
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

DOCTOR OF SCIENCES

Formal Modeling and Verification of Access-Control Policies

Toussaint, Hubert

Award date:
2011

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/4c10debe-b0c7-4f68-8eaf-c3df99dbe197

Facultés Universitaires Notre-Dame de la Paix, Namur

Faculté d’Informatique

Année Académique 2011-2012

Formal Modeling and Verification of
Access-Control Policies

Hubert Toussaint

September 2011

Thèse présentée en vue de l’obtention du grade de Docteur en Sciences.

PhD Committee :

• Prof. Dr. Jean-Marie Jacquet (President)

University of Namur, Belgium.

• Prof. Dr. Ir. Pierre-Yves Schobbens (Promotor)

University of Namur, Belgium.

• Prof. Dr. Jean-Noël Colin (Internal Reviewer)

University of Namur, Belgium.

• Prof. Dr. Ir. Yves Le Traon (External Reviewer)

University of Luxembourg, Luxembourg.

• Dr. Charles Morisset (External Reviewer)

CNR/IIT/ Information Security Group, Pisa, Italy.

i

ii

Abstract

The construction of secure software is a notoriously difficult task. The abstract

security requirements have to be turned into functional requirements and then

implemented. However, only few techniques allow to verify that the implemented

elements fulfill the originally expressed requirements. The potential gap between

the specification and the implementation gets even wider with iterative development

schemes where code (and sometimes specification) is updated numerous times.

In this document we propose a methodology aimed at facilitating the co-evolution of

the security requirements and the implemented code. Focusing on the access-control

perspective, we provide models and algorithms to specify the expected requirements

and to extract the implemented access-control rules directly from the executable

source code. Then we verify the conformance of the implemented features towards

the specified requirements and, if inconsistencies are found, we provide potential

corrective measures that can be applied directly into the source code.

keywords : access-control, security policy, verification, model extraction, model

weaving

iii

iv

Acknowledgements

"To our parents who implemented us from genetic

specifications and debugged us as best they could."

L. F. Johnson & R. H. Cooper

in File Techniques for Databases Organization in Cobol.

When this adventure started a few years ago, little did I expect that leading a doctoral research would be

such a unique blend of sweet and sour paradoxes, with its faire share of upsides and downsides. As it has

already been said elsewhere, on the one hand, being a PhD student is a lonely, laborious and worrisome

experience. But on the other hand, it offers so many positive boons and rewards that I would rather only

remember the latter. Indeed, during this timespan, I notably got the chance to inquire about many different

and exciting topics and technologies, while meeting so many educated, interesting and caring people, al-

ways ready to provide their help and cheer you up.

Among these persons, I would first of all like to express my gratitude and appreciation to my supervisor,

Prof. Pierre-Yves Schobbens, who notably gave me the opportunity to embrace the challenge of pursuing a

PhD. Thank you for teaching me to become more autonomous and proactive in my research through your

confidence and the latitude you granted me during these years. Thank you for your time, your precious

advices and your insight on my work. Not forgetting the chance of being chosen as teaching assistant.

Teaching and supervising students at the Faculty of Computer Science was indeed a fulfilling and enjoyable

experience as well.

Next, I would like to thank the members of my jury, Prof. Jean-Marie Jacquet, Prof. Jean-Noël Colin, Prof.

Yves Le Traon and Dr. Charles Morisset for accepting to participate in the evaluation of my work. It was an

honour and a pleasure to discuss my research with you, especially given your encouragements and valuable

v

feedback.

I would then like to thank my past and present colleagues of the Faculty of Computer Science. Thank

you for your concern, your support, and all these good times that undoubtedly made us more than simple

co-workers. You provided me with a stimulating and fun environment in which to learn and grow.

I would also like to thank our top-notch secretaries, Anne-Marie, Babette and Isabelle for making the

organisation and practical progress of my work so much easier. Thank you also for your kindness and con-

sideration, beyond the mere doctoral preoccupations.

More generally, I would like to thank all the other friends, colleagues and unsuspected strangers who rooted

for me during my doctoral tenure. There are too many of them to mention them all, but I am truly grateful

for all the consideration and support that I received. Thank you.

Last but not least, I wish to thank the members of my family for their unconditional love and support. In

particular, my wife for her understanding and encouragements. Thank you for all these precious moments

together, and for giving me the strength to carry on through enduring times. Thank you for being there no

matter what, especially during this last year which has been incredibly rich in changes and challenges.

H. Toussaint,

September 2011

vi

Contents

Introduction 1

1 Software Security 3

1.1 Software System . 4

1.2 Software Security . 4

1.2.1 Identification, Authentication and Authorization 6

1.3 Access Control . 7

1.3.1 Basic elements . 8

1.3.2 Access Control Policy . 9

1.3.2.1 DAC . 9

1.3.2.2 MAC . 13

1.3.2.3 RBAC . 14

1.3.2.4 ODRL . 17

1.3.3 Access Control Policy Verification . 19

1.3.4 Access Control Policy Enforcement . 19

1.4 Application Security . 20

1.4.1 Norms and best practices . 21

2 Secure Software Development 23

2.1 Vulnerabilities of secure software development . 24

2.2 Software development cycle . 25

2.2.1 Waterfall model . 26

2.2.2 Prototyping model . 28

2.2.3 Practical software development cycle . 30

2.3 Secure Software Engineering . 32

2.3.1 Secure code generation . 32

2.3.1.1 B method . 32

2.3.1.2 Aspect Oriented Programming . 35

2.3.1.3 Common drawbacks . 38

2.3.2 Secure code verification . 38

2.3.2.1 Verification . 38

vii

2.3.2.2 Testing . 40

2.4 Practical Software Engineering . 42

2.4.1 UMLsec . 43

3 Motivations and Objectives 45
3.1 Motivating example . 45

3.2 Analysis . 48

3.2.1 Objectives . 50

3.3 Running example . 51

4 Model Extraction 57
4.1 Overview . 58

4.2 AC Model extraction . 59

4.2.1 Taking advantage of coding conventions . 59

4.2.2 AC Model . 60

4.2.2.1 Expressivity . 62

4.2.2.2 Semantics . 62

4.2.3 Extraction Process . 66

4.2.3.1 Specific hypothesis . 67

4.2.3.2 Extraction Algorithm . 68

4.2.3.3 Example . 71

4.3 Requirements specification . 76

4.3.1 Language . 76

4.3.1.1 Syntax . 76

4.3.1.2 Semantics . 79

4.3.2 Expressivity/Limitations . 80

4.3.3 Example . 80

4.4 Initial configuration . 81

4.4.1 Example . 82

4.5 System Model . 83

4.5.1 Example . 84

5 Model Verification 87
5.1 Logic and Properties . 88

5.2 Verification Algorithms . 91

5.3 Reporting Verification Results . 93

5.3.1 Requirements level . 94

5.3.2 Access-control level . 95

5.3.3 Status Quo . 97

5.3.4 Practical approach . 97

viii

5.3.5 Generalization . 98

5.4 Example . 98

6 Model Weaving 103
6.1 AC Model Weaving . 104

6.1.1 Naive approach . 104

6.1.2 Improved approach . 105

6.1.3 Effects on existing code . 107

6.1.4 Example . 107

6.2 Possible optimisations . 108

6.2.1 Pragmas . 108

6.2.2 Assisted extraction/weaving . 109

6.3 Weaving to another model . 109

7 Evaluation and Perspectives 111
7.1 Case study feed-back . 112

7.1.1 Pro’s . 112

7.1.2 Con’s . 113

7.1.3 Wrap-up . 114

7.2 General thoughts . 114

7.3 Adaptability . 116

7.4 Perspectives . 117

7.4.1 Certification . 119

7.4.2 Longer-term perspectives . 119

8 Prototype Description 121
8.1 Usage Scenario . 122

8.2 Architecture . 124

8.2.1 Adapters . 125

8.2.1.1 Parsers . 126

8.2.1.2 Weavers . 127

8.2.1.3 Joint effort . 127

8.2.2 Core Routines . 128

8.2.2.1 Verification . 129

8.2.2.2 Reporting . 129

9 Conclusion 131

References 135

ix

x

List of Figures

1.1 Mail header with forged “From:” field. 7

1.2 Simple permission model . 9

1.3 Permission matrix . 10

1.4 Permission matrix based on groups . 11

1.5 UNIX permission specification . 11

1.6 Access-Control List (ACL) . 12

1.7 Illustration of MAC policy . 13

1.8 Illustration of RBAC policy . 15

1.9 Motivation for the formal definition of RBAC [FK92] . 15

1.10 Formal model of the core RBAC features (taken from [FKC03]) 17

1.11 ODRL Core Model Version 2.0 [ini11] . 18

2.1 Incorrect / incomplete specification . 24

2.2 Uncontrolled development . 27

2.3 Waterfall model . 27

2.4 V-shaped model . 28

2.5 Prototype model . 29

2.6 Incremental Vs Iterative development. 30

2.7 Practical software development cycle. 31

2.8 B-method. 33

2.9 B Abstract machine for the multiplication application . 34

2.10 B implementation of the multiplication application . 34

2.11 Source code for the Account class. 36

2.12 AOP : logging aspect specification . 37

2.13 Aspect insertion . 37

2.14 Verification process. 39

2.15 Java Stack class, with Verifast annotations. 41

2.16 The testing process. 42

2.17 UMLsec : Sequence diagram with the “permission” property. (reproduced from [Mon09]) 43

3.1 Rule insertion : uncertain side-effects . 47

3.2 Straight development. 48

xi

3.3 Prototype development. 49

3.4 Assisted prototype development. 50

3.5 Blackbox verification. 51

3.6 Running example object Hierarchy. 53

3.7 CObject access-control code . 54

3.8 CEvent access-control code . 54

3.9 CPrivateEvent access-control code . 55

3.10 CGroupEvent access-control code . 55

4.1 Overview. 58

4.2 AC Model extraction. 59

4.3 AC Model extraction, sample source code. 61

4.4 AC model syntax . 62

4.5 Expressing DAC and MAC properties. 62

4.6 Sample ruleset. 64

4.7
M⋃

operator. 66

4.8 paths(· · ·) : reverse induction over abstract syntax tree. 69

4.9 Unrolling finite loops. 71

4.10 Abstract syntax tree for the CObject class. 73

4.11 Access-control model extracted from the CObject class source code. 73

4.12 Access-control model extracted from the CEvent class source code. 74

4.13 Access-control model extracted from the CPrivateEvent class source code. 74

4.14 Access-control model extracted from the CGroupEvent class source code. 75

4.15 Requirement specification language. 78

4.16 Requirements for the running example. 81

4.17 Initial configuration specification. 82

4.18 Initial configuration specification for the running example. 82

4.19 System model syntax. 83

4.20 System model for the running example. 84

5.1 Model-checking. 88

5.2 Agent set is partitioned into active and inactive ones. 91

5.3 Property violation : execution trace . 94

5.4 Reporting verification results back to the requirements 94

5.5 Reporting verification results back to the access-control model. 95

5.6 Selection of the most appropriated options among the sets of proposed corrective measures. 98

5.7 Proposition M1 weaved into the code. 100

5.8 Proposition M2 weaved into the code. 101

6.1 AC Model weaving. 104

xii

6.2 generate(C,Z) : unstructured Vs structured output. 106

6.3 Iterating the extraction and weaving processes. 107

6.4 CGroupEvent class : model weaved back to code. 108

6.5 Communication through pragma. 109

6.6 Extraction of the access-control model. 110

7.1 Summary of main pro’s and con’s obtained on the case study. 114

7.2 Reusable components. 117

8.1 Scope of the implementation. 122

8.2 Main use-cases . 123

8.3 General architecture . 125

8.4 Adapters hierarchy. 126

8.5 Core Internals. 128

xiii

xiv

Introduction

Building secure software is a notoriously complex task: from the specification of requirements to the pro-

duction of code, developers must make sure that any change they make (for instance for performance

reason or to comply with late-customer requirement update) does not break the desired properties. Multi-

plying code updates, iterative software development further increases this risk. The costs, both in terms of

time and money, of those updates increase as the delivery-time approaches. Due to those rising costs, late

modifications are often applied directly to the source code without checking thoroughly their impact on the

security model.

Most of the time, the "validation" of the new/updated feature is only done through "clever" programmer

affirmation and/or some limited testing. Such a process makes it very difficult to detect every possible

model corruption occurring due to the change. Several approaches have been developed to address this

problem: automating the testing process like in JUnit [JUn10], maximizing test-coverage [LTMPB08]

[MLTB09] [MFBLT08], automated changes specification/propagation like in Aspect-Oriented Program-

ming [KLM+97] or UMLSec [Jur05] or complete formal approach like the B-methodology [Abr96] or

abstract interpretation [CDH+00], [HP98]. The problem with such methodologies is that developers up-

dating the code, albeit mastering the chosen development language, usually have little to no knowledge

of models and automated proof. So they have to choose between understandable incomplete results given

through limited testing or cryptic model-checking results abstracted from their code. Neither of those is

satisfactory in terms of completeness and usability.

In our opinion, both the development process and the resulting software quality and security can be im-

proved with the introduction of helper tools and methodologies based on formal methods. Our contribution

consists in the proposal and precise definition of a methodology and an environment supporting such an

helper tool. We will evaluate to what extent an automated security property extraction directly from the

source code, its verification and, if applicable, its correction is feasible. And if positive, we will investigate

the level of developer interaction required for this process.

1

2 INTRODUCTION

The models and algorithms needed to assist the developer to find any side-effects following updates in the

code will be presented. For simplicity, we will focus on the aspect-control perspective and offer the devel-

opers a methodology able to automatically make explicit the impacts of changes made to the source code

on the desired security model and properties.

The two first chapters of this document delimit the field in which this reflexion takes place. Chapter 1 intro-

duces the various aspects of software security and clarifies the notions of identification, authentication and

authorization. Then a special focus is done on the access-control perspective and its particularities. Chapter

2 presents an overview of the current set of techniques / methodologies aimed at avoiding or limiting the

impact of vulnerabilities on the resulting software system. The various approaches are detailed and con-

fronted to the usual pitfalls of a real-world software development process.

Chapter 3 introduces the motivating problem from which our research takes source. It describes the scope

of our approach and the set of problems frequently encountered by software developers we try to alleviate.

It also introduces the running example that will be used every time applicable throughout this document to

illustrate the methodology and the algorithms.

Chapters 4 to 6 detail our proposed methodology. The models and algorithms related to the extraction of the

access-control model directly from the source code and the modeling of the considered software system are

provided in chapter 4. Chapter 5 focuses on the verification of these models and properties. It also adresses

the adaptation and reporting of the verification results back to the users, both in the model and directly into

the source code. Then chapter 6 details the weaving of the resulting models back into the executable code

Finally, chapter 7 summarizes the achievements and setbacks of the presented methodology. The elements

learned from the application of the methodology to the case study are discussed, followed by a general eval-

uation of the method and paths for potential future improvements. Chapter 8 then presents a quick overview

of the prototype tool developed to support the presented methodology.

1
Software Security

Contents
1.1 Software System . 4

1.2 Software Security . 4

1.2.1 Identification, Authentication and Authorization 6

1.3 Access Control . 7

1.3.1 Basic elements . 8

1.3.2 Access Control Policy . 9

1.3.3 Access Control Policy Verification . 19

1.3.4 Access Control Policy Enforcement . 19

1.4 Application Security . 20

1.4.1 Norms and best practices . 21

This chapter introduces software systems and the related aspects of security. A quick introduction to the

notions of identification, authentication and authorization will be also presented, followed by some notions

of access-control.

3

4 CHAPTER 1. SOFTWARE SECURITY

1.1 Software System

The term “software system” covers a much broader scope than a simple assembly of pieces of code; it usu-

ally consists of a set of programs developed for a specific hardware in order to fulfill some requirements.

It can be described as “a system based on software forming part of a computer system (a combination of

hardware and software). The term "software system" is often used as a synonym of computer program or

software; is related to the application of systems theory approaches in software engineering context and

are used to study large and complex software, because it focuses on the major components of software and

their interactions; and also related to the field of software architecture.’’1

With such a definition, a software system can be anything from a simple phone-embedded controller to

complex operating systems like Unix or Windows running on distributed hardware configurations. Sub-

systems of a software system can also be considered as a software system: database software, specialized

librairies or a graphical interface are examples of autonomous software systems.

More formally, we’ll define a software system as any piece of software used by one or more users (be it

human or another software system) in order to perform one task.

1.2 Software Security

With the proliferation of software systems in our environment, more and more aspects of our every day life

are managed through software: paiements are done via electronic credit-cards, communications use com-

puter networks, our lives and identities are stored in multiple databases... The need for security becomes

ever more important. More or less recent events showed that insecure software can affect people’s life in

many ways.

• the loss of the details of three million candidates for the driving theory test in the UK, jeopardizing

some aspects of their private life. 2

• Ariane 5 Flight 5013, which resulted in the crash and total loss of the multi-million rocket.

• stolen CD with the names of about 1500 German citizens hiding cash away in Switzerland, bought

by the German finance ministry. 4

1feb. 2011, https://secure.wikimedia.org/wikipedia/en/wiki/Software_system
2dec. 2007 http://news.bbc.co.uk/2/hi/uk_news/politics/7147715.stm
3jun. 1996 http://www.wired.com/software/coolapps/news/2005/11/69355?currentPage=2
4feb. 2010 http://www.dw-world.de/dw/article/0,,5296146,00.html

https://secure.wikimedia.org/wikipedia/en/wiki/Software_system
http://news.bbc.co.uk/2/hi/uk_news/politics/7147715.stm
http://www.wired.com/software/coolapps/news/2005/11/69355?currentPage=2
http://www.dw-world.de/dw/article/0,,5296146,00.html

CHAPTER 1. SOFTWARE SECURITY 5

• exposed JPMorgan Chase customers information after a breach at a marketing sub-contractant, once

again exposing private clients information. 5

• and many more...

Software security is a subjective notion varying with time and environment: depending on the point of view,

an application can be considered secure if no unwanted behavior (with respect to the security policy) did

ever happen, or will ever happen, or will ever happen as long as the application is properly maintained. Ex-

plicitly introducing the attacker in the equation makes it even more complex: the resources of the attacker

can make the difference between a secure application and an insecure one. For example, online shopping

websites usually protect their clients banking information with cryptography (AES, RC4, ...) to prevent this

information from being intercepted and possibly used to buy unwanted goods. While providing sufficient

security for lambda people, these cypherings are far from unbreakable when attacked via brute-force at-

tacks. In the same way as no lock is unbreakable, no software can be ultimately secure. Instead, security

is often the result of a cost-benefits trade-off : the level of security is raised high enough to, hopefully,

prevent any attacker from gaining access to sensitive elements without spending a disproportionate amount

of resources in the process.

Software security encompasses measures taken throughout the application’s life-cycle to prevent unwanted

behavior of the application and of the underlying system with respect to the security policy. These unwanted

behaviors can be caused by flaws in the design, development, deployment, upgrade, or maintenance of the

application.

But, where no architect could possibly have the idea to start building a bridge before proving his plans

correct according to laws of physics and current domain best-practices, many software developers still start

building software from scratch with little to no formal specification. This behavior makes it almost impos-

sible to fully guarantee that the resulting software system is secure according to the client’s requirements.

Most of the time, the security of the software system relies, on one hand, on the confidence of the client in

the provided tests on sample cases that the system has satisfied and, on the other hand, on an act of trust on

the developer abilities to produce secure systems. Of course, such a “security by trust” may not always be

satisfactory:

• the client might not want to engage his own name or liability in a software product that may leak his

own business private information.

• the developer might not be able to bear the liability of a security leak in his client facility. For in-

stance, the developer might not be able to insure himself at a reasonable price for potential liabilities

5apr. 2011 : http://www.reuters.com/article/2011/04/01/epsilon-idUSL3E7F13F420110401

http://www.reuters.com/article/2011/04/01/epsilon-idUSL3E7F13F420110401

6 CHAPTER 1. SOFTWARE SECURITY

caused by his software in case of malfunction.

To avoid this problem, it is usually considered a best practice in computer science to specify as precisely

as possible the “key” features of the expected software system. This allows to check more in-depth the

software system features according to the required behavior, thus reducing as much as possible the trust

needed on the developer.

1.2.1 Identification, Authentication and Authorization

It is important, at this point, to clarify the notions of identification, authentification and authorization:

Identification is the capability to name without ambiguity a specific element. In a software context, the

identification of an object or a user is the mapping between this concept and its own logical represen-

tation. For instance, inserting a smartcard into a card reader or giving a username to the system are

identification methods; they allow the system to determine who is trying to access it.

Authentication is the process of verifying that the given identification is correct. It can take many forms:

challenging the smartcard, asking the user to give a password known only by the user and the system,

or any suitable method.

Authorization is the process of verifying that an identified and authenticated subject has then permission

to perform a given operation or access a specific resource on the system. Authorization often involves

checking the subject credentials against some defined rules.

In a security perspective, these three terms are strongly tied: authentication is useless without proper prior

identification and no authorization decision can be made if the subject is not properly identified and authen-

ticated first (figure 1.2).

It must be noted that, in many situations in computer science, identification is used without proper authen-

tication, resulting on systems based on mutual trust and/or providing very limited guarantees. For instance,

the SMTP protocol [Pos82], responsible for the delivery of emails over the internet, lets the sender freely

specify what the source adress is (the “From:” field of the SMTP header, see figure 1.1). The sender of the

mail can identify himself as whoever he wants without being asked for any authentication. SMTP servers

usually identify and authenticate users on their IP adresses : allowing mails from users located in their

dedicated subnetwork and refusing all others. If the recipient of a mail wants to verify that his newly re-

ceived email really originates from the declared sender, he must use external authentication methods like

phoning the expected sender for oral confirmation or asking the sender to cryptographically sign his mail.

This lack of authentication allows spam-bots to forge emails in an attempt to lure people into thinking the

email originates from a known friend or family member. Receivers of such mails are often less cautious on

CHAPTER 1. SOFTWARE SECURITY 7

the mail content and may be more induced in following links to phishing or unwanted ads sites.

Date: Wed, 23 Feb 2011 12:13:02 +0100
From: God Himself <god@heaven.org>
User-Agent: Mozilla/5.0
MIME-Version: 1.0
To: Hubert Toussaint <hto@info.fundp.ac.be>
Subject: Forged from field !
Content-Type: text/plain; charset=ISO-8859-1
Content-Transfer-Encoding: 8bit

(...)

Figure 1.1: Mail header with forged “From:” field.

The mail format, and the underlying SMTP protocol, makes no verification at

all on the validity of the information given in the header.

The rest of this document focuses on the authorization perspective. The problematics of the identification

and the authentication of subjects, already broadly covered by the literature, will be left aside. The interested

reader can find more informations on those topics in [US 85] and [And01].

1.3 Access Control

The next logical step after identifying and authenticating a user is to define precisely what he should be

authorized to do, i.e. what he should be able to access and what he should not. The set of operations

required for this process are usually grouped under the term “access-control”. This section introduces the

most commonly used models in the specification of ressource access.

The three key properties expected from an access-control policy are :

• confidentiality: private information must stay secret and private.

• integrity: information must be protected against unwanted modifications and/or modifications caused

by unauthorized user.

• availability: information must be accessible from where it is required.

By restricting the set of users able to access the information, access-control, if well configured, can guar-

antee confidentiality. The same holds for integrity: if only allowed users access the information, it is very

8 CHAPTER 1. SOFTWARE SECURITY

unlikely that they will temper it. Availability is a little different: while it is obvious that a user allowed to

access the information has more ease to cause the system to malfunction than an external attacker, access-

control alone cannot guarantee availability. Distributed denial of services (DDOS) are an example of that

limitation: even without accessing the protected information on the server, a sufficiently large amount of

forged queries can take almost any server down, preventing legitimate users to access their required re-

source.

For a complete story on evolution of access-control, the reader is invited to consult [FKC03], [Tou06] and

[SSS94].

1.3.1 Basic elements

Before going any further in access-control policies, let’s clarify the notions of user, subject, permission,

operation and object and their relations in the context of access-control (figure 1.2):

User: a user refers to the person manipulating the system. Most of the time a single user can have several

virtual identities (for instance, multiple logins) and may want to access several of those at the same

time. Accurately matching users and subjects is the role of the identification/authentication routines.

Subject: a subject is the software process acting on behalf of the user. It represents the “virtual arm” of the

user, the only way it can access the software system.

Operation: an operation is a software process invoked by a subject on an object in the system.

Object: an object represents any software or hardware resource on the considered system. It may be

databases, peripherals, or memory areas for instance. Objects are typically viewed as passive enti-

ties, giving or receiving information. Some models support more complex objects like programs or

permissions.

Permission: a permission (also sometimes called a privilege) is an authorization for a specific subject to

perform a specific action on a specific object of the system. It consist in the combination of an object,

a subject and an operation. A permission can also depend on the context in which it is asked : some

operations may be allowed on certain hours, or only if certain conditions are met.

Aside from permissions authorizing (or not) some users to perform some actions on some objects, access-

control systems often try to achieve higher level properties like least-privilege or separation of duty.

• The least-privilege property states that a user should only be granted access to objects strictly required

to perform his duty, no more. It is often used to prevent unwanted information leaks. For instance,

in a banking environment, a cashier may be granted access on his clients accounts to perform their

operations when asked, but not on all the other client’s accounts and not outside office hours.

CHAPTER 1. SOFTWARE SECURITY 9

Operation

Permission

User

ObjectSubject

Identification
Authentication

Authorization

Figure 1.2: Simple permission model

• Separation of duty on the other hand tries to enforce that some operations cannot be conducted to-

gether by a single subject. For instance, once again in a banking environment, a good practice could

be to allow a clerc to make paiements to customer and to approve (or not) what other clercs do. But

he should never be able to approve his own work.

1.3.2 Access Control Policy

An access-control policy is a set of rules defining which resources are accessible to which user, possibly

depending on the context of the action. It regroups all the individual permissions granted to the different

users of the system. The basic question it answers is “Who can do what and when”.

Independently of the constraints imposed by the chosen specification model and its implementation, the

definition of an access-control policy is a political choice before being a technological one. Considering

the access to a particular resource, several options are possible: ranging from only allowing access to users

requiring it to allowing access to any but some “forbidden” ones. Which one to choose depends on the

political and strategical choices of the organisation wherein they take place. The result also often depends

on a cost-benefits analysis: the more detailed the policy is, the more time it takes to write it and (most of

the time) the more complex it is to implement and manage.

Hereunder are presented the most prevalent access-control models found in current software systems: DAC,

MAC and RBAC. Readers interested by a more in-depth analysis of these models can consult [Tou06],

[Mor07], [HFK06] and [FSG+01].

