
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

DOCTOR OF SCIENCES

Enhancing Web 2.0 Usability: Handling the Local Contexts of Web Users

Al-Jabari, Mohanad

Award date:
2011

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/d0f21f35-307f-47ec-a7ca-dacd888fdcad

FACULTES UNIVERITAIRES

NOTRE-DAME DE LA PAIX

FACULTÉ D’INFORMATIQUE

FUNDP

NAMUR

Enhancing Web 2.0 Usability:

Handling The Local Contexts

Of Web Users

Mohanad O. JAABARI

University of Namur - Faculty of Computer Science
Rue Grandgagnage, 21 � B-5000 Namur (Belgium)

Jury: Prof. Jean-Marie Jacquet - University of Namur (President)
Prof. Jean-Luc Hainaut - University of Namur (Promoter)
Prof. Phillippe Thiran - University of Namur (Co-Promoter)
Prof. Michael Mrissa - LIRIS, University of Lyon 1, France
Prof. Stephane Faulkner - University of Namur
Prof. Vincent Englebert - University of Namur

September, 2010
Thesis presented in order to obtain a PhD degree in Science, Computer Science Option

Acknowledgements

I would like to express my appreciation to many colleagues and friends who contributed
to this thesis in any way.

First, I would like to thank my thesis advisor Prof. Phillippe Thiran for giving me
the opportunity to carry out the research described in this thesis. He motivated me to
work on my PhD thesis and also on several research papers reporting on the research
results. Working with him has always been a very instructive and a pleasant experience
for me. During the week and even in the weekend, and in spite of his overbooked agenda,
he was always willing to supervise my work and give me advice. Without his supervision,
I would never have been able to achieve this result. He is really an excellent supervisor.

Second, I Would like to thank my co-advisor Prof. Michael Mrissa. . .

i

Table of Contents

1 Introduction 1

1.1 Web Usability: Definition and Engineering Discipline 2
1.2 Web 2.0 Usability Analysis . 5

1.2.1 Web 2.0 and the local Contexts of Web Users 5
1.2.2 Web 2.0 Usability: Criteria and Problems 8

1.3 Web 2.0 Usability Design . 11
1.3.1 Web Annotation . 11
1.3.2 Interactive Web Annotation . 12
1.3.3 Web Adaptation . 13

1.4 Web 2.0 Usability Evaluation . 13
1.5 Scope of the Thesis . 14
1.6 Thesis Topic and Research Issues . 16

2 State of the Art 19

2.1 Introduction . 19
2.2 Web Adaptation . 19

2.2.1 Web Adaptation Scenarios . 20
2.2.2 Context and Context Modeling . 23
2.2.3 Types of Web Adaptation . 32
2.2.4 Web Adaptation Deployment . 35

2.3 Web Annotation . 36
2.3.1 Dimensions of Web Annotation . 38
2.3.2 Web Annotation Approaches . 43
2.3.3 Internal Web Annotation Languages 46

2.4 Web Usability Evaluation . 49
2.4.1 User-Testing Evaluation . 52
2.4.2 Usability Inspection Evaluation . 54

ii

Table of Contents

2.4.3 Automatic Tools Supporting Web Usability Evaluation 55

2.5 Discussion . 57

I Web 2.0 Usability Analysis 60

3 Web 2.0 Use Cases and Users Local Contexts 62

3.1 Introduction . 62

3.2 Web 2.0 Use Cases . 62

3.2.1 Web 2.0 Contents Creation/Insertion 63

3.2.2 Web 2.0 Contents Update . 67

3.2.3 Web 2.0 Contents Aggregation . 69

3.2.4 Web 2.0 Contents Browsing . 71

3.2.5 Web 2.0 Use Cases: Summary . 72

3.3 Local Context and Context-Sensitive contents (CSCs) 73

3.3.1 Date and Time . 73

3.3.2 Numbers . 74

3.3.3 Telephone Number . 75

3.3.4 Physical Quantities . 77

3.3.5 Price . 77

3.3.6 Context-Sensitive Contents: Summary 79

3.4 Requirements of Improving Web 2.0 Usability 79

II Web 2.0 Usability Design 84

4 Semantic Representation Model of CSCs 86

4.1 Introduction . 86

4.2 Design Alternatives . 87

4.2.1 Adaptation to a Standard Local Context 87

4.2.2 Adaptation to a Single Page Local Context 90

4.2.3 Annotation of CSCs with Authors’ Local Contexts 92

4.2.4 Design Alternatives: Conclusion 94

4.3 Semantic Object . 95

4.3.1 Static and Dynamic Context Attributes 96

4.3.2 Usability Vs. Flexibility . 98

4.3.3 Semantic Object Inter-Operability 100

iii

Table of Contents

4.4 Reuse of Common Ontologies . 102

4.5 Local Context Ontology (LCO) . 105

4.5.1 Local Context: Interpretation and Main Concepts 106

4.5.2 Country Convention . 107

4.5.3 Community Conventions. 111

4.5.4 LCO Implementation . 113

4.6 Typical Representation of CSCs . 114

4.6.1 Physical Quantity SemObjs . 115

4.6.2 Price SemObjs . 117

4.6.3 Telephone Number SemObjs . 118

4.7 Semantic Context-Aware Architecture . 120

4.7.1 Architecture Description . 120

4.7.2 Architecture Features . 121

5 Web Annotation 123

5.1 Introduction . 123

5.2 Web Annotation Alternatives . 124

5.2.1 External Annotation . 124

5.2.2 Internal Annotation Using Semantic Metadata URI 127

5.2.3 Inline Internal Annotation Using Static Context Attributes 129

5.2.4 Inline Annotation Using Minimum Context Attributes 131

5.2.5 Web Annotation Alternatives: Conclusion 133

5.3 Interactive Web Annotation Process . 133

5.3.1 Local Context Specification . 134

5.3.2 Context Attributes Extraction . 134

5.3.3 Annotation Creation . 135

5.3.4 Annotation Testing . 137

5.3.5 Correction and Publishing . 138

5.3.6 Conclusion and Suggested Extensions 138

5.4 Annotation Engine: Architecture and Prototype 139

5.4.1 Internal Structure . 139

5.4.2 Web Annotation Prototype . 141

6 Web Adaptation 144

6.1 Introduction . 144

6.2 Web Adaptation: Theory and Requirements 144

iv

Table of Contents

6.2.1 Adaptation Functions . 145
6.2.2 Web Adaptation Requirements . 146

6.3 Semantic Objects and Adaptation Functions 147
6.3.1 Adaptation of Physical Quantity SemObjs 147
6.3.2 Adaptation of Price SemObjs . 148
6.3.3 Adaptation of Telephone Number SemObjs 149

6.4 Web Adaptation Process . 150
6.4.1 Local Context Specification . 151
6.4.2 Web Page Parsing . 151
6.4.3 Semantic Objects Identification . 152
6.4.4 In Memory Semantic Objects Building 153
6.4.5 Semantic Object Adaptation . 154
6.4.6 Adapted Web Page Generation . 155

6.5 Adaptation Engine: Architecture and Prototype 156
6.5.1 Internal Structure . 156
6.5.2 Web Adaptation Prototype . 158

III Web 2.0 Usability Evaluation 160

7 Web 2.0 Usability Evaluation Methodology 162

7.1 Introduction . 162
7.2 Web 2.0 Usability Inspection During Design Phase 164
7.3 Web 2.0 User-Testing Evaluation . 166

7.3.1 Author-Testing Evaluation . 168
7.3.2 Reader-Testing Evaluation . 173

IV Web 2.0 Usability: Conclusion 178

8 Summary and Conclusions 180

8.1 Summary . 180
8.2 Conclusions . 182
8.3 Future Works . 183

v

List of Figures

1.1 Web 2.0 contents’ sharing and the implicit usage of users’ local contexts 7

2.1 Dimentions for Web adaptation approaches 21

2.2 Web Adaptation Scenario and Context Information Types 27

2.3 Dimentions for Web Annotation Approaches 38

2.4 Classification of Ontology Types . 39

3.1 Web 2.0 use cases . 73

4.1 Adaptation to a Standard Local Context: Illustration Example 90

4.2 Adaptation to a single page Local Context: Illustration Example 92

4.3 Adaptation to a Standard Local Context: Illustration Example 93

4.4 Sample of date semantic object . 96

4.5 refined version of the aforementioned date semantic object 99

4.6 Local Context Ontology: main concepts . 107

4.7 LCO: Addition of determine property and specialization of country-conventions. 108

4.8 LCO: Complete view of the country conventions. 112

4.9 LCO: An extension with concepts and relations related to community conventions.113

4.10 An excerpt of the LCO implementation using protege�(OWLProVIZ plug-in view)114

4.11 Typical representation of CSCs: Physical quantity semantic object sample . . . 116

4.12 Typical representation of CSCs: Price semantic object sample 118

4.13 Typical representation of CSCs: Phone semantic object sample 119

4.14 A general overview of the proposed architecture 120

5.1 External annotation using RDF/XML and Xpointer specifications 126

5.2 Internal annotation using semantic metadata URI 128

5.3 Inline internal annotation using static context attributes 130

5.4 Inline internal annotation using a minimum context attributes 132

vi

List of Figures

5.5 Overview of the annotation process . 134
5.6 Annotation process: local context specification flowchart 135
5.7 Annotation process: context attributes extraction flowchart 136
5.8 Annotation process: annotation creation flowchart 136
5.9 Annotation process: annotation testing flowchart 137
5.10 Annotation process: correction and publishing flowchart 138
5.11 Annotation engine: internal architecture view 140
5.12 A screenshot of the extended Web editor. 142

6.1 Overview of the adaptation process . 150
6.2 Adaptation process: local context specification flowchart 151
6.3 Adaptation process: Web Page Parsing flowchart 152
6.4 Adaptation process: Semantic Objects Identification flowchart 153
6.5 Adaptation process: In Memory Semantic Objects Building flowchart 154
6.6 Adaptation process: Semantic Object Adaptation flowchart 155
6.7 Adaptation process: Adapted Web Page Generation flowchart 156
6.8 Adaptation engine: internal architecture view 157
6.9 A screenshot of the extended FireFox Browser 158

7.1 Measurable factors and questions for evaluating the Web 2.0 usability of authors 169
7.2 Measurable factors and questions for evaluating the Web 2.0 usability of readers 174

vii

List of Tables

1.1 Web 2.0 usability criteria from Readers’ and Authors’ perspectives. 9
1.2 Web 2.0 usability problems and Web 2.0 tasks. 10
1.3 Web annotation and Web 2.0 usability problems 12

2.1 Side by side comparison between Microformats and RDFa 50

3.1 Web 2.0 features and use cases. 64
3.2 Relations between context-sensitive contents and local context information 80

4.1 Evaluation summary of the design alternatives. 94
4.2 Mapping between CSCs and concepts from common ontologies 106

5.1 Evaluation summary of the annotation alternatives. 133

viii

Chapter 1

Introduction

In less than two decades, the World Wide Web has grown into one of the most popular
channels that provide information about most aspects of the life (e.g., economic, educa-
tion, political, etc.). For example, Web users from around the world can browse the Web
for reading news, purchasing products, registering online courses, forecasting weather,
etc. (referred to them as Web Readers).

Recently, the emergence of Web 2.0 has revolutionized the way information is de-
signed and accessed over the Web. Web 2.0 sites enable Web users not only browsing the
Web but also creating and updating Web contents. Hence, they can act as active Web
authors. In addition, Web 2.0 sites/services can aggregate Web contents from several
sites and display them together in a single Web page.

However, Web users originate from different communities and they implicitly fol-
low their own semantics (refereed to as local contexts) to represent and interpret Web
contents. As a consequence, the same real world concepts might be represented and
interpreted in different ways by different Web authors and readers. Such concepts are
referred to as Context-Sensitive Contents, or CSC for short. For example, the concept
of price could be represented using different currencies (e.g., Euro, US Dollar) and ac-
cording to different price formats. Also, date and time concepts could be represented
using different time zones and according to different formats. This situation leads to
several discrepancies which Web readers encounter on the Web, as they (need to) follow
their contexts to interpret these CSCs.

One possible solution is to annotate CSCs with semantic metadata (i.e., authors’
contexts), so that it becomes feasible for Web browsers to adapt the former to different
users’ contexts. However, the annotation of Web contents is a complex process due to
the lack of annotation means that assist authors to perform this process.

From users’ perspectives, the discrepancies that could rise from the interpretation
of Web contents and the complexity of annotation process are considered as Web 2.0

1

Chapter 1. Introduction

usability problems. This thesis aims at addressing these usability problems.

The rest of this chapter is structured as follows. Section 1.1 initially introduces
the terms usability and usability engineering as a framework for our approach. Next,
Section 1.2 defines the terms Web 2.0, local context, and Web 2.0 usability. Also, an ex-
ample in developed in this section in order to illustrate and analyze the Web 2.0 usability
problems that we intend to address. Afterwards, a brief overview of the techniques used
to improve and evaluate Web 2.0 usability are presented in Section 1.3 and Section 1.4,
respectively. Section 1.5 discusses the scope of this thesis. Finally, Section1.6 presents
the topic of the thesis and a number of related research questions.

1.1 Web Usability: Definition and Engineering Discipline

Several approaches from different computer domains have proposed definitions and cat-
egorizations of usability. These are varied according to the models they are based on.
Although there is no agreed definition, the term usability is acknowledged as a qual-
ity factor that are used to assess and/or improve the interactions between users and a
computer system.

The International Organization for Standardization (ISO) provides a theoretical us-
ability definition in ISO 9241-110:20061 standard. The standard defines usability as “the
extent to which a product (e.g., software or Web site) can be used by specified users
to achieve specified goals with effectiveness, efficiency, and satisfaction”, whereas these
criteria refer to the following:

� Effectiveness: the extent users perform specified tasks accurately and completely

� Efficiency: the efforts expended (e.g., time) to perform specified tasks effectively

� Satisfaction: it is more oriented to subjective attitudes of users and it concerns
their comfort or frustration when they perform specified tasks.

In Human Computer Interaction (HCI) domain, usability has been viewed from two
perspectives. The first perspective views usability as a number of quality criteria which
specify the desired level of effectiveness, efficiency, and satisfaction. Then, these criteria
are utilized to judge and evaluate the actual result of users’ interactions with the user
interface of a computer software. Several HCI researches describe these criteria in more
details. For example, Nielsen [85] provides five usability criteria: learnability, efficiency,

1More information available on http://www.iso.org/

2

1.1. Web Usability: Definition and Engineering Discipline

memorability, Errors/safety, and satisfaction. In addition, these criteria are further
decomposed into finer-grain criteria, and then different evaluation methods are used to
evaluate them against the actual interaction of users [85, 102, 104].

The second perspective views usability as a number of usability design principles,
heuristics, and rules. These are kind of general guidelines that should be followed in
order to design a usable software and/or improve the usability of existing one. The most
common heuristics are introduced by Nielsen [85]. He proposes ten “usability hurestics2”
which are considered the ten golden heuristic principles that lead to positive effects on
the usability of a software. Also, the ISO 9241-10:1996 introduces another heuristic
list called dialogue principles between humans and information systems. As its name
indicates, this list deals with several users’ interaction aspects such as the suitability
of interaction for the task, for learning, and for individualization. Also, it deals with
the conformity of interaction with user expectations, interactions’ controllability, and its
error tolerance.

In addition, the term usability engineering has been used to achieve the usability
goals. Indeed, usability engineering is defined as a discipline that provides structured
methods for assessing and/or improving the interactions between users and a computer
software (i.e., usability goals) [12, 46, 114]. In general, usability engineering consists of
the following three phases:

� Usability analysis. In this phase, an external knowledge that affects on the usability
of the software being developed and/or evaluated is studied and analyzed. This
includes identifying the characteristics of users such as their knowledge and skills.
Also, it includes descriptions of tasks to be performed by users in terms of their
overall goals and the ways (e.g., steps and actions) users interact with the software
to achieve these goals. In addition, the context in which the software is used could
be analyzed such as the platform used, hardware, and the physical and social
environments.

After that, the desired level of usability has to be identified as a number of quali-
tative usability criteria, and each criterion is refined into a number of sub-criteria
that are applicable to quantify (e.g., performance speed, errors, etc.). Based on
usability criteria, a number of usability problems and the requirements to address
them are finally specified.

� Usability design. Based on the result of the analysis phase, a number of usability
2Usability heuristics are summarized on http://www.useit.com/papers/heuristic/heuristic

list.html

3

Chapter 1. Introduction

improvement means are designed and implemented. This could include applying
a number of design principles and usability heuristics on the user interface of
the software being developed and/or evaluated. Also, they could include other
techniques such as adaptation and annotation. For example, adaptation is a means
that could be used to improve users’ satisfaction.

� Usability evaluation. In this phase, one or more usability evaluation methods are
used to evaluate the the actual results against the desired level of usability (i.e.,
usability criteria).

Usability engineering phases could be performed during software design and imple-
mentation or it could be performed after software deployment and use. Also, they could
be performed many times to reach the desired level of usability. Indeed, many usability
researchers and experts deem appropriate to apply usability engineering phases during
design phases in order to avoid expensive and complex re-design, and also after system
deployment to ensure the desired usability level while users actually use software (See
Section 2.4).

The term Web usability has been used to apply usability engineering discipline in
the Web domain. In this sense, several Web approaches have refined the definition
of usability and usability engineering phases to handle the specific characteristics of
the Web. For example, [79] introduces Web usability principles and evaluation methods.
Web usability principles refine the usability principles and heuristics that were introduced
in [85] in order to guide the design process of Web application. Web evaluation methods
provide benchmarks for Web usability verification during and after Web application
development. In addition, [46] introduces a Web usability engineering methodology for
designing and evaluating adaptive Web-based systems. To conclude, Web usability has
been used to evaluate and improve the Web user interface (i.e., Web pages) and the
users’ interactions with Web pages to achieve specified goals.

In this work, we focus on users’ interactions with Web 2.0 sites from local context
perspective. Hence, the term Web 2.0 usability is defined as quality criteria that are
used to improve and evaluate the interactions of users (i.e., authors and readers) with
Web 2.0 sites. In addition, the usability engineering phases are applied as a framework
to analyse the problems and to achieve the goals of the Web 2.0 usability.

4

1.2. Web 2.0 Usability Analysis

1.2 Web 2.0 Usability Analysis

Usability analysis is the first phase of the usability engineering discipline. In this phase,
a number of users’ external knowledge, the descriptions of tasks to be performed, and the
context of interactions are studied and analyzed, as mentioned above. This section aims
at studying and analyzing these aspects during Web users/Web 2.0 sites interactions.
It initially introduces the tasks that Web users perform on Web 2.0 sites and defines
the characteristics of these users (i.e., local context). Next, the effects of users’ local
contexts on these tasks are analyzed. Finally, the term Web 2.0 usability is refined into
a number of sub-criteria, and accordingly a number of Web 2.0 usability problems are
defined.

1.2.1 Web 2.0 and the local Contexts of Web Users

The term Web 2.0 was officially coined by Tim O’Reilly in [89] as a set of design princi-
ples and exemplified by sites such as Wikipedia, MySpace, Upcoming. However, several
researchers including Tim O’Reilly himself argue that there is no clear-cut definition of
this term [10, 37].

The heart idea of Web 2.0 lies into the sharing of Web contents from different sources
(i.e., users and sites). Community collaborations and contents mashups are the most
common Web 2.0 features [10]. To better understand these features, let us distinguish
them from the classical Web (known as “Web 1.0”) as follows3:

� Community collaboration. In Web 1.0, a few Web authors create and update Web
contents for relatively passive Web readers. However, Web 2.0 sites enable Web
users not only browsing the Web but also creating and updating Web contents in
usually self-organizing manner. Updating contents could be performed not only
by the original author but also by other authors (e.g., wiki).

� Contents mashups. In Web 1.0, Web contents on a single Web page are usually
belong to one Web site. In Web 2.0, contents from several sites can be aggregated
and displayed together in a single Web page. Contents aggregation could be per-
formed by users’ applications (e.g., RSS browser’s plug-in) or by a specific Web
site aggregator (e.g., blogs’ aggregations on Technorati site).

The emerging results of community collaboration and contents mashups could not be
achieved by individual users and individual Web sites, respectively. Each user gains

3A set of Web 2.0 use cases related to these features will be discussed in Section 3.2 in more details.

5

Chapter 1. Introduction

more from the systems than he puts into it. Also, one Web site can not satisfy all the
users’ needs. Contents from different sites are to be aggregated and mixed together to
satisfy complex users’ requests.

In the meanwhile, the Web gathers billions of Web users from all over the world.
These users originate from different communities, and follow their local contexts for
interacting with the Web. A local context4 refers to the shared knowledge of a community
such as a common language and common local conventions such as currency, keyboard
configurations, measurement systems, character sets, and notational standards of writing
time, dates, durations, physical quantities, prices [17, 109].

As a consequence, several Web contents (i.e., CSCs) might be represented and in-
terpreted in different ways by different Web authors and readers. This situation leads to
several discrepancies which Web readers could encounter, as they (need to) follow their
contexts to interpret these CSCs. With the Web 2.0, Web contents in a single Web
page can be represented according to several authors’ contexts, since they are created,
updated, and aggregated from different authors and sites, and thus the discrepancies
Web readers encounter increase accordingly.

Example

To illustrate the consequences of users’ local contexts and Web 2.0 features on CSCs

representation and interpretation, we develop an example presented in Figure 1.1. This
example considers several authors and readers from different communities. Also, it
considers several tasks (i.e., T1-T7) performed on different Web 2.0 pages in sequential
manner as follows:

� A British author creates and publishes a length and a date contents on page A
(T1). After that, an American author browses the contents of page A (T2), and
then updates the date content created by the British author to 07/09/2009 and
publishes it again (T3).

� A Canadian author (from the French speaking community) browses the contents
of page B and deletes the date content 2009-09-11 (T4). We consider the page
B’s contents were created by this author. Next, the length and date contents from
pages A and B are aggregated to page C (T5).

� An Italian reader browses the date contents that are automatically aggregated, via
RSS engine, from pages A and B (T6). Finally, a French reader browses the date

4The terms local context and context are interchangeably used and refers to user’s local context

6

1.2. Web 2.0 Usability Analysis

and length contents that are aggregated to page C (T7).

W
eb

 2
.0

 s
it

es
U

se
rs

’
A

p
p

li
ca

ti
o
n

s

HasHasHas

Semantic Discripancies

U
se

rs
’

L
o
ca

l
C

o
n

te
x
ts

Length(Unit, Format)

Date(TimeZone, Format)

5,678.90 mi

07/09/2009

. . .
A

Updates
(T3)

Has

5,678.90 mi

07/08/2009

. . .
A

Browses
(T2)

Creates
(T1)

British
ContextAmerican

ContextCanadian
Context

Has

Italian
ContextFrench

Context

1 234,50 mi

2009-09-10

2009-09-11
B

Web Editor

5,678.90 mi

07/08/2009

A British
Author

Web Browser

07/09/2009
2009-09-10

Aggregator

An Italian
Reader

Web Browser

1 234,50 mi
5,678.90 mi
07/09/2009
2009-09-10

A French
Reader

Web Editor

1 234,50 mi

2009-09-10

2009-09-11

Web Editor

5,678.90 mi
(07/08/2009)

An American
Author

A Canadian
Author

1 234,50 mi
5,678.90 mi
07/09/2009
2009-09-10

C

Browses (T7)

Aggregates
(T5)

Deletes
(T4)

Aggregates
(T6)

Figure 1.1: Web 2.0 contents’ sharing and the implicit usage of users’ local contexts

It is obvious that the date and length contents are represented in different ways by
different authors. For example, the British author implicitly uses the British context5

in T1. In contrast, Web readers usually (need to) interpret these contents according to
their contexts. For example, as the French reader uses the Meter unit and the French
length format (e.g. 1 234,50), he is responsible to adapt the length from Mile to Meter
and to French length format.

The problem is similar with respect to the date content 07/09/2009 which is updated
at task T3. It is not obvious whether the American author updates the date content
according to his context or according to the British context of the original author. Even
if the ambiguity is resolved (i.e., he uses his context), the French reader might misinter-
pret this date as the 7th of September (following the French format) instead of the 9th

5Mile unit, British notation (e.g. 1,234.50) and date format (dd/mm/yyyy).

7

Chapter 1. Introduction

of July (following the American format). Finally, several time zones conventions are im-
plicitly used by different users for representing and interpreting the date contents. These
conventions related to the local time used in a specific location on the globe (referred
to as time zones). For example, the American author update the date CSC according
to the local time of California time zone (i.e., -08:00) and French reader interprets date
contents according to the local time of Paris (i.e., + 01:00).

To conclude, the local context is clearly part of the CSCs′ semantics. Also, the
discrepancies that arise do not relate to the CSCs themselves, but rather to the contexts
of Web users who represent and interpret them.

1.2.2 Web 2.0 Usability: Criteria and Problems

As the term Web 2.0 usability refers to quality criteria related to the users’ interac-
tions with Web 2.0 sites, the aforementioned issues can be seen as Web 2.0 usability
problems. Prior analyzing these issues from usability perspective, the desired usability
goals related to users’ interactions have to be specified (i.e., usability criteria). To this
end, we rely on the usability criteria defined in the ISO 9241-110:2006 standard (i.e.,
effectiveness, efficiency, and satisfaction) and refine to the quality of both authors’ and
readers’ interactions as follows.

The interactions of Web authors satisfy the effectiveness and efficiency criteria when
Web authors be able to represent all Web contents and the local context information
(if any) used for representing these contents accurately and completely. In addition, the
efforts (i.e., time) needed to represent these contents together with the corresponding
context information are relatively not too high6.

The interactions of Web readers satisfy the effectiveness and efficiency criteria when
Web readers are able to interpret all Web contents according to their own local contexts.
This implies that readers are able to specify their local contents information. Also, they
do not misunderstand Web contents created and updated by authors who have different
local contexts. Finally, the efforts required to interpret the local contexts of Web authors
used to represent Web contents are no longer required, as the latter presented according
to their readers’ contexts.

The satisfaction criterion is more oriented to subjective attitude of authors and
readers. Indeed, this criterion can be seen from two perspectives: work satisfaction and
emotional satisfaction. Work satisfaction refers to the ability of a user to successfully
achieve a specific task he wants to perform. Instead, emotional satisfaction refers to the

6Here we mean if it is compared with the time required to represent Web contents only.

8

1.2. Web 2.0 Usability Analysis

comfort and acceptance of the way a user achieves a specific task he want to perform.
Indeed, work satisfaction could not lead to emotional satisfaction [57].

We assume that work satisfaction is included in the aforementioned effectiveness
criteria, and therefore the second perspective is more appropriate for this work. In
this sense, authors are considered satisfied if they do not face difficulties to specify
their local context and to represent Web contents together with corresponding context
information (if any) or they reject to do this in the future. On the other hand, readers
are considered satisfied if they do not face difficulties to specify their local context and
if they interpreting CSCs according to their local contexts.

Table 1.1 below refines our understanding of Web 2.0 usability criteria from authors’
and readers’ perspectives.

Web 2.0
Readers Perspectives Authors Perspectives

Usability

Effectiveness

The extent that Web readers can
interpret and understand Web
contents according to their lo-
cal contexts accurately and com-
pletely

The extent that Web authors
represent Web contents and the
corresponding local context in-
formation accurately and com-
pletely

Efficiency

The efforts expended, usually in
terms of time, to interpret Web
contents effectively

The efforts expended, usually in
terms of time, to represent Web
contents and local context infor-
mation effectively

Satisfaction
The readers’ comfort and accep-
tance when they specify their lo-
cal context and interpret Web
contents

The authors’ comfort and accep-
tance when they represent Web
contents and their corresponding
local context information

Table 1.1: Web 2.0 usability criteria from Readers’ and Authors’ perspectives.

Based on these criteria and the aforementioned example, the following two Web 2.0
usability problems are defined. First, the interactions of Web authors are ineffective
when they create and update CSCs. Indeed, the representation of CSCs are incom-
plete, since part of their semantics (i.e., local context information) are not explicitly
represented.

Secondly, the interactions of Web readers are ineffective and inefficient when they
browse CSCs. Indeed, Web readers require additional efforts to interpret CSCs that
are implicitly represented according to authors’ contexts (inefficiency problem) and they
might misinterpret these contents (inaccuracy problem), as already shown in the above

9

Chapter 1. Introduction

example.

Furthermore, the inefficiency and inaccuracy problems would be increased in accu-
mulative manner for two reasons. First, when CSCs in a single Web page are created
and updated by several authors who have different local contexts. Secondly, when CSCs

authored from several authors on several Web sites are dynamically aggregated and dis-
played together in a single Web page. Furthermore, the inaccuracy problem could affect
on update and delete tasks. For instance, if a Web author misinterprets Web contents,
he could incorrectly update or delete these contents.

Table 1.2 summarizes the Web 2.0 tasks and the Web 2.0 usability problems that are
caused by these tasks when Web users implicitly use their local contexts for performing
these tasks.

Web 2.0 Web 2.0 Usability
Description

Tasks Problems

Create Incompleteness
CSCs are implicitly created according to multi-
ple authors’ local contexts

Update

Incompleteness
CSCs are implicitly updated according to mul-
tiple authors’ local contexts

Inaccuracy
An author could incorrectly update CSCs cre-
ated by other authors who have different local
contexts

Delete Inaccuracy
An author could incorrectly delete CSCs cre-
ated by other authors who have different local
contexts

Browse

Inefficiency
A reader could incorrectly browse CSCs created
by one or more authors who have different local
contexts

Inaccuracy
A reader could require additional efforts to in-
terpret CSCs represented according to one or
more authors’ local contexts

Aggregate
Increase inefficiency

CSCs created and updated according to

and Inaccuracy
multiple authors’ local contexts are aggregated
and presented in a single Web page

Table 1.2: Web 2.0 usability problems and Web 2.0 tasks.

10

1.3. Web 2.0 Usability Design

1.3 Web 2.0 Usability Design

Usability design is the second phase of the usability engineering discipline. In this phase,
a number of usability improvement means have to be designed and implemented in order
to address the usability problems identified in the first phase. To this end, two usability
improvement techniques are utilized in this work: Web annotation and Web adaptation.
This section defines these techniques and provides a brief overview about them.

1.3.1 Web Annotation

The term annotation has been used to refer to the process of adding metadata to docu-
ments or contents of documents for explaining their roles, structures, meanings, formats,
etc. Also, annotation has been used to refer to metadata itself [111]. Metadata can be
attached to different types of documents (e.g., XHTML, PDF, Latex, etc.). Also, meta-
data can be represented in different languages (e.g., natural, formal, ontology languages,
etc.) and with different types of vocabularies (e.g., keywords, taxonomies, etc.).

In semantic Web domain, the term Web annotation has been used to annotate Web
resources (i.e., anything identified by URI7) with semantic metadata, such that a software
application can interpret these resources. Semantic metadata are usually defined in
ontologies. Also, machine interpretable languages like RDF and OWL are usually used
for representing them (See Section 2.3.1).

In this work, we use Web annotation to address the incompleteness of Web contents
representation. In this sense, Web annotation refers to the process of annotating CSCs

(e.g., date) with authors’ local context information (e.g., date format and time zone) in
Web 2.0 domain. Web annotation should include the following tasks to be successfully
performed.

� Identification of target Web content. The first step is to identify a CSC that needs
to be annotated. For example, the date CSC that is created by the British author
in the example presented in Figure 1.1.

� Annotation of the identified Web content. The second step is to annotate the target
Web content with an author’s local context information. For example, annotating
the date CSCs with the date format and time zone related to the British author’s
local context. To successfully accomplish this, the relation between each CSC

and its corresponding context information has to be specified. In addition, an
annotation technology is required to associate them together.

7Uniform Resource Identifier

11

Chapter 1. Introduction

� Semantic annotation testing. Since the context information and the target Web
contents (or part of them) are intended to be interpreted by users’ applications,
their representation should be precisely represented (without errors). Otherwise,
software application can not interpret them.

From the usability perspective, relying on authors to perform these tasks is complex.
Indeed, authors are non experts and therefore they often do not know the relations
between CSCs and local context information. Also, they do not have theoretical and
technical knowledge about semantic metadata and annotation. Furthermore, the result
of annotation is intended to be interpreted by software applications. Therefore, authors
require extra works to perform these tasks without errors. Also, they could refuse to
annotate Web contents in the future.

To sum up, Web annotation address the incompleteness of CSCs representation,
but it could leads to inefficiency and inaccuracy problems. Table 1.3 refines the Web 2.0
usability problems identified in Table 1.2 by replacing the incompleteness problem with
the inefficiency and inaccuracy problems related to Web annotation.

Web 2.0 Web 2.0 Usability
Description

Tasks Problems

Create and
Inefficiency

An author requires extra effort to create and
annotate CSCs with his suitable local context
information

Annotate
Inaccuracy

An author could incorrectly represent local con-
text information used to annotate CSCs when
they use annotation syntax

Update and

Inefficiency
An author requires extra effort to update and
annotate existing CSCs with his suitable local
context information

Annotate
Inaccuracy

An author could incorrectly represent local con-
text information used to annotate CSCs when
they use annotation syntax

Table 1.3: Web annotation and Web 2.0 usability problems

1.3.2 Interactive Web Annotation

To alleviate the consequences of the inefficiency and inaccuracy problems related to Web
annotation, authors have to be assisted to accomplish the tasks of the latter. To this

12

1.4. Web 2.0 Usability Evaluation

end, Web annotation is designed to be interactively performed by authors. More specif-
ically, this process hides the relations between CSCs and corresponding local context
information. Also, it automates the representation of Web annotation (See Section 5.3).

1.3.3 Web Adaptation

In general, Web adaptation refers to the process of transforming Web page’s contents
to be suitable to users’ contexts. In this sense, Web adaptation can be viewed from dif-
ferent perspectives such as the purpose of adaptation, the types of context information
used to perform adaptation, and types of Web contents to be adapted. Also, various ap-
proaches from different applications domains utilizes different techniques for conducting
Web adaptation process (see Section 2.2).

This work utilizes Web adaptation to address the incorrectness and inefficiency of
Web contents interpretation. Hence, Web adaptation refers to the process of adapting
the annotated CSCs according to their readers’ local contexts. Web adaptation should
include the following tasks to be successfully performed.

� Web contents parsing. The first step is to determine which Web contents that need
to be adapted (i.e., the context-sensitive contents) and what is the type of these
contents (e.g., date content).

� Local contexts identification. For each context-sensitive content, the context infor-
mation of this content and context information of a reader need to identified (e.g.,
date format and time zone for a date content).

� Web contents adaptation. Each context-sensitive content has to be adapted ac-
cording to its reader’s local context in this step.

1.4 Web 2.0 Usability Evaluation

Usability evaluation is the third phase of usability engineering discipline, as aforemen-
tioned. This evaluation deals with users’ interactions with a software and could be
utilized during software design and implementation phase to avoid several usability
problems. Also, it could be utilized after software deployment phase to compare the
actual users’ interactions with the desired usability level (usability criteria). Also, many
usability evaluation methods have been proposed and used for conducting these evalu-
ations (see Sections 2.4). This work utilizes the term Web 2.0 usability evaluation for
the following two purposes:

13

Chapter 1. Introduction

� Design inspection of Web annotation and Web adaptation. Inspecting several us-
ability aspects during the design of Web annotation and Web adaptation. The
purpose of this inspection is to optimize the representation and interpretation of
CSCs and their corresponding context information according to the ways users
can and prefer to do this.

� User-testing evaluation methodology. Introducing an evaluation methodology which
explains our recommendation on how to evaluate the actual interactions Web 2.0
users after deploying Web annotation and Web adaptation as usability improve-
ment techniques.

1.5 Scope of the Thesis

We mainly focus on the interactions of Web users with Web 2.0 sites from a local context
perspective. Indeed, Web authors and readers implicitly use their local contexts for
representing and interpreting Web contents, respectively. As already illustrated before,
this leads to the following two usability issues. First, the representation of CSCs are
incomplete. Secondly, Web readers could inaccurately and/or inefficiently interpret these
contents. Our primary goal is to address these two issues.

We Initially study several types of CSCs and context information which is implicitly
used to represent and interpret each type of these content. Our purpose is to identify
the relations between these contents and their related context information at conceptual
level.

Secondly, we use Web annotation and Web adaptation techniques for handling the
aforementioned usability issues. Indeed, Web annotation is used to complete the repre-
sentation of CSCs by enriching them with semantic metadata (i.e., local context infor-
mation related to their authors). Also, the annotation process is interactively designed
in order to assist non-expert authors to easily annotate CSCs. Afterwards, Web adap-
tation is used to adapt the annotated CSCs from their authors’ local contexts to their
readers’ local contexts. Additionally, an extensive attentions are given to the ways users
actually interact with Web 2.0 sites. Our aim is to design the above Web annotation
and Web adaptation according to the way these users can and prefer to represent and
interpret CSCs.

Finally, we introduce an evaluation methodology which details our recommendation
on how to evaluate the actual users’ interactions after applying the proposed Web anno-
tation and adaptation techniques. In the following, we summarize the basic assumptions

14

1.5. Scope of the Thesis

and restrictions underlying this thesis:

� Since our interest is to handle users’ local contexts during their interactions with
Web 2.0 sites, we focus on Web 2.0 usability problems that hamper the repre-
sentation and interpretation of CSCs. Hence, we do not address other types of
users’ contexts such as users’ preferences and skills or the capabilities of users’ de-
vices. Such issues are addressed in several approaches as discussed in Section 2.2.2.
Moreover, we do not consider other Web 2.0 usability problems such as problems
related to the user interface of Web 2.0 sites or navigation between hyperlinks.

� Web annotation is used to annotate CSCs with context information related to
their authors’ contexts. We do not consider the relations of these CSCs with
other Web contents. Also, the annotation of Web contents (including CSCs) with
additional information such as information related to their meanings or structures
is out of this thesis scope. Several Web annotation approaches have considered
these issues (see Section 2.3.2).

� Web adaptation is used to adapt the presentation of annotated CSCs according
to their readers’ local contexts. Hence, we do not aim at providing different Web
contents or different navigation links to different users (see Section 2.2.3) .

� Our design relies on the semantic object notion given in [82] to identify the relations
between CSCs and their related context information. Also, it reuses a number of
common ontologies to foster the inter-operability of semantic objects among users’
applications (see Section 4.3).

� Web annotation and Web adaptation are designed as extensions to users’ applica-
tions (i.e., traditional Web editors and Web browsers, respectively). Hence, we do
not aim to introduce new users’ applications that replace the existing ones. Also,
we do not aim at changing the way users interact with Web 2.0 sites. Moreover,
Web annotation and Web adaptation are designed to be compatible with existing
Web technology stacks. More specifically, we rely on RDFa language to embed
semantic metadata inside XHTML document (see Section 5.2). Also, Web adap-
tation is designed based on the DOM8 of requested XHTML documents (i.e., Web
pages). In this context, we do not aim at using/introducing new technology other
than XHTML to represent Web pages’ contents. Also, we do not aim at changing
the way in which Web pages are requested from and submitted to users. In other

8Document Object Model

15

Chapter 1. Introduction

words, our approach is designed to work on the top of the existing Web architecture
and Web technology stacks.

� Finally, conducting the introduced evaluation methodology to practically evalu-
ate the actual users’ interactions after applying our annotation and adaptation
approach is not addressed in this work (see Chapter 7).

1.6 Thesis Topic and Research Issues

Thesis Topic

We can now define the topic of this thesis as follows:

How can we enhance Web usability of Web 2.0 sites by annotating
context-sensitive contents with their authors’ local contexts and adapting
the annotated contents according to their readers’ local contexts?

Additionally, we define four research issues to address this topic. These issues and the
contributions related to them are summarized as follows:

Understanding research approaches related to our Work

The best way to understand a problem is to survey approaches and techniques that
attempts to address it. In this thesis, we focus on enhancing the usability of Web 2.0
sites using Web annotation and Web adaptation techniques. Hence, Chapter 2 discusses
several works related to the following three subjects: (1) Web adaptation; (2) Web
annotation; and (3) Web usability evaluation.

Analyzing the consequences of users’ local contexts on their interactions

with Web 2.0 sites

This issue is discussed in Part I of this thesis. It presents a number of possible Web 2.0
use cases and also a number of Web contents (i.e., CSCs) which are represented and
interpreted according to the local contexts of their authors and readers, respectively.
Next, it analyzes the consequences of this on the interactions of users (i.e., interpretation
discrepancies), and the requirements to address these consequences. This part of the
thesis has been published in our work presented in [4].

Designing a context-aware approach to handle users’ local contexts dur-

ing their interaction with Web 2.0 sites

16

1.6. Thesis Topic and Research Issues

This issue is discussed in Part II of this thesis. It involves Web annotation and Web
adaptation as core components of our approach. Also, it utilizes several design techniques
and technologies to support these core components. This work has been published in
our works presented in [5, 6, 81].

In Chapter 4, we initially evaluate several design alternatives to adapt CSCs accord-
ing to their readers’ local contexts. Then, we present a semantic representation model.
This model is based on the notions of semantic objects and local context ontology to
enrich (i.e., annotate) CSCs with suitable authors’ context information. Finally, we
introduce an architecture that illustrates how our approach work seamlessly with Web
technology stack.

In Chapter 5, we also evaluate several annotation alternatives to annotate CSCs.
Then, we develop an interactive annotation process. This process assists authors to
specify their local context and annotate CSCs with a suitable context information. In
addition, an annotation engine prototype is developed as a proof-of-concept correspond-
ing to Web annotation.

In Chapter 6, we develop an adaptation process. This process adapts annotated
CSCs from their multiple authors’ local contexts to their reader’s local context. Also,
an adaptation engine prototype is developed as a proof-of-concept corresponding to Web
adaptation.

In addition, we inspect several usability aspects during the design of Web annota-
tion and Web adaptation. Our intention enable users to represent and interpret CSCs

according to the ways they prefer to do this.

Introducing a methodology for evaluating the actual results of users’

interactions after applying the proposed design approach

This issue is discussed in Part III of this thesis. It introduces an evaluation methodology
which details our recommendation on how to evaluate the actual users’ interactions after
applying the Web annotation and Web adaptation summarized above.

Apart form the above four issues, Part IV presents the conclusion of this work and our
plan for future work.

17

Chapter 2

State of the Art

2.1 Introduction

The best way to reach a good understanding of a problem is to survey the research
approaches and/or techniques that attempt to address this problem or other similar
problems. In Section 1.2.1, we discuss several problems related to the interactions of
Web 2.0 users as usability problems. Next, Web annotation and Web adaptation are
defined as usability improvement techniques. In addition, Section 1.4 utilizes the term
Web 2.0 usability evaluation to inspect several usability aspects during the design of the
usability improvement techniques, and also to introduce a methodology for evaluating the
interactions of Web 2.0 users after applying these improvement techniques. This chapter
aims at discussing several works related to the usability improvement techniques and the
Web 2.0 usability evaluation.

The rest of this chapter is structured as follows. Section 2.2 discusses several aspects
related to Web adaptation. Section 2.3 discusses Web annotation with more focus on
the ‘semantic Web’ viewpoint. Afterwards, Section 2.4 discusses several approaches
and methods that deal with Web usability evaluation. Finally, Section 2.5 situates our
approach among other research works.

2.2 Web Adaptation

Several terminologies have been used in several Web domains to describe the goals of
Web adaptation. In mobile and ubiquitous application domain, the term Customization
is used to refer to adaptation of a Web application itself to be suitable to a particular
context such as users’ locations and users’ devices capabilities [68]. In adaptive hyperme-
dia, the term personalization has been used to refer to the process of providing different
Web contents and/or different navigation links to different users, based on their skills,

19

Chapter 2. State of the Art

preferences, and/or needs. For example, personalization is utilized by several E-learning
applications for analyzing student skills and provides suitable learning materials accord-
ingly [32, 94]. Finally, the terms adaptive and adaptable have been distinguished based
on whether users initiate the adaptation process or it is initiated automatically by an
application. The first term implies that adaptation process is initiated automatically,
whereas the second term implies that users who initiate the adaptation process [71].

