the database reverse engineer-
ing phase, by recovering implicit knowledge about the database subject to evolu-
tion. The program transformation techniques support the program adaptation
step, by propagating the evolution of the database to the program level.

Several important links exist between the contributions made with respect to
the above research questions (RQ):

• RQ1 vs RQ2 : the automated program analysis techniques developed in Chap-
ters 5 and 6 aim to support the database reverse engineering process, which
in turn constitutes the main basis of the conceptual database conversion
strategy identified in Chapter 4.

278 Chapter 11. Conclusions

• RQ2 vs RQ3 : the automated program adaptation techniques presented in
Chapters 7 and 8 actually implement two program conversion strategies de-
scribed in Chapter 4 in the particular context of COBOL-to-relational and
CODASYL-to-relational migration, respectively.

• RQ3 vs RQ4 : the database migration process typically involves the refac-
toring of the database schema, which in turn necessitates the adaptation of
the queries occurring in the programs. The generic co-transformation rules
specified in Chapter 10, once composed and instantiated, form a sound basis
for automating such a program adaptation.

11.2 Lessons learned

In this section, we elaborate on the main lessons we learned from this research
work.

Automation is necessary but not sufficient The industrial case studies pre-
sented in Chapters 5 and 9 confirmed that data-intensive system evolution requires
scalable and reusable tool support. But they also showed that the full-automation
of the process is clearly unreachable, since human intervention may be required at
almost every step. Database reverse engineering is generally an iterative process,
where analysts formulate and validate hypotheses based on the automated analy-
sis of programs and database contents. The database conversion phase may also
involve multiple human decisions, taking several aspects into account like the exis-
tence of naming and structural conventions, the presence of data inconsistencies or
the need for high performance. The program adaptation step may also necessitate
manual intervention, depending on the data manipulation language and the type
of queries used by the application programs.

Mappings are everywhere The concept of mapping is omnipresent in the do-
main of data-intensive system evolution. In our work, we have encountered mul-
tiple kinds of mappings, among which inter-model mappings, inter-schema map-
pings, intra-schema mappings, inter-query mappings, intra-query mappings, inter-
language mappings and inter-paradigmatic mappings. In our research domain,
several important challenges are actually related to the definition, detection, evo-
lution, exploitation, and visualisation of such mappings.

Transformation and generation are good colleagues Another important
observation we made concerns the advantage of combining generative and trans-
formational techniques when migrating programs towards a new database platform.
Indeed, Chapter 9 showed that such a combination allows to make the migration
process more flexible. According to this approach, the legacy programs are trans-
formed only once, independently on the database migration process. In contrast,

11.3. Open issues and future challenges 279

the generated code can be re-generated as many times as necessary, without addi-
tional alteration of the legacy code.

To wrap, or not to wrap: that is the question In the context of database
migration, the use of wrapping techniques has the merit of minimizing the modifi-
cation of the legacy application programs. The major complexity of the process is
encapsulated within the wrappers, that deal with both structural conversion and
language translation issues. However, the wrapper-based program conversion strat-
egy also suffers from several drawbacks, among which performance degradation. In
our opinion, this strategy should be regarded as a short-term solution allowing the
application programs to be rapidly interfaced with the target database at low cost
and at low risk. As a second stage, the legacy programs may then be incrementally
rewritten so that they can access the migrated database in a more direct, natural
and efficient way.

Migration is an opportunity to improve Migrating a software system to-
wards a new database platform aims to obtain the same software system, that
offers the same functionalities and manipulates the same data, except that the
data are now stored in a new database. Besides its main objective, migration
may also constitute an excellent opportunity to improve the quality of the system.
For instance, discovering an implicit foreign key allows, as a second step, to make
quality improvements at different levels: (1) at the schema level, by making the
referential constraint explicit; (2) at the data level, by detecting and correcting the
data instances that violate the referential constraint; and (3) at the program level,
by improving the management of the referential constraint wherever necessary.

Industry is a great laboratory A large part of our research was carried out
in cooperation with ReVeR, our industrial partner. In this context, we mainly
adopted the Industry-as-Laboratory research approach proposed by Potts (1993).
This approach is based on the close involvement of the researcher with industrial
projects, which allows him (1) to identify research problems of interest, (2) to elicit
realistic requirements for the solutions and (3) to validate the proposed solutions.
In other words, this research style considers industrial case studies as a vehicule
for conducting research, not merely as a way to demonstrate the value of research
results. We believe that this cooperation mode (1) is beneficial for both industrial
and academic partners and (2) is particularly well-suited for research in software
maintenance and evolution, as already experienced by other PhD researchers in
the past (Veerman, 2007; Bruntink, 2008b).

11.3 Open issues and future challenges

The future work will consolidate and extend the promising results obtained so
far. We anticipate below several research directions together with some of their
challenges.

280 Chapter 11. Conclusions

Supporting other evolution scenarios In this thesis, we mainly focused on
database evolution scenarios that perserve the semantics of the database schema.
The techniques and tools we have presented allow the automatic adaptation of
application programs to (1) schema refactoring, (2) platform migration or (3) a
combination of them. Supporting program adaptation in the case of non-semantics-
preserving schema changes appears as another interesting challenge. This would
necessitate more sophisticated, yet less automatable, program analysis and trans-
formation techniques.

Supporting data quality refactorings The thesis addresses the propagation
of structural schema refactorings. One could also consider another kind of schema
refactorings, namely data quality refactorings (Ambler and Sadalage, 2006), which
aim at improving the overall quality of the database contents. Examples of such
refactorings for relational databases are the introduction of a common format for
a given column, the replacement of a nullable column with a non-nullable column,
and the introduction of a column constraint. The adaptation of the programs
mainly consists in adding a proper exception handling code, at every program
point where the corresponding table is modified.

Supporting other processes In the context of the co-evolution of databases
and programs, another important process is impact analysis. When changes are
to be applied to a database schema, an in-depth analysis of the impact of such
changes on the programs allows to better evaluate the program adaptation effort.
Several mature tool-supported approaches have been proposed for specific plat-
forms (Karahasanovic, 2002; Maule et al., 2008; Papastefanatos et al., 2008). We
believe that these approaches could be generalized by explicitly expressing, in a
generic way, the consistency relationships that hold between the query language
and the data model of interest. We are currently working on this topic.

Supporting other program conversion strategies In this thesis, our ap-
proach to the automated adaptation of programs consisted in translating queries
accessing the source database into equivalent queries on the target database, while
preserving the data manipulation logic of the programs. One could also further
investigate other program conversion strategies, according to which the data ma-
nipulation logic of programs is adapted to the target database paradigm (like the
Logic Rewriting strategy of Chapter 4). Our industrial experience taught us that
such strategies are not easily automatable. Although some partial techniques have
been proposed in this direction (Katz and Wong, 1982), they usually assume the
application programs to conform to a canonical form. Unfortunately, such an as-
sumption is not realistic since the level of variability of data processing code is
typically very high. This clearly constitutes the major obstacle to logic-based pro-
gram adaptation. Similar variability problems were encountered by Bruntink et al.
(2007) in the context of the renovation of cross-cutting concern code (Bruntink,
2008b).

11.3. Open issues and future challenges 281

Supporting program analysis and transformation for other platforms A
large part of the thesis was dedicated to the analysis and transformation of legacy
COBOL systems. It is obvious that data-intensive systems developed on top of
more modern platforms also require similar support for the co-analysis and the co-
evolution of database and programs. For instance, web-based applications typically
rely on poorly documented databases, as seen in Chapter 6. Other co-evolution
challenges will have to be faced with the introduction of O/R mapping technologies
like Hibernate, where database accesses are implicitly generated. While they seem
very convenient for the programmer, studying how such technologies affect the
effort needed when evolving the database still remains to be done.