10 CHAPTER 1. SOFTWARE SECURITY

1.3.2.1 DAC

Discretionary Access Control, or DAC, defined by the US Department of Defense in the Trusted Computer

System Evaluation Criteria [US 85] “as a means of restricting access to objects based on the identity of

subjects and/or groups to which they belong. The controls are discretionary in the sense that a subject

with a certain access permission is capable of passing that permission (perhaps indirectly) on to any other

subject which they belong’” is an access-control model where subjects owning a particular permission can,

under certains circumstances, grant other subjects this permission (hence the name discretionary). The same

applies to the revocation of permissions.

A DAC access-control policy can be modelled as a permission-matrix (figure 1.3): assigning to each user

the set of permissions granted on a each object.

Subject Object 1 Object 2 Object 3 Object 4

Marc R,W,X R W

Paul X R,X

Pierre R,W,X

Figure 1.3: Permission matrix

Each user is granted a combination of read(R), write(W) and execute(X)

permissions on each object. The owner of an object can decide, at any time, to

grant/revoke any permission he wish to any user.

Such a system is easily customizable to reflect almost every possible policy choices. But, as soon as the

number of users and/or objects grows, the matrix becomes unmanageable. Any new object or new user on

the system requires the administrator to properly set his initial rights. Relying entirely on the object owners

to set permissions makes DAC systems very vulnerable to users’s mistakes and trojan attacks. Furthermore,

in this model, it is very complex to express properties like interdiction, role, task or context because the

permission matrix represents a statical view of the permission granted on the system.

To simplify a little bit the management of such a huge permission matrix, several enhancements to the

original model have been introduced. The first one is the notion of group: a group represents the set of

users belonging to that group. So instead of assigning to every user its permissions on every object, the

administrator has the choice to group users requiring similar privileges in groups and then to assign per-

missions directly to those groups (figure 1.4). Depending on the implementation, groups of groups may be

available or not. The most frequent implementation of DAC, as found on many UNIX systems, only allows

the specification of the permissions of the owner of the object, his group and to “others”, representing all

CHAPTER 1. SOFTWARE SECURITY 11

the users of the system but the owner and the member of his group (figure 1.5).

Groups composition :
user:marc, pierre, fred, root

compta: marc, pierre

admin:root

Ressources
Group Object 1 Object 2 Object 3 Object 4

user R,W,X R W

compta R,W,X R,X

admin R,W,X R,W,X R,W,X R,W,X

Figure 1.4: Permission matrix based on groups

Subject ’marc’ is granted read(R) access on objects 1, 2 and 4. 1 and 2 as a

member of group “user”, 4 as a member of group “compta”’

concours:~#
concours:~#
concours:~#
concours:~# ls -l /etc/shadow
-rw-r----- 1 root shadow 1899 Feb 16 16:42 /etc/shadow
concours:~#
U G O U G

Figure 1.5: UNIX permission specification

The permissions on the file are expressed in terms of user permission (U), here

granting read(r) and write(w) access to user ’root’, group permission (G),

granting read(r) access to all members of the ’shadow’ group and others (O)

granting no permissions.

The concept of groups eases the specification of the policy, but makes it very complex to trace the origin

of one specific permission, which may be very important in the case where a change occurs in an user

authorization level. Each object belonging to this user and any group he is member of have to be checked

and eventually have their permissions updated to reflect the new situation.

Another enhancement of the classical DAC model are the Access-Control Lists (ACL). In an ACL policy,

permissions can be granted to groups and to specific users (figure 1.6 shows an ACL records taken from a

12 CHAPTER 1. SOFTWARE SECURITY

Linux system). A user then receives all permissions granted to the groups he belongs to, plus the specific

permissions he has been personally granted.

file: acldemo

owner: root

group: root

user::rw-

user:gsc:r-x

user:hto:rwx

user:pys:--x

group::---

group:staff:r-x

mask::rwx

other::---

Figure 1.6: Access-Control List (ACL)

The resource “acldemo” is accessible by :

• his owner, with read and write privilege.

• to the gsc, hto and pys users with their respective rights as specified.

• to all members of the “staff” group, with read and execute privilege.

• nobody else.

Despite being more flexible than flat groups specification, ACL tend to suffer from the same weaknesses:

adding new resources or users to the system or modifying a user authorization level still require a check of

all the resources he may have been granted access on which is often impractical and error-prone on systems

with a large number of objects.

1.3.2.2 MAC

At the opposite of the DAC model lies the Mandatory Access Control, or MAC, also defined in the Trusted

Computer System Evaluation Criteria [US 85] as "a means of restricting access to objects based on the

sensitivity (as represented by a label) of the information contained in the objects and the formal authoriza-

tion (i.e., clearance) of subjects to access information of such sensitivity". MAC is an access-control policy

model where the system restricts the ability of a user to perform an action on an object depending on their

respective “clearance” levels.

CHAPTER 1. SOFTWARE SECURITY 13

In a MAC system, user are assigned a clearance level. The objects they are allowed to access and the way

they are allowed to access them depends on it. Summarized as a “no read up, no write down” policy, a

system implementing MAC will forbid users to read objects with a clearance level above their own and

to write information into objects with a clearance level strictly underneath their own. It should be noted

that the clearance levels of an user and an object mays not always be comparable : clearance levels can be

organized as lattices and/or only support a partial ordering. Figure 1.7 illustrates these constraints: subject

s1 can read o1, o2 and o3, but can’t write in any of them because their clearance levels are strictly below his

own, whereas subject s2 can read o3, write o1 and read/write o1.

read

s1

s2
o1

o2

o3

Clearance level

write

Figure 1.7: Illustration of MAC policy

The clearance level assigned to each subject and objects limits what

operations can be applied.

It is important to note that, in opposition to what DAC systems do, a MAC system does not allow a user

to modify the permissions attached to the objects he manipulates. In a MAC system, objects are created

with a specific clearance level which cannot be changed; otherwise the security of the whole system may

be compromised.

For a long time, MAC systems have only be used in domains where security is critical, like military subsys-

tems or nuclear power plants. More recently, new implementations have been incorporated in mainstream

operating systems like Linux (with the incorporation of SELinux in kernel 2.6.x) and Windows (with the

Mandatory Integrity Control incorporated into Windows Vista and newer).

While being able to guarantee a high protection of the security of the data through the system enforcement

14 CHAPTER 1. SOFTWARE SECURITY

of the authorization, the MAC model suffers from some drawbacks. The major one is his stiffness: MAC

systems do not allow clearance levels of objects to be modified, making it very difficult to support evolution

of contexts. In the same way, adding a new user or a new object to the system impose to determine very

precisely what its clearance should be, which may not be easy on large systems or dynamic organisations.

1.3.2.3 RBAC

Role-Based Access Control (RBAC), based on the work of David Ferraiolo and Richard Kuhn [FK92], is

an access-control model that breaks the direct mapping between a subject and the object contained in the

permission.

To overcome the problems occurring when trying to manage large DAC permission sets and the stiffness

of the MAC model, the RBAC model introduces the concept of role inside the permission relation (see

figure 1.8, to be compared with figure 1.2 illustrating the permission). A user gains access to an object,

not by some permission he’s been personally granted, but only through the roles he has at the time the ac-

cess is made. This allow to easily update the set of users and/or the set of objects without the need to verify

the full set of possible permissions. Only the (smaller) set of roles has to be checked and eventually adapted.

role n

user

subject object

operationrole 1

role 2

role 3

Figure 1.8: Illustration of RBAC policy

The direct link between a subject, an operation and an object (the permission)

is now broken with the introduction of the notion of role.

A formal definition of the RBAC model was given by Ferraiolo and Kuhn in their original paper [FK92]

and its followers. That definition wasn’t provided to allow formal reasoning but to clarify some of the am-

biguities found in different implementations of their model (see original citation in figure 1.9).

This formal model does not clarify all the ambiguities found on different implementations: RBAC is born

from a conjunction of industrial implementations and had to be unified before being called a standard. But

CHAPTER 1. SOFTWARE SECURITY 15

“(...) This article is a first attempt to develop an authoritative definition of well-

accepted RBAC features for use in authorization management systems. Although

RBAC continues to be an evolving technology, the RBAC features that were chosen

to be included within this proposed standard represent a stable and well-accepted set

of features, and are known to be included within a breadth of commercial products

and reference implementations.”

Figure 1.9: Motivation for the formal definition of RBAC [FK92]

the formal model had to include all of the commercial implementations available at that time, otherwise it

wouldn’t have been able to federate all of the RBAC users. Furthermore, RBAC still evolves: for instance

with the addition of new concepts like inheritance or separation of roles. Or with the removal of some crit-

icized features like the notion of session (see [LBB05] for a complete story on the removal of this feature).

Presented in one of the last version of the RBAC specification [FKC03], the formal specification of the

RBAC model is based on four main concepts : users, roles, operations and objects (figure 1.10):

• USERS, ROLES, OPS and OBS are, respectively, the considered set of users, roles, operations

and objects.

• UA ⊆ USERS×ROLES, is a many to many mapping between the users and the roles. It represents

the assignment of roles to the different users.

• assigned_users : (r : ROLES)→ 2USERS ; assigned_users(r) = {u ∈ USERS|(u, r) ∈ UA}:
is the mapping of a role to the set of users acting it.

• PRMS ⊆ OPS ×OBS, is the set of permissions.

• PA ⊆ PRMS ×ROLES, represents the set of permissions granted to each role.

• assigned_permissions(r : ROLES)→ 2PRMS ; assigned_permissions(r) = {p ∈ PRMS|(p, r) ∈ PA},
is the mapping of a role r to the set of permission it grants.

• SUBJECT , is the set of subjects.

• subject_user(s : SUBJECT)→ USERS, is the mapping between a subject and the correspond-

ing user.

• subject_roles(s : SUBJECT) → 2ROLES , is the mapping between a subject and the set of his

roles (more formally : subject_roles(s) ⊆ {r ∈ ROLES|(subject_user(s), r) ∈ UA}).

16 CHAPTER 1. SOFTWARE SECURITY

From there, the authors define the concept of authorization as :

s : SUBJECT, op : OPS, o : OBS

access(s, op, o) =⇒ ∃r : ROLES, p : PERMS : r ∈ subject_roles(s)
∧ p ∈ assigned_permissions(r)

∧ (op, o) ∈ p

Specifying that a subject s is granted access on an object o to perform an operation op if there exists a role

r, currently owned by s, which opens the right to this permission.

OPSUSERS ROLES
UA PA

PRMS

OBS

Figure 1.10: Formal model of the core RBAC features (taken from [FKC03])

The way a user can be granted a new role and the conditions under which this can happen are unspecified

in this model: the reason is that the behavior of implemented systems differ on this particular point. To

prevent one or more systems from being excluded from the standard, this element was removed from the

specification. The same holds for the notions of inheritance, management of the decision points, ...

More informations on RBAC and all its evolutions can be found on the dedicated NIST website [NIS06]. A

detailed description of all the proposed evolutions of the RBAC standard is available in [SFK00].

1.3.2.4 ODRL

DAC, MAC, and RBAC models, while being used extensively in the industry for decades for the specifica-

tion and implementation of access-control systems, often show their weaknesses when they are confronted

with a distributed and dynamic environment. The implementations behind the different models often use

vendor-specific adaptations and optimization, causing interoperability problems. Furthermore, the fast evo-

lution of some access-control usages, like the finer usage-control introduced with Digital Rights Manage-

ment (DRM), showed the limitations of these classical models. With DRM’s, each user can be granted

specific permissions, possibly depending on the context where the usage of the resource takes place. For

instance, it is not uncommon to see permissions like “ Alice is allowed to listen to audio file bob.mp3, on

her own mp3-player, up to 5 times during the first 7 days after the date the file was purchased ” .

CHAPTER 1. SOFTWARE SECURITY 17

While classical access-control models attempt to solve the “Who can do what” question, DRM and usage-

control approaches require a more fine-grained answer taking into account the context and the potential

consequences of the operation. As such, usage-control attempts to solve the “Who can do what in wich

context and with which consequences” question.

The Open Digital Rights Language Initiative (ODRL) [ini11] attempts to provide a solution to this issue.

Defining themselves as “an international effort aimed at developing and promoting an open standard for

policy expressions. ODRL provides flexible and interoperable mechanisms to support transparent and inno-

vative use of digital content in publishing, distribution and consumption of digital media across all sectors

and communities.” , the ODRL initiative introduced a permission model explicitly taking into account the

different conditions in which the access is granted or forbidden.

Figure 1.11: ODRL Core Model Version 2.0 [ini11]

Figure 1.11 shows the graphical specification of the core of the ODRL v2.0 model6. In the ODRL model,

6Version 2.0 of the ODRL standard is still a draft specification at the time of writing. The current status of the draft is available on

18 CHAPTER 1. SOFTWARE SECURITY

a policy is composed of a set of permissions and prohibitions (negative permissions), each of them repre-

senting the ability to perform an action on an asset in a specific context. Comparing with the classical DAC

permission model from figure 1.2 or with the RBAC permission model from figure 1.10, the main addition

are the notions of constraints, duty and party: the ODRL model explicitly expresses the set of constraints

that must be satisfied for the permission (or prohibition) to take place. A permission can also be conditioned

by the realisation of some duty (for example “pay 1 euro for each viewing of the movie”). The model

also specifies, via the “party” element, who imposes the expressed constraints and duty and who grants the

permission and prohibition.

1.3.3 Access Control Policy Verification

Once the access-control policy has been defined, whatever the formalism used, arise the questions of

whether or not the declared policy :

1. precisely reflects the intended security policy. Said otherwise, do the access-control expressions

written in the produce model properly reflect the author’s intent ?

2. is complete, i.e. is the access-control policy precise enough to decide in a non ambiguous way, in any

situation, whether or not an access should be granted.

3. and is coherent with itself, i.e. in no circumstances can the policy provide two opposite decisions in

the same context.

While the first question can only be through the experience and knowledge of the policy creator, the two lat-

ter questions can benefit from helper processes. The question of whether policies are complete and coherent

has been quite extensively studied both formally (see for instance [GRS04] for the formal model-checking

of access-control policies) and in more practical ways (see [TKS05] and [YTB07])

The answers to these questions, and the confidence level associated with these answers, defines the level of

security to be expected from the application implementing the considered policy. In the same way as it is

almost impossible to build strong and steady buildings on swamps, only a strong and well-defined security

policy can lead to the production of secure software.

1.3.4 Access Control Policy Enforcement

The specification of the access-control policy does not, in itself, make the application secure. Only a strict

conformance of the implementation to the specified rules can guarantee that the resulting application really

the ODRL website : [ini11].

CHAPTER 1. SOFTWARE SECURITY 19

fulfills its requirements.

Some standards, like XACML [OAS05], explicitly specify which components of a possibly distributed

system should decide wether an access request is granted or not. Unfortunately, the level of conformance

of a software system to the original policy may depend on many factors :

• the capacity and understanding of the application developers to implement precisely what was speci-

fied.

• the chosen implementation language which may not support all the required security primitives, or

may mis-implement some of them.

• physical constraints induced by the hardware platform designed to run the software system.

• time and cost mobilized for the verification of the conformance of the system.

• and many more...

The effect of some of these factors can be controlled to be maintained as low as possible, for instance using

certified developers, verified implementation languages, extensive conformance testing. But it is usually

very difficult to prove that, on the resulting software system, the implemented access-control model is ex-

actly the same as the specified one, no more no less. Testing the system in sample cases can help, but only

provides limited confidence on the conformance to the model, not certitudes.

1.4 Application Security

Building a secure application with its companion security model requires the precise identification of the

elements it should be protected from. That’s where the application security analysis comes into the play. The

notion of “application security” regroups the capacity for an application to deal with abnormal situations.

It is often expressed in terms of assets, threats, vulnerabilities, attacks and countermeasures.

Asset: A resource of value such as the data in a database or on the file system, or a

system resource.

Threat: A negative effect.

Vulnerability: A weakness that makes a threat possible.

Attack: An action taken to harm an asset.

Countermeasure: A safeguard that addresses a threat and mitigates risk.

As for the access-control model specification, defining a secure application is a complex task. Aside from

some obvious security vulnerabilities that will affect any user of the software system (for instance, an un-

protected database access), most of the security vulnerabilities depend on the context in which the system

20 CHAPTER 1. SOFTWARE SECURITY

is operated. The same vulnerability may be critical for one user while being unimportant to another. These

two users will build very different definitions of what a secure application should be in their specific case.

Even worse: specifying the “perfect” (if it exists) security policy during the requirements analysis stage

does not guarantee that the resulting application will be secure at all: developers may mis-implement some

parts of it or the environment of the application can evolve in ways that breaks some of the hypothesis on

which the security policy is built.

Furthermore, the software development process itself is far from a simple and unequivocal task: developers

can introduce bugs, unwanted side-effects, or more simply misunderstanding of the security policy or of the

effect of the access-control primitives. Benign code modifications apparently unrelated to access-control

may create side-effects introducing flaws in the implemented security policy that may not be trivial to detect.

1.4.1 Norms and best practices

As it is already the case in many engineering fields, common knowledge, previous experiences and best

practices have been compiled into knowledge bases in order to assist as much as possible the developer in

the delicate task of producing secure software. Be they internal to the development team or publicly avail-

able documents produced by national or internationals bodies, all of these documents attempt to standardize

the field they apply to. This allows to pinpoint the critical aspects of the considered development process

and to choose the most suitable methods to reach them.

In the software engineering field, the Common Criteria [CCR11] are a compilation of definitions and

methodologies aiming at the production of secure software. They define both the development frame-

work and the reference documents to be produced. The Evaluation Assurance Level (EAL1 through EAL7)

of an IT product or system is a numerical grade assigned following the completion of a Common Criteria

security evaluation. The increasing assurance levels reflect added assurance requirements that must be met

to achieve certification. The intent of the higher levels is to provide higher confidence that the system’s

principal security features are reliably implemented. The 7 EAL levels are commonly labelled as :

• EAL1: Functionally Tested

• EAL2: Structurally Tested

• EAL3: Methodically Tested and Checked

• EAL4: Methodically Designed, Tested, and Reviewed

• EAL5: Semiformally Designed and Tested

• EAL6: Semiformally Verified Design and Tested

CHAPTER 1. SOFTWARE SECURITY 21

• EAL7: Formally Verified Design and Tested

To achieve a particular EAL, the computer system must meet specific assurance requirements. Most of these

requirements involve design documentation, design analysis, functional testing, or penetration testing. The

higher EALs involve more detailed documentation, analysis, and testing than the lower ones.

• EAL1 to EAL3 basicaly consist in the production of adapted documentation together with the code.

They usually do not require in-depth development usage changes.

• EAL4 lies inbetween the lower levels, mainly dedicated to the documentation of the project and the

upper level, where more formal verifications will be required. This level requires to employ more

rigorous techniques than the previous ones, but does not yet enforce the usage of security-dedicated

verification tools. As an illustration of this category, most commercial user-level operating systems

lie around EAL4 level.

• Higher EAL levels, labelled EAL5 to EAL7, stregthen the requirements of formal verification of

some / all aspects of the code, progressively replacing the trust in the good design by proofs of good

design. For instance, the definition of the highest EAL7 level, states :

“EAL7 provides assurance by a full security target and an analysis of the security

functional requirements in that security target, using a functional and complete inter-

face specification, guidance documentation, the design of the target of evaluation, and

a structured presentation of the implementation to understand the security behavior.

Assurance is additionally gained through a formal model of select target of evaluation

security policies and a semiformal presentation of the functional specification and tar-

get of evaluation design. A modular, layered and simple target of evaluation security

function design is also required.” (adapted from [CCR11])

The highest security levels (in the Common Criteria), EAL-5 to EAL-7, require formal verification (or at

least validation) of the specification documents and of some of the software constructs. An example of

the application of the Common Criteria’s recommandations to a development project can be consulted in

[KS06].

It should be noted that the EAL level does not measure the security of the system itself, it simply states at

what level the system was tested or verified. Furthermore, the confidence to be given to the EAL obtained

by the considered software system should always be relative to the confidence in the authority providing

the certification. EALs should not be viewed as pure theoretical evaluations, but as a mix of trust and quan-

tifiable elements.

Other norms and best practices compilation frequently encountered in the software development field in-

cludes the work of the International Organization for Standardization7, for instance with the ISO 27000-
7http://www.iso.org/

22 CHAPTER 1. SOFTWARE SECURITY

family norms applying to “the security techniques applicable in the information technology field in order to

manage the security of information management system”.

The next chapter will focus on the software development process and on methods used to maintain the im-

plementation as close as possible to the specified access-control policy.

2
Secure Software Development

Contents
2.1 Vulnerabilities of secure software development . 24

2.2 Software development cycle . 25

2.2.1 Waterfall model . 26

2.2.2 Prototyping model . 28

2.2.3 Practical software development cycle . 30

2.3 Secure Software Engineering . 32

2.3.1 Secure code generation . 32

2.3.2 Secure code verification . 38

2.4 Practical Software Engineering . 42

2.4.1 UMLsec . 43

This chapter presents the current set of techniques / methodologies aimed at avoiding or limiting the impact

of vulnerabilities on the resulting software system. Identifying the possible vulnerabilities is the very first

step towards a secure software system.

23

24 CHAPTER 2. SECURE SOFTWARE DEVELOPMENT

2.1 Vulnerabilities of secure software development

The first step toward secure software development is to identify what are the main vulnerabilities threat-

ening software systems. This section covers the main source of vulnerabilities affecting the development

phase of the software development cycle. These vulnerabilities usually occur in three contexts: incorrect or

incomplete specification, forgotten features and unwanted extra-features.

An incorrect / incomplete specification is a specification where some elements either conflict (incorrect

specification) or are missing (incomplete specification). A specification can be made incorrect when a

newly added feature conflicts with a previous one. When detected, such conflicts can usually be dismissed

by adapting the set of rules to remove the conflit. For example (figure 2.1), the specification of a medical

record management system could state that “no one should be able to read someone else’s record” (A)

and, at the same time, that “a practitioner should be able to read/write his patient’s records” (B). De-

pending on the understanding of the developers, implementing these two rules will lead to a system where

at least one of them will be broken as soon as a practitioner will try to consult one of his patients’ records.

Allowing the access would break rule A while refusing it would break rule B. Once detected, the incompati-

bility between these two rules can be resolved by updating the requirements on this specific point according

to the user’s choice. In this example, we could give priority to the seconde rule (the B one), thus choosing

the upper result on the figure and allowing practitioners to consult their patient’s records.

A :

B :

A+B : ?

+

Figure 2.1: Incorrect / incomplete specification

The overlapping between the two conflicting rules must be resolved before

starting implementation, otherwise the behavior of the system may be

unpredictable on this point.

However, detecting conflicting rules is not always that simple: conflicts can occur when updating the rule

set, or when performing apparently harmless operations, like reformatting the source code for pretty print-

ing. Even worse, such conflicts may not exhibit harmful effects during the testing stage, leading to the

delivery of a flawed system.

CHAPTER 2. SECURE SOFTWARE DEVELOPMENT 25

A forgotten feature is a feature that, although being specified, is not implemented in the application. There

can be many causes to this absence: the feature may have been temporarily disabled during the development

cycle because its implementation conflicts with some other on-development feature, or because the feature

was skipped by the developers. The consequence is that the feature is not present in the final product and if

its behavior is not properly verified or tested, the absence may not be detected before it shows effects. For

instance, developers might be tempted to disable the firewall protecting the access to the servers during the

development stage : at that point the systems are running in a protected environment where firewall may

not be useful. Removing it will limit the possible interferences with the currently on-development software,

but it will expose the system if it is not properly re-enabled before the testing and deployment stages.

Unwanted extra features are the exact opposite of forgotten features: they are features introduced during

the development cycle that are not present in the specification but still appear in the final application. They

may be introduced deliberately by the developers (for instance, a debug interface that was added to help

diagnose some unwanted behavior and that has not been removed after use), result in a misunderstanding

of the specification or be a consequence of the usage of a software library. Libraries often provide a set of

features to an application, some of which may be superfluous. Being out of the specification, these extra-

features are quite hard to detect: validation steps may not expose them because such verifications are based

on the behaviors specified, not on what is really implemented. This may result in breaches in the security

of the application as these extra features are neither checked nor monitored.

A special case of these vulnerabilities is the bug. A bug is an error in the software system, usually unwill-

ingly inserted by a developer. Depending on his exact impact, a bug can be seen as any of the last two

categories given above: a forgotten feature when the bug causes some part of the implementation to mal-

function / not function at all and a extra feature when it causes unwanted behavior of the software system.

All of these vulnerabilities can cause the software system to exhibit behaviors that are out of the speci-

fication, possibly resulting in security flaws. To prevent such problems from happening, or to limit their

impact when they are hardly avoidable, multiple methods have been proposed. The following sections will

introduce the concept of secure software development as well as some of the main techniques used to detect

and limit the impacts of existing vulnerabilities.

2.2 Software development cycle

The software development cycle refers to the set of stages required to obtain a software system. It ranges

from the collection and analysis of the user’s requirements to the delivery and maintenance of the software

system. Refining a little further, the software development cycle can be divided in 5 interdependent stages :

26 CHAPTER 2. SECURE SOFTWARE DEVELOPMENT

requirement analysis : the collection and analysis of the user’s requirements.

specification : the formalisation of the user’s requirements and the selection and de-

sign of the according software system’s feature.

program implementation : the traduction of the specification into the chosen imple-

mentation language.

system testing : the evaluation of the conformance of the software system against the

specification.

maintenance : the deployment, the correction of vulnerabilities and the adaptation

of the software system to his changing environment and/or to the new/modified

user’s requirement.

The granularity of this decomposition is arbitrary : depending on the focus, each of these stages can be

refined into smaller task-oriented elements (think of the “system testing” stage, which could be decom-

posed into “unit testing”, “integration testing”, “system integration” and “full system testing”). For clarity

purposes, the rest of this chapter will be limited to the 5-stages decomposition presented above.

Although these stages represent a logical progression from the user’s requirements toward a running and

maintained software system, their sequence is usually more complex: at each stage of the development

process, developers might be tempted to revoke some of the options taken before, either because this would

simplify their current work, or because the elements justifying these choices have been modified. If un-

controlled, this can lead to a cascade of changes, turning the development process in a never-ending story

(figure 2.2).

The following sections will introduce the most prevalent models decomposing the software development

cycle. The reader interested in a more in-depth analysis of the software development cycle and its implica-

tions should consult [Pfl01].

2.2.1 Waterfall model

In the waterfall model [Roy70], the set of stages required to obtain a software system are ordered into a

strict sequence, leading to a stair-like model (figure 2.3). In this model, derived from the physical good

manufacturing process, each stage is due to provide a deliverable on completion.

As the figure illustrates, each development stage must be completed before the next one begins. This model

is very simple to follow and to explain to a user : the current activity is easily viewable, as well as the job

already done and the upcoming activities. As such, the waterfall model was the basis for software develop-

ment deliverables in the US. Dept. of Defense for many years [US 88].