In this work, Web adaptation refers to the process of adapting the annotated CSCs

involved in Web pages to be suitable to their readers’ local contexts, as already defined
in Section 1.3.3. In this section, we aim at discussing research approaches that use Web
adaptation. To this purpose, we identify four dimensions (or perspectives) which are
related to Web adaptation and discuss Web adaptation approaches accordingly. These
dimensions are illustrated in Figure 2.1 and summarized as follows:

� Web adaptation scenarios. Based on the purpose of Web adaptation, this dimen-
sion identifies three general adaptation scenarios: personalization scenario, local-
ization scenario, and scenario used in mobile and ubiquitous applications. Then,
it classifies Web adaptation approaches accordingly. This dimension is discussed
in Section 2.2.1.

� Context and context modeling. This dimension initially discusses several types
of context information that Web adaptation based on. Then, it discuss several
techniques used to acquire, represent, and store these context information. This
dimension is discussed in Section 2.2.2.

� Types of Web adaptation. Web adaptation could target Web contents, navigation
links, or the presentation of Web contents and navigation links. These types are
discussed in Section 2.2.3.

� Adaptation deployment considers where Web adaptation is deployed. Here, there
are three possible deployment alternatives: client-side, server-side, and proxy-
based deployments. These are discussed in Section 2.2.4.

2.2.1 Web Adaptation Scenarios

Personalization Scenario

Personalization scenario focuses on guiding users’ navigation and providing personalized
Web contents (information and functionalities) based on users’ personal information and

20

2.2. Web Adaptation

Web Adaptation

Scenario
Context and

Context Modeling

Adaptation

Deployment

Web Adaptation

Approaches

Type of Web

Adaptation

Figure 2.1: Dimentions for Web adaptation approaches

needs such as users’ roles, preferences, skills, etc. Personalization scenario is commonly
used in E-learning and E-commerce applications.

In E-learning, the goal is to adapt learning materials such as lessons, exercises, and
exams based on users behaviors when they interact with E-learning application. For
example, [32] proposes an E-learning adaptive model-driven approach for guiding users
navigation according to their behaviors (called usage profiles). This approach combines
Web Modeling Language (WebML) and UML-Guide. WebML represents the application
logics of E-learning web application on server-side, while UML-Guide is a UML state
diagram and adaptation predicate rules that acts as personalization engine on client-side.
According to UML-Guide state and user profile, Adaptation rules on client-side interact
with server-side for requesting relevant learning materials, while preventing irrelevant
materials.

Another E-learning recommender approach is proposed in [78]. The goal is to rec-
ommend learning contents to learners according to their behaviors (e.g., skills) and
navigational activities (also called usage profile). To this purpose, the application uses
an ontology for representing learning contents and the relationships between them. In
addition, it uses server log file and mining technique for extracting and building learner’s
usage profile and recommend suitable contents accordingly.

Personalization scenario in E-commerce applications commonly focuses on tracking
users’ actions, such as recently visited items and past purchase. The goal is to at-
tract and retain customers such as providing personalized offering and support customer
interactions. For example, [94] proposes a personalized E-commerce Web application
approach. The goal is to provide a personalized navigational view for each user. To
do so, this approach uses conceptual, navigational, and user profile models which are

21

Chapter 2. State of the Art

introduced in Object Oriented Hypermedia Design Methodology (OOHDM). Concep-
tual model represents the application domain objects and user profile model represents
user role, user profile history, and his preferences. At run-time, navigational model uses
conceptual model and user profile model for providing a personalized navigational view
for each user. Another work which provides a comprehensive overview of strategies,
benefits, recommendations, challenges, and a set of case studies related to this scenario
is presented in [47].

Localization Scenario

Localization scenario aims at adapting Web contents based on specific cultural and local
characteristics of users such as local language, local writing format, signs and metaphors.
This scenario usually focuses on enhancing the usability of Web pages and considers two
main issues: language translation and the roles of users’ culture in adaptation.

Language translation is a part of localization, but since it is the most challenges,
largest, expensive, and time consuming task; many researches consider it alone. For
example, [62] highlights the relationships between language translations and website (a
set of web pages) localization. Also, this work develops a strategy that attempts to
apply natural language translation approaches on Web site localization.

Roles of users’ culture issue focuses on studying the cultural differences between
groups of users (called local community), and the role of these differences in localizing
web pages. Although the term culture can be viewed from different perspectives, [9] de-
fines culture as the cumulative deposit of knowledge, beliefs, values and attitudes, which
rules people’s behavior in a society and distinguish the members of one group from an-
other. In addition, [17] uses the term culture to refer to a set of features that distinguish
one country or a region of the world from another in the electronic medium of the Web.

The study of local community culture in localization scenario is acknowledged as an
important issue in many researches. For instance, [109] argues that community mem-
bers not only share a common language, but also common culture conventions, such as
measurement units, keyboard configurations, character sets and notational standards for
writing time, dates, addresses, numbers, currency, etc. In this sense, this work proposes
an extension to Web Site Design Method (WSDM) to support the design of localized
web site. The WSDM extension specifies the requirements for different community and
modeling them as hierarchical locality classes, and use them for providing different Web
contents for different communities’ members.

Other research fields investigate the impacts of culture differences in localization

22

2.2. Web Adaptation

scenario [39, 9, 105]. These types of research are commonly based on one of cultural
models (also called cultural theory). Cultural models seek to measure the cultural dif-
ferences between communities according to numbers of variables or factors. One of the
most famous cultural models is the Hofstede’s model, which categorizes the cultural dif-
ferences into five fundamental dimensions: power distance, collectivism-individualism,
masculinity-femininity, uncertainty avoidance, and long and short-term avoidance.

Mobile and Ubiquitous Applications Scenario

This scenario focuses on adapting Web contents based on the characteristics and envi-
ronments of users’ devices such as device capabilities, network availability, and physical
location. Ubiquitous applications (sometimes called pervissave applications) focuses on
providing computing and communication services for users at any time, everywhere, and
with any communication media. One kind of ubiquitous applications are called adaptive
or context-aware ubiquitous applications, which are commonly used in the area of mobile
computing [106, 16]. Initially, this kind of applications focuses on providing information
and functionalities to users based on their locations. For example, Cyberguide [2] pro-
vides information services to tourists about their current location, so that he/she can
find directions, retrieve background information, and leave comments on an interactive
map. Subsequently, they have been evolved to include other adaptation aspects that are
based on device and network capabilities [97, 68].

Other example of this scenario is given in [113]. It proposes a general architecture of
context-aware adaptive web information application. This architecture considers three
main components of the application separately: the contents (the data to publish), the
presentation (the layout of the pages), and the navigation (the hypertext structure of
web site). Based on this architecture, the adaptation process operates on all of these
components by selecting the appropriate contents (according to user profile), building an
adequate layout (according to client device capabilities), and organizing the hypertext
structure of the web pages (according to network capabilities).

2.2.2 Context and Context Modeling

The term context has been used in various domains. Broadly speaking, the context
refers to a set of factors that represent the environment of an application. In computer
domain, an often-cited definition of the context is presented in [41]:

23

Chapter 2. State of the Art

Context is any information that can be used to characterize the situation of an
entity. An entity is a person, place, or object that is considered relevant to
the interaction between a user and an application, including the user and the
application themselves.

Context-based adaptation implies that context information have to be specified, ac-
quired, and represented. As it is shown in the aforementioned scenarios, there are many
types of context information. Also, various techniques and terminologies are used for
acquiring and representing these types of information. For example, personalization
scenario usually uses the term user model and/or usage profile for acquiring and rep-
resenting users’ behaviors, skills, and/or preferences, while localization scenario usually
uses the term culture model for acquiring and representing local and cultural information
related to users. Mobile and ubiquitous scenario commonly uses the term context model
for acquiring and representing context information related to user’s device characteris-
tics, network capability, and/or user’s physical location [2, 106]. Other approaches mix
several terminologies together to represent different types of context information. For
instance, [31] uses both user profile to represent user information and context model to
represent device characteristics together with user location and user activities.

To better understand this, the remaining of this section details the types of context
information that are commonly used in the above adaptation scenarios. In addition, the
types of techniques which are used for acquiring and representing context information
are then discussed.

Types of Context Information

Several research approaches introduces different taxonomies to classify the types of con-
text information. For example, [71] discusses various types of context information such as
user and usage, hardware and software, and physical environment information. Also, [67]
proposes five context information categories that aims at covering all possible scenarios
of adaptive Web applications:User and Role, Process and Task, Location, Time, and
Hardware Device. Similarly, [68] surveys various types of context information and their
related area of usage: user context (used for characterizing user properties and usage
behaviors), device and network context (used for characterizing device and network prop-
erties especially in mobile application), Location context (used for describing physical
location of the users, mostly in mobile and GPS1 applications), Time context (describes
the actual time and time zone variations).

1Global Positioning System

24

2.2. Web Adaptation

In addition, [39] and [17] define cultural information as another context dimension.
Indeed, [39] identifies cultural information (language, Layout and menu, symbols and
metaphor, contents and structure, Multimedia, color) and proposes a set of hypotheses
to investigate how these information relates to general design and localization of web
sites. Also, [17] uses the term “culturability” to emphasize the relationship between
culture conventions and usability in WWW design. This work concludes that several
factors related to users’ cultures such as colors, fonts, icons and metaphors, geography,
language, flags, and sounds directly affects on the way a user interacts with a Web site.

Based on the above discussion and the aforementioned adaptation scenarios, the
following list classifies context information into three general categories. Also, Figure 2.2
illustrates these categories and relates each one with a corresponding adaptation scenario.

1. User and usage information. It is commonly used in personalization scenario
to form a user model and involves information about users’ personal details and
needs. More specifically, it could involve the following types of information.

� User demographic data. user’s personal details such as name, address, birth
date and place, education level, etc. Also, it could include user’s role such
as student or teacher in E-learning applications and customer or manger in
E-commerce applications.

� User knowledge and skills. Refers to user’s knowledge about application-
domain concepts, the relationships between them, and how user interacts
with these concepts. For example, it could represent user’s knowledge about
complex products or services (e.g., printers, ADSL connection, and ticket
reservation), and how (s)he deal with them (e.g.: buy, maintain, request). In
addition, it could refer to user’s skills related to the interactions with learning
materials in E-learning applications.

� User interests and preferences. Refers to categories of products, services or
the information that a user is interested in (e.g., cars, travel reservation, and
sport news). Also, it could refer to specific properties of these categories (e.g.,
luxury car, economic travel reservation, and football news).

� User special needs. It involves different kinds of information about particular
type of users. For example, it could include information about user disability
(e.g., visually impaired). Such information is relevant to applications that
focus on providing accessible services to such kind of users.

25

Chapter 2. State of the Art

2. Local and cultural conventions. It is usually used in localization scenario
to form culture model. The latter consists of information related to user’s local
and Cultural conventions. Particularly, it could include the following types of
information.

� Language. Refers to community native langauge with all its related issues such
as alphabets, number symbols (numerals), direction of writing, and spelling
variants.

� Location and time zone. Refers to local geographical location and its related
local time variation. Here, geographical location usually refer to geographical
region or city of user, rather than actual (physical) location of user.

� Notational writing formats. Refers to local writing formats of information
such as time, dates, numbers, currencies, addresses, etc. Different communi-
ties use different writing formats. For example, the numeric date format in the
united states involves the month value at the beginning (i.e., mm/dd/yyyy),
while it involves the date value at the beging in France (i.e., dd/mm/yyyy),
as already mention in Chapter 1.

� Social conventions and symbols. Refers to common knowledge that is shared
between community members such as signs and metaphors. Signs could in-
clude currency symbol, calendar date/time symbols, measurement units, etc.
Metaphors refer to implicit knowledge such as special meaning of some terms
or signs (e.g., color, icon).

3. Device and execution environment. It is commonly related to mobile and
ubiquitous scenario and forms a context model. The latter could consist of the
following types of information:

� Device capabilities. These characterize hardware and software capabilities
of user’s device. For instance, operating system, browsers version, plug-in
availability, java and java script support refer to software capabilities, whereas
hardware capabilities involve processing speed, screen size, and input/output
devices.

� Network capabilities. These refer to information that characterize the commu-
nication media (e.g., wireless network, analog modem, ADSL) and bandwidth
that are used to connect to the Web.

26

2.2. Web Adaptation

� Physical location. Refers to physical location of user’s device, whereby the
latter is commonly represented by GPS coordinates (i.e., GPS longitude and
latitude).

� Physical conditions. Refers to surrounding environment of user’s device such
as the level of noise, temperature, and light.

Physical Condition

Context

Demographic Data

Knowledge

and Skills

Interests and

Preferences

Language

Location and

Time Zone

Social Conventions

and Symbols

Writing Formats

Physical Location

Device Capabilities

Network Capabilities

Scenarios Context

Information

Users Needs

User

Model
Personalization

Localization

Mobile &

Ubiquitous

Culture

Model

Context

Model

Figure 2.2: Web Adaptation Scenario and Context Information Types

Context Acquisition Techniques

As the types of context information are varied, the techniques used for acquiring them
are also varied. For example, user demographic data can be acquired using a Web
form interface, and the physical location of user’s device can be obtained using GPS
sensor. Furthermore, some context information can not be acquired directly and/or
can not be used directly to perform adaptation process. For instance, user’s behaviors
may need to be extracted using extraction or mining technique. Also, it may require
processing prior using them to support adaptation (e.g., aggregation) [71]. Therefore,
acquisition techniques are classified into several types. In the following, we categories

27

Chapter 2. State of the Art

these techniques into three categories: user driven, application driven, and device or
sensor driven acquisition techniques.

1. User-driven acquisition

The simplest context acquisition technique is to let users specifying their context
information using a user interface modules such as Web forms. This technique
is considered useful for acquiring static information and small amount of context
information. For example, many global Web sites such as IBM2 site use country
flag or language abbreviation for providing localized Web contents. Also, My
Yahoo Web site uses this methods for enabling users to personalize Yahoo Web
contents3. However, one of the serious side effect of this method is that users
are usually unwilling to provide their personal information or they do not provide
correct information due to several reasons such as their privacy concerns.

2. Application-driven acquisition

Since user-driven technique might not be applicable or might be discouraged, sev-
eral approaches utilize application-driven acquisition techniques. Context infor-
mation such as user’s behaviors are acquired by application, usually based on
assumption specified by application provider. In this sense, several application-
driven acquisition techniques are used such as acquisition rules, plan recognition,
stereotype reasoning, and machine learning (See [71] for more details). Acquisi-
tion rules and stereotype reasoning are the most frequently used in web adaptation
approaches.

Acquisition rules

Acquisition rules is a mining technique that observes and acquires user’s behaviors
based on assumptions pre-specified by application provider. Indeed, acquisition
Rules are usually used to collect information about user’s dynamic characteristics
such as user skills and usage history. This information can not be acquired using
user-driven techniques. For example, [32] observes students knowledge and skills
via using UML-state diagram, and [78] observes users navigational activities by
using server log file and mining techniques.

Stereotype reasoning

Stereotype reasoning is an aggregation technique which classifies entities (usually
users) into categories based on stereotypes. The latter refers to a set of assump-

2available on http://www.ibm.com/us/.
3available on http://cm.my.yahoo.com/.

28

2.2. Web Adaptation

tions, each of which involves two types of information. First, a set of characteristics
that a member should have in order to belong to this stereotype (called member
characteristics). Second, a set of Web contents which are associated with a stereo-
type (called category contents). Here, one category content could be associated
with one or more stereotypes, and vice versa.

At run time, Web contents associated with a stereotype are provided to a user as
long as this user satisfy member characteristics corresponding to this stereotype.
Here, member characteristics refer to context information and it might be aggre-
gated from different type of information such as user’s demographic information
and user’s knowledge and skills. As an example, the work presented in [31] utilizes
stereotype reasoning technique. This work aggregates users into groups according
to their roles, and integrates each group with one or more site views.

3. Device or sensor-driven acquisition methods

Context information about the environment of user’s device is acquired either from
user’s device directly or from sensors attached with user’s device such as GPS
sensor and camera. Indeed, user’s device can be used for acquiring information
related to software capabilities, hardware capabilities, and time zone, whereas
sensors can be used for acquiring information related to physical geographical
location and physical conditions.

As a user can use several devices and many users can use the same device, the key
issue is how to associate this information with an individual user. Also, some of
this information such as hardware capabilities are often difficult to acquire [113].

Web Adaptation Scenarios and Context Acquisition Techniques

Web adaptation approaches usually use more than one acquisition techniques to acquire
and/or aggregate context information. This is because context information are varied,
as already mentioned. Though, there is a relation between acquisition techniques and
Web adaptation scenarios.

In the context of information acquisition, personalization approaches usually combine
between user-driven and mining techniques for acquiring user’s information and usage
behaviors, respectively. Localization approaches commonly use user-driven technique for
acquiring local and culture conventions related to user. Finally, Mobile and ubiquitous
approaches mostly use device or sensor-driven methods for acquiring context information
related to user’s device and its environment.

29

Chapter 2. State of the Art

In the context of information aggregation, personalization approaches mostly utilize
aggregation techniques for classifying users into categories (usually stereotype reasoning).
Also, localization approaches may use aggregation methods for aggregating users into
different locality classes4. Finally, Mobile and ubiquitous application approaches also
use aggregation techniques for aggregating context information from different sources
(i.e., different sensors).

Context Representation Techniques

Context representation techniques (also called context modeling techniques) are used
for representing and storing context information in machine processable form. As afore-
mentioned, there are many types of context information, each of which has its own
characteristics and could be acquired using different techniques. As a consequence, sev-
eral context representation techniques are also exist.

Context representation techniques can be seen from different perspectives. For exam-
ple, [106] classifies context representation techniques according to their data structures
into six categories: key-value modeling, markup scheme modeling, graphical modeling,
object oriented modeling, logic based modeling, and ontology-based modeling. These
techniques are then compared with more focus on ubiquitous application needs. The
authors conclude that ontology based modeling is the most promising approach, since it
meets the specified requirements that ubiquitous applications require at best: (1) dis-
tributed composition; (2) partial validation; (3) richness and quality of information; (4)
incompleteness and ambiguity; (5) level of formality; and (6) applicability to existing
environments.

Another approach classifies context representation techniques into general-purpose
and project-specific techniques [67]. General-purpose techniques usually utilize ontology
for representing context information. For example, [107] proposes Context Ontology
Language (CoOL). This language describes contextual facts and contextual relationships
using aspect-scale-context data model. An aspect identifies a set of scales as a discrete
or contiguous context values, and scale refers to a set of objects defining the range of
valid context information. Valid context information with respect to an aspect is a value
taken from the scale (i.e., range) of this aspect.

Project-specific techniques are used within a specific Web development methodology
(Also called Web engineering) such as Web Modeling Language (WebML) [31], Object-
Oriented Hypermedia Design Method (OOHDM) [99, 94], and Web Site Design Method

4See localization scenario for locality class.

30

2.2. Web Adaptation

(WSDM) [109]. For Example, context information is represented in OOHDM at two
modeling levels: conceptual model and navigational model. Conceptual model explicitly
represents users’ data, roles, preferences, and their relations with application entities.
Also, this model specifies a set of constraints (rules) for each user or group of users. Then,
navigational model (via navigational context model) identifies a set of nodes (page, frag-
ment, and paragraph), links, context classes, and other (nested) navigational contexts
that are contained in such context. Based on navigational context model, the application
identifies which user or user groups are allowed to view which nodes, links, and context
classes in a particular context.

To conclude, context representation techniques depend on several factors such appli-
cation domain, Web development methodology, and types of context information. Also,
finding a flexible and useable context representation technique that covers all cases in
one scenario (e.g., personalization) is a challenging task. Context modelers need to
evaluate and find out which context representation technique is most relevant to their
situations[29, 31, 106]. However, a context modeler needs to take the following criteria
(at minimum) when he selects context representation technique:

� Domain applicability. Context model should be flexible enough in which it can be
implemented in the existing application infrastructure. Also, it should not add ex-
tra constraints on application domain. For example, assume user preferences needs
to be represented as an event-condition-action rules, whereas an event describes
what and action needs to be taken when an action happens. This kind of rules
cannot be easily represented in WebML extension[31] or OOHDM [99]. However, it
can be easily represented in CoOL [107]. Furthermore, the relations between con-
text model and application models should be precisely and clearly identified. In
other word, it should describe which entities from application models are relevant
to which entities from context model.

� Inter-operability. As long as context information need to be shared between hetero-
geneous applications, or derived from heterogonous sources; context model should
facilitate context sharing and applications inter-operability. In this case, ontol-
ogy based models (e.g.: CoOL) is best alternative, since context information are
formally identified at information level. However, object-oriented model is consid-
ered not suitable and do not support applications inter-operability, since context
information and corresponding relations are identified at class (object) level.

� Extensibility refers to the extent context model can identify and add new context
information, without changing the existing context model.

31

Chapter 2. State of the Art

� Context model decoupling refers to the extent context model can be represented
independently from application logic. For example, Context model in WebML
extension (See [31]) is strongly coupled with application logic via set of context
classes, while CoOL represents context model independently from application logic
as Aspect-Scale facts.

� Reasoning capability refers to the extent additional information can be inferred
from context model, either from implicit or explicit relations between context in-
formation.

2.2.3 Types of Web Adaptation

Web adaptation can be distinguished according to the types of Web contents to be
adapted. In this sense, [26] proposes a taxonomy which classifies adaptation processes
into content level adaptation and link level adaptation. Also, Content level adaptation
is further classified into text, multimedia, and modality adaptations. Similarly, link level
adaptation is further classified into direct guidance, link sorting, link hiding, link annota-
tion, link generation, and map adaptations. furthermore, some of these subcategories are
also classified into additional categories. For example, text adaptation is classified into
natural language and canned text adaptation. Also, canned text is classified into insert-
ing/removing fragment, altering fragment, stretch text, sorting fragment, and dimming
fragment.

In addition, [67] and [117] extend the above taxonomy in order to involve services
provided by Web applications. [67] advocates that adaptation process could address
Web services and their parameters, in addition to contents adaptation. For example,
the parameters of a flight booking service such the departure and arrival times could be
computed according to local time zones of departure and arrival regions.Similarly, [117]
extends the above taxonomy with new category called function. Function adaptation
represents a set of adaptation process associated with one or more services provided
this application such as proactive tips, tour planning, and adaptive maps services. For
example, spatial Queries is a proactive spatial-context agent that presents tips to a user
based on this user’s location, nearby objects which user interested in, and user’s current
interest.

Based on the above discussion, we can specify Web adaptation based on Web contents
to be adapted into the following types:

1. Adaptation of content refers to adaptation type which provides different Web

32

2.2. Web Adaptation

contents or services to different users, based on specific type(s) of context informa-
tion. More specifically, this adaptation could be provided in one of the following
forms:

� Add new information. New information could be added as extra explanation,
additional details, or recommendations. Extra explanations are usually used
for enriching user knowledge and skills about how to use certain product or
consume certain information or services (e.g., printer installation steps or how
to buy via MasterCard). Also, it may include small popup explanation that
enhances user experience. For example, Google map provides popup image
that presents a picture of certain location on the map. Additional details give
extra information for a user about an item or a product who is interested
in (e.g., computer or car characteristics). Finally, recommendations inform a
user about available offering(s) that he/she may be interested in such as new
book release.

� Delete/hide existing information. Existing information could be deleted or
hidden when it is outdated, user is not interested in it, or when user is pre-
vented to see it. An information such as extra explanation is outdated when
a user already consumed it. Also, a user could select part of Web page infor-
mation as uninteresting information. For example, my yahoo5 enables users
to select information that they are interested in, while hide uninteresting in-
formation. Finally, user may be prevented to see some information according
to some conditions. For example, some E-learning applications prevent stu-
dents to access course advanced materials when they lacks knowledge related
to introductory materials [32].

� Alter existing information. Existing information could be changed according
to user location, language, time zone, etc.

� Alter operational features change services parameters or services outputs ac-
cording to user’s context. For example, Air-France Web site6 computes ticket
fee and departure time based on currency and time zone of the source country,
respectively. Also, it computes the arrival time based on local time zone of
the destination country.

2. Adaptation of navigation addresses the navigation structures (links) of a Web

5http://my.yahoo.com/
6www.airfrance.com

33

Chapter 2. State of the Art

site. Particularly, the following three types of hyperlinks adaptations can be dis-
tinguished:

� Generate new hyperlinks. In this type, new hyperlinks which are related to
Web page’s contents are discover and added to this Web page. These links
could be from other Web sites or just from the same Web site which the page
belongs to. Also this type is usually used in recommendation approaches.
For example, Amazon Web site7). recommends books according to user’s
interactions and interests.

� Show or hide existing hyperlink. Link hiding refers to remove the visible
sign (appearance) of hyperlink, so that it looks like as normal text, while the
functionality of hyperlink still exist and user can discover it. Hyperlink hiding
is usually used to guide users, whereas application assumes that this page is
the most relevant information to user, according to his/her level of knowledge
or interest. On the contrary, when the application assumes the current page
is not relevant to user, it shows the hyperlink to guide his/her to relevant one.

� Disable/Enable existing hyperlink. Hyperlink disabling erases the functional-
ity of hyperlink, whereas the sign (appearance) might be still visible. It is
usually used in E-learning applications, whereas the application disables and
enables hyperlinks of materials according to student knowledge.

3. Adaptation of presentation. Adaptation of presentation addresses the layouts
and formats of Web contents and hyperlinks without changing their semantics.
In other word, Adaptation of presentation represents the same contents and hy-
perlinks in different way, according to specific context information. For example,
changing image to text or reduce image size.

Notice that, Adaptation of presentation may adapt the user interface of a Web
application according to user personal details or needs (personalization), user local
characteristics (localization), or according to user device characteristics (mobile
scenario).

To conclude, adaptation of contents provides different information and services to
different users. In constrat, adaptation of navigation provides different navigation struc-
ture and/or changes the functionality of hyperlinks. Finally, adaptation of presentation
provides the same Web contents, services, and hyperlinks to different users, but in dif-
ferent formats and layouts. In other words, adaptation of contents and navigations may

7http://www.amazon.com/

34

2.2. Web Adaptation

change the semantic of adapted Web contents and/or hyperlinks, while adaptation of
presentation preserves the semantic of adapted Web contents and hyperlinks.

2.2.4 Web Adaptation Deployment

Web adaptation could be deployed on server-side or client-side. Also, it could be deployed
on intermediary server called (called proxy server). In the following, we discuss these
deployment approaches with more focus on their strengthes and weaknesses.

Server-Side Deployment

Web adaptation is often deployed on server-side. It has been a natural choice for most
adaptation processes, since the capabilities on server-side (i.e., software and hardware)
is traditionally more efficient [33]. Also, it provides more control and flexibility for Web
providers, since the adaptation process can be tied with application logic [113, 20, 75].

The main characteristic of server-side deployment lies into the possibility of con-
ducting both pre-generation and post-generation adaptations. Pre-generation adapta-
tion refers to the process of selecting Web contents for each user’s requests based on
his/her context before generating these contents as a Web page. For example, [78] se-
lects E-learning materials from materials ontology based on student usage behaviors, and
then generates them as a Web page. Post-generation adaptation refers to the process
of transforming Web contents into several versions based on user’s context after they
are generated as a Web page. Transcoding approaches that transform provided Web
contents based on user’s special needs (e.g., visually impaired needs) are straightforward
example on post-adaptation [18, 55]. In addition, server-side deployment can support
all the aforementioned scenarios.

However, server-side deployment has several limitations. The main limitation is that
it can only adapt Web contents that hosted on the server which is deployed on it [75].
In addition, it raises important privacy concerns, since server-side application needs to
gather and store users’ information. In practice, a user is usually enforced to create
a user account on server-side in order to make use of Web adaptation. Also, personal
information (e.g., users’ behaviors) could also be collected and sent to the server-side
application without user’s knowing about this [84, 11]. Finally, Web users can not control
when adaptation process will be performed, in case this process is describes as adaptive.

35

Chapter 2. State of the Art

Client-Side Deployment

Recently, several approaches such as transcoding approaches [18, 55, 115] and rich in-
ternet applications [98] deploy Web adaptation on client-side. Client-side deployment is
ongoing research field. The main advantage lies into it ability to adapt Web contents
that are rendered from different Web sites. In addition, Web users can decide when
adaptation process will be performed and also they can control on which Web contents.
Also, server-side applications are prevented to collect, store, or share users’ information,
since there is no need to submit these information for making use of adaptation [84].

However, client-side deployment is less flexible and more complex than server-side
deployment. The complexity issue related to the semantic heterogeneity of Web con-
tents, since the latter is usually rendered from different Web sites and therefore have
heterogenous semantics. This issue is considered a precondition to conduct a successful
adaptation. In addition, this deployment type can consider post-generation adaptation,
but it is not common sense and too difficult to consider pre-generation adaptation. Fi-
nally, client-side application could have a limited capabilities such as CPU speed and
memory storage in mobile devices, and hence can not perform adaptation process.

Proxy-Based Deployment

Web adaptation can be deployed on intermediary server called proxy server. Proxy-
based deployment could be used for several reasons. The main reason is to avoid the
limitation of server-side or client-side deployments or both. For example, [75] proposes
an architecture that deploy adaptation process on intermediary module called Adaption
and Negotiation Module proxy (ANM proxy). ANM proxy aims at adapting Web contents
that rendering from different server-side, so that it can be presented on different users’
devices which have different capabilities. ANM proxy avoid the main limitation of server-
side deployment, since it can adapt Web contents from many Web sites. Also, it avoids
the limitation of client-side, since users’ devices could not perform adaptation process
due to its limited capabilities.

2.3 Web Annotation

The term annotation has been used to refer to the process of adding metadata to doc-
uments, or part of them, for explaining their roles, structures, meanings, and formats.
Also, annotation has been used to refer to metadata itself [111]. Metadata can be at-
tached to different types of documents (e.g., XHTML, PDF, Latex, etc.). Also, metadata

36

2.3. Web Annotation

can be represented in different languages (e.g., natural, formal, and ontology languages),
and also using different types of vocabularies such as keywords and taxonomies.

Annotation is an active and ongoing research field. It has been used in different com-
puter domains such as knowledge management (KM), E-learning, and semantic Web. In
these domains, several researches advocate that annotation application should satisfy
several requirements. For example, [111] identifies seven requirements for annotation
applications that are used in KM (e.g., supporting of standard annotation formats, sup-
porting of multiple ontology, supporting of heterogeneous document formats, supporting
of automatic annotation, etc.). In addition, [13] identifies a set of requirements for anno-
tation application that is used to annotate learning materials. This work concludes that
annotation application must satisfy three requirements: usefulness, shareability, and us-
ability. Usefulness refers to the extent the application allows annotators (e.g., teachers)
to annotate different topics to be taught. These annotations should be suitable to the
objectives of addressee (i.e., students) and the activities that will be taught (e.g., exer-
cises and lessons). Shareability refers to the extent the application enables annotators
and addressee communicate through annotations. For example, the annotation must be
visually presented to the addressee. Usability refers the extent the annotation process
does not disturb teaching and learning activities. Finally, [44] introduces eight ques-
tions (e.g., are annotations only descriptions?) that Web authors should answer before
starting annotation process to support semantic Web.

In practice, several annotation applications have been developed to date and have
been classified from different perspectives. For example, annotation applications have
been classified based on annotation methods into pattern-based, machine learning-based,
and multi-strategy applications [92]. In [36], the features for a list of annotation applica-
tions have been surveyed with more focus on the purpose of annotation (i.e., document
description, terms description, relations between concepts description) and the anno-
tation interfaces which are used (i.e., annotation editor and ontology browser). The
most common classification is based on automation support of the annotation process,
whereas the annotation applications have been classified into manual, semi-automatic,
and automatic [92, 111].

In this section, we aim at discussing annotation applications that annotate Web
documents (i.e., Web pages) and use ontologies for representing metadata annotations.
The rest of this section is structured as follows. Section 2.3.1 discusses several dimensions
that Web annotation approaches can be distinguished based on. Section 2.3.2 discusses
Web annotation approaches. Finally, Section 2.3.3 discusses Web annotation languages
that support a specific annotation technique (i.e., internal annotation).

37

Chapter 2. State of the Art

2.3.1 Dimensions of Web Annotation

In order to illustrate the state of Web annotation, this section discusses four dimensions
that Web annotation approaches can be distinguished based on. These dimensions are
illustrated in Figure 2.3 and summarized as follows.

� Ontology type. Describes the type of ontology used for representing Web annotation
metadata (i.e., lightweight or heavyweight).

� Annotation technique. Describes the type of technique used for annotating Web
documents/contents with metadata annotations (i.e., external or internal).

� Automation support. Describes the level of automation which annotation applica-
tion supports to perform Web annotation (i.e., manual, semi-automatic, or auto-
matic).

� User interface. Describes the type of interface(s) that enable users to perform Web
annotation (i.e., template, semantic auto-complete, ontology browser, etc.).

Ontology

Type

Annotation

Technique

User

Interface

Web Annotation

Approaches

Automation

Support

Figure 2.3: Dimentions for Web Annotation Approaches

Ontology Type

Ontology is defined as formal, explicit specification of shared conceptualizations within a
specific domain [49, 96]. However, ontologies do not have the same degree of formality. In
addition, the components that could be expressed in formal languages such as concept

38

2.3. Web Annotation

taxonomies, formal axioms, and disjoint. are not included in all ontologies. In this
sense, several researches use the term lightweight to refer to less formal ontologies, and
the term heavyweight to refer to more formal ontologies. In [88], a classification that
illustrates different types of ontologies and show the degree of formality is proposed.
For example, thesauri or controlled vocabularies are considered as lightweight ontologies
(i.e., less formal), while ontologies that have disjoint, inverse, and part-of components
are considered as heavyweight ontologies (i.e., formal). Figure 2.48 below illustrates
this classification (from left to right, the very lightweight, even informal ontologies, to
heavyweight ontologies with a large number of formal axioms and constraints).

Controlled

Vocabularies

‘Catalog/ID’

Terms/

Glossary

Thesauri/

’Narrower

Term Relation’

Informal

‘is-a’

Formal

‘is-a’

Formal

‘Instance’

Frames &

Properties

Value

Restrictions

Disjointness,

Inverse,

Part-of

General Logic

Constraints

Figure 2.4: Classification of Ontology Types

Ontologies can be represented using different representation languages. Currently,
OWL and RDF(S) are the most common languages used. RDF9 is a language for ex-
pressing Web resources (e.g., annotations) based on subject-predicate-object data model.
OWL10 is an ontology langauge based on RDF model that provides more expressive and
formal components to represent concept taxonomies, formal axioms, disjoint, etc.

Annotation Technique

There are two main techniques that have been used to conduct Web annotation. These
techniques are called external and internal annotation techniques. In external annota-
tion, metadata and Web contents are represented and stored separate documents (re-
ferred to as annotation document and annotated documents, respectively). Then, they
are associated together using a pointing language such as Xlink and Xpointer. Note that
the name external annotation comes mainly from the direction of an annotation pointer
as it is originated from an external annotation document and refers to a part of the
annotated document that represents a Web content to be annotated (i.e., an XHTML
tag) [30, 14, 58].

8This figure is copied from the cited paper above.
9More information available on: http://www.w3.org/TR/rdf-primer/

10More information available on: http://www.w3.org/TR/owl-features/

39

Chapter 2. State of the Art

In contrast, internal annotation stores Web contents and metadata together in the
same document. In practice, metadata is usually embedded as an XHTML attribute
of the document element (e.g., XHTML tag) which delimits the Web contents to be
annotated. To this end, several XHTML language extensions such as SHOE [56], RDFa,
and Microformats [3] have been proposed and utilized (see Section 2.3.3).

Both of these techniques have several advantages and limitations. We will discuss
these techniques in more details in Section 5.2.

Automation Support

Web annotation could be performed by annotators or by annotation applications, as
aforementioned. By automation support, we mean the extents that annotation applica-
tions support Web annotation process. To better understand this, let us consider the
general tasks which have to performed for annotating a Web content. The first task
is to determine the target Web content to be annotated. For instance, a date content.
Also, metadata such as date format which is used to annotate the latter is also has to
be determined. Next, metadata has to be associated with the target Web content using
annotation syntax. Finally,the syntax of annotation needs to be tested and validated,
as it is intended to be interpreted by an application.

Based on the above tasks, Web annotation can be classified into three types: manual,
semi-automatic, and automatic. Manual annotation is the most basic technique. Web
annotators are responsible to perform the tasks of annotation process manually. They
need to know which Web contents need to be annotated, and what are the corresponding
metadata. Furthermore, they are responsible to associate them together using annota-
tion syntax. Finally, they are also responsible to test and validate the correctness of
annotation syntax.

Manual annotation faces several significant drawbacks. It is time consuming and
prone to errors. Furthermore, Web annotators could be unfamiliar with annotation
syntax used (e.g., Xpointer, Microformats, etc.). Therefore, manual annotation is too
difficult.

Semi-automatic annotation automates one or more tasks presented above. Here, an-
notation application usually analyze Web document/contents to be annotated, determine
Web contents to be annotated, and suggest/recomend one or more metadata for each
content using information retrieval and extraction techniques [112, 61, 28]. After that,
an annotator has to confirm the suggested metadata, or reject it. Semi-automatic is less
expensive and less errors-prone than manual annotation. However, human interventions

40

2.3. Web Annotation

are still required to clarify and test ambiguous annotations.
Automatic Annotation automates all the tasks of annotation process without users

interventions. Here, automatic annotation could be used to annotate unstructured or
structured Web contents. For unstructured contents, annotation applications usually
analyze Web documents to identify the target Web contents to be annotated and auto-
matically annotate them using machine learning and natural language processing (NLP)
techniques [53, 34]. For structured contents, annotation applications usually generate
a set of templates based on predefined ontological schema. When Web authors fill
these templates with Web contents, the application automatically annotate them ac-
cordingly [58].

Automatic annotation based on template can’t be used to annotate unstructured
contents. On the other hand, the quality (i.e., annotation correctness) of automatic
annotation that is based on NLP and machine learning is questionable. Indeed, these
techniques face the problem of concept disambiguation. One Web content could has sev-
eral semantics and annotation application could not correctly recognize all of them [34].
Therefore, human interventions are still required to clarify and test ambiguous annota-
tions.

User Interface

Web annotation (i.e., external and internal) could be too complicated with a simple
XHTML tag editor. Therefore, most annotation applications provide annotation in-
terfaces that hide the technical complexities of Web annotation process. These inter-
faces could be simple such as annotation by selection and ontology browser or could
be supported with more advanced features such as semantic autocomplete and template
generation. In addition, annotation interfaces could be integrated with Web document
editors to support annotation at authoring/editing time or integrated with browsing ap-
plications (e.g., Web browser) to support annotation after authoring/editing time (i.e.,
document editing not possible). Annotation interfaces can be described as follows.

� Annotation by selection. It is the most basic interface. Annotators select (high-
light) Web contents to be annotated and select corresponding metadata. The
latter is usually selected from metadata menu (i.e., tool bar menu or pop up
menu) [77, 65].

Annotation by selection could be useful when an annotation ontology is lightweight
and has a small number of metadata. Also, when annotators know which type of
Web contents need to be annotated. However, Annotation by selection is time

41

Chapter 2. State of the Art

consuming and very difficult, specifically for non-expert annotators. In addition,
it is too difficult to select metadata annotation if the annotation ontology multiple
branches with heavy numbers of metadata.

� Ontology browser. It is a tree-fashion browser that presents metadata among the
hierarchy of ontology. Ontology browser enables annotators to select the appropri-
ate metadata annotations for annotating the target Web contents [103]. Also, it
helps annotators to become familiar with ontology metadata, their properties, and
their relations with other metadata. Furthermore, it helps annotators to discover
more suitable metadata annotation through browsing metadata hierarchy.

The drawback of ontology browser is still time consuming. Annotators may go
through numerous branches to find the appropriate metadata, specially when the
ontology in use contains multiple branches with heavy numbers of metadata.

� Semantic auto-complete. Auto-complete is an interface feature that allows user
to type a few characters, while the application display a set of suggestions that
most likely contains the term he/she is looking for. Here the suggested terms are
usually based on syntactic matching of the typed characters with terms from a
specific data source.

Semantic auto-complete is used for matching terms with ontological metadata
based on the terms’ semantics. For example, helping user matches the term Paris
with one of ontological metadata such as capital of France, Paris Hilton, name of
hotel [61].

In annotation applications, semantic auto-complete has been used for two purposes.
First, suggesting/recomending metadata for Web content to be annotated when
annotator edits or highlights it. Second, helping annotators to find metadata
annotation among ontology hierarchy.

The performance of semantic auto-complete is better than the above two interface.
However, it face several drawbacks. First, suggested metadata could not satisfy
annotators’ requirements. Second, properties of suggested metadata annotations
and their relations with other metadata can not be illustrated. Finally, it can not
help annotators to discover more suitable metadata annotation among ontology
hierarchy.

� Template-based interface. it is an interface that is generated based on predefined
ontological schemas. The term template is used to separate document contents

42

2.3. Web Annotation

from documents structure and presentation. In this sense, annotation applications
annotate documents’ structures and/or presentations when they generate these
template11.

2.3.2 Web Annotation Approaches

A Web document is considered as structure plus contents. Document’s structure are con-
structed from a set of contents’ segments and hepertext links. The latter connects Web
content or content’s segment with other Web content or content’s segment [30]. Since
Web annotation describes the semantics of Web documents explicitly, it can describe
document’s structure, contents semantics, or relationships between contents.

Based on the above dimensions and the purpose of Web annotation, this section
classifies Web annotation applications into three annotation approaches: documents an-
notation, contents annotation, and concepts relations annotation. Also, it gives some
examples on each category.

Documents Annotation

Documents annotation approach describes a set of document properties (e.g., document
type, document subject, document structure, etc.) or properties of contents’ segments
(e.g., segment role) without describing the semantics of Web contents (e.g., meaning).
Several Web applications from different domains such as electronic document manage-
ment (EDM), E-learning, and Web adaptation (i.e., transcoding) utilize this approach.

Saha [112] is an EDM that uses a set of predefined OWL-based annotation schemas
to describe the types of Web documents (e.g., Article, form, blog, image, video, etc.) and
the structure of each document type. Saha allows author to select the type of document
to be authored. After that, it automatically generates the corresponding annotation
template based on the annotation schemas. Finally, it generates annotated document
when the author fill the annotation template. Web annotation in saha is used as a
semantic document index to categorize documents or to search a particular document
(e.g., article) among a group of similar documents. SMT12 [69] is another application
similar to Saha. SMT allows users to annotate documents or document’s segments from
the Web (e.g., report of meeting) by filling an OWL-based predefined metadata template
(e.g., meeting template).

11See automatic annotation above for more information
12Semantic Markup Tool

43

Chapter 2. State of the Art

In E-learning, [14] proposes external-based annotation language and light-weight an-
notation ontology for annotating learning documents at three levels: pedagogy, domain,
and document level. Document annotation approach is used at document level. Teach-
ers can annotate documents presentations (e.g., font color, size, etc.) and documents’
segments roles (e.g., title, subtitle, paragraph, etc.) using annotation language and
annotation ontology.

