
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

DOCTOR OF SCIENCES

Reverse Engineering Web Configurators

Abbasi, Ebrahim Khalil

Award date:
2014

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/f6605ec8-0a25-4175-9b3c-a747e5b03808

Reverse Engineering Web Configurators

Ebrahim Khalil Abbasi

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Science

in the

PReCISE Research Centre

Faculty of Computer Science

University of Namur

March 2014

http://www.unamur.be/universite/personnes/page_view/01007819/
http://www.unamur.be/en/precise
http://www.unamur.be/en/inf
http://www.unamur.be/

Jury

Prof. Pierre-Yves Schobbens, University of Namur, Belgium (chair)

Prof. Kim Mens, Catholic University of Louvain, Belgium

Prof. Mathieu Acher, University of Rennes, France

Prof. Anthony Cleve, University of Namur, Belgium

Prof. Patrick Heymans, University of Namur, Belgium (advisor)

i

Abstract

In many markets, being competitive echoes with the ability to propose customized prod-

ucts at the same cost and delivery rates as standard ones. As a result, companies provide

their customers with online Web configurators to facilitate the product customization

task. Web configurators offer a highly interactive configuration environment for cus-

tomers to specify products that match their individual requirements and preferences.

They provide capabilities to guide the customer through the multi-step and non linear

configuration process, check consistency, and automatically complete partial configura-

tion.

To get a better grasp of what is the current practice in engineering Web configurators,

we conducted a systematic empirical study of 111 configurators. We quantified their nu-

merous properties, categorized patterns used in their engineering, and highlighted good

and bad practices. We provided empirical evidence that Web configurators are complex

information systems. Despite of this fact, this study revealed the absence of specific,

adapted, and rigorous methods in their engineering. The lack of dedicated methods

for efficiently engineering Web configurators leads to reliability, runtime efficiency, and

maintainability issues.

To migrate legacy Web configurators to more reliable, efficient, and maintainable solu-

tions, we offer to systematically re-engineer these applications. This encompasses two

main activities: (1) reverse engineering Web configurators to extract their configuration-

specific data and encoding it into dedicated formalisms, and then (2) forward engineer-

ing new improved configurators. In this study, we are concerned with the reverse-

engineering process. We developed a consistent set of methods, languages and tools to

semi-automatically extract configuration-specific data from the Web pages of a configu-

rator. Such data is stored in variability models (e.g., feature models). These models can

later be used for verification purposes (e.g., checking the completeness and correctness

of the configuration constraints) as well as input for forward-engineering techniques.

To reverse engineer variability models from Web configurators, we developed techniques

that target static structure and dynamic behaviour of Web configurators to locate and

extract configuration-specific data. Experimental results on existing real Web configu-

rators confirm the applicability of our contribution.

iii

Résumé

Dans de nombreux marchés, la compétitivité passe par la possibilité de fournir des

produits dédiés à des taux de production et à des prix identiques à ceux dits “standards”.

A cette fin, les sociétés fournissent à leurs clients des “configurateurs” web afin que

ceux-ci puissent spécifier les options des produits répondant à leurs attentes. Ces outils

offrent des environnements interactifs qui guident les utilisateurs à travers des processus à

plusieurs étapes et souvent non-linéaires, vérifient la correction des options et complètent

automatiquement les configurations partielles.

Afin de mieux comprendre les pratiques actuelles de conception de ces configurateurs,

nous avons effectué une étude empirique sur 111 configurateurs. Nous avons examiné et

quantifié leurs divers attributs, organisé les différents patrons de conception utilisés et

souligné les bonnes et les moins bonnes pratiques. Cette étude a révélé qu’un configu-

rateur est en fait un système d’information complexe. Notre étude à aussi révélé qu’il

n’y avait pas d’approche systématique, dédiée et rigoureuse pour construire de tels con-

figurateurs. Ce manque nuit fortement à la fiabilité, la performance et la maintenance

de ces systèmes.

Pour pouvoir migrer les configurateurs existants vers des solutions offrant une meilleure

performance, fiabilité et evolutivité, nous pensons qu’il faut les reconcevoir de manière

systématique. Cette approche comprend deux grandes étapes : 1) rétro-conception de

configurateurs web afin d’en extraire les données de configuration et leur encodage dans

des langages facilitant l’analyse, et 2) Génération de configurateurs améliorés. Dans

cette thèse, nous intéressons à la première étape, pour laquelle nous avons développé

une approche cohérente visant à extraire de manière semi-automatique les informations

de configuration spécifiques des configurateurs web. Ces données sont ensuite encodées

dans des modèles de variabilité (“feature models”). Ces modèles peuvent être utilisés

par la suite pour pour vérifier la cohérence et la complétude des contraintes de config-

urations. Ils servent aussi de point de départ au processus de génération de nouveaux

configurateurs.

Nos outils de rétro-conception ciblent la structure et le comportement dynamique des

configurateurs pour localiser et extraire les informations spécifiques de configuration.

Nos résultats empiriques obtenus sur des configurateurs existants établissent l’applicabilité

de notre approche.

v

Acknowledgements

I would not have been able to finish my PhD thesis without the guidance, encouragement,

and help of many people. I would like to extend my appreciation to the following.

My special appreciation and sincere gratitude goes to my advisor Prof. Patrick Heymans

for the support of my PhD studies and for the motivation, guidance, and help he provided

to me. Patrick has been a patient mentor as well as a great and funny friend. Without

his help I would not be where I am today. Thank you Patrick.

I would like to express my thanks to my jury members, Prof. Pierre-Yves Schobbens,

Prof. Kim Mens, Prof. Mathieu Acher, and Prof. Anthony Cleve, for letting my defense

be an enjoyable moment, for their encouragement, excellent comments, and constructive

questions. I would also thank Prof. Elliot Chikofsky for his awesome advice on my thesis.

I am indebted to my friends for keeping in touch, letting me present them my work,

and helping me. I am especially grateful to Quentin Boucher, Andreas Classen, Maxime

Cordy, Arnaud Hubaux, Nicolas Genon, Raphael Michel, Gilles Perrouin, and Germain

Saval. I cannot thank them enough for their kindness and support.

A special thanks to my family, my mother, my father, my sisters, my brothers, and my

beautiful nieces and nephews. Words cannot express how deeply thankful I am for their

prayers and endless support throughout my life.

Finally and foremost, I am eternally grateful to my beloved Leila, who is my constant

support. She has done so much for me. Leila has always been there for me with

encouraging words and a lot of love. Without her, it would not have been possible to

finish this work. Thank you Leila.