CHAPTER 2. SECURE SOFTWARE DEVELOPMENT 27

Requirements
analysis

Specification

Program
ImplementationSystem Testing

Maintenance

Figure 2.2: Uncontrolled development

An uncontrolled re-evaluation of the options taken can lead to an infinite loop

in the development cycle.

Requirements
analysis

Specification

Program
Implementation

System Testing

Maintenance

Figure 2.3: Waterfall model

28 CHAPTER 2. SECURE SOFTWARE DEVELOPMENT

However, such a strict ordering of the different stages has one major drawback : it leaves no way, in stage

N , to modify, correct or update what has been done in stage N − 1 or above. This makes it almost impossi-

ble to reflect late changes in user’s requirements or environment modification. It leaves no place for errors

or evolution: in software development, the requirements usually evolve during the development phase, re-

flecting the knowledge of the problem gained and the already evaluated alternatives.

To allow a limited degree of modification to the deliverables of the previous stages while keeping the devel-

opment process under control, upgrades to the waterfall models appeared, like de V-shaped model (German

Ministry of Defense, 1992). In the V-shaped model (figure 2.4), testing activities are explicitly related to

the analysis and design stages, allowing a limited level of correction of the previous stages while limiting

as much as possible the risks of infinite iterations inside the model.

Requirements
analysis

Specification

Program
Implementation

System Testing

Maintenance /
Evolution

Design Verification

Validate Requirements

Figure 2.4: V-shaped model

Waterfall-like models are usually used in contexts where requirements are very stable, removing the need

to update them during the development process, or in contexts where time and/or cost-constraints forbid

such backward steps. For instance for systems required to be operational as soon as possible, even if the

full features will only be reached after a strong maintenance phase.

2.2.2 Prototyping model

In order to limit the possibly infinite recursion of the uncontrolled development model (figure 2.2) without

restricting too much the ability to revoke any options taken in the previous stages, the prototyping model

allows all or part of a system to be constructed quickly to understand or clarify issued [Pfl01]. In a similar

way to physical goods engineering, each produced prototype is evaluated and the feed-back is integrated

CHAPTER 2. SECURE SOFTWARE DEVELOPMENT 29

back into the next generation of prototypes (figure 2.5).

Requirements Prototype
requirement Design Impleme

ntation Tests

Feed-back

Prototype #1

Prototype
requirement Design Impleme

ntation Tests

Prototype #2

Feed-back

Prototype
requirement Design Impleme

ntation Tests

Prototype #N

(...)

Figure 2.5: Prototype model

Each prototype implements a subset of the requirements, augmented by any

useful feed-back gathered on the previous prototypes.

Prototypes can be built on a specific subset of the requirements, in order to test a possible implementation

and/or to gather more efficient feed-back on them, or created incrementally: each prototype implementing

a few more requirements than its predecessor. In both cases, prototyping allows developers to better un-

derstand the challenges involved and to obtain an easier feed-back from the users. Users are usually more

comfortable to clarify their requirements when confronted to a partial version of the software system than

when presented a formal specification.

The main drawback of the prototyping approach lies in the time and resources taken to develop the succes-

sive prototypes, which may sometimes exceed the time and resources required for a more “straight to the

point” approach of the same project.

When working over a growing set of requirements instead of a specific one, the prototyping approach

closely compares to iterative and incremental development (figure 2.6) where features are either added one

at a time (incremental development) or progressively implemented in the software system (iterative devel-

opment).

30 CHAPTER 2. SECURE SOFTWARE DEVELOPMENT

Iterative Development

Incremental Development

Figure 2.6: Incremental Vs Iterative development.

The methods based on prototyping proved very popular due to the rapid production of deliverables, allow-

ing a quick feed-back from the user, thus limiting the impact of misunderstandings on his requirements.

The same applies to conformance testing : each prototype can be tested on the restricted set of requirements

it should implement, showing directly the elements to be corrected/improved instead of having to wait for

the system to be fully developed and tested near the end of the development phase.

2.2.3 Practical software development cycle

The practical software development cycle usually differs from the classical approaches presented in the

above sections : customers do change their mind between the requirement definition stage and the delivery

of the software system, developers do make errors while implementing the requirements, environnement

can change, time and cost constraints restrain the validations that can be made... All of these causes the

sequence of stages required to build the system to change to an iterative-like process. Figure 2.7 presents

these potential modifications in the case of an adapted waterfall model, but all the other software develop-

ment models suffer from the same problems. A software system is not built in an isolated environment but

must take into account changes occurring around it, so should the software development process.

This iterative process has great consequences on the requirements of the software system: each of the mod-

ifications adopted at every stage must be reflected to the original requirements document, which would

otherwise become obsolete. However, experience shows that, when confronted to such requirements modi-

fications, developers tend to dedicate their time and effort to the production of the code designed to imple-

ment them rather than to the updating of the original specification. Unless in critical contexts where security

CHAPTER 2. SECURE SOFTWARE DEVELOPMENT 31

Requirements
analysis

Specification

Program
Implementation

System Testing

Maintenance

Environment

Customer

Figure 2.7: Practical software development cycle.

Each stage is influenced by the changing customer’s requirements and the

environment, possibly causing the need to revoke some of the decisions taken

on the previous stages.

32 CHAPTER 2. SECURE SOFTWARE DEVELOPMENT

flaws cannot be tolerated, customers are often more willing to pay for systems covering their needs, even if

they may contain potential security problems, that for secure systems completely useless in their business

because some of the key features sought are not yet implemented.

2.3 Secure Software Engineering

In an attempt to meet these two apparently opposite focuses, secure software engineering techniques have

been developed. These techniques aim at the production of secure code and its verification. Some of these

techniques can guarantee that the resulting code is fully vulnerability-free while others only focus on some

specific aspects of the program or return partial results.

There are basically two ways to produce code that is proved secure: either build code through methods

guaranteeing its security (the generation approach), or build code and prove it secure (the verification ap-

proach). The rest of this section will introduce examples of these two approaches as well as their main

advantages and drawbacks.

2.3.1 Secure code generation

Secure code generation aims at the production of secure code by deriving the source code more or less

directly from a higher-level model, directly derived from the specification. The actions possible for the

developer are strictly supervised and limited in order to guarantee that any code produced through this kind

of method satisfy the properties specified in the model.

We’ll present here two examples of secure code generation methodologies : the B method [Abr96], which

helps to formally refine a specification down to executable code, and Aspect Oriented Programming (AOP)

[KLM+97] where transversal features can almost automatically be inserted into the executable code, re-

moving unwanted developer interaction. Although both techniques aim at the production of secure code,

they differ in the way they convert the expressed requirements into executable code and in the level of free-

dom of choices they leave to the developers .

2.3.1.1 B method

The B method, defined by J-R. Abrial in [Abr96], is a tool-supported formal method where the specifica-

tion of a software system is progressively refined into executable code. The refinement process is strictly

supervised so the properties expressed on a stage cannot be violated in subsequents ones. The objectives of

the B-method, as stated on [Cle11], are :

CHAPTER 2. SECURE SOFTWARE DEVELOPMENT 33

• To create correct software by construction

• To model systems in their environment

• To formalize specifications

• To simplify programming

To prevent the occurrence of the vulnerabilities presented in section 1, the B-method imposes a strict de-

velopment process (figure 2.8). First, the specification is expressed in a formal model called the abstract

machine. This formal model specifies the high level goals the software system should meet. Then refine-

ments of this abstract machine are produced. Each of the refinements clarifies one of the goals or provides

a more concrete implementation of the required properties. It must then be proved to be coherent and to in-

clude all the properties of the Abstract Machine and of the previous refinements. At the end of the process,

the refinement is fine and deterministic enough to be automatically translated into an executable language.

The B-method as been used in some safety-critical systems like the Ariane 5 rocket and the underground

line 14 in Paris [Cle11].

Abstract
Machine

Refinement
#1

Refinement
#2

Refinement
#N

Implementation

(...)

Figure 2.8: B-method.

The initial requirements, expressed as an abstract machine, are progressively

refined into executable code while conserving the initial properties.

To illustrate the B-method, let’s build a simple integer multiplication application. The abstract machine

shown in figure 2.9 formalizes the simple requirements. It describes a simple model, containing only one

34 CHAPTER 2. SECURE SOFTWARE DEVELOPMENT

operation : mult(· · ·). This operation requires two parameters (a and b) and is only defined if both of them

are naturals (the PRE-condition clause). The result of the mult(a, b) operation is simply the product of

a and b. A possible implementation of this abstract machine is presented in figure 2.10: the body of the

mult(a, b) operation has been refined into an algorithmic version of the multiplication operator. As the

second machine refines the first one according to the B-framework, the methodology guarantees that any

property required on the abstract machine still holds in the refined version.

1 MODEL

2 Mult

3 OPERATIONS

4 res <-- mult(a,b) =

5 PRE a : NAT & b : NAT

6 THEN res := a*b

7 END

8 END

Figure 2.9: B Abstract machine for the multiplication application

1 IMPLEMENTATION

2 MultImpl

3 OPERATIONS

4 res <-- mult(a,b) =

5 r:=a;

6 q:=0;

7 WHILE r>=b

8 DO q:=q+1; r:=r-b

9 INVARIANT r+(q*b) = a

10 VARIANT r

11 END

12 END

Figure 2.10: B implementation of the multiplication application

CHAPTER 2. SECURE SOFTWARE DEVELOPMENT 35

However, the B-method is far from being the universal panacea to prevent security issues from happening

in software development. Using the B-method requires the developers to completely change the way they

work: a B developer never writes code, he merely writes specifications (abstract machines) and refines them.

This change of habits and the time dedicated to the experiencing of the methodology and its formalisms

cause a huge time and cost overhead before any executable code can be written. The other huge drawback

lies in the stiffness of the approach : once the abstract machine has been written, no change to the specified

requirements is possible without losing all the already produced refinements. Late customers requirements

and/or environnement changes are very hard to include. For these reasons, the B-method is usually reserved

for projects with very stable requirements and where security is a critical factor and for companies able to

cope with the high cost of entry to this methodology.

Further informations on the B-method can be found in [Abr96] and [Cle11]. A concrete application of the

B methodology into the field of access-control is available in [Had05] and [DHM09] (in French).

2.3.1.2 Aspect Oriented Programming

Aspect-Oriented Programming (AOP) [KLM+97] is a methodology designed to increase the modularity of

the code. The main idea is to separate cross-cutting concerns from the rest of the code. The interest of AOP

in the context of the secure code generation lies in the fact that AOP allows the developer to implement

key security elements in one unique place and then automatically replicate/adapt that code in every code

portions that requires it. It should be noted that AOP in itself does not guarantee to produce secure code

at all, it only helps to reduce errors and makes the security measures implementations more uniform. It

imposes little to no verification to what the implemented aspect do. A popular implementation of the AOP

methodology is the AspectJ framework [Asp], developed for the Java programming language.

The places in the code where the cross-cutting concerns are to be inserted are called pointcuts, they can de-

scribe almost any constructs of the Java language : method calls, method executions, objects initialisation,

constructor calls, exceptions being thrown, access to attributes,...

An illustration of the AOP methodology can be found in figures 2.11 and 2.12 (example adapted from

[Mon09]). Figure 2.11 presents the source code of a Java class representing the Account of a bank client.

This class only contains business logic. Adding a logging feature to this class (and to all the other compos-

ing the software system) would require to edit each and every single class to add the corresponding method

call. This error-prone process can be replaced by the specification of the logging component as an aspect

(i.e. a transversal concern). Figure 2.12 shows a possible definition of such an aspect. Lines 4 and 5 define

the join points where this aspect will apply; here on the creation of an Account object and on any method

call outside of the Logging component. Lines 7 to 15 then define when and how the different aspect items

36 CHAPTER 2. SECURE SOFTWARE DEVELOPMENT

implementation should be inserted into the code. For instance, applying the aspect specified on line 7 to the

class source code would produce the result show in figure 2.13.

1 public class Account {

2 private int number;

3 private int balance;

4

5 public Account(int number) { this.number = number;}

6

7 public void credit(int amount) { balance = balance + amount;}

8

9 public boolean debit(int amount) {

10 if (amount > balance) return false;

11 balance = balance - amount;

12 return true;

13 }

14

15 public int getBalance() { return balance;}

16 }

Figure 2.11: Source code for the Account class.

AOP allows for easy and quick insertion of transversal features into the code, removing the risk of mis-

implementation of the invocations of these features. It allows developers to focus on business logic inside

the code and concentrate cross-cutting concerns like logging, encryption or access-control in small and

manageable components instead of scattering them throughout the source code. From a validation point of

view, AOP in itself does not guarantee any improvement in the security of the code produced. It relies on

the correctness of the implementation of the aspects to be inserted. However, as the aspects are disjoints

from the code, they allow for easy insertion/update/correction of their content without the need to check the

whole source code.

In order to ease the transition from standard code to an AOP-style one, recent works attempt to convert the

most frequent constructs into aspects. See for instance [TNTN11] for an application of to the access-control

of Java applications.

CHAPTER 2. SECURE SOFTWARE DEVELOPMENT 37

1 public aspect Logging {

2 Logger logger = Logger.getLogger("simple_logger");

3

4 pointcut accountCreation() : execution (Account.new(..));

5 pointcut methodCall() : execution (* *.*(..)) && !whithin (Logger);

6

7 after() : accountCreation() { logger.info("New Account");}

8 before() : methodCall() {

9 Signature sig = thisJoinPointStaticPart.getSignature();

10 logger.trace("Entering "+sig.getName());

11 }

12 after() : methodCall() {

13 Signature sig = thisJoinPointStaticPart.getSignature();

14 logger.trace("Leaving "+sig.getName());

15 }

16 }

Figure 2.12: AOP : logging aspect specification

1 public Account(int number) { this.number = number;}

2 +

3 after() : accountCreation() { logger.info("New Account");}

4 =

5 public Account(int number) {

6 logger.info("New Account");

7 this.number = number;

8 }

Figure 2.13: Aspect insertion

Effect of the application of rule 7 from figure 2.12 onto the Account object

defined in figure 2.11.

38 CHAPTER 2. SECURE SOFTWARE DEVELOPMENT

2.3.1.3 Common drawbacks

While being very different, the two presented approaches share most of the pitfalls of the code generation

methods. They both require developers to express the requirements of the system in a formalism quite dif-

ferent from the source code languages they are used to. Thus requiring developers to learn and experience

new formalisms and tools; a process that takes time and consumes some of the resources of the company

for “non immediately productive” work.

Another significative drawback is that the generated code is not meant to be easily human-readable and

understandable. More than that, the generated code should never be manually edited : otherwise the proper-

ties granted by the code generation approach may be compromised. So the developer loses control over his

code. Although he is still the one responsible for the possibly erroneous behaviors his code might exhibit,

the developer has no direct way to verify that the generated code does not insert unwanted features inside his

code. Only the confidence on the tool author and/or on the widely deployed methodology can help him here.

2.3.2 Secure code verification

Taking the opposite way of the secure code generation techniques, code verification methods are developed

to check that source/executable code, produced by any means, does satisfy the expressed requirements.

The verification approach is built around two techniques : formal verification and code testing. The for-

mal verification techniques build a model from the interpretation of the source code, often with the help of

dedicated annotations, and checks the conformance of this model against some desired properties. On the

other hand, the code testing techniques derive test cases from the requirements and check if the expected

and observed behaviors of the system match while executing those test cases.

2.3.2.1 Verification

Code verification techniques aim at proving that a semantic model built from the considered source code

satisfies the expressed requirements. They are dedicated to the identification of possible inconsistencies

between the specification and the implemented code. They range from frameworks dedicated to specific

inconsistencies detection (like the Valgrind tool [Sew11] dedicated to the discovery of memory errors) to

more general methods adaptable to many situations (see for instance the Verifast tool suite [JSP+11a],

[JSP11b] or the Java PathFinder initiative [HP98], [NAS]).

These verification techniques can usually be grouped in 3 categories [DKW08] : abstract interpretation,

model-checking and bounded model-checking. Static analysis encompasses a family of techniques for au-

tomatically computing information about the behavior of a program without executing it. On the other hand,

CHAPTER 2. SECURE SOFTWARE DEVELOPMENT 39

model-checking techniques attempt to determine if a correctness property holds by exhaustively exploring

the reachable states of a program and, if not, generate a counterexample or an execution trace leading to a

state in which the property is violated. As the state-space of software programs is typically too large to be

analyzed directly, model-checking algorithms are usually applied either on abstract versions of the software

system (symbolic model checking) or on the full state-space but with a depth-bounded approach (bounded

model-checking).

Abstract interpretation techniques quite rapidly show their limitation when the verification of large existing

software systems is concerned : they are known to be computationally hard [Ric53] and are practically

impossible to do in most modern languages. In the following, we will focus on model-checking techniques,

both symbolic and bounded ones.

All of these model-checking methods share the same process (figure 2.14): the code is abstracted into a

formal specification model which is then confronted to the desired properties. Abstracting the source code

allows to get rid of irrelevant details about the semantics and to somehow simplify the verification step.

Depending on the properties to be proven and on the chosen source code language, the abstraction process

can be fully automated or require a more or less intensive developer intervention (for instance, via the an-

notation of some of the code constructs). The formal specification obtained from the code is then checked

against the desired properties producing results that need to be reinterpreted in terms of the original source

code.

Concrete Syntax Formal Semantics

Abstraction

Verif.

Properties

Source
Code

model

Interpretation

Figure 2.14: Verification process.

Abstracting the model from the code is far from an easy task: the quality of the extraction process affects

the results of the verification. The extracted model must be at the same time precise and abstract enough.

Precise so that any proof obtained on the model level still holds on the source code and abstract so that ir-

relevant elements don’t pollute the formal reasoning process. Furthermore, a loss of precision is sometimes

necessary to make the semantics decidable. There is usually a trade-off to be made between the precision

40 CHAPTER 2. SECURE SOFTWARE DEVELOPMENT

of the analysis and its decidability.

To illustrate the verification approach, a small example (adapted from [JSP11b]) demonstrating the usage

of the Verifast tool is presented in figure 2.15. It consist in a very naive Java implementation of a stack.

Verifast requires the source code to be annotated with preconditions and postconditions written in a specific

formalism. These properties to be verified as well as some interpretation-helper annotations have to be

manually specified by the developer. In this example, the size of the annotations almost overweights the

size of the original source code.

The main drawbacks of such annotation-driven techniques lie in the weight of these annotations : requiring

developers to annotate all the critical sections of the code with a tool-specific formalism causes the same set

of problems as those explained in the section about secure code generation techniques. It takes time to learn

and master such languages; and during that time, developer’s efforts are diverted from his main objective :

the production of the application’s code.

Furthermore, the results of those techniques are only as precise as the abstraction of the code is : the extra

load induced by the manually assisted abstraction usually limit their use to critical sections of the software.

This prevents the tools to verify the whole source code, possibly ignoring requirements violations in appar-

ently harmless code portions.

More details on verification techniques as well as numerous examples can be found in [Cou08], [CVC99]

and [Liv06].

2.3.2.2 Testing

Testing, on the other hand, derives a set of test-cases from the specification and checks whether the behavior

of the system on these specific cases matches the expected behavior or not (figure 2.16). It is a very intuitive

process, very close to the one used in physical goods manufacturing or empiric sciences.

The results of the tests heavily depend on the quality of the testing set: the considered test-cases must cover

as much as possible of the possible situations the system might encounter. As the set of potential test-cases

is often infinite, several approaches have been introduced to select the most representative candidates to

test. The reader interested in detailed explanations of the existing methods (both heuristic and formal) of

test-case selection can consult : [Pet], [JUn10] or [LTMPB08].

Testing has the defaults of its simplicity : proving that the system always satisfies its specification requires

exhaustive testing. This process is very time consuming and impossible if the potential test-case set is in-

CHAPTER 2. SECURE SOFTWARE DEVELOPMENT 41

1 class Stack {

2 Node head;

3 //@ predicate valid(int count) = head |-> ?h &*& nodes(h, count);

4

5 Stack()

6 //@ requires true;

7 //@ ensures valid(0);

8 {

9 //@ close valid(0);

10 }

11

12 void push(int element)

13 //@ requires valid(?count);

14 //@ ensures valid(count + 1);

15 {

16 //@ open valid(count);

17 Node n = new Node();

18 n.value = element;

19 n.next = head;

20 head = n;

21 //@ close nodes(head, count + 1);

22 //@ close valid(count + 1);

23 }

24

25 int pop()

26 //@ requires valid(?count) &*& 0 < count;

27 //@ ensures valid(count - 1);

28 {

29 //@ open valid(count);

30 //@ open nodes(_, _);

31 int result = head.value;

32 head = head.next;

33 //@ close valid(count - 1);

34 return result;

35 }

36 }

Figure 2.15: Java Stack class, with Verifast annotations.

Exemple adapted from [JSP11b].

42 CHAPTER 2. SECURE SOFTWARE DEVELOPMENT

i = 1...N
Specification

T1

T2

TN

(...)

Ti System
OK

KO

Figure 2.16: The testing process.

finite, as it is often the case. On the other hand, testing is very useful to quickly detect property violation:

the test-case shows the violated property and the sequence of actions leading to that violation. This allows

the developer to easily pinpoint the faulty elements and correct them.

As such, testing is used in almost every software project, at least on a limited scale, to detect the most

obvious problems and to demonstrate the partial correction of the system to clients.

However, apart from a few very specific cases, testing a system in some selected cases is not sufficient to

prove it correct. Tests can quickly demonstrate that a system does not conform to its specification by the

production of a counter-example, but only formal verification or exhaustive testing can prove conformance.

2.4 Practical Software Engineering

As it is often the case real-world software engineering is a compromise between theory and practice. Even

though all the actors of the software development process (clients, analysts or developers) agree on the

importance of the respect of the specification, most of the software systems are deployed without being

thoroughly validated conformant to their specification.

The main reason behind this fact lies in the conflicting market constraints imposed on the software devel-

opment process : it should be as quick and as cheap as possible while producing secure and feature-rich

software. A compromise has then to be made, sacrificing some aspects in favor of others; for instance giving

up full system verification and/or testing to keep up with a previously announced release date. Even if this

means deploying an incomplete systems until the corrective patches are available. The choice between the

two approaches then becomes an political and economical one, where the costs and benefits of the different

options have to be taken into account, be they quantifiable ones, like the price of potential defects, or more

CHAPTER 2. SECURE SOFTWARE DEVELOPMENT 43

fuzzy ones like customer satisfaction. An extended description of these potential factors can be found in

[Hol01]. A more complete description of the caveats of practical software engineering is available in [Pfl01]

and in [Mea].

2.4.1 UMLsec

UMLsec [Jü02] [Jur05] is an extension of the widely used unified modeling language (UML) [OMG09]

that allows one to define security properties and to formally check a model against those properties. The

set of UMLsec properties is not limited : anyone is welcome to define new properties to address new se-

curity concerns. UMLsec uses the standard UML extension mechanism, stereotypes and tagged values, to

describe security properties (figure 2.17).

Figure 2.17: UMLsec : Sequence diagram with the “permission” property. (reproduced from [Mon09])

The main idea behind UMLsec is to extend a model widely used by developers (the UML model) with

the constructs required to express precisely the security properties expected from the modeled elements.

These properties can then be used to automatically verify that the produced source code effectively exhibit

the expected behavior. Recent works [MJH+10] [Mon09] took the process one step further, producing the

security-related code directly from the model instead of only verifying it, bypassing the risk of developer

mis-implementation.

UMLsec, and the tools built on it, are an attempt to bring the best of the code production and code verifica-

tion worlds together. However, to express their full potential, they require the methodology to be adopted

from the early sketches of the software development process. The UMLsec methodology is hardly applica-

ble to existing software development projects conducted without any prior UML (or UML-like) specifica-

tion.

44 CHAPTER 2. SECURE SOFTWARE DEVELOPMENT

Furthermore, the UMLsec methodology is often viewed as too rigid and too flexible at the same time. The

existing UMLsec extensions often do not exactly match the needs of the users. And, even though the open

extension mechanism built into UMLsec allows one to define almost any possible extension, these exten-

sions will not be understood and properly processed by existing tools. The developers are then left with

a choice between constructs only partially representing his needs and custom constructs forbidding him to

benefit from automated tools due to lack of support. Large teams may have the resources required to adapt

the existing tools to better fit their needs, but smaller teams certainly have not.

3
Motivations and Objectives

Contents
3.1 Motivating example . 45

3.2 Analysis . 48

3.2.1 Objectives . 50

3.3 Running example . 51

This chapter introduces the motivating problem from which our research takes source. We present the scope

of this work and the set of problems frequently encountered by software developers we try to alleviate. The

running example that will be used in the following chapters to illustrate the models and the algorithms is

also detailled.

3.1 Motivating example

The root of our reflexion comes from the observation of the implementation of access-control in a com-

mercial software system. Developed and maintained by a small team, the application consisted in an online

45

46 CHAPTER 3. MOTIVATIONS AND OBJECTIVES

shared calendar augmented of some cooperative functionalities. It was suffering from an evolution-related

problem: its code kept being updated with new/adapted features while its specification stayed mostly static

and did not reflect all the changes operated.

The shared calendar application consisted of a set of programs designed to allow people to create, edit and

share their time schedules. Each user originally has full control over his own personal events and limited

access to any event shared with him, depending on the access-control properties specified by the object

owner. As such, the original permission model behind it was very close to DAC (see section 1.3.2.1, page

9). In addition to this discrete permission model, some general rules where hard-coded directly into the

application code to allow easy administration of the system as well as preventing data losses. For examples,

rules like “administrators always have access to any event” and “a user cannot give up his rights on an

object if he is the last one able to access it” were hard-coded to allow easy administration and to prevent

events from being definitively unreachable.

Development was carried with a prototype-like approach : each revision of the system implemented a grow-

ing set of features in order to cover as many as possible of the requirements expressed by the different users.

Prototyping allowed developers to obtain a quick feed-back on the functionalities of the system, allowing

for a rapid evolution of the feature set.

From an access-control perspective, things became to get out of control when the application continued to

evolve. New feature insertion, emerging customer queries or team modifications caused unwanted side-

effects :

• more and more rules where hard-coded, some of them overlapping / shadowing previous ones, thus

modifying the behavior of the system in a way not always easy to find (figure 3.1).

• user-managed groups were added to the system, quickly introducing the question of conflicts in ex-

isting permissions as well as the need for more global, hardcoded, rules dedicated to the management

of these groups (for instance rules designed to prevent the deletion of the last user in a group still

containing events).

• new developers joined the project, others changed affectation, taking away their full understanding

of the rules they wrote.