SADIe [18] and [14] use documents annotation approach for Web adaptation (i.e.,
transcoding). SADIe is manual annotation application that uses external annotation
technique and annotation by selection interface to annotate documents’ segments with
simple (i.e., lightweight)transformational metadata (e.g., priority, group, etc.). After
that, transcoding engine use these annotations to adapt (restructure) documents’ seg-
ments in order to make them accessible to visually impaired users. Also, [14] proposes
an approach similar to SADIe, but, in addition of transcoding according to users’ spe-
cial needs, this application aims to adapt (transcode) document’s segments according to
users’ device capabilities.

Contents Annotation

Contents annotation approach describes the semantics of Web contents rather than the
properties of document or contents’ segments. Annotation applications that use this
approach mostly aim at automatically identifying (describing) the meaning of Web con-
tents. The latter could be based on natural language knowledge base (e.g., WordNet)
or based on specific ontologies (called domain ontologies).

MnM is a manual and (semi)automatic annotation application [36]. It proposes
ontology browser as a Web browser plug-in. Ontology browser can load any ontology
represented in RDF(S), OWL, and OCML13. For manual annotation, Web annotators
can annotate contents terms with metadata from the ontology that is loaded on ontology
browser. For automatic annotation, MnM uses information extraction (IE) engine, called
Amilcare, to detect concept instances appearing in Web documents. This engine must be
trained in order to generate annotation rules. Then, the latter is used to automatically
extract and annotate similar Web contents from other Web documents.

C-PANKOW is an automatic annotation application [34]. C-PANKOW puts Web
content into several linguistic patterns, based on WordNet thesaurus, and automatically
annotate it by counting the numbers of occurrence of these lignitic patterns on the Web
using google API. XPCOM [43] is another annotation application that uses natural lan-

13Operational Conceptual Modeling Language

44

2.3. Web Annotation

guage processing (NLP) to identify the meanings of Web contents. Finally, E-commerce
applications such as E-travel agencies could use domain ontology such as IATA14 to
annotate airports with their corresponding codes.

Concepts Relations Annotation

Concepts relations annotation approach is usually used to refer Web contents to ontology
concepts, identify a set of contents’ attributes, and/or identify their relations with other
ontology concepts. In this sense, concepts relations approach go a step further than
contents approach.

This approach has been initially used in [56]. It proposes manual annotation ap-
plication that allows authors to annotate the contents of Web pages as an instances of
ontology concepts, identify the relations between them, and describe contents’ proper-
ties (e.g., datatype) based on SHOE. The latter is a set of Simple HTML Ontological
Extensions (i.e., internal annotation language).

Ont-O-Mat is also manual application based on CREAM15 annotation framework [52].
Ont-O-Mat annotates Web contents with heavyweight ontology concepts and define rela-
tions between them using Xpointer (i.e., external annotation). For example, the contents
Siegfried Handschuh and Steffen Staab can be annotated with PhD-Student and Lecturer
ontology concepts from SWRC16, respectively. Also, the links between them can be an-
notated using cooperateWith SWRC relationship. S-CREAM [53] is a semi-automatic
extension to Ont-O-Mat that uses IE engine. Initially, annotators need to annotate Web
contents manually, so that the IE engine learns the rules of information extraction. After
that, this engine can annotate other Web contents automatically.

Recently, many semantic Web 2.0 approaches such as semantic tagging and semantic
wikis have used concepts relations annotation. Semantic tagging is a special type of Web
annotation that categorizes Web contents into semantic subjects (i.e., ontology concepts)
in order to facilitate information search.

SemTag is an automatic semantic tagging application built on seeker platform [42].
It has tagged 264 million Web pages with 434 million semantic tags. SemTag scans Web
pages’ contents, finds and disambiguates tag instances, and finally annotates them with
tags from TAP knowledge base. TAP covers 12 categories (e.g., Authors, Autos, Health,
Movies, Places, etc.) with approximately 72,000 tags [51].

14http://www.iata.org/index.htm
15CREAtion of Metadata
16Semantic Web for Research Communities, available on: http://ontoware.org/projects/swrc/.

45

Chapter 2. State of the Art

Semantic wikis are extensions to traditional wikis that exploit semantic Web tech-
nologies (mostly Web annotation), so that software applications (e.g., Web browser) can
organize, share, and exchange wiki contents. For example, semantic MediaWiki enables
wiki authors to annotate wiki contents with RDF/OWL metadata annotations (e.g.,
FOAF, Dubline Core metadata, etc.) using RDFa internal annotation language and a
simple WYSIWYG17 editor [74].

SweetWiki [28] is another semantic wiki that uses WYSIWYG editor together with
semantic autocomplete and annotation syntax checker for both contents and metadata
annotations editing (i.e.,internal annotation). Metadata annotations could be extracted
and exploited from other applications (e.g.,linked data18.) or OWL-based wiki concepts
(e.g., wiki word, wiki page, etc.) could be used.

2.3.3 Internal Web Annotation Languages

As aforementioned, internal annotation technique is used to embed metadata inside
XHTML document, so that the latter become machine interpretable. To this end, sev-
eral languages have been proposed and used. For instance, (KA)2 [22] and SHOE [56]
are two internal annotation languages which have been utilized in knowledge manage-
ment domain. (KA)2 extends HTML language with ONTO HTML property, whereas
the value of this property refers to ontology concept URI (e.g., <a ONTO =‘concept
URI’/>). SHOE is a set of Simple HTML Ontological Extension that is used to describe
Web contents as instances of ontology concepts, identify the relations between concepts’
instances, and specify contents’ properties (e.g., data types). With the emergence of the
semantic Web, several technologies have been proposed to support internal annotation
such as eRDF, Microformats, RDFa, and Microdata.

All of the above technologies share common features: they propose extensions to
XHTML langauge in order to annotate XHTML documents with semantic metadata.
In the following, we will focus on Microformats and RDFa, since they are currently the
main emerging technologies.

Microformats

Microformats aim at standardizing the semantics of Web contents. Microformats pro-
pose a set of standards, or specifications, and reuse XHTML attributes (e.g., id and
class) to embed those specifications into XHTML documents [3, 108]. For example,

17What You See IS What You Get.
18More information available on: http://en.wikipedia.org/wiki/Linked Data

46

2.3. Web Annotation

hCard specification identifies vocabularies, based on the vCard19 standard, that provide
semantic information about people and organization.

RDFa

RDFa provides more abstract solution that aims at expressing RDF statements in
XHTML documents. More precisely, RDFa provides a collection of XHTML attributes
(reuses a set of existing XHTML attributes such as content and rel and introduces
new ones such as about and property) to embed RDF statements in XHTML, and pro-
vides processing rules for extracting RDF statements from XHTML [3, 108]. As afore-
mentioned, RDF statements are used for representing semantic information about Web
contents (called Web resource) based on a subject-predicate-object model.

Microformats and RDFa: Common and Distinctive Features

Since Microformats and RDFa languages share the same purpose, they share the same
common features. However, each language addresses this purpose in different ways.
Thus, they have distinct features.

In this context, [108] discusses five design principles related to semantic metadata:
authoritative data, expressivity and extensibility, do not repeat yourself (DRY), data lo-
cality, and existing contents fidelity. Also, the author compares Microformats, RDFa and
eRDF20 technologies based on these principles. Another discussion is presented in [48].
This work compares between both Microformats and RDFa with more focus on DRY and
visible metadata principles. Finally, [3] presents four principles for embedding semantics
into HTML: independence and extensibility, DRY, locality, and self-containment.

Common Features

� Do not repeat yourself (DRY)

DRY principle says that every piece of information should have one authoritative, un-
ambiguous representation. DRY principle (also known as a single point of truth) aims
for reducing duplication as much as possible, since duplication leads to serious problems
such as difficulty of change, ambiguity, and increases the opportunities of inconsistency.

In the context of Web annotation, DRY principle means that metadata annotation
should be represented once. Also, any changes in metadata annotation and annotated

19More information available on: http://www.imc.org/pdi/vcard-21.txt.
20embedded RDF.

47

Chapter 2. State of the Art

Web content should be occurred once for both users and their applications [70, 3, 48]. In
this sense, RDFa is fully support Dry principle, while Microformats are partially support
this principle.

In RDFa, annotated contents are represented to be interpreted by users and users’
applications. Indeed, Web users interpret Web contents that are represented by XHTML
tags, and users’ applications interpret the same Web contents as RDF objects. Therefore,
any changes in Web contents will be for both users and their applications.

Microformats represent metadata annotation once. However, Microformats some-
times use two versions of Web contents: one for users and one for their applications.
Therefore, any changes in one version requires changes in the other version (see Sec-
tion 4.2).

� Data locality

Data locality refers to localize Web contents and their corresponding metadata in the
same location, so that users or users’ applications can “copy and past” a fragment of Web
page’s contents without affecting on the semantics of this fragment [3, 108]. In this sense,
both technologies support relatively21 locality principle. For example, users’applications
can extract and export Microformats specification or extract and export one or more
RDF statements from a Web page.

� Semantic metadata visibility

In (X)HTML, the term Metadata such as meta tags and Cascade Style Sheet (CSS)
are designed to help search engine to rank Web pages, and to describe the presentation
of Web page’s contents, respectively [7].However, Semantic metadata are designed for
representing the semantic of Web contents in machine interpretable manner, as afore-
mentioned.

In addition the difference in purposes, semantic metadata are designed for enabling
users’ applications to extract and present them to Web users as well as exchange them
with other software. For example, FireFox Tails Export extension22 allow users to extract
Microformats metadata, and export them to other desktop application (e.g., Address
Book). This feature is called semantic metadata feasibility. Both Microformats and
RDFa are designed to support this features.

21Here, Relatively means that users or users’applications have to take a complete fragment (e.g.,
paragraph, Weblog, Widget, etc.).

22Available on https://addons.mozilla.org/en-US/firefox/addon/4106.

48

2.4. Web Usability Evaluation

This feature provides several benefits: (1) providing additional levels of information
for users; (2) assisting authors to keep semantic metadata up-to-date, since hidden meta-
data could be easily forgotten; (3) semantic metadata visibility makes sure that they are
relevant to users as well as machine [3, 48].

Distinctive Features

Semantic interoperability and semantic extensibility are the main two features that dis-
tinguish the two technologies. Microformats are fully interoperable, since they stan-
dardize the semantics of Web contents that are rendered from different server. However,
Microformats are inextensible and do not fulfill all authors’ scenarios. This is because
Microformats propose a finite set of specifications [81]. Furthermore, Introducing new
Microformat specification require extensive discussion with the Microformats community
for a general (i.e. worldwide) adoption. Until this point is reached, Microformats parsers
on users’ applications could not interpret what are considered as “exotic” Microformats
specifications.

On the contrary, RDFa is fully extensible. Web authors can create their own semantic
metadata and extends others. However, exchanging and interpreting RDFa vocabularies
from different Web sites require a prior semantic reconciliation, since each sites represents
Web contents and semantic metadata in different ways. Ontology mapping, from local
ontologies to a shared ontology (e.g.: Dublin Core23 and FOAF24), is a commonly used
way to reach semantic interoperability.

Microformats and RDFa: Side by Side Comparison

Table 2.1 summarizes similarities and differences between Microformats and RDFa lan-
guages.

2.4 Web Usability Evaluation

Web 2.0 usability, as defined in Section 1.2.2, refers to the effectiveness, efficiency, and
satisfaction of users’ interaction with Web pages (i.e., authors’ annotation and readers’
interpretation of Web contents). Also, usability engineering phases are utilized as a
framework to improve and evaluate this interaction. Indeed, a number of usability crite-
ria and problems related to users’ interaction are identified in Section 1.2. Afterwards,

23More information available on http://dublincore.org/.
24More information available on http://xmlns.com/foaf/0.1/.

49

Chapter 2. State of the Art

Feature RDFa Microformats (MF)

Purpose
Annotate Web contents with
RDF-based metadata

Annotate Web contents with
MF-specifications metadata

Purpose
achievement

Reuse a set of existing XHTML
attributes (e.g., rel) and intro-
duce new ones (e.g., about)

Reuse existing XHTML at-
tributes (e.g., class and id)

(X)HTML
compatibility

XHTML+RDFa HTML 4.01/5, XHTML 1.x/2

Semantic
Yes Yes

visibility
Follow DRY Yes Partially
RDF/XML
mapping

Yes Custom mapping for each MF

Namespace XML and CURIE namespace Flat namespace
Domain

Yes Limited to predefined MF
applicability
Inter-
operability

Require semantic reconciliation Predefined MF is fully inter-
operable

Extensibility Yes, reuse RDF data model New MF requires community ac-
ceptance

Table 2.1: Side by side comparison between Microformats and RDFa

Web annotation and Web adaptation are identified in Section 1.3 as improvements means
to handle these usability problems. Finally, in Section 1.4, the term Web 2.0 usability
evaluation is utilized in order to consider several usability aspects during the design of
the improvement means and to explain a methodology for evaluating the actual result
of users’ interactions after deploying these means.

This section aims at discussing the state of the art related to Web usability evalua-
tion. In this context, several researches have classified usability evaluations from different
perspectives. For example, [79] distinguishes between formative and summative evalu-
ation based on the development life cycle stage in which the evaluation is performed.
Formative evaluation are often performed at design stage and aims at checking the un-
derstanding of design team for users’ requirements before implementing the final Web
site. Summative evaluation takes place after deployment phase and aims at detecting the
usability problems that users actually encounter. In addition, a wide range of evaluation
methods have been proposed and used to conduct these evaluation. For instance, [57]
classifies evaluation methods into inspection methods and user testing methods based on
who perform the evaluation. In inspection methods, a number of developers or usabil-

50

2.4. Web Usability Evaluation

ity experts conduct the evaluation, whereas a set of actual users (called representative
users) use Web site to perform specific tasks (called representative tasks) in user testing
methods.

In practice, formative evaluation usually utilizes one or more usability inspection
methods to detect potential usability problems at design time, while summative evalua-
tion utilizes one or more usability testing methods to detect potential usability problems
that representative users actually face them after the deployment of a Web site.

Another classification is introduced in [21] and based on the purpose of evaluation.
This classification introduces four types for Web site usability evaluation as follows:

� Objective performance. Measures the capability of Web site visitors in terms of
time taken to complete specific tasks on the site (i.e., task efficiency).

� Subjective user preferences. Assess how much the users like the Web site by eliciting
their opinions, or by asking them to rate the site (user’s satisfaction).

� Experimental evaluation. Based on controlled experiments to test the hypotheses
about design and their impact on users’ performance and preferences.

� Direct Observation. Monitor the users’ behaviors while interacting with the Web
site to detect usability problem.

Finally, an extensive survey of 132 usability evaluation methods is introduced in [63], 75
methods applied on WIMP 25 and 57 methods applied on Web user interface. This survey
proposes a taxonomy with four dimensions. Each dimension describes the usability
evaluation methods from a specific perspective as follows:

� Method class. Describes the type of evaluation conducted at a high level (i.e., user
testing, inspection, inquiry, analytical modeling, and simulation).

� Method type. Describes how the evaluation is conducted within a method class.
For example, user testing class could use thinking-aloud protocol or Web log file
analysis.

� Automation type. Distinguishes whether the usability evaluation process are auto-
mated or not. Also, Describes to which extent this process are automated.

� Effort level. Describes the type of effort required to execute usability method.
For example, the automation of usability evaluation or part of it usually requires
developing a usability evaluation model.

25Windows, Icon, Mouse, Pointer

51

Chapter 2. State of the Art

Based on the above classifications and the source of usability data, we can group Web
usability evaluation into two approaches: user-testing evaluation and usability inspection
evaluation [57, 85]. The following subsections briefly discuss these two approaches.

2.4.1 User-Testing Evaluation

User-testing evaluation aims at setting up experiment with actual users during Web site
use in order to compare the actual result achieved with the desired usability level and
therefore detecting potential usability problems (if any). Indeed, user-testing evalua-
tion could be used to evaluate several aspects of users’ interactions such as objective
performance (i.e., task efficiency and number of encountered errors) and subjective user
preferences (i.e., users satisfaction), as aforementioned.

In practice, setting up user-testing evaluation have to be carefully planned and man-
aged. This involves identifying a number of evaluation activities and describe the best
ways for performing these activities. In this context, many usability approaches advo-
cate that the following activities are necessary for conducting a successful user-testing
evaluation. First, the goal(s) of the evaluation and the desired way to reach them have
to be specified. Secondly, a number of representative users and a number of tasks or
scenarios to be evaluated have to be identified. Thirdly, the types of data related to
usability evaluation have to be specified. These data have to be collected while repre-
sentative users perform the identified tasks or scenarios. Finally, the collected data have
to be analyzed in order to compare the actual result achieved by representative users
with the desired usability level [46, 79, 85, 101].

In addition, many methods have been used to conduct user-testing evaluation or part
of it. These methods are mostly conducted in usability test labs and also with presence
of one or more evaluators. Thinking aloud protocol, controlled experiment, and query
techniques are the most common methods. The following discusses the main ideas of
these methods.

� Thinking aloud protocol (also called scenario-based testing) is an informal method
which involves a number of representative users who are asked to perform specific
tasks, or predefined scenarios, designed to cover the major functionality of the Web
site and to simulate expected real-life usage patterns. For each task or scenario, a
number of evaluation measures are also designed to cover the intended useability
aspects to be evaluated. Such evaluation measures usually target whether the
participants correctly accomplished the tasks, how many errors are performed by
users, and how many time taken for accomplishing each task.

52

2.4. Web Usability Evaluation

In practice, users are observed by an evaluator or they are asked to think out aloud
(i.e., verbalizing their thoughts) while performing tasks to be evaluated. Then, the
collected data (i.e., actual result performed by representative users) are compared
with the desired usability level based on the specified evaluation measures [21].

� Controlled experiment is a formal explantation method, whereas one or more hy-
potheses are proposed (called usability hypotheses) and actual experiments are
carried out to accept or reject these hypotheses.

Controlled experiment is recommended to evaluate the result of Web adaptation
approaches such as personalization applications. In this sense, a number of repre-
sentative users are asked to make a specific task that is based on adaptation twice:
one before applying adaptation and one after applying it. Then, the effects of
adaptation on users’ behaviors are measured [73]. In addition, it might be used to
compare the result Web site interface (i.e., Web page) or users’ interactions with
specific tasks before and after applying usability improvement means.

� Query techniques is a method that is mostly used to collect subjective data about
users’ opinions and satisfactions related to the layouts of Web pages and also
related to their interactions with these pages after performing specified tasks. The
most common query technique used in Web domain is called Web-based or online
questionaire.

A questionnaire is basically a number of predefined questions with different styles
such as general, open-ended, and multi-choice questions. For instance, IBM co-
operation introduces different type of questionaires to measure users satisfaction
when they interact with computer application [76].

Like traditional questionnaire, Web-based questionnaire is a number of predefined
questions designed using Web form [80, 79, 1]. Web-based questionaire is consid-
ered cost-effective method and it is easy to repeat with many users. This provides
a way to collect data from large number of users. However, it is not efficient for
collecting and analyzing objective data such as the efficiency of performing tasks or
for measuring the numbers of errors users encounters (i.e., objective performance).

The key advantage of user-testing evaluation is the involvement of users. This allows
discovering unexpected usability problems and the actual reasons that cause these prob-
lems as they encountered by real users. According to Nielsen’s report26, user-testing

26More information available on:http://www.useit.com/alertbox/20000319.html.

53

Chapter 2. State of the Art

evaluation with 4-5 representative users will discover 80% of major usability problems
related to the aspect being evaluated, while 10 users will discover up to 90% of usability
problems. Note that, it is important to keep in mind and to inform all representative
users that their abilities to interact with a Web site are not being evaluated. Rather,
it is the ability of a Web site to accommodate to their needs and preferences are under
evaluation. This is a critical distinction that should lie at the heart of any user-testing
evaluation [79, 85].

However, user-testing evaluation is expensive and time consuming. Indeed, a Web
site usually has many tasks and usually used by a huge number of users with different
characteristics. Finding and scheduling an appropriate number of representative users
for each user’s type is difficult. Moreover, One or more evaluation methods could be
used to evaluate one aspect of users’ interactions, as mentioned before. Therefore, several
evaluation methods are required in order to cover all usability aspects.

2.4.2 Usability Inspection Evaluation

Usability inspection refers to a set of evaluation methods that are performed by eval-
uators (i.e., usability specialists), mostly at usability design phase. In effect, Usability
inspection evaluation have been proposed as alternative to user-testing evaluation, since
the later is expensive and time consuming.

In practice, evaluators use a set of heuristic guidelines and usability principles to
inspect usability problems relevant to a user interface design (i.e., Web page) and user’s
interactions with specified tasks. After that, they provide feedback for designers con-
cerning possible usability improvements.

There are different methods that have been used for inspecting Web pages (i.e., Web
sites’ interfaces) and/or the interactions of users with Web sites. Heuristic evaluation
and cognitive walk-through are the most common methods which have been used in Web
domain [85]. The main ideas of these methods are summarized as follows:

� Heuristic evaluation is an informal method used mainly to inspect the layout of
Web pages. Indeed, a small number of evaluators examine the Web pages of the
Web site to be evaluated and judge their compliance with usability design principles
(i.e., the heuristics). The output of this method is a list of usability problems in
each Web page together with references to the violated heuristics [54].

� Cognitive walk-through is a scenario-based method that aims to simulate users’
interactions. Indeed, a number of potential users’ scenarios are identified. Also,

54

2.4. Web Usability Evaluation

the actual conditions of use such as the types of users, objectives of use, and
social and physical environments are identified for each scenario. Then, a number
of evaluators simulate users to accomplish the objectives of each scenario, and
discuss the usability problems as they arise [95].

Other usability inspection methods such as pluralistic walkthrough, feature inspec-
tion, consistency inspection, standards inspection, and formal usability inspection have
been developed and used. A summary of these methods available on: http://www.

useit.com/papers/heuristic/inspection summary.html.
Usability inspection evaluation is less expensive and less time consuming. Moreover,

inspection methods are considered easy to apply and useful to inspect many usability
problems at design time. However, usability inspection can not predict all usability
problems that could be encountered by real users such as subjective user preferences
(i.e., users’ satisfactions). In general, these method can can discover around 50% of
usability problems [46, 54, 79].

2.4.3 Automatic Tools Supporting Web Usability Evaluation

In Web domain, several approaches have attempted to automate the process of usability
evaluation or part of it. The reason can be related to a number of factors such as the
need for cost-effective, real-time, and reusable evaluation. Indeed, most Web sites are
rapidly changing over time. Hence, performing an exhaustive and expensive evaluation
is incompatible with the rapid changing nature. Also, the evaluation results have to
be accurate and up to date with respect to the current state of the evaluated Web
site. Additionally, the evaluation methods have to be reused in straightforward manner
when the evaluated Web site is updated or improved. Therefore, several approaches
have proposed tools that support the evaluation of Web usability. These tools can
be categorized into two categories, which mainly cover the aforementioned usability
evaluation approaches (i.e., usability inspection and user-testing evaluations).

Automatic tools supporting usability inspection (Also called Analytical Evaluation
Tools) are usually used to automate a combination of usability criteria and guidelines in
order to analyze the design of Web pages (the user interface of a Web site). For example,
several tools such as A-Prompt27, Bobby [35], and Kwaresmi [19] have automated the
W3C guidelines that are related to Web usability and accessibility (i.e., the W3C Web
content accessibility guideline (WCAG) 2.028). Based on these guidelines, these tools

27More details available on: http://www.aprompt.ca/.
28Available on: http://www.w3.org/TR/WCAG20/.

55

Chapter 2. State of the Art

analyze the code of a Web page under evaluation, identify usability problems (if any),
and in some cases they make suggestion for fixing the identified problems.

Automatic tools supporting user-testing evaluation (also called Empirical Evaluation
Tools) are usually used to collect users’ data relevant to evaluation when they perform
real tasks. Afterwards, the collected data are analyzed by evaluators or automatically
in order to discover unexpected usability problems corresponding to the tasks under
evaluation. For example, Piero et al. [45] proposes a usability evaluation tool in order
to analyze users’ data that are stored on server log file and related to browsed Web
contents, visited Web pages, and users’ navigation paths. Web contents and Web pages
analysis help evaluator to discover what are the browsed contents and the visited pages
and how they satisfy users’ needs. Navigation paths help evaluator to discover some
interaction problems due to usability lacks. Additionally, WAUTER [15] is also Web us-
ability evaluation suite that supports user-testing evaluation. This tool captures actions
performed by real users and then compare them with the intended usability level based
on a set of pre-defined heuristics.

In addition to the automation aspect, Web usability evaluation tools are mostly de-
signed to conduct usability evaluation remotely. Remote usability evaluation is originally
distinguished from traditional lab usability evaluation by the fact that users and eval-
uators do not need to be in the same location for conducting the usability evaluation.
However, evaluators still have to observe users while they perform real tasks. This can
be done using several tools such as video conference softwares and sensors [40].

In the Web domain, remote usability evaluation has emerged and it is mainly used
to conduct user-testing evaluation online via using a Web-based evaluation tool. In
this sense, users’ data are automatically collected and stored during they browsing Web
pages. Afterwards, the analysis process is performed automatically or by evaluators
for detecting potential usability problems encountered by users. Hence, this type of
evaluation is characterized by the notion that users and evaluators can be separated in
time and location [110].

The adoption of automatic tools for supporting Web usability evaluation is useful for
reducing the evaluation cost and the effort required by evaluators to analyze by hand the
whole Web site with respect to all possible usability problems. Also, they can be reused
to execute repetitive evaluation tasks over many times and highlight critical usability
issues at each of these times. Additionally, Remote Web-based usability evaluation
simplify the evaluation process as representative users and evaluators do not need to be
in the same location, and also the existence of evaluators are no longer needed during
the performance of the evaluation. However, they are not able to verify exhaustively

56

2.5. Discussion

all usability issues. For instance, they cannot assess all those properties that require
judgements by human specialists (e.g. usage of natural and concise language). Also,
automatic tools cannot provide answers about the nature of discovered problems and
the design revision that can solve it. Automatic tools are therefore very useful when
they use as complements to the evaluation activities that are made by evaluators. since
they can execute repetitive evaluation tasks for and highlighting critical features that
are worth to be later inspected by evaluators.

2.5 Discussion

The primary goal of this thesis is to improve the usability of the interaction between users
and Web 2.0 sites by handling the local contexts of their users, as already mentioned.
Web adaptation and Web annotation are utilized as core techniques to achieve this goal.
Also, we introduce an evaluation methodology which details how to evaluate the actual
users’ interactions after applying the Web annotation and adaptation techniques.

The works discussed above help us to build up the ideas of our thesis. However, these
works have utilized Web annotation and/or Web adaptation for different purposes and
in different ways. Similarly, several works have conducted Web usability evaluation to
assess different usability aspects and using different evaluation approaches and methods.

To point out the differences of our work compared to these related works, the follow-
ing list summarizes how our work utilizes Web annotation, Web adaptation, and Web
usability evaluation for achieving the goal of this thesis.

� Web annotation is intended to enrich context-sensitive-contents with context in-
formation related to their authors’ local contexts. Therefore, our approach does
not aim to annotate document structure (i.e., document annotation) or identify the
relations between contents (i.e., concepts relations annotation). It can be classified
as contents annotation approach.

To achieve this, a lightweight ontology is designed and used (i.e., local context on-
tology, see Section 4.5). In addition, Web annotation is designed to be interactively
performed (i.e., semi-automated). An author has to specify his local context and
to select Web contents to be annotated (i.e., annotation by selection user inter-
face). Afterwards, the selected contents are annotated using RDFa-based internal
annotation (see Chapter 5 for more details).

� Web adaptation is intended to adapt the presentation of annotated context-sensitive
contents from their authors’ local contexts to their readers’ local contexts. There-

57

Chapter 2. State of the Art

fore, our approach does not aim to provide different Web contents or different navi-
gation links to different users, according to their preferences or skills (i.e,.personalization
scenario). Also, it does not aim to adapt Web contents according to the capabilities
of users’ devices (i.e., mobile and ubiquitous applications Scenario). Our approach
can be classified as localization approach which provides same Web contents to
different users, but in different presentation (i.e., adaptation of presentation). In
addition, Web adaptation is deployed at readers’ applications (i.e., client-side de-
ployment). Finally, local context ontology is used by readers in order to specify
their local context information.

� Web usability evaluation. We introduce a Web usability evaluation methodology
which explains our recommendation on how to evaluate the actual users’ interac-
tion with Web 2.0 sites after applying our usability enhancement means (i.e., Web
annotation and Web adaptation). This methodology uses two user-testing evalu-
ation methods: controlled experiment and scenario-based testing. Both of them
are used to evaluate the actual result of Web adaptation and the latter is used to
evaluate the actual result of Web annotation. Also, we recommend to apply these
methods remotely via Web-based evaluation tools. Additionally, several usability
aspects are inspected during the design of Web annotation and Web adaptation
(see Chapter 7 for more details).

58

Part I

Web 2.0 Usability Analysis

60

Chapter 3

Web 2.0 Use Cases and Users Local Contexts

3.1 Introduction

As already mentioned in Chapter 1, the Web has been augmented with new features
since the emergence of Web 2.0. These features allow users to contribute in creating and
updating Web contents, in addition to browsing them. Also, it becomes feasible to re-
mix and aggregate Web contents from different Web sites and presents them in a single
Web page. In the meanwhile, the numbers of Web users continue to increase. These
users originate from different local communities and they (need to) interact with Web
2.0 sites according to their local contexts. This leads to several semantic discrepancies,
which raise new usability issues during users/Web 2.0 sites interaction. Section 1.2.1
introduces a simple example to illustrate these issues.

This chapter aims at studying and analyzing the interactions between users and Web
2.0 sites in more details, and then identifying the requirements to handle the usability
problems related to users’ local contexts.

The rest of this chapter is structured as follows. Section 3.2 discusses a number of
Web 2.0 use cases and provides some examples for each use case. Next, Section 3.3
analyzes the types of Web contents that depends on users’ local contexts with more
focus on the context information used to represent and interpret each of them. Finally,
Section 3.4 specifies a number of requirements to be addressed in the next chapters.

3.2 Web 2.0 Use Cases

The term Web 2.0 has been initially introduced during a conference brainstorming ses-
sion between a team from O’Reilly1 and MediaLive2 companies. During this session, the
team members argued that the Web became more important than before, whereas new

1http://oreilly.com/
2http://www.medialive.ie/

62

3.2. Web 2.0 Use Cases

applications and sites popping up with surprising regularity. Therefore, they realized
that the Web was at the beginning of a new era.

Accordingly, the O’Reilly company has defined the Web 2.0 as “a set of economic,
social, and technology trends that collectively form the basis for the next generation
of the internet which is a more mature, a distinctive medium characterized by user
participation, openness, and network effects3”.

After that, the Tim O’Reilly4 has followed up this discussion by describing in details
what is Web 2.0. Indeed, he has introduced seven principles in order to express some of
the notions behind the Web ‘2.0’ and used them as a benchmark to distinguish whether
an application or approach is Web ‘1.0’ or Web ‘2.0’. These principles are (1) the Web as
platform; (2) harnessing collective intelligence; (3) data is the next ‘Intel Inside’; (4) end
of the software release cycle; (5) lightweight programming models; (6) software above
the level of single device, (7) and rich user experiences. More information about these
principles and the distinction are given in [89].

In Section 1.2.1, we advocate that the main idea of the Web 2.0 lies into sharing
of Web contents from different users and sites. Accordingly, we explain community
collaborations and contents mash-up as the main two features that characterize Web 2.0
sites.

This Section aims at discussing several use cases related to the above features which
can be performed during users/Web 2.0 sites interactions. Table 3.1 summarizes Web
2.0 features and use cases, and the following subsections discuss these use cases in more
details. It is worth noting that we do not aim at covering all Web 2.0 use cases, but we
attempt to illustrate the above Web 2.0 features and provide some real examples related
to our work.

3.2.1 Web 2.0 Contents Creation/Insertion

Most Web 2.0 sites provide one or more means that allow users to collaborate for pub-
lishing their own contents online (i.e., making them, to some extent, publicly available).
Web authors now can create various types of Web contents called user-generated con-
tents. Also, they can insert new Web contents (i.e, new html nodes) to contents which
were created before. To better understand this, the following examples demonstrate the
most common Web 2.0 means which support this use case.

3Web 2.0 Principles and Best Practices: http://radar.oreilly.com/research/web2-report.html.
4The founder of O’Reilly company.

63

Chapter 3. Web 2.0 Use Cases and Users Local Contexts

Web 2.0 Web 2.0
Use Cases Description

Features Use Cases

Community
Contents creation/insertion

Creation of various types of Web con-
tents and/or insert of new contents to
contents that were created before.

Collaborations

Contents update

Update of existing Web contents. Here,
the update task might be performed by
the original author who created this con-
tent before or by other author(s).

Contents
Client-based aggregation

Aggregation of Web contents from sev-
eral sites by user’s application.

Mash-up
Server-based aggregation

A Web site, via an aggregator applica-
tion, aggregates Web contents from other
Web sites

Collaborations
Contents browsing

browse of Web page’s contents which
might be created and updated by several

& Mash-up authors and might be belong to several
Web sites

Table 3.1: Web 2.0 features and use cases.

Weblogs

Weblogs (Also called blogs) are basically Web pages which consist of a list of Web
contents that are usually displayed in chronological order with most recent first called
blog entries. Weblogs are characterized by two main features. First, they usually provide
a way for readers to insert comments about blog entries. Second, Each blog entry has a
permanent URI (called permalink) which is usually described by one or two keywords.
Based on the latter, blog enties are categorized and archived in a standard theme-based
menu [8].

Weblogs become common after the advent of easy to use Weblogs software such as
Blogger.com and WordPress. Indeed, Weblogs have been commonly used by individuals,
but also several organizations have used them for different purposes as follows.

� Personal Weblog. As its name indicates, an individual author creates his own
Weblog and publishes blog entries about his own personal diary, daily events,
hobbies, photos, etc. Readers (or secondary authors) can only insert comments
about the entries created by the original author without giving the right to create
new blog entries.

64

3.2. Web 2.0 Use Cases

� Community Weblog. Two or more authors create and share a Weblog page for
publishing their blog entries about a specific interest or subject (e.g., football,
travelers’ experiences, etc.). Basically, one author creates a Weblog page and
invites others to share as members 5.

� Organization Weblog. Several organizations and companies utilize Weblogs to
achieve some specific goals. For example, Amazon.com provides a Weblog called
Amazon Dailly6 to facilitate the communication between books’ editors/authors
and books’ customers. Books editors/authors can create blog entries about their
books. Also, books’ customers can read blog entries about books who are inter-
ested in, leave comments about a specific blog entry, or create new blog entry as a
public comment to be read by other customers.

Web Forums

Web forums (also called message boards) are basically Web pages that allow a group
of people to participate with ongoing and in-depth discussions about particular topics
such as Web 2.0 features and technologies, new features or problems of iPhone device,
and daily news. A Web forum is usually used to discuss several topics called threads.
Each thread consists of a title, a main section called main post, and several discussion
sections called posts. Threads are also categorized into a finite set of generic topics and
sub-topics in a tree-like view.

Web forums are usually governed by several persons called forum staff. Also, most
forums require users registration to participate in a discussion. In practice, forums can
be categorized into two types according to permissions given to registered users (i.e.,
members) by forum staff as follows.

� Discussions and replies forum. Members can create new threads (i.e., new titles
and main posts) for discussions, and also can reply on existing threads by inserting
posts. This type is commonly used in most forums. for example, BBC news site
provides a discussion space for their members called My Discussions7. Members
can create new thread for discussions or post messages about existing topics such as
daily news. O’Reilly company also provides a forum that allows members to create
new threads for reviewing books, discussing a set of already mentioned topics,
propose new topics for discussions. Also, they can reply to existing discussions.

5See group blogging feature on http://www.blogger.com/features.
6http://www.amazon.com/gp/daily
7http://www.bbc.co.uk/messageboards/newguide/

65

Chapter 3. Web 2.0 Use Cases and Users Local Contexts

� No discussions but replies forum. Members can only insert new posts for dis-
cussing existing threads. This type is commonly used for supporting discussions
between teachers and students in E-learning applications. Students are usually
given permissions to reply on discussions which are created by teachers8.

Web 2.0 Advertising

Several Web 2.0 sites provide a way for individuals and companies to advertise their
products for selling. For example Google provide an advertizement service called Ad-
Words (or ads for short). This service allows advertisers to create their advertisements
contents (e.g., New and second hand cars for sale, starting from e 500) and choose
keywords or phrases related to their products or services (e.g., used cars). When peo-
ple search on Google using one of the chosen keywords, ads may appear in the search
results. Recently, social network sites such as FaceBook provide an advertising service
for its members like the Google AdWords service.

In addition, eBay is one of the most famous site that provides different advertize-
ment services, in addition to products selling and buying. For instance, eBay provide
a service called adCommerce9, whereas advertisers (i.e., individuals or companies) can
create advertizement contents about their products (e.g., MP3 Player) and display them
for international customers, a specific target customers (e.g., young people), or for a
specific demographic area (e.g., Belgium).

Web 2.0 Social Networking

Web 2.0 social networking focuses on building and reflecting social network or social
relationship among people. Basically, social networking sites (SNSs) such as FaceBook,
MySpace, and LinkedIn allow users to create public or semi-public profiles (e.g., name,
photo, birthdate, email, phone number, etc.) for representing themselves as members,
and communicate with other members who have common (social) relations such as friend-
ship, shared interests, professions, etc.

In addition to members’ profiles, most SNSs allow members to create various types
of contents such as describing upcoming events, asking and answering questions, send-
ing messages or comments to other members. Furthermore, one member can create a
common page usually called group. The creator of a group can invites any one to join,

8More information available on: http://docs.moodle.org/en/Forum module.
9See eBay advertisement services on http://www.ebayadvertising.com/en/, last visit on

20/12/2009.

66

3.2. Web 2.0 Use Cases

deny join request, and delete or update the contents of joined members. Joined mem-
bers usually can browse the contents exist on the group page and create new contents.
Finally, other additional Web 2.0 features such as Blogs sharing, Web 2.0 advertising,
and forums discussions are provided by some SNSs [25].

3.2.2 Web 2.0 Contents Update

In addition to the above creation/insertion use case, Web 2.0 sites usually enable Web
authors to update Web contents after they were published online. Indeed, a Web author
could update Web contents that s/he created before (referred to as personal contents
update). Also, s/he could update Web contents that were created by other authors
(referred to as community contents update).

Personal Contents Update

To better understand personal contents update, let us consider the Web 2.0 means
described above. Indeed, most of them allow an author to update Web contents s/he
created before. For instance, Weblogs usually allow authors and commenters to update
their own blog entries and comments, respectively. Also, Web 2.0 advertisement services
and sites such as Google AdWords and eBay allow an advertiser to update Web contents
related to item(s) s/he wants to advertise such as its price, photo, and location. In
contrast, other users can not update these contents. The same case for Web 2.0 social
network and Web forums.

Community Contents Update

In general, the Web 2.0 means described above do not allow an author to update Web
contents created by other authors. However, a few persons can update other authors’
contents. For instance, Weblog owners (i.e., Weblogs creators or organizations) can
update blog entries and comments created by other members. Also, the forum staff can
update posts created by the members of the forum. Finally, the creator of a group in
SNSs can update contents created by joined members. These provide examples about
community contents update. In addition, Wiki and collaborative Web editing tools
are the most common Web 2.0 means which provide straightforward examples about
community contents update.

67

Chapter 3. Web 2.0 Use Cases and Users Local Contexts

Wiki

A wiki is a set of interlinked Web pages whose contents are collaboratively produced by
its (authorized) users10. Wikipedia is the most famous wiki site. Wikipedia is a public
wiki that allows any user to create, insert, and update Web contents about any things.
For example, a Web author can define and publish the term local context on wikipedia.
Also, other author can read and insert new definition of this term.

The main distinctive feature of wikis among other Web 2.0 means described above
lies into open editing notion. By open editing, we mean that community contents update
are not restricted to a few users such as Weblog’s owner and group’s creator in SNSs.
However, any user can update contents created by other users. For example, any user
can update the definition of the term local context which is already created by other
author(s) on wikipedia.

Collaborative Web Editing Tools

Collaborative Web editing tools are Web applications which provide an online space
and instruments for (authorized) users to create, share, and update various types of
documents such as XHTML, text, speed sheet, and presentation documents. One user
can create and upload shared document. Then, co-authorized users can insert new
contents to this document and/or update the existing ones. In other words, collaborative
Web editing tools is considered like traditional disk-top office applications, but with
additional open editing, collaborative, and online features.

Several Several collaborative Web editing tools has been proposed and used11. For
example, Google provides a number of collaborative edition tools called Google Docs and
Google Wave12. These tools allow users to collaborate to create and update almost any
type of documents such as text document, Web form, presentation, speed sheet, photo,
video, map, and more. Acrobat.com also provides a collaborative Web editing tools
called Online Office Applications13. Finally, wiki sites can be considered as a special
kind of collaborative Web editing tool.

10Some wikis require user’s authorization to read, create, or update wiki contents. These are called
private wikis

11See some list on http://en.wikipedia.org/wiki/Collaborative real-time editor
12See http://docs.google.com/ and http://wave.google.com/ for more information.
13https://acrobat.com/features online office applications.html

68

3.2. Web 2.0 Use Cases

3.2.3 Web 2.0 Contents Aggregation

Contents aggregation refers to a process of finding out and aggregating Web contents
from several Web sites and display them together. This process is collaboratively per-
formed as follows. First, users (i.e., contents’ authors or providers) need to publish Web
contents to be aggregated using machine readable data format. Also, they have to agree
and announce that these contents can be aggregated. Second, a specific type of appli-
cations called aggregators find out and aggregate these contents. Finally, Web readers
browse the aggregated contents. In effect, contents aggregation embodies the Web 2.0
contents mash-up feature.

There are two types of contents aggregation. First, aggregation of contents that
share a similar data format such as blog entries, news entries, or events (referred to as
data aggregation). Second, aggregation of contents that have different data formats, but
they have common relations or they complement each others. This type of aggradation
is commonly provided as Web services (referred to as service aggregation). From ar-
chitecture perspective, an aggregator could be deployed on a user’s device. This kind
of aggregation is referred to as client-based aggregation. Also, it could be deployed on
an intermediary Web server or on a server which host a Web 2.0 site. This kind of
aggregation is referred to as server-based aggregation.

Client-Based Aggregation

Client-based aggregation has been commonly used for aggregating Web contents that
share a similar data format (i.e., data aggregation). Then, the aggregated contents could
be stored on user’s device, exported to another user’s application, or even exported to
another Web site. The following provides some examples about common aggregators
deployed on users’ devices.

Web Feeds Aggregator

A Web Feeds aggregator (also known as feeds reader or news reader) is a well-known
aggregator that extends most Web browsers14. A feed aggregator is used to aggregate
Web feeds (also called syndicated Web contents) from several Web sites periodically.

Web feeds are basically machine readable data formats such as Really Simple Syndi-
cation15 and Atom Syndication Format16 (RSS and Atom for short). These formats are

14Web Feeds Aggregator are also used as a server-based aggregator.
15http://www.rssboard.org/rss-specification
16http://tools.ietf.org/html/rfc4287

69

Chapter 3. Web 2.0 Use Cases and Users Local Contexts

used for syndicating frequently updated Web contents or summary about these contents.
In practice, Web feeds are almost utilized to syndicate the contents of News websites,
Weblogs, and forums. Also, they are utilized to syndicate other types of Web contents
such as weather data, currency exchange rates, and top-ten lists of hit tunes to search
results.

In a typical scenario, a Web feed aggregator works as follows. a Web reader subscribes
to one or more feed-enabled Web sites17. Accordingly, the aggregator periodically mon-
itors these sites in order to find out and aggregate Web feeds that are recently updated
and inform the reader thereafter.