Analyzing the co-evolution of databases and programs This thesis aimed
to support the co-evolution of databases and programs. Another research direction
would be to observe how databases and programs co-evolve over time in prac-
tice (Curino et al., 2008b; Lin and Neamtiu, 2009). A possible approach con-
sists in mining real-life software repositories. Analyzing the data that is stored
in version control systems (like CVS or SVN) could allow to teach us several im-
portant lessons on (1) the decreasing/increasing quality/complexity of program-
database mappings, (2) the most frequently applied database evolutions, (3) the
way database changes are propagated to programs.

Extending the scope of dynamic analysis for database queries As dis-
cussed in Chapter 6, dynamic analysis of SQL queries have a wide range of applica-
tions. We intend to consolidate and extend our initial results, by exploring the use
of dynamic analysis in other domains than database reverse engineering, including
quality assessment for database queries, data-intensive program comprehension,
data security and consistency management. Furthermore, we would like to inves-
tigate the benefits of combined approaches, based on the co-analysis of schemas,
data, programs and query execution traces.

282 Chapter 11. Conclusions

Bibliography

Agrawal, H., 1994. On slicing programs with jump statements. In: PLDI ’94: Pro-
ceedings of the ACM SIGPLAN 1994 conference on Programming language de-
sign and implementation. ACM Press, New York, NY, USA, pp. 302–312.

Agrawal, H., Horgan, J. R., 1990. Dynamic program slicing. In: PLDI ’90: Proceed-
ings of the ACM SIGPLAN 1990 conference on Programming language design
and implementation. ACM, New York, NY, USA, pp. 246–256.

Alves, T. L., Silva, P. F., Visser, J., 2008. Constraint-aware schema transformation.
Electr. Notes Theor. Comput. Sci.To appear.

Ambler, S. W., Sadalage, P. J., 2006. Refactoring Databases: Evolutionary
Database Design. Addison-Wesley.

Andersson, M., 1998. Searching for semantics in cobol legacy applications. In: Spac-
capietra, S., Maryanski, F. J. (Eds.), Data Mining and Reverse Engineering:
Searching for Semantics, IFIP TC2/WG2.6 Seventh Conference on Database Se-
mantics (DS-7). Vol. 124 of IFIP Conference Proceedings. Chapman & Hall, pp.
162–183.

Bachman, C. W., 1977. Why restrict the modelling capability of codasyl data
structure sets? In: Proceedings of the AFIPS National Computer Conference.
Vol. 46 of AFIPS Conference Proceedings. pp. 69–75.

Ball, T., Horwitz, S., Dec. 1992. Slicing programs with arbitrary control flow. Tech.
Rep. TR1128, University of Wisconsin.

Balzer, R., 1991. Tolerating inconsistency. In: Proceedings of the 13th International
Conference on Software Engineering (ICSE’91-. IEEE Computer Society Press,
Los Alamitos, CA, USA, pp. 158–165.

Batini, C., Ceri, S., Navathe, S. B., 1992. Conceptual Database Design : An Entity-
Relationship Approach. Benjamin/Cummings.

Baxter, I. D., Pidgeon, C., Mehlich, M., 2004. DMS: Program transformations for
practical scalable software evolution. In: Proceedings of the 26th International
Conference on Software Engineering (ICSE’04). IEEE Computer Society, pp.
625–634.

283

284 BIBLIOGRAPHY

Beck, J., Eichmann, D., 1993. Program and interface slicing for reverse engineering.
In: ICSE ’93: Proceedings of the 15th international conference on Software
Engineering. IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 509–
518.

Behm, A., Geppert, A., Dittrich, K., December 1997. On the migration of rela-
tional schemas and data to object-oriented database systems. In: Proceedings
of the 5th International Conference on Re-Technologies in Information Systems.
Klagenfurt, Austria, pp. 13–33.

Berdaguer, P., Cunha, A., Pacheco, H., Visser, J., 2007. Coupled schema transfor-
mation and data conversion for XML and SQL. In: Hanus, M. (Ed.), Proceed-
ings of the 9th International Symposium on Practical Aspects of Declarative
Languages. Vol. 4354 of LNCS. Springer-Verlag, pp. 290–304.

Bianchi, A., Caivano, D., Visaggio, G., 2000. Method and process for iterative
reengineering of data in a legacy system. In: Proc. Working Conf. Reverse En-
gineering (WCRE). pp. 86–97.

Binkley, D., Ceccato, M., Harman, M., Ricca, F., Tonella, P., 2006. Tool-supported
refactoring of existing object-oriented code into aspects. IEEE Transactions on
Software Engineering 32 (9), 698–717.

Bisbal, J., Lawless, D., Wu, B., Grimson, J., September/October 1999. Legacy
information systems: Issues and directions. IEEE Software 16 (5), 103–111.

Blaha, M. R., Premerlani, W. J., 1995. Observed idiosyncracies of relational
database designs. In: Proceedings of the Second Working Conference on Re-
verse Engineering (WCRE’95). IEEE Computer Society, Washington, DC, USA,
p. 116.

Bravenboer, M., Kalleberg, K. T., Vermaas, R., Visser, E., 2008. Stratego/xt 0.17.
a language and toolset for program transformation. Sci. Comput. Program. 72 (1-
2), 52–70.

Brodie, M. L., Stonebraker, M., 1995. Migrating Legacy Systems. Gateways, Inter-
faces, and the Incremental Approach. Morgan Kaufmann Publishers.

Brown, G. D., 1998. Advanced Cobol For Structured and Object Oriented Pro-
gramming, 3rd Edition. John Wiley.

Bruntink, M., 2008a. Reengineering idiomatic exception handling in legacy c code.
In: Proceedings of the 12th European Conference on Software Maintenance and
Reengineering (CSMR’08). IEEE Computer Society, pp. 133–142.

Bruntink, M., March 2008b. Renovation of idiomatic crosscutting concerns in em-
bedded systems. Ph.D. thesis, Faculty of Electrical Engineering, Mathematics
and Computer Science.

BIBLIOGRAPHY 285

Bruntink, M., van Deursen, A., D’Hondt, M., Tourwé, T., 2007. Simple crosscut-
ting concerns are not so simple: analysing variability in large-scale idioms-based
implementations. In: Barry, B. M., de Moor, O. (Eds.), AOSD. Vol. 208 of ACM
International Conference Proceeding Series. ACM, pp. 199–211.

Bruntink, M., van Engelen, R., Tourwe, T., 2005. On the use of clone detection for
identifying crosscutting concern code. IEEE Computer Society Trans. Software
Engineering 31 (10), 804–818.

BULL, 2001. DBSP. http://www.bull.com/servers/gcos8/products/dbsp/dbsp.

Canfora, G., Cimitile, A., Munro, M., 1996. An improved algorithm for identifying
objects in code. Software—Practice and Experience, Wiley 26 (1), 25–48.

Canfora, G., Santo, G. D., Zimeo, E., 2006. Developing and executing Java AWT
applications on limited devices with TCPTE. In: Proc. Int’l Conf. Software
Engineering (ICSE). ACM Press, New York, NY, USA, pp. 787–790.

Ceccato, M., Marin, M., Mens, K., Moonen, L., Tonella, P., Tourwé, T., 2006. Ap-
plying and combining three different aspect mining techniques. Software Quality
Control 14 (3), 209–231.