vii

Contents

Abstract iii

Résumé v

Acknowledgements vii

List of Figures xi

List of Tables xiv

Abbreviations xv

1 Introduction 1

1.1 Mass Customization . 1

1.2 Web Configurators . 2

1.3 Problem Statement . 3

1.4 Contributions . 6

1.5 Roadmap . 7

1.6 Bibliographical Notes . 8

2 Background: Variability Modelling and Web Applications 10

2.1 Variability Modelling . 10

2.2 Web Applications . 14

2.3 Chapter Summary . 18

3 The Anatomy of a Web Configurator 19

3.1 Introduction . 20

3.2 Problem Statement and Method . 20

3.3 General Observations . 25

3.4 Quantitative Results . 27

3.5 Qualitative Results . 40

3.6 Reverse Engineering Challenges . 42

3.7 Threats to Validity . 43

3.8 Related Work . 44

3.9 Chapter Summary . 45

ix

Contents x

4 Reverse Engineering Web Applications: State of the Art 46

4.1 Reverse Engineering Web Applications . 46

4.2 Web Data Extraction . 54

4.3 Synthesizing Feature Models . 65

4.4 Conclusion . 70

5 The Reverse Engineering Process 74

5.1 Main Challenges . 75

5.2 The Reverse Engineering Process . 79

5.3 Chapter Summary . 82

6 Variability Data Extraction Patterns 83

6.1 Observations . 83

6.2 Preliminary Definitions . 85

6.3 Variability Data Extraction Patterns . 89

6.4 Grammar . 107

6.5 Chapter Summary . 116

7 Data Extraction Procedure 117

7.1 Data Extraction . 117

7.2 Data Presentation . 134

7.3 Tool Implementation . 140

7.4 Chapter Summary . 141

8 Extracting Dynamic Variability Data 144

8.1 Dependencies between vde Patterns . 144

8.2 Crawling the Configuration Space . 149

8.3 Extracting Constraints . 157

8.4 Chapter Summary . 176

9 Evaluation 177

9.1 Experimental Setup . 177

9.2 Experiment and Results . 180

9.3 Discussion . 192

9.4 Threats to Validity . 198

10 Conclusion and Future Work 199

10.1 Contributions . 199

10.2 Limitations . 202

10.3 Perspectives . 204

List of Figures

1.1 Opel Web configurator . 3

1.2 Re-engineering process . 5

2.1 A FM for mobile phone systems . 12

2.2 Dell Web configurator . 15

2.3 TVL model for the Dell configurator shown in Figure 2.2 16

2.4 Architecture for Web applications . 17

3.1 Audi Web configurator . 21

3.2 Configurator selection process . 23

3.3 Distribution of selected configurators by industry 24

3.4 The Firebug data extraction extension . 25

3.5 Presentation of configuration-specific objects 26

3.6 Template-generated Web page . 28

3.7 Dynamic content . 29

3.8 Widget types in all the configurators . 31

3.9 Interval group . 32

3.10 Type correctness constraint . 33

3.11 Range control constraints . 34

3.12 Case-sensitive values . 35

3.13 Automatic decision propagation . 37

3.14 Controlled decision propagation . 38

3.15 Guided decision propagation . 38

4.1 UI migration process with VAQUISTA . 49

4.2 GuiSurfer’s tool architecture . 50

4.3 Processing view of CRAWLJAX . 51

4.4 The state-flow graph of an AJAX site created by CRAWLJAX 52

4.5 The reverse-engineering process in the WARE approach 53

4.6 An example input to STALKER . 57

4.7 An example of STALKER fail . 58

4.8 Modules of the DEByE tool . 58

4.9 Two sample pages and the generated wrapper by ROADRUNNER 60

4.10 Data wrapping phases and their interactions in XWRAP 61

4.11 The main steps of news extraction process 63

4.12 The process of extracting feature models from product descriptions 66

4.13 Components of feature model synthesis . 67

xi

List of Figures xii

4.14 The two-phase process of mining features and building FM from informal
product descriptions . 68

4.15 The process of extracting architectural FMs 69

5.1 The configuration file containing the specified vde patterns to extract
options from the page shown in Figure 3.6 78

5.2 Reverse Engineering Process . 79

6.1 Example Web page . 88

6.2 Web page generation model . 90

6.3 Data reverse engineering process . 91

6.4 vde pattern example (1) . 94

6.5 vde pattern example (2) . 95

6.6 vde pattern example (3) . 98

6.7 vde pattern example (4) . 101

6.8 vde pattern example (5) . 103

6.9 vde pattern example (6) . 104

6.10 vde pattern example (7) . 106

6.11 Pattern configuration file . 107

7.1 The algorithm for finding candidate code fragments 121

7.2 An example source code . 122

7.3 Pattern configuration file . 123

7.4 Tree representation (1) . 126

7.5 Data extraction procedure . 127

7.6 Tree traversing . 129

7.7 Tree representation (2) . 135

7.8 Tree representation (3) . 136

7.9 Schema of output data . 139

7.10 An example output XML file. 140

7.11 Firebug . 142

7.12 Web Wrapper extension . 143

8.1 Parent-child relationship between objects 146

8.2 The code fragments for “M Sport Package” shown in Figure 8.1 147

8.3 The configuration file to extract options shown in Figure 8.1 148

8.4 An excerpt of the XML file representing the extracted data for “M Sport

Package” shown in Figure 8.1 . 149

8.5 The adopted data extraction procedure for the purpose of crawling 153

8.6 Dynamic content . 155

8.7 The patterns specified to crawl the page shown in Figure 8.6 155

8.8 Output XML file for the page shown in Figure 8.6 156

8.9 Textual formatting constraint . 158

8.10 Patterns specified to extract text boxes and their formatting constraints
shown in Figure 8.9 . 158

8.11 The XML file produced for options shown in Figure 8.9 159

8.12 Formatting constraints controlling bounds of sliders 159

8.13 Three groups of options presented using radio buttons 162

List of Figures xiii

8.14 Cross-cutting constraints displayed in the GUI 163

8.15 Independent and dependent options . 165

8.16 Specified vde patterns to extract data from the page shown in Figure 8.15 165

8.17 The output XML file produced for the page shown in Figure 8.15 and the
patterns given in Figure 8.16 . 166

8.18 Controlled decision propagation . 167

8.19 vde patterns specified to extract data from the page shown in Figure 8.18 168

8.20 The output XML file produced for the page shown in Figure 8.18 and the
patterns given in 8.19 . 169

8.21 Algorithm for generating the configuration set 171

8.22 An example configuration environment . 172

8.23 Index configuration state for the options shown in Figure 8.22 173

8.24 vde patterns specified to crawl the options shown in Figure 8.22 173

8.25 The output XML file – the option “Space-saver spare wheel” is selected by
the Crawler in Figure 8.22 . 174

8.26 Algorithm for deducing constraints from the state changes 175

9.1 Dell’s laptop configurator . 183

9.2 BMW’s car configurator . 186

9.3 Controlled decision propagation strategy in BMW’s car configurator . . . 187

9.4 Configuration state changes in BMW’s car configurator 188

9.5 Dog-tag generator . 189

9.6 Dynamic data in Dog-tag generator . 190

9.7 Chocolate maker . 191

9.8 Shirt designer . 192

10.1 A MVC-like architecture for configurators 205

10.2 Example of FCW . 206

10.3 Overview of the essential components and typical use case scenario 208

10.4 View creation menu . 209

10.5 View configuration menu . 210

List of Tables

3.1 Result summary. 30

7.1 Element instances. 127

9.1 Questions and metrics . 179

9.2 Example Web configurators chosen for evaluation. 179

9.3 Experimental results. 181

9.4 Pattern-specific elements. 182

9.5 LOC of the generated TVL files. 182

9.6 The time spent for writing patterns. 195

xiv

Abbreviations

UI User Interface

FM Feature Model

GUI Graphical User Interface

DOM Document Object Model

vde variability data extraction

LOC Lines Of Code

xv

I dedicate this thesis to

my lovely Leila and my wonderful family

for their constant love and support.
I love you all dearly.

Chapter 1

Introduction

1.1 Mass Customization

After the industrial revolution, companies have set up a mass production line. Mass

production is the production of a large amount of similar products to bring the prod-

ucts to market as quickly as possible at low costs. In mass production, low costs are

achieved primarily through economies of scale – lower unit costs of a single product or

service through greater output and faster throughput of production process [Pine, 1993].

While standardized products are best produced in an assembly line mass production en-

vironment [Hayes and Wheelwright, 1979], many companies are currently experiencing

increasing demand from their customers for the delivery of customized products that

have almost the same delivery time, price and quality as mass-produced products. One

way this development is described is by the concept of mass customization – a produc-

tion form in which customized products are delivered by exploiting the advantages of

mass production [Hvam et al., 2008]. Whereas mass production’s primary goal is to

produce standardized products at a price that everyone can afford, the goal of mass cus-

tomization is to produce enough variety in products and services so that nearly everyone

finds exactly what he/she wants at a reasonable price [Pine, 1993].

Mass customization is producing goods and services to meet individual customers’ needs

with near mass production efficiency [Tseng and Jiao, 2007]. It in fact aims to pro-

vide a trade-off between product variety (i.e., flexibility) and production cost (i.e., effi-

ciency) [Hayes and Wheelwright, 1979; Kotha, 1995]. In mass customization, low costs

are achieved primarily through economies of scope – the application of a single process

to produce a greater variety of products or services more cheaply and quickly [Pine,

1993].

1

Chapter 1. Introduction 2

One key element in a mass customization strategy is to build products by selecting,

combining and possibly adapting a set of standard modules. In other words, mass

customization is mass production of standard modules and customer-initiated assembly

of customized products based on the use of modules [Hvam et al., 2008]. These modules

share more commonalities than variabilities. Commonality refers to the multiple use of

modules within the same product and between different products. It aims to reduce

the extent of special-purpose modules, which generally increases internal variety and

costs [Blecker and Abdelkafi, 2006].