FireFox Operator: Microformats and RDFa Aggregator

As its name indicates, FireFox operator18 is an extension for firefox Web browser. It is
used for aggregating Microformats specifications and/or RDF statements which are em-
bedded into Web pages using Microformats and RDFa languages, respectively. In addi-
tion, it allows users to export the aggregated information into other disk top applications
or other Web sites. For instance, FireFox Operator allows user to export Microformats-
based or RDRa-based events from a Web page to Microsoft outlook, Google calendar,
or Upcoming Web site.

Piggy Bank

Piggy Bank is another extension to FireFox Web browser that allows a Web user to
aggregate Web contents from different Web sites and save them on his computer using
RDF data model. After that, the user can browse the aggregated contents and also share
them with other users [60].

Server-Based Aggregation

Server-based aggregation has been used for aggregating Web contents that both share
similar data formats and related contents that have different data formats (i.e., data ag-
gregation and service aggregation). In practice, server-based aggregation is performed by
server aggregators that work as proxies between published Web contents to be aggregated
and Web users. The following list provides some example about common server-based
aggregators.

17Web sites that syndicate Web contents as Web feeds
18https://addons.mozilla.org/en-US/firefox/addon/4106

70

3.2. Web 2.0 Use Cases

Data Aggregators

Tecnorati19 and Upcoming20 are two common Web 2.0 sites which provide data aggre-
gation means. Tecnorati has lunched as Weblogs aggregates, whereas blog entries are
aggregated and indexed from many Weblogs pages. Subsequently, other types of Web
contents are also aggregated and indexed such as photos and news. Users can search and
browse the aggregated contents according to their types (e.g., blog entries), language,
published/updated time, etc. Upcoming aggregates events contents from different com-
munities of users and also from commercial sites. The purpose is to let users to discover
events who are interested in and/or to share these events with their friends.

Service aggregators

Several service provided by Google such as AdWords, AdSense, and Google maps provide
good examples about service aggregator. Google AdWords is an advertisement service
which allow Web providers (e.g., Web site owner) to add text, image, or video adver-
tisements to other Web sites that mostly provide related Web contents/services. Google
AdSense is complement service to the AdWords. The sites owner give permissions to
Google to add advertisement contents to their Web sites when they appear in the google
search result. Google also provides a Web mapping service known as Google maps. This
service allows Users/Web site owners to embed maps related to specific locations inside
their Web pages’ contents using Google maps API.

Booking travel packages provided by travel agencies is another common service ag-
gregation example. Many travel agencies such as Expedia21 and eDreams22 aggregate
(compose) travel reservation services (i.e., flight booking, hotel reservation, car rent)
from different Web sits or service providers to satisfy users’ requests

3.2.4 Web 2.0 Contents Browsing

The traditional scenario of browsing a Web page’s contents can be summarized as follows.
A Web user requests the intended Web page, whereas the latter belongs to a Web site
and could be stored as a static HTML document or might be generated dynamically
from the data sources of this site (e.g., site’s database or XML documents). Then, the
requested page is rendered via HTTP protocol and presented on this user’s application

19http://technorati.com/
20http://upcoming.yahoo.com
21http://www.expedia.com/
22http://www.edreams.com/

71

Chapter 3. Web 2.0 Use Cases and Users Local Contexts

(e.g., Web browser) for browsing.

Although the basic idea and the utilized technologies are still the same, the Web 2.0
use cases described above lead to new browsing scenarios. For instance, the aggregator
engines that extend users’ applications introduces new browsing scenario as follows (e.g.,
client-based feeds aggregators). Instead of requesting an entire Web page by a user, the
aggregator engine acts on behalf of this user to request and aggregate specific types of
Web contents from many Web sites (i.e., RSS feeds). Then, the aggregated Web contents
are generated and presented as a Web page on user’s application. Finally, the aggregator
usually notifies this user to browse the aggregated contents. Additionally, server-based
aggregation use case leads to similar scenario.

In addition, the participation of Web users in Web contents creation/insertion and
update leads to another browsing scenario. A Web user can browse Web page’s contents,
and then insert new contents such as personal comment. Also, he can update or delete
what he browsed, or recommend them to other users (see contents creation and update
use cases for more information).

Finally, many other browsing scenario are also possible, including a mix of the above
browsing scenarios. For instance, a Web user can request a Web page using the tradi-
tional browsing scenario. Afterwards, he can utilizes an aggregator engine to aggregate
and export part of the browsed contents such as event contents on the Web. Finally,
another user can insert or update the exported contents.

3.2.5 Web 2.0 Use Cases: Summary

The aforementioned use cases show that users can do more than just browse Web con-
tents. In addition, the roles of Web sites and users’ applications become more than just
hosting and presenting these contents, respectively. Indeed, Web users participate in
the production of Web contents, in addition to their traditional browsing roles. Con-
sequently, users’ applications are extended to allow users to create and update Web
contents and also to aggregate contents from different sources. In addition, several Web
2.0 sites act as Web contents aggregators, in addition to their traditional roles (i.e.,
hosting Web pages and rendering them to users). Finally, the ways users browse Web
contents are also changed accordingly, as already mentioned. Figure 3.1 presents a sim-
plified model that summarizes the aforementioned use cases and the new roles of the
Web entities.

72

3.3. Local Context and Context-Sensitive contents (CSCs)

U
se

rs
’

A
p

p
li

ca
ti

o
n

s
W

eb
 2

.0
 S

it
es

Web Authors Web Readers
Web Browser

Web
Contents

Web
Contents

Web
Contents
Web

Contents
Web

Contents
Web

Contents
Web

Contents
Web

Contents
Web

Contents

Web
Contents

Web
Contents

Web
Contents

A

Web
Contents

Web
Contents

Web
Contents

C

Create/
Insert

Browse

Web Editor

Web

Contents
Web

Contents
Web

Contents

Web
Contents

Web
Contents

Web
Contents

B

Aggregate

Update Aggregate

Figure 3.1: Web 2.0 use cases

3.3 Local Context and Context-Sensitive contents (CSCs)

Context-sensitive contents (CSCs) are defined in Chapter 1 as particular types of real-
world concepts which are represented and interpreted in different ways by different Web
authors and readers, respectively. Also, Section 1.2.1 defines what is meant by local
context, and provides an example which illustrates how several date and length contents
are represented and interpreted in different ways. This section describes several types
of CSCs and the types of context information that are implicitly used to represent and
interpret each of them.

3.3.1 Date and Time

In Longman dictionary23, the date as a noun refers to a particular day of a month or
a year within a calendar system. In this sense, the definition of the Date itself depends
on the local contexts of users. Indeed, users may use different calendar systems such as
Gregorian, Islamic, Japanese, and Chinese calendars. These calendars count the number
of a year days in different way. For instance, the year in Gregorian calendar includes
365/366 days, whereas the year in islamic calendar includes 354 days. Hence, a particular
day in one calendar may be represented by a different date in another calendar24.

Even though the same calendar system is used, different styles and different conven-
tions are used to represent dates. For example, The representation of a numeric date in

23http://www.ldoceonline.com/
24See more information about calendar systems on http://en.wikipedia.org/wiki/Calendar.

73

Chapter 3. Web 2.0 Use Cases and Users Local Contexts

Gregorian calendar could start with date, year, or month and with different separators
between them, as already illustrated in Chapter 1. Moreover, the textual representation
a Date in the same country might be represented in different ways, whereas the name of
the dates, months, and years are represented in a local langauge.

In addition, the date term are also considered as a time duration of 24 hours between
two successive midnights. This also depends on the local contexts of users. Indeed, the
time is usually interpreted according to the local time of the region (or time zone) that
is used it. Also, it might be represented as 12-hour clock or 24-hour clock and with
different separators.

In order to unify the date/time representation, The ISO proposes an international
and unambiguous representation of date/time in a standard called ISO 860125. This
standard is based on Gregorian calendar system and organizes the date/time from the
largest to the smallest temporal terms (i.e., from year to second). Also, it optionally
attaches the time zone offset after the date/time representation.

Gregorian calendar is used by most countries wide world as it is considered the de
facto international calendar. However, most countries still represent date/time contents
using local date/time conventions. This work considers date/time CSCs as a Grego-
rian calendar date/Time, with different local writing formats and different time zones
conventions [64]. Therefore, the following context information is related to date/time
CSCs:

1. The writing format in which a date or time is represented. This includes the style
used to represent them (i.e., text or numerical). Also, the order that a year, month,
day are organized, and also wheatear 12-hour clock or 24-hour clock time format
is used. Finally, the punctuation used to separate dates and times elements

2. The time zone convention used to represent the value of a date or time

3.3.2 Numbers

In mathematics, numbers are mainly used to count objects or measure their quanti-
ties based on a number system. Base-ten system is the most common number system,
whereas numbers are represented as combinations of ten digit number symbols called
numerals. The most common used numerals is called Hindu-Arabic numerals (i.e., 0,
1, 2, 3, 4, 5, 6, 7, 8, 9). Most countries such as most Europe countries and USA26 use

25http://en.wikipedia.org/wiki/ISO8601
26United States of America

74

3.3. Local Context and Context-Sensitive contents (CSCs)

these numerals to represent numbers. However, many countries still use their own local
numerals. For example, most arabic countries use eastern arabic numerals27.

In addition, countries or communities that use the same numeral system could use
different formats to represent numbers. To illustrate this, let us discuss what does
the number 1, 234 represent the USA and France? In USA, this number represents one
thousand two hundred and thirty four. However, it represents one and two hundred thirty
four one-thousandths in France. This confusion occurs since numbers are by represented
using different decimal and thousand separators in the aforementioned two countries.
Indeed, USA use dot as a decimal separator and comma as thousand separators, whereas
the comma is used as a decimal separator in France [64]. To conclude, numbers CSCs

are represented and interpreted based on the following context information:

1. The notational symbols used to construct numbers (i.e., numerals)

2. The types of separators used to represent decimal and thousands separators

3.3.3 Telephone Number

Numbers are also used to represent telephone numbers, in addition to counting and
measuring roles. A telephone number refers to a unique sequence of decimal digits that
identify a telephone end-point (also called a telephone line) in a telephone network.
Using this number, a user can make a telephone call (i.e., to dial) to this telephone line
from other lines.

More technically, a telephone number refers to the definition of the term national
(significant) number (or N(S)N) provided by the International Telecommunication Union
(or ITU for short28) in the international numbering plan E.164. N(S)N involves a sub-
scriber number and a national distinction code as two basic entities. A subscriber number
identifies a telephone end-point on a telephone network, and a national distinction code
identifies a telephone network among other telephone networks used in a country or
groups of countries29.

To make a telephone call, a telephone number is usually complemented with one
or more prefixes. These prefixes depend on several conventions related to the local
context of a user who want to make this call. In addition, they are related to the
telephone number that this user wants to dial. Indeed, one prefix is needed to dial a
local telephone number (i.e., from inside a country). This is called national prefix and

27More information available on http://en.wikipedia.org/wiki/Numeral system.
28http://www.itu.int/
29More details available on: http://www.itu.int/rec/T-REC-E.164-200502-I/en/

75

Chapter 3. Web 2.0 Use Cases and Users Local Contexts

precedes the dialed telephone number. Most countries use 0 digit as national prefix.
However, some countries use other code. For instance, USA use 1 as national prefix.

This national prefix is not needed to dial an international telephone number (i.e.,
from outside a country). Instead of this, two other prefixes are needed: international
prefix and country calling code. International prefix (Also called international access
code) involves two or three decimal digits and identifies the source country which the
telephone number is called from. Here, different countries also use different international
prefixes. For instance, USA and Canada use 011, while most countries in Europe use 00
as international call prefixes. country calling code is another two or three decimal digits
that identifies the destination country corresponding to the dialed telephone number.
In practice, each country has a unique country calling code. For example, the country
calling code for Belgium is ‘32’ and for France is 3330.

To better understand the local conventions related to telephone numbers, let us
consider a Belgian telephone whose number is 81123456. The following scenarios have
to be followed to dial this telephone. First, users from inside Belgium should dial this
telephone by adding the national prefix used in Belgium (i.e., 0). Hence, the dialed
number should be 081123456. Second, users from outside Belgium should omit the
national prefix and add the international prefix and then the country calling code instead.
Here, the international prefix depends on the country that a user dial this number from.
For instance, users from USA should add 011 as international prefix , and 32 as Belgium
country calling code, and then the telephone number itself. Hence, the dialed number
should be 011 32 81123456. In contrast, users from France should add 00 as international
prefix, and 32 as Belgium country calling code, and then the telephone number itself.
Hence, the dialed number should be 00 32 81123456.

In addition, different writing formats are used for expressing telephone numbers
in different countries or communities. For example, telephone numbers in France are
written as pairs of digits with spaces between pairs (i.e., dd dd dd dd), whereas the
common format in USA is written as two triples and one 4-tuple of digits (i.e., ddd ddd
dddd). To conclude, the following context information is related to telephone number
CSCs:

1. The national call prefix (for telephone calls inside a country)

2. The international call prefix related to source country

3. The international calling code related to destination country
30See the list of country calling codes on: http://en.wikipedia.org/wiki/List of country calling

codes/

76

3.3. Local Context and Context-Sensitive contents (CSCs)

4. The local writing format used to represent the value of a telephone number

3.3.4 Physical Quantities

Physical quantities such as weights, lengths, and temperatures are measured using mea-
sure units such as Gram, Meter, and Celsius, respectively. Measure unit is a reference
value that are agreed upon and practically used by community of people to measure a
specific kind of physical quantity (called a quantity dimension). Also, measure units may
be combined with prefixes. These prefixes are also agreed symbols that precede measure
units to represent multiple or fraction values of these units. Finally, a combination of a
number value together with (prefixed) measure unit is used to represent a corresponding
quantity dimension. These elements form what is known measurement system.

The most common and widely used measurement system is called international sys-
tem of units (abbreviated as SI). SI is a revised version of the Metric measurement
system and it is devised around seven base units. Then, other units are derived from
the base units. In addition, several unit prefixes are proposed as multiples or fractions
of the number 10. For example, the prefix kilo refers to thousand (i.e., 3 * 10)31.

However, some countries still use other measurement systems. For instance, USA
and United Kingdom use Imperial system or its derived version, and weight quantities
are measured using Pound and Ounce units. Furthermore, different countries represent
the value of physical quantities in different ways (see number CSCs above). Finally,
unit symbols and prefixes could precede quantity values or they could succeed them32.
To sum up, the following context information is related to physical quantity CSCs:

1. The quantity dimension which has to be measured

2. The local measure unit used to measure a quantity dimension

3. The measure prefix that might be combined with a measure unit

4. The local writing format used to represent the value of a physical quantity

3.3.5 Price

The term Price refers to a numerical monetary value assigned to a good, service or asset
to exchange them between sellers and consumers (e.g., peoples, organizations, etc.).
Each price CSC is usually represented using a number value together with a currency,

31More information about SI system are available on http://www.bipm.org/en/si/
32More information available on http://en.wikipedia.org/wiki/Units of measure.

77

Chapter 3. Web 2.0 Use Cases and Users Local Contexts

whereas the letter is a unit of exchange. In this sense, price CSCs can be considered
as a special kind of physical quantities. Indeed, there are two aspects that distinguish
price CSCs from other physical quantities: the dynamic nature of currency units and
the local conventions related to sales tax.

In effect, many currencies are used in different countries to exchange goods and
services33. The value of each currency is determined based on its rate among other
currencies (called currency exchange rate). This rate is frequently change based on
several economic aspects related to the country or countries that issue and/or use this
currency. Conventionally, The U.S. Dollar is considered as a reference currency and the
rates of other currencies are calculated accordingly. However, the value of this currency
is also changed frequently.

In addition to currency aspect, the price value could include or exclude the value of
sales tax. Basically, a sales tax is a kind of a consumption tax imposed as a percentage
of the price of goods or services. Several tax systems are used in different countries to
apply it. The most common used system is called value added tax system (or VAT for
short). Using VAT, the sales tax value is paid by an end-consumer and it is collected
by a seller. Also, a user who is in the middle of selling-consuming chain has to pay sales
tax, but a part of this sales tax can be deducted when (s)he sell the product or service
who bought before.

VAT is used by large numbers of countries all over the world. For instance, most
Europe countries use this sales tax system34). However, several counties still use different
sales tax systems. For example, Australia use Goods and service sales tax system (or
GST for short). Moreover, different tax rates are usually used in different countries even
though they use the same tax system. Finally, one country might use different tax rate
for different types of goods or services35.

In practice, a sales tax is traditionally applied on selling/buying transactions which
are occurred inside a country. Therefore, it is paid to this country and calculated ac-
cording to the sales tax system of this country. However, the Web (e.g., via e-commerce,
e-service, and e-marketing sites) provides a means for sellers to sell goods and services
for buyers from different countries, and vice versa. This new scenario raises the follow-
ing challenging questions. First, which sales tax system have to be applied: the system
applied in a buyer country or the system applied in a seller country? In addition, to
which of these countries this tax have to paid? Indeed, there is a strong debate regarding

33See ISO 4217 for currency list and corresponding currency code.
34http://ec.europa.eu/taxation customs/taxation/vat/index en.htm
35To have a look about countries tax rates, see: http://en.wikipedia.org/wiki/Tax rates around

the world

78

3.4. Requirements of Improving Web 2.0 Usability

to the right answers for these questions. On one hand, it is considered from legislation
perspective that the sales tax have to be paid to a buyer country, and according to the
sales tax system applied in this country, since this tax is paid by a buyer. On the other
hand, applying this in practice is considered very complex. For instance, assume the
sellers who are responsible to collect the sales tax, how they can calculate the sales tax
according to different sales tax systems. Also, how can sellers pay the collected tax to
different buyers’ country.

From users’ perspectives, it is important for them to know the following aspects when
they sell/buy goods or services on the Web. First, whether the sales tax is included or
excluded in the price values of goods or services. If so, they want to know the type of sales
tax system and the tax rate that are applied on the price of goods and services. From
sellers’ perspectives (i.e., authors), they need this to be able to add the value of sales
tax and to collect them correctly from buyers (i.e., readers). From buyers perspective,
they need to know how much they pay tax when they buy a good or service and also
they need this to be able to reimpose the amount of sales tax if they are mediator users
of these goods or services.

Finally, different countries represent the value of price CSCs in different ways. Also,
currency signs could precede price values or could succeed them, like the representation of
physical quantity CSCs discussed above. To conclude, the following context information
is related to price CSCs:

1. The local currency used to exchange a product or service

2. Whether the sales tax included or excluded, the sales tax system used, and the
sales tax rate.

3. The local writing format used to represent the value of a price

3.3.6 Context-Sensitive Contents: Summary

Table 3.2 below summarizes the aforementioned context-sensitive contents and their
corresponding context information. These cover the most common CSCs that almost
appears in all of the aforementioned Web 2.0 use cases.

3.4 Requirements of Improving Web 2.0 Usability

As already stated in Section 1.1, usability analysis aims at studying and analyzing the
effect of several aspects on the usability of users’ interaction with Web sites. According to

79

Chapter 3. Web 2.0 Use Cases and Users Local Contexts

Context-Sensitive
Local Context Information

Contents
Date/Time Time zone, date/time format
Number Numerals, number format

Telephone Country calling code, international prefix,
Number national prefix, phone format
Physical Quantity dimension, measure unit,
Quantity unit prefix, quantity format

Price
Currency, sales tax included/excluded,

sales tax system, sales tax rate, price format

Table 3.2: Relations between context-sensitive contents and local context information

the result of analysis, it also aims at specifying the requirement to address the potential
usability problems. In this sense, Web 2.0 use cases and the users’ local contexts used to
represent and interpret CSCs are the main aspects that affects on users/Web 2.0 sites
interactions.

Prior specifying the requirements of improving Web 2.0 usability, we have to empha-
size on the following aspects. First, Web users act as active Web authors who can create
and update Web contents, according to the aforementioned Web 2.0 use cases. Also,
they practice new browsing scenarios, in addition to the traditional browsing scenario.

Secondly, it is clear that the local context information is part of the CSCs′ seman-
tics, since Web users implicitly use their local contexts to represent and interpret these
CSCs. This proves that the representation of CSCs are incomplete, as we described in
Section 1.2.2. Moreover, these CSCs are very frequently appear in all the Web 2.0 use
cases as parts of Web contents that have predefined schema such as start and end dates
in calendar events (i.e., structured Web contents). Also, they could be also parts of
semi-structured/unstructured contents such as price contents inside Weblog entries. In
addition to CSCs described above, there are other types of Web contents that depend
on users’ local contexts such as personal naming conventions (e.g., person name may
start with first name or family name. Also, father name could be also included) [116],
notations and symbols for representing mathematical formulas and equations [83], and
geographical addresses.

Thirdly, since the representation of CSCs are not complete, Web users could en-
counter several discrepancies when they interpret these CSCs, and consequently they
require additional efforts to interpret these contents or even misinterpret them (i.e.,
inefficiency or inaccuracy problems).

80

3.4. Requirements of Improving Web 2.0 Usability

To improve Web 2.0 usability, there is a need to complete the representation of the
CSCs with their authors’ local contexts and to adapt them according to their readers’
contexts. In addition, the proposed solution to address this requirement has to consider
the aforementioned Web 2.0 use cases. To this end, the following interrelated issues have
to be tackled.

1. Semantic Information Identification and Representation

The first issue is related to the information required to identify the semantics of
Web contents (i.e., the type of CSCs) and the local context of Web users. As it
is shown above, Web contents in a single Web page might be created, updated,
and aggregated from different sources (i.e., authors and sites) and might involve
several types of CSCs. This implies that different Web contents from different
sources could refer to the same type of CSC. For example, different authors could
use cost, price, and amount contents to refer to the price concept. Therefore, the
following question has to be answered: what is the information required to identify
the semantics of a CSC, such that user’s application can interpret the type of this
CSC?

In addition, each type of CSCs is represented according to different types of con-
text information, As it is shown above. Therefore, the relations between CSCs

and their corresponding context information have to be represented at conceptual
(meta) level. This representation must be must inter-operable and flexible among
users’ applications. More precisely, it has to consider that values of CSCs from dif-
ferent sources are represented according to different authors’ local contexts, might
be aggregated by other Web sites or users’ applications, and need to interpreted
from different readers’ local contexts. Recall that, Section 2.2.2 discusses several
critica which need to be considered to select a suitable representation technique.
These are related to domain applicability, inter-operability, extensibility, context
model decoupling, and reasoning capability of the selected technique.

2. Local Context Management

In addition to the aforementioned issue, the local context information have to be
acquired and stored. Also, a suitable context information has to be associated
with each corresponding CSC at run time. Thus, the following questions have
to be addressed. First, how context information be acquired? More specifically,
has to be acquired directly from users or has to be acquired (predicted) by users’
applications? Second, When this information has to be acquired (i.e., before or

81

Chapter 3. Web 2.0 Use Cases and Users Local Contexts

during CSCs creation, update, and browsing)?

In addition, the local contexts of both authors and readers have to be accessible by
applications that perform the adaptation process. Accordingly, we should consider
how and where these local contexts are stored (i.e., on users’ devices, on Web site
data store, or both). Finally, the association of local context information with
CSCs should be hidden from the authors. In effect, we have to consider that
authors are non experts and often do not know the relations between CSCs and
local context information.

3. CSCs Adaptation

The ultimate requirement of our approach is to adapt CSCs to their multiple
readers’ local contexts in all Web 2.0 use cases. In addition to the above issues,
we need to deal with where and when the adaptation of CSCs have to be applied.
Indeed, this process can be performed at creation/update time, at aggregation
time, or at browsing time. Also, it can be deployed on users’ applications or on
servers that host Web 2.0 sites. Also, it can be deployed on intermediary servers
(see Section 2.2.4).

Having considered the above issues, the CSCs have to be adapted according to
readers’ contexts. This implies that Web readers have to specify their local con-
texts. In addition, a Web page to be adapted have to parsed in order to locate
CSCs from the entire Web contents involved in this page. Finally, the type of each
CSC has to be identified and the appropriate adaptation has to be performed.

82

Part II

Web 2.0 Usability Design

84

Chapter 4

Semantic Representation Model of CSCs

4.1 Introduction

To enhance the usability of users/Web 2.0 sites interactions, Section 3.4 identifies two re-
quirements: First, completing the representation of CSCs with their authors’ local con-
texts; second, adapting these CSCs according to their readers’ contexts. Also, it raises
three issues to be tackled in order to address these requirements: semantic information
identification and representation, local context management, and CSCs adaptation.

This chapter mainly aims at tackling the first issue. To this purpose, it initially
discusses several design alternatives and evaluate them with respect to Web 2.0 use
cases. As we will see, our evaluation is based on several design principles/criteria such
as do not repeat yourself principle (known as DRY).

Next, it introduces a semantic representation model. This model is basically based on
the notions of semantic object and local context ontology. Semantic object allows authors
to enrich (i.e., complete) the representation of CSCs with semantic metadata to facilitate
their automatic adaptations. This semantic metadata describes the underling semantics
of CSCs and provides an explicit description about their authors’ local contexts. Local
context ontology provides a mean for representing local contexts information, so that
users (authors and readers) can specify their local contexts. As will see in Chapter 6, it
becomes feasible for readers’ applications to adapt CSCs from their multiple authors’
contexts to their multiple readers’ contexts by utilizing this model.

Finally, an architecture is introduced at the end of this chapter. This architecture
assembles the components of our approach and illustrates how it works seamlessly with
the existing Web technology stack.

The rest of this chapter is structured as follows. Section 4.2 evaluates three design
alternatives. Section 4.3 discusses the semantic object notion and its related aspects.
Section 4.4 presents some common ontologies to be reused. Section 4.5 describes the

86

4.2. Design Alternatives

design of the local context ontology. Section 4.6 presents typical representation of CSCs

as semantic objects. Finally, Section 4.7 introduces our proposed architecture.

4.2 Design Alternatives

There are several design alternatives to address the Web 2.0 usability requirements iden-
tified in Section 3.4. Each of these alternatives relies on different ways to complete the
representations of CSCs with their authors’ local contexts and to adapt them according
to their readers’ contexts. This section identifies three design alternatives and evaluate
them based on the following design principles/criteria:

� Context representation flexibility. The extent that context representation can be
extended to satisfy all Web sites.

� Do not repeat yourself (DRY). The extents that the design alternative to be eval-
uated comply with DRY principle [3]. This principle is discussed in more details
in Section 2.3.3.

� Number of CSCs adaptation. How many times CSCs have to be adapted during
their life cycle (i.e., creation, update, and browse).

� Inter-operability. The extent that the representations of CSCs together with their
authors’ local contexts are inter-operable among users’ applications and Web sites,
so that the former can be adapted according to their readers’ contexts.

4.2.1 Adaptation to a Standard Local Context

The first alternative imposes a standard, unified local context for all Web sites. Then,
each CSC needs to be annotated with a standardized machine interpretable version
(referred to as MV). The latter is generated by adapting the value of CSC from its
author’s local context to a standard context at creation and update time. Additionally,
there is a need to adapt the MV into different human-readable versions according to the
different readers’ contexts.

In practice, we can rely on Microformats1 for embodying this alternative. As already
mentioned in Section 2.3.3, Microformats propose a set of standards, called specifications,
and reuse XHTML attributes such as id and class to embed these specifications into
XHTML documents. Indeed, Microformats specifications standardize the representation
of Web contents at different three levels as follows:

1See http://microformats.org/wiki/

87

Chapter 4. Semantic Representation Model of CSCs

� Schema level. Each proposed specification has a specific schema identified by a
main concept and a set of sub-concepts (called class and subclasses). In addition,
the cardinalities (e.g., required, optional, many) and the ordering of the subclasses
for each schema are also identified. For example, hCard specification is identified
by vcard as main class, fn and n subclasses at minimum (i.e., required classes),
and a set of optional subclasses such as email, photo, and adr. In addition, a
subclasses could have other subclasses. For instance, adr subclass has a set of
subclasses such as postal-code and country-name.

� Concept level. A specific vocabulary (i.e., Semantic label) is dedicated for each
class and subclass involved in Microformats specifications.

� Representation level. A specific representation is identified for the value of each
class and subclass. Authors should follow these representations as much as possible,
so that Microformats parsers can interpret these values. However, if some Web
contents are not interpretable from either human or machine (e.g., CSCs), then
authors need to provide two versions of these contents: one for human and one
for machine (i.e., MV). In this context, the authors have to follow Microformats
design patterns, to ensure correct interpretation of these MV s.

Accordingly, the local context information used to represent CSCs is standardized at
one or more of these levels. To better understand this, the following gives an insight on
the way Microformats standardize the local context information of the date/time and
length contents.

With respect to date/time contents, Microformats community proposes a design pat-
tern called date/time design pattern. This pattern recommends to annotate a date/time
content with an MV based on the numeric ISO 8601 date/time standard. Hence, the
local context information related to date/time contents is standardized at representa-
tion level as follows. The date style is always short (i.e., numeric), and the date/time
format is from most to least significants (i.e., from year to second). Also, the time zone
is included in the MV value.

With respect to date/time contents, Microformats community proposes an hMeasure

specification with num and unit as required subclasses, and type and tolerance as op-
tional subclasses. In addition, it recommends to use an abbr design pattern to annotate
the length contents (physical quantities in general) with MV numerical amount and
MV unit code. The MV numerical amount is based on a specific free-context grammar
pattern (called Extended Backus-Naur Form, or EBNF pattern) and with scale factor

88

4.2. Design Alternatives

equal 1. Also, the MV unit code is based on the official unit codes of the international
system of unit (SI) or other unified units codes for other non-SI units2. Therefore, the
local context information used to represent length contents is standardized at schema
and representation levels.

Example

To better understand this alternative and its consequences on the Web 2.0 use cases,
Figure 4.1 illustrates the adaptation of the date CSCs presented in Section 1.2.1 using
this alternative. Here, The date contents in pages A and B are annotated with suitable
MV s. Then, they are aggregated to page C.

In page A, an MV version is firstly generated from the date CSC updated3 by the
American author at task T3. Secondly, the generated MV and the date subclass from
the vCalender specification are embedded inside the XHTML tag used to represent this
CSCs (i.e., abbr tag). Note that, this is performed using the abbr design pattern.

Similar scenario is performed for generating and embedding an MV for the date CSC

created by the Canadian author in page B. Next, these dates and their corresponding
MV s are aggregated like “copy and past” from pages A and B to page C (i.e., Task
T5). Finally, The MV s are adapted according to the French reader’s context at Task 7.
Note that, the length CSCs are adapted in similar way, as it is partially shown in this
example.

Discussion

This alternative allows CSCs from several sites to be aggregated seamlessly as they are
annotated with unified MV s. However, it violates the DRY design principle. Indeed,
each CSC needs to be represented twice (in the text and in the MV), and therefore
needs to be maintained twice. For instance, when an author updates an annotated CSC,
then both versions need to be updated.

In addition, it lacks flexibility and may not satisfy the requirements of all Web
sites. For instance, the value of sales tax are almost added to the value of price CSCs.
As already discussed in Section 3.3.5, most Europe countries use VAT system (with
different tax rates for each country), while Australia uses GST system with 10% as a
tax rate. Up to the date of writing this section (i.e., July 22, 2010), all Microformats
specifications that include price CSCs such as hListing, hProduct, and hReview do not

2More information available on: http://microformats.org/wiki/measure.
3Before it is updated, this date is not shown in this Figure

89

Chapter 4. Semantic Representation Model of CSCs

W
eb

 2
.0

 s
it

es
U

se
rs

’
A

p
p

li
ca

ti
o

n
s

Web Browser

1 986 735,17 m
9 139 303,64 m

09/07/2009
10/09/2009

Web Editor

1 234,50 mi

2009-09-10

2009-09-11

. . .

<abbr . . .>1 234,50 mi </abbr>

<abbr class="dtstart" title='20090910T-5:00'>

2009-09-10</abbr>

<abbr . . .> 2009-09-11</abbr>

. . .

B

<abbr . . .>5,678.90 mi </abbr>

<abbr class="dtstart" title='20090709T-8:00'>

07/09/2009</abbr>

. . .

A

<abbr . . .>1 234,50 mi</abbr>

<abbr . . .>5,678.90</abbr>

<abbr class="dtstart" title='20090709T-8:00'>

07/09/2009</abbr>

<abbr class="dtstart" title='20090910T-5:00'>

2009-09-10</abbr>

C

Browses

(T7)
Deletes

(T4)

. . .

Updates
(T3)

Adaptation

Web Editor

5,678.90 mi
(08/07/2009)

Adaptation Adaptation

An American
Author

A Canadian
Author

A French
Reader

Aggregates
(T5)

Figure 4.1: Adaptation to a Standard Local Context: Illustration Example

consider the representation of sales tax value that might be added to price CSCs. In
contrast, introducing new Microformats specifications or extending existing ones require
an extensive discussion with the Microformat community for a general adoption, as
already mentioned in Section 2.3.3. Finally, each CSC needs to be adapted twice: one
from the author’s version to the MV version and one from the latter to the reader’s
version.

4.2.2 Adaptation to a Single Page Local Context

The second alternative imposes a unified local context for each Web page. In this setting,
the value of each CSC has to be adapted from an author’s context to a page’s context at
creation and update time. Also, its value has to be adapted from one page’s context to
another page’s context at aggregation time, as each page has a unified context. Finally,
there is a need to adapt its value to different readers’ contexts at browsing time.

In practice, this alternative can be embodied using a specific representation model for
each Web page (or for each Web site in general). The role of the representation model is
to represent the context information and their relations with CSCs at conceptual level.
According to this model, the context information for both a Web page and users (i.e.,
authors and readers) have to be specified and stored. Then, each CSC is adapted from
one context to another by utilizing one or more conversion functions. Each function

90

4.2. Design Alternatives

takes this CSC and its suitable context information related to both a Web page and a
user as parameters. Then, convert the former from one context to another (i.e., from an
author’s to a page’s context, from a page’s to another page’s context, or from a page’s
to a reader’s contexts).

Example

To understand the consequence of this alternative on Web 2.0 use cases, let us assume
French, Canadian, and American local contexts are associated with pages A, B, and C
involved in our example (Figure 1.1), respectively. Also, let us assume that a number of
adaptation functions are utilized to adapt CSCs from users’ to pages’ contexts and vice
versa, as it is shown in Figure 4.2.

In page A, Web contents created by the British author at task T1 are adapted
according to the French context (i.e., the context of the page A). Then, they are adapted
according to the context of the American author when he browses these contents at Task
T2. Afterwards, they are adapted again to the French context after this author updates
and republishes them again at task T3. In page B, there is no need to adapt CSCs

when the Canadian author interacts with this page, as they have the same contexts (i.e.,
Canadian context).

Next, the contents of pages A and B are adapted to the American context when they
aggregated to page C at task T5. Finally, the contents of page C are adapted to the
French context when the French author browses them at task T7.

Discission

This alternative does not violate the DRY principle and does not impose a standard con-
text for all Web sites. Moreover, Web contents in a single Web page are homogeneously
represented. However, CSCs need to be adapted many times. These adaptations are
often not necessary. For instance, assume the British author above needs to update the
date content he created before. Here, this date needs to be adapted to his context, since
it was adapted from his context to the page’s A contexts at creation time. Also, it needs
to be adapted again from his context to the page’s A contexts after the last update.
In addition, when the date and length contents are aggregated from pages A and B to
page C, then other unnecessary adaptations are needed to adapt the aggregated contents
according to the context of page C.

Finally, this alternative has to consider the inter-operability of the representation
model among users applications (i.e., Web editors and browsers) and a specific Web

91

Chapter 4. Semantic Representation Model of CSCs

W
eb

 2
.0

 s
it

es
U

se
rs

’
A

p
p

li
ca

ti
o

n
s

Web Browser

1 986 735,17 m
9 139 303,64 m

09/07/2009
10/09/2009

Web Editor

1 234,50 mi

2009-09-10

2009-09-11

1,234.50 mi

5,678.90 mi

 07/09/2009

09/10/2009

Browses

(T7)

. . .

Web Editor

5,678.90 mi
(08/07/2009)

Adaptation

An American
Author

A Canadian
Author

A French
Reader

Web Editor

5,678.90 mi

07/08/2009

A British
Author

Adaptation
Aggregates

(T5)

1 986 735,17 m

09/07/2009</span

. . .

Updates
(T3)

A

1 234,50 mi

 2009-09-10

 2009-09-11

. . .
B

C

Deletes
(T4)

Creates
(T1)

Adaptation Adaptation

Browses
(T2)

Adaptation

Canadian
Context

French
Context1 986 735,17 m

07/08/2009</span

. . .

A

French
Context

American
Context

Figure 4.2: Adaptation to a single page Local Context: Illustration Example

page, and also among Web pages from different Web sites. In other words, the represen-
tation model has to rely on a common conceptualization basis in order to ensure correct
adaptations from one context to others (See Section 4.3.3).

4.2.3 Annotation of CSCs with Authors’ Local Contexts

Instead of imposing a standard or a single local context, the third alternative is to
annotate CSCs with their authors’ contexts at creation and update time, and to adapt
the annotated CSCs to their different readers’ contexts at browsing time.

In practice, this alternative also requires a representation model to represent the
context information and their relations with CSCs at conceptual level. Based on this
model, the context information for Web authors and readers have to be specified and
stored. Then, the annotation process is utilized to annotate each CSC with a suitable
author’s context information. Finally, the adaptation process is utilized to adapt the
annotated CSCs to different readers’ contexts.

The main difference between this alternative and the previous one as follows. Instead
of adapting CSCs from their authors’ to a single page’s context at creation/update
time, it annotates each CSC with a suitable author’s context information. Then, the
annotated CSCs are adapted to their readers’ contexts at browsing time.

92

4.2. Design Alternatives

Example

Figure 4.3 illustrates the annotation and adaptation of CSCs, mainly date CSCs, pre-
sented in Figure 1.1 with corresponding authors’ contexts information. Here, it is as-
sumed that the contexts of users are represented and also a number of annotation and
adaptation modules are installed.

In page A, the date CSC created at task T1 is annotated with date format and
time zone information related to the British author’s context. Then, the contents of this
page are adapted according to the American author’s context when he browses them at
task T24. Afterwards, when this author updates the date CSC involved in this page
at task T3, the annotation is also updated according to his context. In page B, no
adaptation and annotation is needed when the Canadian author interact with this page,
as he browses and deletes contents he created before.

Next, the contents of pages A and B together with their annotation are aggregated to
page C at task T5. Finally, the contents of the latter are adapted to the French context
when the French author browses them at task T7.

Annotation
Browses

(T2)
Updates

(T3)
W

eb
 2

.0
 s

it
es

U
se

r
s’

 A
p

p
li

c
a

ti
o
n

s

Web Browser

1 986 735,17 m
9 139 303,64 m

09/07/2009
10/09/2009

Web Editor

1 234,50 mi

2009-09-10

2009-09-11

. . .

Web Editor

5,678.90 mi
(08/07/2009)

An American
Author

A Canadian
Author

A French
Reader

Aggregates
(T5)

Web Editor

5,678.90 mi

07/08/2009

A British
Author

<div. . .>1 234,50 mi </div>

<div. . .>5,678.90 mi </div>

<div. . .>07/09/2009

</div>

</div> . . .

<div. . .>1 234,50 mi </div>

<div. . .>2009-09-10

</div>

<div. . .> 2009-09-11<div> . . .

B

<div. . .>5,678.90 mi </div>

<div. . .>07/09/2009

</div> . . .

<div. . .>5,678.90 mi </div>

<div. . .>07/08/2009

</div> . . .

A

A
C

Creates
(T1)

Deletes
(T4)

Browses

(T7)

AdaptationAnnotationAnnotation

Aggregates
(T5)

AdaptationAdaptation

Figure 4.3: Adaptation to a Standard Local Context: Illustration Example

4At this task, this author is considered as reader, as already mentioned before

93

Chapter 4. Semantic Representation Model of CSCs

Discussion

This alternative does not violate the DRY principle and does not impose a standard
or a single context. Furthermore, it preserves the initial Web contents as they were
submitted to the Web page, which may be useful for their in-depth understanding or
analysis. Also, it optimizes the number of required adaptations of CSCs. However,
this alternative has to consider the inter-operability issue related to the representation
model.

4.2.4 Design Alternatives: Conclusion

Our proposal is to adopt the third design alternative, since it is the best tradeoff with
respect to the identified design criteria/principles, as summarized in Table 4.1 below.

Design Alternatives
Standard Single Page’s Multiple Authors’
Context Context Contexts

Context Representation
No Yes Yes

Flexibility
DRY Compliance No Yes Yes

No. of Adaptations Twice Many Once

Inter-operability Inter-operable
Require a common Require a common
conceptualization conceptualization

Table 4.1: Evaluation summary of the design alternatives.

However, several issues related to this alternative are not addressed yet, in addition to
the above inter-operability issue. First, there are several annotation techniques (mainly
external and internal). Each technique relies on different technologies to annotate CSCs

as semantic objects, and it has several consequences on Web 2.0 use cases. Second, as
Web authors are usually non-expert users, annotation of CSCs is still a complex process.
Indeed, we should consider that authors often do not know the relations between CSCs

and local context information. They also do not have theoretical and technical knowledge
about the annotation process. Therefore, it is difficult for authors to do it manually. On
the other hand, automating this process is questionable and could leads to undesirable
results, since automatic annotation faces the problem of concepts disambiguation, as it
was discussed in Section 2.3.1. Therefore, Web authors should be assisted to accomplish
this process. For instance, when an author needs to update a CSC created by another
author, the Web editor must take care to update the annotation too (hidden from the
user).

94

4.3. Semantic Object

The rest of this chapter addresses the design of the representation model and its
related inter-operability issue. The issues related to CSCs annotations and adaptation
will be discussed in Chapter 5 and Chapter 6, respectively.

4.3 Semantic Object

The adopted design alternative requires a model to enrich (annotate) each CSC with a
suitable author’s context information. To this end, our representation model is mainly
built based on the notion of semantic object. Basically, the idea of semantic object lies
into enriching data objects with explicit context information in the form of metadata to
facilitate their automatic interpretations among heterogenous systems.

The semantic object notion has initially used in [100] to exchange data objects among
heterogenous databases. Afterwards, MIX model [24] has used semantic object to auto-
matically integrate semi-structured, complex data objects (e.g., air flight information)
from heterogenous Web-based applications to an intermediary Web-based application
(i.e., from online reservation systems to an intermediary travel agent). Finally, it has
used by Mrissa et al. [82] to annotate data objects exchanged between Web services
(i.e., message elements of WSDL5 document) with context information related to their
providers, so that this annotation facilitates automatic data mediation during Web ser-
vices composition.

Following these approaches, semantic object notion is used in our approach to enrich
the representation of CSCs with semantic metadata in order to allow their automatic
adaptation in Web 2.0. Semantic metadata consists of a set of context attributes to
explicitly describe the local context information used by an author to represent a CSC.
In addition, it consists of a concept that specifies the relation between a CSC and the
real world aspect it describes (e.g., date). A semantic object SemObj can be formalized
as a triple as follows:

SemObj = 〈S, V,C〉, such that

� S represents a real world concept that the SemObj adheres to.

� V is the physical representation (the value) of CSC.

� C specifies a minimum set of local context attributes {c1, c2, ..., cn}, n ∈ N. These
attributes are used by an author to represent the value V of the SemObj. Also,

5WSDL refers to Web Service Description Language.

95

Chapter 4. Semantic Representation Model of CSCs

they are needed to automatically adapt the value V of the SemObj to other users’
local contexts.