Chikofsky, E. J., 1996. ”The Necessity of Data Reverse Engineering”. Foreword for
Peter Aiken’s Data Reverse Engineering. McGraw Hill, Ch. 0, pp. 8–11.

Chikofsky, E. J., Cross, J. H., 1990. Reverse engineering and design recovery: A
taxonomy. IEEE Software 7 (1), 13–17.

Clarinval, A., 1981. Comprendre, Connatre et Matriser le Cobol, 2nd Edition.
Presses Universitaires de Namur.

Cleve, A., Hainaut, J.-L., 2006. Co-transformations in database applications evolu-
tion. In: Lämmel, R., Saraiva, J., Visser, J. (Eds.), Post-proceedings of GTTSE
2005, Generative and Transformation Techniques in Software Engineering, 4–8
July, 2005, Braga, Portugal. Vol. 4143 of Lecture Notes in Computer Science.
Springer, pp. 409–421, summer school participant contribution.

Cleve, A., Hainaut, J.-L., 2008. Dynamic analysis of sql statements for data-
intensive applications reverse engineering. In: Proceedings of the 15th Working
Conference on Reverse Engineering. IEEE, pp. 192–196.

Cleve, A., Henrard, J., Hainaut, J.-L., 2006. Data reverse engineering using system
dependency graphs. In: Proceedings of the 13th Working Conference on Reverse
Engineering (WCRE’06). IEEE Computer Society, Washington, DC, USA, pp.
157–166.

Cleve, A., Henrard, J., Roland, D., Hainaut, J.-L., 2008a. Wrapper-based sys-
tem evolution - application to codasyl to relational migration. In: Proceedings
of the 12th European Conference in Software Maintenance and Reengineering
(CSMR’08). IEEE Computer Society, pp. 13–22.

http://www.bull.com/servers/gcos8/products/dbsp/dbsp

286 BIBLIOGRAPHY

Cleve, A., Lemaitre, J., Hainaut, J.-L., Mouchet, C., Henrard, J., 2008b. The role
of implicit schema constructs in data quality. In: Missier, P., Lin, X., de Keijzer,
A., van Keulen, M. (Eds.), Proceedings of the 6th International Workshop on
Quality in Databases (QDB’08). pp. 33–40.

Cordy, J. R., Dean, T. R., Malton, A. J., Schneider, K. A., 2002. Source transfor-
mation in software engineering using the txl transformation system. Information
& Software Technology 44 (13), 827–837.

Cunha, A., Oliveira, J. N., Visser, J., 2006. Type-safe two-level data transforma-
tion. In: Misra, J., Nipkow, T., Sekerinski, E. (Eds.), Proceedings of the 14th In-
ternational Symposium on Formal Methods. Vol. 4085 of LNCS. Springer-Verlag,
pp. 284–299.

Curino, C., Moon, H. J., Zaniolo, C., 2008a. Graceful database schema evolution:
the prism workbench. Proceedings of the VLDB Endowment 1 (1), 761–772.

Curino, C. A., Moon, H. J., Tanca, L., Zaniolo, C., 2008b. Schema evolution in
wikipedia: toward a web information system benchmark. In: Cordeiro, J., Filipe,
J. (Eds.), International Conference on Enterprise Information Systems (ICEIS).
pp. 323–332.

DB-MAIN, 2006. The DB-MAIN official website. http://www.db-main.be.

de Lucia, A., Lucca, G. A. D., Fasolino, A. R., Guerra, P., Petruzzelli, S., 1997. Mi-
grating legacy systems towards object-oriented platforms. In: Proc. Int’l Conf.
Software Maintenance (ICSM). IEEE Computer Society, Los Alamitos, CA,
USA, p. 122.

El-Ramly, M., Eltayeb, R., Alla, H., 2006. An experiment in automatic conversion
of legacy Java programs to C#. In: Proceedings of IEEE International Confer-
ence on Computer Systems and Applications. pp. 1037–1045.

Elmasri, R., Navathe, S. B., 1999. Fundamentals of Database Systems, 3rd Edi-
tion. Benjamin/Cummings, Ch. Appendix C: An Overview of the Network Data
Model, pp. 917–940.

Embury, S. M., Shao, J., 2001. Assisting the comprehension of legacy transac-
tions. In: Proceedings of the 8th Working Conference on Reverse Engineering
(WCRE’01). IEEE Computer Society, Washington, DC, USA, p. 345.

Englebert, V., 2002. Voyager 2 reference manual. Tech. rep., University of Namur,
http://www.info.fundp.ac.be/~dbm/publication/2002/VOYAGER-2-reference-manual.pdf.

Gallagher, K. B., Lyle, J. R., Aug. 1991. Using program slicing in software main-
tenance. IEEE Transactions on Software Engineering 17 (8), 751–761.

http://www.info.fundp.ac.be/~dbm/publication/2002/VOYAGER-2-reference-manual.pdf

BIBLIOGRAPHY 287

Girard, J.-F., Koschke, R., Schied, G., 1999. A metric-based approach to detect
abstract data types and state encapsulations. Journal on Automated Software
Engineering 6 (4), 357–386.

Hainaut, J.-L., 1986. Conception assistée des applications informatiques - 2: Con-
ception de la base de données. Masson, Paris.

Hainaut, J.-L., 1989. A generic entity-relationship model. In: Proceedings of the
IFIP WG 8.1 Conference on Information System Concepts: an in-depth analysis.
North-Holland, pp. 109–138.

Hainaut, J.-L., 1996. Specification preservation in schema transformations - appli-
cation to semantics and statistics. Data Knowledge Engineering 19 (2), 99–134.

Hainaut, J.-L., 2002. Introduction to database reverse engineering. LIBD Publish.,
http://www.info.fundp.ac.be/~dbm/publication/2002/DBRE-2002.pdf.

Hainaut, J.-L., 2006. The transformational approach to database engineering. In:
Lämmel, R., Saraiva, J., Visser, J. (Eds.), Generative and Transformational
Techniques in Software Engineering. Vol. 4143 of Lecture Notes in Computer
Science. Springer-Verlag, pp. 95–143.

Hainaut, J.-L., 2009. Network data model. In: Özsu, M. T., Liu, L. (Eds.), Ency-
clopedia of Database Systems. Springer, to appear.

Hainaut, J.-L., Chandelon, M., Tonneau, C., Joris, M., May 1993. Contribution to
a theory of database reverse engineering. In: Proceedings of the IEEE Working
Conf. on Reverse Engineering. IEEE Computer Society Press, Baltimore, pp.
161–170.

Hainaut, J.-L., Cleve, A., Henrard, J., Hick, J.-M., 2008. Migration of legacy infor-
mation systems. In: Mens, T., Demeyer, S. (Eds.), Software Evolution. Springer,
pp. 105–138.

Hainaut, J.-L., Englebert, V., Henrard, J., Hick, J.-M., Roland, D., 1996a.
Database reverse engineering: From requirements to care tools. Automated Soft-
ware Engineering 3, 9–45.

Hainaut, J.-L., Henrard, J., Englebert, V., Roland, D., Hick, J.-M., 2009. Database
Reverse Engineering. Springer, pp. 263–263, to appear.

Hainaut, J.-L., Henrard, J., Hick, J.-M., Roland, D., Englebert, V., 1996b.
Database design recovery. In: Proceedings of International Conference on Ad-
vances Information System Engineering (CAiSE). Vol. 1080 of Lecture Notes in
Computer Science. Springer-Verlag, pp. 272–300.