1.2 Web Configurators

In order to facilitate the product customization task, companies provide their customers

with online software tools called configuration systems (see Figure 1.1 for an example),

also referred to as product configurators, Web configurators, sales configurators, design

systems, or simply configurators. A configurator requires a product configuration model,

i.e., the core that contains the list of predefined configuration options (also known as

modules or components) to be assembled, their variations, and configuration rules (i.e.,

constraints) existing between options. It presents configuration options to customers

and guides them through the product configuration process. To specify a product that

matches the customer’s individual requirements and preferences, the customer selects

the options to be included in the product and the configurator guarantees that all the

design and configuration rules which are expressed in the product configuration model

are satisfied [Blecker and Abdelkafi, 2006; Franke and Piller, 2002; Hedin et al., 1998;

Ong et al., 2006; Tseng and Piller, 2003; von Hippel and Katz, 2002; Xie et al., 2005].

In particular, the configurator verifies constraints, propagates customer decisions, and

handles conflictual decisions. In other words, given a set of customer requirements and

a logical description of the product family, the role of the configuration system is to find

a valid and completely specified product instance along all of the alternatives that the

generic structure describes [Sabin and Weigel, 1998].

Configurators are used in many B2B and B2C applications to personalize products

and services. They are used in installation wizards and preference managers. They

are also extensively used in software product lines (SPLs) where multiple information

system variants are derived from a base of reusable artefacts according to the specific

characteristics of the targeted customer or market segment [Gottschalk et al., 2009; Pohl

et al., 2005; Rosa et al., 2008; Schäler et al., 2012].

Chapter 1. Introduction 3

Figure 1.1: Opel Web configurator (http://www.opel.ie/, February 21 2014).

1.3 Problem Statement

In many cases, configurators have become the privileged channel for identifying cus-

tomer needs. If a configurator could not guide customers to specify the right products

or if customers feel overwhelmed by the configuration process, they may make subop-

timal decisions or abort the configuration process [Rogoll and Piller, 2004] which leads

companies to experience a loss of sales [Trentin et al., 2012]. As such, configurators

are strategic components of companies’ information systems and must meet stringent

reliability, usability and evolvability requirements.

Configurators still need substantial improvements, especially the way by which configu-

rators present options to customers [Blecker and Abdelkafi, 2006]. An empirical study

carried out by Rogoll and Piller shows that existing configurators cannot fulfil optimal

Chapter 1. Introduction 4

requirements from companies’ and customers’ perspectives [Rogoll and Piller, 2004]. For

instance, some configurators do not show the customer a picture of the whole proposal

and functionalities the system offers, do not provide explanations on how to navigate

through the configuration process, etc. The authors concluded that the state of the

design of configurators’ front-ends is rather weak. Von Hippel also showed that existing

configurators just enable customers to select products among alternatives but do not

facilitate customer learning [von Hippel, 2001].

Despite the abundance of Web configurators, the state of the art lacks knowledge, guide-

lines, and tools for efficiently engineering Web configurators. Our long-term objective

is to develop a set of methods, languages, and tools to systematically engineer Web

configurators. However, to realize this vision, we first need to understand the intrinsic

characteristics of Web configurators. Therefore, we set out to answer the first research

question:

RQ1 What is the current practice in engineering Web configurators?

To answer this research question, we conducted a systematic empirical study of 111 con-

figurators and highlighted patterns used in engineering Web configurators. This study

revealed the absence of specific, dedicated, and rigorous methods in their engineering.

For instance, the use of variability models to formally capture configuration options and

constraints, and state-of-the-art solvers (e.g., SAT, CSP, or SMT) to reason about these

models, would provide more effective bases [Benavides et al., 2010; Hubaux et al., 2012;

Janota, 2010].

Some of our industry partners face similar problems and are now trying to migrate their

legacy Web configurators to more reliable, efficient, and maintainable solutions [Boucher

et al., 2012a]. To decrease the cost of migration, we offer to systematically re-engineer

these applications. Figure 1.2 presents our proposed re-engineering process. This en-

compasses three activities: (1) reverse engineering legacy Web configurators, (2) en-

coding the extracted data into dedicated formalisms, and (3) forward engineering new

improved configurators. Reverse engineering a Web configurator is the process of extract-

ing variability data (i.e., configuration options, their associated descriptive information,

constraints, etc.) from the Web pages of the configurator, and then constructing a vari-

ability model, for instance, a feature model. Once the feature model of the configurator is

built, it can be used in the forward-engineering process to generate a customized and eas-

ily maintainable user interface with an underlying reliable reasoning engine. In this PhD

thesis, we study the reverse-engineering process. The study of the forward-engineering

process is out of the scope of this thesis.

Chapter 1. Introduction 5

Our next goal is to reverse engineer variability models from Web configurators. We

address two main research questions that are related to the reverse-engineering process.

RQ2 What generic Web data extraction methods can we use to collect accurate vari-

ability data from the Web pages of a configurator?

This research question is concerned with two challenging issues. First, the Web data

extraction approach should be generic enough so that it can be used for collecting data

from Web configurators coming from different industry sectors with different charac-

teristics. Second, considering the fact that not all data presented in the pages of a

configurator is configuration-specific, eliciting the right data from the noisy data is an-

other major concern. Moreover, the extracted data must be named, meaning that each

data item in an extracted data record is required to be assigned a meaningful label.

RQ2 addresses the problem of extracting structured variability data from a Web page.

RQ3 How to support the extraction of the dynamic variability content?

Web configurators are highly interactive and dynamic applications. As a reaction

to the user’s configuration actions (e.g., exploring the configuration space, making

configuration-specific decisions, etc.), the configurator may add new configuration-specific

content to the page, or may change the existing content. This research question addresses

this runtime behaviour of Web configurators. We should answer sub-questions like:

• How to simulate the users’ configuration actions to automatically generate dynamic

content?

• How to deduce variability data from the dynamically generated content?

Figure 1.2: Re-engineering process [Boucher et al., 2012a].

Chapter 1. Introduction 6

1.4 Contributions

The main contributions of this thesis consist of:

C1 A systematic study and understanding of Web configurators. Although Web con-

figurators have been studied from usability and visual aspects [Rogoll and Piller, 2004;

Streichsbier et al., 2009; Trentin et al., 2012], their underlying concepts have not been

investigated. We conduct a systematic and empirical survey of 111 Web configurators

and aim at understanding how their underlying concepts are represented, managed, and

implemented. We analyse the client-side source code of these configurators with semi-

automated code inspection tools. We analyse the results along three essential dimen-

sions: rendering configuration options, constraint handling, and configuration process

support.

C2 Identification and classification of patterns used in engineering Web configura-

tors. Based on empirical data, we identify and classify patterns used in engineering

Web configurators. We then use these patterns to highlight the bad and good practices.

C3 Development of an HTML-like language to extract structured variability data from

Web pages. We propose the notion of variability data extraction (vde) patterns, an

HTML-like language to specify data to be extracted from the Web pages of a config-

urator. The vde patterns can be used to identify and manage the implicit templates

(structure and layout of data) followed in Web development. A user uses a vde pattern

to specify the structure of data objects of interest and data items to be extracted from

these objects.

C4 A source code pattern matching algorithm. We propose an algorithm that given

a vde pattern and a Web page, looks for code fragments (implementing data objects of

interest) in the source code of the page that structurally match the pattern. It provides

a two-step solution to find matching code fragments: (1) first finding candidate code

fragments that may match the given pattern, and then (2) traversing each candidate

code fragment to find if it is exactly matching the pattern. The algorithm seeks to

find mappings between elements of a code fragment and the given pattern using their

syntactic tree representations. It uses a bottom-up tree traversal to find candidate code

fragments and a mixture of both depth-first and breadth-first traversals to traverse each

candidate code fragment.

C5 An approach to (semi-)automatically and systematically extract dynamic variability

content. We present a solution to extract dynamic variability data. In particular, we

introduce the notion of dependency between vde patterns, the main foundation on top

of which our solution is developed. Our solution automates (1) the simulation of users’

Chapter 1. Introduction 7

exploration and configuration actions to systematically generate new content, and then

(2) the analysis of the new content to deduce the variability data.