Example

As already described in Section 3.3, Web authors represent date CSCs using different
date formats and different time zone conventions. According to the semantic object
notion, this information has to enrich the representation of date CSCs, as context
attributes C, in order to facilitate their adaptation. Figure 4.4 illustrates the repre-
sentation of the date CSC from our scenario updated by the American author during
Task T3 as a semantic object (see Figure 1.1). Here, date refers to the date concept
S. ‘07/09/2009’ represents the value V of the date CSC. Finally, context consists of
two context attributes: date-format with the value mm/dd/yyyy and time-zone with
the value -08:00.

<date, ‘07/09/2009’, C >

 Context ‘C’

<time-zone, ‘-08:00’> <date-format, ‘mm/dd/yyyy’>

Concept ‘S’ CSC ‘V’

Date SemObj =

Figure 4.4: Sample of date semantic object

4.3.1 Static and Dynamic Context Attributes

In the above example, the date format and time zone attributes provide enough context
information to automatically adapt the above date SemObj into different readers’ con-
texts. Indeed, the date SemObj can be adapted to other date formats and time zones,
as the latter attributes are specified explicitly.

However, the values of these context attributes are often difficult to specify. For
instance, an author might face difficulty to specify the value of time zone convention,
as s/he simply might not know it. Also, several countries use the daylight saving time
convention to adjust the clock forward one hour near the start of the spring season and
adjust it backward one hour near the start of the autumn season. In contrast, it is easier
for authors to specify the name of the city related to this time zone instead. Then, the

96

4.3. Semantic Object

name of the city can be used to determine the time zone convention, since the latter
depends on the geographical location of this city.

Similar scenario might be happend with respect to the date format attribute. In
practice, it is difficult for users to specify the value of date formats, even they implicitly
represent date CSCs according to their local date formats. In practice, the members
of a community normally share the same date formats (i.e., by conventions). Hence,
the value of date format attribute can be determined from the community that a user
belongs to. As we will see next, a community can be identified by the natural language
used by its members together with the country that they live in. The specification of the
latter values (i.e., language and country values) are considered not difficult (see relations
between community and community conventions in Section 4.5).

From readers’ perspectives, the adaptation of CSCs could also depend on context
information whose values are dynamic. For example, the adaptation of a price content
depend on the currency exchange rate between author’s and readers’ currencies. This
rate could be changed each day or several times per day. Therefore, it is not easy or
even impossible to store its value statically. However, its value can be calculated if the
values of the two currencies and the time of exchange are known. Also, the adaptation
of a telephone number contents depends on the value of international prefix attribute.
This attribute varies based on countries of readers who browse this telephone number
(see Section 3.3.3). Thus, this value can be specified at browsing time only.

To simplify the specification of their values, we use the semantic object notion to
represent local context attributes C as semantic objects. Each attribute may be enriched
with a set of additional context attributes in a tree structure fashion. The leaves of
the context tree are SemObj with zero context attribute6. Hence, the local context
attributes C can be formalized as a finite set of SemObj as follows:

C = {〈S1, V1, C1〉, . . . , 〈Sn, Vn, Cn〉}, n ∈ N.

Additionally, we exploit the categorization that has been introduced in [82] and cate-
gorize context attributes into two subsets: static and dynamic. Dynamic attributes refer
to context attributes that are often difficult to specify or difficult to store their values.
Furthermore, their values can be inferred from the values of other context attributes.
Consequently, each dynamic attribute is enriched with additional one or more context
attributes. The values of the latter attributes are used to infer the value of this dy-
namic attribute. In contrast, static attributes refer to context attributes whose values

6Local context C for the leaves SemObjs is an empty set.

97

Chapter 4. Semantic Representation Model of CSCs

can be easily7 specified by users and can be statically stored. Furthermore, the values of
these attributes are usually used to determine the values of other context attributes (i.e.,
dynamic attributes). Consequently, the values of static attributes have to be specified
explicitly.

In conclusion, dynamic attributes are represented as semantic objects that have one
or more context attributes. The latter could be dynamic or static attributes. Static
attributes are represented as leaves semantic objects and their values have to be explicitly
specified. The values of leaves semantic objects are used to determine the value(s) of
dynamic attribute(s) that exist at higher level, and the value(s) of the latter determine(s)
the values of the attributes at the higher level. This is recursively continued until all
values in the context tree are determined.

As we will see next, the design of local context ontology complies with this catego-
rization and provides a mean to infer the values of dynamic attributes from the values
of static ones (See Section 4.5).

Example

In Figure 4.5, we refine the representation of the above date semantic object using the
notion of static and dynamic attributes. As already mentioned, it is difficult to specify
the date format and time zone attributes. As a consequence, we represent them as
dynamic attributes and enrich each of them with a set of additional context attributes.
Here, the time zone attribute is enriched with two static attributes: city and country.
The values of the latter attributes is specified explicitly (i.e., ‘California’ and ‘US’) and
used to determine the value of the time zone attribute (i.e., ‘- 08:00’).

Similarly, the date format attribute is enriched with country, language, and dateStyle.
These attributes are also represented as static attributes with ‘US’, ‘EN’, and ‘short’ as
explicit values, respectively. Finally, these values determines the values of dateFormat

(i.e., mm/dd/yyyy).

4.3.2 Usability Vs. Flexibility

In an ideal situation, inferring dynamic attributes from static ones simplifies the spec-
ification of context information, as the inferred values usually represent the intended
context information that users want. In a real world situation, some users may prefer
specific values other than the inferred values.

7By easy, we mean that users are able to specify the values of these attributes accurately and without
require additional efforts (e.g., time) to specify them. In other words, we refers to the effectiveness and
efficiency criteria defined in Section 1.2.2

98

4.3. Semantic Object

Context ‘C’

<time-zone, ‘-08:00’, C > <date-format, ‘mm/dd/yyyy’, C >

<date-style, ‘Short’> <country, ‘US’><language, ‘en’>

Concept ‘S’ CSC ‘V’

<city, ‘California’>

Dynamic Static

<date, ‘07/09/2009’, C > Date SemObj =

Figure 4.5: refined version of the aforementioned date semantic object

One could argue that users can simply change one or more static attribute related
to the preferred dynamic attribute in order to get the value of the latter. However, the
value of a static attribute is usually used to determine the values of several dynamic
attributes, and vice versa. Consequently, the values of one or more dynamic attributes
that a user intends to keep them are changed as long as the value(s) of static attribute(s)
related to them are changed. In conclusion, there will always be a contradictive scenario
between dynamic attributes that depend on the same static attribute(s).

To illustrate this, assume the American author in the above date semantic object
lives in London, and he need to represent this date according to the American date
format. Thus, he needs to specify the value of country and city as ‘UK’ and ‘London’
in order to infer the time zone related to the London city (i.e., ‘00:00’). On the other
hand, he needs to specify the values of country, language, and timeStyle as ‘US’, ‘EN’,
and ‘short’ in order to infer the American date format (i.e., mm/dd/yyyy). However,
the author can only choose one country value. Therefore, one of the inferred values does
not express the intended value that this author wants.

To allow users specify context information in usable and flexible manner, we utilize
the following strategy. First, relying on the values of static attributes to infer the values
of dynamic attributes, as already described above. Second, let authors to specify or
change the values of one or more dynamic attributes as long as they want specific values.
Hence, the specified values of these attributes override the inferred values in this case.
For instance, the American author can specify the value of time zone attribute explicitly
in the above example (i.e., ‘00:00’).

99

Chapter 4. Semantic Representation Model of CSCs

4.3.3 Semantic Object Inter-Operability

The use of semantic object notion provides an explicit and self-contained representation
of CSCs. However, readers’ applications must agree on this representation in order to
interpret and adapt these objects. This implies that authors’ and readers’ applications
(i.e., Web editors and Web browsers) must be based on a common conceptualization.

The term Common conceptualization refers to an agreement and commitment by
multiple applications about a domain of discourse, so that they can inter-operate in
consistent manner. In contrast, these applications do not necessarily have the same
experiences, theories, or prescriptions about that domain [50]. Basically, a common
conceptualization is a prerequisite to foster the inter-operability of semantic objects.

From technical viewpoint, relying on ontologies for achieving a common conceptual-
ization is considered as a reliable design strategy in Web domain. In effect, it is highly
recommended as best design practices to consider existing ontologies, standards, and
any other resources in the same or similar domains. There are many common ontologies
available on the Web and they cover almost all domains. Concepts (vocabularies) from
common ontologies can be directly reused, refined, extended, or simply used for defining
mappings from new concepts to the existing ones. In addition, existing standards and
resources can be indirectly exploited to design new ontologies in case there is no com-
mon ontology that covers the intended concepts or domain [91]. Then, concepts from
existing common ontologies or from new ones can be used by participated applications
to consistently inter-operate.

With respect to semantic objects inter-operability, three levels of common concep-
tualization can be identified. Each level allows users’ applications to interpret a specific
aspect of these objects as follows:

� Level 1. The real world concepts S that SemObjs adhere to are common. This
level allows users’ applications to interpret the relations between CSCs and the
real world aspects they describe, as already described. However, it does not allow
these applications to adapt the values of these CSCs according to their readers’
contexts.

� Level 2. The minimum set of local context attributes used to represent and
interpret CSCs are common (Figure 4.4 shows the representation of date CSC

with a minimum set of context attributes). This levels allows readers’ applications
to adapt the values of these CSCs as long as the values of these attributes are
known.

100

4.3. Semantic Object

� Level 3. The relations between static and dynamic context attributes are common.
This allows readers’ applications to adapt the value of CSCs as long as the values
of their corresponding static attributes are known. Indeed, readers’ applications
infer the values of dynamic attributes from the values of the corresponding static
attributes, and then adapting their values according to readers’ contexts, as already
described above.

In an ideal situation, the above three levels have to be reached among users’ applications
to ensure a full interpretability of semantic objects. However, the third level restricts the
extensibility of the context model, as the relations between static and dynamic contexts
attributes have to be common. In practice, any change on these relations requires
agreements and commitments by all participated users’ applications. In addition, this
level adds extra overhead on readers’ applications, as they need to infer the value of
dynamic attributes related to both authors’ and readers’ contexts. Note that, there is
an overhead added on these applications, as they have to adapt the values of SemObjs.

Alternatively, we can rely on the second level above. This level ensures a consistent
inter-operability among users’ applications as long as they agree on concepts S and the
minimum set of contexts attributes for each semantic objects. Also, it does not restrict
the extensibility of the context model, since each user’s application is responsible for
managing the relations between static and dynamic context attributes related to his
user (i.e., inferring the dynamic attributes from the static ones). However, as we will
see in the next chapter, it imposes a restriction on the way context attributes are stored
and also on the way they are associated with CSCs.

Therefore, we set a strategy, which relies on the level 2, to ensure a consistent inter-
operability of semantic objects among users’ applications as follows:

� Reusing a number of common ontologies available on the Web to identify map-
pings from the concepts S to concepts from these ontologies. The role of these
mappings is to push the concepts S that SemObjs adhere to them into a common
conceptualization (i.e., achieving level 1 described above).

� Introducing an ontology, called local context ontology, to push the local context
information used by users to represent and interpret CSCs into a common con-
ceptualization. This ontology assembles all context information into a complete
conceptual model based on a set of existing local conventions standards. Also, it
embodies the relations between static and dynamic context attributes.

101

Chapter 4. Semantic Representation Model of CSCs

� Evaluating several annotation alternatives. On the basis of this evaluation, the
RDFa specification is utilized to associate each CSC with a concept S and its
corresponding minimum set of context attributes.

The introduced context ontology is core element of this strategy. It provides vocabu-
laries that allow both authors and readers to specify their own context information (at
least static attributes). Also, it allows their applications to infer the values of dynamic
attributes from the values of static ones. Users’ applications can directly rely on this
ontology or they can extend it according to their specific requirements. Finally, the
third step ensures a common relations between CSCs, concepts S, and a set of con-
text attributes C, as the RDFa specification is a W3C recommendation and therefore
it is considered common in the Web domain. In the following sections, we discuss the
first and the second steps in more details. The third step will be discussed in the next
chapter.

4.4 Reuse of Common Ontologies

On the basis of the strategy introduced in Section 4.3.3, a number of ontologies available
on the Web are investigated to be reused. The following list summarizes some of the
investigated ontologies:

� vCard is a specification used for describing people and organizations based on
RFC 24268 standard. W3C introduces an ontology to represent this specification
as a Web standard. The RDF version of this standard is available on: http:

//www.w3.org/2001/vcard-rdf/3.0#.

Several vocabularies from the vCard ontology can be reused to provide common
concepts S for several semantic objects. For example, tel vocabulary can be reused
as a common concept S to refer to telephone number CSCs. Also, tz can be reused
to refer to the time zone context attribute.

� vCalendar (vCal) is another RFC specification used for describing events and
calendar information9. Also, W3C introduces an ontology to represent this spec-
ification. the RDF version of this ontology is available on: http://www.w3.org/

2002/12/cal/ical#.

8Available on http://www.ietf.org/rfc/rfc2426.txt
9Available on http://www.ietf.org/rfc/rfc2445.txt

102

4.4. Reuse of Common Ontologies

As vCalendar is dedicated to describe events, it provides rich vocabularies re-
lated to date and time CSCs. For example, dtstart, dtend, dtstamp, rdate,
and lastModified can be reused to refer to the date and/or time CSCs. Also,
V timezone can be also used to refer to the time zone context attribute.

� Dublin Core (dc) is a set of metadata elements (vocabularies) that are used for
describing resources such as electronic documents, video, text, etc. The semantics
of Dublin Core metadata were established and maintained by an international,
cross-disciplinary group of professionals from librarianship, computer science, text
encoding, museums, and other related fields. Initially, Dublin Core Metadata
Initiative (DCMI) has introduced fifteen metadata elements for describing elec-
tronic documents called Simple Dublin Core metadata. The RDF version of these
metadata is available on: http://purl.org/dc/elements/1.1. Then, additional
metadata vocabularies have been introduced and called Qualified Dublin Core.
Qualified Dublin Core includes three additional elements (Audience, Provenance
and RightsHolder), as well as a group of element refinements (also called quali-
fiers) that refine the semantics of the elements in such ways that might be useful
in resource discovery10. The RDF version of the qualified Dublin Core metadata
are available on: http://purl.org/dc/terms/.

Several vocabularies from Dublin core metadata can be reused to cover the concept
S. For example, date, created, issued, and modified vocabularies can be reused
as S to refer to date CSCs. Also, the language vocabulary can be reused to refer
to the language context attribute.

� The Friend Of A Friend (FOAF) ontology provides vocabularies that are used to
mark up people and their relationships with others such as personal information,
interests, mail box, etc. W3C introduces an RDF-based version of FOAF as a Web
standard. This standard is available on http://xmlns.com/foaf/0.1/.

� W3C Units ontology (un) is introduced by W3C for representing units of measure
as members of class unit. The purpose of unit ontology is to provide a set of unit
instances as common vocabularies used to measure physical quantities. Each unit
instance is represented using the common measure code of this unit. For example,
the instance of meter is represented using m measure code. Therefore, we can
reuse the unit class as a common vocabulary for our unit context attribute and

10More information available on http://dublincore.org/

103

Chapter 4. Semantic Representation Model of CSCs

the unit instances as values V for this attribute. The RDF version of the units
ontology available on: http://www.w3.org/2007/ont/unit#.

� Measurement Units Ontology (muo). is another ontology dedicated for represent-
ing units of measures, unit prefixes, physical quantities, and the relations between
them. It has three main classes: UnitOfMeasurement, PhysicalQuality, and
Prefix. It also has a MeasuredIn property that defines a relation between the
former two classes (i.e., PhysicaQuality: MeasuredIn: UnitOfMeasurement).
In addition, this ontology provides a number of instances for the above classes.
The objective of the latter is to provide vocabularies used to refer to the most
common units of measure (e.g., meter and gram), physical quantity (e.g., length
and weight), and measure prefixes (e.g., kilo and mega). Hence, we can reuse this
ontology to refer to the physical quantity CSCs and context attributes related to
them. The OWL version of this ontology available on: http://purl.oclc.org/

NET/muo/muo-vocab.owl.

� Good Relations (gr) is a lightweight common ontology that provides a set of vo-
cabularies to allow users (i.e., sellers, manufacturers, and online shop operators)
to express the meaning of their offers made on the Web in a machine readable way.
It provides rich vocabularies related to price CSCs and its context attributes.
For example, the concept PriceSpecification is used to specify the prices of of-
fers (i.e., products or services). Thus, the latter can be reused to refer to price
CSCs. Also, the PriceSpecification has several attributes such as hasCaurrency,
hasCurrencyV alue, and valueAddedTaxIncluded. These attributes can be reused
as common vocabularies to refer to context attributes. The RDF version of this
ontology available on: http://purl.org/goodrelations/v1.

� DBpedia Ontology is cross-domain ontology, which has been manually created
based on the most commonly used infoboxes within Wikipedia. Infoboxes are
templates that represent structured data contained in many Wikipedia articles.
Indeed, the Infoboxes are classified into hierarchy consists of 170 ontology classes
and linked together using 720 ontology properties. Therefore, this ontology pro-
vides huge number of vocabularies. In addition, there are a huge numbers of
instances created for each of the DBpedia class. For example, country and city

are two classes covered by the DBpedia ontology. The instances of these classes are
almost consists of all world’s countries and cities. These instances can be reused
as domains for these concepts.

104

4.5. Local Context Ontology (LCO)

These ontologies are considered as a good starting point towards common conceptual-
izations. They provide rich vocabularies that almost cover all concept S and context
attributes C for the above semantic objects. Also, they are adopted by an increasing
numbers of users. Finally, the instances created by these ontologies (e.g., the instances
of units and the instances of countries and cities) can be reused as common domains for
several context attributes.

However, the relations between concepts in these ontologies are specified in different
ways, and oriented to the application domains that already designed for. More specifi-
cally, these relations do not specify the underlying relations between CSCs and context
attributes, such that the latter can be adapted to different readers’ contexts. For in-
stance, ontologies that provide concepts to refer to price CSC are almost do not specify
the price format attribute.

Consequently, we rely on these ontologies to identify a direct mapping between the
concepts S that SemObjs adhere to and concepts from these common ontologies. Ta-
ble 4.2 presents these mappings. Note that the URIs of these concepts are presented
using a CURIE syntax11. In addition, these ontologies are indirectly exploited in the
design of the local context ontology described in the next section.

4.5 Local Context Ontology (LCO)

In the above proposed strategy, we identify the following two roles of the LCO. First,
assembling local context information into a complete conceptual model and pushing
them into a common conceptualization. Second, embodying the relations between static
and dynamic context attributes.

This section details the design of the LCO. We start by discussing our interpretation
of the local context definition. Then, we reflect this interpretation into a set of concepts
and relations between them in the LCO. In addition, we backing our design by a set of
initiatives and standards that consider one or more aspects related to local context.

11CURIE (or compact URI) is abbreviated syntax introduced by W3C for expressing URI of a vo-
cabulary as a prefix:reference. The prefix is a mapping from ontology URI to such abbreviation,
and the reference represents the vocabulary itself. For instance, vCard : dtstart is a CURIE syn-
tax, such that vCard is a compact mapping from the URI: http://www.w3.org/2001/vcard-rdf/3.0#
to vCard prefix and dtstart is the vocabulary itself. More information about CURIE available on:
http://www.w3.org/TR/curie/.

105

Chapter 4. Semantic Representation Model of CSCs

Concepts S
Concepts From

Description
Common Ontologies

Date/Time

vCal:dtstart, vCal:dtend, A time duration during a particular day, or
vCal:dtstamp, vCal:rdate a day of a month or a year represented
dc:date, dc:created, within a calendar system
dc:issued, dc:modified

Price gr:PriceSpecification
A numerical monetary value, in a specific
currency, assigned to a good or a service to
exchange them between sellers and consumers

Physical un:quantity

A representation of a quantifiable entity

Quantity mou:PhysicalQuantity

such as length, weight, and temperature.
Each entity is called quantity dimension and
measured using a combination of a number
and (prefixed) measure unit

Telephone vCard:tel

A unique sequence of decimal digits used
to identify a telephone line in a telephone
network and to make a telephone calls among
telephone lines inside a country or a cross
countries

Table 4.2: Mapping between CSCs and concepts from common ontologies

4.5.1 Local Context: Interpretation and Main Concepts

The local context is defined in Section 1.2 as a common knowledge and local conventions
shared between local community members. In effect, community members follow several
conventions that are used/issued in a country who they live in such as currency and
sales tax system. Also, one country has many cities or states. These cities/states
might be located in different geographical zones, and hence different local times are used
(i.e., time zones). In addition. one country may have one or more communities (e.g.,
French and Dutch speaking communities in Belgium). Each community usually uses a
common natural language and a set of conventions related to that community such as
the notational writing formats.

Consequently, we design LCO around local-context as a key concept. Next, the
latter is divided into two sub-concepts: country-convention and community-convention.
In other words, the latter sub-concepts is part-of the local-context concept. The role
of this division is to provide an abstraction of the local context conventions and relate
them to their origins (i.e., country and community). These relations are represented as
follows. We initially add country and community concepts and is-used-in property to

106

4.5. Local Context Ontology (LCO)

the LCO. Then, each type of convention is related to its origin using is-used-in property.
This means that a country convention is used in a country and a community conventions
is used in a community. Figure 4.6 illustrates the main concepts of the LCO ontology.

Local-context

community-convention

country-convention country

community

is-part-of

is-part-of

is-used-in

is-used-in

PropertyConcept

Figure 4.6: Local Context Ontology: main concepts

The division of local context into country and community conventions and relating
the latter into their origins is derived from the locale model. This model is provided
in the Unicode Locale Data Markup Language (LDML12). LDML defines locale as an
identifier used to specify a set of users preferences and to determine the presentation
of locale-dependant data in computer interfaces. This identifier is primarily consists of
language code taken from ISO 639, country code taken from the ISO 3166, and other
variants such as currency code taken from the ISO 4217. Practically, Locale and locale-
dependant data are represented as XML documents in LDML langauge.

In this sense, our local context definition is very closed to the locale definition.
However, since XML focus on defining the syntax and structure of data, the semantics
of locale and relations with locale-dependant data remains implicit in XML documents.
Applications that exchange these data must agree on their semantics and hard-code the
relations between them in advance [23]. Furthermore, LDML does not cover all CSCs

and their related context information as defined in this work. For example, physical
quantities, telephone numbers and their related context information are not covered in
the LDML.

4.5.2 Country Convention

A country convention is an abstract concept used to relate a number of conventions to
their originated country, as already mentioned above. In practice, one country convention
could be used in one or more country. For instance, Euro currency is a country convention
used in many Europe countries. The inverse case could exceptionally happen. For

12More details available on: http://unicode.org/reports/tr35, last visit 23/03/2010.

107

Chapter 4. Semantic Representation Model of CSCs

instance, it is an exception for one country to use different currency or different sales
tax system13.

In LCO, we simplify our design by considering the normal case. This means that
one country convention could be used in one or more country, but one country use one
country convention. The intention of this decision is to be able to determine the normal
country conventions for each country. This provides a way to embody the notion of
static and dynamic context attributes described above14. It is worth noting that this
design decision is also derived from the locale model provided in the LDML language.

Indeed, we rely on the two letters country codes listed in the ISO 316615 to specify
the names of countries. Also, we introduce a new property between country-convention
and country concepts called determine. This relation is used to specify that a country
determines its normal conventions. For instance, Belgium country represented as be

determines its normal currency convention (i.e., Euro). Next, the country-convention
concept is specialized into a number of concrete conventions. These includes sales-
tax-system, measure-system, tel-numbering-plan, currency, and time-zone. Figure 4.7
illustrates the addition of determine property and the number of the concrete country
conventions to the LCO.

Local-context

community-convention

country-convention

country

community

is-part-of

is-part-of

is-used-in

is-used-in

PropertyConcept

determine

sales-tax-system

measure-system

tel-numbering-plan

currency

time-zone

Is-a

Is-a

Is-a

Is-a

Is-a

Figure 4.7: LCO: Addition of determine property and specialization of country-conventions.

In practice, each of these conventions is very broad and can be viewed from many
perspectives. Here, we view them from local context perspective, and hence we focus
on specific aspects that are used by users to represent and interpret CSCs. In the

13As an example, Palestinian authority uses two currencies: Jordanian dinar and Israeli shekel.
14Country is considered as a static context attribute and country convention as a dynamic attribute.
15The ISO 3166 standard defines two or three letters codes for representing the names of countries.

108

4.5. Local Context Ontology (LCO)

following, we define the essential nature of these conventions and discuss the intended
aspects related to this work. Figure 4.8 illustrates the complete view of these country
conventions.

Measure System

As already mentioned in Section 3.3.4, a measure system refers to a number of agreed
measure units and unit prefixes. Each measure unit is used as a reference for measure-
ment of physical quantities of the same type called quantity dimension, and also might
be combined with a prefix unit to represent a multiple or a fraction of this unit. For
instance, the meter is an agreed measure unit for the length quantity dimension in the
international system of units, or SI. This represents a definite magnitude of length. Also,
the kilo is an SI prefix that can be combined with the meter unit to denote that the
meter unit is multiplied by 1000.

In LCO, we focus on the agreed quantity dimensions, measure units, and measure
prefixes of local measure systems. Hence, we add measure-unit and measure-prefix con-
cepts to the LCO and use the part-of property to specify them as parts of the measure-
system concept. Finally, we add quantity-dimension concept and measured-in property.
The latter is used to specify that a quantity dimension is measured using a (prefixed)
measure unit involved in a measurement system.

The domain of these concepts are all agreed quantity dimensions, measure units, and
measure prefixes used in the corresponding measure system. For example, SI (or Metric),
Imperial, and US measure systems are instances of the measure-system concept. Also,
meter and kilo are parts of SI measure system and represent instances of the agreed
measure units and measure prefixes, respectively. Finally, meter, with or without kilo
prefix, are used to measure length dimension.

Indeed, users (have to) select the measure prefix that they prefer from the set of
measure prefixes corresponding to measure system they use. As measure prefixes repre-
sent multiples or a fractions of measure unit, each prefix has a scale factor. The latter
is relatively easier to specify than the corresponding measure prefix. So, we add scale-
factor concept and has property to LCO, and use the latter to relate each prefix with
its own scale factor (See Figure 4.8).

Note that, the property determine that specified between country and country-
convention concepts is propagated to these concepts, since they are parts of the measure-
system, and the latter is a country convention. Therefore, one country determines its
corresponding measure units and measure prefixes.

109

Chapter 4. Semantic Representation Model of CSCs

Country Calling code, National, and International Prefixes

Several country conventions are used to regulate the dialing of telephone numbers from
inside a country and among countries, as already discussed in Section 3.3.3. These
conventions are usually managed by the the International Telecommunication Union
(ITU) using a plan called International numbering plan or E.164.

Technically, E.164 identifies the structure and the functionality of telephone numbers.
Also, it identifies a number of interfaces to dial telephone numbers inside a country (i.e.,
national prefixes) and between countries (i.e., country calling codes and International
Prefixes). Indeed, This plan identifies a unique country calling code for each country
and recommends ‘0’ and ‘00’ as standard national and international prefixes. However,
many countries still use different prefixes such as USA and Canada.

To represent these conventions in LCO, we add national-prefix, country-calling-code,
and international-prefix concepts to LCO. Then, we use the part-of property to specify
these concepts as parts of the tel-numbering-plan concept. The domain of these con-
cepts are all national prefixes, country calling codes, and international prefixes used in
countries (See Figure 4.8).

Note that, the property determine that specified between country and country-
convention concepts is also propagated to these concepts, since they are parts of tel-
numbering-plan, and the latter is a country convention. Therefore, one country deter-
mines its corresponding prefixes and calling code. For instance, Belgium determines 0
as national prefix, 32 as country calling code, and 00 as international prefix.

Currency

As each country determines its currency and one currency might be used in multiple
countries, this convention is represented in straightforward manner in the LCO as fol-
lows. The concept currency is specified as a country convention. In addition, currency
codes identified in the ISO 4217 are utilized as a domain of this convention. For instance,
USD and EUR are the ISO 4217 codes for U.S. Dollar and Europe Euro.

Time Zone

Time zone is a specific type of country convention that is related to geographical location
of a city or a state located in a country. By convention, the globe is divided into a number
of regions, each of which has a uniform standard time, referred to as local time. The
local time of the Greenwich region is specified as a reference time zone, and it is called
the Greenwich Mean Time (GMT) or Coordinated Universal Time (UTC). Accordingly,

110

4.5. Local Context Ontology (LCO)

the local times of other regions are computed as offsets from UTC. In this work, time
zone refers to the local time used in a specific region.

As already mentioned, cities or states that are part of one country could be related
to different time zones, and thus could have different time zone convention. Hence, the
design assumption that says a country determines its conventions can not be applied
here, since the time zone convention could be related to a part of this country. In this
case, we can use the determine property to specify that a city/state determines its time
zone convention. In conclusion, the time zone convention is determined by city and
country, since each city is a part of a country.

Accordingly, we design this situation as follows. We add city and time-zone as new
concepts. Next, we use the part-of property to specify the relation between country and
city, and the detremine property to specify the relation between city and time-zone.
We also use the is-used-in property to consider that one time zone is used in many cities
(See Figure 4.8).

Sales Tax System

Prices of goods or services might involve sales taxes. In practice, several sales tax systems
and several related conventions are used in different countries. These are mainly related
to whether the sales tax is included or excluded, the type of the utilized sales tax system,
and the sales tax rate (see Section 3.3.5).

In LCO, these conventions are designed as follows. the concepts tax-included, tax-
type, and tax-rate are added to LCO. Next, the property part-of is used to relate them
to the sales-tax-system concept, as it is shown in Figure 4.8. As the latter concept is a
country convention, the value of a country can be used to determine these conventions.

4.5.3 Community Conventions.

Like country convention, we simplify our design by considering that one community
convention could be used in one or more communities, and one community use one com-
munity convention. Though, the following fundamental question rises here: what is the
information that can be used to specify a community, such that users’ applications can
interpret the latter and determine its conventions? With respect to country conventions,
a country can be specified easily by relying on the well-known, unified country codes (i.e,
The ISO 3166 two letters codes). However, there is no names, codes, or other informa-
tion that are common or can be used to specify communities, even between members of
such a community.

111

Chapter 4. Semantic Representation Model of CSCs

Local-context

community-convention

country-convention

country

community

is-part-of

is-part-of

is-used-in

is-used-in

PropertyConcept

determine sales-tax-system

measure-system

tel-numbering-plan

currency

time-zone

Is-a

Is-a

Is-a

Is-a

Is-a

Country-calling-code

International-prefix

National-prefix

is-part-of

is-part-of

is-part-of

tax-type

tax-included

tax-rate

is-part-of

is-part-of

is-part-of

measure-prefix

measure-unit

is-part-of

is-part-of

state-city

is-used-in

is-part-of

measure-dimension

Measured-in

Scale-factor
has

Figure 4.8: LCO: Complete view of the country conventions.

As community is part of a country, we can rely on the latter together with another
information to work around this issue. The best candidate information is the language
convention that is used in a community. In effect, a community language can be easily
specified by relying on the standard language codes16. In conclusion, the combination
of a country and a language can be used as a community identifer. This identifier is
then used to determine the other community conventions, based on the above design
assumption.

In LCO, this is designed as follows. We use the property part-of to specify that one
or more community is part-of a country. Next, we specialize the community-convention
concept into a language and writing-format concepts. Writing format considers the ways
CSCs are formatted within a community, as it is discussed in Section 3.3. Therefore,
it is specialized into the following four sub-concepts: quantity-format, phone-format,
price-format, and datetime-format.

Figure 4.9 illustrates the extension of the LCO with concepts and relations related to
community conventions. It is worth noting that each community has many conventions

16The ISO 639 standard defines two letters codes for representing the names of languages.

112

4.5. Local Context Ontology (LCO)

in addition to the language and the writing formats. Here, we only focus on these two
conventions as they are used to represent and interpret the CSCs.

Local-context

country-convention

country

is-part-of

is-part-of

is-used-indetermine

state-city

is-part-of

community-convention

community

PropertyConcept

determine

Is-a
language

writing-format
Is-a

price-format

quantity-format

Datetime-format

phone-format

address-format

Is-a

Is-a

Is-a

Is-a

Is-a

is-used-in

is-part-of

sales-tax-system

measure-system

tel-numbering-plan

currency

time-zone

Is-a

Is-a

Is-a

Is-a

Is-a

Country-calling-code

International-prefix

National-prefix

is-part-of

is-part-of

is-part-of

tax-type

tax-included

tax-rate

is-part-of

is-part-of

is-part-of

measure-prefix

measure-unit

is-part-of

is-part-of

measure-dimension

Measured-in

Scale-factor
has

is-used-in

Figure 4.9: LCO: An extension with concepts and relations related to community conventions.

4.5.4 LCO Implementation

Having detailed the design of the LCO, the protege 4.0�ontology modeling editor17

is utilized to implement it. Technically, each of the above concepts is represented as
owl:Class, and each property is represented as owl:ObjectProperty. Also, the design
assumptions such as the cardinality between the conventions and their origins are rep-
resented using the owl:Restriction class18. Figure 4.10 shows an excerpt of the LCO

implementation.

In addition, the domain of each concept have to be specified. For instance, the domain
of the concept country involves all countries. As already described in Section 4.4, there

17http://protege.stanford.edu/
18OWL language is described in more details on: http://www.w3.org/TR/owl-ref/

113

Chapter 4. Semantic Representation Model of CSCs

Figure 4.10: An excerpt of the LCO implementation using protege�(OWLProVIZ plug-in view)

are several ontologies/standards available on the Web and they can be reused to specify
the domains of the LCO concepts. For instance, we can rely on the ISO 4217 and the
ISO 639 to specify the domains of country and language concepts, respectively. Also,
we can import the domains of date format and phone format from the LDML language
and from the DBPedia, respectively. As an example, we create several instances of LCO

concepts as OWL individuals.

4.6 Typical Representation of CSCs

On the basis of the semantic object notion and LCO, this section introduces a typical
representation of the CSCs discussed in Section 3.3 as semantic objects. Like the repre-

114

4.6. Typical Representation of CSCs

sentation of the date/time CSCs (see Section 4.3), the minimum set of context attributes
that are necessary to enrich each type of CSCs are classified into static and dynamic
attributes. Afterwards, we illustrate how the relations between local conventions (i.e.,
country and community conventions) and their origins are utilized to determine the
values of dynamic attributes.

4.6.1 Physical Quantity SemObjs

Web users represent each kind of physical quantities (i.e., quantity dimensions) using
different measure units and different formats. Also, measure units might be prefixed
with different unit prefixes (see Section 3.3.4). Hence, physical quantity CSCs have to
be enriched with these information as a minimum set of context attributes to facilitate
their adaptations.

Users can easily specify measure units used to measure common or basic quantity
dimensions. However, some units are derived from other measure units. For example,
the unit used to measure the energy dimension in SI system is called Joule. This unit is
derived by multiplying Newton unit by Meter unit. Moreover, Newton is derived from
other units. Therefore, users could face difficulties to track and specify these units.

In addition, users could face difficulties to specify the formats used to write these
quantities. Also, it is not easy for them to specify the measure prefix (if any). Therefore,
these attributes are classified into static and dynamic attributes, whereas the values of
dynamic ones are determined based on the LCO design as follows:

� Quantity dimension is represented as a static context attribute. So, users have to
specify its value.

� Measure unit is represented as a dynamic context attribute. Also, it is enriched
with quantity dimension and country as context attributes. Indeed, the value of
measure unit can be determined if the quantity dimension to be measured and the
measure system used are known. The measure system can be determined from the
value of country, as it is designed as a country convention.

� Measure prefix is also represented as a dynamic attribute, and it is enriched with
scale factor and country as context attributes to determine its value. The value
of country is used to determine the set of measure prefixes corresponding to a
measure system used in this country. Then, the value of scale factor determines
the corresponding measure prefix from the determined set.

115

Chapter 4. Semantic Representation Model of CSCs

� Like the price format, the values of quantity format can be determined from the
values of country and language. So, it is represented as a dynamic attribute, and
it is enriched by the latter static attributes.

Example

Figure 4.11 illustrates the representation of the length CSC created by the British author
at task T1 in our scenario as a physical quantity semantic object (See Figure 1.1). The
physical-quantity refers to the concept S that this object adheres to. ‘5,678.90’ repre-
sents the length value V , and context C consists of four context attributes corresponding
to this object. Some of these attributes are also enriched with context attributes.

Here, the user has to specify the values of quantity dimension and scale factor at-
tributes (i.e., ‘length’ and ‘1’, respectively). In addition, it is assumed that the values
of country and language are also specified (i.e., ‘GB’ and ‘en’, respectively). Then, the
values of the latter attributes are used to determine the value of quantity format at-
tributes (i.e., ‘#,##0.00 (P)U19’). Also, the values of country and quantity dimension
determine the value of measure unit (i.e., ‘mi’). Finally, the values of country and scale
factor are used to determine the value of measure prefix20

Context ‘C’

Concept ‘S’

<language, ‘en’> <Country, ‘GB’> <quantity-dimention, ‘length’> <scale, ‘1’>

Dynamic Static

<physical-quantity, ‘5,678.90’, C >

<measure-unit, ‘mi’, C > <measure-prefix, ‘’, C >

Physical Quantity SemObj =

<quantity-format,‘#,##0.00 (P)U’, C >

CSC ‘V’

Figure 4.11: Typical representation of CSCs: Physical quantity semantic object sample

19In this format, P refers to measure prefix value and U refers to measure unit value.
20Here, there is no measure prefix used, as the value of scale factor is 1.

116

4.6. Typical Representation of CSCs

4.6.2 Price SemObjs

Web users represent price CSCs using different currencies and different price formats.
Also, the sales taxes could be included or not. If so, different sales tax types and/or
rates are used (see Section 3.3.5). Hence, price CSCs have to be enriched with these
information as a minimum set of context attributes in order to facilitate their adaptations
to their readers’ local contexts.

From usability perspective, it is not easy for users to specify the values of price
formats, sales tax types, and sales tax rates. So, we represent them as dynamic context
attributes. On the basis of the LCO design, the values of these attributes can be
determined mainly by the values of country and language attributes as follows:

� The value of a price format can be determined from the values of a country and
language attributes. Indeed, the latter attributes are used to identify the com-
munity that a user belongs to. Then, the community is used to determine the
price format value, as the latter is represented as a community convention and the
community determines its conventions. Hence, price format attribute is enriched
with country and language as static context attributes.

� As long as the sales tax is included, the values of sales tax type and sales tax rate
can be determined from the value of country. This is because the sales tax system
is designed as a country convention and the sales tax type and rate are parts of the
latter. Therefore, these two attributes are enriched with country and tax-included
as static context attributes.

� Users can easily specify the value of currency attribute. Also, the value of country

attribute can be used to determine the latter. Thus, we decide to represent it as
a dynamic attribute, and to enrich it with a country attribute. Users can rely on
the determined values or choose their preferred values.

Example

Figure 4.12 presents a price semantic object represented according to local context of
a French user. The price concept refers to the concept S that this object adheres to.
‘5 678,90’ represents the price value V , and the context C consists of four context
attributes corresponding to this object. Each of which is enriched with one or more
attributes.

Here, it is assumed that the values of the country, language, and tax-included static
attributes are specified by this user (i.e., ‘fr’, ‘FR’, and ‘True’, respectively). Then, the

117

Chapter 4. Semantic Representation Model of CSCs

Context ‘C’

Concept ‘S’ CSC ‘V’

<language, ‘fr’><country, ‘FR’><tax-included, ‘True’>

Dynamic Static

<currency, ‘Euro’, C ><sales-tax-rate, ‘19.6’, C ><sales-tax-type, ‘VAT’, C >

<price, ‘5 678,90’, C >

<price-format,‘¤ # ##0,00’, C >

Price SemObj =

Figure 4.12: Typical representation of CSCs: Price semantic object sample

value of country and tax-included are used to determine the values of the sales-tax-type
and sales-tax-rate (i.e., ‘VAT’ and ‘19.6’, respectively). Also, the value of country is
used to determine the value of the currency (i.e., ‘Euro’). Finally, the values of country

and language are used to determine the value of the price-format (i.e., ‘# ##0,00 ¤’21).

4.6.3 Telephone Number SemObjs

A telephone number has to be complemented with a national call prefix to make a
telephone call over a local telephone network (i.e., inside a country). In contrast, the
national call prefix has to be omitted and a telephone number has to be complemented
with other two prefixes to make a telephone call across countries: a country calling code
corresponding to destination telephone and an international call prefix corresponding
to source telephone. Finally, Web users represent telephone numbers using different
formats (See Section 3.3.3). To facilitate the adaptations of telephone number CSCs,
these prefixes have to be represented separately. Next, a telephone number has to be
enriched with this information as follows:

� The national call prefix and the country calling code are represented as dynamic
attributes, and they are enriched with a country attribute. Indeed, as they are
part of the telephone numbering plan, their values can be determined from the
value of a country.

21In ‘# ##0,00 ¤’, ‘¤’ refers to the general currency symbol and it is replaced by currency symbol
used (i.e., e). Also, the # refers to a digit and it is replaced by the corresponding digit value from the
currency value or nothing if the value of this digit is empty in the currency value. Finally, 0 refers to a
digit and it is replaced by the corresponding digit value from the currency value or 0 if the value of this
is empty.

118

4.6. Typical Representation of CSCs

� As the international call prefix relates to the source telephone (related to reader’s
local context), then its value can be determined by the value of a country corre-
sponding to a reader. This value can be specified at browsing time only, as already
mentioned before. Therefore, it is represented as a context attribute with fixed
value ‘+’. This value is determined by the value of a reader’s country at browsing
time.

� The phone format is represented as a dynamic attribute, and enriched with country
and langauge attributes, like other formats.

Example

Figure 4.13 presents a phone semantic object represented according to local context of
a British user. The phone refers to the concept S and ‘123 4567 890’ represents the
phone value V . Finally, context C consists of calling prefixes and phone format as context
attributes. The international prefix has a fix value (i.e., ‘+’). This value is replaced by
the value of international prefix corresponding to reader’s country at browsing time. For
instance. it is replaced by ‘00’ when a French reader browse this phone. The values of
national prefix and country calling code (i.e., ‘0’ and ‘44’, respectively) are determined
by the value of country (i.e., ‘GB’). Finally, the value of phone format is determined by
the values of country and language22.

Context ‘C’

<country, ‘GB’><language, ‘EN’>

<phone, ‘123 4567 890’, C >

Concept ‘S’ CSC ‘V’

Dynamic Static

Phone SemObj =

<international-prefix, ‘+’> <national-prefix, ‘0’, C > <country-calling-code, ‘44’, C > <phone-format, ‘+cc (n) ddd dddd ddd’, C >

Fixed

Figure 4.13: Typical representation of CSCs: Phone semantic object sample

22In this format, cc refers to country calling code, and n refers to national prefix. Also, the groups of
d refer to digits of phone number.

119

Chapter 4. Semantic Representation Model of CSCs

4.7 Semantic Context-Aware Architecture

This section describes our vision concerning the architectural design that is intended to
support our approach. Our design focus on the following three aspects. First, the main
components that are necessary to accomplish the annotation and adaptation processes.
Second, a high-level description concerning the interaction of Web users with these com-
ponents. Third, an illustration of how our approach work seamlessly with the existing
Web technology stacks.

4.7.1 Architecture Description

Figure 4.14 below depicts our proposed architecture. This architecture encompasses
three layers: concept description, Extended users’ applications, and Web 2.0 sites.