Hainaut, J.-L., Henrard, J., Hick, J.-M., Roland, D., Englebert, V., 2000. The
nature of data reverse engineering. In: Proceedings of Data Reverse Engineering
Workshop (DRE’2000).

http://www.info.fundp.ac.be/~dbm/publication/2002/DBRE-2002.pdf

288 BIBLIOGRAPHY

Hainaut, J.-L., Hick, J.-M., Henrard, J., Roland, D., Englebert, V., 1997. Knowl-
edge transfer in database reverse engineering: A supporting case study. In: Proc.
Working Conf. Reverse Engineering (WCRE). pp. 194–203.

Halfond, W. G. J., Orso, A., 2005. Combining static analysis and runtime moni-
toring to counter sql-injection attacks. In: WODA ’05: Proceedings of the third
international workshop on Dynamic analysis. ACM, New York, NY, USA, pp.
1–7.

Harman, M., Hierons, R. M., 2001. An overview of program slicing. Software Focus
2 (3), 85–92.

Heckel, R., Correia, R., Matos, C., El-Ramly, M., Koutsoukos, G., Andrade, L.,
2008. Architectural transformations: From legacy to three-tier and services. In:
Mens, T., Demeyer, S. (Eds.), Software Evolution. Springer, pp. 139–170.

Henrard, J., 2003. Program understanding in database reverse engineering. Ph.D.
thesis, University of Namur.

Henrard, J., Englebert, V., Hick, J.-M., Roland, D., Hainaut, J.-L., 1998. Pro-
gram understanding in databases reverse engineering. In: Quirchmayr, G.,
Schweighofer, E., Bench-Capon, T. (Eds.), Proceedings of 9th International Con-
ference on Database and Expert Systems Applications (DEXA’98). Vol. 1460 of
Lecture Notes in Computer Science. Springer, pp. 70–79.

Henrard, J., Roland, D., Cleve, A., Hainaut, J.-L., 2007. An industrial experience
report on legacy data-intensive system migration. In: Canfora, G., Tahvildari,
L. (Eds.), Proceedings of the 23rd International Conference on Software Main-
tenance (ICSM’07). IEEE Computer Society.

Henrard, J., Roland, D., Cleve, A., Hainaut, J.-L., 2008. Industrial experiences in
data reengineering. In: Proceedings of the 15th Working Conference on Reverse
Engineering (WCRE’08). IEEE Computer Society, to appear.

Hick, J.-M., 2001. Evolution d’applications de bases de données relationnelles -
méthodes et outils. Ph.D. thesis, University of Namur.

Hick, J.-M., Hainaut, J.-L., December 2006. Database application evolution: A
transformational approach. Data & Knowledge Engineering 59, 534–558.

Hohenstein, U., Engels, G., 1992. Sql/eer—syntax and semantics of an entity-
relationship-based query language. Inf. Syst. 17 (3), 209–242.

Horwitz, S., Reps, T., Binkley, D., Jan. 1990. Interprocedural slicing using de-
pendence graphs. ACM Transactions on Programming Languages and Systems
12 (1), 26–60.

BIBLIOGRAPHY 289

Jackson, D., Rollins, E. J., 1994. A new model of program dependences for reverse
engineering. In: SIGSOFT ’94: Proceedings of the 2nd ACM SIGSOFT sympo-
sium on Foundations of software engineering. ACM Press, New York, NY, USA,
pp. 2–10.

Jahnke, J.-H., Wadsack, J. P., May 1999. Varlet: Human-centered tool support for
database reengineering. In: Proceedings of Workshop on Software-Reengineering
(WCRE’99).

Jeusfeld, M. A., Johnen, U. A., December 1994. An executable meta model for re-
engineering of database schemas. In: Proceedings of Conference on the Entity-
Relationship Approach. Manchester, pp. 533–547.

Johnson, L., 1986. File Techniques for Data Base Organization in Cobol, 2nd
Edition. Prentice-Hall International.

Karahasanovic, A., 2002. Supporting application consistency in evolving object-
oriented systems by impact analysis and visualisation. Ph.D. thesis, University
of Oslo.

Katz, R. H., Wong, E., 1982. Decompiling codasyl dml into relational queries. ACM
Trans. Database Syst. 7 (1), 1–23.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W. G.,
2001. An overview of aspectj. In: Proceedings of the European Conference on
Object-Oriented Programming (ECOOP’01). Vol. 2072 of LNCS. pp. 327–353.

Kontogiannis, K., Martin, J., Wong, K., Gregory, R., Müller, H., Mylopoulos, J.,
1998. Code migration through transformations: an experience report. In: Proc.
Conf. Centre for Advanced Studies on Collaborative research (CASCON). IBM
Press, p. 13.

Lam, M. S., Martin, M., Livshits, B., Whaley, J., 2008. Securing web applications
with static and dynamic information flow tracking. In: PEPM ’08: Proceedings
of the 2008 ACM SIGPLAN symposium on Partial evaluation and semantics-
based program manipulation. ACM, New York, NY, USA, pp. 3–12.

Lämmel, R., Nov. 2004a. Coupled software transformations (ext. abstract). In:
Proceedings of International Workshop on Software Evolution Transformations
(SETra). pp. 31–35.

Lämmel, R., 2004b. Transformations everywhere. Science of Computer Program-
mingThe guest editor’s introduction to the SCP special issue on program trans-
formation.

Lämmel, R., De Schutter, K., Mar. 2005. What does aspect-oriented program-
ming mean to Cobol? In: Proceedings of Aspect-Oriented Software Development
(AOSD 2005). ACM Press, pp. 99–110, 12 pages.

290 BIBLIOGRAPHY

Lämmel, R., Lohmann, W., 2001. Format Evolution. In: Proc. 7th International
Conference on Reverse Engineering for Information Systems (RETIS 2001). Vol.
155 of books@ocg.at. OCG, pp. 113–134.

Lämmel, R., van der Storm, T., 2009. Crossing the Rubicon
of API Migration, unpublished manuscript. Available online
http://www.uni-koblenz.de/laemmel/apimigration/.

Lämmel, R., Verhoef, C., December 2001. Semi-automatic Grammar Recovery.
Software—Practice & Experience 31 (15), 1395–1438.

Lawley, M., Topor, R. W., 1994. A query language for eer schemas. In: Australasian
Database Conference. pp. 292–304.

Liam O’Brien, Dennis Smith, G. L., 2005. Supporting migration to services using
software architecture reconstruction. In: Proceedings IEEE International Work-
shop on Software Technology and Engineering Practice (STEP). pp. 81–91.

Lin, D.-Y., Neamtiu, I., August 2009. Collateral evolution of applications and
databases. In: ERCIM Workshop on Software Evolution/International Workshop
on Principles of Software Evolution. pp. 31–40.

Lohmann, W., Riedewald, G., 2003. Towards automatical migration of transfor-
mation rules after grammar extension. In: Proc. of 7th European Conference on
Software Maintenance and Reengineering (CSMR’03). IEEE Computer Society
Press, pp. 30–39.

Lopes, S., Petit, J.-M., Toumani, F., 1999. Discovery of ”interesting” data depen-
dencies from a workload of sql statements. In: Proceedings of the 3rd European
Conference on Principles of Data Mining and Knowledge Discovery (PKDD’99).
Springer-Verlag, London, UK, pp. 430–435.