C6 A complete implementation of all the algorithms, approaches, and methods in an

integrated tool. We implemented a reverse-engineering tool that mainly consists of two

collaborative components: Web Wrapper and Web Crawler. Web Wrapper seeks to find

and extract variability data from a page given a set of vde patterns, and then transforms

the extracted data into structured variability data represented in a feature model. Web

Crawler automatically explores the configuration space (i.e., all objects representing

variability data) and simulates some of the users’ configuration actions. It systematically

generates dynamic variability data which is then extracted by the Wrapper.

1.5 Roadmap

After this introductory chapter, the rest of the thesis is organized as follows.

Chapter 2 presents background information. It provides a general overview of vari-

ability modelling and briefly introduces TVL. This chapter also describes the nature of

Web applications.

Chapter 3 reports on a systematic study of Web configurators (RQ1). It presents the

diversity of representations for configuration options, different kinds of constraints are

supported by Web configurators, and the way the configuration process is enforced by

them (C1). This chapter also classifies grouping strategies used to categorize options

in semantic constructs, patterns followed by the configurators for decision propagation

and consistency checking, as well as patterns for designing the configuration process, its

activation and navigation. The bad and good practices in designing Web configurators

are also reported in this chapter (C2).

The empirical analysis of the configurators revealed reliability issues when handling

constraints. These problems come from the configurators’ lack of convincing support for

consistency checking and decision propagation. Moreover, the investigation of client-side

code implementation verifies, in part, that no systematic method (e.g., solver-based) is

applied to implement reasoning operations. We also noticed that usability is rather weak

in many cases (e.g., counter-intuitive representations, lack of guidance).

Chapter 4 reports a survey of existing approaches for reverse engineering Web appli-

cations, Web data extraction, and synthesizing feature models, three fields of study that

can contribute to reverse engineer featured models from Web configurators. We found

Chapter 1. Introduction 8

that none of these approaches tackle the extraction of variability data from Web config-

urators. Their use to reverse engineer feature models would require substantial changes

to their core procedures: the algorithms they implement do not consider configuration

aspects (e.g., configuration semantics of GUI elements) and specific properties of the

highly dynamic and multi-step nature of a configuration process (e.g., choices may force

the selection/exclusion of some other options, make visible new options or even new

steps).

Chapter 5 demonstrates our tool-supported and supervised reverse-engineering process

for extracting variability data from Web pages. It outlines interactive and automatic

activities required to produce a fully-fledged TVL model for a Web configurator (RQ2

and RQ3).

Chapter 6 explains our solution to extract structured variability data from the Web

pages of a configurator (RQ2). It introduces the notion of variability data extraction

(vde) patterns (C3) using which a user manually marks and names variability data to

be extracted. This chapter also describes the syntax of the patterns by giving examples

and providing a context-free grammar.

Chapter 7 describes the data extraction procedure (RQ2) used by the Wrapper to

find data objects of interest whose structure is specified in the given vde patterns. In

particular, this chapter explains our proposed source code pattern matching algorithm

(C4) implemented by the Wrapper (C6) to find matching code fragments.

Chapter 8 illustrates our solution to extract dynamic variability data (RQ3). It

introduces the notion of dependency between vde patterns. This dependency provides

a framework for the Wrapper and the Crawler to collaborate together to generate and

extract dynamic variability data (C5 and C6). In particular, they work together to

trigger and extract cross-cutting constraints defined over options.

Chapter 9 presents the results of using the proposed techniques on a sample set of

subject systems to evaluate our approach.

Chapter 10 concludes the thesis and highlights the future work.

1.6 Bibliographical Notes

The research presented in this PhD thesis, extends peer-reviewed publications of the

author. We list below the relevant papers:

Chapter 1. Introduction 9

Journal Paper

• A. Hubaux, P. Heymans, P.-Y Schobbens, D. Deridder, and E. K. Abbasi. Sup-

porting multiple perspectives in feature-based configuration. Software and System

Modeling (SoSyM), pages 641–663, 2013. Springer Berlin Heidelberg. (Chapter 10)

Conference Papers

• E. K. Abbasi, A. Hubaux, M. Acher, Q. Boucher, and P. Heymans. The Anatomy

of a Sales Configurator: An Empirical Study of 111 Cases. Advanced Information

Systems Engineering, volume 7908 of Lecture Notes in Computer Science, pages

162–177, 2013. Springer Berlin Heidelberg. (Chapter 3)

• E. K. Abbasi, M. Acher, P. Heymans, and A. Cleve. Reverse Engineering Web

Configurators. IEEE CSMR-WCRE 2014 Software Evolution Week, Antwerp, Bel-

gium, 2014. IEEE Computer Society. (Chapters 6, 7, 8, 9)

• E. K. Abbasi, A. Hubaux, and P. Heymans. A Toolset for Feature-based Configu-

ration Workflows. In Proceedings of the 15th International Software Product Line

Conference (SPLC’11), pages 65–69, Munich, Germany, 2011. IEEE Computer

Society. (Chapter 10)

• E. K. Abbasi, A. Hubaux, and P. Heymans. An interactive multi-perspective

toolset for non-linear product configuration processes (tool demo). In Proceedings

of the 15th International Software Product Line Conference (SPLC’11), Volume 2,

pages 50:1–50:1, Munich, Germany, 2011. IEEE Computer Society. (Chapter 10)

Workshop Paper

• Q. Boucher, E. K. Abbasi, A. Hubaux, G. Perrouin, M. Acher, and P. Heymans.

Towards More Reliable Configurators: A Re-engineering Perspective. In Proceed-

ings of the International Workshop on Product LinE Approaches in Software Engi-

neering (PLEASE’12), co-located with ICSE’12, pages 29–32, Zurich, Switzerland,

2012. IEEE Computer Society. (Chapter 1)

Doctoral Symposium Paper

• E. K. Abbasi and P. Heymans. Reverse Engineering Web Sales Configurators. In

Proceedings of the 29th IEEE International Conference on Software Maintenance

(ICSM’13), pages 586–589, Eindhoven, The Netherlands, 2013. IEEE Computer

Society. (Chapter 5)

Chapter 2

Background: Variability

Modelling and Web Applications

In this chapter, we provide background information. We first explain variability mod-

elling that is closely associated with product lines and Web configurators (Section 2.1).

In particular, we briefly present the syntax of TVL, a variability modelling language we

use in our reverse engineering process to represent the extracted variability data. We

then provide some basic definitions for Web applications (Section 2.2).

2.1 Variability Modelling

2.1.1 Product lines

A product line is a set of products that together address a particular market segment or

fulfil a particular mission [SEI, 2014]. Products in a product line are produced from a

common set of core assets in a prescribed way [Clements and Northrop, 2002], therefore,

all those products share a significant amount of commonality and differ in their specific

configuration of variability [Stoiber, 2012]. A commonality thereby is a characteristic of

all products of a product line, and a variability, in contrast, is a varying characteristic

whose value is changed from one product to another. In other words, variabilities can be

seen as parameters that support a more concise identification of products in a product

line [Becker et al., 2002].

An efficient and popular approach to model variants in a product line is variability

modelling. A variability model, in fact, captures commonalities and variabilities in a

product line and can be used to understand, create, and manage the product line. It

10

Chapter 2. Background 11

also supports product derivation [Czarnecki et al., 2012] which takes place during a

configuration process [Benavides et al., 2010].

2.1.2 Feature model

Feature models (FM) are the de-facto standard to express variability in software product

lines (SPL). This technique was first introduced by Kang et al. [Kang et al., 1990] to

capture commonality and variability in a software family as part of the Feature-Oriented

Domain Analysis (FODA) method. FODA aims to identify prominent or distinctive

features of software systems in a domain. These features are user-visible aspects or

characteristics of the domain. They define both common aspects of the domain as well as

differences between related systems in the domain. A feature, in fact, is the attribute of

a system that directly affects end-users. The end-users have to make decisions regarding

the availability of features in the system. Several other views of what a feature is can be

found in the literature [Apel et al., 2008; Batory et al., 2006; Chen et al., 2005; Classen

et al., 2008].

A FM represents the features of a family of systems in a domain and relationships

between them in a tree structure. The structural relationship “consists of” represents a

logical grouping of features. Alternative or optional features of each grouping must be

indicated in the FM.