Local Context

Ontology
Concepts S

C
o

n
ce

p
ts

D
es

cr
ip

ti
o
n

Instances-Of

Create
Update

A-Cxt3A-Cxt2A-Cxt1

Have

Web Editor

Web
Contents

ACxt3
Web

Contents

ACxt2
Web

Contents

A-Cxt1

R-Cxt2R-Cxt1

Have

Instances-Of

Annotation

C
E

x
te

n
d

ed
 U

se
rs

’
A

p
p

.
W

eb
 2

.0
 S

it
es

Web Authors Web Readers

 : Process : Relation : Component Name

Web
Contents

ACxt2
Web

Contents

A-Cxt1
Web

Contents

A-Cxt3

Web
Contents

ACxt3
Web

Contents

ACxt2
Web

Contents

A-Cxt1

Browse

Web Browser

Adaptation

Web
Contents

Web
Contents

Web
Contents

R-Cxt2

Web
Contents

Web
Contents

Web
Contents

R-Cxt1

BA

Aggregate

Figure 4.14: A general overview of the proposed architecture

The concept description layer presents the LCO, the concepts S, and the relations
between them at conceptual level. These provide the sematic information that allow
users’ applications to interpret CSCs. As already mentioned, users’ applications can di-

120

4.7. Semantic Context-Aware Architecture

rectly rely on this information or they can extends them according to their requirements.
However, they have to agree on the level 2 of common conceptualization discussed above
to ensure a consistent semantic objects inter-operability.

Web 2.0 sites provide spaces for authors to upload different types of Web contents on
the Web. Also, these sites could provide one or more Web 2.0 means for publishing and
managing these contents (i.e., create, update, aggregate, and delete). Section 3.2 surveys
several types of means that allow authors to do this. On the readers’ side, the contents
of these sites are browsed using traditional Web browsers such as Microsoft� Internet
Explorer and Mozilla� FireFox.

In the extended users’ applications, an annotation engine and an adaptation engine
are proposed as extensions for both authors’ and readers’ applications (i.e., traditional
Web editors and Web browsers), respectively. These two engines are the central con-
structs of this architecture, in addition to concept description layer. They provide the
main components that are necessary to accomplish the annotation and adaptation pro-
cesses.

As we will see in next chapter, the annotation engine is used to assist authors for
annotating CSCs with their context. Web authors need to specify their context (i.e.,
A-Cxts).Also, they need to specify the type of CSCs to be annotated when they create
or update them. Then, the annotation engine interactively annotates the specified CSC

with suitable context attributes extracted from the corresponding A-Cxt. Finally, each
annotated CSC is published to a Web 2.0 site as a semantic object 〈S, V,C〉.

On the readers’ side, the adaptation engine also allows Web readers to specify their
contexts (i.e., R-Cxts). Then, it adapts each semantic object from authors’ to a reader’s
contexts. The output is semantically equivalent to the original annotated CSC, but it is
represented according to a reader’s context. The issues related to Web adaptation will
be discussed in Chapter 6.

4.7.2 Architecture Features

The main idea of the aforementioned architecture lies into the extension of traditional
authors’ and readers’ applications with Web annotation and Web adaptation engines,
respectively. Additionally, the use of the concept description layer for enriching CSCs

with semantic metadata and adapt the latter according to readers’ local contexts. This
implies several features, which characterize our architecture. Firstly, the annotation
and adaptation processes are performed at authoring and browsing times, respectively.
This allows authors to annotate CSCs with their local contexts at times they create

121

Chapter 4. Semantic Representation Model of CSCs

and/or update these contents. Similarly, annotated CSCs are adapted at times they are
browsed. In addition, this optimize the number of adaptations that are performed on a
CSC during its life cycle, as we mentioned before. Secondly, the extension of readers’
applications with adaptation engines provide a way to adapt Web pages’ contents that
are related to a Web site, aggregated from many sites to another Web site, or aggre-
gated from many Web sites by readers’ applications (i.e., support all Web 2.0 use cases).
Finally, the proposed architecture does not provoke side effect when annotated Web
pages are presented on classical reader’s application (i.e., not extended with our adap-
tation engine), or when non-annotated Web pages are presented on extended reader’s
application.

Apart from the above features, our proposed architecture can be reused in other
semantic Web and/or Web 2.0 approaches for several purposes. Firstly, the annotation
engine can be reused for enriching Web contents with different types of semantic meta-
data for the purpose of authoring semantic Web contents. For instance, Web 2.0 sites
such wikis and social networking systems can rely on the annotation engine for enriching
their content with semantic metadata. In this context, the semantic description layer
has to be extended with additional concepts. These concepts can be taken from domain
ontologies or from open data sources such as linked data cloud. Accordingly, the annota-
tion engine also has to be redesigned and then extend Web editors that are used by these
systems. Additionally, Web 2.0 recommender systems can rely on annotation engine to
enable users for enriching their contents with semantic tags taken from a predefined
taxonomy or from user-defined categories [?].

Secondly, the adaptation engine can be reused for performing different types of adap-
tation on semantic Web contents (i.e., annotated contents) at readers’ side. For instance,
Web 2.0 recommender systems can rely on adaptation engine for classifying and recom-
mending Web contents based on the added semantic tags together with reader’s con-
text. Additionally, mush-up systems can reuse semantic metadata, which enrich Web
contents, for aggregating similar types of contents or related contents. Afterwards, re-
lying on adaptation engine for adapting the aggregated contents according to readers’
contexts. It is worth noting that readers’ contexts might be extended with additional
context information such as readers’ preferences or their devices capacities.

To sum up, the components of our architecture provide means that are necessary for
authoring semantic Web contents at the same times users create/update these contents.
We advocate that this is the first step that pave the road to realize the semantic Web
vision. Also, our architecture illustrates how semantic Web contents are exploited by
automatically adapt these contents according to their readers’ local contexts.

122

Chapter 5

Web Annotation

5.1 Introduction

The term Web annotation is identified in Section 1.3.1 as a process of annotating CSCs

with authors’ local context information in order to address the incompleteness of their
representation. Also, Section 4.2 concludes that the annotation of CSCs with their
authors’ local contexts at creation and update time is the best design alternative with
respect to the Web 2.0 use cases. Accordingly, the semantic object notion is utilized as
a formalization mean to enrich each CSC with a concept S and a set of local context
information in the form of semantic matedata. In addition, Section 4.7 introduces an
annotation engine as an extension to traditional Web editor to embody the annotation
process. However, Section 4.2.4 argues that there are several alternatives to annotate
CSCs. Also, the annotation process is still a complex process, as Web authors are
usually non-experts.

The goal of this chapter is to address these two issues. Hence, it initially evaluates
several annotation alternatives. As we will see, our evaluation is based on several criteria
such as the required synchronization effort and the level of inter-operability among users’
applications. Next, we introduce an interactive annotation process in order to assist
authors to specify their contexts and to annotate each type of CSCs with a suitable
context information. Finally, the internal structure of the introduced annotation engine
are described.

The rest of this chapter is structured as follows. The annotation alternatives are
presented in Section 5.2, and the interactive annotation process is detailed in Section 5.3.
Finally, Section 5.4 presents the architecture the of the annotation engine.

123

Chapter 5. Web Annotation

5.2 Web Annotation Alternatives

The main two annotation techniques used in the Web domain are called external and
internal annotations, as already mentioned in Section 2.3. With external annotation,
semantic metadata is represented and stored in an external annotation document. Then,
these semantic metadata refer to a part of a document (typically an XHTML tag) that
is annotated using a pointing language such as Xpointer1.

The main motivation behind external annotation is twofold. First, it provides a
way to annotate already-published HTML documents without changing them and to
annotate new ones without introducing new elements into their document-type defini-
tion (DTD). Secondly, one annotation document can be reused for annotating multiple
Web documents. This is useful for annotating (already-published) Web documents, or
parts of them, that have common semantics and structures such as calender events and
products specifications. However, this technique requires additional work to synchronize
the annotation document with the annotated document [52, 59, 66].

In contrast, internal annotation localizes (embeds) semantic metadata inside a doc-
ument element (i.e., XHTML tag) that represents a Web content to be annotated. As
we will see in the next sub-sections, internal annotation remains simple, and does not
require additional synchronization work, since semantic metadata are directly embed-
ded in the document to be annotated. However, internal annotation requires additional
work for annotating already-published Web documents. Indeed, each XHTML tag that
represents a Web content to be annotated should be edited separately to embed the
annotation [3, 56].

On the basis of these two techniques, this section discusses and evaluates four al-
ternatives to annotate CSCs with semantic metadata (i.e., a concept S and a set of
context attributes C). Our evaluation focuses on two aspects. The first aspect considers
the way semantic metadata are stored and associated with CSCs. The second one con-
siders when and where the values of dynamic context attributes are inferred from the
values of static attributes. Also, it discusses the consequences of these two aspects on
the Web 2.0 use cases. For consistency purpose, the example presented in Section 1.2.1
is used in order to illustrate our evaluation.

5.2.1 External Annotation

The first alternative is to rely on the idea of external annotation technique directly. In
this sense, the semantic metadata related to a concept S and static/specified dynamic

1http://www.w3.org/TR/WD-xptr

124

5.2. Web Annotation Alternatives

context attributes C are represented and stored in an external document. Then, an
annotation pointer from this document is used to refer to a part of a Web document
that represents a CSC to be annotated (i.e., an XHTML tag). Technically, the semantic
metadata are represented inside an RDF statement as a set of RDF attribute-value pairs
in an RDF/XML document2. The subject of this statement is an Xpointer that refers
to such XHTML tag in the annotated document that represents a Web content to be
annotated. Finally, a meta tag that includes the URL of an annotation document is
added to the annotated document in order to link it with the annotation document
explicitly.

In this setting, a reader’s application interprets annotated CSCs at run-time as
follows. First, it utilizes the URL(s) included in meta tags to locate the annotation
document(s). Secondly, it uses the Xpointer expressions to locate such XHTML tags
that represent annotated CSCs. Thirdly, the type of each annotated CSC and its cor-
responding static/specified dynamic attributes are extracted from the RDF attributes-
value pairs. Finally, the values of non-specified dynamic attributes are inferred from the
values of other static/specified dynamic attributes.

Example

To better understand this alternative and its consequences on the Web 2.0 use cases,
Figure 5.1 illustrates how to annotate the date contents involved in our example using
this alternative3. Here, the date contents in pages A and B are annotated as semantic
objects. Then, they are aggregated to page C.

With respect to page B, the annotation of the date is represented as an RDF state-
ment and stored in a separate document (i.e., the A-Cxt2 document). The subject of
this statement (i.e., the value of the rdf:about) is an Xpointer expression. The first part
of this expression, inside span, refers to the second 〈div〉 tag in page B. This tag rep-
resents the date content ‘2009-09-10’. The RDF property rdf:type=‘dc:date’ represents
the date concept S and the other RDF constructs represent the set of static attributes
C that are relate to the Canadian author. On the other side, a meta tag is added into
the annotated document (i.e., page B) in order to link it with the annotation document
explicitly.

With respect to page A, when the the American author updates the date content at
task T2, he (should) update it according to his local context4. Hence, the annotation

2http://www.w3.org/TR/REC-rdf-syntax/
3This example based on W3C external annotation note: http://www.w3.org/TR/annot/.
4Due to the similarity with the above, the date content before update task and its corresponding

125

Chapter 5. Web Annotation

should be updated also. To do this, two steps are required. First, deleting an annotation
pointer that refers to this date from the annotation document that represents the local
context of the original author. Secondly, adding an annotation pointer that refers to this
content from the annotation document that represents the local context of the American
author (i.e., the A-Cxt1 document).

Afterwards, the aggregation of the annotated date from page A to page C requires the
following steps to preserve their consistency. First, adding another Xpointer expression
to the subject of the RDF statement stored in the A-Cxt1 document. This pointer
is represented inside span expression (i.e., the second part) and refers to div[20] that
represents the aggregated date CSC. Secondly, adding new meta tag to page C in order
to link it with the annotation document explicitly. Finally, updating (re-mapping) all
pointers that refer to all annotated div elements after div[20]. The same steps are needed
to aggregate the annotated date from page B to the div[30] inside page C. It is worth
noting that the re-mapping step is also required when new element (e.g., div tag) is
added or existing one is deleted.

<?xml version=``1.0'' encoding=``UTF-8''?>

<html>

<head> <title>page C</title>

 <meta name=`link' href=`/.../A-Cxt1'>

 <meta name=`link' href=`/.../C-Cxt2'>

</head>

<body> . . .

 <div>1 234.50 mi</div>

 <div> 5,678.90 mi</div> . . .

<div>07/09/2009</div>

 <div> 2009-09-10</div>

 . . .

</body></html>

<?xml version=``1.0'' encoding=``UTF-8''?>

<html>

<head>

 <title>page B</title>

 <meta name=`link' href=`/.../A-Cxt2'>

</head>

<body>

 <div>1 234.50 mi</div>

<div>2009-09-10 </div>

Aggregated To

div[30]

<?xml version=``1.0''?>

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:cxt=``http://localhost/context''

 xmlns:dc="http://purl.org/dc/elements/1.1/''>

<dc:title>A-Cxt2</dc:title>
<rdf:Description

 rdf:about=span(`…/page B#Xpointer(html/body/div[2])')`,
 .../page C#Xpointer(html/body/div[30])')>

 <rdf:type =`dc:date'>

 <ctx:dateStyle value = `Short'/>

 <cxt:country value=`CA'/>

 <cxt:city value=`Toronto' />

 <cxt:language value=`fr'/>

</RDF:Description>

. . .

<?xml version=``1.0'''?>

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:cxt=``http://localhost/context''

 xmlns:dc="http://purl.org/dc/elements/1.1/''>

<dc:title>A-Cxt1</dc:title>
<rdf:Description

 rdf:about=span(`.../page A#Xpointer(html/body/div[2])',
 `.../page C#Xpointer(html/body/div[20])')>

 <rdf:type =`dc:date'>
 <ctx:dateStyle value = `Short'/>

 <cxt:country value=`US'/>

 <cxt:city value=`California' />

 <cxt:language value=`en'/>

</RDF:Description>

. . .

<?xml version=``1.0''?>

<html>

<head>

 <title>page A</title>

<meta name=`link' href=`/.../A-Cxt1'>

</head>

<body>

 <div>5,678.90 mi</div>

<div>07/09/2009</div>

 . . .

Aggregated To

div[20]

Xpointer

Xpointer

Xpointer

Xpointer

Figure 5.1: External annotation using RDF/XML and Xpointer specifications

annotation are not presented in this example.

126

5.2. Web Annotation Alternatives

Discussion

External annotation faces significant limitations with respect to creation/deletion, up-
date, and aggregation of Web contents and semantic metadata. As already mentioned
above, this technique requires additional work to synchronize the annotation document
with the annotated document. This is because Xpointers refer to annotated elements
based on their paths in the annotated document. Also, external annotation leads to
problems when aggregating contents. First, references to the document structure are
modified; and second, aggregation may imply context changes, and as the external an-
notation documents are attached to the original contents, they should not be updated
when the context changes due to aggregation in different contexts.

5.2.2 Internal Annotation Using Semantic Metadata URI

The second alternative is to represent and store author’s local context in a separate
annotation document. This document represents local context attributes and their val-
ues, at least static attributes, inside an RDF statement as a set of RDF attribute-value
pairs. Additionally, it utilizes the RDFa-based internal annotation techniques to embed
the URI of an annotation document and a concept S inside such XHTML tag that repre-
sents a CSC to be annotated. In other words, this alternative considers an author’s local
context as a single entity that is identified by the URI of its corresponding annotation
document.

In this setting, a reader’s application interprets an annotated CSC at run-time as
follows. First, it uses the embedded concept S to identify the type of this CSC and
its corresponding context attributes. Then, it uses the embedded URI to extract the
values of context attributes that are specified in the corresponding annotation document
(static and dynamic attributes). Finally, the other dynamic attributes are inferred from
the values of the specified ones.

Example

Figure 5.2 illustrates the use of this alternative to annotate the date contents involved in
our example. As it is shown, the local contexts of the American and the Canadian authors
are represented and stored inside the A-Cxt1 and the A-Cxt2 documents, respectively.

In addition, the date CSC involved in page B is annotated using this alternative
as follows. First, it is identified as a date SemObj using the about =‘#D2’ RDFa
expression. Next, the dc:date is embedded inside the <div> tag as a concept S. Finally,
the URI of the A-Cxt2 document is also embedded in order to refer to the Canadian

127

Chapter 5. Web Annotation

author’s context. The date CSC that is created by the British author at task T1 is
annotated in similar way5

When the the American author updates the date CSC involved in page A at task
T3, he (should) update it according to his local context. So, the annotation should be
updated also. To do so, the URI of the annotation document related to the British
author is replaced by the URI of the annotation document related to the American
author (i.e., http://.../A-Cxt1/). Finally, the annotated dates from pages A and B
are aggregated to page C together with their annotation like “copy and past”.

<?xml version=``1.0'' encoding=``UTF-8''?>

<html xmlns=`http://www.w3.org/1999/xhtml'
 version=`XHTML+RDFa 1.0'
 xmlns:cxt=`http://localhost/context'
 xmlns:dc=`http://purl.org/dc/elements/1.1/'>
<head> <title>page C</title>

</head>

<body> . . .

 <div . . . >1 234.50 mi . . .</div>

 <div . . . > 5,678.90 mi . . .</div>

<div about=`#D1' property=`dc:date'> 07/09/2009

</div>

<div about=`#D2' property=`dc:date'> 2009-09-10

</div>

 . . .

<?xml version=``1.0'' encoding=``UTF-8''?>

<html xmlns=`http://www.w3.org/1999/xhtml'
 version=`XHTML+RDFa 1.0'
 xmlns:cxt=`http://localhost/context'
 xmlns:dc=`http://purl.org/dc/elements/1.1/'>

<head>

 <title>page B</title>

</head>

<body>

 <div>1 234.50 mi</div>

<div about=`#D2' property=`dc:date'> 2009-09-10

</div> . . .

<?xml version=``1.0''?>

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:cxt=``http://localhost/context''

 xmlns:dc="http://purl.org/dc/elements/1.1/''>

<dc:title>A-Cxt2</dc:title>
<rdf:Description
 <ctx:date-style value = `Short'/>

 <cxt:country value=`CA'/>

 <cxt:city value=`Toronto' />

 <cxt:language value=`fr'/>

</RDF:Description>

. . .

<?xml version=`1.0'?>

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:cxt=``http://localhost/context''

 xmlns:dc="http://purl.org/dc/elements/1.1/''>

<dc:title>A-Cxt1</dc:title>
<rdf:Description
 <ctx:date-style value = `Short'/>
 <cxt:country value=`US'/>

 <cxt:city value=`California' />

 <cxt:language value=`en'/>

</RDF:Description>

. . .

<?xml version=`1.0'' encoding=``UTF-8'?>
<html xmlns=`http://www.w3.org/1999/xhtml'
 version=`XHTML+RDFa 1.0'
 xmlns:cxt=`http://localhost/context'
 xmlns:dc=`http://purl.org/dc/elements/1.1/'>
<head>

 <title>page A</title>

</head>

<body>

 <div . . .>5,678.90 mi . . .</div>

<div about=`#D1' property=`dc:date'> 07/09/2009

</div> . . .

Aggregated

To

Aggregated

To

Figure 5.2: Internal annotation using semantic metadata URI

Discussion

Unlike the external annotation, this alternative does not require additional synchro-
nization work. Also, context information stored in separate annotation documents can

5Due to the similarity with the above, this date and its corresponding annotation document are not
presented in this example.

128

5.2. Web Annotation Alternatives

be reused to annotate many CSCs that are involved the same or different XHTML
documents. This avoids a redundancy problem. For instance, if two or more CSCs

are created by the American author, then the URI of the A-Cxt1 document has to be
embedded in the corresponding XHTML elements only.

However, this alternative face a significant limitation related to the evolution of au-
thors’ local contexts. Indeed, the local contexts of users could be changed over time. For
instance, the American author above may change his living city from California to Lon-
don. Hence, he logically has to use the value of London time zone to annotate new date
CSCs or update existing ones. In contrast, the old value of time zone (i.e., California
time zone) must be preserved for the date CSCs that already created and annotated
before. Since the local context of an author is embedded in an annotated document as
a single entity via the URI of an annotation document, two different versions of this
author context are needed to consider this scenario. Furthermore, each future change on
an author’s context needs a new version. Hence, this alternative require additional work
to manage many versions of an author context. Note that, the aforementioned external
annotation face the same evolution problem.

5.2.3 Inline Internal Annotation Using Static Context Attributes

This alternative keeps representation and storage of an author’s local context in a sep-
arate annotation document. However, it utilizes the RDFa-based internal annotation to
embed a concept S and a set of context attributes in such XHTML tag that represents a
CSC to be annotated. Here, the embedded context attributes include static attributes
and their values corresponding to the annotated CSC. Also, if an author needs specific
values for one or more dynamic attributes, then the specified dynamic attributes are
embedded instead.

To interpret an annotated CSC in this setting, a reader’s application uses the em-
bedded concept S to identify the type of this CSC. Then, it utilizes the relations
between contexts attributes that are described in the LCO in order to infer the values
of non-specified dynamic attributes from the other context attributes embedded inside
the XHTML tag (see Section 4.5 and Section 4.6).

Example

As it is shown in Figure 5.3, this example illustrates the annotation of the date contents
in the above example using this alternative. Here, it is assumed that the local con-
texts of the American and Canadian authors are represented in the A-Cxt1 and A-Cxt2

129

Chapter 5. Web Annotation

documents, respectively6. Then, these documents are utilized in this example as follows.

In page B, the date CSC is identified as a date SemObj using the about =‘#D2’
RDFa expression. Next, The RDFa attribute property=‘dc:date’ represents the date
concept S and the date content ‘2009-09-10’ represents the value V of this date. In
the inner 〈span〉 tags, the set of RDFa property attributes represent the static context
attributes related to date semantic object, and the RDFa content attributes represent
the values of the these attributes related to the Canadian author. Here, the values of
static attributes are copied from the A-Cxt2 document at annotation time.

Like the above example, when the the American author updates the date CSC

involved in page A at task T3, its annotation should be updated also. In this setting,
the values of context attributes related to the British author are replaced by the values
of context attributes related the the American author. Finally, the annotated dates from
pages A and B are aggregated to page C together with their annotation like “copy and
past”.

<?xml version=``1.0'' encoding=``UTF-8''?>
<html xmlns=``http://www.w3.org/1999/xhtml''
 version=``XHTML+RDFa 1.0''
 xmlns:cxt=``http://localhost/context''
 xmlns:ns="http//www.example.org/
 xmlns:dc="http://purl.org/dc/elements/1.1/'>
<head><title>Page C</title></head>
<body>
 . . .
 <div>1 234,50 mi . . .
 <div>5,678.90 mi . . .
 <div about=`#D1' property=`dc:date'> 07/09/2009

 </div>
 <div about=`#D2' property=`dc:date'> 2009-09-10

 </div>
. . .

<?xml version=``1.0'' encoding=``UTF-8''?>
<html xmlns=``http://www.w3.org/1999/xhtml''
 version=``XHTML+RDFa 1.0''
 xmlns:cxt=``http://localhost/context''

xmlns:dc="http://purl.org/dc/elements/1.1/'>
<head><title>Page B</title></head>
<body>. . .
 <div about=`#D2' property=`dc:date'> 2009-09-10

 </div>
. . .

Aggregated To

<?xml version=``1.0'' encoding=``UTF-8''?>
<html xmlns=``http://www.w3.org/1999/xhtml''
 version=``XHTML+RDFa 1.0''
 xmlns:cxt=``http://localhost/context''

xmlns:dc="http://purl.org/dc/elements/1.1/'>
<head><title>Page A</title></head>
<body>. . .
 <div about=`#D1' property=`dc:date'> 07/09/2009

 </div>
 . . .

Aggregated To

Figure 5.3: Inline internal annotation using static context attributes

6These documents are shown in Figure 5.2 above.

130

5.2. Web Annotation Alternatives

Discussion

This alternative avoids the problem of local context evolution, since the values of context
attributes are embedded in the annotated document at annotation time. Practically, this
means that the already annotated CSCs does not affected by any change that is carried
ont on A-Cxt1 document. In contrast, this change will be reflected on the annotation
of new CSCs or on the annotation updated CSCs. In other words, a single version of
local context is stored for each user at a time. This context is utilized to annotate CSCs

that are created or updated at this time.

However, this alternative and the other aforementioned alternatives rely on readers’
applications to infer the values of dynamic context attributes. This implies several issues.
First, the level 3 of common conceptualization that is identified in Section 4.3.3 have to
be reached among users’ applications. As already discussed in that section, this level
restricts the extensibility of the LCO. Secondly, the inference of the dynamic attributes
values add more overhead on readers’ applications. Note that, there is an overhead
already added on these applications, as they have to adapt the values of SemObjs

according to their readers’ contexts.

In addition, this also does not comply well with the semantic visibility principle
discussed in Section 2.3.3. Based on this principle, context information can be made
visible to readers in case the annotated CSCs can not be adapted to their local contexts
(e.g., readers’ applications are not extended with adaptation engines). In this setting,
there is no great benefit to make static context attributes visible to readers. In contrast,
it is better to use these attributes to infer other context attributes, and then make the
latter visible to readers. For instance, it is better to make the time zones values of the
date CSCs visible in the above example rather than the countries and cities values.

5.2.4 Inline Annotation Using Minimum Context Attributes

The last alternative is relatively similar to the third one. However, instead of embedding
static context attributes, it embeds the minimum set of context attributes and their
values in such XHTML tag that represents a CSC to be annotated. This implies that
an author’s application is responsible of inferring the values of dynamic context attributes
from the values of context attributes stored in the annotation document related to this
author (e.g., A-Cxt1 document). On the other side, a reader’s application is responsible
to infer the values of dynamic context attributes related to this reader. Figure 5.4
presents an example to illustrate the annotation of the date contents in the above example
using this alternative. This example is similar to the example presented in Figure 5.3.

131

Chapter 5. Web Annotation

However, it embeds the minimum set of context attributes corresponding to these date
CSCs instead of static attributes.

<?xml version=``1.0'' encoding=``UTF-8''?>
<html xmlns=``http://www.w3.org/1999/xhtml''
 version=``XHTML+RDFa 1.0''
 xmlns:cxt=``http://localhost/context''
 xmlns:ns="http//www.example.org/
 xmlns:dc="http://purl.org/dc/elements/1.1/'>
<head><title>Page C</title></head>
<body>
 . . .
 <div>1 234,50 mi . . .
 <div>5,678.90 mi . . .
 <div about=`#D1' property=`dc:date'> 07/09/2009

 </div>
 <div about=`#D2' property=`dc:date'> 2009-09-10

 </div>
. . .

<?xml version=``1.0'' encoding=``UTF-8''?>
<html xmlns=``http://www.w3.org/1999/xhtml''
 version=``XHTML+RDFa 1.0''
 xmlns:cxt=``http://localhost/context''

xmlns:dc="http://purl.org/dc/elements/1.1/'>
<head><title>Page B</title></head>
<body>. . .
 <div about=`#D2' property=`dc:date'> 2009-09-10

 </div>
. . .

Aggregated To

<?xml version=``1.0'' encoding=``UTF-8''?>
<html xmlns=``http://www.w3.org/1999/xhtml''
 version=``XHTML+RDFa 1.0''
 xmlns:cxt=``http://localhost/context''

xmlns:dc="http://purl.org/dc/elements/1.1/'>
<head><title>Page A</title></head>
<body>. . .
 <div about=`#D1' property=`dc:date'> 07/09/2009

 </div>
 . . .

Aggregated To

Figure 5.4: Inline internal annotation using a minimum context attributes

Discussion

The main difference of this alternative among other alternatives lies into when and where
dynamic attributes are inferred. The first three alternatives recommend to infer the
dynamic attributes related to both authors and readers at browsing time and by readers’
applications. However, this alternative recommends to infer the dynamic attributes
related to authors at annotation time and by authors’ applications. Also, the dynamic
attributes related to readers is recommenced to be inferred at browsing time and by
readers’ applications. In addition, this alternative utilizes the RDFa specification to
identify the relations between S, CSC, and the minimum set of context attributes. This
implies that users’ applications have to reach to the level 2 of common conceptualization
that is identified in Section 4.3.3 (i.e., they have to agree on a concept S and the minimum
set of context attributes related to each type of sematic object). Moreover, if authors’
and readers’ applications do not reach to the level two of common conceptualization,
still there an opportunity to make the context information such as date formats and
time zones visible to readers. This helps readers to correctly interpret these CSCs even
if it is not possible to adapt them according to their local contexts.

132

5.3. Interactive Web Annotation Process

5.2.5 Web Annotation Alternatives: Conclusion

It is obvious that the fourth annotation alternative is the best alternative to annotate
CSCs as semantic objects. It does not require additional synchronization effort to
create, delete, or aggregate CSCs in Web 2.0 use cases. Also, the evolution of authors’
contexts overtime is easy to manage. Moreover, users’ applications require to reach to
the level 2 of common conceptualization in order to ensure a consistent inter-operability
of semantic objects. Finally, it complies well with the semantic visibility principle.
Table 5.1 summaries our evaluation of the annotation alternatives.

Annotation External Internal Internal Using Internal Using
Alternatives Annotation Using URI static Att. Minimum Att.

Synchronization
Yes No No No

Effort
Users’ Context Hard to Hard to Easy to Easy to

Evolution manage manage manage manage
Inter-operability

Third level Third level Third level Second level
level required

Semantic visibility
No No Partial Yes

of context

Table 5.1: Evaluation summary of the annotation alternatives.

5.3 Interactive Web Annotation Process

Having adopted the forth annotation alternative, the complexity that Web authors could
face when they annotate CSCs has to be addressed. As already mentioned many times,
Web authors need additional effort to annotate CSCs correctly or even they could
encounter errors during this process. This is because they are mostly non-experts and
do not know the relations between CSCs and local context information. Also, they do
not have theoretical and technical knowledge about the annotation process.

This section introduces an interactive annotation process that aims at assisting Web
authors to annotate CSCs. Basically, Web authors can utilize this process to specify and
store their contexts information, and also to annotate each CSC with a corresponding
concept S and a corresponding minimum set of context attributes.

As shown in Figure 5.5, our annotation process consists of one pre-annotation task
(i.e., Task 1) and four annotation tasks. The following subsections describe each of these
tasks in more details.

133

Chapter 5. Web Annotation

Local Context
Specification

C-A

Context
Attributes
Extraction

S , V

Annotation
Creation

S
,

V
,
C

Annotation
Testing

G
en

er
a

te
d

S
em

O
b

j

Correction and
Publishing

T
es

te
d

 &
 U

n
d

er
li

n
ed

S
em

O
b

js

End

End

1 2 3 4 5

A Web Author

Web

Contents

ACxt2
Web

Contents

A-Cxt1

Figure 5.5: Overview of the annotation process

5.3.1 Local Context Specification

Prior annotating CSCs, a Web author has to specify his local context information. Also,
this information has to be stored in the A-Cxt document related to him. This task assists
an author to do this as follows:

� An author has to specify static context attributes at minimum. Also, he can specify
one or more dynamic attributes if there is a specific need for unusual/specific
dynamic values.

� Then, the specified values are stored in the A-Cxt document as instances of context
attributes specified in the LCO (see Section 4.5).

Figure 5.77 presents a flowchart to illustrate this task. Recall that, the categorization
of local context information into static and dynamic attributes assist authors to specify
their local context as the values of static attributes can be easily specified (see Sec-
tion 4.3.1).

5.3.2 Context Attributes Extraction

A CSC has to be annotated with a concept S and a minimum set of context attributes
C, so that it is represented as a semantic object. This is interactively performed in this
task and in the following task (i.e., annotation creation). Indeed, this task assists an
author to identify the relation between a CSC and the real world aspect it describes
(i.e., a concepts S). Also, it hides the relations between a CSC and its corresponding
context attributes as follows (see Figure 5.7):

7The symbol * indicates that the specification of dynamic attributes is optional.

134

5.3. Interactive Web Annotation Process

End
Static attributes

Dynamic attributes*

A-CxtStoring specified

attributes

Instance of

A Web author

 Local Context

 Ontology

Figure 5.6: Annotation process: local context specification flowchart

� An author needs to identify (i.e., highlight) the value V of this CSC during content
creation or update. Then, he needs to identify a concept S that it adhere to.

� Upon the identification of S, this task extracts the set of context attributes from
the context ontology based on their relations with the selected S. These relations
are described in more details in Section 4.6.

� Afterwards, the value of the extracted context attributes are specified. Here, the
values of static context attributes and the specified dynamic context attributes
(if any) are extracted from the A-Cxt document related to this author. Also,
the values of non-specified dynamic attributes are inferred from the values of the
specified attributes. Recall that, it is considered that this inference is based on the
relations between static and dynamic attributes described in the LCO.

� Finally, the identified S, V , and the minimum set of context attributes C together
with their values are utilized as inputs to the annotation creation task below.

5.3.3 Annotation Creation

Using the inputs received from the context attributes extraction task, this process an-
notates a CSC as a SemObj as follows:

� A SemObj instance is built in the memory based on the received concept S. Then,
the received concept S, the value V , and the minimum set of context attributes C

are assigned to this SemObj.

� Next, an XHTML+RDFa representation of this SemObj is generated using the
RDFa specification.

135

Chapter 5. Web Annotation

Identifies V

Identifies S

Local Context

 Ontology

A-cxt

Extracts context

attributes

Instance of

Specifies the values

of context attributes

(minimum set C)

Sends ‘S’, ‘V’, and

‘C’ to the Annotation

Creation Task

Annotation

Creation

A Web author

S, V, C

Figure 5.7: Annotation process: context attributes extraction flowchart

� Afterwards, the value V of a CSC is replaced by the generated representation.

� Finally, the generated representation (i.e., SemObj) is utilized as input to the
annotation testing task below.

Figure 5.8 presents a flowchart to illustrate this task. This task and the previous one can
be repeated by an author in order to annotate other CSCs. Note that, an author might
annotate a CSC created and annotated by another author. In this setting, the value
V of this CSC together with its previous annotation is replaced by the new generated
representation. This ensures that the annotation of CSCs annotated by other authors
are updated according to the author’s context who update them.

S, V, C

Builds SemObj

instance

Assign S, V, C

Generates

XHTML+RDFa

representation

Replaces CSC

by the generated

representation

Context

Attributes

Extraction

A Web author

New

Annotation NoYes

Generated

SemObj

Annotation

Testing

Correction and

Publishing

5

2

4

Figure 5.8: Annotation process: annotation creation flowchart

136

5.3. Interactive Web Annotation Process

5.3.4 Annotation Testing

The role of this task is to detect the potential errors that authors could perform when
they annotate CSCs. To this end, it scans each generated SemObjs in the background
as follows (see Figure 5.9):

� A SemObj instance called testerSemObj is built for each generated SemObj re-
ceived from the annotation creation task. The testerSemObj takes the concept S

and the context C of the generated SemObj as parameters and generates a test
value TV .

� Then, the generated SemObj is compared with the tester SemObj as follows:

1. The value V is compared with the value TV and provides a warning message
as long as the former does not comply with TV (like a smart tag in Microsoft
Word). For example, if an author, by mistake, annotates a length CSC with
a date concept, then the generated SemObj will be underlined and provides
a warning message (e.g., this content is not a date).

2. The value V is compared with the context attributes extracted/inferred from
the A-Cxt document, and provides a warning message if V does not comply
with one of them. For example, a warning message is provided if an author
represents a date CSC in a way that violates the value of the date-format
attribute extracted/inferred from his related A-Cxt document.

� The output is a tested SemObj, either correct or incorrect (i.e., underlined) object.

Builds a tester

SemObj

<S, TV, C>

Annotation

Creation

A Web author

Tested

SemObj

Generated

SemObj

<S, V, C>

Compatible

Yes

No

Compatible

Tested

SemObj

(Underlined)

Yes

Tested

SemObj

(Underlined)

No

Compare

(V, context

Attributes)

A-cxt

Compare

(V, TV)

Correction and

Publishing

53

Figure 5.9: Annotation process: annotation testing flowchart

137

Chapter 5. Web Annotation

5.3.5 Correction and Publishing

The role of this task is to assist authors for correcting the annotation errors that are
detected in the previous tasks, and for publishing the annotated CSCs to Web 2.0 pages.
This is interactively performed as follows (see Figure 5.10):

� An author has to correct the underlined SemObjs. For example, he needs to
correct the annotation of the length CSC, in the above example, with the length
concept (instead of the date concept).

� Then, he publishes the annotated CSCs, and also the other Web contents he
creates or updates, to the intended Web 2.0 page.

Corrects

underlined

SemObjs
A Web author

End
Publishes

SemObjs

Tested

SemObj
Tested

SemObj
Tested

SemObj

Tested

SemObj

(Underlined)

Tested

SemObj

(Underlined)

Tested

SemObj

(Underlined)

Tested

SemObj
Tested

SemObj
Tested

SemObj CSC
ACxt2

CSC

A-Cxt1

Figure 5.10: Annotation process: correction and publishing flowchart

5.3.6 Conclusion and Suggested Extensions

The above tasks provide the means to annotate CSCs in an interactive and easy manner.
First, context attributes that are specified in the A-Cxt document can be reused to
annotate Web contents at different authoring times. Second, Task 2 enables authors
annotating CSCs as easy as formatting text in word processors [77]. Furthermore,
authors do not need to know the relations between the CSCs and the local context
attributes, since the context attributes and their values are extracted automatically
based on the concept S. At the same time our approach is flexible as advanced authors
still have the possibility to override dynamic inferred attributes in the annotation. Third,
creation of semantic annotation, in Task 3, hides the technical complexities of the RDFa
syntax. In addition, it reduces the annotation efforts and the number of annotation
errors that could be performed by Web authors. Finally, testing semantic objects, in
Task 4, assists authors into correctly authoring CSCs and therefore reduces the potential
errors that they could perform.

138

5.4. Annotation Engine: Architecture and Prototype

The annotation process can be extended in one of the following directions. First,
it can be extended with information extraction, together with semantic-aware auto-
complete interface [61]. Information extraction is used to match typed CSCs, at au-
thoring time, with one of the concepts S based on predefined concept patterns for ex-
ample. If the matching task succeeds, then the semantic auto-complete interface will
recommend this concept to the author. This increases the willingness of authors for
annotating CSCs. Also, it helps authors knowing which CSCs need to be annotated.
Second, providers (i.e., Web sites designers or administrators) can relate concepts S

and context attributes C to annotation templates, such as event and product templates.
Based on an author’s context, these templates are generated upon an author’s request,
and the typed (filled) CSCs are annotated accordingly. This is useful for annotating
structured contents [69]. Third, the annotation testing task can reuse the information
extraction technique to check if there is a CSC that matches one of the concept S. If
so, then it provides a warning message to the author in order to confirm or deny this
matching. This enhances the annotation results, since authors could forget annotating
some CSCs.

5.4 Annotation Engine: Architecture and Prototype

With respect to the architecture perspective, Section 4.7 introduces an annotation engine
as an extension to traditional Web editors. The role of this engine is to embody the
aforementioned annotation process. This section describes the internal structure of this
engine. Also, it presents a prototype which proves the validity of the proposed annotation
process.

5.4.1 Internal Structure

Figure 5.11 depicts two views of the annotation engine: process and architecture views.
The process view is already detailed in the previous section. The architecture view
illustrates the internal structure of this engine. This view encompasses two modules:
interface and annotation functions modules. Also, it utilizes the concept description
layer that is described in the general architecture (See Section 4.7).

The role of the interface module is to enable Web authors to specify their local
contexts and annotate CSCs with suitable semantic metadata as follows. Therefore,
the interface of a traditional Web editor (i.e., the Web editing interface component) is
extended with the Local Context form (or L-C form for short) and the concepts menu
components. The L-C form allows an author to specify his local context information.

139

Chapter 5. Web Annotation

Local Context
Specification

C-A
Context Attributes

Extraction

S , V

Annotation
Creation

S, V, C

Annotation
Testing

Process View

Generated

SemObj

Correction and
Publishing

Tested
SemObjs

End

End

1

A Web Author

Architecture View

Concepts Description

(Copied from the

General Architecture)

Annotation Functions

Module

A-cxt

Instance of

C-A

S, V, C

Generated

SemObj

Specified

values of C

C

Context

Manager

1

Concept

Listener

2

Annotator

3

Auto-correct

Manager

4

Interface Module

Concepts Menu

L-C Form

Publish

Web Editing

Interface

Publisher

5

S, V

C-A

Tested
SemObjs

Web

Contents

ACxt2
Web

Contents

A-Cxt1

2

3

4

5

Extended

Web Editor

Annotation

Engine

Figure 5.11: Annotation engine: internal architecture view

Afterwards, the concepts menu allows this author to select a suitable concept S for
annotating a CSC who identifies it in the Web editing interface.

The role of the annotation functions module is to embody the aforementioned an-
notation tasks. Indeed, each annotation task, shown in the process view, is designed
as a function in this module8. These functions are invoked upon authors’ interactions
with the interface components. For instance, the context manger function embodies
the local context specification task. This function is invoked when an author specifies
and submits his context information and stores the specified information in the A-Cxt
document related to this author.

8In Figure 5.11, the same number is given for each annotation task and its related annotation function.

140

5.4. Annotation Engine: Architecture and Prototype

5.4.2 Web Annotation Prototype

In addition to the annotation engine architecture, we also introduce an annotation engine
prototype as a proof-of-concept. Our prototype extends the TinyMCE�WYSIWYG Web
editor9 with our annotation engine as follows. The concepts menu is implemented using
TinyMCE APIs10. The L-C form is implemented using an HTML form. This form is
also supplemented with an illustrative example to assist authors to specify their local
context information correctly.

With respect to annotation functions module, we utilize java�and javascript�APIs
to implement them. Indeed, java APIs are used to store context information in an
author’s A-Cxt document. Also, when an author selects a concept S from the concepts
menu, java APIs are also used to extract the corresponding context attributes and their
values from the LCO and A-Cxt document. Javascript APIs are utilized to annotate
the identified CSC with the selected concept S and the extracted context attributes
C. Also , they are used to test the correctness of the annotated CSCs and publish the
contents involved in the editing interface to a Web 2.0 site. In other words, java APIs
are utilized to implement the context manager and the concept listener functions. Also,
Javascript APIs are utilized to implement the annotator, auto-correct manager, and the
publisher functions. Figure 5.12 presents a screenshot of our prototype and illustrates
how the date content from our scenario during Task T3 can be annotated.

9http://tinymce.moxiecode.com/
10TinyMCE APIs are a set of javascript APIs to dedicated to extends the TinyMCE editor.

141

Chapter 5. Web Annotation

Figure 5.12: A screenshot of the extended Web editor.

142

Chapter 6

Web Adaptation

6.1 Introduction

The term Web adaptation is identified in Section 1.3.3 as a process of adapting CSCs

according to readers local contexts. The goal of this adaptation is to address the incor-
rectness and inefficiency problems that Web readers could encounter when they interpret
CSCs that are represented according to their authors’ local contexts (see Section 1.2.2).
In addition, Section 4.2 concludes that the annotation of CSCs with their authors’ con-
texts at creation/update time and the adaptation of the annotated CSCs according to
their readers’ local contexts at browsing time is the best design alternative with respect
to the Web 2.0 use cases. Accordingly, an adaptation engine is introduced in Section 4.7
as an extension to readers’ applications to embody the adaptation process.

On the basis of the adopted design alternative, this chapter aims at discussing the
design of Web adaptation. Hence, Section 6.2 initially describes the notion of adaptation
functions and the requirements to apply this notion in our approach. Next, a set of
adaptation functions for each type of SemObjs are identified in Section 6.3. Based
on the latter, the process for adapting SemObjs involved in a Web page is detailed
in Section 6.4. Finally, the internal structure of the introduced adaptation engine is
described in Section 6.5.

6.2 Web Adaptation: Theory and Requirements

Our adaptation process mainly relies on the adaptation functions notion. Basically, the
latter adapts the value of a SemObj from one context to another based on the semantic
metadata that enrich this object. Hence, it complements the semantic object notion.