Lucia, A. D., Francese, R., Scanniello, G., Tortora, G., Vitiello, N., 2006. A strategy
and an eclipse based environment for the migration of legacy systems to multi-
tier web-based architectures. In: Proc. Int’l Conf. Software Maintenance (ICSM).
IEEE Computer Society, Washington, DC, USA, pp. 438–447.

Malton, A. J., August 2001. The software migration barbell. In: ASERC Workshop
on Software Architecture.

Mantyla, M., 2003. Bad smells in software - a taxonomy and an empirical study.
Ph.D. thesis, Helsinki University of Technology.

Marin, M., van Deursen, A., Moonen, L., 2004. Identifying aspects using fan-in
analysis. In: Proc. Working Conf. Reverse Engineering (WCRE). IEEE Com-
puter Society, Washington, DC, USA, pp. 132–141.

Martin, J., Müller, H. A., 2001. Strategies for migration from C to Java. In: Proc.
European Conf. Software Maintenance and Reengineering (CSMR). pp. 200–209.

http://www.uni-koblenz.de/laemmel/apimigration/

BIBLIOGRAPHY 291

Maule, A., Emmerich, W., Rosenblum, D. S., 2008. Impact analysis of database
schema changes. In: Proceedings of the 30th international conference on Software
engineering (ICSE’08. ACM Press, pp. 451–460.

Meier, A., 1995. Providing database migration tools - a practitioner’s approach.
In: Proceedings of International Conference on Very Large Data Bases (VLDB).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 635–641.

Meier, A., Dippold, R., Mercerat, J., Muriset, A., Untersinger, J.-C., Eckerlin, R.,
Ferrara, F., 1994. Hierarchical to relational database migration. IEEE Software
11 (3), 21–27.

Menhoudj, K., Ou-Halima, M., 1996. Migrating data-oriented applications to a
relational database management system. In: Proceedings of the Third Interna-
tional Workshop on Advances in Databases and Information Systems. Moscow.

Mens, K., Kellens, A., Krinke, J., 2008. Pitfalls in aspect mining. In: WCRE ’08:
Proceedings of the 2008 15th Working Conference on Reverse Engineering. IEEE
Computer Society, Washington, DC, USA, pp. 113–122.

Merlo, E., Letarte, D., Antoniol, G., 2006. Insider and outsider threat-sensitive
sql injection vulnerability analysis in php. In: Proc. Working Conf. Reverse
Engineering (WCRE). IEEE Computer Society, Washington, DC, USA, pp. 147–
156.

Missaoui, R., Godin, R., Sahraoui, H., 1998. Migrating to an object-oriented
databased using semantic clustering and transformation rules. Data Knowledge
Engineering 27 (1), 97–113.

Ngo, M. N., Tan, H. B. K., 2008. Applying static analysis for automated extraction
of database interactions in web applications. Inf. Softw. Technol. 50 (3), 160–175,
to appear.

Papakonstantinou, Y., Gupta, A., Garcia-Molina, H., Ullman, J., 1995. A query
translation scheme for rapid implementation of wrappers. In: Proceedings of
International Conference on Declarative and Object-oriented Databases. pp. 161–
186.

Papastefanatos, G., Anagnostou, F., Vassiliou, Y., Vassiliadis, P., 2008. Hecataeus:
A what-if analysis tool for database schema evolution. In: Proceedings of the 12th
European Conference on Software Maintenance and Reengineering (CSMR’08).
IEEE Comp. Soc., pp. 326–328.

Petit, J.-M., Kouloumdjian, J., Boulicaut, J.-F., Toumani, F., 1994. Using queries
to improve database reverse engineering. In: Proceedings of the 13th Inter-
national Conference on the Entity-Relationship Approach (ER’94). Springer-
Verlag, London, UK, pp. 369–386.

292 BIBLIOGRAPHY

Petit, J.-M., Toumani, F., Kouloumdjian, J., 1995. Relational database reverse
engineering: A method based on query analysis. Int. J. Cooperative Inf. Syst.
4 (2-3), 287–316.

Potts, C., 1993. Software-engineering research revisited. IEEE Softw. 10 (5), 19–28.

Rahm, E., Do, H., 2000. Data cleaning: Problems and current approaches. Data
Engineering Bulletin 23, 3–13.

Reps, T., Teitelbaum, T., 1984. The synthesizer generator. SIGSOFT Softw. Eng.
Notes 9 (3), 42–48.

Sahraoui, H. A., Lounis, H., Melo, W., Mili, H., 1999. A concept formation based
approach to object identification in procedural code. Journal on Automated Soft-
ware Engineering 6 (4), 387–410.

Sellink, A., Verhoef, C., 2000. Scaffolding for software renovation. In: CSMR
’00: Proceedings of the Conference on Software Maintenance and Reengineering.
IEEE Computer Society, Washington, DC, USA, p. 161.

Serrano, M. A., Carver, D. L., de Oca, C. M., 2002. Reengineering legacy systems
for distributed environments. Systems and Software 64 (1), 37–55.

Shao, J., Liu, X., Fu, G., Embury, S. M., Gray, W. A., 2001. Querying data-
intensive programs for data design. In: Proceedings of the 13th Interna-
tional Conference on Advanced Information Systems Engineering (CAiSE’01).
Springer-Verlag, London, UK, pp. 203–218.

Signore, O., Loffredo, M., Gregori, M., Cima, M., 1994. Reconstruction of er schema
from database applications: a cognitive approach. In: Proceedings of the 13th In-
ternational Conference on the Entity-Relationship Approach (ER’94). Springer-
Verlag, London, UK, pp. 387–402.

Sneed, H. M., 2000. Encapsulation of legacy software: A technique for reusing
legacy software components. Annals of Software Engineering 9 (1-4), 293–313.

Sneed, H. M., 2006. Integrating legacy software into a service oriented architecture.
In: Proc. European Conf. Software Maintenance and Reengineering (CSMR).
IEEE Computer Society, Los Alamitos, CA, USA, pp. 3–14.

Stroulia, E., El-Ramly, M., Iglinski, P., Sorenson, P., 2003. User interface reverse
engineering in support of interface migration to the web. Automated Software
Engineering 10 (3), 271–301.

Tan, H. B. K., Ling, T. W., 1998. Correct program slicing of database operations.
IEEE Software 15 (2), 105–112.

Tan, H. B. K., Ling, T. W., Goh, C. H., 2002. Exploring into programs for the
recovery of data dependencies designed. IEEE Trans. Knowl. Data Eng. 14 (4),
825–835.

BIBLIOGRAPHY 293

Tan, H. B. K., Zhao, Y., 2003. Automated elicitation of inclusion dependencies
from the source code for database transactions. Journal of Software Maintenance
15 (6), 379–392.

Tennent, R., 1981. Principles of Programming Languages. Prentice Hall Interna-
tional Series in Computer Science.

Terekhov, A. A., Verhoef, C., 2000. The realities of language conversions. IEEE
Software 17 (6), 111–124.

Thiran, P., Hainaut, J.-L., Houben, G.-J., Benslimane, D., October 2006. Wrapper-
based evolution of legacy information systems. ACM Trans. Software Engineering
and Methodology 15 (4), 329–359.

Tilley, S. R., Smith, D. B., 1995. Perspectives on legacy system reengineering. Tech.
rep., Software Engineering Institute, Carnegie Mellon University.

Tonella, P., Ceccato, M., 2004. Aspect mining through the formal concept analysis
of execution traces. In: Proc. Working Conf. Reverse Engineering (WCRE).
IEEE Computer Society, Washington, DC, USA, pp. 112–121.