Kang et al. consider four different components for a FM:

• Feature diagram: A graphical hierarchy of features

• Composition rules: Mutual dependency (Requires) and mutual exclusion (Mutex-

with) relationships

• Issues and decisions: Record of trade-offs, rationales, and justifications

• System feature catalogue: Record of features and feature values of actual

existing systems

Composition rules, aka cross-cutting constraints, define the semantics existing between

features that are not expressed in the feature diagram.

As an example, Figure 2.1 illustrates how a FM can be used to build software for mobile

phones. The software of a phone is determined by the features that it provides. The root

feature (i.e., “Mobile phone”) identifies the SPL. Every mobile phone system must provide

support for calls, display information, so “Calls” and “Screen” are mandatory features.

Chapter 2. Background 12

Furthermore, “GPS” and “Media” are optional features and so may not be included in

all products of the SPL. The software for mobile phones may include support for one

of “Basic”, “Colour” or “High resolution” screens. It indicates that there is an alternative

relationship between the set of child features of the “Screen” feature. Additionally, when-

ever “Media” is selected, “Camera”, “MP3” player or both can be selected. It denotes the

or -relationship between the set of child features of “Media”.

In Figure 2.1, two composition rules are defined. The requires constraint indicates that

if the “Camera” feature is selected to be included in a mobile phone system, it must also

include support for a high resolution screen. The excludes constraint tells that “GPS”

and “Basic” are incompatible features.

Figure 2.1: A FM for mobile phone systems ([Benavides et al., 2010]).

After the initial proposal by Kang et al., several FM extensions have been proposed [Czar-

necki and Eisenecker, 2005; Griss et al., 1998; Michel et al., 2011a]. Several feature mod-

elling languages have been also designed and supported by editing, debugging, analysis,

and configuration tools [Acher et al., 2013b; Bak et al., 2011; Benavides et al., 2007;

Beuche, 2012; Botterweck and Schneeweiss, 2009; Classen et al., 2011a; Mendonca et al.,

2009; Thum et al., 2014]. In this PhD thesis, we rely on the Textual Variability Language

(TVL) to represent FMs. In Section 2.1.3, we briefly introduce TVL.

The semantics of a FM is the set of valid products that can be derived from the

FM [Schobbens et al., 2006]. Product derivation is performed in a configuration process

during which features to be included in the product are selected. A product is valid if

it does not include any contradiction [Benavides et al., 2010]). For instance, consider

the products presented below and the FM of Figure 2.1. P1 and P2 are valid products.

Product P3 is not valid since it does not include the mandatory feature “Calls”. Product

P4 includes the incompatible features “Basic” and “GPS”, and therefore is not a valid

product.

Chapter 2. Background 13

P1 = {Mobile phone , Calls , Screen , Colour}

P2 = {Mobile phone , Calls , Screen , Colour , Media , MP3}

P3 = {Mobile phone , Screen , Basic}

P4 = {Mobile phone , Calls , Screen , Basic , GPS}

2.1.3 TVL

TVL [Classen et al., 2010, 2011a] is a text-based feature modelling language designed to

address expressiveness, conciseness, and adequate tool-support shortcomings that exist

for graphical FMs. It provides a human-readable and rich C-like syntax for easy and

natural modelling with a formal semantics for powerful automation. Moreover, TVL is a

lightweight and scalable language that offers several mechanisms for structuring feature

models.

We use an excerpt of the configuration environment of the Dell configurator shown in

Figure 2.2 and its TVL model (generated by our reverse engineering tool) visible in

Figure 2.3 to illustrate the syntax of TVL. Configuration options presented in Web

pages of a configurator are represented as features in a FM.

Feature declaration and hierarchy. The TVL language provides a C-like syntax to

structure a feature model. Curly brackets are used to delimit blocks and semicolons to

terminate statements. The feature model in TVL has a tree structure but, sometimes,

a directed acyclic graph structure in which a feature (called a shared feature) can have

several parents. The root feature of a feature model in TVL is declared by putting the

root keyword before the feature name.

TVL has three predefined operators to define the decomposition type (defined with the

group keyword): allOf for and-decompositions (line 2), someOf for or-decompositions

(lines 4, 9, and 30), and oneOf for xor-decompositions (line 11). A cardinality-based

decomposition can be specified too: group [i..j], where i and j are the lower and upper

bounds of the cardinality and j can be the asterisk character (*) as well. A decomposition

type is followed by a comma-separated list of features, enclosed in curly brackets. Each

feature can declare its own child features, attributes, and constraints with nested curly

brackets.

In our example, the root feature, “Monitors Docking Solutions” (line 1), is decomposed into

two features by an and-decomposition (line 2): “Monitors” (line 3) and “Docking Solutions”

(line 29). Furthermore, the “Dell Wireless Speaker System AC411” feature is optional (line

22). An optional feature is identified by the opt in front of the feature name.

Chapter 2. Background 14

Attributes. Descriptive information associated to an option in a Web configura-

tor are modelled as attributes of the corresponding feature in a feature model. At-

tributes are declared by defining their type and name inside the block of their owner

feature. TVL supports five different attribute types: integer (int), real (real), boolean

(bool), enumeration (enum), and string (string). An attribute can be optionally

assigned a value. To set the value of an attribute the is keyword is used. In our

example, some features have a “price” attribute, e.g., “Dell 20 Touch Monitor E2014T”,

“Dell Wireless Speaker System AC411”, etc.

Constraints. In TVL, constraints are boolean expressions which are attached to

features and can be added to the body of a feature definition. In our example, there

is a requires constraint attached to “Dell 20 Touch Monitor E2014T” (lines 7 and 8): the

selection of “Dell Wireless Speaker System AC411” implies the selection of

“A 5Yr Ltd Warranty 5 yr Advanced Exchange”. “ –>” denotes implication (line 7).

In TVL, identifiers such as types, features, and feature attributes have to start with a

character and can contain numbers as well as underscores. Identifiers in TVL are case

sensitive. Feature names have to start with an uppercase letter. In Figure 2.2, feature

names contain spaces and therefore in the generated TVL model each space is replaced

with an underscore. Also, some feature names start with numbers (e.g., “3Yr Ltd Warranty,

3 yr Advanced Exchange”). We added “A ” to the beginning of the name of such features

to make them valid feature names in TVL. We also removed invalid characters from

feature names, e.g., comma (,) from “3Yr Ltd Warranty, 3 yr Advanced Exchange”.

2.2 Web Applications

Conallen [Conallen, 1999] defined a Web application as a Web system (Web server,

network, HTTP, browser) where user input (navigation and data input) affects the state

of the business. This definition attempts to establish that a Web application is a software

system with business state, and that its “front end” is in large part delivered via a Web

system. A Web application is an extension of a Website. A Website is a collection of

hypertextual documents, located on a Web server and accessible by an Internet user.

It provides its users the opportunity to read information through the World Wide Web

(WWW) window, but not to modify the status of the system [Tramontana, 2005].

Three main classes of Web applications are: (1) static applications, i.e., Websites, imple-

mented in HTML and with no user interaction, (2) those providing client-side interaction

with Dynamic HTML pages that can handle user events, and (3) applications contain-

ing dynamic content created “on-the-fly” using technologies such as Java Server Pages

Chapter 2. Background 15

Figure 2.2: Dell Web configurator (http://www.dell.com//, February 21 2014).

(JSP), Java Servlets, Active Server Pages (ASP), PHP, XML, etc. [Tilley and Huang,

2001].

The architecture of a Web application is a client-server model, a distributed structure

where servers provide services and clients request services. Communication between the

client and the server is established over a network using the HTTP protocol1. Figure 2.4

presents a general architecture for Web applications. The user uses a Web Browser to

access information provided by a Web Server. She may need to request a new resource

or service from the server. In this case, the user generates a uniform resource locator

(URL) request, which is then translated in a HTTP request and sent to the Web Server.