As a result, more and more unexpected and incoherent behaviors were reported by the users and each “bug”

correction made the access-control code a little bit more complex. Soon the developers began to realize that

none of them still mastered the whole access-control aspect of their system: event though they understood

the effect of each rule separately, the cumulative effect of the whole rule set was more than obscure to them.

Any new modification was introducing unwanted side-effects, which in turn required new modifications,

initiating an almost infinite loop of patches close to the never-ending development problem presented in

CHAPTER 3. MOTIVATIONS AND OBJECTIVES 47

P2
false

P1
true

not(P1) P2
false

P2
false

not(P2) P1
true

=+
P1

true

?

Figure 3.1: Rule insertion : uncertain side-effects

Inserting a new rule (here on P1) may cause side-effects on previously added

rules that are not trivial to detect

chapter 2 (page 27).

To solve this problem, a complete rewrite of the access-control code seemed the proper solution, but it

quickly turned out that without anyone able to understand what was exactly doing the current code, writing

a new one would inevitably impact current users in the way they were used to the system. More than that,

this would only be a temporary measure, as the new code would also be subject to the same evolution-

related problem as the old one, resulting in the emergence of the same problems in the near future.

After a quick search, two possible solutions were identified: either should the rewritten access-control code

be frozen in its initial state, preventing any modification thus preserving its integrity but preventing some

possible clients to use their software because some of their requirement might not be met. Or should they

find a way to know exactly what is the impact of every modification in their code, in order to detect potential

conflicts between rules before they adversely affect the behavior of the system.

However the company didn’t have the resources required for such a formal modeling of their requirements

and code : time and costs involved in this formal stage would cause the whole project to get out of schedule

and budget. It would also require the developers team to be trained to formal modeling and verification,

moving them away from their primary objective - producing and maintaining code - to an unproductive

state: learning formal methods. This would cause a unacceptable hiatus in system releases possibly leading

customers to try other vendor’s solutions to match up with their new specific requirements. Furthermore,

48 CHAPTER 3. MOTIVATIONS AND OBJECTIVES

such training is an investment for better and more secure software in the future, but it is an investment

almost impossible to pay for small structures.

3.2 Analysis

The source of their problems lied in the gap between what a software development process should be and

what it usually is: the development of a software system usually takes places in several consecutive steps

(figure 3.2) : the developer and the users settle on a set of requirements for the upcoming application, the

developers translate this set of requirements into a more or less formal specification aimed at resolving

any existing ambiguities, then implements it. If the developer doesn’t make any implementation errors,

any properties verified by the specification still holds in the final application, providing the desired security

properties to the users’ system.

User

REQ

?!?

User

Ok !

User

Application
DEV

Figure 3.2: Straight development.

Close to the waterfall model presented page 27, the ideal software

development process is a forward-going process where choices never need to

be reconsidered. In absence of programming bugs, all properties specified

during the requirements stage still hold in the final application.

However, this canonical scheme is far from reflecting the reality of most software development projects.

During the development of the software system, the client can change his mind on some features. For

example modifying the specified behavior of some element or adding/removing some feature. External

constraints may cause developers not to reflect those changes on the specification, or reflect them but not

CHAPTER 3. MOTIVATIONS AND OBJECTIVES 49

check again that this new specification still meets the original requirements. The modifications are then im-

plemented into the code by the developers and delivered to the customer as a prototype to be tested (figure

3.3). The question then arises : “does the delivered application still meet the original specification?” .

Most of the time, the answer is false, or at best unknown, as the original specification does not contain all

the updates introduced along the development cycle. So the delivered application cannot be guaranteed to

exhibit the behaviors specified on the early stages of development. This is problematic as these behaviors

specified in the early stage of development are the basic features sought by the client on his application, and

the ones he’s willing to pay for.

User
User

Application

User

DEV

?!?

REQ
Prototype Prototype Prototype

??

Figure 3.3: Prototype development.

The relation between the final application and the original model is broken

because of the code-changes introduced by new user requirements are not fully

properly reflected on the specification.

We propose a methodology to help the developer to update the specification of the application at each step

of the development cycle. Attempting to guarantee that any updates made to the code (or to the specifica-

tion) is propagated to the specification (resp. the code) (figure 3.4). During this co-evolution process, we

try to be as un-intrusive as possible : the developer should not be burdened with constant formal model

specification or verification and cryptic messages, leaving him as focused as possible on his main task :

producing code implementing the given requirements.

50 CHAPTER 3. MOTIVATIONS AND OBJECTIVES

Application
DEV

?!?

REQ
Prototype Prototype Prototype

User
User

User

Ok !

check check check

Figure 3.4: Assisted prototype development.

The relation between the final application and the original model is

maintained through assisted propagation of the modifications.

3.2.1 Objectives

Our methodology should be simple enough to be used in limited development environments: many soft-

ware company do not have enough resources (both financially and in terms of people) to maintain a team

dedicated to the verification of their software systems, be it through testing or using more formal methods.

In small teams, analysts, developers, testers and validators usually share the same seats; taking on one role

or another depending on the planning of the day.

More precisely: we aim at small teams (usually a few people) composed of developers having a good knowl-

edge of the chosen development language and little to no knowledge of formal verification techniques. This

absence of knowledge of formal techniques is often caused by a lack of time / money dedicated to “un-

productive” formation. Formal methods do not make developers code faster, they can only assist them to

produce better code.

We try to help the developer to make the code as secure as possible without changing their habits beyond

tolerance. Most developers are willing to be helped by tools in their development practice if (and only

if) it does not force them to completely change the way they work. Small adaptations/improvements can

be tolerated, but not complete revolutions (at least not in one step). Producing more secure code is a step

further on the long path to completely secure applications.

CHAPTER 3. MOTIVATIONS AND OBJECTIVES 51

The need for an helper methodology and tool is present as long as it does not have a deep impact on every-

day work. Ideally, developers should be able to submit their source code directly into the helper tool, along

with their requirements, and receive an human-readable report of inconsistencies eventually found, accom-

panied with proposed corrective measures (figure 3.5). Used formalism should be easily understandable by

someone with a good programming background but little to no formal method knowledge. The same re-

quirement of simplicity holds for the display and propagation of results (in terms of proposed modification

in the code and/or in the requirements); they should be presented in a way allowing the developers to keep

complete control over his own code. At the end of the day, the developer still is the one responsible for the

correction of his code, so must he at all times be able to understand and validate any change proposed, for

instance in order to explain them to his management.

Verification

Source
Code

Requirements

Report
+

Solutions

Feedback

Figure 3.5: Blackbox verification.

Depending on the hypothesis that can be made on the source code, the precision of the results (both in terms

of proved requirements and proposed modifications) may be affected. Our methodology will attempt to pro-

vide a best-effort approach, producing results as precise as possible without requiring too deep changes in

developers habits.

3.3 Running example

Every time possible in the next chapters, a single example will be used to illustrate the methodology and

the different algorithms used. It is built from a huge simplification of the case study presented above. We

will consider a very simplified calendar system containing events, private events and group events. In the

following, the notion of “owner” of an object will refer to the user (or group) to which it belongs. The

original owner of an object is the user who initiated it’s creation, while the current owner is the user to

which the object was given by the previous owner.

52 CHAPTER 3. MOTIVATIONS AND OBJECTIVES

• an event represents the usual notion of event in a calendar. It can be created by users and accessed by

those allowed to do so by the event owner.

• a private event is an event only accessible by his owner.

• a group event is an event belonging to a group of users instead of a single user. It is managed by the

group owner and it can be accessed by all the members of the group he belongs to.

Sample access-control properties desired to be applied on such a system by the clients could be :

• an administrator should always be able to access any event, regardless of its type. (?)

• the owner of an event should be able to share it with some selected others.

• the owner of an event should be able to stop sharing it with others.

• private events should only be accessible by their owner. (?)

• group events should be readable by all group members.

Some of the rules expressed here clearly conflict : for instance, the two rules marked with a star (?) are

incompatible. Implementing one of the two would inevitably break the other. If detected during the devel-

opment stage, this incompatibility must be sorted out by refining the requirements. If not, only thorough

testing and/or verification can prevent the system to exhibit potentially erroneous behaviors if one of their

conflicting scenario ever happen.

From a development point of view, implementing this system in an object-oriented language like Java could

end up in a class hierarchy like the one illustrated in figure 3.6. The access-control is managed through

dedicated methods named isAuthorized(requestor, op). These methods return true if the subject identi-

fied as requestor is allowed to perform operation op on the current object, false otherwise. Each object is

required to implement this method and to call it before executing any operation on itself.

Oversimplified code snippets of the access-control part of the different objects are presented in figures 3.7

to 3.10 :

• the class CObject (figure 3.7) represents the common elements of all the objects used in the calendar

system. It contains functional methods dedicated to object manipulation like cloning, deletion, cre-

ation, ... Its access-control part is quite simple, consisting of only two rules : one explicitly allowing

administrators to perform any action on the object, and the other forbidding specific users from ac-

cessing it. The isForbidden(requestor, op) element appearing inside the code refers to an explicit

CHAPTER 3. MOTIVATIONS AND OBJECTIVES 53

CObject
bool isAuthorized(..)
(...)

CEvent
bool isAuthorized(..)
(...)

CPrivateEvent
bool isAuthorized(..)
(...)

CGroupEvent
bool isAuthorized(..)
(...)

Figure 3.6: Running example object Hierarchy.

prohibition list given inside the source code. It’s role is to deny the specified requestor to execute

the operation op on the current object 1.

• the class CEvent (figure 3.8) represents a calendar event. It stores all the information associated

with this event (for instance its name, date, note, ...) and provides methods to access and update this

information. From an access-control point of view, an event is accessible under the same conditions

as a CObject plus in the case where the requestor is the owner of the object or if the requestor has

been explicitly authorized to access it by the owner.

• the classCPrivateEvent (figure 3.9) represents a private event, i.e. an event that can only be viewed

and edited by his owner. It cannot be shared among users.

• the class CGroupEvent (figure 3.10) represents an event owner by a group, not by a single user like

in the CEvent class. As such, the access-control section contains group-specific rules in addition to

the rules inherited from the CEvent class. These specific rules allow the group owner to access any

object owned by the group as well as any group member to have read access to the group’s objects.

1From a general point of view, nothing forces the prohibitions defined by the isForbidden(· · ·) to be disjunct from the positive

permissions granted by the isAuthorized(· · ·), meaning that the order of appearance of the instructions influences the results of the

method.

54 CHAPTER 3. MOTIVATIONS AND OBJECTIVES

1 public class CObject {

2 (...)

3 public boolean isAuthorized(CSubject requestor, COperation op) {

4

5 if (requestor.isAdministrator()) {return true;}

6 if (isForbidden(requestor, op)) {return false;}

7

8 return false;

9 }

10 (...)

11 }

Figure 3.7: CObject access-control code

1 public class CEvent extends CObject {

2 (...)

3 public boolean isAuthorized(CSubject requestor, COperation op) {

4 if (super.isAuthorized(requestor, op)) return true;

5 else return requestor.equals(this.owner)

6 || isAllowed(requestor, op);

7 }

8 (...)

9 }

Figure 3.8: CEvent access-control code

CHAPTER 3. MOTIVATIONS AND OBJECTIVES 55

1 public class CPrivateEvent extends CEvent {

2 (...)

3 public boolean isAuthorized(CSubject requestor, COperation op) {

4 return requestor.equals(this.owner);

5 }

6 (...)

7 }

Figure 3.9: CPrivateEvent access-control code

1 public class CGroupEvent extends CEvent {

2 (...)

3 public boolean isAuthorized(CSubject requestor, COperation op) {

4 if (super.isAuthorized(requestor, op)) return true;

5

6 if (owner.isGroup())

7 if (requestor.equals(owner.getOwner())) return true;

8 else if (owner.isMember(requestor) && op == COperation.READ)

9 return true;

10

11 return false;

12 }

13 (...)

14 }

Figure 3.10: CGroupEvent access-control code

56 CHAPTER 3. MOTIVATIONS AND OBJECTIVES

4
Model Extraction

Contents
4.1 Overview . 58

4.2 AC Model extraction . 59

4.2.1 Taking advantage of coding conventions . 59

4.2.2 AC Model . 60

4.2.3 Extraction Process . 66

4.3 Requirements specification . 76

4.3.1 Language . 76

4.3.2 Expressivity/Limitations . 80

4.3.3 Example . 80

4.4 Initial configuration . 81

4.4.1 Example . 82

4.5 System Model . 83

4.5.1 Example . 84

In this chapter, we present the models and algorithms designed to help developers to detect potential mis-

matches between the specification and the implementation of a software system. When applicable, cor-

57

58 CHAPTER 4. MODEL EXTRACTION

rective measures can be offered to the developers. For simplicity, we focus only on the access-control

perspective.

4.1 Overview

The main idea behind our approach is to provide methods and algorithms to help the developer make his

executable source code and the underlying access-control model co-evolve. We provide him a way to prop-

agate modifications made on one of them to the other.

The proposed approach (figure 4.1) consists in the extraction and formalization of the access-control ele-

ments implemented into the code and their verification against the desired properties specified by the devel-

oper. If inconsistencies are found, an execution trace leading to the error as well as potentially corrective

measures are proposed :

• either by updating the requirements to reflect the desired behavior.

• either by updating the access-control model and propagating the updates directly into the executable

code.

• or both.

The automation of the extraction and weaving of the access-control model into the code allows the devel-

oper to focus only on the requirements and on his code, hiding away all the formal “details”.

Weaver

Access Control ModelAccess Control Model
Security Aspect Extractor

Miner

Requirements Analyzer

Access Control Model

Results/Answers

Code

++ Source

Figure 4.1: Overview.

The following sections and chapters detail each of the steps involved with the model extraction / weaving

and the verification of the results. The remaining of this chapter focuses on the extraction of the access-

control model from the source code, the specification of the requirements, the specification of the environ-

ment. The verification of the conformance of the extracted model to the requirements and the generation

CHAPTER 4. MODEL EXTRACTION 59

of the proposed corrective measures will be presented in the next chapter. Chapter 6 then addresses the

weaving of the (possibly modified) access-control model back into the code and introduces some possible

optimizations.

4.2 AC Model extraction

The first step toward proving the correctness of the produced implementation with respect to the specified

requirements is to parse the source code and extract the implemented access-control model (figure 4.2).

This step is obviously very dependent on the source code language chosen by the considered developers,

their coding habits and followed conventions as well as on the structures found into it.

Access Control Model
Security Aspect Extractor

Miner

Code

++ Source

Figure 4.2: AC Model extraction.

This kind of exact static extraction is known to be computationally hard (see [Ric53] and the halting prob-

lem for more details) and is practically impossible to do in most modern language like Java or C without

taking into account simplification hypothesis on the code to be analyzed.

4.2.1 Taking advantage of coding conventions

To alleviate the computational cost and complexity of the extraction as well as to sharpen the extraction

result, the extraction algorithm uses the coding conventions followed by the developers. For ease of devel-

opment and maintenance, developers usually produce code following some standards, be they explicit or

implicit. For instance, they may follow variable naming schemes, standard code structures, use standard-

ized API, ... The exact set of conventions used in the considered application is usually company-specific :

each company uses the set most suitable to their needs and to the capacities of their developers.

60 CHAPTER 4. MODEL EXTRACTION

The code snippet presented in figure 4.3, adapted from our case study, exhibits some of the possible con-

ventions that may be encountered :

• regroup all the implemented access-control rules in a/some specific location(s) in the source code.

This can be a be a dedicated function (as illustrated in the figure 4.3) or more distributed behaviors,

like Dijkstra guarded commands (see [Dij76] for details on Dijkstra guarded commands).

• structure the code following a common framework. Here, the access-control rules are implemented

under the form of simple “conditions implies decision” rules.

• voluntarily limit the source-language features used in the expression of those rules, in order to provide

easy and quick readability as well as to avoid potential understanding problems between various team

members.

• ...

This kind of coding conventions are not restricted to the object-oriented languages; similar or equivalent

conventions can be found in almost all coding paradigms. In fact, many best-practices and coding standards

encourage developers to apply such conventions to more readable and manageable code. See for instance

[Fou11] , [EM09] or [US 88].

4.2.2 AC Model

The extracted access-control model will be expressed in a simple “condition ⇒ action” form using the

simple syntax shown in figure 4.4. Inspired from logic languages, this language is designed to support

monolithic access-control models as well as those structures through inheritance.

The model basically consists of a list of classModel items. Each of these classModel is identified by

a name and contains a non-empty list of rules. A rule is formed of a precondition, expressed as a logical

combination of predicates, and an action, here a permission (possibly a negative one, a prohibition) for a

subject S to perform operation Op on object Ob. The set of rules applicable to an access-control class C is

then formed by the combination of the rules of every classes it inherits from (H1, H2, . . . , Hn) and all the

rules specified in its body.

Any operation can be considered here, be the classic ones like read, write and execute or more advanced

ones like grant read, grant write, grant execute, revoke read, revoke write, revoke execute, destroy and give.

The only exception concerns the permission to create objects: this model is centered on per-object permis-

sion and, as, such, specifying the permission to create an object on a not yet created object would be odd.

The constraints weighting on object creation will be specified later on in section 4.5.

CHAPTER 4. MODEL EXTRACTION 61

1 public abstract class CustomObject {

2 (...)

3 public boolean isAuthorized(Person requestor, short nOps) {

4 if (requestor.isAdministrator()) {return true;}

5

6 if (isForbidden(requestor, nOps)) {return false;}

7

8 PersonOrGroup owner = getOwner();

9 if (requestor.equals(owner)) {return true;}

10

11 if (owner.equals(Somebody.getInstance())) {return true;}

12

13 if (owner.isGroup()) {

14 if (requestor.equals(owner.getOwner())) {return true;}

15 else if (((Group) owner).isMember(requestor)) {

16 if (nOps == OperationType.READ) {return true;}

17 }

18 } (...)

19 }

20 return false;

21 } (...)

22 }

Figure 4.3: AC Model extraction, sample source code.

In this sample Java class file, developers have grouped all the access-control

elements in a specific method. Its content is structured in simple “condition

=> action” elements to maintain readability.

62 CHAPTER 4. MODEL EXTRACTION

model :: classModel *

classModel :: class C [extends H1, H2, . . . , Hn] rule +

rule :: pre : [not] allowed(S,Op,Ob)

pre :: predicate(· · ·) | pre ∧ pre | pre ∨ pre | ¬ pre | (pre)

Figure 4.4: AC model syntax

4.2.2.1 Expressivity

The syntax of this access-control rule specification language is voluntarily kept as simple as possible to

allow developers to understand it without too much effort. It is however expressive enough to cover most

of the access-control primitives found in standards like XACML v2 [OAS05].

In the same way, both DAC and MAC permission models can be expressed in this proposed language (fig-

ure 4.5). A DAC system can be modelled through the creation of a class element for each system object,

assigning the proper permission on the considered object to each couple user, operation. On the other hand,

a MAC permission system can be modelled using a single permission class, deciding which access to grant

(or to forbid) based solely on the clearance level of the considered user and object.

1 class DAC_Object_X

2 : allowed(John, read, x)

3 : allowed(Mary, write, x)

4 : not allowed(S, Op, x)

1 class MAC

2 S.level >= Ob.level : allowed(S, read, Ob)

3 S.level <= Ob.level : allowed(S, write, Ob)

4 : not allowed(S,Op,Ob)

Figure 4.5: Expressing DAC and MAC properties.

4.2.2.2 Semantics

The semantics of this simple access-control model language is almost straightforward. The expressed mod-

els are mapped to ordered sets of rules with respect to the following equations.

CHAPTER 4. MODEL EXTRACTION 63

A rule represents a permission under a simple implication form :

Jpre* : allowed(S,Op,Ob) K = Jpre*K→ can(S,Op,Ob) (4.1)

Jpre* : not allowed(S,Op,Ob) K = Jpre*K→ cannot(S,Op,Ob) (4.2)

Where the can(· · · , · · · , · · ·) predicate (resp. cannot(· · · , · · · , · · ·)) refers to the presence in the under-

lying access-control matrix of the corresponding positive (resp. negative) permission. The semantics of the

Jpre* K element is derived directly from the semantics of first-order logic.

Note : The order in which the rules appear in the model is important, so semantics of rules will be encom-

passed with a order number, allowing to manage the couples (rule id , rule) as set elements without losing

ordering information. For readability reasons and to limit the size of the definitions, the rule element will

sometimes be given in extended form c → perm(S,Op,Ob) where c and and perm(S,Op,Ob) denote,

respectively, the condition and the permission associated with the considered rule element.

Definition 1. The rules (a, ca → perma(Sa, Opa, Oba)) and (b, cb → permb(Sb, Opb, Obb)) overlap if

∃σ :


σSa = σSb

∧ σOpa = σOpb

∧ σOba = σObb

 ∧ (σca ∩ σcb) 6= ∅

with {perma, permb} ⊂ {can, cannot}.

Two rules overlap if they can apply to the same set of permissions and their preconditions overlap; i.e. if

there exists a substitution σ such that the permissions granted by the two considered rules apply on the same

object and the rules preconditions overlap.

Definition 2. The rules (a, ca → perma(Sa, Opa, Oba)) and (b, cb → permb(Sb, Opb, Obb)) are inde-

pendent if they do not overlap.

Two independent rules never apply on the same permission or have disjunct preconditions.

64 CHAPTER 4. MODEL EXTRACTION

Definition 3. The rules (a, ca → perma(Sa, Opa, Oba)) and (b, cb → permb(Sb, Opb, Obb)) conflict if

they overlap and provide opposite permissions.

⇐⇒ ∃σ :


σSa = σSb

∧ σOpa = σOpb

∧ σOba = σObb

 ∧ (σca ∩ σcb) 6= ∅

with perma = can (resp. cannot) and permb = cannot (resp. can).

The simple ruleset shown in figure 4.6 illustrates these properties. Rules 1 and 2 overlap, because both of

them can grant permissions to user jean to read object system. Rules 1 and 3 are independent : whatever

the substitution, they will never apply on the same permission. Finally, rules 2 and 4 conflicts : there are

situations where they overlap and provide opposite permissions to user jean on object system.

1 (1, p(X) -> can(X, read, Z))

2 (2, true -> can(jean, Op, system))

3 (3, q(X) -> can(X, write, board))

4 (4, p(X) -> cannot(X, Op, system))

Figure 4.6: Sample ruleset.

Numerals and lower-case elements are constants, upper-case elements are

variables.

In order to capture the full semantics of the set of rules contained in a classModel element, resolv-

ing potential overlapping and/or shadowing between rules, we define a specialized union operator
M⋃

:

CHAPTER 4. MODEL EXTRACTION 65

Definition 4. The rule combination operator
M⋃

computes the combination of two rules, removing any

existing overlapping between them.

(i, ri)
M⋃

(j, rj) = {(1, ri), (2, u)}

where :

• ri = p : perm(S,Ob,Op)

• fresh(rj , ri) = q : perm′(S′, Op′, Ob′)

• u = ¬(p ∧ S = S′ ∧Op = Op′ ∧Ob = Ob′) ∧ q : perm′(S′, Op′, Ob′)

With fresh(a, b) providing a fresh renaming of all free variables occurring in a and previously appearing

in b.

Applying the
M⋃

operator on the two first rules of the ruleset presented in figure 4.6 gives :{
(1, p(X)− > can(X, read, Z))

(2, not(p(X)&X = jean&Op = read&Z = system)&true− > can(X,Op, system))

}

where the second element can be simplified to obtain the more readable permission set{
(1, p(X)− > can(X, read, Z))

(2, not(p(jean)&Op = read)− > can(jean,Op, system))

}

stating that anyone satisfying the precondition p(X) can read any object and that user jean can execute

any operation on object system if satisfying the given condition. The precondition appearing in the second

rule only states that this particular rule should not grant the permission to user jean to read object system

when satisfying p because this permission is already managed by the first rule.

In case of overlapping / conflict between the two rules, as it is the case in the example above, the
M⋃

operator

gives priority to the left-hand rule (figure 4.7). A direct consequence of this definition is the behavior with

respect to the empty set :

∅
M⋃

(i, r) = {(1, r)} = (i, r)
M⋃
∅ (4.3)

This adapted union operator is then easily extended to combine set of rules :

{(i, ri)}i=1,··· ,n

M⋃
{(j, sj)}j=1,··· ,m = (1, r1)

M⋃
(2, r2)

M⋃
· · ·

M⋃
(n, rn)

M⋃
(1, s1)

M⋃
(2, s2)

M⋃
· · ·

M⋃
(m, sm)

(4.4)

With the "shortcut" notations :

M⋃
a≤i≤b (i, ri) =

{
(1, ra)

M⋃ (
M⋃

a+1≤l≤b(l, rl)

)}
(4.5)

66 CHAPTER 4. MODEL EXTRACTION

A :

B :

A U B :
M

Figure 4.7:
MS

operator.

In case of conflicting rules, the rule combination operator gives priority to the

left-hand member.

From there, the semantics of a classModel element can be obtained by the combination of all the relevant

rules, both inherited and explicit :

J class C [extends H1, H2, . . . , Hn] rule +K =

C,(M⋃
1≤j≤nJHjK

)
M⋃  M⋃

1≤i≤| rule +|
(i, {J rule [i]K})


(4.6)

Decomposing equation 4.6 in more manageable parts, the semantics of the classModel element is given

by the combination of all the rules inherited into the class (left-hand part of the head rule combination op-

erator) and class-specified rules (right-hand part).

Finally, the semantics of the model element is simply given by the set of the semantics of the classModels

it contains :

J classModel ∗K =
⋃

i=1,··· ,n
{JclassModeliK} (4.7)

4.2.3 Extraction Process

The above-presented access-control model imposes constraints on the extraction process. Representing the

access-control rules as a sequence of logical implications and replicating some of them through several

rules requires that the basic blocks of these implications behave as state-less predicates and functions.

Definition 5. A state-less predicate is a predicate p(a1, · · · , an) whose truth value depends solely on the

values of its arguments and does not modify the execution environment.

CHAPTER 4. MODEL EXTRACTION 67

Definition 6. A state-less function is a function f(a1, · · · , an) whose return value depends solely on the

values of its arguments and does not modify the execution environment.

Manipulating state-less functions and predicates allows the adapted union operator
M⋃

to replicate calls into

the rules during its disambiguation process without modifying the semantics of the rule set.

The choice of state-less functions and predicates has an impact on the code constructs that can be accepted:

it prohibits the use of random and/or environment-driven functions inside the access-control methods. For

instance, methods asking the user to allow or forbid an access through a dialog box or allowing the five first

access queries cannot be represented in this model.

The access-control model extraction process is driven by the chosen implementation language and devel-

oper’s coding conventions. The remaining of this section will present the extraction techniques adapted

from our case study and illustrate their behavior on the running example from section 3.3.