Tourwe, T., Mens, K., September 2004. Mining aspectual views using formal con-
cept analysis. In: Proc. Workshop Source Code Analysis and Manipulation
(SCAM). pp. 97–106.

van Den Brand, M., Klint, P., Vinju, J. J., 2003. Term rewriting with traversal
functions. ACM Transaction on Software Engineering and Methodology 12 (2),
152–190.

van den Brand, M., Moreau, P.-E., Vinju, J. J., 2003. Environments for term
rewriting engines for free! In: Proceedings of the 14th International Conference
on Rewriting Techniques and Applications (RTA’03). pp. 424–435.

van den Brand, M., van Deursen, A., Heering, J., de Jong, H., de Jonge, M.,
Kuipers, T., Klint, P., Moonen, L., Olivier, P., Scheerder, J., Vinju, J., Visser, E.,
Visser, J., 2001. The ASF+SDF Meta-Environment: a Component-Based Lan-
guage Development Environment. In: Wilhelm, R. (Ed.), Compiler Construction
(CC ’01). Vol. 2027 of Lecture Notes in Computer Science. Springer-Verlag, pp.
365–370.

van den Brand, M., van Deursen, A., Klint, P., Klusener, S., van der Meulen,
E., 1996. Industrial applications of asf+sdf. In: Wirsing, M., Nivat, M. (Eds.),
Proceedings of the 5th International Conference on Algebraic Methodology and
Software Technology (AMAST’96). Vol. 1101 of Lecture Notes in Computer Sci-
ence. Springer, pp. 9–18.

van den Brand, M., Vinju, J. J., 2000. Rewriting with layout. In: Kirchner, C.,
Dershowitz, N. (Eds.), Proceedings of the First International Workshop on Rule-
Based Programming (RULE’2000).

294 BIBLIOGRAPHY

van den Brand, M. G. J., Bruntink, M., Economopoulos, G. R., de Jong, H. A.,
Klint, P., Kooiker, A. T., van der Storm, T., Vinju, J. J., 2007. Using the
meta-environment for maintenance and renovation. In: Krikhaar, R. L., Verhoef,
C., Lucca, G. A. D. (Eds.), Proceedings of the 11th European Conference on
Software Maintenance and Reengineering (CSMR’07). IEEE Computer Society,
pp. 331–332.

van den Brand, M. G. J., Kooiker, A. T., Vinju, J. J., Veerman, N. P., 2006. A lan-
guage independent framework for context-sensitive formatting. In: Proceedings
of the 10th European Conference on Software Maintenance and Reengineering
(CSMR’06). IEEE Computer Society, pp. 103–112.

van den Brink, H., van der Leek, R., Visser, J., 2007. Quality assessment for embed-
ded sql. In: Proceedings of the 7th IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM’07). IEEE Computer Society,
pp. 163–170.

van Deursen, A., Kuipers, T., 1998. Rapid system understanding: Two cobol case
studies. In: Int’l Workshop on Program Comprehension. IEEE Comp. Soc., pp.
90–98.

van Deursen, A., Kuipers, T., 1999. Identifying objects using cluster and concept
analysis. In: Proc. Int’l Conf. Software Engineering (ICSE). IEEE Computer
Society Press, Los Alamitos, CA, USA, pp. 246–255.

van Emden, E., Moonen, L., 2002. Java quality assurance by detecting code
smells. In: Proceedings of the 9th Working Conference on Reverse Engineer-
ing (WCRE’02). IEEE Computer Society Press.

Veerman, N., 2004. Revitalizing modifiability of legacy assets. Software Mainte-
nance and Evolution: Research and Practice 16 (4–5), 219–254.

Veerman, N., 2006. Automated mass maintenance of a software portfolio. Science
of Computer Programming 62, 287–317.

Veerman, N., 2007. Automated mass maintenance of software assets. Ph.D. thesis,
Vrije Universiteit, Amsterdam.

Vermolen, S., Visser, E., 2008. Heterogeneous coupled evolution of software lan-
guages. In: MoDELS ’08: Proceedings of the 11th international conference on
Model Driven Engineering Languages and Systems. Springer-Verlag, Berlin, Hei-
delberg, pp. 630–644.

Visaggio, G., 2001. Ageing of a data-intensive legacy system: symptoms and reme-
dies. Journal of Software Maintenance 13 (5), 281–308.

Visser, J., 2008. Coupled transformation of schemas, documents, queries, and con-
straints. Electr. Notes Theor. Comput. Sci. 200 (3), 3–23.

BIBLIOGRAPHY 295

Warren, I., 1999. The Renaissance of Legacy Systems: Method Support for
Software-System Evolution. Springer-Verlag, Secaucus, NJ, USA.

Waters, R. C., 1988. Program translation via abstraction and reimplementation.
IEEE Computer Society Trans. Software Engineering 14 (8), 1207–1228.

Weiser, M., 1984. Program slicing. IEEE Transactions on Software Engineering
10 (4), 352–357.

Wiederhold, G., 1995. Modeling and system maintenance. In: Proceedings of the
International Conference on Object-Oriented and Entity-Relationship Modeling.
Berlin, pp. 1–20.

Willmor, D., Embury, S. M., Shao, J., 2004. Program slicing in the presence of
a database state. In: ICSM ’04: Proceedings of the 20th IEEE International
Conference on Software Maintenance. IEEE Computer Society, Washington, DC,
USA, pp. 448–452.

Wu, B., Lawless, D., Bisbal, J., Grimson, J., Wad, V., O’Sullivan, D., Richard-
son, R., 1997. Legacy system migration: A legacy data migration engine. In:
Experts, E. C. C. (Ed.), Proceedings of the 17th International Database Confer-
ence (DATASEM ’97). pp. 129–138.

Wu, B., Lawless, D., Bisbal, J., Richardson, R., Grimson, J., Wade, V., O’Sullivan,
D., September 1997. The butterfly methodology: A gateway-free approach for
migrating legacy information systems. In: Proceedings of the 3rd IEEE Confer-
ence on Engineering of Complex Computer Systems. Italy, pp. 200–205.

Yang, H., Chu, W. C., 1999. Acquisition of entity relationship models for
maintenance-dealing with data intensive programs in a transformation system.
J. Inf. Sci. Eng. 15 (2), 173–198.

Yasumatsu, K., Doi, N., 1995. Spice: A system for translating smalltalk programs
into a C environment. IEEE Computer Society Trans. Software Engineering
21 (11), 902–912.

Yeh, A. S., Harris, D. R., Reubenstein, H. B., 1995. Recovering abstract data types
and object instances from a conventional procedural language. In: Proc. Working
Conf. Reverse Engineering (WCRE). IEEE Computer Society, Washington, DC,
USA, p. 227.

Zou, Y., Kontogiannis, K., 2001. A framework for migrating procedural code to
object-oriented platforms. In: Proceedings IEEE Asia-Pacific Software Engineer-
ing Conf. (APSEC). IEEE Computer Society, Los Alamitos, CA, USA, pp. 408–
418.

296 BIBLIOGRAPHY

Appendix A

COBOL File Handling Statements

A.1 OPEN statement

Syntax OPEN open-option file-name

Effect The option open-option affects the opening of file-name as follows:

• INPUT: opens the file and positions it to its start point for reading.

• OUTPUT: creates the file (if necessary) and positions it to its start point for
writing.

• I-O: opens the file for both reading and writing.

• EXTEND: creates the file (if necessary) and positions it right after the last of
the file for writing.