The Web Server decodes the request and retrieves the server page corresponding to the

requested URL. The server page is sent to the Application Server which interprets the

code of the server page and generates as output a Built Client Page. The generated client

page is sent as response to the client. During the interpretation of a server page, the

Application Server can communicate with a Database server through Database Interface

objects, or it can request services to a third party, such as a Web Service. The Web

Sever sends the Build Client Page to the client browser, packed in an HTTP response

message. The Web Browser comprehends some active plug-ins that are able to interpret

1http://www.w3.org/Protocols/

http://www.w3.org/Protocols/

Chapter 2. Background 16

Figure 2.3: TVL model for the Dell configurator shown in Figure 2.2.

code written using a client scripting language, such as JavaScript code. If the Built

Client Page has scripting code, then the result of its execution is shown to the user, else

the Web Browser displays directly the result HTML rendering [Tramontana, 2005]. A

Web application is logically broken into three presentation, application, and data tiers:

• The presentation tier is about the Web browser and is responsible for the user

interface.

• The application logic tier is behind the presentation tier and controls the applica-

tion’s functionality.

• The data tier is responsible to store and retrieve data.

Chapter 2. Background 17

Figure 2.4: Architecture for Web applications [Tramontana, 2005].

2.2.1 Web technologies

This section briefly presents some technologies used in developing Web applications.

HTML. The hypertextual content of a client page (also called HTML document or

Web page) and other information to render it in a Web browser is created using the

HyperText Markup Language (HTML) which is a tagged language. The browser reads a

client page, uses its tag to interpret the content of the page, and displays a visible page.

Document Object Model (DOM). HTML documents are presented using the Doc-

ument Object Model. The DOM defines the logical structure of the document and the

way the document is accessed and manipulated [DOM, 2014]. It presents an HTML

document as a tree-structure.

Client-side scripting languages. These languages are used to write client script

code in an HTML document. The client script code is used to interact with the user,

control the browser, change the document’s content at runtime, etc. It provides dy-

namic behaviour to client pages. The most common client-side scripting languages are

JavaScript and VBScript.

Server-side scripting language. To write programs on the server side of a Web

application and dynamically generate client pages, server-side scripting languages are

used. There are a number of server-side scripting languages. Examples are: ASP, PHP,

JSP, Python, Perl CGI, etc.

Asynchronous JavaScript and XML (AJAX). AJAX is a web development tech-

nique to asynchronously exchange data between the client and the server sides and

Chapter 2. Background 18

update parts of a Web page without recreating and reloading the Web page. To ex-

change data, JavaScript Object Notation2 (JSON) is often used. JSON is a text-based,

language-independent, human-readable, and lightweight data-interchange format. It is

easy for machines to parse and generate.

2.3 Chapter Summary

In this chapter, we explained product lines and presented that a variability model, e.g., a

feature model, can be used to express commonality and variability in a product line. We

then described the main components of a feature model and introduced TVL, a textual

language to represent feature models.

We also provided an explanation of Web applications, their main classes, and the ar-

chitecture of a Web application. We then presented some technologies, for instance,

HTML, Document Object Model, and scripting languages, used in Web development.

2http://www.json.org/

http://www.json.org/

Chapter 3

The Anatomy of a Web

Configurator

Our main objective is to develop a set of methods, guidelines, languages, and tools to

systematically re-engineer legacy Web configurators. To start this journey, we need to

understand how Web configurators are currently designed and implemented. This means

investigating the intrinsic characteristics of the configurators ranging from the GUI

itself over constraint expressiveness to the reasoning procedures. For instance, different

graphical representations of options (e.g., check boxes and radio buttons), constraint

management techniques (e.g., by notifying the user), and configuration processes (e.g.,

the process can be single-step or multi-step) exist.

This chapter reports on a systematic and empirical study of 111 Web configurators we

conducted to understand Web configurators [Abbasi et al., 2013]. We start with an intro-

duction to Web configurators by giving an example Web configurator (Section 3.1). We

then present the three research questions answered in this study, the research method-

ology, and the data extraction process to answer these questions (Section 3.2). We

analyse the client-side code of the chosen configurators with semi-automated code in-

spection tools. We present the general observations emerged from this study (Sec-

tion 3.3). We classify and analyse the results along three dimensions: configuration

options, constraints, and configuration process (Section 3.4). For each dimension, we

present quantitative empirical results and report on good and bad practices we observed

(Section 3.5). We also describe the reverse-engineering issues we faced (Section 3.6) and

the threats to validity (Section 3.7). We finally present the related work (Section 3.8).

19

Chapter 3. The Anatomy of a Web Configurator 20

3.1 Introduction

Despite similar goals, Web configurators are unique and vary significantly: they each

have their own characteristics, spanning visual aspects (GUI) elements to constraint

management. The Web configurator of Audi appearing in Figure 3.1 is thus one example

out of hundreds existing configurators [Cyledge, 2014]. It displays the configuration

process (A) constituted of a sequence of configuration steps (e.g.,“1. Model” is followed

by “2. Engine” – B). Users follow the steps to complete the configuration of a product

(a car in this example).

Each configuration step includes a subset of configuration options which are presented

through specific widgets (radio buttons and check boxes – C and D , respectively).

Users select options to be included in the product. Additionally, within a step, op-

tions are organized in different groups (e.g., “Exterior”) and sub-groups (e.g., “Windows”,

“Mirrors”. . .).

Options can be in different configuration states such as selected (e.g., “High-beam assist”

is flagged with X), undecided (e.g., “Front fog lights”), or unavailable (e.g., “Light

and rain sensors” is greyed out). A configurator can also implement constraints which

determine valid combination of options (E). For instance, the selection of “High-beam

assist” implies the selection of “Driver’s Information System”, meaning that the user must

select the latter if the former is selected.

In a Web configurator, a set of reasoning procedures control the configuration process.

They verify constraints between options, propagate user decisions, and handle conflictual

decisions [Rogoll and Piller, 2004; Streichsbier et al., 2009]. For instance, when an

option is given a new value and one or more constraints apply, the reasoning procedure

automatically propagates the required changes to all the impacted options and alters

their configuration states.

Descriptive information (F) is sometimes associated to an option (e.g., its price).

3.2 Problem Statement and Method

Re-engineering Web configurators requires a deep understanding of how they are cur-

rently implemented. We choose to start this journey by analysing the visible part of

configurators: the Web client. We analyse client-side code because (1) it is the entry

point for customer orders, (2) the techniques used to implement Web clients and Web

servers differ significantly, and (3) large portions of that code are publicly available.

We leave for future work the study of server-side code and the integration of client-

Chapter 3. The Anatomy of a Web Configurator 21

Figure 3.1: Audi Web configurator (http://configurator.audi.co.uk/, August 7
2013).

and server-side analyses. In this empirical study, we set out to answer three research

questions:

RQ1 How are configuration options visually represented and what are their semantics?

By nature, configurators rely on GUIs to display configuration options. In order to

re-engineer configurators, we first need to identify the types of widgets, their fre-

quency of use, and their semantics (e.g., optionality, alternatives, multiple choices,

descriptive information, cloning, and grouping).

RQ2 What kinds of constraints are supported by the configurators, and how are they

enforced? The selection of options is governed by constraints. These constraints

are often deemed complex and non-trivial to implement. We want to grasp their

actual complexity.

RQ3 How is the configuration process enforced by the configurators? The configuration

process is the interactive activity during which users indicate the options to be

included and excluded in the final product. It can, for instance, either be single-

step (all the available options are presented together to the user) or multi-step (the

Chapter 3. The Anatomy of a Web Configurator 22

process is divided into several steps, each containing a subset of options). Another

criteria is navigation flexibility.

3.2.1 Configurator selection

To collect a representative sample of Web configurators, we used Cyledge’s configurator

database [Cyledge, 2014], which contains 800+ entries from a wide variety of domains.

The selection process we followed to narrow down the 800+ configurators to 111 is shown

in Figure 3.2.

Starting from the 800+ configurators (Ê), the first step of our configurator selection pro-

cess consisted in filtering out non-English configurators (Ë). For simplicity, we only kept

configurators registered in one of these countries: Australia, Britain, Canada, Ireland,

New Zealand, and USA. This returned 388 configurators and discarded four industry

sectors (Ì).

Secondly, we excluded 26 configurators that are no longer available using a dedicated

tool, Jericho1. Jericho is an HTML parser written in Java. A special function in this

library takes as input the URL of a Website and returns its DOM2 if the Website is

available, otherwise returns an error. We considered a site unavailable either when it is

not online anymore or requires credentials we do not have (Í).