4.2.3.1 Specific hypothesis

Apart from the constraints presented above, building an automated AC-extraction algorithm requires iden-

tifying precisely what coding conventions can be used to ease the process. These are obviously specific to

the considered project, but the same kind of strategy can apply in most of the applications.

Considering the running example introduced in section 3.3 (page 51), the access-control related elements

of the code are clearly identifiable. They are contained in isAuthorized(requestor, op) methods and their

inner structure is mainly based on conditional statements. A call to this method is used to determine if the

specified requestor is allowed or not to perform operation op on the current instance of the object. An

execution branch ending with a return(true) instruction permit the queried access while branches ending

with return(false) refuse it. The access-control methods of the different object classes from the example

are linked together through the utilisation of the super.isAuthorized(· · ·), referring to the access-control

properties of the supertype of the currently considered object instance (following Java class-hierarchy).

In order to comply with the state-less requirement applying to functions and predicates manipulated by

the adapted union operator and to keep the extraction algorithm as readable as possible, all function calls

encountered into the access-control methods will be considered state-less. There is no easy way to check

this rather strong hypothesis but to rely on developer’s understanding of his code.

68 CHAPTER 4. MODEL EXTRACTION

4.2.3.2 Extraction Algorithm

The algorithms in this section will be presented in a pseudo-code format. Some details will be moved from

the algorithm’s code to the accompanying descriptions for clarity purposes.

The basic idea is to process each source class and parse the corresponding access-control method. Then,

for each execution path ending with a return(· · ·) statement, produce the access-control rules representing

the semantics of the execution paths leading to that return(· · ·) statement.

Algorithm 1 SECURITY ASPECT EXTRACTION

1: for all class C do

2: m← AC_Method_Name

3: for each return statement R in m do

4: P ← paths(m,R)

5: for each p ∈ P do

6: for all (Q,Action) ∈ outcomes(R, p,requestor, Op, Ob) do

7: Model←+ (class(C,Ob) ∧Q→ Action)

8: end for

9: end for

10: end for

11: end for

Algorithm 1 details this process :
[l. 1-2] for each class C in the considered source code, the AC-method is extracted

(m)1

[l. 3] then for each return(· · ·) statement R found in m:

[l. 4] all the execution paths insidem leading toR are collected intoP (see algorithm

3 for details on this process) .

[l. 5-7] an access-control rule is added to the model for every potential outcome of each

of the considered execution path (see algorithm 2 for details on these potential

outcomes generation)
The Ob appearing in the rules refers to the current instance of the object of class C, i.e. the object on which

the access is requested.

The outcomes(R,P, requestor,Op,Ob) algorithm (algorithm 2) converts the selected return statement

(R) into a guarded permission, making the implicit elements inherited from the access-control function

prototype explicit. It returns a set of couples containing a sequence of instruction and their associated per-

mission.

CHAPTER 4. MODEL EXTRACTION 69

Algorithm 2 OUTCOMES(· · ·)
1: if (R == return(true)) then

2: returns({ (P, allowed(requestor, Op, Ob) })

3: else

4: if (R == return(false)) then

5: returns({ (P, not allowed(requestor, Op, Ob) })

6: else

7: { R == return(X) }

8: return ({ (P ∧ X , allowed(requestor, Op, Ob)) , ((P ∧ ¬ X , not allowed(requestor, Op, Ob)) })

9: end if

10: end if

The paths(m,R) algorithm (algorithm 3) returns all execution paths inm leading toR. It works by reverse

induction over the structure of the abstract syntax tree representing the considered method source code (fig-

ure 4.8).

1

2 3

4

7 8

5 6

9 10 11

Figure 4.8: paths(· · ·) : reverse induction over abstract syntax tree.

70 CHAPTER 4. MODEL EXTRACTION

Algorithm 3 PATHS(M, R)
1: S←− R

2: A←− ∅
3: while (m 6= S) do

4: (· · ·) {rev-induction(S,A)}

5: S← S.father();

6: end while

7: return A

With the reverse induction on structure (rev-induction(S,A)) mapping a syntactic structure from the abstract

syntax tree to a set of sequences of instructions according to the rules presented in equations 4.8 to 4.11:

return(X) −→ { [return(X)] } (4.8)

A return instruction basically marks the end of the instruction sequence leading to itself. As such, it is

represented by the sequence of instructions containing only itself.

if (E) then S1 else S2 −→
{{

[(E == v) | A] if A ⊆ (S1

⋃
S2)

[(E==true) ; S1 | A] , [(E==false); S2 | A] otherwise

}
(4.9)

A conditional instruction can be encountered in two distinct contexts : the execution path can either come

out of one of the two branches of the alternatives or it can come across the whole instruction. The two parts

of the equation 4.9 adress these two possibilities.

• The upper part of the equation manages the case where the execution path is coming out of the “then”

or of the “else” branch of the conditional. The resulting execution path is composed of the instructions

declared in the condition expression (E) and the expected truth value (v) followed by the instructions

contained in the alternative we are coming from. The expected truth value (v) is based on the branch

containing the considered return(· · ·) statement : v = true for S1 and v = false for S2. The

accumulator A contains the sequence of instructions required to go from the return statement at the

leaf of the syntax tree up to the conditional we are considering.

• The lower part adresses the case where the whole conditional instruction has to be included in the

execution path. It then produces two (possibly sets of) execution paths : one considering the execution

of the “then” part of the alterative, the other considering the “else” one. As a simplification, if any

of the sequences generated from these branches contains a return(· · ·) statement which is always

executed, they can be omitted.

The notation [A | B] denotes the set of sequences formed by the element A followed by every sequence

in B.

CHAPTER 4. MODEL EXTRACTION 71

x=y −→ { [z=y | (A { x / z })] } (4.10)

An affectation instruction consists in the evaluation of the affectation and the propagation of the modified

value in the remainder of the sequence. The z variable appearing in equation 4.10 is a fresh variable con-

taining the effects of the affectation. The notation A { x / z } represents the substitution, in A, of all the free

occurrences of x by z.

f(a1, · · · , an) −→ { [f(a1, · · · , an) | A] } (4.11)

Much like the return(· · ·) statement, a function call simply inserts itself in the sequence of instructions.

Some instructions have been voluntarily excluded from this induction process : the loop instructions (while

and for for the Java language). Finite loops can be unrolled as sequences of instructions (see figure 4.9 for

an example of such loop unrolling) while allowing potentially infinite ones would make the code parsing

and the attached semantics much more complex without adding much to the expressivity of the access-

control code.

1 i = 0;

2 while (i < 5) do

3 foo(i);

4 i = i+1;

5 done;

1 foo(0);

2 foo(1);

3 foo(2);

4 foo(3);

5 foo(4);

6

Figure 4.9: Unrolling finite loops.

Some loops can be unrolled and converted to a sequence of instruction while

preserving their semantics.

4.2.3.3 Example

As an illustration of the behavior of these algorithms, they will be applied to the running example intro-

duced in section 3.3 (page 51).

72 CHAPTER 4. MODEL EXTRACTION

The dedicated access-control method found in the CObject class source code (presented in figure 3.7) can

be represented as the abstract syntax tree show in figure 4.10. Graphically speaking, the extraction process

will :

1. identify all the return statements present into the code (marked with a ? in figure 4.10)

2. build the sequence of instructions running from the beginning of the access-control method to the

considered return(· · ·) statement. The three paths identified here are labelled P1, P2 and P3.

3. create the access-control rules representing each of these paths.

The resulting access-control model can be found in figure 4.11. In this example, the rule for path P2 (lines 6

and 7) was simplified by removing the dead branches created by the presence of the return(· · ·) statement

in the first conditional instruction. The typing element class(CObject, Ob) found on every line allows

to trace any rule back to it’s originating source code class, even after the access-control rules have been

disambiguated.

As an illustration, the extracted ruleset from the CObject class (figure 4.11) produces the following inde-

pendent rules after the merging process :
S.isAdministrator() == true −→ allowed(S,Op,Ob)

S.isAdministrator() == false ∧ isForbidden(S,Op) == true −→ not allowed(S,Op,Ob)

S.isAdministrator() == false ∧ isForbidden(S,Op) == false −→ not allowed(S,Op,Ob)


For readability purposes, the class(· · ·) elements were omitted from the above formulas and some variables

have been renamed.

The models obtained at this stage reflect the semantics of the access-control decisions taken into the con-

sidered source code, they both share the same strengths and weaknesses. For instance, the model obtained

from the CEvent class does not cover all of the possible execution paths2. This lack of a default case is

a hint for a mis-expressed security property and should be reported back to the developer if this missing

default case appears to be reachable the end of the verification process.

The same process leads to the production of the access-control models for the CEvent (figure 4.12) ,

CPrivateEvent (figure 4.13) and CGroupEvent (figure 4.14) classes.

2This code takes no decision in the case where the requestor element satisfies not requestor.equals(owner) and not isAl-

lowed(requestor, op) .

CHAPTER 4. MODEL EXTRACTION 73

isAuthorized(..)

IF

IF

return false

return true

req.isAdmin()

isForbidden(..)

return false

P1

P2

P3
then

then
ne
xt

ne
xt

Figure 4.10: Abstract syntax tree for the CObject class.

1 class CObject

2

3 (class(CObject, Ob) & requestor.isAdministrator() == true)

4 : allowed(requestor, Op, Ob)

5

6 (class(CObject, Ob) & isForbidden(requestor, op) == true)

7 : not allowed(requestor, Op, Ob)

8

9 (class(CObject, Ob) : not allowed(requestor, Op, Ob)

Figure 4.11: Access-control model extracted from the CObject class source code.

74 CHAPTER 4. MODEL EXTRACTION

1 class CEvent

2

3 (class(CEvent, Ob) & super.isAuthorized(requestor, op) == true)

4 : allowed(requestor, Op, Ob)

5

6 (class(CEvent, Ob) & super.isAuthorized(requestor, op) == false

7 & requestor.equals(this.owner))

8 : allowed(requestor, Op, Ob)

9

10 (class(CEvent, Ob) & super.isAuthorized(requestor, op) == false

11 & isAllowed(requestor, op))

12 : allowed(requestor, Op, Ob)

Figure 4.12: Access-control model extracted from the CEvent class source code.

1 class CPrivateEvent

2

3 (class(CPrivateEvent, Ob) & requestor.equals(this.owner) == true)

4 : allowed(requestor, Op, Ob)

5

6

7 (class(CPrivateEvent, Ob) & requestor.equals(this.owner) == false)

8 : not allowed(requestor, Op, Ob)

9

Figure 4.13: Access-control model extracted from the CPrivateEvent class source code.

CHAPTER 4. MODEL EXTRACTION 75

1 class CGroupEvent

2

3 (class(CGroupEvent, Ob) & super.isAuthorized(requestor, op) == true)

4 : allowed(requestor, Op, Ob)

5

6 (class(CGroupEvent, Ob) & owner.isGroup()

7 & requestor.equals(owner.getOwner()) == true)

8 : allowed(requestor, Op, Ob)

9

10 (class(CGroupEvent, Ob) & owner.isGroup()

11 & requestor.equals(owner.getOwner()) == false

12 & owner.isMember(requestor) == true

13 & op == COperation.READ)

14 : allowed(requestor, Op, Ob)

15

16 (class(CGroupEvent, Ob) : not allowed(requestor, Op, Ob)

Figure 4.14: Access-control model extracted from the CGroupEvent class source code.

76 CHAPTER 4. MODEL EXTRACTION

4.3 Requirements specification

Aside from the production of the source code, the second major developer’s intervention in our proposed

methodology lies in the specification of the requirements. No verification is possible without a good de-

scription of the properties expected from the implementation. The perso most suited to produce such a

requirement specification being the developer, we attempt to provide him a simple yet expressive language

for this task.

The simple requirements expression language detailled in this section was developed to allow the developer

to define precisely what properties are to be expected from the implemented source code. It aims both

at readability and expressivity and is adressed at a public a priori not introduced in formal languages and

methods.

4.3.1 Language

The requirement specification language tries to conjugate simplicity and expressivity. Its main goal is to

allow developers to express the access-control properties the system should meet. It tries to stay as natural

as possible while providing enough expressivity to describe real-world situations in access-control.

In terms of expressivity, the chosen language has to be able to represent the two most frequent access-control

requirements:

• The static query : is “X” able/forbidden to do operation “Y ” on object “Z" ? (said otherwise : is

(X,Y, Z) an active permission/prohibition)

• And the dynamic one : is there a way “X” can be become able/prohibited to perform operation

”Y ” on object “Z" ? This question can be refined to take into account the possible allies and/or

adversaries of X in this process. From an access-control point of view, a question like “can my

adversaries access my private data without my consent ?” is much more interesting than a question

like “can my adversaries access my private data ?” , which is usually true because nothing prevents

me from granting them the access.

It is not only interesting to know if something can or will happen, but also if some agent(s) can control the

evolution of the system in order to enforce a given property, whatever the other agents do.

4.3.1.1 Syntax

Partially inspired from the alternating-time temporal logic (ATL) [AHK97] the syntax chosen for the re-

quirements specification language is shown in figure 4.15. This syntax attempts to be rich enough to express

CHAPTER 4. MODEL EXTRACTION 77

the most commonly encountered requirements while staying as simple as possible to be understandable

without too much effort by the developers.

A requirement consists of a property (here labelled agentProp) to be satisfied under some hypothesis (the

domain element). The specified property can be a simple permission (or prohibition) or more complex

structures like restricted branching time logic properties or agent-dependent properties.

• a requirement represents a property (here labelled prop) to be satisfied under certain circumstances

(labelled domain).

• a domain represents the preconditions of a property. It can be a simple predicate or more complex

structures like a conjunction of domains or the negation of a domain. For readability purposes, a

domain can also be written using parenthesis.

• a prop element represents a property. It can be either a direct permission (labelled localProp), a

temporal property, an agent-related property or a conjunction/disjunction/negation of properties.

• a localProp represents a simple permission (allowed(· · ·)) or prohibition (not allowed(· · ·)).

• a timeProp represents a temporal property, i.e. a property applying to the present or to one (or many)

future state(s) of the system.

• finally, an agentProp is a property specifying the set of users to be considered for the satisfaction of

the defined property. The syntactic element alone(A, prop) specifies that the prop property should

be satisfied only by the actions of agent A, whatever other agents can do on the system. Similarly,

together({A+} , prop) specifies that the set of agents {A+} should be able to enforce prop by their

own actions.

The timeProp element now(· · ·) is introduced only for readability purposes and can be omitted. The same

applies to the agentProp element alone(A, prop) when it is used withA referring to the default considered

user. They have been introduced in the syntax only to make it as regular as possible, easing the learning

curve of the language for developers.

This simple syntax allows us to define complex properties like liveness enforcement or context-dependent

requirements. Let us illustrate these possibilities.

administrator(X) : alone(X, alwayswill(allowed(X, Op, Ob)))

This property expresses the fact that “an administrator should always have access to any object on the sys-

tem”. Any user satisfying the precondition (hence being an administrator) should have a strategy to enforce

that he will always be able to access any object on the system, whatever other users on the system can do,

78 CHAPTER 4. MODEL EXTRACTION

requirement :: domain : prop

domain :: predicate | domain & domain

| ~ domain | (domain)

prop :: localProp | timeProp | agentProp

| prop & prop | prop || prop | ~prop

localProp :: allowed(S, Op, Ob)

| not allowed(S, Op, Ob)

timeProp :: now(prop) (*)

| may(prop)

| alwayswill(prop)

agentProp :: alone(A, prop) (*)

| together({A+}, prop)

Figure 4.15: Requirement specification language.

Properties marked with a (*) are considered default properties and can be

omitted.

CHAPTER 4. MODEL EXTRACTION 79

possibly attempting to prevent him to access the object.

cashier(X) & supervisor(Y, X) & work(X,Z) & special(Z)

: may(alone(X, not allowed(Y,_,Z)))

This property states that, under some specific circumstances (expressed by the domain predicate special(Z)),

a cashier may be allowed to punctually prevent his supervisor from accessing some of his work.

1. object(S) : alwayswill(may(allowed(X,_,S))

2. object(S) : alwayswill(alone(X,may(allowed(X,_,S)))

These requirements act as a liveness enforcement system on the object S for user X: they enforce that, at

any time, someone will have the possibility to access the object. The difference between the two is that the

second one guarantees that, at any time, X will have a strategy on his own to access S, while the first one

may require actions from any other agents on the system.

4.3.1.2 Semantics

The semantics of this language is defined through the mapping of the different constructs to ATL logic

formulas. In the following, the notation JXKY will refer to the semantics of the X element, considering the

contextual set of agents Y . JXK_ indicates that the contextual set of agents is irrelevant to the considered

element.

• a requirement is a property to be satisfied under the specified hypothesis :

Jdomain : agentPropK_ = JdomainK_ ∧ JagentPropKAgt

• a domain is a simple propositional logic formula :

JpK_ = p

Jdomain&domainK_ = JdomainK_ ∧ JdomainK_

J∼ domainK_ = ¬JdomainK_

J(domain)K_ = JdomainK_

• the boolean operators on the properties behave as usual :

Jp1 & p2KC = Jp1KC ∧ Jp2KC

Jp1 || p2KC = Jp1KC ∨ Jp2KC

J∼ pKC = ¬JpKC

80 CHAPTER 4. MODEL EXTRACTION

• a localProp is a permission or prohibition valid on the current state of the system, it is equivalent to

the presence of the specific permission/prohibition in the permission matrix.

Jallowed(S,Op,Ob)K_ = can(S,Op,Ob)

Jnot allowed(S,Op,Ob)K_ = cannot(S,Op,Ob)

The can(· · ·) and cannot(· · ·) elements are the same as those presented in section 4.2.2.2.

• a timeProp is a property related to the evolution of the access-control model of the system, it is

mapped almost directly to the corresponding ATL constructs.

Jnow(prop)KC = JpropK_

Jmay(prop)KC = 〈〈C〉〉♦JpropK_

Jalwayswill(prop)KC = 〈〈C〉〉�JpropK_

• an agentProp is a property specifying which set of users is to be considered as potential allies in the

process of obtaining the desired property. A property specified through the alone(A, prop) construct

should be reached only via the actions ofA, where a property specified through together({A+}, prop)
should be satisfied through a coordinated action from all the users specified in A+.

Jalone(A, prop)KC = JpropKA

Jtogether({A+}, prop)KC = JpropK{A+}

4.3.2 Expressivity/Limitations

Evaluating the expressiveness of a language is a complex task; from a formal point of view, the requirement

language defined above is strictly less expressive than the full ATL logic (see [LMO07] for an analysis of

the expressiveness of ATL). This difference is mainly due to the absence of the ATL “until” operator in our

requirements language.

However, this language is aimed at developers with little to no knowledge of formal methods. Interviews

among them showed a great deal of confusion with the possible semantics of an ATL-like until operator.

Furthermore, no obvious properties requiring such an operator appeared during the analysis stage preceding

the development of this requirement specification language.

4.3.3 Example

Applying the requirements specification language to the running example defined in section 3.3 could bring

the requirements shown in figure 4.16. It contains two very simple requirements. The first one states that

CHAPTER 4. MODEL EXTRACTION 81

any administrator can always access any object on the system, whatever the object or the operation he

wishes to execute are. The second one states that the owner of an object of type CPrivateEvent can

always behave such that he can prevent any other user from accessing his object or, said otherwise, a user

cannot access a private object without explicit approval from the object’s owner.

1 # an administrator can always access any object

2 S.isAdministator() : allowed(S, Op, Ob)

3

4

5 # private events cannot be read without owner’s will

6 class(CPrivateEvent, Ob), X=Ob.owner(), user(Y), X!=Y

7 : alone(X, alwayswill(not allowed(Y, Op, Ob)))

Figure 4.16: Requirements for the running example.

Nothing at this stage prevents the developer from specifying conflicting properties. For instance, the two

properties declared into this example are clearly incompatible : satisfying the first one will almost undoubt-

edly break the seconde one and vice versa. The detection and settling of these conflicts will be done during

the verification stage presented in the next chapter.

4.4 Initial configuration

Specifying the initial state of the system is done in a very straightforward way : developers are required to

provide the return values of all the predicates and functions appearing in the required properties and in the

access-control model extracted from the code. To simplify as much as possible, only true predicates will be

specified, any non-specified one will be considered as false.

This specification will consist in the set of the initial users and objects present on the system at initialization

and a list of the predicates to be considered as true. Figure 4.17 shows the simple syntax : the list of initial

users is specified in line 1, the list of objects in line 2 and the set of predicates to be considered as true

follows.

The generation of such an initial configuration description can be greatly facilitated by a tool. The set of

users and objects explicitly appearing into the requirements and/or the code can be extracted automatically

requiring only limited confirmation from the developers. The same applies to the predicates : the set of

82 CHAPTER 4. MODEL EXTRACTION

1 users = U*

2 objects = Ob*

3

4 pred*

Figure 4.17: Initial configuration specification.

predicates declared in the initial configuration is a subset of the predicates appearing in the models; listing

them in the tool allows the developers to select only those relevant and give their truth value, easing the

whole process.

While it may seem unpractical to express all the properties holding on the initial state of the system, it should

be noted that most of the systems only define a very limited number of such static elements. Usually, only a

few “important” elements are defined prior of the initialization of the system, for instance a general admin-

istrator account. All other resources and permissions are then defined at runtime through dedicated methods.

4.4.1 Example

As a quick illustration of this simple initial properties specification, figure 4.18 shows a possible initializa-

tion for the running example from section 3.3. Two users are hard coded at system initialization: a root and

a nobody user. Only one object exists, called sandbox and the only properties to be true at startup will be

that user root is an administrator, any other will be considered false.

1 users = root nobody

2 objects = sandbox

3

4 root.isAdministrator()

Figure 4.18: Initial configuration specification for the running example.

CHAPTER 4. MODEL EXTRACTION 83

4.5 System Model

The access-control model defined in the above sections is based on per-object permissions. To model the

full set of permissions governing the system, it is necessary to define how the set of objects and users

populating the system can evolve. More precisely, the permissions to perform actions such as read, write,

execute, grant read, grant write, grant execute, revoke read, revoke write, revoke execute and give on a spe-

cific object are already managed by the model defined in section 4.2.2, but operations like object creation or

user creation / destruction are not3 . The purpose of the simple syntax introduced in this section is twofold:

first to specify the conditions under which those object-less operations can be executed and second, what

are the effects, from an access-control point of view, of the execution of the permitted operations on the

system model (figure 4.19).

1 class C:

2 [pre : create()]*

3 [op : effect]*

4

5 System.users :

6 [pre : create()]*

7 [pre : destroy(u)]*

Figure 4.19: System model syntax.

For each class, the developers are able to define what set of properties is required from the user to be able

to create an object of type C (line 2) and what are the effects of the execution of a specific operation op

on this object.These can be expressed in terms of modified predicates/system variables and/or modified

permissions. The effect element on line 3 expresses the set of system variables changed by the considered

operation as a parallel affectation. For readability purposes, the values of the variables after the operation

are suffixed with a prime symbol. True boolean values can also be omitted. As an illustration, an operation

incrementing an internal counter (labelled V) by 1 and an operation swapping the value of 2 arguments

could be specified with :

inc() : V ′ = V + 1

swap(A,B) : A′, B′ = B,A

It is important to note here that no preconditions are specified for the operations based on the object (i.e. all

operations but the create() one) in this model. The permissions on such operations are managed through

3As this section does not take into account operations executed on a specific object, the permission to destroy an object is not

present here. It is defined in the class-specific access-control rules from section 4.2.2

84 CHAPTER 4. MODEL EXTRACTION

the access-control model defined in section 4.2.2, via allowed(•, give, this) permissions.

The same applies to the System.users pseudo-class which represents the set of users populating the sys-

tem. Any existing user satisfying the requirements expressed in the pre statement can either create a new

user on the system (line 6) or destroy an existing user (line 7). Once the considered objects / users have

been created, they can be granted permissions on / to them through the standard access-control rules.

4.5.1 Example

As an illustration of such a system model in the case of our running example (see section 3.3 for an intro-

duction to the running example), a possible system model could look like the one presented in figure 4.20.

1 class CObject:

2

3 class CEvent, CPrivateEvent, CGroupEvent :

4 user(X) : create()

5 give(X) : this.getOwner()’ = X

6 grant_read(X) : allowed(X, read, this)

7 grant_write(X) : allowed(X, write, this)

8 revoke_read(X) : not allowed(X, read, this)

9 revoke_write(X) : not allowed(X, write, this)

10

11 System.users :

12 X.isAdministrator() : create()

13 X.isAdministrator() : destroy(u)

Figure 4.20: System model for the running example.

This model states that :

• no one is able to create CObject objects (no creation rule appears)

• any user of the system can create a calendar event (i.e. an object of class CEvent, CPrivateEvent

or CGroupEvent) 4.

• the operations grant_read, grant_write, revoke_read and revoke_write have their usual signifi-

cation.
4this rules was written using a few syntactic sugar, preventing the duplication of the same identical rule into the 3 separate classes.

CHAPTER 4. MODEL EXTRACTION 85

• the creation and removal of users from the system is only allowed to users flagged as administrators.

Rules in lines 6 to 9 are expressed in compact format, equivalent to the extended syntax :

grant_read(X) : allowed(X, read, this)′ = true

grant_write(X) : allowed(X,write, this)′ = true

revoke_read(X) : notallowed(X, read, this)′ = true

revoke_write(X) : notallowed(X,write, this)′ = true

86 CHAPTER 4. MODEL EXTRACTION

5
Model Verification

Contents
5.1 Logic and Properties . 88

5.2 Verification Algorithms . 91

5.3 Reporting Verification Results . 93

5.3.1 Requirements level . 94

5.3.2 Access-control level . 95

5.3.3 Status Quo . 97

5.3.4 Practical approach . 97

5.3.5 Generalization . 98

5.4 Example . 98

This chapter presents model-checking and result reporting techniques applicable to the models and prop-

erties defined in the previous chapter. A quick introduction to the foundations of the logic system used is

presented, followed by the model-checking process in itself. The reporting of the model-checking results

back to the developer is then covered. All these methods are then illustrated on an excerpt from the running

example.

87

88 CHAPTER 5. MODEL VERIFICATION

InitSystemAccess Control ModelAccess Control ModelAccess Control Model

Analyzer Results/AnswersRequirements

Figure 5.1: Model-checking.

The model-checking process can dispose of all the available models from the previous chapter : the access-

control model, the requirements specification, the system description and the initial configuration specifica-

tion (figure 5.1). More formally, the access-control model, noted AcM (p. 60), models the rules governing

the access or refusal of access to the system’s objects. It consists in a set of classModels components, each

composed of a set of independent access-control rules modelled as simple implications. The requirements

RM (p. 76) represents the properties expected to be verified by the system. They are modelled as ATL logic

formulas. The initial system configuration IM (p. 81) describes the set of objects, the set of users and the

set of true propositions existing at the initialization of the system. Finally, the system model SM (p. 83)

is a set of class actions description, each modeling the effects of all the possible operations on this class type.