This section presents the adaptation functions notion from a theoretical viewpoint.
Afterwards, it discusses the requirements to practically apply it in our approach, taking

144

6.2. Web Adaptation: Theory and Requirements

in consideration the design decisions that were already adopted in the previous chapters.

6.2.1 Adaptation Functions

Using the semantic object notion to enrich CSCs with semantic metadata (i.e., a concept
S and context attributes C) provides a mean for readers’ applications to adapt them
from their authors’ contexts to their readers’ contexts. Indeed, the concept S allows
a reader’s application to identify the type of such SemObj to be adapted, since this
concept specifies the relation between a CSC and the real world aspect it describes.
In addition, the set of context attributes that enrich this SemObj describe the context
information used by its author to represent this CSC (see Section 4.3). In accordance,
one or more adaptation functions can be identified to adapt the value of this SemObj

according to a reader’s context.
Theoretically, for a given SemObj = < S, V, C >, such that C = {c1, c2, ..., cn}

(n ∈ N) is a set of context attributes corresponding to author’s local context, a set of
adaptation functions F = {f1, f2, . . ., fm} ((m ∈ N) can be identified. These functions
adapt the SemObj according to a given set of context attributes C ′ = {c′1, c′2, ..., c′n}
corresponding to a reader’s local context. This adaptation is performed as follows:

� The concept S is used to identify the set of adaptation functions F corresponding
to this SemObj.

� Each adaptation function fi involved in F takes the value V and a subset of context
attributes from both C and C ′ sets as parameters, and adapts V according to the
reader’s context.

� The result of applying the set of adaptation function F is a new semantic object
SemObj′ = < S, V’, C’ >.

SemObj′ is semantically equivalent to the original semantic object (i.e., SemObj), but
its value is represented according to the reader’s context C ′. In other words, both of them
describe the same CSC, but they are represented according to different local contexts.
The output of applying the adaptation functions F can be formalized as follows:

F (< S, V, C >, C ′) = < S, V ′, C ′ >

It is worth noting that our approach adopts the idea of adaptation functions from the
approaches that have utilized the semantic object notion [24, 82, 100]. These approaches
discuss several aspects related to adaptation functions in more details.

145

Chapter 6. Web Adaptation

Example

Concerning the date CSC updated by the American author in our example, the following
tuple presents it as date SemObj1. Here, the Date refers to concept S. Also, the date-
format and the time-zone refer to the corresponding minimum set of context attributes
used by the American author:

Date SemObj =<Date, 07/09/2009, date-format =‘mm/dd/yyyy’, time-zone=‘-08:00’>

To adapt this date SemObj according to the French reader’s context, two adapta-
tion functions are needed. The first function is needed to handle the time zone difference
(called time-zone convertor). This function takes the date value (i.e., 07/09/2009) and
the time zone values related to the American and the French users as parameters. Af-
terwards, it adapts the date value from the California time zone to the Paris time zone2.
The second function is needed to handle the date format difference (called date/time
formatter). Like the first function, it takes the date values and the date format values
related the American and the French users as parameters. Then, it adapts the date value
from the American date format to the French date format. The following tuple presents
the resulting semantic object after applying these two adaptation functions (i.e., date
SemObj′):

Date SemObj’ =<Date, 09/07/2009, date-format =‘dd/mm/yyyy’, time-zone=‘+01:00’>

6.2.2 Web Adaptation Requirements

Practically, several requirements have to be considered in order to utilize the adaptation
functions notion in our approaches. Many of these requirements are taken into account
when several design decisions are made in the previous chapters. The goal of this section
is to identify these requirements, and to refer to the ones that are already considered.

The first intuitive requirement is related to Web readers’ contexts. Web readers must
be able to specify their local context information easily. This requirement is taken into
account in the design of the LCO and the categorization of context attributes into static
and dynamic attributes (see Chapter 4).

Secondly, Web adaptation must be able to parse the requested Web page’s contents
and identify Web contents that are annotated as semantic objects. It also must be

1Section 4.3 discusses the representation of this date a SemObj in more details.
2As there is 9 hours difference between the author’s and reader’s local times, the date value is

converted to 08/07/2009 as long as the French reader browses this date before 09:00 AM.

146

6.3. Semantic Objects and Adaptation Functions

able to identify the types of these semantic objects and the context information that
are necessary to adapt each type of semantic object. This requirement is also mainly
considered in the design strategy introduced in Section 4.3.3. As we will see next, Web
adaptation relies on RDFa specification to parse and identify the annotated CSCs. In
addition, it relies on the common ontologies and the LCO to identify the type of each
semantic object and its related minimum set of context attributes.

Thirdly, for each type of semantic object, a set of adaptation functions F have to
be defined. In addition, Web adaptation must be able to determine the appropriate
adaptation functions that are necessary to adapt each of these semantic objects. The
forth and final requirement is to present the adaptation result to Web readers. In the
following sections, we will discuss these requirements in more details.

6.3 Semantic Objects and Adaptation Functions

Like the adaptation functions corresponding to the date/time SemObj, one or more
adaptation functions are required in order to handle the local context aspects related to
each type of SemObjs described in Section 4.6. The role of this Section is to define these
functions. In other words, this section addresses the first part of the third requirement
described above. For consistency reason, each of the following section initially recalls
the SemObj type to be adapted. Afterwards, it describes the adaptation functions
corresponding to it.

6.3.1 Adaptation of Physical Quantity SemObjs

Web users represent each kind of physical quantity CSCs using different (prefixed)
measure units and different formats. Accordingly, they are annotated with quantity-
dimension, measure-unit, measure-prefix, and quantity-format attributes as SemObjs.

The adaptation of a physical quantity SemObj according to such reader’s context
requires two adaptation functions: measure unit convertor and physical quantity for-
matter. Each function utilizes a subset of the above attributes and a subset of context
attributes related to this reader in order to adapt the value of this SemObj as follows:

� Measure unit convertor takes the value V of a quantity SemObj and the values
of measure-unit and measure-prefix attributes related to this SemObj and the
corresponding values related to the reader as parameters. Next, the value V is
adapted according the values of measure-unit and measure-prefix related to the
reader. This adaptation can be performed using a mathematical formula or a fixed

147

Chapter 6. Web Adaptation

exchange rate dedicated to this purpose. For example, the temperature quantities
can be adapted from Celsius to Fahrenheit (or C to F) using the the following
formula: C = (F - 32) * 5/9. Also, the exchange rate between Mile and Meter
units is “1 Mile = 1609 Meter”.

� Physical unit formatter takes the value V and values of quantity-format attribute
related to this SemObj and its reader. Next, it adapts V according to the reader’s
quantity format.

6.3.2 Adaptation of Price SemObjs

Web users represent price CSCs using different currencies, different sales tax systems/rate,
and different formats. Hence, price CSCs are annotated with currency, sales-included,
sales-tax-type, sales-tax rate, and price format attributes as semantic objects.

The adaptation of a price SemObj according to a reader’s context requires three
adaptation functions: currency convertor, sales tax calculator, and price formatter. Each
of these functions adapts the value of SemObj as follows:

� Currency convertor takes the value V of a price SemObj, the value of its repre-
sentation currency, and the value of currency related to its reader as parameters.
Afterwards, it uses the values of both currencies to calculate the currency exchange
rates between these two currency. As already mentioned, currency exchange rates
are dynamic and they frequently change over time. Hence, we recommend to rely
on an online Web service to calculate this rate. Finally, it adapts the value V to
its reader’s currency by multiplying it by the received exchange rate.

� Price formatter adapts the value V according to the reader’s price format using
the values of price-format attributes related to this SemObj and its reader.

� Sales tax calculator. As already discussed in Section 3.3.5, dealing with sales taxes
on the Web to exchange products and services across countries is still an open
issue. Theoretically, sales taxes are imposed on consumers, collected by sellers,
and paid to consumers’ countries based on their sales tax systems. However, this
scenario is not easy to apply in practice and most E-commerce Web sites apply
the same sales tax system/rate for all users. And then, we argue that users are
interested to know the type of sales tax system that is applied and the sales tax
rate as long as the sales tax is included.

148

6.3. Semantic Objects and Adaptation Functions

In this context, we rely on the scenario used in practice to design our sales tax
calculator as follows. This function takes the values of sales-tax-type, sales-tax-
rate, and sales-tax-included attributes that are involved in the minimum set of
context attributes related to this price SemObj. Also, it takes the value of sales-
tax-included attribute related to its reader. Afterwards, it adapts the price value
as follows:

– If the value of sales-tax-included attribute corresponding to the price SemObj

is False, then this function notifies the reader that the sales tax is excluded.

– If the values of sales-tax-included attribute corresponding to the price SemObj

and its reader are True, then this function calculates the sales tax value3. Af-
terwards, it presents the price value (i.e., total value including tax value), the
calculated tax value, and the type of sales tax (i.e., the value of the sales-tax-
type attribute).

– If the values of sales-tax-included attribute corresponding to the price SemObj

is and its reader are True and False, respectively, then this function calcu-
lates the sales tax value and deducts it from the price value. Then, it presents
the price value (i.e., excluding tax value), the calculated tax value, and the
type of sales tax.

Note that, the calculated sales tax value is also formatted according to this reader’s
context.

6.3.3 Adaptation of Telephone Number SemObjs

Web users represent telephone number CSCs using different formats. Also, they have
to complement these numbers with different prefixes to dial telephone lines inside a
country (i.e., over local telephone networks) or across countries (i.e., over global tele-
phone networks). Hence, telephone number CSCs are annotated with phone-format,
country-calling-code, national-prefix, and international-prefix attributes as SemObjs.

The adaptation of a telephone number SemObj according to a reader’s context re-
quires two adaptation functions: prefix(es) adaptor and telephone number formatter.
Each of them adapts the telephone number value as follows:

� Prefixes adaptor takes the values of country-calling-code attribute corresponding
to this SemObj and its reader as parameters. Subsequently, it complements the
value V of this SemObj with suitable prefix(es) as follows.

3Sales tax value is calculated via multiply the price value V by the sales-tax-rate value.

149

Chapter 6. Web Adaptation

– If the values of the country-calling-code attribute are the same, then it com-
plements V with the value of the national prefix attribute involved in the
annotation.

– If they have different values, then it complements V with the value of international-
prefix attribute corresponding to the reader’s context and the value of country-
calling-code attribute corresponding to this SemObj, respectively.

Note that, the prefixes values are added before the telephone numbers values.

� Like the above formatter, telephone number formatter takes the values of phone-
format attributes related to this SemObj and its reader, and adapts the value V

according to the reader’s phone format value.

6.4 Web Adaptation Process

This section discusses our vision on how to achieve the Web adaptation requirements
identified above. Basically, we introduce a Web adaptation process that assists readers
to specify their contexts information. After that, it automatically adapts the annotated
CSC according to their contexts at browsing time. In other words, it illustrates the role
of the adaption engine introduced in Section 4.7 engine during a Web reader/extended
Web browser interaction.

As it is shown in Figure 6.1, our adaptation process consists one pre-adaptation task
and five adaptation tasks. These tasks are described in more details in the following
subsections.

A Web Reader

Web

Contents

ACxt2
Web

Contents

A-Cxt1

Browse

Request

Browse

Response

Local Context
Specification

Web Page
Parsing Y

es
:

R
D

F
 s

ta
te

m
en

t

In-Memory
SemObjs
Building

M
a
tc

h
ed

 R
D

F

S
ta

te
m

e
n

t

SemObj
Adaptation

In
-m

em
o

ry
S

em
O

b
js

End

1 2 4 5

Web

Contents

R-Cxt
Web

Contents

R-Cxt

SemObj
Identification

3

C-A

B

RDF

Statements

 Exist

A

No

Adapted
Web Page

Generation

6

End

Figure 6.1: Overview of the adaptation process

150

6.4. Web Adaptation Process

6.4.1 Local Context Specification

Prior adapting semantic objects (i.e., pre-adaptation task), this task assists a Web reader
to specify his local context information, and store the specified information in R-cxt
document. In fact, this task is similar to the Task 1 involved in the Web annotation
process described in Section 5.3.1. To keep this section self-contained, the following list
paraphrases how a reader performs this task (see Figure 6.24):

� A reader has to specify static context attributes at minimum. Also, he can specify
one or more dynamic attributes if there is a specific need for unusual/specific
dynamic values.

� Then, the specified values are stored in the R-Cxt document as instances of context
attributes specified in the LCO (see Section 4.5).

End
Static attributes

Dynamic attributes*

R-CxtStoring specified

attributes

Instance of

A Web reader

 Local Context

 Ontology

Figure 6.2: Adaptation process: local context specification flowchart

6.4.2 Web Page Parsing

Whenever a reader requests a Web page, this process analyzes the requested page in
order to locate CSCs that are annotated as semantic objects as follows (See Figure 6.3):

� This task firstly builds an in-memory DOM5 tree of requested page. Next, it
sets up the context of Web page parsing based on the RDFa processing rules6.
Afterwards, The DOM tree is recursively analyzed (i.e., from root element up to
leaves) in the following steps until the end of its elements.

4The symbol * indicates that the specification of dynamic attributes is optional.
5Document Object Model
6More details about RDFa processing rules available on: http://www.w3.org/TR/rdfa-syntax/

151

Chapter 6. Web Adaptation

� While the DOM tree has elements, the current DOM element is analyzed in order
to detect a complete RDFa triple. If an RDFa triple detected, the next step is
performed. Otherwise, the next DOM element in the DOM tree is analyzed.

� When it is detected, the RDFa triple is extracted and then mapped to an RDF
statement in the form of subject-predicate-object. In general. the subject refers to
the URI of the detected RDFa triple. This expresses a Web resource localized in the
requested Web page. The object could be a Web content. In this case, this content
expresses the physical representation of the Web resource. Finally, the predicate
mostly consists of a set of RDFa attributes-values pairs. These pairs represent a
set of attributes that describe the Web resource (i.e., semantic metadata). In our
case, the subject refers to a SemObj and the object the physical representation
value V of a CSC. Finally, the predicate refers to a concept S and a minimum set
of context attributes C that annotate this SemObj.

� When the elements of DOM tree are finished, the RDF statements that are ex-
tracted during this task are utilized as an input to the semantic objects identifica-
tion task via connector (A).

Extracts RDFa

Triple

Maps it to RDF

statement

A

Web

Contents

ACxt2
Web

Contents

A-Cxt1

C
Until

End of
DOM

Parses current

DOM element

Yes

No

If
RDFa
Triple

Yes

No: Next DOM element

Next DOM element

RDF

Statement
RDF

Statement
RDF

Statement

Generates page

DOM tree

Setup parsing

context

Figure 6.3: Adaptation process: Web Page Parsing flowchart

6.4.3 Semantic Objects Identification

Having parsed the requested page, this task attempts to identify each extracted RDF
statement received by the previous task, via connector (A), as a semantic object as
follows (see Figure 6.4):

152

6.4. Web Adaptation Process

� It initially attempts to match one of the RDF attribute represented in the predicate
construct of the RDF statement under processing with one of the concept S. If the
matching succeed, the next step is performed. Otherwise the next RDF statement
is checked.

Note that, it is assumed that authors’ applications identify mappings from their
concepts S to concepts identified in common ontologies. Also, the latter is adopted
by readers’ applications, as already discussed in Section 4.4.

� Based on the matched concept S, it communicates with the local context ontology
LCO to extract the minimum set of context attributes. Then, it attempts to
match them with context attributes corresponding to author’s local context. If the
matching succeed, the next step is performed, otherwise the next RDF statement
is checked. Here, the minimum set of context attributes for each semantic object
is also assumed common among users’ applications.

� Based on the matched concept S, the RDF statement under processing is identified
as a SemObj of a particular type (e.g., date SemObj). Finally, it is utilized as an
input to the in memory semantic objects building task.

Web Page
Parsing

If
Matching
Succeed

Extracts and

matches min.

context attributes

No

Yes

No

Matched

RDF

Statement

Matches with

a concept S

A

RDF

Statements

 Exist

RDF

Statement
RDF

Statement
RDF

Statement

RDF
Statement

(Under
Processing)

Yes

If
matching
succeed

Local Context

 Ontology

In-Memory
SemObjs
Building

4

2

Yes

Figure 6.4: Adaptation process: Semantic Objects Identification flowchart

6.4.4 In Memory Semantic Objects Building

The role of this task is to prepare the environment of a reader’s application in order
to adapt the value of a CSC that is contained the matched RDF statement according
to its reader’s context. To this end, two in-memory SemObj instances are created and
utilized as input to the next task as follows (see Figure 6.5):

153

Chapter 6. Web Adaptation

� Based on the concept S corresponding to the matched RDF statement, two in-
stances of SemObj are built in memory. Then, the information contained in this
statement is assigned to one of them. This information identifies the concept S, the
minimum set of context attributes and their values corresponding to an author’s
context C, and the value V of a CSC to be adapted.

� The concept S corresponding to the matched RDF statement is also assigned to
the second SemObj instance. Then, the minimum set of context attributes (i.e.,
C ′) corresponding to the second SemObj instance are identified as follows:

– It communicates with LCO to identify the relations between static and dy-
namic attributes corresponding to this type of SemObj.

– Then, it extracts the values of static context attributes and the values of
specified dynamic context attributes from the R-Cxt document. After that,
the values of non specified dynamic attributes are inferred from the values of
static attributes. Recall that, it is considered that this inference is based on
the relations between static and dynamic attributes described in the LCO.

– Finally, the values of the minimum context attributes corresponding to reader’s
context are assigned to the second SemObj instance.

� Finally, the two SemObj instances are utilized as input to the semantic object
adaptation task.

Extracts min. context attributes

related to the reader (C’)

Assigns (S, C’) to the second SemObj

In-Memory

SemObj

instances

Builds two

SemObj instances

Assigns (S, V, C)

to one of them

Matched

RDF

Statement

SemObj
Adaptation

5

Local Context

 Ontology

R-cxt

In
st

a
n

ce
 o

f

Figure 6.5: Adaptation process: In Memory Semantic Objects Building flowchart

6.4.5 Semantic Object Adaptation

Having built two SemObj instances in memory, it is possible to adapt the value V of
the first SemObj instance from author’s to reader’s contexts. To do so, the adaptation

154

6.4. Web Adaptation Process

functions F dedicated to this type of SemObj have to be located and applied. This is
theoretically discussed in Section 6.2.1 above. Also, the following list paraphrases how
this task accomplishes this (See Figure 6.6):

� The concept S is used to locate the set of adaptation functions F dedicated to the
type of SemObj instances that are built in memory. The adaptation functions for
each type of SemObj are described in details in Section 6.3.

� Each adaptation function fi takes the value V and a subset of context attributes
from both C and C ′ sets as parameters (illustrated as c, and c’ in the flowchart).
Then, it adapts V according to the reader’s context V ′.

� The value V ′ is assigned to the second SemObj instance built in memory. The
latter is semantically equivalent to the first SemObj instance, but its value V ′ is
represented according to the reader’s context C ′, as already mentioned above.

� Finally, this task gives the control to the connector (A) in order to check if there
are RDF statements extracted during Task 2 and can be identified as semantic
objects.

fi(V, c, c’)

SemObj
<S, V, C>
SemObj’

<S, ? , C’ >

Identifies F

{f1, f2, . . ., fn}

(Based on S)

SemObj’

<S, V’, C’>A

While

i < n
Yes

No

Figure 6.6: Adaptation process: Semantic Object Adaptation flowchart

6.4.6 Adapted Web Page Generation

When all RDF statements extracted during Tasks 2 are analyzed, the control is given
to the connector (B). This connector starts this process in order to generate an adapted
version from the requested Web page as follows (see Figure 6.7):

� For each matched SemObj = <S, V, C>, this task locates the DOM element that
represents the value V . Also, it locates the corresponding Semobjs′ = <S, V’, C’>
involved in the input. Next, the value V is appended with V ′. In fact, the value

155

Chapter 6. Web Adaptation

V has to be replaced by its corresponding V ′. However, we deem appropriate to
keep the original value and add the adapted value after it, between brackets, in
order to ensure a good reader’s understanding.

� Finally, the adapted version of the requested page is presented according to the
reader’s context.

RDF

Statements

 Exist

A

B No

SemObj
Adaptation

5

Web Page
Parsing

RDF

Statement
RDF

Statement
RDF

Statement

2

SemObj’

<S, V’, C’>
SemObj’

<S, V’, C’>
SemObj’

<S, V’, C’>

Re-build adapted

DOM tree
Web

Contents

R-Cxt
Web

Contents

R-Cxt
Browse

Response

A Web Reader

. . .

SemObj’

<S, V’, C’>
SemObj’

<S, V’, C’>
SemObj’

<S, V’, C’>

Figure 6.7: Adaptation process: Adapted Web Page Generation flowchart

6.5 Adaptation Engine: Architecture and Prototype

With respect to the architecture perspective, Section 4.7 introduces an adaptation engine
as an extension to traditional Web browsers. The role of this engine is to embody the
aforementioned adaptation process. This section describes the internal structure of this
engine. Also, it presents a prototype which proves the validity of the proposed adaptation
process.

6.5.1 Internal Structure

Figure 6.8 depicts two views of the adaptation engine: process and architecture views.
The process view is already detailed in the previous section. The architecture view
encompasses two modules: interface and adaptation functions modules. In addition, it
utilizes the concept description layer that is described in the general architecture (See
Section 4.7).

The interface module extends the interface of traditional Web browsers with the L-C
form. This form allows a reader to specify his local context information. The adaptation
functions module embodies the aforementioned adaptation tasks, where each adaptation

156

6.5. Adaptation Engine: Architecture and Prototype

Process View Architecture View

Concepts Description

(Copied from the

General Architecture)

Adaptation Functions

Module

R-Cxt

Instance of

C-A

RDF statements

In-memory

SemObj

Specified

values of C

C

Context

Manager

1

Web Page

Parser

2

SemObj

Builder

3+4

SemObj

Adaptor

4

Interface Module

L-C Form

Web Browsing

Interface

Web Page

Generator

5

C-A

Browse

Response

Extended

Web Browser

Adaptation

Engine

Web

Contents

ACxt2
Web

Contents

A-Cxt1

Browse

Request

Browse

Response

Web Page
Parsing

Yes: RDF statement

Matched RDF
Statement

In-memory
SemObjs

End

2

Web

Contents

R-Cxt
Web

Contents

R-Cxt

C-A

B

RDF

Statements

 Exist

A

No

Adapted Web
Page Generation

6

End

A Web Reader

Web

Contents

R-Cxt
Web

Contents

R-Cxt

SemObj
Adaptation

5

In-Memory
SemObjs Building

4

SemObj
Identification

3

Local Context
Specification

1

Adaptation

Functions

Library

Figure 6.8: Adaptation engine: internal architecture view

task shown in the process view is designed as a function in this module7. These functions
are invoked upon readers’ interactions with the interface components. For instance,
when a Web reader requests a Web page, the Web page parser generates the DOM tree
of this page and analyzes it in order to extract RDF statements involved in it (if any).
Afterwards, it invokes the SemObj builder function to identify the extracted statements
as SemObjs, and builds two in-memory instances for each identified SemObj.

In addition, The architecture view involves a set of pre-defined adaptation functions.
These functions are stored in the adaptation functions library and embody the set of
adaptation functions that are dedicated to adapt SemObjs (see Section 6.3). These
pre-defined functions are invoked by the SemObj adaptor function in order to adapt the

7In Figure 6.8, the same numbers are given to the adaptation functions and their corresponding
adaptation tasks.

157

Chapter 6. Web Adaptation

identified SemObjs.

6.5.2 Web Adaptation Prototype

In addition to the aforementioned architecture, we propose an annotation engine proto-
type as a proof-of-concept. Our prototype is implemented as a FireFox browser extension
under Eclipse� environment. The L-C form is implemented using an XML-based user
interface Language known as XUL8. Also, we utilize javascript�APIs to implement the
functions involved in the adaptation module.

With respect to the adaptation functions library, we benefit from the rich java�APIs
for implementing them. In addition, a technology called XPCOM9 is utilized in order
to allow the SemObj adaptor function to interact with the adaptation functions library.
Basically, this technology provides an interface between java and javascript APIs which
are used in the implementation of Firefox extensions.

Figure 6.9 presents a screenshot of our prototype and illustrates the adaptation of
different types of SemObjs according to a French reader’s local context.

Figure 6.9: A screenshot of the extended FireFox Browser

8https://developer.mozilla.org/en/xul
9Cross Platform Component Object Model: https://developer.mozilla.org/en/xpcom.

158

Part III

Web 2.0 Usability Evaluation

160

Chapter 7

Web 2.0 Usability Evaluation Methodology

7.1 Introduction

The utilization of one or more usability improvement means are considered not sufficient
for ensuring the usability of users’ interactions with a Web site. Even though accurate
improvement means are utilized, it is still necessary to evaluate the results of users’
interactions against the desired level of usability (i.e., usability criteria). Therefore, the
usability evaluation is essential and principal for validating the usefulness of the utilized
usability improvement means [79].

A successful usability evaluation should provide a way to assess users’ interactions
with the intended Web site(s) during the usability design stage (see usability engineering
stages in Section 1.1). This helps to void expensive and complex re-design steps related
to the evaluated interactions. In addition, it should provide a way for validating if real
users can easily interact with the intended Web site(s) and perform tasks they want.
This helps to detect unexpected usability problems and also the actual reason of these
problems, as they are encountered by real users and during their actual use. Finally, it
should provide a way to get feedbacks from users about their satisfaction, whereby these
feedbacks are considered useful inputs for subsequent re-design steps.

From technical viewpoint, there are two main usability evaluation approaches. The
first approach is called usability inspection and it utilizes a number of usability principles
and guidelines to inspect several usability aspects during design stage. The second one is
called user-testing and it is used to evaluate whether the actual results achieved by users
comply with the desired usability level. However, a wide range of usability evaluation
methods are used to apply each of these approach. One method may efficiently work in
an application domain, but it is useless in other domains. For instance, a method called
controlled experiment is recommended to evaluate the actual results of Web adaptation
approaches, but it is useless (or not recommended) to evaluate users’ interactions when

162

7.1. Introduction

they perform many interactive tasks (see Section 2.4). In this context, most usability
experts recommend to use more than one evaluation methods and to select the best
methods that comply with an application domain to conduct usability evaluation [57].

With respect to our approach, The term Web 2.0 usability is defined in Section 1.1
in terms of effectiveness, efficiency, and satisfaction criteria that characterize users’ in-
teractions with Web 2.0 pages. Accordingly, a number of usability problems related
to the representation and interpretation of CSCs are specified in Section 1.2.2. After-
wards, Web annotation and Web adaptation are introduced as Web usability improve-
ment means to handle these problems. Finally, The term Web 2.0 usability evaluation
is introduced in Section 1.4 to address two issues: first, inspecting several usability as-
pects during the design of Web annotation and Web adaptation; secondly, introducing
a methodology to evaluate the actual results of users’ interactions after applying these
usability improvement means.

This chapter aims at discussing these two issues in more details. Prior this, it is
necessary to discuss the following related aspects. Our intention is to avoid any mis-
understanding that readers might encounter, and also to specify the boundary of our
proposed evaluation methodology.

First, we can consider that the Web 2.0 usability analysis that is discussed in Sec-
tion 1.2 and detailed in Chapter 3 is an initial evaluation step of Web 2.0 usability,
and the results of applying the following evaluation methodology is the second evalua-
tion step (also called intermediary evaluation). Our consideration comes from the fact
that there is no sharp distinction between the usability analysis, design, and evaluation
phases that are mentioned in Section 1.1. For example, usability analysis phase can
be considered as an evaluation of the current state of users’ interaction, and usability
evaluation phase can be considered as evaluation of users’ interactions after applying
one or more usability improvements means. Moreover, several evaluation activities are
usually conducted at design phase, as we will see in Section 7.2. Our consideration is
also compatible with the most usability engineering methodologies, which consider the
evaluation of Web usability is an iterative task [46, 79, 85].

Secondly, the proposed usability evaluation methodology details our recommendation
on how to evaluate usability aspects related to Web annotation and Web adaptation.
The design of the latter means as extensions to users’ applications implies that there are
other usability aspects related to these applications. Our evaluation methodology does
not consider these aspects. More specifically, our goal is to evaluate users’ interactions
when they annotate CSCs at creation/update time and the adaptation of annotated
CSCs at browsing time. However, it is not intended to evaluate the usability aspects

163

Chapter 7. Web 2.0 Usability Evaluation Methodology

related to the creation, update, and browsing of Web contents. In addition, the user
interfaces that are utilized for these purposes are also not considered.

Thirdly, usability aspects are strongly interrelated in such a way that one usability
aspect affects on and/or is affected by other usability aspects. Hence, usability evaluation
have to consider all usability aspects in order to ensure a successful evaluation [57, 90].
In this sense, there are several reasons that restrict us to conduct the proposed usability
evaluation methodology in practice (at least currently). The following mention the main
two reasons:

1. As usability aspects are strongly interrelated, the usability evaluation of authors’
interactions has to consider usability aspects that are related to the creation, up-
date, and annotation of Web contents all together. However, Web 2.0 is extremely
new domain and a few approaches target the usability aspects corresponding to
this kind of interaction (i.e., users/Web 2.0 sites interactions) [86, 93]. As a result,
most usability issues are still not addressed yet, and addressing them require more
time and research efforts.

2. Usability aspects related to readers’ interactions are also strongly interrelated to
usability aspects related to authors’ interactions. For example, Web adaptation
engine can adapt CSCs if the later are annotated by their authors at creation
and update time correctly. Therefore, the evaluation of readers’ interactions is
considered interesting if and only if CSCs are annotated completely and correctly.

As a result, we deem appropriate to propose a methodology that details our recom-
mendation on how to evaluate usability aspects related to Web annotation and Web
adaptation. Then, giving the responsibility for developers (e.g., Web 2.0 site developer
or usability evaluators) who adopt our approach to integrate this methodology with their
own traditional Web usability evaluation approaches. Also, relying on them to prepare
the needed materials for conducting this methodology in practice.

The rest of this chapter is structured as follows. Section 7.2 discusses several usability
inspection steps that are made during the design phase. Next, the proposed usability
evaluation methodology related to Web annotation and Web adaptation is described in
Section 7.3.

7.2 Web 2.0 Usability Inspection During Design Phase

During the Web 2.0 usability design phase (i.e., Chapters 4 - 6), an extensive attention is
given to the ways users actually interact with Web 2.0 sites. Our intention is to optimize

164

7.2. Web 2.0 Usability Inspection During Design Phase

the representation and the interpretation of CSCs according to how users need and/or
prefer to do this, rather than forcing them to change the way they represent and interpret
these CSCs. This intention is mainly derived from the User-Centered Design (UCD).
UCD refers to a design philosophy that considers users’ needs and interests as the key
points of Web sites design and implementation. Their major characteristics are the active
involvement of users, clear understanding of tasks that users have to perform, and an
iterative design of a Web site based on users’ feedbacks. Based on these characteristics,
a number of design principles and guidelines have been proposed and utilized in order
to facilitate the design of usable interfaces and usable interactions [87, 90].

Part of our attention includes inspections of usability issues related to several design
steps. These inspections were discussed when they were conducted and a number of
design decisions were taken according to them. Here, we aim at emphasizing on these
inspections and present them together from usability evaluation perspective. The fol-
lowing list paraphrases these assessments and referring to the design decisions that were
taken accordingly:

1. Local context specification

The first usability issue is related to the specification of local context attributes.
In practice, Web users could face difficulties to specify the values of some context
attributes that they use to represent CSCs.

This issue is considered during the representation of CSCs as semantic objects and
during the design of the local context ontology (LCO) as follows (see Chapter 4).
First, these context attributes are classified as dynamic attributes, and they are
enriched with one or more context attributes. Secondly, context attributes that are
easy to specify their values are classified as static context attributes. The values
of latter attributes are used to determine the values the dynamic attributes cor-
responding to them. Finally, according to this classification, the LCO is designed
around two main concepts: country and community conventions. Then, these
conventions are related to their origins (e.g., country and language), whereby the
values of conventions are determined from the values of their origins. Our design
is based on assumption that users can specify the values of the origins easily.

2. Web annotation

During the design of Web annotation, three usability issues are inspected. The
first two issues are related to Web annotation process. In fact, authors are mostly
non-experts. Thus, they do not know the relations between CSCs and context

165

Chapter 7. Web 2.0 Usability Evaluation Methodology

information used to represent them. Also, Web annotation technology (i.e., the
RDFa) is extremely new technology, and using it by authors to manually annotate
CSCs is too difficult and prone to serious errors.

The design decision to address these two issues is to assist authors for interactively
annotating CSCs as easy as formatting text in traditional word editors. In ad-
dition, underlining annotated CSC and providing a suitable warning message in
case there is an error in the annotation (see Section 5.3).

The third issue is related to the semantic visibility of context attributes. More
specifically, we deem appropriate to infer the values of dynamic attributes from
corresponding static attributes at annotation time, and to annotate each CSC with
a minimum set of context attributes corresponding to it as a SemObj. This helps
a reader to interpret annotated CSCs correctly even though it is not possible to
adapt them according to his/her local context, as context attributes can be made
visible. Consequently, this issue is considered in the evaluation of Web annotation
alternatives (see Section 5.2).

3. User interface of Web annotation and adaptation engines

Several usability guidelines are followed during the design of the Web annotation
and Web adaptation engines. First, an example is given in the local context panel
in order to assist users (authors and readers) to specify their minimum local con-
text attributes. Also, users can open an extended panel in case they need to specify
specific values for one or more dynamic attributes. Secondly, in case a Web au-
thor annotate a CSC incorrectly, this CSC is underlined and a suitable warning
message is provided to assist this author to correct the encountered error. Thirdly,
when Web readers adapt CSCs involved in a Web page, the original versions of
the annotated CSCs are preserved, and the adapted versions are added after the
original versions. This help readers to better understand these CSCs.

7.3 Web 2.0 User-Testing Evaluation

The inspection of usability aspects during the design phase is an important step towards
improving the Web 2.0 usability corresponding to authors’ and readers’ interactions.
However, the inspection by itself does not guarantee meeting the desired level of Web
2.0 usability, as aforementioned. Therefore, still there is a need to validate this with
actual users’ interactions.

As already discussed in Section 2.4, user-testing evaluation could target objective

166

7.3. Web 2.0 User-Testing Evaluation

aspects such as task performance (e.g., execution time) and numbers of errors encoun-
tered. Also, it could target subjective aspects such as users’ satisfactions. In addi-
tion, several methodologies has been proposed for planning and managing tasks that
should be performed during this evaluation. Finally, several methods are used to collect
and/or analyze users’ data corresponding to each task specified the evaluation method-
ology [46, 79, 85].

This section proposes a user-testing evaluation methodology that is derived from the
existing evaluation methodologies and aims at evaluating the interactions of authors and
readers. Our methodology starts by defining a number of measurable usability factors
from the desired usability level introduced in Section 1.2.2. Indeed, the desired usability
level is identified as a number of usability criteria related to both authors and readers.
These criteria are qualitative in nature, and thus it is difficult to compare them with
the actual result of users’ interaction. In contrast, these criteria are directly affected (or
can be determined) by a number of measurable factors1. For example, the effectiveness
criterion can be related to the ability of users to perform a task and the number of errors
encountered during the accomplishment of this task [114].

Next, our methodology identifies three types of users-testing evaluations. Each of
these evaluations utilizes one or more usability evaluation methods and recruits a num-
ber of users (called representative users). The former is used to collect and analyze
representative users’ data related the identified measurable factors as follows:

1. Effectiveness and efficiency of Web annotation. A scenario-based evaluation method
is utilized to evaluate the effectiveness and the efficiency of authors’ interactions
when they annotate CSCs with their corresponding local context information.

2. Effectiveness and efficiency of Web adaptation. A combination of scenario-based
and controlled experiment evaluation methods are utilized in order to evaluate the
effectiveness and the efficiency of readers’ interactions when they interpret CSCs

before and after adapting them according to their local contexts.

3. Evaluation of Users’ satisfaction. After participating in one of the two user-testing
evaluation, each representative user is asked to provide feedbacks related to his sat-
isfaction about the usability of the process under evaluation (i.e., Web annotation
or Web adaptation process). To conduct this type of evaluation, we recommend
to utilize a Web-based questionaire method.

1In [114], these factors are called usage indicators.

167

Chapter 7. Web 2.0 Usability Evaluation Methodology

7.3.1 Author-Testing Evaluation

Section 1.2.2 defines the desired usability level related to Web authors’ interactions in
terms of three usability criteria. These criteria can be paraphrased as follows. First, the
interactions of Web authors are considered effective when they are able to annotate all
types of CSCs with their corresponding local context information in an accurate man-
ner, so that readers’ applications are able to interpret and adapt the annotated CSCs.
Secondly, their interactions (i.e., authors) are considered efficient when the efforts (i.e.,
time) needed to annotate CSCs effectively are relatively not too high. Thirdly, Web
authors are considered satisfied when they do not face difficulties to specify their local
context and to annotate all types of CSCs, such that they do not reject to annotate new
CSCs in the future. Subsequently, Chapter 4 discusses several annotation alternatives
and presents an interactive annotation process in order to achieve the aforementioned
desired usability level.

In order to evaluate the actual interaction of authors, a number of measurable factors
that affect on the above usability criteria are defined. Then, one or more questions
are formulated for each measurable factor. The answers of these questions represent
the actual results/feedbacks achieved by representative authors who participate in these
evaluations. Figure 7.1 presents the usability criteria and their corresponding measurable
factors and questions.

Measurable Factors and Questions

The effectiveness criterion is divided into two sub-criteria: completeness and accuracy.
Two measurable factors are defined for the completeness criterion. The first factor
concerns the ability of authors to specify their local context information (static attributes
at minimum). The second one concerns the ability of authors to annotate CSCs exist
in Web contents to be evaluated. Consequently, the following evaluation questions are
formulated in order to measure these factors:

� How many representative authors specify their local context information (at least
static attributes)?

� Are authors able to specify the values of one or more dynamic attributes, in case
they need specific values for these attributes (e.g., sales tax rate and date format)?

� How many CSCs each representative author annotates compared with the overall
CSCs he creates or updates?

168

7.3. Web 2.0 User-Testing Evaluation

Effectiveness

Efficiency

CSCs annotation

Local context

specification

Completeness

Accuracy

Errors discovery &

recovery

Numbers of Errors

Average time of

annotation

How many authors specify their local context
information?

Are authors able to specify the values of one or
more dynamic attributes, in case they need
specific values for these attributes?

How many CSCs an author annotates compared
with the overall CSCs he creates or updates?

How many CSCs are annotated incorrectly
compared with the overall CSCs annotated by an
author?

For each error, what is the type of error?

How many CSCs are annotated incorrectly and
discovered by the annotation testing task involved
in the proposed Web annotation process?

Are authors provided by the right warning
messages that describe the type of errors and how
authors should recover them?

How many CSCs are corrected by authors after
they are discovered by the annotation testing task
compared with the overall discovered errors?

What is the average time to specify static context
attributes?

Web 2.0

Usability

Satisfaction

Clarity of interface

information

Ease of CSCs

annotation

Are the labels of context information in the local
context panel clear and visible?
Is the example provided in this panel helpful to
specify context information?

Does the concept labels provided in the concept
menu clear and visible? Also, are they sufficient
to annotate all types of CSCs?

Is is easy to annotate a CSC by highlighting it and
then selecting a suitable concept from the concept
menu?

Is the message provided to correct a CSC which is
incorrectly annotated clear and helpful?

Usability Criteria Measureable Factors Measurable Questions

What are the types of annotated CSCs?

What is the average time taken to specify the
value of a dynamic context attribute?

What is the average time to annotate a CSC

Figure 7.1: Measurable factors and questions for evaluating the Web 2.0 usability of authors

� What are the types of annotated CSCs?

In similar way, two measurable factors are defined and related to the accuracy criterion.
The first factor concerns the number of errors encountered by authors during the annota-
tion process. The second one concerns the discovery and the recovery of the encountered
errors by the annotation process. To measure these factors, the following questions are
formulated:

� How many CSCs are annotated incorrectly compared with the overall CSCs an-
notated by each representative author?

169

Chapter 7. Web 2.0 Usability Evaluation Methodology

� For each error, what is the type of error? For instance, is a CSC annotated by
incorrect semantic concept S, or does an annotated CSC not comply with context
information specified by the representative author?

� How many CSCs are annotated incorrectly and discovered by the annotation test-
ing task involved in the Web annotation process (see Section 5.3)?

� Are authors provided by the right warning messages that describe the type of errors
and how authors should recover them?

� How many CSCs are corrected by authors after they are discovered by the anno-
tation testing task compared with the overall discovered errors?

The efficiency criterion is usually related to the time taken to accomplish the task(s)
to be evaluated. In this sense, the efficiency of the annotation process is related to the
time taken from an author to specify his context and to annotate CSCs. This time is
closely interrelated with the time taken to create and/or update Web contents. Hence,
the efficiency evaluation of the annotation process is considered interesting only if it is
addressed together with the efficiency of Web contents creation and update tasks. One
way to simplify this is to ask representative authors to annotate CSCs after they finish
creating and/or updating Web contents. Then, the time taken for annotating a CSC

can be measured by dividing the time taken to annotate all CSCs on the numbers of
annotated CSCs. To sum up, the following questions are formulated to evaluate the
efficiency of the annotation process:

� What is the average time to specify static context attributes?

� What is the time taken to specify the values of one or more dynamic context
attributes in case a representative author needs specific values for these attributes?

� What is the average time to annotate a CSC?

The satisfaction criterion is more oriented to subjective attitude of authors, as already
mentioned in Section 1.2.2. For instance, the satisfaction of authors who use the extended
Web editor proposed in Section 5.4.2 can be related to two factors. The first one concerns
the clarity of information involved the Web annotation interfaces (i.e., local context panel
and concept menu). The second factor concerns the ease of annotating CSCs. These
two factors can be evaluated by asking authors the following questions:

170

7.3. Web 2.0 User-Testing Evaluation

� Is the context information provided in the local context panel clear and visible?
For example, are the example and the labels of context information provided in
this panel helpful to specify context information?

� Are the concept labels provided in the concept menu clear and visible? Also, are
they sufficient to annotate all types of CSCs?

� Is it easy to annotate a CSC by highlighting it and then selecting a suitable concept
from the concept menu?

� Is the message provided to correct a CSC which is incorrectly annotated clear and
helpful?

Effectiveness and Efficiency of Web Annotation

Our recommendation is to utilize a scenario-based evaluation method to answer the
questions related to the effectiveness and efficiency criteria formulated above. Recall
that, a number of predefined scenarios designed in this method in order to cover the
major functionalities that are intended to be evaluated. Afterwards, a number of repre-
sentative users are asked to perform these scenarios. During this, users’ data related to
usability aspects are collected in order to be compared with the desired usability level
(See Section 2.4).

Reflecting this on our Web annotation evaluation, we have to select a number of
representative authors in order to participate in the evaluation. To this end, five local
communities and six authors from each community who have good experience to deel
with the Web 2.0 are deemed suitable to represent the entire population of authors.
These authors are distributed into three groups, where each group consists of two authors
from each local community. As a result, each group has ten representative authors who
are originated from different five communities.

The members of each group are asked to use the extended Web editor (see Sec-
tion 5.4.2) in order to specify their context information and to carry out one of the
following annotation scenario:

1. Contents creation and annotation. In this scenario, representative authors are
asked to create Web contents that have a number of CSCs of different types.
Next, they are asked to interactively annotate these contents with suitable con-
cepts S, and to correct the annotated CSCs that are incorrectly annotated before
publishing the created contents, as already discussed in Section 5.3.