Thirdly, we randomly selected 25% of the configurators in each sector (Ï). We then

checked each selected configurator with Firebug3 to ensure that configuration options,

constraints, and constraint handling procedures do not use Flash (Ð). Firebug is a

Firefox plugin used to monitor, modify, and debug CSS, HTML, and JavaScript. We

excluded configurators using Flash because the Firebug extension we implemented (see

next section) does not support that technology. We also excluded “false configurators”.

By this we mean 3D design Websites that allow to build physical objects by piecing

graphical elements together, sites that just allow to fill simple forms with personal

information, and sites that only describe products in natural language. The end result

is a sample set of 93 configurators from 21 industry sectors (Ñ).

Finally, we added 18 configurators (Ò) that we already knew for having used them in

preliminary stages of this study. We used them to become familiar with Web configura-

tors and test/improve our reverse-engineering tools, as discussed below. This raised the

total number of Web configurators to 111 (Ó). Figure 3.3 shows the distribution of the

selected configurators by industry.

1http://jericho.htmlparser.net/docs/index.html
2Document Object Model: a standard representation of the objects in an HTML page.
3http://getfirebug.com/

Chapter 3. The Anatomy of a Web Configurator 23

Figure 3.2: Configurator selection process.

3.2.2 Data extraction process

We used two complementary methods for studying the chosen Web configurators and

gathering data on their behaviour and structure: application analysis from the source

code inspection and application analysis from the execution of the application. To sup-

port these analyses, we developed a Firebug extension (Figure 3.4 – 3 KLOC, 1 person-

month) that implements (a) a semi-automated and supervised data extraction approach,

(b) support for advanced searches, and (c) DOM traversing.

Chapter 3. The Anatomy of a Web Configurator 24

Figure 3.3: Distribution of selected configurators by industry.

To answer RQ1, we need to extract the types of widgets used to represent options.

To that end, our extension offers a search engine able to search a given code pattern.

Our approach relies on a training session during which we inspect the source code of

the Web page to identify which code patterns (templates) are used to implement con-

figuration options and their graphical widgets. These patterns vary from simple (e.g.,

tag[attribute:value]) to complex cases (e.g., a sequence of HTML tags). We then feed

these patterns to the search engine (A and B) to extract all options. It uses jQuery4 ex-

pressions (C) and a pattern matching algorithm to search and find matching elements,

extract an option name and its widget type.

To answer RQ2, we implemented a simulator to simulate the users’ configuration actions

(D). Practically, the simulator selects/deselects each option and triggers constraints (if

any). When a constraint is triggered, the reasoning procedures are fired to handle it.

By inspection of the behaviour of the application under test, we identify and document

strategies used for decision propagation and consistency checking. We also sometimes

have to manually run (vs. automatically running by the simulator) Web configurators to

analyse their behaviour and inspect the GUI of the configurators to gather some other

data that is required to answer RQ2.

To answer RQ3, we inspected the GUI of each configurator to see how the configuration

process is specified. In some cases, we run the application (either manually or by the

simulator) and use it to configure products to find out how the configuration process is

managed.

4http://jquery.com/

http://jquery.com/

Chapter 3. The Anatomy of a Web Configurator 25

Figure 3.4: The Firebug data extraction extension.

3.3 General Observations

The client side of a configurator offers a highly interactive configuration environment

for users to specify a product. Although Web configurators are usually developed in

an unspecific way, i.e., like any other Web application, they have specific characteristics

and are different from other classes of Web applications in terms of their visual aspects,

data presentation, and business logic. In this section, we provide an insight into the

main characteristics of the client side of Web configurators.

Variations in presentation and implementation of variability data. As it is

presented in Section 3.4, Web configurators use a variety of Web objects (e.g., layouts and

widgets) to visually represent configuration-specific objects (e.g., configuration steps,

options, constraint-handling windows, etc.). Moreover, each configurator uses its specific

Web objects. For instance, to implement alternative groups, one configurator may use

radio buttons while another may propose single-selection list boxes. Figure 3.5 shows

configuration steps that are visually presented in the GUI with navigational tabs, and

options represented using radio buttons (A), check boxes (B), colours (C), images (D),

and image-check box combinations (E). In practice, there are as different structures

Chapter 3. The Anatomy of a Web Configurator 26

and formatting features as configurators to implement these objects in the source code

(variations in implementation).

Complex data objects. The data presented in the Web pages of a configurator can

have different structures. It can be a single slot data item (Figure 3.5 – A), a flat data

record containing a block of related data items (Figure 3.5 – E , an option name, its

price, its image, and constraints), a complex data record with multi-valued [Chang et al.,

2006] data items (Figure 3.6 – in the “Climate Pack” option, “Automatic lights and wipers”

and “Dual zone climate control” are multi-valued data items), etc. A data object may

have no attached textual explanation presented in the GUI, though. For instance, in

Figure 3.5, the options included in the “Colours” group (C) are presented using images.

The data item to be extracted from each of these options is located in the tag attribute,

i.g., the value of the src attribute of the corresponding img HTML element. Also note

that a data item may be shared between several data objects. An example is the textual

description “15” × 6.5J ’7-arm’ design alloy wheels with 205/55 R15 tyres” for the options

contained in the “Wheels” group in Figure 3.5 (D).

Figure 3.5: Presentation of configuration-specific objects
(http://configurator.audi.co.uk/, February 22 2014).

Chapter 3. The Anatomy of a Web Configurator 27

Template-generated Web pages. Our analysis of the client-side source code of

Web configurators shows that pages representing variability data are usually generated

from a number of templates. A template is a code fragment that specifies the structure

and layout of data to be visually presented in a page. In a template, text elements

and tag attributes are data slots filled by data items when generating the page. Each

configurator uses its specific templates to generate pages. Figure 3.6 depicts an excerpt

of the configuration environment of a configurator as well as the two code fragments of

the last two options, “ Renault i.d. Metallic Paint” and “Climate Pack” (lines 1-7 and 8-19,

respectively). The two code fragments are structurally rather similar, meaning that they

are likely generated from a same template. Note that the second code fragment (lines

8-19) contains additional code lines (12-15).

Heterogeneous Web pages. A Web page in a configurator may contain various

kinds of data objects with different structures, meaning that the page may be generated

from several templates. For instance, we can identify two completely different templates

for the options included in the “Exterior” step in Figure 3.5: a template that is used

to generate options represented using check boxes (B) and another template for image

options (C and D).

Dynamic Web pages. When a Web configurator is executing and the user is making

decisions, new content may be automatically created and added to the page, and exist-

ing content may be removed or changed. For instance, the “Model” step in Figure 3.5

contains three groups, namely “Model line”, “Body style”, and “Model”. There are under-

lying constraints between options included in these groups. Consequently, the selection

of an option from “Model line” loads its consistent options in “Body style”, and in turn,

the selection of an option from “Body style” loads its consistent options in “Model”.

Figure 3.7 presents another example of dynamic content created and added to the page

at runtime. By selecting an option (represented using a radio button), its full name,

size, and price is dynamically created and presented to the user (!).

Variations in business logic management. This characteristic reflects the fact

that Web configurators use a diversity of patterns to load options in the pages, handle

different kinds of constraints, and control the configuration process.

3.4 Quantitative Results

This section summarises the results of our empirical study5. Table 3.1 highlights our

key findings. Each subsection answers the questions posed in Section 3.2.

5The complete set of data is available at http://info.fundp.ac.be/~eab/result.html.

http://info.fundp.ac.be/~eab/result.html

Chapter 3. The Anatomy of a Web Configurator 28

Figure 3.6: Template-generated Web page (http://www.renault.co.uk/, July 15
2013).

3.4.1 Configuration options (RQ1)

Option representation. The diversity of representations for an option is one of the

most striking results, as shown in Figure 3.8. In decreasing order, the most popular

widgets are: combo box item, image6, radio button, check box and text box. We also

6A colour to choose from a palette is also considered an image.

Chapter 3. The Anatomy of a Web Configurator 29

Figure 3.7: Dynamic content (http://www.mydogtag.com/, July 3 2013).

observed that some widgets were combined with images, namely, check box, radio button,

and combo box item. Option selection is performed by either choosing the image or using

the widget. The Other category contains various less frequent widgets like slider, label,

file chooser, date picker, colour picker, image needle, and grid.