The model-checking and result reporting processes presented in the following sections will basically consist

in two steps. First the requirements RM will be verified on a transition system build from AcM , IM and

SM , then the results of this verification will be reflected back in an appropriate way on the input models

RM , AcM , IM and SM .

5.1 Logic and Properties

This section introduces the syntax and semantics of ATL logic as well as some key properties that will

be used later on in this chapter. The original definitions and model-checking procedures proposed by the

authors in [AHK97] are reproduced here as they will be the foundation of the algorithms proposed in the

following sections. Some useful properties taken from [WWZX09] are also presented.

CHAPTER 5. MODEL VERIFICATION 89

Definition 7. [AHK97] The temporal logic ATL (Alternating-time Temporal Logic) is

defined with respect to a finite set Π of propositions and a finite set Σ = {1, · · · , k} of players.

An ATL formula is one of the following:

(S1) p, for propositions p ∈ Π.

(S2) ¬φ or φ1 ∨ φ2, where φ1 and φ2 are ATL formulas.

(S3) 〈〈A〉〉 © φ, 〈〈A〉〉�φ, or 〈〈A〉〉φ1 U φ2, where A ⊆ Σ is a set of players, and φ, φ1 and

φ2 are ATL formulas.

The notation “〈〈.〉〉” is a path-quantifier and “©” (next), “�” (always) and “ U ” (until) are

temporal operators. An additional notation “♦” (eventually) is used as a shortcut : 〈〈A〉〉♦φ =

〈〈A〉〉 true U φ.

Definition 8. [AHK97] A concurrent game structure is a tuple S = 〈k,Q,Π, π, d, δ〉 with :

• A natural number k ≥ 1 of agents. Players will be identified with their number 1, · · · , k
and the set {1, · · · , k} of players will be noted Σ.

• Q is a finite set of states.

• Π is a finite set of atomic propositions.

• π is the labeling function, i.e. for each state q ∈ Q, π(q) ⊆ Π contains the set of atomic

propositions true at q.

• For each player a ∈ {1, · · · , k} and each state q ∈ Q, a natural number da(q) ≥ 1

of moves available at state q to player a. We identify the moves of player a at state q

with the numbers 1, · · · , da(q). For each state q ∈ Q, a move vector at q is a tuple

〈j1, · · · , jk〉 such that 1 ≤ ja ≤ da(q) for each player a. Given a state q ∈ Q, we write

D(q) for the set {1, · · · , d1(q)} × · · · × {1, · · · , dk(q)} of move vectors. The function

D is called move function.

• For each state q ∈ Q and each move vector 〈j1, · · · , jk〉 ∈ D(q), a state

δ(q, j1, · · · , jk) ∈ Q that results from state q if every player a ∈ {1, · · · , k} chooses

move ja. The function δ is called transition function.

For two states q and q′, q′ is a successor of q if there is a move vector 〈j1, · · · , jk〉 ∈ D(q)

such that q′ = δ(q, j1, · · · , jk). Thus, q′ is a successor of q if and only if whenever the game

is in state q, the players can choose moves so that q′ is the next state. A computation of S is

an infinite sequence λ = q0, q1, q2, q3, · · · of states such that for all positions i ≥ 0 , the state

qi+1 is a successor of the state qi . A computation starting at state q is a q-computation. For

a computation λ and a position i ≥ 0, λ[i], λ[0, i] and λ[i,∞] denote the i-th state of λ, the

90 CHAPTER 5. MODEL VERIFICATION

finite prefix q0, q1, · · · , qi of λ, and the infinite suffix qi, qi+1, qi+2, · · · of λ respectively.

Considering a CGS S = 〈k,Q,Π, π, d, δ〉 with Σ = 1, · · · , k, a strategy for player a ∈ Σ is

a function fa that maps every nonempty finite state sequence λ ∈ Q+ to a natural number such

that if the last state of λ is q, then fa(λ) ≤ da(q). Given a state q ∈ Q, a set A ⊆ {1, · · · , k}
of players and a set Fa = {fa|a ∈ A} of strategies, one for each player in A, the outcomes

of FA from q is the set out(q, FA) of q-computations that the players in A enforce when they

follow the strategy. That is, a computation λ = q0, q1, q2, · · · is in out(q, FA) if q0 = q and for

all positions i ≥ 0, there is a move vector 〈j1, · · · , jk〉 ∈ D(qi) such that (1) fa = fa(λ [0, i])

for all players a ∈ A and (2) δ(qi, j1, · · · , jk) = qi+1.

The formal semantics of ATL can then be expressed. With S, q |= φ indicating that the state q

satisfies the formula φ in the structure S, the satisfaction relation |= is defined inductively, for

all states q of S, as follows :

• q |= p, for propositions p ∈ Π, iff p ∈ π(q).

• q |= ¬ψ iff q��|=ψ

• q |= ψ1 ∨ ψ2 iff q |= ψ1 or q |= ψ2

• q |= 〈〈A〉〉 © ψ iff there exists a set FA of strategies, one for each player in A, such that

for all computations λ ∈ out(q, FA), λ [1] |= ψ

• q |= 〈〈A〉〉�ψ iff there exists a set FA of strategies, one for each player in A, such that

for all computations λ ∈ out(q, FA) and all positions i ≥ 0, λ [i] |= ψ.

• q |= 〈〈A〉〉ψ1 U ψ2 iff there exists a set FA of strategies, one for each player in A, such

that for all computations λ ∈ out(q, FA) there exists a position i ≥ 0 such that λ [i] |= ψ2

and for all positions 0 ≥ j < i, λ [j] |= ψ1

The authors then provide a symbolic model-checking algorithm and show [AHK97, Thm. 5.2]

that the model-checking problem for ATL is PTIME-complete, and can be solved in time

O(m.l) for a game structure with m transitions and an ATL formula of length l. They also

state that the problem is PTIME-hard even for a fixed formula, and even in the special case

of turn-based synchronous game structures. However, the model-checking algorithm and the

accompanying results require the CGS to be fully generated, with all the states and transitions

created, which can in itself be a hard problem.

The reader interested in a more in-depth presentation and analysis of ATL can refer to [AHK97], [GvD06],

[vdHLW06] and [LMO07] for an exhaustive analysis of ATL model-checking complexity.

CHAPTER 5. MODEL VERIFICATION 91

5.2 Verification Algorithms

The model-checking and result reporting techniques presented in the following sections are based on the

original symbolic model-checking algorithm for ATL from [AHK97]. As such, it requires us to build a

explicit CGS S = 〈k,Q,Π, π, d, δ〉 representing the considered systems. The construction of the various

components of this CGS from the different models RM , AcM , IM and SM extracted from the system is

described in the following pages.

Before entering the CGS construction process in itself, it should be noted that building the explicit CGS

requires a fixed (and finite) set of agents, actions and propositions. This does not represent a problem for the

actions and the propositions, which are extracted from the models. On the contrary, the agents are dynamic

entities that can be created and destroyed during the system evolution through the dedicated operations

specified in the system model SM . To allow the agent set to be treated as a fixed set, it was partitioned

into a set of active agents, i.e. agents that have been introduced into the game and are allowed to per-

form some operations depending on the permissions they have received, and a set of inactive agents, who

can only perform the no-operation action (NOP) until they are properly introduced into the game (figure

5.2). The same kind of technique is applied to the other dynamic set: the set of objects present in the system.

Agents

Ac
tiv
e

In
ac
tiv
e

Operation 1

Operation 2

Operation n

NOP

Figure 5.2: Agent set is partitioned into active and inactive ones.

The set Π of atomic propositions consists of the collection and instantiation of all the atomic proposi-

tions encountered in the various models. It contains all the atomic permissions (the can(•, •, •) and

cannot(•, •, •) propositions) generated from the permissions specification as well as all the instances of

the observable properties specified in the system model and the access-control model.

The set k of players is constructed from the list of users specified in the initial system model IM , completed

with a set of abstract “inactive” players dedicated to the semantics of the user creation methods found in

the system model SM . As explained above, inactive players are players whose only enabled operation on

the system is NOP (no-operation) and have no permissions at all. They can be turned into active players,

92 CHAPTER 5. MODEL VERIFICATION

able to receive permissions and perform operations on objects, through the execution of the dedicated agent

creation operation by an already active player.

The move function d is constructed from the conjunction of the access-control model AcM and the system

model SM : for a state q ∈ Q and an agent a, da(q) contains the list of actions permitted for agent a.

This list is built from the evaluation of the access-control model in state q : every permission granted opens

access to the operation semantics associated with the considered object in SM .

The set of states Q, the transition function δ and the labeling function π are built inductively through a sim-

ple state-space exploration (algorithm 4). Starting from the initial stateQ0 built from the initial system state

model IM , states are processed one by one until state-space exhaustion. The algorithm works as follows: a

state R is selected from the set of reached but not yet analyzed states then, for every possible move vector

applicable to that state, the destination state is added to the res accumulator and its true propositions are set

according to the semantics of the state operations defined in the system model SM . The sets of processed

and yet-to-analyze states are then updated appropriately. For simplicity of the algorithm, states are suposed

to include their set of true propositions, giving the direct consequence q1 = q2 ⇒ π(q1) = π(q2).

Algorithm 4 STATE SPACE GENERATION

1: O←− Q0

2: Q←− ∅
3: π(Q0)←− init
4: while O 6= ∅ do

5: R←− pick(O)

6: res←− ∅
7: for each v ∈ D(q) do

8: res←− res
⋃
δ(Q, v)

9: π(δ(Q, v))←− update(π(Q),effects(Q, v))

10: end for

11: Q←− Q
⋃
R

12: O ←− (O
⋃
res)\Q

13: end while

The explicit CGS generated through algorithm 4 can be large. A system containing k agents, o objects,

n actions and p different observable predicates can lead to the production of np = k × o × n different

permissions and no = p × k different observables, leading to a state space counting O(P(np) × P(no))

states. However, this high upper bound is rarely a problem in real systems models : only the subset of the

state-space reachable from the initial state Q0 is built and checked.

CHAPTER 5. MODEL VERIFICATION 93

Furthermore, simulating the system does not always require to take into account large numbers of users,

objects or properties. On the one hand, usually only a few of them are sufficient disprove the desired re-

quirements. On the other hand, proving a property satisfied requires to analyse all the potential reachable

states and can quickly turn impractical without properly bounding the problem. These bounds on the num-

ber of objects and subjects in the simulation are provided as parameters to the verification routines.

The main drawback of this choice is that, while negative results (violated properties) can be obtained quite

fast, obtaining complete positive results (thus holding properties) can take quite a long time. Even worse,

too strict bounds on objects and subjects set can lead to false positives. Inserting the right bounds values

requires some experience with the algorithm and sometimes some trial.

5.3 Reporting Verification Results

The next step after the verification of the properties on the generated model is to report the results back to

the originals models and, through the weaving process, back into the executable source code.

Depending on the verification results, two distinct situations occur : either none of the properties have been

disproved or some of them have failed the verification. The first case is of little interest in the context of this

work : if all the desired properties are satisfied, then the source code does not need any corrective measure,

so end the reporting process. On the other hand, if some properties are disproved, corrective measures

should be proposed to the developer. Simply forwarding the model-checking results directly back to the

user does not satisfy our basic requirements stating that the target user should not need to be familiar with

formal methods and verification techniques.

The verification results have to be reported back to the user in a easily understandable way. Our target

audience being source code developers, we will attempt to provide corrective measure directly to the code

(through the weaving process of the acces-control model) every time it is possible.

More formally, a property p fromRM which fails the verification process is a property such that there exists

a q0-computation λ : ∃i ≥ 0 : (∀j < i : λ [j] |= p) ∧ (λ [i] ��|= p), i.e. a property that admits an execution

trace running from the initial state (q0) to a state violating the property (λ [i]) (figure 5.3). For each prop-

erty, the set of offending states, and the execution traces leading to them, have to be analyzed and proper

corrective measures proposed on the access-control model AcM . The remaining of this section will tackle

each of these possible outcomes individually, plus another one closely related to the iterative development

scheme. Then a practical combined approach will be presented.

94 CHAPTER 5. MODEL VERIFICATION

Q_0 Q_1 Q_n(...) { prop(i-1) }

λ[i]λ[i-1]

p not(p)

{ prop(i) }

a

Figure 5.3: Property violation : execution trace

5.3.1 Requirements level

The most obvious, and probably the most human, way to circumvent the violation of a requirement p by a

model m is to remove or adapt the conflicting property such that the violation disappears (figure 5.4).

InitSystemAccess Control ModelAccess Control Model

Analyzer Results/AnswersRequirements

Access Control Model

Figure 5.4: Reporting verification results back to the requirements

Removing the conflicting property from the set of requirements is a trivial solution to the violation and,

in general, should not be admitted. This should never happen unless the considered property was mis-

specified or does not reflect any more the clients requirements. Removing a property means to miss some

of the clients requirements, and thus producing code not conformant to what was intended. However, expe-

rience shows that this behavior happens in almost every software project : time and cost constraints often

impose to make choices during the development stages. Many software projects deliver incomplete systems

which will be patched “later on” to correct the missing or incomplete features.

A more fine-grained approach to this problem is to correct the property to remove the violation. Considering

the offending q0-computation leading to the violation, a straightforward solution is to modify the property

p such that it does not apply anymore in offending state λ [i]. Based on the structure of the property p

(see p. 76), two scenarios are possible : if p is a localProp element (p. 80), thus a property without

temporal or agent operator, preventing the violation in state λ [i] can be done by strengthening the pre-

conditions of the property such that it does not apply anymore in the offending state. Modifying p from

’p = domain : localProp’ to ’p′ = domain& ¬(π(λ [i])) : localProp’ will prevent the conflict.

CHAPTER 5. MODEL VERIFICATION 95

On the other hand, if p is a temporal property (a timeProp element) or an agent specification property (an

agentProp element) , there is no straightforward corrective measure to be proposed. Depending on what

the signification of the violated property is and confronted to the violation trace, the developer can decide

to adopt one or more of the following strategies :

• strengthen the preconditions of the property to prevent the appearance of the violation execution trace.

• enlarge or reduce the coalition of agents responsible of the enforcement of the property (in the case

of an agentProp element)

• modify the property to take into account the violating scenario (for instance, modifying a property

always(p) with the addition of an alternative to reflect some situation, like in always(p ∨ q))

• completely rewrite the property to avoid the violation.

• ...

As a special case, if the property has been violated since the first step of the trace (i.e. if (λ [0] = q0)��|=p), it

means that the initial state, as defined in the initial system model IM , conflicts with the considered property.

The resolution process remains the same.

Excepted for the case of the simple local requirement, the process of choosing the most adapted alternative

for a specific violation cannot be automated : only the author of the offended property can decide which

alternatives are the most adapted to the situation. The verification routines can only provide him an execu-

tion trace leading to the violation of the property and show him what are the consequences of the changes

he makes.

5.3.2 Access-control level

Reporting the results of the verification back to the access-control model (figure 5.5), and also back to the

code thanks to the weaving process, requires to identify precisely which access-control rules fromAcM have

allowed the actions taken to put the system into the violating state.

System InitAccess Control ModelAccess Control ModelAccess Control Model

Analyzer Results/AnswersRequirements

Figure 5.5: Reporting verification results back to the access-control model.

96 CHAPTER 5. MODEL VERIFICATION

The execution trace violating property p, λ : ∃i ≥ 0 : (∀j < i : λ [j] |= p) ∧ (λ [i] ��|= p) gives a hint on

the operations which might have compromised the property. The set of actions (one for each agent) that

triggered the transition from the last state satisfying the property p to the offending state (labelled λ [i]) is

given by the transition function : λ [i] = δ(λ [i− 1] , j1, · · · , jk). Identifying the access-control rules that

have allowed the different agents to perform those actions is pretty straightforward :

1. we identify the set of propositions modified in the transition : the set P+ contains the propositions in-

troduced in the violating state, while the set P− contains the propositions which have been removed.{
P+ = π(λ [i])\π(λ [i− 1])

P− = π(λ [i− 1])\π(λ [i])

2. we identify the sets of propositions, called V that cause the violation of the property p :

∀s ∈ P(P+ ∪ P−) : if (π(λ [i− 1]) ∪ s)��|=p then V ←− V ∪ {s}

i.e. we search for subsets s of the set of modified propositions, such that the addition of s to the

previous (satisfying p) state is sufficient to make it violate p.

3. we restrict these sets of propositions to their most significative elements (in Off):

Off = {o ∈ V |∀v ∈ (V \o) : v�⊂o}

4. then for each of these sets of significative propositions :

(a) we identify in the system model SM the set of actions A from (j1, · · · , jk) that have caused

these modifications. A = {(ai, opi, obi)|i = 1, · · · , n} with (a, op, ob) representing the action

for agent a to perform operation op on object ob.

(b) we identify the access-control rule responsible for the permission to perform each of the offend-

ing actions :

R =
{
r ∈ AcM : JrKλ[i] ⇒ can(a, op, ob)|(a, op, ob) ∈ A

}
Note that the rules in AcM do not overlap (due to the adapted union operator

M⋃
).

(c) then we update each rule in c : perm ∈ R to prevent it to grant the permission can(a, op, ob)

authorizing the action leading to the violation of the considered property.

• either we prohibit agent a (or a generalization of it) to benefit from the permission granted

by the rule r :

r =

{
c ∧ propa : ¬perm
c ∧ ¬propa : perm

• either we prohibit the rule r to apply in state λ [i− 1]

r =

{
c ∧ π(λ [i− 1]) : ¬perm
c ∧ ¬π(λ [i− 1]) : perm

CHAPTER 5. MODEL VERIFICATION 97

• or a mix of both.

5. or we generate a fresh access-control rule preventing the violation of p = (c : a) :

F = (c ∧ ¬(P+ ∪ P−) : a)

The modifications obtained on the model can then be showed either directly to the developer, or be turned

into executable code through the weaving process, leaving him with the choice between all proposed alter-

natives.

5.3.3 Status Quo

This option differs from the previous ones : in the status quo alternative, the developer acknowledges the

property violation, but takes no action to solve it. This behavior usually appears in iterative development

schemes, where all features of the system, although being specified in the requirements, might not be fully

implemented yet when the source code is verified.

The execution trace leading to the violation is simply forwarded to the developer “as-it-is”, as a remainder

for the unresolved violation to be taken care of later in the development stages.

5.3.4 Practical approach

In practical situations, the verification routines on the models cannot, by themselves, decide which correc-

tive measure among those proposed best fit the requirements and wish of the developer.

The same holds for the level of abstraction to be used inside the rules. While some developers won’t mind if

the number of access-control rules increases as long as each of them stays relatively small and understand-

able, others will attempt to generalize as much as possible each encountered rule modification in order to

maintain the rule set as small as possible.

To fit both of these behaviors, and any in-between, we limit ourselves to the production of a set of possible

corrective measures for each violated property. The developer is then free to choose which one to apply, or

to implement his own fix (figure 5.6) . Furthermore, the developer is sometimes required to implement the

corrective measure by himself, for instance when some properties conflict with the initial system configu-

ration.

Keeping the developer inside the feed-back loops not only permit to decide which modification to apply, but

also allows him to keep full control over his source code : the effects of the proposed changes are directly

98 CHAPTER 5. MODEL VERIFICATION

Property P1

measure 1
measure 2
measure 3

...

Property P2

measure 1
measure 2

Property Pn

...

Figure 5.6: Selection of the most appropriated options among the sets of proposed corrective measures.

visible on the source code and/or the required properties.

5.3.5 Generalization

The techniques presented above tend to produce explicit rules (both for the requirement model and for

the access-control model). These rules can often be simplified through the generalization of some of their

elements. Consider for example the following access-control rules:

1. p & q(a) : perma

2. p & q(b) : permb

3. p & q(c) : permc

It might be tempting to collapse them into a single rule, generalizing the argument appearing in the q pred-

icate from the precondition, which would give the rule : p & q(X) : permX .

However, this process has two major drawbacks : first it enlarge the semantics of the rule to elements that

were not part of it. For instance, an element d potentially failing q(d) might receive a permission in the gen-

eralized rule while the sequential ones would have forbid it. Secondly, the access-control rules are closely

tied to the developer’s source code. He might have a very good reason for replicating the rules, for instance,

each rule might be accompanied by a comment justifying the existence of the code block behind the rule.

The verification and the result reporting routines have no way to prevent these problems. For this reason, we

limit ourselves to the production of generalized rules in addition to the explicit rules created above. They

will appear as extra alternatives to choose from to the developer.

5.4 Example

This section provides an illustration of the proposed methodology and result reporting techniques detailed

above on the running example introduced page 51. The related models can be found in figures 4.11 to

4.14 (page 71) for the access-control model of the various source class files, figure 4.16 (page 81) for the

CHAPTER 5. MODEL VERIFICATION 99

requirements specification, figure 4.20 (page 84) for the system model and figure 4.18 (page 82) for the

initial system configuration.

A simple execution trace like :

root -> John = System.user.create()

John -> ob = CPrivateEvent.create()

where the administrator, defined in the system initialization model, creates a user named John, who then

create a private calendar event (an CPrivatEvent object), is sufficient to break the first of the two proper-

ties required on the system. The access-control rules defined on this kind of objects only allow the object’s

owner to access them, thus preventing the administrator from reaching them.

This behavior breaches the “S.isAdministator() : allowed(S, Op, Ob)” property defined

in the requirements, stating that an administrator can always perform any operation on any object.

There are two options to solve this property violation : either modify the requirements and avoid the con-

flicting situation, or modify the access-control rules governing the access to the private object.

• on the requirements level, if we omit the trivial solution of removing the violated rule, the only

option is to modify the rule such that it does not apply anymore in the offending situation. In the

considered case, it means strengthening the rule preconditions with the generalized negation of one

of the properties valid in the offending state :

(...)

root.isAdministrator()

ob.owner = John

ob.class = CPrivateEvent

(...)

This leads to the generation of the following modified access-control rules:

R1. S.isAdministator() & ¬ (S.isAdministrator()) : allowed(S, Op, Ob)

R2. S.isAdministator() & ¬ (Ob.owner = John) : allowed(S, Op, Ob)

R3. S.isAdministator() & ¬ (Ob.class = CPrivateEvent) : allowed(S, Op, Ob)

The first rule is clearly useless as its preconditions conflicts each other and can be ignored. On the

other hand, rules 2 and 3 propose interesting requirement limitations : rule 2 states that an admin-

istrator can access any object but John’s ones, while the third one states that the administrator can

access any object on the system, but private ones.

100 CHAPTER 5. MODEL VERIFICATION

• on the access-control level, the rules modification will fail to provide useful elements (the create()

operation considered here is a bit special : it is not restricted by a permission). On the other hand, the

ad-hoc rule creation rule will produce the two following items :

M1. S.isAdministator() & (Ob.owner = John) : allowed(S, Op, Ob)

M2. S.isAdministator() & (Ob.class = CPrivateEvent) : allowed(S, Op, Ob)

M1 allows an administrator to access objects owned by John and M2 allows an administrator to

access private objects (i.e. objects from the CPrivateObject class).

At the end of the process, the developer is confronted with the execution trace violating the required prop-

erty and the 5 corrective options R1, R2, R3,M1 and M2. Rules M1 and M2 are proposed either under

their access-control model form or directly weaved back into code fragments. As an illustration, figures

5.7 and 5.8 show such code fragments, respectively, for M1 and M2. The developer is then free to choose

which proposition(s) should be accepted (into the requirements model and/or into the code), or to modify

them / implement his own solution to resolve the conflict.

1 public class CPrivateEvent extends CEvent {

2 (...)

3 public boolean isAuthorized(CSubject requestor, COperation op) {

4 // M1

5 if (requestor.isAdministator())

6 if (this.owner == John)

7 return true;

8 return requestor.equals(this.owner);

9 }

10 (...)

11 }

Figure 5.7: Proposition M1 weaved into the code.

It is important to note that, as our proposed methodology considers the requirements one at a time, some

of the potential corrective measures proposed at one stage can conflict with other previous or following

requirements. For instance, in the above example, applying any of the proposed solution will break the

second system requirements :

private events cannot be read without owner’s will

class(CPrivateEvent, Ob), X=Ob.owner(), user(Y), X!=Y : alone(X, always(not allowed(Y, Op, Ob)))

CHAPTER 5. MODEL VERIFICATION 101

1 public class CPrivateEvent extends CEvent {

2 (...)

3 public boolean isAuthorized(CSubject requestor, COperation op) {

4 // M2

5 if (requestor.isAdministator())

6 return true;

7 return requestor.equals(this.owner);

8 }

9 (...)

10 }

Figure 5.8: Proposition M2 weaved into the code.

The test “(Ob.class = CPrivateEvent)” was redundant and is omitted to

preserve readability.

Which is quite expectable as the two requirements specified on our considered system clearly conflict with

each other.

This question of potentially conflicting requirements in not explicitly adressed in this document. Con-

flicting requirements are more a specification problem than a problem related to an access-control policy

implementation.

102 CHAPTER 5. MODEL VERIFICATION

6
Model Weaving

Contents
6.1 AC Model Weaving . 104

6.1.1 Naive approach . 104

6.1.2 Improved approach . 105

6.1.3 Effects on existing code . 107

6.1.4 Example . 107

6.2 Possible optimisations . 108

6.2.1 Pragmas . 108

6.2.2 Assisted extraction/weaving . 109

6.3 Weaving to another model . 109

This chapter presents the techniques used to weave back the extracted (and possibly modified) access-

control model back into the executable code. A first naive but straightforward implementation of the weav-

ing process will be presented and discussed followed by an improved version. Then a set of possible further

optimisations and perspectives, improving the quality and readability of the produced code, will be intro-

duced.

103

104 CHAPTER 6. MODEL WEAVING

6.1 AC Model Weaving

By opposition to the extraction algorithms presented in section 4.2.3.2 (p. 68), which extract an access-

control model from the source code, the weaving algorithms presented in this section take an access-control

model as main input and produce executable code implementing the semantics of the model (figure 6.1).

Access Control Model

Weaver

Access Control ModelAccess Control Model

++ Source

CodeCode

Source

Figure 6.1: AC Model weaving.

The term ’weaving’ comes from the Aspect Oriented Programming paradigm [KLM+97] and is used here

with the same semantics. It denotes the conversion of the access-control model into executable code clauses

and their introduction at an appropriate location into the source code. The conversion from the model to

executable code and the insertion of this code into the existing application tries to modify the existing code

as little as possible, produce human-readable statements and attempt no to modify unnecessary elements.