Note that when opening a file, the file buffer is made available for the program.
However, this does not mean that this buffer is already initialized. Indeed, the
OPEN statement does not perform any initial reading.

A.2 CLOSE statement

Syntax CLOSE file-name

Effect The CLOSE simply closes the file file-name. Closing files makes them ready
for processing by another application.

A.3 START statement

Syntax

297

298 Chapter A. COBOL File Handling Statements

START file-name KEY IS relational-operator record-key
INVALID KEY statements-1
NOT INVALID KEY statements-2

END-START

with relational-operator ε {>,>=,= }

Effect The START statement positions to a specific record in a relative or in-
dexed file, allowing the programmer to read the file sequentially starting from that
record. The INVALID KEY phrase indicates the statements to be executed if a
record with the specified key value cannot be found. Conversely, the optional NOT
INVALID KEY phrase specifies how the program behaves if such a record is found.
The INVALID/NOT INVALID clauses can also be associated with the READ, WRITE,
REWRITE and DELETE statements, in the case of indexed or relative files.

A.4 READ statement

There exist two kinds of READ statements in COBOL, depending on the access
mode of the file to read.

A.4.1 Format 1 (sequential access mode)

Syntax

READ file-name NEXT [INTO identifier]
AT END statements-1
NOT AT END statements-2

END-READ

Effect In the SEQUENTIAL access mode, the records are read in the ascending
order based on their reference key (see below). The AT END phrase provides state-
ments to execute when the end of file is encountered. An end of file occurs when an
attempt is made to read a record after the last record has been read. The optional
NOT AT END phrase execute statements if no end of file is encountered, thus, if a
record is read.

If the INTO clause is specified, the resulting record is moved to the specified
identifier. If the INTO clause if omitted, the resulting record is processed directly
in the record area (i.e., in the buffer).

Reference key By default, the reference key of a file is the primary key of the
corresponding record type. In the case of an indexed file, the reference key may
vary during the execution of the program. Indeed, the execution of a START or
a random READ statement causes the specified access key to become the reference
key. Note that a static analysis of the program does not allow to figure out which
is the reference key of a file at a given point of the program. For instance, the same

A.4. READ statement 299

1 READ-ORD-CODE.
2 START ORDERS KEY IS > ORD-CODE
3 INVALID KEY
4 MOVE 0 TO END-FILE
5 NOT INVALID KEY
6 MOVE 1 TO END-FILE.
7 PERFORM READ-ORD-NEXT
8 UNTIL END-FILE = 0.
9
10 READ-ORD-DATE.
11 START ORDERS KEY IS > ORD-DATE
12 INVALID KEY
13 MOVE 0 TO END-FILE
14 NOT INVALID KEY
15 MOVE 1 TO END-FILE.
16 PERFORM READ-ORD-NEXT
17 UNTIL END-FILE = 0.
18
19 READ-ORD-NEXT.
20 READ ORDERS NEXT
21 AT END
22 MOVE 0 TO END-FILE
23 NOT AT END
24 ...

Figure A.1: Multiple possible reference keys for a single READ NEXT statement.

READ NEXT statement can be reached from two different START statements during
the execution of the program. Figure A.1 shows such an example corresponding to
file ORDERS declared in Figure 7.1. The reference key used by the sequential read
statement located at line 20 can be either ORD-CODE or ORD-DATE, depending on
the PERFORM statement from which the READ-ORD-NEXT procedure is called (line 7
or line 16).

Format 2 (random access mode)

Syntax

READ file-name [INTO identifier] [KEY IS record-key]
INVALID KEY statements-1
NOT INVALID KEY statements-2

END-READ

Effect If the access mode is RANDOM, the programmer has to supply a key for
retrieving a record. If the KEY phrase is omitted, COBOL assumes the RECORD KEY

of the file is used. The INVALID KEY phrase declares the statements to be executed
if a record with the specified key cannot be found. Converserly, the optional NOT
INVALID KEY phrase specifies the behaviour of the program if such a record is
retrieved.

300 Chapter A. COBOL File Handling Statements

A.5 WRITE statement

The format of the WRITE statement depends on the file access mode.

Format 1 (sequential access mode)

Syntax WRITE record-name [FROM identifier]

Effect In the SEQUENTIAL access mode, records are written sequentially. The
record-name is the name of the level 01 entry, described in the FILE section of the
DATA division. If the FROM phrase is omitted, the inserted record is taken from the
corresponding buffer. If the FROM phrase is specified, the record to be written is
taken from the program variable identifier.

Format 2 (random access mode)

Syntax

WRITE record-name [FROM identifier]
INVALID KEY statements-1
NOT INVALID KEY statements-2

END-WRITE

Effect In the RANDOM access mode, the INVALID KEY phrase executes statements
if a record already exists with the same record key value. The optional NOT INVALID

KEY phrase executes statements if the record is successfully inserted in the file.

A.6 REWRITE statement

Format 1 (sequential access mode)

Syntax REWRITE record-name [FROM identifier]

Effect The REWRITE statement locates a specified record in the file and replaces
it with the content of the current record buffer (or the content of identifier). In a
SEQUENTIAL access mode, a record must be read before it can be rewritten.

Format 2 (random access mode)

Syntax

REWRITE record-name [FROM identifier]
INVALID KEY statements-1
NOT INVALID KEY statements-2

END-REWRITE

A.7. DELETE statement 301

Effect When access is RANDOM or DYNAMIC, a value has to be moved to the record
key before rewriting the record. The INVALID KEY phrase executes statements if the
file does not contain any record with the same record key value. The optional NOT
INVALID KEY phrase executes statements if such a record is successfully rewritten.

A.7 DELETE statement

The DELETE statement allows to delete a record.

Format 1 (sequential access mode)

Syntax DELETE file-name [RECORD]

Effect When the file access is SEQUENTIAL, the record must be read successfully
before being deleted.

Format 2 (random access mode)

Syntax

DELETE file-name
INVALID KEY statements-1
NOT INVALID KEY statements-2

END-DELETE

Effect For the RANDOM or DYNAMIC access modes, a value has first to be assigned to
the record key, in order to indicate the record to be deleted. If the provided record
key is invalid, the INVALID KEY phrase executes predefined statements. The NOT

INVALID KEY phrase specifies the statements to execute if a record is successfully
rewritten.

302 Chapter A. COBOL File Handling Statements

Appendix B

LDA Language: Syntax and
Partial Semantics

B.1 Concrete syntax

LDA-program-head : "program" LDA-identifier "." Schema-declaration ;

Schema-declaration : "schema" LDA-literal-value ";" ;

LDA-variable-declaration : LDA-type ":" {LDA-variable-name","}+ ";" ;

LDA-compound-id : LDA-identifier | LDA-identifier "." LDA-compound-id ;

LDA-type : LDA-entity-type-name
| LDA-entity-type-name "." LDA-compound-id
| "string"
| "integer"
| "boolean"
| LDA-type "(" NatCon ")" ;

LDA-declarations : LDA-variable-declaration+ ;

LDA-program-body : "begin" {LDA-statement ";"}+ "end" "." ;

LDA-program : LDA-program-head LDA-declarations? LDA-program-body ;

LDA-sequence : {LDA-statement ";"}+ ;

LDA-statement : LDA-assigment
| LDA-if-statement
| LDA-while-loop
| LDA-for-loop
| LDA-delete
| LDA-create
| LDA-modify
| LDA-input
| LDA-print ;

LDA-assigment : LDA-variable-reference Assign-symbol LDA-expression ;

LDA-if-statement : "if" LDA-condition "then" LDA-sequence Else-phrase? "endif" ;