171

Chapter 7. Web 2.0 Usability Evaluation Methodology

2. Contents update and annotation. Each representative author is asked to browse
Web contents that are created by other authors in this scenario. Next, he is
asked to interactively update and annotate a number of CSCs which are already
annotated by their original authors, and to correcte the CSCs that are incorrectly
annotated (if any).

3. Contents annotation. In this scenario, representative authors are asked to annotate
a number CSCs after they finish creating/updating Web contents.

The role of the first and second scenarios is to evaluate the correctness and the ac-
curacy of annotating CSCs created and updated by representative authors. Indeed,
the first scenario evaluates the annotation of CSCs that are created by the same rep-
resentative author. The second one evaluates the annotation of CSCs that created and
updated by many authors. Our goal is to evaluate all possible Web 2.0 scenarios that
can be performed by authors (see Section 3.2). The role of the third scenario is evaluate
the efficiency criterion (i.e., the time spent to annotate a CSC). In other word, this
scenario is used to calculate the time that is spent to annotate CSCs involved in the
Web contents.

In practice, each representative author is recruited via sending him an email. This
email includes a link to a “welcome” page explaining the intended scenario he have to
carry out. After that, he is redirected to the evaluation page to start carrying out this
scenario. During this, the actual data related to the questions formulated above have to
be collected.

With respect to the effectiveness criterion, part of this data can be collected from the
annotated CSCs such as the number of CSCs that are annotated by a representative
author compared with the overall CSCs and whether the annotated CSCs are correctly
annotated. For other types of data such as the number and the type of CSCs that are
annotated incorrectly and whether they are corrected or not, we recommend to utilize the
capabilities of javascript in order to store these data in a cookie document. With respect
to the efficiency criterion, we also recommend to utilize the capabilities of javascript to
start a session and allow the representative author to pause, continue, and finish this
session. When it is finished, the session time is also stored in a cookie document. Finally,
the collected data are then returned, tabulated, and analyzed in order to discover any
potential usability problems.

172

7.3. Web 2.0 User-Testing Evaluation

Evaluation of Authors’ Satisfaction

Having finished conducting one of the above scenario, each participated author is also
asked to answer the questions related to satisfaction criterion formulated above. To this
end, we recommend to utilize a Web-based questionaire method as follows. The questions
involved in the questionaire are designed using a Web form. Also, the answer of each
question could be predefined using 5-point Likert scale2, or could be open-ended answer
where authors are asked to give their feedbacks, or both. In addition, the questions
proposed above can be paraphrased, divided into sub-questions, and/or one question
can be asked in two different ways. This help authors to answer these questions. Also,
it helps evaluators to check whether authors seriously answer these questions or not.

In practice, each participated author is redirected to the questionaire Web form after
finishing the scenario he is recruited to carry out. Then, he is asked to answer questions
involved in this questionaire and submit the answers after he finish. Finally, the answers
are then stored for latter analysis by evaluators.

7.3.2 Reader-Testing Evaluation

Section 1.2.2 also defines the desired usability level related to Web readers’ interactions
in terms of three usability criteria. These criteria can be paraphrased as follows. The
interactions of Web readers are considered effective and efficient when they are able to
specify their local contexts and interpret all CSCs involved in a Web page accordingly.
This implies the following. Readers do not misunderstand CSCs that are created and
updated by authors who have different local contexts. Also, the additional efforts re-
quired to interpret these CSCs are no longer required, as they are presented according
to their readers’ contexts. In addition, readers are considered satisfied if they do not
face difficulties to specify their local context and if they interpret CSCs according to
their local contexts. Subsequently, Chapter 6 proposes an adaptation process in order
to achieve the aforementioned desired usability level.

In order to evaluate the actual interaction of readers, a number of measurable factors
are defined and one or more questions are formulated for each measurable factor like it
is made in the above author-testing evaluation. Figure 7.1 presents the usability criteria
and their corresponding measurable factors and questions.

2A Likert scale is a type of question in which users are asked to evaluate the level of their agreements
in terms of five scales: strongly disagree, disagree, fair, agree, strongly agree

173

Chapter 7. Web 2.0 Usability Evaluation Methodology

Effectiveness

Efficiency

Interpretation of

CSCs

Local context

specification

Context information

visibility

Average time of

CSCs interpretation

Are readers able to specify their local context
information?

Are readers able to specify the values of one or
more dynamic attributes, in case they need
specific values for these attributes?

How many adapted CSCs are interpreted
incorrectly by a reader compared with the
overall adapted CSCs involved in a Web page?

How many annotated CSCs are adapted
according to a reader’s context by the Web
adaptation process?

Are the annotated CSCs visible and clear
enough after they adapted?

Is the annotated CSCs affect on the visibility
and clarity of other Web contents after they
adapted?

In case the annotated CSCs can not be adapted
(e.g., the browser of a reader is not extended),
is the context information used to annotate
CSCs visible, so that readers can interpret
their authors' local contexts?

What is the average time spent to interpret a
CSC without adapting it according to its
reader’s local context

Measurable Questions

Web 2.0

Usability

Satisfaction

What is the average time spent by a reader to
interpret a CSC after it is adapted according
to his local context?

Clarity of interface

information

Are the labels of context information in the
local context panel clear and visible?
Does the example provided in this panel
helpful to specify context information?

Presentation clarity

of adapted CSCs

Measureable Factors Usability Criteria

Before adaptation, how many CSCs are
interpreted incorrectly by a reader compared
with the overall CSCs involved in a Web page?

Figure 7.2: Measurable factors and questions for evaluating the Web 2.0 usability of readers

Measurable Factors and Questions

Two measurable factors are defined and related to the effectiveness criterion. The first
factor concerns the ability of readers to specify their contexts information correctly and
accurately. To consider this factor, the same questions concerning the ability of authors
to specify context information are also utilized here. The second factor concerns the
interpretation of CSCs that were annotated by authors before and after adapting them
according to their reader’s context. Hence, the following questions are formulated to
evaluate this factor:

� Before they are adapted according to their reader’s context, how many CSCs are
interpreted incorrectly by this reader compared with the overall CSCs involved in
a Web page?

174

7.3. Web 2.0 User-Testing Evaluation

� How many annotated CSCs involved in a Web page are adapted according to their
readers context by the Web adaptation process?

� After they are adapted according to their reader’s context, how many CSCs are
interpreted incorrectly by this reader compared with the overall adapted CSCs

involved in a Web page?

With respect to the efficiency criterion, it is related to the time teken to browse and
interpret Web contents that consist of several CSCs. In this sense, browsing time
have to be decreased after CSCs are adapted according to their reader’s local context
(i.e., no additional time required to interpret them). This time can be evaluated by
formulating two questions concerning the time spent to browse Web contents before and
after adaptation.

The satisfaction criterion is related to subjective attitude of readers. Hence, the
satisfaction of readers who use the extended Web browser proposed in Section 6.5.2 can
be related to three factors. The first one concerns the the clarity of information involved
in the Web adaptation interface (i.e., local context panel). This can be evaluated by
utilizing the same questions that are used to evaluate the clarity of local context panel of
the extended Web editor. The second factor concerns the clarity of CSCs presentation
after they are adapted. The third factor concerns the visibility of annotation information
in case the annotated CSCs can not be adapted according to reader’s context (e.g., the
browser of a reader is not extended). The last two factors can be evaluated by asking
authors the following questions:

� Are the annotated CSCs visible and clear enough after they are adapted?

� Is the annotated CSCs affect the visibility and clarity of other Web contents after
they are adapted?

� In case the annotated CSCs can not be adapted, is the context information used
to annotate CSCs visible, so that readers can interpret their authors’ contexts
information?

Effectiveness and Efficiency of Web Adaptation

In order to answer the questions related to the effectiveness and the efficiency of readers’
interactions, we recommend to utilize a combination of scenario-based evaluation and
controlled experiment3 methods. Also, our recommendation is to recruit a number of

3As discussed in Section 2.4, the main idea of the controlled experiment method is to evaluate the
consequences of one or more usability hypotheses on the actual users’ interactions.

175

Chapter 7. Web 2.0 Usability Evaluation Methodology

representative readers in order to browse Web contents that were created/updated by the
representative Web authors who carried out the above author-testing evaluation. More
specifically, two groups of readers, each of which has ten representative readers from
different five local communities are deemed suitable to represent the entire population
of Web readers. There readers are asked to browse Web contents that were created by
a single author and/or created and updated by multiple authors as described in the
following scenarios:

1. Web contents browsing without adaptation. In this scenario, the members of the
first group are asked to browse the Web contents that were created/updated by
representative authors without adapting the annotated CSCs according to their
local contexts.

2. Web contents browsing after adaptation. The members of the second group are
asked to extend their Web browser with adaptation engine proposed in Section 6.
Afterwards, they asked to specify their context information and browse the Web
contents after adapting the annotated CSCs involved in these contents.

During conducting these two scenarios, the actual data that are needed to answer the
above questions are collected from representative readers. For example, data corre-
sponding to the numbers of CSCs that are interpreted incorrectly and the time taken
to interpret them before and after their adaptation are collected. Afterwards, the con-
trolled experiment method is utilized to analyze these data by comparing the actual
results before and after the adaptation of CSCs.

Practically, an email is sent to each representative reader, like in the above author-
testing evaluation. This email includes a link to a “welcome” page explaining the in-
tended scenario he has to carry out. After that, he is redirected to the evaluation page
to start carrying out this scenario. During this, the actual data related to the questions
formulated above have to be collected. Here, we also recommend to utilize the capabil-
ities of javascript in order to collect and store this data. Then, the collected data are
tabulated and analyzed in order to discover any potential usability problems.

Evaluation of Readers’ Satisfaction

Having finished conducting the second scenario, the members of the second readers’
group are asked to answer the questions related to satisfaction criterion formulated above
using a Web-based questionaire method. Like the evaluation of authors satisfaction, the
questions proposed above can be paraphrased, divided into sub-questions, and/or one

176

7.3. Web 2.0 User-Testing Evaluation

question can be asked in two different ways. Also, the answer of the questions involved
this questionaire could be of type 5-point Likert scale, open-ended, or both. Finally, the
answers of the questions are stored for analysis after the participated readers submit the
questionaire form.

177

Part IV

Web 2.0 Usability: Conclusion

178

Chapter 8

Summary and Conclusions

8.1 Summary

In this thesis, we have focused on handling the local contexts of Web users during
their interactions with Web 2.0 sites. We have discussed several discrepancies that arise
when Web users browse several types of Web contents (i.e., Context-Sensitive Contents,
or CSCs). These discrepancies are arisen since Web users belong to different local
communities and they implicitly use their local contexts to represent and interpret CSCs.
In addition, we have illustrated that these discrepancies increase when Web users interact
with Web 2.0 sites for two reasons. First, Web contents could be created and updated
from different authors who have different local contexts. Secondly, Web contents from
different Web sites could be aggregated and displayed together in a single Web page.
Hence, Web users mostly browse the contents of a single Web page that are represented
according to different local contexts.

From usability point of view, the aforementioned issues hamper the interactions of
Web users with Web 2.0 sites. In this sense, the term Web 2.0 usability has been utilized
to refer to the effectiveness (completeness and accuracy), efficiency, and satisfaction cri-
teria that characterize the interactions of users with Web 2.0 sites when they represent
and interpret CSCs. Afterwards, the following usability problems have been defined.
First, Web users require additional efforts to interpret CSCs or even they could misin-
terpret their semantics, as these CSCs are represented according to their authors’ local
contexts (inefficiency and inaccuracy problems, respectively). Secondly, the representa-
tion of CSCs are incomplete as the authors’ local contexts used to represent them are
not explicitly specified. Hence, it is not possible to adapt these CSCs according their
readers’ local contexts.

The terms Web annotation and Web adaptation have been defined as usability im-
provements means to address the aforementioned problems. Also, usability engineering

180

8.1. Summary

phases has been utilized as a methodological framework to analyze, improve, and eval-
uate the interactions between users and Web 2.0 sites [12]. In addition, several research
approaches related to Web annotation, Web adaptation, and Web usability evaluation
have been discussed from different viewpoints. These approaches has been discussed in
Chapter 2.

Afterwards, we have analyzed several aspects related to users’ interactions with Web
2.0 sites in Part I. Particularly, we have presented several Web 2.0 use cases and provided
some practical examples for each use cases. We also have analyzed several characteristics
for each use cases, with more focus on local context perspective. In addition, we have
studied several types of CSCs and context information that are used to represent and
interpret each types of them. Accordingly, we have defined the following requirements in
order to improve the usability of users’ interactions: the representation of CSCs have to
be completed with their authors’ local contexts and they have to be adapted according
to their readers’ local contexts. Also, the completion and adaptation of CSCs have to
consider the characteristics of all Web 2.0 use cases.

Based on the usability analysis, the design of Web annotation and Web adaptation
have been described in Part II. In Chapter 4, we have evaluated several design alterna-
tives to adapt CSCs according to their readers’ local contexts. We also have concluded
that the annotation of CSCs with their authors’ local contexts at creation/update time
and the adaptation of them at browsing time is the best design alternative with respect
to the Web 2.0 use cases. Based on the adopted alternative, we have presented a se-
mantic representation model. This model has utilized the notion of semantic object to
enrich (i.e., annotate) CSCs with suitable authors’ context information. In addition, we
have introduced an ontology called local context ontology in order to foster the inter-
operability of annotated CSCs among users’ applications. Finally, we have introduced
an architecture in order to demonstrate how our approach work seamlessly with Web
technology stacks.

In Chapter 5, we have evaluated several annotation alternatives and concluded that
the use of the RDFa technology to annotate CSCs with a minimum set of context
attributes that are extracted/inferred from authors’ contexts is the best annotation
tradeoff. Then, we have developed an interactive annotation process that assists authors
to specify their local context and annotate CSCs with a suitable context information.
Finally, we have described the internal structure of the annotation engine that is used
to embody our annotation process.

In Chapter 6, we have developed an adaptation process. This process adapts seman-
tic objects (i.e., annotated CSCs) from their multiple authors’ local contexts to their

181

Chapter 8. Summary and Conclusions

reader’s local context based on a set of adaptation functions dedicated to each type of
semantic object.

Finally, Part III has introduced an evaluation methodology. This methodology has
detailed our recommendation on how to evaluate the actual users’ interactions after
carrying out the Web annotation and Web adaptation summarized above.

Hence, the main contribution of this thesis can be summarized as follows:

� We have evaluated several design alternatives in order to optimize the adapta-
tion of CSCs. Also, a semantic representation model has been proposed based
on the adopted design alternative. This model utilizes the semantic object notion
and enriches CSCs with suitable context information. In addition, we have intro-
duced local context ontology in order to represent the local context information at
conceptual level.

� We have also introduced an architecture in order to describe the main components
that are necessary to accomplish the Web annotation and Web adaptation.

� We have evaluated several annotation alternative and introduced an interactive
Web annotation process. This process details how Web authors are assisted to
specify their contexts and to annotate CSCs with a suitable context information.

� We have introduced Web adaptation process and a set of adaptation functions for
each type of semantic objects. This process adapts semantic according to their
readers’ contexts at browsing time.

� Finally, we have proposed a usability evaluation methodology. This methodology
explains how to evaluate users’ interactions after carrying out the proposed Web
annotation and Web adaptation.

8.2 Conclusions

During the last decade, the Web has evolved to a new era characterized by authoring and
sharing of Web contents via different Web users and sites, known as Web 2.0. Indeed,
Web users can now contribute in creating and updating Web contents, in addition to
browsing them. Also, Web contents from different Web sites can be aggregated, re-
mixed, and displayed together in a single Web page. On the other hand, Web users
are increasing and they are originated from different local communities. These users
implicitly follow their local contexts when they represent and interpret Web contents.

182

8.3. Future Works

One of the challenges is to allow these users to interact with Web 2.0 according to their
local contexts.

Web adaptation is one of the well-known techniques that is utilized to adapt Web
contents according to their users’ needs (i.e., local contexts in this work). However,
the emergence of Web 2.0 raises new challenges on Web contents’ adaptation. The
main challenge lies into the heterogenous nature of Web contents. Indeed, different Web
contents from different sources could refer to the same real-world concept. Moreover,
these contents could be represented in different ways, as they are implicity represented
according to their authors’ local contexts. One possible way to address this challenge is
to rely on Web annotation. the latter enriches Web contents with semantic matadata.
However, it is extremely new technology and relying on users to manually annotate
Web contents is considered difficult and prone to serious errors. This thesis proposes a
combination of interactive Web annotation and Web adaptation approach to handle the
local contexts of Web users, as summarized above.

8.3 Future Works

We believe that the future research in this area should be empirical. Currently, we
have illustrated the problems that arise when Web users follow their local contexts to
interact with the Web, and we have proposed a design solution for addressing them. It
is now time to set up an empirical experiment in order to validate the feasibility of our
approach in the real world. To do so, we have to investigate the integration/extension
of our evaluation methodology with other usability evaluation methodologies utilized to
evaluate other usability aspects such as the evaluation of users’ interactions during Web
contents’ creation, update, and browsing.

183

Bibliography

[1] Rusli Abdullah and Koh Tieng Wei. Usability measurement of malaysia online
news websites. IJCSNS International Journal of Computer Science and Network
Security, 8(5), 2008.

[2] Gregory D. Abowd, Christopher G. Atkeson, Jason I. Hong, Sue Long, Rob
Kooper, and Mike Pinkerton. Cyberguide: A mobile context-aware tour guide.
Wireless Networks, 3(5):421–433, 1997.

[3] Ben Adida. hGRDDL: Bridging microformats and RDFa. J. Web Sem., 6(1), 2008.

[4] Mohanad Al-Jabari, Michael Mrissa, and Philippe Thiran. Handling users local
contexts in web 2.0: Use cases and challenges. In AP WEB 2.0 International
Workshop, pages 11–20, 2009.

[5] Mohanad Al-Jabari, Michael Mrissa, and Philippe Thiran. Towards web usability:
Providing web contents according to the readers contexts. In UMAP, volume 5535
of Lecture Notes in Computer Science, pages 467–473. Springer, 2009.

[6] Mohanad Al-Jabari, Michael Mrissa, and Philippe Thiran. Context-aware inter-
active approach to handle users local contexts in web 2.0. In ICWE, 2010.

[7] Hend S. Al-Khalifa and Jessica Rubart. Automatic document-level semantic meta-
data annotation using folksonomies and domain ontologies. SIGWEB Newsl.,
2008(Autumn):1–3, 2008.

[8] Paul Anderson. What is web 2.0? ideas, technologies and implications for educa-
tion. Technical report, JISC Technology and Standards Watch, 2007.

[9] Antonella De Angeli and Leantros Kyriakoullis. Globalisation vs. localisation in
e-commerce: cultural-aware interaction design. In AVI ’06: Proceedings of the
working conference on Advanced visual interfaces, pages 250–253, New York, NY,
USA, 2006. ACM.

184

Bibliography

[10] Anupriya Ankolekar, Markus Krötzsch, Thanh Tran, and Denny Vrandecic. The
two cultures: Mashing up web 2.0 and the semantic web. J. Web Sem., 6(1):70–75,
2008.

[11] Anupriya Ankolekar and Denny Vrandecic. Personalizing web surfing with seman-
tically enriched peronal profiles. In Makram Bouzid and Nicola Henze, editors,
Proceedings of the Semantic Web Personalization Workshop, Budva, Montenegro,
JUN 2006.

[12] Nuray Aykin. Usability and Internationalization of Information Technology (Vol-
ume in the Human Factors/Ergonomics Series). L. Erlbaum Associates Inc., Hills-
dale, NJ, USA, 2004.

[13] Faical Azouaou, Weiqin Chen, and Cyrille Desmoulins. Semantic annotation tools
for learning material. a part of EU IST Technology Enhanced Learning (TEL)
project 507838.

[14] Faiçal Azouaou and Cyrille Desmoulins. Semantic annotation for the teacher:
models for a computerized memory tool. In Proceedings of the Third International
Workshop on Applications of Semantic Web Technologies for E-Learning (SW-EL
2005), page 10 pages, Amsterdam Netherlands, 2005.

[15] Sandrine Balbo, Steve Goschnick, Derek Tong, and Ccile Paris. Leading web
usability evaluations to wauter. In In Proceedings of the 11th Australian World
Wide Web Conference (AusWeb), 2005.

[16] Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. A survey on
context-aware systems. IJAHUC, 2(4):263–277, 2007.

[17] W. Barber and A. Badre. Culturability: The merging of culture and usability. In
the 4th Conference on Human Factors and the Web, 1998.

[18] Sean Bechhofer, Simon Harper, and Darren Lunn. Sadie: Semantic annotation for
accessibility. In Cruz et al. [38], pages 101–115.

[19] Abdo Beirekdar, Jean Vanderdonckt, Jean V, and Monique Noirhomme-fraiture.
Kwaresmi - knowledge-based web automated evaluation tool with reconfigurable
guidelines optimization, 2003.

[20] Rudi Belotti, Corsin Decurtins, Michael Grossniklaus, Moira C. Norrie, and Alex-
ios Palinginis. Interplay of content and context. In Koch et al. [72], pages 187–200.

185

Bibliography

[21] Raquel Benbunan-Fich. Using protocol analysis to evaluate the usability of a
commercial web site. Inf. Manage., 39(2):151–163, 2001.

[22] V. Richard Benjamins, Dieter Fensel, Stefan Decker, and Asunción Gómez-Pérez.
(ka)2: building ontologies for the internet: a mid-term report. Int. J. Hum.-
Comput. Stud., 51(3):687–712, 1999.

[23] Hannes Bohring and Sren Auer. Mapping xml to owl ontologies. In Leipziger
Informatik-Tage, volume 72 of LNI, pages 147–156. GI, 2005.

[24] Christof Bornhövd. Semantic metadata for the integration of web-based data for
electronic commerce. In WECWIS ’99: Proceedings of the International Workshop
on Advance Issues of E-Commerce and Web-Based Information Systems, page 137,
Washington, DC, USA, 1999. IEEE Computer Society.

[25] Danah Boyd and Nicole B. Ellison. Social network sites: Definition, history, and
scholarship. Journal of Computer-Mediated Communication, 13(1-2), November
2007.

[26] Peter Brusilovsky. Adaptive hypermedia. User Model. User-Adapt. Interact., 11(1-
2):87–110, 2001.

[27] Peter Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl, editors. The Adaptive Web,
Methods and Strategies of Web Personalization, volume 4321 of Lecture Notes in
Computer Science. Springer, 2007.

[28] Michel Buffa, Fabien L. Gandon, Guillaume Erétéo, Peter Sander, and Catherine
Faron. Sweetwiki: A semantic wiki. J. Web Sem., 6(1):84–97, 2008.

[29] Juan Cappi, Gustavo Rossi, Andres Fortier, and Daniel Schwabe. Seamless per-
sonalization of e-commerce applications. In Revised Papers from the HUMACS,
DASWIS, ECOMO, and DAMA on ER 2001 Workshops, pages 457–470, London,
UK, 2002. Springer-Verlag.

[30] Les Carr, Timothy Miles-Board, Arouna Woukeu, Gary Wills, and Wendy Hall.
The case for explicit knowledge in documents. In Ethan V. Munson and Jean-
Yves Vion-Dury, editors, ACM Symposium on Document Engineering, pages 90–
98. ACM, 2004.

186

Bibliography

[31] Stefano Ceri, Florian Daniel, Maristella Matera, and Federico Michele Facca.
Model-driven development of context-aware web applications. ACM Trans. In-
ternet Techn., 7(1), 2007.

[32] Stefano Ceri, Peter Dolog, Maristella Matera, and Wolfgang Nejdl. Model-driven
design of web applications with client-side adaptation. In Koch et al. [72], pages
201–214.

[33] Po-Hao Chang and Gul Agha. Towards context-aware web applications. In Jadwiga
Indulska and Kerry Raymond, editors, DAIS, volume 4531 of Lecture Notes in
Computer Science, pages 239–252. Springer, 2007.

[34] Philipp Cimiano, Günter Ladwig, and Steffen Staab. Gimme’ the context: context-
driven automatic semantic annotation with c-pankow. In Allan Ellis and Tatsuya
Hagino, editors, WWW, pages 332–341. ACM, 2005.

[35] Michael Cooper. Evaluating accessibility and usability of web pages. In Proceedings
of the third international conference on Computer-aided design of user interfaces,
pages 33–42, Norwell, MA, USA, 1999. Kluwer Academic Publishers.

[36] Óscar Corcho. Ontology based document annotation: trends and open research
problems. IJMSO, 1(1):47–57, 2006.

[37] Graham Cormode and Balachander Krishnamurthy. Key differences between web
1.0 and web 2.0. First Monday, 13(6), 2008.

[38] Isabel F. Cruz, Stefan Decker, Dean Allemang, Chris Preist, Daniel Schwabe,
Peter Mika, Michael Uschold, and Lora Aroyo, editors. The Semantic Web -
ISWC 2006, 5th International Semantic Web Conference, ISWC 2006, Athens,
GA, USA, November 5-9, 2006, Proceedings, volume 4273 of Lecture Notes in
Computer Science. Springer, 2006.

[39] Dianne Cyr and Haizley Trevor-Smith. Localization of web design: An empir-
ical comparison of german, japanese, and united states web site characteristics.
JASIST, 55(13):1199–1208, 2004.

[40] Stefan Decker, Sergey Melnik, Frank Van Harmelen, Dieter Fensel, Michel Klein,
Jeen Broekstra, Michael Erdmann, and Ian Horrocks. The semantic web: The
roles of xml and rdf. IEEE Internet Computing, 4(5):63–74, 2000.

187

Bibliography

[41] Anind K. Dey. Understanding and using context. Personal and Ubiquitous Com-
puting, 5(1):4–7, 2001.

[42] Stephen Dill, Nadav Eiron, David Gibson, Daniel Gruhl, R. Guha, Anant Jhin-
gran, Tapas Kanungo, Sridhar Rajagopalan, Andrew Tomkins, John A. Tomlin,
and Jason Y. Zien. Semtag and seeker: bootstrapping the semantic web via auto-
mated semantic annotation. In WWW ’03: Proceedings of the 12th international
conference on World Wide Web, pages 178–186, New York, NY, USA, 2003. ACM.

[43] Brahim Djioua, Jorge J. Garćıa Flores, Antoine Blais, Jean-Pierre Desclés, Gaëll
Guibert, Agata Jackiewicz, Florence Le Priol, Leila Nait-Baha, and Benôıt Sauzay.
Excom: An automatic annotation engine for semantic information. In Geoff Sut-
cliffe and Randy Goebel, editors, FLAIRS Conference, pages 285–290. AAAI Press,
2006.

[44] Jérôme Euzenat. Eight questions about semantic web annotations. IEEE Intelli-
gent Systems, 17(2):55–62, 2002.

[45] Piero Fraternali, Maristella Matera, and Andrea Maurino. Conceptual-level log
analysis for the evaluation of web application quality. In LA-WEB, pages 46–57.
IEEE Computer Society, 2003.

[46] Cristina Gena and Stephan Weibelzahl. Usability engineering for the adaptive
web. In Brusilovsky et al. [27], pages 720–762.

[47] Anna Goy, Liliana Ardissono, and Giovanna Petrone. Personalization in e-
commerce applications. In Brusilovsky et al. [27], pages 485–520.

[48] Alexander Graf. Rdfa vs. microformats. Technical report, DERI, 04 2007.

[49] Thomas R. Gruber. Toward principles for the design of ontologies used for knowl-
edge sharing? Int. J. Hum.-Comput. Stud., 43(5-6):907–928, 1995.

[50] Thomas R. Gruber. Toward principles for the design of ontologies used for knowl-
edge sharing? International Journal of Human-Computer Studies, 43(5-6):907 –
928, 1995.

[51] Ramanathan V. Guha and Rob McCool. Tap: a semantic web platform. Computer
Networks, 42(5):557–577, 2003.

[52] Siegfried Handschuh and Steffen Staab. Authoring and annotation of web pages
in cream. In WWW, pages 462–473, 2002.

188

Bibliography

[53] Siegfried Handschuh, Steffen Staab, and Fabio Ciravegna. S-cream - semi-
automatic creation of metadata. In Asunción Gómez-Pérez and V. Richard Ben-
jamins, editors, EKAW, volume 2473 of Lecture Notes in Computer Science, pages
358–372. Springer, 2002.

[54] Ilse Maria Harms and Werner Schweibenz. Usability engineering methods for
the web: Results from a usability study. In Gerhard Knorz and Rainer Kuhlen,
editors, ISI, volume 38 of Schriften zur Informationswissenschaft, pages 17–30.
Hochschulverband für Informationswissenschaft, 2000.

[55] Simon Harper and Sean Bechhofer. Semantic triage for increased web accessibility.
IBM Systems Journal, 44(3):637–649, 2005.

[56] Jeff Heflin, James Hendler, and Sean Luke. Reading between the lines: Using shoe
to discover implicit knowledge from the web. In In AI and Information Integration,
Papers from the 1998 Workshop, Menlo Park, CA. AAAI Press, 1998.

[57] Banati Hema, Bedi Punam, and Grover P.S. Evaluating web usability from the
user’s perspective. Journal of Computer Science, 2(4):314–317, 2006.

[58] Masahiro Hori, Mari Abe, and Kouichi Ono. Extensible framework of authoring
tools for web document annotation. In International Workshop on Semantic Web
Foundations and Application Technologies (SWFAT), Japan Nara, 2003.

[59] Masahiro Hori, Goh Kondoh, Kouichi Ono, Shin’ichi Hirose, and Sandeep K. Sing-
hal. Annotation-based web content transcoding. Computer Networks, 33(1-6):197–
211, 2000.

[60] David Huynh, Stefano Mazzocchi, and David R. Karger. Piggy bank: Experience
the semantic web inside your web browser. J. Web Sem., 5(1):16–27, 2007.

[61] Eero Hyvönen and Eetu Mäkelä. Semantic autocompletion. In Riichiro Mizoguchi,
Zhongzhi Shi, and Fausto Giunchiglia, editors, ASWC, volume 4185 of Lecture
Notes in Computer Science, pages 739–751. Springer, 2006.

[62] Peter Sandrini (Innsbruck). Website localization and translation. In Heidrun
Gerzymisch-Arbogast (Saarbrcken)and Sandra Nauert (Saarbrcken), editor, Mu-
Tra 2005 - EU-High-Level Scientific Conference:Challenges of Multidimensional
Translation, May 2005.

189

Bibliography

[63] Melody Y. Ivory and Marti A Hearst. The state of the art in automating usability
evaluation of user interfaces. ACM Comput. Surv., 33(4):470–516, 2001.

[64] Tatjana Jevsikova. Localization and internationalization of web-based learning
environment. In Roland Mittermeir, editor, ISSEP, volume 4226 of Lecture Notes
in Computer Science, pages 310–318. Springer, 2006.

[65] José Kahan and Marja-Riitta Koivunen. Annotea: an open rdf infrastructure for
shared web annotations. In WWW, pages 623–632, 2001.

[66] José Kahan, Marja-Riitta Koivunen, Eric Prud’ hommeaux, and Ralph R. Swick.
Annotea: an open rdf infrastructure for shared web annotations. Computer Net-
works, 39(5), 2002.

[67] Joachim Wolfgang Kaltz. An Engineering Method for Adaptive, Context-aware
Web Applications. Phd thesis, Fakultt fr Ingenieurwissenschaften ” Ingenieurwis-
senschaften - Campus Duisburg ” Abteilung Informatik und Angewandte Kogni-
tionswissenschaft, 2006.

[68] Gerti Kappel, Birgit Pröll, Werner Retschitzegger, and Wieland Schwinger. Mod-
elling ubiquitous web applications - the wuml approach. In Hiroshi Arisawa,
Yahiko Kambayashi, Vijay Kumar, Heinrich C. Mayr, and Ingrid Hunt, editors, ER
(Workshops), volume 2465 of Lecture Notes in Computer Science, pages 183–197.
Springer, 2001.

[69] Brian P. Kettler, James Starz, William Miller, and Peter Haglich. A template-
based markup tool for semantic web content. In Yolanda Gil, Enrico Motta,
V. Richard Benjamins, and Mark A. Musen, editors, International Semantic Web
Conference, volume 3729 of Lecture Notes in Computer Science, pages 446–460.
Springer, 2005.

[70] Rohit Khare. Microformats: The next (small) thing on the semantic web? IEEE
Internet Computing, 10(1):68–75, 2006.

[71] Alfred Kobsa, J. Koenemann, and W. Pohl. Personalized hypermedia presentation
techniques for improving online customer relationships. The Knowledge Engineer-
ing Review, 16(2):111–155, 2001.

[72] Nora Koch, Piero Fraternali, and Martin Wirsing, editors. Web Engineering -
4th International Conference, ICWE 2004, Munich, Germany, July 26-30, 2004,
Proceedings, volume 3140 of Lecture Notes in Computer Science. Springer, 2004.

190

Bibliography

[73] Ron Kohavi, Randal M. Henne, and Dan Sommerfield. Practical guide to controlled
experiments on the web: listen to your customers not to the hippo. In KDD ’07:
Proceedings of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 959–967, New York, NY, USA, 2007. ACM.

[74] Markus Krötzsch, Denny Vrandecic, and Max Völkel. Semantic mediawiki. In
Cruz et al. [38], pages 935–942.

[75] Tayeb Lemlouma and Nabil Layada. Smil content adaptation for embedded de-
vices. In in SMIL Europe 2003 Conference, pages 12–14, 1214.

[76] James R. Lewis. Ibm computer usability satisfaction questionnaires:psychometric
evaluation and instructions for use. Technical Report 54.786, IBM Corporation,
Human Factors Group, 1993.

[77] Ralf Heese Markus Luczak-Roesch. Linked data authoring for non-experts. In
Proceedings of the WWW09, Workshop Linked Data on the Web (LDOW2009),
2009.

[78] P. Markellou, I. Mousourouli, S. Spiros, and A. Tsakalidis. Using semantic web
mining technologies for personalized e-learning experiences. In web-based education
(pp. 461-826)., 2005.

[79] Maristella Matera, Francesca Rizzo, and Giovanni Toffetti Carughi. Web usability:
Principles and evaluation methods. In Web Engineering, pages 143–180. Springer,
2006.

[80] Sean M. McNee, Shyong K. Lam, Joseph A. Konstan, and John Riedl. Interfaces
for eliciting new user preferences in recommender systems. In Peter Brusilovsky,
Albert T. Corbett, and Fiorella de Rosis, editors, User Modeling, volume 2702 of
Lecture Notes in Computer Science, pages 178–187. Springer, 2003.

[81] Michael Mrissa, Mohanad Al-Jabari, and Phillippe Thiran. Using microformats to
personalize web experience. In Proceedings of the 7th International Workshop on
Web-Oriented Software Technologies (IWWOST08), 2008.

[82] Michael Mrissa, Chirine Ghedira, Djamal Benslimane, and Zakaria Maamar. A
context model for semantic mediation in web services composition. In ER, pages
12–25, 2006.

191

Bibliography

[83] Christine Muller and Michael Kohlhase. Context-aware adaptation: A case study
on mathematical notations. Inf. Sys. Manag., 26(3):215–230, 2009.

[84] Deirdre Mulligan and Ari Schwartz. Your place or mine?: privacy concerns and
solutions for server and client-side storage of personal information. In CFP ’00:
Proceedings of the tenth conference on Computers, freedom and privacy, pages
81–84, New York, NY, USA, 2000. ACM.

[85] Jakob Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1993.

[86] Jakob Nielsen. Web 2.0 can be dangerous... http://www.useit.com/alertbox/web-
2.html, December 2007.

[87] Donald A. Norman. The Design of Everyday Things. Basic Books, September
2002.

[88] Deborah L. McGuinness Ora Lassila. The role of frame-based representation on
the semantic web. Electronic Transactions on Artificial Intelligence, 6(005), 2001.

[89] Tim O’Reilly. What is web 2.0? design patterns and business models for the next
generation of software. 2005.

[90] Frederik Pfisterer, Markus Nitsche, Anthony Jameson, and Catalin Barbu. User-
centered design and evaluation of interface enhancements to the semantic medi-
awiki. In Exploring HCI Challenges, volume 541, Italy, April 2008. CEUR-WS.

[91] Valentina Presutti and Aldo Gangemi. Content ontology design patterns as prac-
tical building blocks for web ontologies. In ER ’08: Proceedings of the 27th Inter-
national Conference on Conceptual Modeling, pages 128–141, Berlin, Heidelberg,
2008. Springer-Verlag.

[92] Lawrence H. Reeve and Hyoil Han. Survey of semantic annotation platforms. In
Hisham Haddad, Lorie M. Liebrock, Andrea Omicini, and Roger L. Wainwright,
editors, SAC, pages 1634–1638. ACM, 2005.

[93] Sara Rigutti and Gisella Paoletti. Web 2.0: which usability issues? E-Learning
and Knowledge Society (Je-LKS), 4(2):229 – 234, June 2008.

[94] Gustavo Rossi, Daniel Schwabe, and aes Robson Guimar˙ Designing personalized
web applications. In WWW ’01: Proceedings of the 10th international conference
on World Wide Web, pages 275–284, New York, NY, USA, 2001. ACM.

192

Bibliography

[95] Segawa Satoko, Sugimura Masahiko, and Ishigaki Kazushi. New web-usability eval-
uation method: scenario-based walkthrough. FUJITSU Scientific and Technical
Journal, 41:1:105–114, 2005.

[96] Subramanian Sattanathan, Nanjangud C. Narendra, and Zakaria Maamar. To-
wards context-based tracking of web services security. In Gabriele Kotsis, David
Taniar, Stéphane Bressan, Ismail Khalil Ibrahim, and Salimah Mokhtar, editors,
iiWAS, volume 196 of books@ocg.at, pages 13–24. Austrian Computer Society, 2005.

[97] Albrecht Schmidt, Michael Beigl, and Hans-Werner Gellersen. There is more to
context than location. Computers & Graphics, 23(6):893–901, 1999.

[98] Kay-Uwe Schmidt, Jörg Dörflinger, Tirdad Rahmani, Mehdi Sahbi, Ljiljana Sto-
janovic, and Susan Marie Thomas. An user interface adaptation architecture for
rich internet applications. In Sean Bechhofer, Manfred Hauswirth, Jörg Hoffmann,
and Manolis Koubarakis, editors, ESWC, volume 5021 of Lecture Notes in Com-
puter Science, pages 736–750. Springer, 2008.

[99] Daniel Schwabe, Gustavo Rossi, and Simone Diniz Junqueira Barbosa. Systematic
hypermedia application design with oohdm. In Hypertext, pages 116–128. ACM,
1996.

[100] Edward Sciore, Michael Siegel, and Arnon Rosenthal. Using semantic values to
facilitate interoperability among heterogeneous information systems. ACM Trans.
Database Syst., 19(2):254–290, 1994.

[101] Brian Shackel. Usability—context, framework, definition, design and evaluation.
pages 21–37, 1991.

[102] Ben Shneiderman. Designing the User Interface: Strategies for Effective Human-
Computer Interaction. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1997.

[103] Reetta Sinkkila, Eetu Makela, Tomi Kauppinen, and Eero Hyvonen. Combining
context navigation with semantic autocompletion to solve problems in concept se-
lection. In Khalid Belhajjame, Mathieu d’Aquin, Peter Haase, and Paolo Missier,
editors, First International Workshop on Semantic Metadata Management and
Applications, SeMMA 2008, Located at the Fifth European Semantic Web Confer-
ence (ESWC 2008), Tenerife, Spain, June 2nd, 2008. Proceedings, volume 346 of
CEUR Workshop Proceedings, pages 61–68. CEUR-WS.org, June 1-5 2008.

193

Bibliography

[104] Markus Specker and Ina Wentzlaff. Exploring usability needs by human-computer
interaction patterns. In Marco Winckler, Hilary Johnson, and Philippe A.
Palanque, editors, TAMODIA, volume 4849 of Lecture Notes in Computer Sci-
ence, pages 254–260. Springer, 2007.

[105] Hlne Stengers, Olga De Troyer, Martine Baetens, Frank Boers, and Abdalghani
N.Mushtaha. Localization of web sites: Is there still a need for it? In International
Workshop on Web Engineering (held in conjunction with the ACM HyperText 2004
Conference), 2004.

[106] Thomas Strang and Claudia Linnhoff-Popien. A context modeling survey, Septem-
ber 2004.

[107] Thomas Strang, Claudia Linnhoff-Popien, and Korbinian Frank. Cool: A context
ontology language to enable contextual interoperability. In Jean-Bernard Stefani,
Isabelle M. Demeure, and Daniel Hagimont, editors, DAIS, volume 2893 of Lecture
Notes in Computer Science, pages 236–247. Springer, 2003.

[108] Elias Torres. Open data in xhtml, 2007. XTECH CONFERENCE 2007.

[109] Olga De Troyer and Sven Casteleyn. Designing localized web sites. In Xiaofang
Zhou, Stanley Y. W. Su, Mike P. Papazoglou, Maria E. Orlowska, and Keith G.
Jeffery, editors, WISE, volume 3306 of Lecture Notes in Computer Science, pages
547–558. Springer, 2004.

[110] Tom Tullis, Stan Fleischman, Michelle McNulty, Carrie Cianchette, and Mar-
guerite Bergel. An empirical comparison of lab and remote usability testing of
web sites. In Usability Professionals Conference (UPA), Pennsylvania, 2002.

[111] Victoria S. Uren, Philipp Cimiano, José Iria, Siegfried Handschuh, Maria Vargas-
Vera, Enrico Motta, and Fabio Ciravegna. Semantic annotation for knowledge
management: Requirements and a survey of the state of the art. J. Web Sem.,
4(1):14–28, 2006.

[112] Onni Valkeapää, Olli Alm, and Eero Hyvönen. An adaptable framework for
ontology-based content creation on the semantic web. J. UCS, 13(12):1835–1835,
2007.

[113] Roberto De Virgilio and Riccardo Torlone. Management of heterogeneous profiles
in context-aware adaptive information system. In Robert Meersman, Zahir Tari,

194

Bibliography

Pilar Herrero, Gonzalo Méndez, Lawrence Cavedon, David Martin, Annika Hinze,
George Buchanan, Maŕıa S. Pérez, Vı́ctor Robles, Jan Humble, Antonia Albani,
Jan L. G. Dietz, Hervé Panetto, Monica Scannapieco, Terry A. Halpin, Peter
Spyns, Johannes Maria Zaha, Esteban Zimányi, Emmanuel Stefanakis, Tharam S.
Dillon, Ling Feng, Mustafa Jarrar, Jos Lehmann, Aldo de Moor, Erik Duval, and
Lora Aroyo, editors, OTM Workshops, volume 3762 of Lecture Notes in Computer
Science, pages 132–141. Springer, 2005.

[114] Martijn Van Welie, Gerrit C. Van Der Veer, and Anton Elins. Breaking down
usability. In Proceedings of Interact ’99, pages 613–620. Press, 1999.

[115] Yeliz Yesilada, Simon Harper, Carole Goble, and Robert Stevens. Ontology based
semantic annotation for enhancing mobility support for visually impaired web
users. In In K-CAP 2003 Workshop on Knowledge Markup and Semantic Anno-
tation, 2003.

[116] Yan Zhu, Christof Bornhövd, Doris Sautner, and Alejandro P. Buchmann. Ma-
terializing web data for olap and dss. In WAIM ’00: Proceedings of the First
International Conference on Web-Age Information Management, pages 201–214,
London, UK, 2000. Springer-Verlag.

[117] Alexander Zipf and Matthias Jöst. Implementing adaptive mobile gi services based
on ontologies: Examples from pedestrian navigation support. Computers, Envi-
ronment and Urban Systems, 30(6):784–798, 2006.

195