6.1.1 Naive approach

A naive implementation of the weaving process is, for each rule appearing in each classModel in the

model, to produce a code statement implementing the permission (see algorithm 5). Then the generated

statements overwrite the possibly existing content of the authorization method in the executable source

code.

CHAPTER 6. MODEL WEAVING 105

Algorithm 5 WEAVING(M)

1: for all class C ∈ m do

2: for each rule r ∈ C do

3: if r ≡ (pre : allowed(S,Op,Ob)) then

4: RV←− true

5: else

6: {r ≡ pre : not allowed(S,Op,Ob)}

7: RV←− false

8: end if

9: produce(“if (pre) then return RV;”)

10: end for

11: end for

This algorithm produces executable code implementing the access-control model, however, it makes the

code completely unreadable and unmaintainable. Much like what is done in most popular AOP implemen-

tations, the resulting source code is only meant to be compiled and executed, not manually edited. This

goes against the primary objectives targeted by our approach : the model extraction, its verification and the

weaving of the model back into the code should leave the code as human-readable as possible such that the

developer keep total control and full understanding over it.

6.1.2 Improved approach

A first obvious improvement to the algorithm shown above is to better use the structures of the rules found

in the access-control model. Algorithm 5 considers the rules as independent items, which is most of the

time false, especially if those rules are the result of the extraction algorithms presented in section 4.2.3.2 (p.

68). The weaving process being almost the inverse of the extraction process, adapting a reversed version of

algorithm 1 gives the more efficient weaving algorithm 6.

[l. 1-3] It extracts the access-control rule setR found in each class present in the model

m. Z is an accumulator which will store the sequence of all the elements to be

weaved into the final source code.

[l. 4-5] The rules found in the rule set are analyzed one by one to reverse the effect of

algorithm 2 :

[l. 6-8] If the current rule (and it’s successor in the table R) are the result of the dis-

junctive clause they are merged back together and we skip the next rule.

[l. 10-14] Otherwise we simply reverse the effects of algorithm.

[l. 17] The executable code corresponding to the rules found is produced (see below

for details).

106 CHAPTER 6. MODEL WEAVING

The genCode(C,Z) generates access-control code for the C class from the rules contained in Z. It groups

rules based on common prefixes while preserving their ordering, this prevent meaningless code replica-

tion and keeps the output code as readable as possible. Figure 6.2 illustrates this process with a source

Z = (A,B,C : T), (A,B,D : F), (A,E;T), (A,−E,F : F), showing, on the left hand part, a rule per

rule code generation and, on the right hand side, a common prefix factoring.

Algorithm 6 WEAVING(M) - V2

1: for all class C ∈ m do

2: R←− rules(C)

3: Z←− ∅
4: for i = 1 to #R do

5: {R[i] ≡ (class(C, Ob) ∧ Q) −→ Action}

6: if (i < #R)∧(R[i+1]≡ (class(C, Ob) ∧Q’)−→ not Action)∧(Q = A∧X)∧(Q′ = A∧¬X))

then

7: Z←−+ (A, return(X))

8: i←− i+ 1

9: else

10: if (Action ≡ allowed(requestor, Op, Ob) then

11: Z←−+ (Q, return(true))

12: else

13: Z←−+ (Q, return(false))

14: end if

15: end if

16: end for

17: genCode(C, Z)

18: end for

1 if (A & B & C) return(true);

2 if (A & B & D) return(false);

3 if (A & E) return(true);

4 if (A & not E & F) return(false);

1 if (A)

2 if (B)

3 if (C) return(true);

4 if (D) return(false);

5 if (E) return(true);

6 else if (F) return(true);

Figure 6.2: generate(C,Z) : unstructured Vs structured output.

CHAPTER 6. MODEL WEAVING 107

6.1.3 Effects on existing code

Even though the method presented here tries to have as little impact as possible on the existing code, nothing

guarantees that cycling through the extraction and weaving stages does not alter presentation of the source

code (figure 6.3). The implemented semantics stays constant but the appearance of the code as well as the

constructs used can vary, which may greatly disturb the developer. This gives him the feeling that he is

losing control over his own code, not recognizing anymore some of the constructs he had built into it.

!
Access Control Model

Weaver

Access Control Model
Security Aspect Extractor

MinerAccess Control Model

Code

++ Source

Figure 6.3: Iterating the extraction and weaving processes.

Iterating the extraction and weaving processes produces equivalent code

instead of leaving the code unchanged.

These unintended variations in the code presentation and the different possible ways to prevent them are the

source of the optimization techniques presented in the next section.

6.1.4 Example

As an illustration, weaving back into the code the access-control model extracted from the CGroupEvent

class (figure 4.14) gives the source code shown in figure 6.4.

The generated code differs slightly from the original source code (see figure 3.10 for the original source

code), but implements the same semantics. The difference lies in the lines 8 and 9 : in the original source

code, the two tests are combined inside one single if construct, where our weaving process has split them

on two consecutive ones.

While such slight differences will probably not disturb too much the developer when he will try to update

his code, their accumulation might slowly obfuscate the code. The next section will present some tech-

niques aimed at removing these unwanted side-effects.

108 CHAPTER 6. MODEL WEAVING

1 public class CGroupEvent extends CEvent {

2 (...)

3 public boolean isAuthorized(CSubject requestor, COperation op) {

4 if (super.isAuthorized(requestor, op)) return(true);

5

6 if (owner.isGroup())

7 if (requestor.equals(owner.getOwner())) return true;

8 else if (owner.isMember(requestor))

9 if (op == COperation.READ) return(true);

10

11 return false;

12 }

13 (...)

14 }

Figure 6.4: CGroupEvent class : model weaved back to code.

6.2 Possible optimisations

This section provide two possible further optimizations techniques applicable to the extraction and weav-

ing algorithms presented in the above sections in order to improve their preciseness and limit as much as

possible unintended code structure alteration.

6.2.1 Pragmas

The first way to optimize the extraction and weaving processes is to allow them to better cooperate in their

respective tasks. Most of the time, the model to be weaved into the code is very close, at least for some

parts of it, to the model that was extracted from the code. Letting the extractor efficiently communicate to

the weaver what code portions resulted in what model rules allows the weaver to simply recopy the code

fragments whose model has not been modified (figure 6.5). This allows to preserve the structure and the

formatting of those code elements, reducing the risk of loss of control of the developer over his code.

These pragmas can either be automatically inserted into the code and the model or be manually edited by

the developer. For instance, automatic pragma could be used to delimit the code fragment responsible for

a specific rule found in the model, or specify how to interpret some complex code statement. Although the

latter would break the minimal developer intervention policy our approach try to enforce. This would allow

CHAPTER 6. MODEL WEAVING 109

Pragmas

Weaver

Access Control ModelAccess Control Model
Security Aspect Extractor

MinerAccess Control Model

++ Source

Code

Figure 6.5: Communication through pragma.

a fine tuning of the extraction and weaving processes according to the developer desires.

6.2.2 Assisted extraction/weaving

A second optimization technique is to shift from an automatic code extraction and weaving processes to

manually assisted ones. When confronted to complex code structures or unexpected behaviors, the tools

could interact with the developer to select the correct action to be taken.

These interventions could consist in the replacement of unsupported instructions, like loops, the rewriting

of complex nested code structures, ... Not only would this ease the automatic manipulation of the code

for the extraction and weaving processes, but it would also help the developer to clarify some potentially

obscure parts of his sources and make them conformant to his own coding conventions.

This assisted behavior also plays an important role in the specification of the initial configuration model and

of the system model. The tool can collect all the static references done to users and objects into the access-

control rules and insert them in the ad-hoc models. The same goes for the permissions and the predicates

appearing in mode rules.

6.3 Weaving to another model

A nice potential extension of the weaving process lies in the possibility to weave the access-control model,

not directly into the code, but into external and dedicated components and replace the contents of the AC-

checking methods in the source code by calls to these external components (figure 6.6).

This would go beyond one of our initial objectives, namely the intent to leave the code as untouched as

possible, allowing the developer to keep full control over it at all times. But it would allow the developer to

110 CHAPTER 6. MODEL WEAVING

quite easily delegate the AC of his application to dedicated components and technologies. The extracted AC

model could then be checked/monitored using other verification methods, for example the JAAS framework

[Ora11].

In a way, such a behavior would come close to the aspectization approach found in [TNTN11]. It would

extract a particular functional aspect of the source code (here the access-control one) into an aspect in the

sense of AOP.

Access Control Model

Weaver

Access Control ModelAccess Control Model

++ Source

Code

Higher−level

Model

Figure 6.6: Extraction of the access-control model.

Such an extension would be a interesting feature and would allow the access-control elements not only to

be extracted, but also to be refactored and optimized. It would represent a nice and easy first step towards

the use of formal methods to improve the code structure and behavior.

7
Evaluation and Perspectives

Contents
7.1 Case study feed-back . 112

7.1.1 Pro’s . 112

7.1.2 Con’s . 113

7.1.3 Wrap-up . 114

7.2 General thoughts . 114

7.3 Adaptability . 116

7.4 Perspectives . 117

7.4.1 Certification . 119

7.4.2 Longer-term perspectives . 119

This chapter summarizes and evaluates the achievements of the previous chapters against the objectives de-

fined in chapter 3. It presents the knowledge and feed-back obtained during the application of the proposed

methodology to the case study, followed by some general reviews on the presented approach. Paths for

potential future improvements are then introduced.

111

112 CHAPTER 7. EVALUATION AND PERSPECTIVES

7.1 Case study feed-back

The application of the proposed access-control modeling and verification techniques on a limited “commer-

cial” subsystem of our source case study exacerbated both the pro’s and con’s our approach showed on the

presented running example. This section details the most notable feed-backs received.

7.1.1 Pro’s

The presence of a formal methodology requiring a clear and precise specification of the system to be writ-

ten encouraged the developers to maintain it as up-to-date as possible. Turning the specification from a

document “redacted before implementation and then left aside” to a close companion of the code gives

an opportunity to encourage continuous reflection on the implemented methods. It also limits the risk of

appearance of missing or extra features into the application.

Furthermore, the ability to extract an access-control model directly from the code, modulo some approxi-

mations caused by an approximate coding convention enforcement, allowed to easily manage and discuss

the evolutions of the access-control related sections. As such, it facilitated the co-evolution of the system’s

specification and the implemented features.

Then, the production of execution traces illustrating the detected violations allowed the developers to (al-

most) easily spot the problematic elements. Potential corrections directly provided on the source code level

were seen as an interesting feature but, unfortunately, were not employed very much. Maintenance teams

are trained to detect bugs and fix them directly into the code. When given the execution traces, their first

action was often to fix the code directly, without looking at first to the proposed potential corrections. How-

ever, for more complex situations or when their direct fixes were not as correct as they first thought, they

were inspired from the proposed corrections for their code updates.

Finally, the iterative process of extraction - verification - weaving of the code allowed developers to easily

detect unwanted side-effects of some of the code updates. Early detection of inconsistencies between source

code at revision n and revision n + 1 was possible through the comparison of the access-control models

extracted from both revisions. By contrast to code-revision managements systems like CVS or SVN which

can only provide the syntactic differences between two versions of the source code, the difference between

the two extracted access-control models help pinpoint the semantic differences.

CHAPTER 7. EVALUATION AND PERSPECTIVES 113

7.1.2 Con’s

The first drawback of the approach lies in the time (and effort) required to provide the first interesting re-

sults. By opposition to testing, which produces almost immediately tangible scenarios applicable to the

system, verification requires the developers to write several models of their system prior to any results.

Even though some elements were automatically extracted from the source code, this step seemed overly

redundant to them: in their minds, a system able to extract an access-control model from the code should

also be able to extract the system model and any other required element. Redacting and maintaining those

additional models appeared to be an extra “unproductive” cost counter-balancing the potential advantages

of the verification.

Another problematic elements are the format code modifications induced as side-effects by the extraction-

weaving loop. These modification tend to obfuscate the code. Even though the code produced is function-

ally equivalent to the original one, it was very frustrating for some developer to see their code appearance

changed. It reduces the readability of some of the code segments and makes their manual correction more

complex, even for the original source code author.

Furthermore, the need to strictly respect the coding conventions to allow the access-control model to be

extracted was sometimes seen as a huge burden. Although these coding conventions were the ones used

by the developers themselves before the introduction of our methodology (with some minor modifications),

their habit was to follow the coding conventions as much as possible, not strictly. The respect of the con-

ventions was encouraged everywhere posible, but not sanctioned if small violations were done in limited

and justified contexts.

Then, the verification is only as good as the requirements are: specified properties can be checked and, if

applicable the code can be corrected to fit them. But a quick bug-tracking analysis showed that most of the

problems related to access-control were not caused by a breach in the main properties. Instead they were

caused by small “obvious” features that no-one ever took the time to specify. This problem is common to

all of the formal methods approaches : it is hard to fully specify all the expected requirement, even more

when the authors of the specification are not keen on formal models.

Finally, applying the methodology requires quite a lot of manpower, specially during the first stages where

the different models have to be prepared. Applying the verification results to the system was most of the

time done without too much problem (albeit the elements cited above), excepted the fact that some of the

alternatives proposed by the result reporting stage are not always easily understandable. This is in particular

true when the alternatives produced are very close from each other; developers sometimes have difficulties

figuring out what was the exact effect of the different propositions. This can cause hesitations on which

alternative to choose.

114 CHAPTER 7. EVALUATION AND PERSPECTIVES

7.1.3 Wrap-up

+ -
Execution traces

Usage for the specification

Automated AC extraction

Code version comparison

Time consuming

Code obfuscation

Strict coding conventions

Limited to requirements

Choice between corrections

Figure 7.1: Summary of main pro’s and con’s obtained on the case study.

Figure 7.1 summarizes the feed-back received from the application of our proposed methodology to the

considered case study. From an usage point of view, the introduction of a semi-automated code verification

process inside the development stages allowed the developers to detect some inconsistencies between their

implementation and the underlying requirements. However, the need to build, aside from the source code,

models describing the system appeared to be a harsh and time-consuming task, specially for developers

with no knowledge of formal methods.

Furthermore, due to their background, trainings and past habits, developers often had more confidence in

testing than in results obtained through verification methods. At some points, they even checked manually

the proposed corrections against the violating execution trace to make sure that what was proposed actually

met their requirements.

As a conclusion to the case study, it should be noted that the case study evaluation could not be run till

completion. Various reasons, both internal and external, forced the considered application source code to

evolve to new technologies in a time-scale incompatible with the one of a research project. Participating

developers had to be reaffected to new projects and support inside the organisation was slowly diluted, halt-

ing the case study evaluation process.

7.2 General thoughts

From a more general point of view, the proposed approach did reach some of its objectives : the extraction

of an access-control model from the code, its verification and the weaving of the results back into the code

CHAPTER 7. EVALUATION AND PERSPECTIVES 115

is indeed possible and useful in practical situations. However, applying the methodology to other software

projects still requires custom adaptation. Furthermore, the methodology requires a deep developer implica-

tion and the learning of some specification formalisms. The rest of this section details these elements.

The automatic extraction of the access-control model directly from the source code allows the developer to

express the access-control rules in a well-mastered syntax : the one of the chosen implementation language.

As such, it limits the potential mis-understandings that might appear during the rule writing because of an

“exotic” or un-sufficiently mastered formalism. A drawback of this choice lies in the obligation to follow

some coding conventions aimed at facilitating the parsing and interpretation of the source code. They limit

the code constructs that can be used, and force the developer to structure his code following canvas. This

does not cause much trouble when considering a software project from the start, but can be a huge problem

if the methodology is to be applied to an existing project : coding conventions might need to be adapted or

more strictly enforced, leading to potential modifications in the whole considered source code.

Event though the approach tries to hide away as many of the formal methods aspects as possible, it remains

complex and requires the developer to write some of the models by himself. As such, it misses one of the

objectives defined in the beginning of the projet : be transparent to the developer. While some of the mod-

els can probably be automatically extracted from the source code like the access-control one (for instance

the system model), it would require the enforcement of strict coding conventions on a ever larger part of

the source code. This would bring the convention-conformant source code ever closer to a formal model

specification using the syntax of the considered programming language, which is not the objective. In this

aspect, formal methods will always be less intuitive than testing. Testing derives real tangible execution

traces based on some kind of specification or code parsing, these are almost physical concepts. On the other

hand, verification requires an abstraction of the considered system to be done before producing any useful

results.

The same holds for the interpretation of the proposed corrections.The updates to the access-control model

can be presented in a developer-friendly way directly on the source code, but the potential property updates

still require to learn and understand the selected requirement language. This might not be an easy task, spe-

cially when considering temporal properties. There is usually a huge gap in developers minds between the

perception of the semantics of temporal operators and their effective semantics. Local or agent properties

refer to tangible elements found on the system, where temporal operators refer to the behavior of potential

futur executions.

Another limitation of the proposed methodology is that it only verifies that the implemented access-control

methods inside the source code are compliant with the expressed requirements. It does not check that these

access-control methods are effectively called with the proper arguments before the access are granted or

forbidden by the application. It relies entirely on the developer capacity on this point.

116 CHAPTER 7. EVALUATION AND PERSPECTIVES

The methodology presented in this document differs from the other approaches existing in the literature.

Existing approaches tend to focus either on the extraction of an access-control model from the source code

then the verification of some properties on the obtained model (see for instance [GSL07]), or they focus on

the verification of some properties on a previously given model then its insertion into the code (for instance

in Aspect Oriented Programming). Combining both approaches in a single loop allows to focus more on the

developer capacities and expectations. Furthermore, keeping the developer inside the decision loop allows

us to benefit from his knowledge to choose the right decision when updating rules and/or requirements.

This allows to produce results more fit to the developer’s needs.

7.3 Adaptability

The work presented in this document is closely tied to the structure and coding conventions encountered in

the case study. In particular, the extraction and weaving components are built to take advantage of the code

structure and coding conventions available on the considered source code.

However, the other components of the methodology were built to be easily adaptable to new systems and

conventions sets. The various models and verification and reporting processes are almost independent from

the source code aspect. They only consider access-control rules granting or forbidding accesses, which

should be able to model almost all of the access-control situations.

As such, the methodology should be quite easily adaptable to new software systems and/or new source code

languages. Only the extraction and weaving components should be adapted to manage the chosen develop-

ment language, the code structure and the selected coding conventions, all other components can be reused

with minor adaptation (see the components inside the grey dotted line in figure 7.2).

CHAPTER 7. EVALUATION AND PERSPECTIVES 117

Weaver

Access Control Model
Security Aspect Extractor

MinerAccess Control Model

Results/AnswersAnalyzerRequirements

Access Control Model

Code

++ Source

Figure 7.2: Reusable components.

7.4 Perspectives

Based on the knowledge accumulated both on the case study and on the later generalization of the approach,

some perspectives for enhancement appeared. They can be grouped in two interdependent contexts : en-

hancements related to the user-model interface and enhancements on internal features.

The interface between the developer and the formal models and core could be greatly improved through

the “humanization” of the models. Models used in the proposed approach are closely related to the inputs

expected by the model-checking subroutines. Making them more developer-oriented, or more user-friendly,

would further incitate the developers to use them. For instance, this could be done through the automatic

extraction of the system model (or parts of it) in a very similar way to what is currently done with the

access-control model.

Another area of improvements concerns the requirement language : some operators are very disturbing

for developers not aware of formal methods. In particular, the temporal operators introduce semantics

variations in the property requirements that are not always easy to understand. For instance, think of the

subtle difference between these two expressions :

true : alone(John, alwayswill(allowed(John, read, Z))

true : alwayswill(alone(John, allowed(John, read, Z))

The first one states that John has a strategy such that he will always be able to read object “Z”, where the

second one states that John will always have a strategy to be able to read “Z", i.e. that John will always

be able to read “Z". While path or agent operators behave closely to what the intuition expects, under-

standing the potential consequences of the introduction of the temporal operators requires to understand

their inner semantics. Sadly, this process is out of reach for most of our target public. This causes lots

118 CHAPTER 7. EVALUATION AND PERSPECTIVES

of errors and incertitudes when adding temporal properties into the requirements, which might impact the

results of the verification process. A possible solution for this problem could be to provide the users with a

scenario-based property editor : a tool which would provide them some instantiated trace examples for each

property written. This would allow the developer specifying the property to visually verify if the property

he intended to specify is equivalent to the property he just wrote.

On the potential internal enhancements side, the very first one should be to tackle the potential code scram-

bling problem. Cycling through the extraction/verification/weaving processes tend to modify the whole

source code structure even though little to no modifications were made on the model. This has the nasty

side effect of making the code harder to understand to the developer. Furthermore, he may not understand

why a minor modification on the model should completely change the appearance of his code.

The same applies to the proposed correction generalization techniques : the set of currently proposed tech-

niques usually generates only very specific corrective measures. Some of them are extended to very generic

ones, but this process often misses its objective of finding the “proper” generalization. A finer-grained

analysis should be able to decide which generalization to apply and to what extent. This could be further

improved if the method could consider the set of requirements as a whole instead of as a sequence of in-

dependent requirements. Considering all the rules together would allow the generalization of the results

obtained in several rules, thus making the process easier.

The collection and externalizing the access-control related elements into dedicated components could also

be a direct way to improve code quality and security. Limiting the number of places where the security

elements are scattered into the code allows the developer to manage more easily the potential changes and

reduces the possibility of mistakes.

Finally, it should be possible to relax some of the coding conventions imposed on the source code without

adding too much complexity to the extraction, verification and weaving steps. This would allow developers

to use more code constructs, removing the sometimes present feeling that only ridiculously simple source

code fragments are allowed.

As a final thought on these future perspectives, automatic model extraction from the source code is defi-

nitely a way to allow many developers to benefit from the advantages given by the formal methods without

requiring them to write all the models themselves. It reduces the entry-cost to verification and limits the

number of errors that can be made during the redaction of the models. As such, it allows developers to

produce better and more secure code, and code that can provably satisfy the requirements. It can help to

show the benefits of a formal method approach without having to bear the full price of conventional formal

methodologies. It also helps the developers think twice about the features they have to implement : once

for the specification and once for the implementation.

CHAPTER 7. EVALUATION AND PERSPECTIVES 119

7.4.1 Certification

Even if this was not the primary objective of this work, the question of wether or not our proposed approach

can meet the quality standards of a widely accepted industry standard has to be tackled. Convincing the de-

velopers of the quality of the produced results is the main objective, but being also able to convince external

users is a nice extension. This would allow the considered software to publicly claim its verified quality

level.

Attempting to confront this approach with the various evaluation assurance levels requirements defined in

the Common Criteria (see section 1.4.1, page 21) is not an easy task. The lower EAL levels are trivially

satisfied by the production of a proper and verified specification (in our case an access-control model) rep-

resenting the code and its verification against the requirements. However, the higher requirements (from

EAL5 up to EAL7) require both 1) a formal verification of the conformity of the implementation towards

the specification and 2) the proper confidence in the certification authority issuing the verification.

In the context of our methodology, the first criteria is met through the automatic extraction of the model

from the code, so could our proposed methodology compete for the highest EAL level. However, the sec-

ond criteria will almost be impossible to satisfy : as the verification (and more importantly, the correction

of the detected problems) is a user-assisted process, the confidence in the produced results will always be

limited by the confidence in the craft of the considered user and will hardly be recognized outside of the

development team.

It is also hardly possible to hire a well-recognized external reviewer to apply the methodology to the code.

Our methodology requires the usage of the coding conventions found into the code as well as a certain user

craft into the management of the verification routines (for instance through the proper setting of the upper

bounds on objects sets). Both of these are not easily reachable for an external reviewer.

7.4.2 Longer-term perspectives

If we push the reflexion one step further, the place of the developer inside the application development

scheme has to be re-thinked. How can we expect a fully secure, flaw-less, application to be created by

mistake-prone elements like human beings ? Errors, approximations and misunderstandings are inherent

parts of human beings, as is creativity, and cannot be avoided in human enterprises.

Limiting ever more the acting space of developers to prevent the occurrence of problems may not be the

proper way to make software engineering evolve on the long-term. In the last century, the physical goods

120 CHAPTER 7. EVALUATION AND PERSPECTIVES

engineering processes have been extensively adapted to allow the execution of tasks by entities designed

to avoid errors : robots. This has improved the quality and speed of production of many products, but it

removed any proactivity from the process. Robots only do what they were programmed to do; no more, no

less. As such they cannot anticipate the future problems and needs or provide innovative solutions.

When applied wisely, automatization eases the development process. For instance, only few people still

produce languages parsers by hand nowadays, because automatic tools exist to produce them almost auto-

matically. But we must keep in mind that a software system is not only an assembly of pieces of code; it

is much more than the simple concatenation its components. It is an vision of the mind. It is designed and

implemented to perform a task and react (more or less) appropriately to any unexpected situation that could

occur.

In our opinion, the creativity of developer can be supervised, for instance by guidelines, standards or helper

tools, but should never be muted. Firstly because turning developers into mere executants will cause a great

deal of resistance among them, opposing any changes. Secondly because the human factor is and should

remain an integral part of the software development process. The intervention of the developer is required

to translate the wishes of the client into a proper specification; preventing the developer from producing

code will simply move the problem from code-verification to specification-verification. Finally, software

systems ultimately are tools, used by human beings, for human beings. Even though it sometimes might be

desirable, they cannot be much more perfects than their creators.

8
Prototype Description

Contents
8.1 Usage Scenario . 122

8.2 Architecture . 124

8.2.1 Adapters . 125

8.2.2 Core Routines . 128

This chapters presents an overview of the internals of the prototype designed to support the methodology

presented in the previous chapters. A general definition of the implementation objectives will be given.

Then some insights on the code and model parsing and weaving techniques used will be shown (items 1©
and 2© in figure 8.1), followed by details on the verification and reporting routines (items marked 3© and 4©).

Remarks :

The development of this prototype supporting the presented methodology was done in the context of the

motivating example presented in section 3.1 (page 45). As such, it focussed on the operations expected by

the audience developers and on step-by-step interaction. The complete automation of the process was not

121

122 CHAPTER 8. PROTOTYPE DESCRIPTION

Weaver

Access Control ModelAccess Control Model
Security Aspect Extractor

Miner

Requirements Analyzer

Access Control Model

Results/Answers

Code

++ Source

1

2

3

4

Figure 8.1: Scope of the implementation.

the primary objective of this work.

A direct consequence of this is that many routines and screens do produce lots of “debug-like” outputs

aimed at allowing a quick and deep understanding of the processes being run. These outputs could be re-

moved from future versions but were a big help to convince partner developers of the interest of the tool

and give intuitive insights of what was done. More importantly, these outputs allowed them to understand

how and why the given results where produced.

8.1 Usage Scenario

The main use-case governing the development of this prototype can be found in figure 8.21. It contains

three different users profiles :

• the “lone” developer, or integrator, labelled Dev-A. He’s the one in charge of the verification of the

whole considered project and is only interested in the end results of the verification, not on detailled

considerations.