Else-phrase : "else" LDA-sequence ;

303

304 Chapter B. LDA Language: Syntax and Partial Semantics

LDA-while-loop : "while" LDA-condition "do" LDA-sequence "endwhile" ;

LDA-for-loop : "for" LDA-variable-reference Assign-symbol Seq-order? LDA-expression
"do" LDA-sequence "endfor"

| "for" LDA-variable-reference "in" Seq-order "do" LDA-sequence "endfor" ;

LDA-delete : "delete" LDA-variable-reference LDA-condition? ;

LDA-modify : "modify" LDA-variable-reference LDA-condition ;

LDA-create : "create" LDA-variable-reference Assign-symbol What-is-created ;

LDA-input : "input" "(" {LDA-variable-reference ","}+ ")" ;

LDA-print : "print" "(" {LDA-expression ","}+ ")" ;

Seq-order : Integer
| Integer-interval ;

Integer-interval : Integer ".." Integer ;

Assign-symbol : ":" "=" ;

LDA-condition : LDA-simple-condition
| LDA-condition "and" LDA-condition ;
| "(" LDA-condition ")";
| Not-kw "(" LDA-condition ")";

LDA-simple-condition : LDA-expression LDA-relop LDA-expression
| LDA-expression ;

Entity-selection : LDA-entity-type-name LDA-condition ;

What-is-created : Entity-selection ;

LDA-expression : LDA-term
| "{" {Entity-selection ","}+ "}"
| Integer LDA-expression
| LDA-expression Plus-sign LDA-expression
| LDA-expression Minus-sign LDA-expression
| "(" LDA-expression ")"
| Entity-selection
| LDA-rel-type-name ":" LDA-expression ;

LDA-term : ":" LDA-item-name
| LDA-item-name
| LDA-literal-value
| LDA-variable-reference
| Integer
| Boolean ;

Not-kw : "not" ;

LDA-equal : "=" ;

LDA-relop : Not-kw LDA-equal
| "in"
| LDA-equal
| ">"
| "<"
| "<>"
| "<="
| ">=" ;

Plus-sign : "+" ;

B.2. Semantics 305

Minus-sign : "-" ;

LDA-rel-type-name : LDA-identifier ;

LDA-entity-type-name : LDA-identifier ;

LDA-item-name : LDA-identifier
| LDA-identifier OccurenceNumber? "." LDA-item-name ;

LDA-variable-reference : LDA-variable-name
| LDA-variable-name OccurenceNumber? "." LDA-item-name
| LDA-variable-name OccurenceNumber? "." LDA-variable-reference ;

OccurenceNumber : "[" NatCon "]"
| "[" LDA-variable-reference "]" ;

Integer : Natural
| "+" Natural
| "-" Natural
| Integer "+" Integer
| Integer "-" Integer
| Integer "*" Integer
| "max" "(" Integer "," Integer ")"
| "(" Integer ")" ;

Natural : NatCon
| Natural "-/" Natural
| "(" Natural ")"
| Natural "-//" Natural
| Natural ">-" Natural ;

Boolean : Integer ">" Integer
| Integer ">=" Integer
| Integer "<" Integer
| Integer "<=" Integer
| "gt" "(" Natural "," Natural ")"
| BoolCon
| Boolean "|" Boolean
| Boolean "&" Boolean
| "not" "(" Boolean ")"
| "(" Boolean ")"
| Boolean "&" Boolean
| Boolean "|" Boolean ;

BoolCon : "true" | "false" ;

B.2 Semantics

B.2.1 Syntactic Domains

Ide identifier
Exp expressions
Stat statements
BCond boolean condition
ECond entity selection condition

306 Chapter B. LDA Language: Syntax and Partial Semantics

B.2.2 Semantic Domains

B booleans
Z integers
R database references
v ∈ V = B + Z + R basic values
g ∈ G = V + C GER values
C = Ide→ 2G complex GER values
s ∈ S = Ide→ V + null store
d ∈ D = DE ×DR database state
dE ∈ DE = R→ G database state (entity type instances)
dR ∈ DR = (R× Ide)→ 2R database state (relationship type instances)
o ∈ O = (S×D) + {error} statement result

B.2.3 Semantic Functions

E : Exp→ S→ D→ G evaluating expressions
S : Stat→ S→ D→ O evaluating statements

B.2.4 Notations

We will use the following notations, some of which are inspired from Tennent
(1981).

(a) We define a ternary selection operation ’· → · , · ’ as follows:

e→ x1, x2 ==

{

x1, if e = true

x2, if e = false

error, if e is not a boolean expression.

(b) We define a ternary operation ’· → · , · ’ for perturbing a function as follows:
f [x→ y] is the function that is like f except that argument x is mapped into
y.

(c) We will note d(E) = {r1 : R} the set of database references in database state
d corresponding to instances of entity type E.

(e) For concision, we will note Es,d[[exp]] = E [[exp]](s)(d) the application of the
semantic fonction E on expression exp with respect to store s and database
state d (and similarly for function S).

(f) We will note type(V ar) the type of variable V ar.

B.2.5 Semantics of Expressions (for record selection)

Attribute-based condition

Es,d[[E(: A = exp)]] = {r ∈ R : r ∈ d(E) ∧ dE(r)(A) = Es,d[[exp]]}

B.2. Semantics 307

Relationship-based condition

Es,d[[E1(R : E2(cond))]] = {r1 ∈ R : r1 ∈ d(E1)∧
∃r2 ∈ R : r2 ∈ dR(r1, R) ∧ r2 ∈ Es,d[[E2(cond)]]}

Compound condition

Es,d[[E(cond1 and cond2)]] = {r ∈ R : r ∈ Es,d[[E(cond1)]] ∩ Es,d[[E(cond2)]]}

B.2.6 Semantics of Statements (for record manipulation)

Assignment (of record selection expression)

Ss,d[[V ar := E(cond)]] = Es,d[[E(cond)]] 6= ∅ → (s[V ar 7→ r], d), (s[V ar 7→ null], d)
where r ∈ Es,d[[E(cond)]]

Conditional statement (with record selection expression as condition)

Ss,d[[if E(cond) then stats1 else Stats2]]
= Es,d[[E(cond)]] 6= ∅ → Ss,d[[Stats1]],Ss,d[[Stats2]]

For loop (based on record selection expression)

Ss,d[[for V ar := E(cond) do Stats]] = Es,d[[E(cond)]] 6= ∅ → (s′′, d′′), (s, d)

where let X = Es,d[[E(cond)]]
let e ∈ X

let Y = X \ {e}
(s′, d′) = Ss[V ar 7→e],d[[Stats]]
(s′′, d′′) = Ss′,d′ [[for V ar:= Y do Stats]]

Create primitive

Ss,d[[create V ar:=E(cond)]] = (s′, d′)

where let r ∈ R : d(r) = null

d′(E) = d(E) ∪ {r}
r ∈ Es′,d′ [[E(cond)]]
s′ = s[V ar 7→ r]

Delete primitive

Ss,d[[delete V ar(cond)]] = r ∈ Es,d[[E(cond)]]→ (s′, d′), (s, d)

where r = s(V ar)
E = type(V ar)
s′ = s[V ar 7→ null]
d′(E) = d(E) \ {r}]

308 Chapter B. LDA Language: Syntax and Partial Semantics

Update primitive

Ss,d[[update V ar(cond)]] = (s, d′)

where let E = type(V ar)
s(V ar) ∈ Es,d′ [[E(cond)]]