• the specification editor, labelled Spec. This user is in charge of the redaction of the requirements;

his role is to express the properties expected from the software system in the given requirements

language.

• the debugger developer, labelled Dev-B, is a refinement of the Dev-A one. This user profile differs

from its predecessor in the interest he has for the deep understanding of the internal flows leading to
1In order to keep the figure as readable as possible, only the most important relations between the tasks have been drawn.

CHAPTER 8. PROTOTYPE DESCRIPTION 123

the produced results. As such, he may attempt to directly access intermediary datas and execute the

inner routines of the model.

These three roles can be assumed by the same user. In small development teams, developers, specification

writers and integrators are often the same physical being, changing roles with the evolution of the needs

and with the time available for the validation stage.

System

Verify
Code

Dev-A

Extract AC

Insert
Reqs

Weave AC

Verify AC

<uses>

<uses>

<uses>

<uses>

Weave to
Code

Weave to
Model

Spec

<ext><ext>

Dev-B

Figure 8.2: Main use-cases

The various tasks that these users can perform are almost directly derived from their naming convention :

• Extract AC : extracts the access-control related elements from the considered source code. Often

takes extensive usage of the coding conventions to ease the process.

• Verify AC : confronts the obtained access-control model with the expressed requirements. Produces

execution traces in case of detected violation.

• Weave AC : translates the (possibly modified) access-control model back into the desired format.

– Weave to Model : produces a access-control component representing the access-control model

into the chosen model. If needed, also produce the code stubs interfaces to this component.

124 CHAPTER 8. PROTOTYPE DESCRIPTION

– Weave to Code : produces executable code (here Java code) implementing the rules appearing

into the access-control model.

• Insert Reqs : express the requirements expected from the considered software system into the re-

quirements formalism.

• Verify Code : combines the other tasks into a single workflow and proposes an easy to use frontend

to the various contained routines, hiding away as much inner details as possible.

Modulo some implementation optimisations, all the “atomic” tasks map almost directly to the structures of

the previous chapters. They respectively implement the procedures and produce the deliverables defined in

the specified section :

Task see

Extract AC section 4.2, p. 59

Verify AC section 5.2, p. 91

Weave AC section 6.1, p. 104

Insert Reqs section 4.3, p. 76

In the following sections, we will focus on the interactions and expectations of these 3 specific profiles in

the process of performing the desired tasks.

8.2 Architecture

To optimize the adaptability of the implementation to new source code structures and/or to new formalisms,

the general architecture of the prototype was designed to insulate verification and result production routines

from the inputs management.

The general architecture of this prototype is detailed in figure 8.3. The core element is interfaced with the

source code, requirements and access-control model via adapters components. The role of these adapters

is to convert the external formalism (for instance the Java source code language) into an internal general

tree-like format. It allows to encompass in these components all the complexity of the parsing and code

interpretation routines. For instance, considering the case of the source adapter in the context of our running

example, the source code parsing (including the usage of the coding conventions) is completely encapsu-

lated into a single component. Furthermore, an evolution of the external format only requires us to adapt

the interface component, keeping the core routines untouched.

All these components can communicate through the core component. Shared-interest elements can be

stored in a shared storage area managed by the core routines and can be retrieved every time necessary.

CHAPTER 8. PROTOTYPE DESCRIPTION 125

Source Adapter

Reqs Adapter

AC Adapter

CORE

Store

Figure 8.3: General architecture

The adapter components are responsible for the management of all the interaction of the core routines and

the considered languages, both for the inputs and the outputs. This allows to keep coherent coding con-

ventions between the extraction and the weaving of the elements, while, at the same time, allowing to read

from one model and output to another one if required.

The remaining of this section focusses on these components and details their inner structures and design

choices.

8.2.1 Adapters

The adapter components are responsible for the management of the interface between an external formalism

(e.g. Java source code, requirements language from chapter 4, ...) and the corresponding internal represen-

tation. They act both as input and as output filter.

For readability purposes, the input and output processes will be separated in the remaining of this section.

However, their implementations are often merged into one single component to be able to benefit from the

choices and findings made on previous runs. Think for instance of the source code adapter : when produc-

ing code in the same formalism as it was read from, the code weaving process can greatly benefit from the

structures and conventions used in the reading stage.

This leads to the adapter class structure found in figure 8.4 : the obtained adapter, here labelled JavaAdapterC1,

inherits from the selected parser and weaver components to become a bi-directional interface. In this illus-

126 CHAPTER 8. PROTOTYPE DESCRIPTION

(S) parse(...)
(S) weave(...)

...
AbstractAdapter

parse(...)
(S) weave(...)

...
Parser

(S)parse(...)
weave(...)

...
Weaver

parse(...)
weave(...)

...
JavaAdapterC1

parse(...)
(S) weave(...)

...
JavaParser

parse(...)
(S) weave(...)

...
ACParser

(S)parse(...)
weave(...)

...
JavaWeaver

Figure 8.4: Adapters hierarchy.

Operations marked with an “(S)” are stubs operations, they do not perform

any action. parse() is the input operation and weave() the output one.

tration, the resulting adapter component is dedicated to the parsing and the weaving of java source code

with the help of the specific coding convention set labelled C1.

8.2.1.1 Parsers

Parsers, or input adapters, are components dedicated to he reading of an external formalism and to its trans-

lation into the adapted internal representation. Two kinds of parsers can be distinguished here : “dumb”

parser and “extended” parser.

“Dumb” parser, who only translate their input into the proper structure (for instance the world model parser

or the requirements parser) are produced almost automatically from a grammar representing the expected

language. Parser generation tools are then used to produce the executable source code implementing the

adapter component. In our case, the ATNLR parser generation tool [Par11] was used.

On the other hand, “extended” parser, are parsers which need to translate and interpret/analyze their input

before producing all their results. An example of this second category is the source code parser: in addition

to the standard abstract syntax tree representing its input, it is also required to check that some elements of

the input (in our example the access-control related methods) can be properly extracted and converted in

CHAPTER 8. PROTOTYPE DESCRIPTION 127

the access-control model. These parsers heavily depend on the coding conventions to produce useful results.

The exact set of coding conventions that can be used by the parser greatly vary depending on the considered

source code project. In the context of this study, the parser is expected to be able to 1) precisely identify

which sections of the code are related to access-control and 2) extract the sequence of operations repre-

senting each of the execution paths found in these sections. The upper and lower bounds on the coding

conventions set are trivial : with no coding conventions at all the interpretation of the source code is hardly

computable and with super-restrictive conventions forbidding every code constructs, the parsing process is

trivial.

As a consequence, the allowed conventions set usually is a trade-off between the freedom to write any code

constructs into the code and the need to be able to precisely identify what is access-control related and what

is not. In addition to that, real software engineering processes also have to take into account the conventions

used by the software developers themselves : as members of the same developer team, they usually share

(at least partially) the same philosophy about “good” and “bad” code constructs.

8.2.1.2 Weavers

Weavers, or output adapters, are the exact opposite of parsers : they translate the internal representation

of an element into the chosen external formalism. They, however, work pretty in the same way, with the

addition that their source formalism is completely non-ambiguous. The weaving process usually consist in

the translation of the source formalism to the target formalism and in the insertion of the produced elements

at the right place in target code.

When weaving to a model different from the initial source code (see section 6.3, p. 109 for details), the

weaver can also generate the method stubs to redirect the source code calls to this external model. In this

way, the code functionality is maintained.

8.2.1.3 Joint effort

Both kinds of adapters have the ability to store some parsing state informations designed to help any future

parsing or weaving to the considered formalism. This local storage can be done locally to the adapter (for

instance, to help weaving back the extracted code) or globally in the code storage area (for informations

that could be useful for other components).

The most obvious example of such information transfert between an input and an output adapter lies in

the Java source code adapter developer in the context of the case study presented in chapter 3. In order

128 CHAPTER 8. PROTOTYPE DESCRIPTION

to limit as much as possible the code structure changes between the successive iterations of the approach,

the access-control rules appearing into the model are linked with the code structures from which they were

created (i.e. when they are parsed). In this way, the weaver can reproduce the exact same code blocs each

time it encounters an access-control rules untouched by the verification and correction routines, limiting the

appearance of the code obfuscation side-effect.

8.2.2 Core Routines

The core component englobes two main elements : shared utilitarian routines and components (including

the GUI and user interactions management routines) and the verification / result reporting subsystem. In

the following, we will only adress the verification/result reporting aspect.

AC

Reqs

W+I

AC'

Reqs'

Store

MC Yes/NoOK ?

Reporting

Yes

No

Figure 8.5: Core Internals.

The general workflow of the verification stage is presented in figure 8.5. It basically consists in a human-

assisted process taking the various models of the considered system as inputs and, if applicable, producing

possibly modified versions of the access-control and requirements models as outputs.

It should be noted that both of these processes are human-assisted ones. The interaction of the developer

is required to fix the upper bounds on the model-checking state space generation and, more importantly, to

guide the reporting process and select the most adapted correction propositions.

CHAPTER 8. PROTOTYPE DESCRIPTION 129

8.2.2.1 Verification

The verification stage, labelled MC (model-checking) in the figure 8.5, verifies whether or not the access-

control model and world/system models given as input satisfy the expressed requirements.

Requirements are verified one at a time, in a iterative approach. The model-checking algorithm used is

based on a bounded model-checking approach : upper bounds are placed on objects and subjects sets car-

dinality, then the reachable state-space is built and checked using an adapted version of the verification

algorithm found in [AHK97].

This approach is far from being optimal and produces huge state spaces, but it allows to almost intuitively

explicit the behavior of the verification back to the developers. Thereby counterbalancing its weaknesses.

8.2.2.2 Reporting

As described in section 5.3 (p. 93), the result reporting process only produce correction proposals. When a

requirement violation is detected in the model-checking stage, the error trace leading to the violating state

and the potential property/requirement corrections are presented to the developer. His role is then to choose

the most appropriate one from the list or to implement his own one.

Selecting the most suitable solution quickly becomes a problem when the number of alternatives rises : the

set of potential solutions becomes hardly manageable by the developer. Furthermore, as the differences

between the proposed corrections tightens, the helping developer becomes rapidly confused between the

alternatives. Attempts to limit this problem, for instance by sorting the list based on a similarity factor with

the previously selected solutions, have been made, but none was satisfactory.

Up to now, no satisfying human-computer interface have been found to support this process : the proper vi-

sualisation of the violating trace and the modeling of the exact consequences of a proposed rule/requirement

update still are open questions, specially when the target audience is not familiar with formal methods.

130 CHAPTER 8. PROTOTYPE DESCRIPTION

9
Conclusion

In this document, we addressed the problematic of the co-evolution of the requirements specification and

the source code implementing them. Focussing on the access-control aspect of a software system, our ob-

jective was to provide the developers with an almost automatic way to propagate any modification made on

the source code (or the access-control specification) to the access-control model (resp. the source code).

We aimed at making the iterative code development scheme more secure by automatizing the detection and

resolution of the violations of the requirements introduced through code features evolution.

In particular, we approached this topic in the context of small development teams, with little to no under-

standing of standard formal verification techniques. We attempted to provide them with a methodology that

does not disturb their current development practices but provides them useful information on the potential

inconsistencies between their requirements specification and their implemented features.

We designed a language to model the access-control rules implemented into the executable code. This lan-

guage is able to model almost any access-control primitives, including DAC, MAC, RBAC and XACML

and was built with the idea of being usable directly by the developer if needed. As such it only uses simple

syntax constructs and its semantics was kept as intuitive as possible.

131

132 CHAPTER 9. CONCLUSION

An automatic access-control model extraction procedure was implemented to extract, from the executable

source code, the elements required to model the access-control behavior of the considered application. This

procedure takes advantage of the coding conventions used by the developer inside his source code as well

as some simplification hypothesis. It produces an access-control model that is at the same time human-

readable and understandable and complete enough to faithfully model the implemented decision rules.

Then a language adapted to specify any access-control related requirements was designed. It takes into

account both simple permissions and complex decision rules involving coalition of users (both allies and

adversaries) and temporal operators. Again, this language was built to be editable by the developer; it was

kept as simple as possible without losing too much expressivity.

A procedure to transform the access-control model into executable code able to fit inside the considered

application was given. This procedure tries to be as un-damaging as possible, it attempts not to modify any

items in the source code that are not affected by the model updates. However, this is not always possible

and, sometimes, the produced code, although being functionally equivalent to the original code, is gener-

ated using a different structure. Some potential optimizations of the proposed procedure aiming at limiting

this problem, like the pragma, have also been discussed.

Then, using standard model-checking algorithms, we verified the extracted access-control model against the

expressed requirements. If inconsistencies are found, we propose an execution trace leading to the property

violation along with corrective measures if applicable. These measures can apply either on the access-

control model, or on the requirement specification. They can be either ad-hoc corrections, forbidding only

the violating scenario, or generalized corrections, attempting to “guess” what missing property is causing

the inconsistency. Modification on the access-control model can be proposed either on the access-control

model language or directly into the executable code. This process is human-assisted : corrective measures

are proposed to the developer, his role is to choose which one to apply. This allows to keep the developer in

total control over his code : he is the one to decide which correction to implement and how to implement it.

After that, the main strengths and weaknesses of the approach have been discussed and general possibili-

ties for improvements have been proposed. In particular, some lessons learned from the application of the

methodology to a real software system, with the intervention of the original developers showed the limi-

tations of the approach, mostly the change of mind required to move from a “code then test” to a “code

then verify” philosophy. Some habits are very hard to go against and it may take time before the benefits of

formal methods overcome the inherent costs induced on the software project.

Some questions about the verification result reporting have been left open. In particular, the representation

of the semantics of the temporal logic operator still cause trouble in the mind of developers not used to

CHAPTER 9. CONCLUSION 133

formal methods. Building textual or graphic representations of time-dependent elements is a challenge with

a broader impact than the field of computer science.

Another open research topic lies in the tight dependency between the quality of the access-control extrac-

tion from the source code and the coding conventions required on the source code. Lots of improvements

in the code parsing and understanding are possible. Going along with this topic is the problem of the code

structure delimiting and the code scrambling prevention. Better code semantics extraction algorithm could

allow to prevent the unwanted side-effects of the weaving process obfuscating correct code.

Finally, this approach still heavily depends on the quality of the developer’s code. We attempt to verify that

the specified requirements do match with the access-control model implemented into the code, but we do

not check if the access-control sections of the source code are properly called throughout the application.

Enlarging the scope of the extraction and analysis could permit to verify these calls, but this remains an

open question in this document.

As a conclusion to this work, building secure code is and will remain a difficult and open question. Cur-

rently, the only way to guarantee a 100% secure code is to generate it from scratch using adapted methods

(think for instance of the B method) or to use sometimes very complex formal proofs. These approaches go

against the general trend in current software development which is based on rapid prototyping and more or

less extensive software testing. The presented method, as every method based on formal methods, provides

models and tools to assist the developers in their harsh task of building good software. But by themselves,

tools are useless; only when used by the proper artisan can they show their benefits and produce master-

pieces.

As secure code is the founding stone of secure software, any step toward more secure software is a step in

the right direction; as no method can satisfy all needs, this methodology only is an attempt to bring inter-

ested developers closer to secure software.

134 CHAPTER 9. CONCLUSION

References

[Abr96] Jean-Raymond Abrial. The B Book - Assigning Programs to Meanings. Cambridge University

Pres, 1996.

[AHK97] Rajeev Alur, Tomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic. In

IEEE Computer Society Press, editor, Proceedings of the 38th Annual Symposium on Foun-

dation of Computer Science (FOCS), pages 100–109, 1997.

[And01] Ross Anderson. Security Engineering. Wiley, first edition edition, 2001.

[Asp] AspectJ. Aspectj. http://www.eclipse.org/aspectj/.

[CCR11] CCRA. Common criteria for information technology security evaluation, version 3.1, 2011.

[CDH+00] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Corina S. Păsăreanu,

Robby, and Hongjun Zheng. Bandera: extracting finite-state models from java source code.

Proceedings of the 22nd international conference on Software engineering, 1:439–448, 2000.

[Cle11] Clearsy System Engineering. B-method. http://www.bmethod.com/, 2011.

[Cou08] P. Cousot. Abstract interpretation. http://www.di.ens.fr/ cousot/AI/, 2008.

[CVC99] Sergio Vale Aguiar Campos, Srgio Vale, and Aguiar Campos. Symbolic model checking in

practice, 1999.

[DHM09] Frédéric Dadeau, Amal Haddad, and Thierry Moutet. Test fonctionnel de conformité vis-à-vis

d’une politique de contôle d’accès. Technique et Science Informatiques (TSI), 28:533–563,

04 2009.

[Dij76] Edsger W. Dijkstra. A discipline of programming. Prentice-Hall, Englewood Cliffs, N.J. :,

1976.

[DKW08] V. D’Silva, D. Kroening, and G. Weissenbacher. A survey of automated techniques for for-

mal software verification. Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, 27(7):1165 –1178, july 2008.

135

136 REFERENCES

[EM09] EU and Prof. Fabio Massacci. Security engineering for lifelong evolvable systems, 2009.

[FK92] David Ferraiolo and Richard Kuhn. Role-based access control. In In 15th NIST-NCSC Na-

tional Computer Security Conference, pages 554–563, 1992.

[FKC03] David F. Ferraiolo, D. Richard Kuhn, and Ramaswamy Chandramouli. Role-Based Access

Control. Artech House, Inc, 2003. ISBN:1-58053-370-1.

[Fou11] FSF Free Software Foundation. Gnu coding standards, August 2011.

[FSG+01] David Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and Ramaswamy Chan-

dramouli. Proposed nist standard for role-based access control. ACM Transactions on Infor-

mation and System Security (TISSEC), 4(3):224–274, August 2001.

[GRS04] Dimitar P. Guelev, Mark Ryan, and Pierre Yves Schobbens. Model-checking access control

policies. Proceedings of FCS’04, 1:23–40, 2004.

[GSL07] R. Groz, M. Shahbaz, and K. Li. Une approche incrémentale de test par extraction de modèles.

In AFADL’07 (Approches Formelles dans l’Assistance au Développement de Logiciels, 10ème

anniversaire), Namur, June 2007.

[GvD06] Valentin Goranko and Govert van Drimmelen. Complete axiomatization and decidability of

alternating-time temporal logic. Theoretical Computer Science, 353(1-3):93 – 117, 2006.

[Had05] Amal Haddad. Modélisation et vérification de politiques de sécurité. Rapport de master 2

recherche (système d’information), Université Joseph Fourier, 2005.

[HFK06] Vincent C. Hu, David F. Ferraiolo, and D. Rick Kuhn. Assessment of access control systems.

Interagency report 7316, NIST, September 2006.

[Hol01] Gerard J. Holzmann. Economics of software verification. In Proceedings of the 2001

ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and engineer-

ing, PASTE ’01, pages 80–89, New York, NY, USA, 2001. ACM.

[HP98] Klaus Havelund and Thomas Pressburger. Model checking java programs using java

pathfinder, 1998.

[ini11] ODRL initiative. Open digital rights language. http://odrl.net/, 2011.

[JSP+11a] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank

Piessens. Verifast: A powerful, sound, predictable, fast verifier for c and java. In NASA Formal

Methods, pages 41–55, 2011.

[JSP11b] Bart Jacobs, Jan Smans, and Frank Piessens. Verifast website.

http://people.cs.kuleuven.be/ bart.jacobs/verifast/, 2011.

REFERENCES 137

[JUn10] JUnit.org. Junit. http://www.junit.org/, 2010.

[Jur05] Jan Jurjens. Secure Systems Development with UML. Springer Academic Publishers, 2005.

[Jü02] Jan Jürjens. Umlsec: Extending uml for secure systems development. In Jean-Marc Jézéquel,

Heinrich Hussmann, and Stephen Cook, editors, «UML» 2002 — The Unified Modeling Lan-

guage, volume 2460 of Lecture Notes in Computer Science, pages 1–9. Springer Berlin /

Heidelberg, 2002.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes,

Jean-Marc Loingtier, and John Irwini. Aspect-oriented programming. In Springer-Verlag,

editor, proceedings of the European Conference on Object-Oriented Programming (ECOOP),

Finland, volume LNCS 1241, June 1997.

[KS06] Feisal Keblawi and Dick Sullivan. Applying the common criteria in systems engineering.

IEEE Security and Privacy, 4:50–55, 2006.

[LBB05] Ninghui Li, Ji-Won Byun, and Elisa Bertino. A critique of the ansi standard on role-based

access control. empty, 2005.

[Liv06] Benjamin Livshits. Improving Software Security with Precise Static and Runtime Analysis.

PhD thesis, Stanford University, 2006.

[LMO07] Francois Laroussinie, Nicolas Markey, and Ghassan Oreiby. On the expressiveness and com-

plexity of ATL. In Proceedings of the 10th International Conference on Foundations of Soft-

ware Science and Computation Structures (FoSSaCS’07), Lecture Notes in Computer Science.

Springer, 2007.

[LTMPB08] Y. Le Traon, T. Mouelhi, A. Pretschner, and B. Baudry. Test-driven assessment of access

control in legacy applications. In Proceedings of the 2008 International Conference on Soft-

ware Testing, Verification, and Validation, pages 238 –247, Washington, DC, USA, april 2008.

IEEE Computer Society.

[Mea] Ben Meadowcroft. Why systems fail. http://www.benmeadowcroft.com/reports/systemfailure/.

[MFBLT08] Tejeddine Mouelhi, Franck Fleurey, Benoit Baudry, and Yves Le Traon. A model-based

framework for security policy specification, deployment and testing. In Krzysztof Czarnecki,

Ileana Ober, Jean-Michel Bruel, Axel Uhl, and Markus Volter, editors, Model Driven Engi-

neering Languages and Systems, volume 5301 of Lecture Notes in Computer Science, pages

537–552. Springer Berlin / Heidelberg, 2008.

[MJH+10] Lionel Montrieux, Jan Jürjens, Charles B. Haley, Yijun Yu, Pierre-Yves Schobbens, and Hu-

bert Toussaint. Tool support for code generation from a umlsec property. In ASE 2010, 25th

138 REFERENCES

IEEE/ACM International Conference on Automated Software Engineering, Antwerp, Belgium,

pages 357–358, 2010.

[MLTB09] T. Mouelhi, Y. Le Traon, and B. Baudry. Transforming and selecting functional test cases

for security policy testing. Software Testing Verification and Validation, 2009. ICST ’09.

International Conference on, pages 171 –180, april 2009.

[Mon09] Lionel Montrieux. Implementation of access control using aspect-oriented programming.

Master’s thesis, FUNDP, 2009.

[Mor07] C. Morisset. Sémantique des systèmes de contrôle d’accès. PhD thesis, Université Pierre et

Marie Curie - Paris 6, 2007.

[NAS] NASA. Java pathfinder. http://babelfish.arc.nasa.gov/trac/jpf.

[NIS06] NIST. Role based access control, 2006. National Institute of Standard and Technology.

[OAS05] OASIS. extensible access control markup language (xacml) version 2.0, February 2005.

[OMG09] OMG. Unified modeling language superstructure version 2.2., February 2009. The Object

Management Group.

[Ora11] Oracle. Java authentication and authorization service, 2011.

[Par11] Terence Parr. ANTLR : Another tool for language recognition, 2011. University of San

Francisco.

[Pet] Bret Pettichord. Resources for professional software testers. http://www.io.com/ wazmo/qa/.

[Pfl01] Shari Lawrence Pfleeger. Software Engineering: Theory and Practice. Prentice Hall PTR,

Upper Saddle River, NJ, USA, 2nd edition, 2001.

[Pos82] J. Postel. RFC 821: Simple mail transfer protocol, August 1982.

[Ric53] H. G. Rice. Classes of Recursively Enumerable Sets and Their Decision Problems. Transac-

tions of the American Mathematical Society, 74(2):358–366, 1953.

[Roy70] Walker W. Royce. Managing the development of large software systems: concepts and tech-

niques. Proc. IEEE WESTCON, Los Angeles, pages 1–9, August 1970. Reprinted in Proceed-

ings of the Ninth International Conference on Software Engineering, March 1987, pp. 328–

338.

[Sew11] Julian Seward. Valgrind. http://valgrind.org/, 2011.

[SFK00] Ravi Sandhu, David Ferraiolo, and Richard Kuhn. The nist model for role-based access con-

trol: towards a unified standard. In Proceedings of the fifth ACM workshop on Role-based

access control, RBAC ’00, pages 47–63, New York, NY, USA, 2000. ACM.

REFERENCES 139

[SSS94] Ravi Sandhu, Ravi S. S, and Pierangela Samarati. Access control: Principles and practice.

IEEE Communications, 32(9):40–48, 1994.

[TKS05] Artem Tishkov, Igor Kotenko, and Ekaterina Sidelnikova. Security checker architecture for

policy-based security management. In Vladimir Gorodetsky, Igor Kotenko, and Victor Sko-

rmin, editors, Computer Network Security, volume 3685 of Lecture Notes in Computer Sci-

ence, pages 460–465. Springer Berlin / Heidelberg, 2005.

[TNTN11] R. Toledo, A. Nunez, E. Tanter, and J. Noye. Aspectizing java access control. Software

Engineering, IEEE Transactions on, PP(99):1, 2011.

[Tou06] Hubert Toussaint. Formalisation des politiques de contrôles d’accès. DEA thesis, University

of Namur, 2006.

[US 85] US Department of Defense. Department of defense trusted computer system evaluation crite-

ria, december 1985. DOD 5200.28-STD.

[US 88] US Department of Defense. Dod standard 2167-a : Defense systems software development,

February 29 1988. On December 5th, 1994 it was superseded by MIL-STD-498, which

merged DOD-STD-2167A, DOD-STD-7935A, and DOD-STD-2168 into a single document,.

[vdHLW06] Wiebe van der Hoek, Alessio Lomuscio, and Michael Wooldridge. On the complexity of

practical atl model checking. In Proceedings of the fifth international joint conference on

Autonomous agents and multiagent systems, AAMAS ’06, pages 201–208, New York, NY,

USA, 2006. ACM.

[WWZX09] Jun Wu, Chongjun Wang, Lei Zhang, and Junyuan Xie. Coalitional planning in game-like

domains via atl model checking. In Proceedings of the 2009 21st IEEE International Confer-

ence on Tools with Artificial Intelligence, ICTAI ’09, pages 645–652, Washington, DC, USA,

2009. IEEE Computer Society.

[YTB07] Le Traon Yves, Mouelhi Tejeddine, and Baudry Benoit. Testing security policies : going

beyond functional testing. In ISSRE’07 : The 18th IEEE International Symposium on Software

Reliability Engineering, 2007. Trollhätan, Sweden.

140 REFERENCES