Grouping. Grouping is a way to organise related options together. For instance,

a group can contain a set of colours or the options for an engine. Three different

semantic constraints can apply to a group. For alternative groups, one and only one

option must be selected (e.g., the “Model” in Figure 3.1 – G), and for multiple choice

groups, at least one option must be selected (e.g., the “Headlights” in Figure 3.1 – H).

In an interval group (a.k.a. cardinality [Czarnecki and Kim, 2005]), the specific lower

and upper bounds on the number of selectable options is determined (e.g., “mix-ins” in

Figure 3.9). The Semantic Constructs row in Table 3.1 shows that alternative groups

are the most frequent with 97% of configurators implementing them. We also observed

multiple choice and interval groups in 8% and 4% of configurators, respectively.

“Mandatory options” and “optional options”. Non-grouped options can be either

mandatory (the user has to enter a value) or optional (the user does not have to enter a

value). By definition, configurators must ensure that all mandatory options are properly

set before finishing the configuration process. We identified three patterns for dealing

with mandatory options:

Chapter 3. The Anatomy of a Web Configurator 30

Table 3.1: Result summary.

CONFIGURATION OPTIONS

Semantic Constructs
Alternative group 97%
Multiple choice group 8%
Interval 4%

Mandatory Options
Default 46%
Notification 47%
Transition Checking 13%
No checking 4%

Multiple instantiation Cloning 5%

CONSTRAINTS

Constraint Type
Formatting 59%
Group 99%
Cross-cutting 55%

Cross-cutting Constraint (61) Visibility 89%

Formatting Constraint (66)
Prevention 62%
Verification 41%
No checking 26%

Constraint Description (61) Explanation 11%

Decision Propagation (61)
Automatic 97%
Controlled 8%
Guided 3%

Consistency Checking (83)
Interactive 76%
Batch 59%

Configuration Operation Undo 11%

CONFIGURATION PROCESS

Process
Single-step 48%
Basic Multi-step 45%
Hierarchical Multi-step 7%

Activation (58)
Step-by-step 59%
Full-step 41%

Backward Navigation (58)
Stateful arbitrary 69%
Stateless arbitrary 14%
Not supported 17%

Visual Product
Yes 50%
Not supported 50%

Configuration Summary

Search result 2%
Final step 13%
Shopping cart 82%
Not supported 3%

• Default configuration (46%): When the configuration environment is loaded, (some

or all) mandatory options are selected or assigned a default value.

• Notification (47%): Constraints are checked at the end of the configuration process

and mandatory options left undecided are notified to the user. This approach can

be mixed with default values, meaning that some of the configurators implement

both default configuration and notification patterns.

• Transition checking (13%): The user is not allowed to move to the next step until

all mandatory options have been selected. The difference with the previous pattern

is that no warning is shown to the user.

Chapter 3. The Anatomy of a Web Configurator 31

Figure 3.8: Widget types in all the configurators.

We noticed that 4% of the configurators either lack interactive strategies for handling

mandatory options or have only optional options.

Mandatory options can be distinguished from optional ones through highlighting. For

that, configurators use symbolic annotations (e.g., * usually for mandatory options), tex-

tual keywords (e.g., required, not required, or optional), or special text formatting (e.g.,

boldfaced, coloured text). These highlighters are visible either as soon as the configu-

ration environment is loaded, or when the user finalises the configuration (notification

pattern) or moves through the next step (transition checking pattern). We observed

that only 14% of the configurators highlight mandatory or optional options, while 70%

of the configurators have optional options in their configuration environments.

Cloning. Cloning means that the user determines how many instances of an option

are included in the final product [Michel et al., 2011b] (e.g., a text element to be printed

on a t-shirt can be instantiated multiple times and configured differently). We observed

cloning mechanisms in only 5% of the configurators.

Chapter 3. The Anatomy of a Web Configurator 32

Figure 3.9: Interval group (http://www.ecreamery.com/createyourown.html, Au-
gust 9 2013).

3.4.2 Constraints (RQ2)

We split constraints in three categories depending on their target and implementation.

Formatting constraint. A formatting constraint ensures that the value set by the

user is valid. Examples of formatting constraints are:

• Type correctness: Some options are strongly typed (e.g., String, Integer, Real),

which means that types must be verified to produce valid configurations. For

example, in Figure 3.10 only integer values can be set to the text inputs. If

the user enters an invalid value (for example, a string value, !), the reasoning

procedure prevents the illegal value.

• Range control: Besides a type, the value range of an option might be further con-

strained by, for instance, upper and lower bounds, slider domain, valid characters,

and maximum file size. For example, in Figure 3.11(a) the minimum and maxi-

mum integer values to be entered in the text boxes must respectively be 37 and

1000. Values beyond this range violate the configuration rule and is prevented by

Chapter 3. The Anatomy of a Web Configurator 33

the reasoning procedure (!). Also, in Figure 3.11(b) allowed characters that the

user can use in filling the text inputs are presented to her (!). The reasoning

procedure automatically removes invalid characters from the text inputs.

• Formatted values: Some more values require specific formatting constraints such

as date, email, and file extension.

• Case-sensitive values: Some configurators propose a selectable list of items. In-

stead, some explain in natural language the possible options and the user has to

type in a text input the selected value. Similarly, to capture the deselection of

an option, some configurators explicitly ask the user to enter values like None, or

No. For example, to configure a colour option in Figure 3.12 (A) the user should

enter a valid colour name. Also, as for the text style, if she wants a sample text

she should put the “As Sample” string in the text input (B).

Figure 3.10: Type correctness constraint (http://www.cupboardyourway.co.uk,
June 13 2013).

We observed that configurators provide two different patterns for checking constraint

violation:

Chapter 3. The Anatomy of a Web Configurator 34

(a) Upper bound (http://www.cupboardyourway.co.uk, June 13 2013).

(b) Valid characters (http://www.mydogtag.com/, June 13 2013).

Figure 3.11: Range control constraints.

Chapter 3. The Anatomy of a Web Configurator 35

Figure 3.12: Case-sensitive values (http://www.personalizedbikeplates.com/,
June 13 2013).

Chapter 3. The Anatomy of a Web Configurator 36

• Prevention: The reasoning procedure prevents illegal values. For example, it stops

accepting input characters if the maximum number is reached, defines a slider

domain, uses a date picker, disables illegal options, etc.

• Verification: The reasoning procedure validates the values entered by the user

a posteriori, and, for example, highlights, removes or corrects illegal values or

prevents the transition to the next step.

These patterns are not mutually exclusive, and configurators can use them for different

subsets of options. Among the 66 configurators supporting formatting constraints, 62%

implement prevention and 41% implement verification patterns. We also noticed that

26% of the configurators do not check constraints during the configuration session even if

they are described in the interface. In some rare cases, the validation of the configuration

was performed off-line, and feedback later sent back to the user.

Group constraint. A group constraint defines the number of options that can be

selected from a group of options. In essence, constraints implied by multiple choice-,

alternative- and interval-groups are group constraints. Widget types used to implement

these groups directly handle those constraints. For instance, radio buttons and single-

selection combo boxes are commonly used to implement alternative groups. We identified

group constraints in 99% of the analysed configurators.

Cross-cutting constraint. A cross-cutting constraint is defined over two or more

options regardless of their inclusion in a group. Require (selecting A implies selecting B)

and Exclude (selecting A prevents selecting B and vice-versa) constraints are the most

common. More complex constraints exist too. For instance, in Figure 3.13, the selection

of “Active-safety front seat head restraints” implies the selection of “Driver’s seat belt warning”.

Also, the selection of “Space-saver spare wheel” implies the deselection of “Emergency tyre

inflation kit” .

Cross-cutting constraints were observed in 61 configurators (55%) and are either coded in

the client side (e.g., using JavaScript) or in the server side (e.g., using PHP). Irrespective

of the implementation technique, we noticed that only 11% of the configurators describe

them in the GUI with a textual explanation.

Visibility constraint. Some constraints determine when options are shown or hidden

in the GUI. They are called visibility constraint [Berger et al., 2010]. Automatically

adding options to a combo box upon modification of another option also falls in this

constraint category. From the 61 configurators with cross-cutting constraints, 89% im-

plement visibility constraints.

Chapter 3. The Anatomy of a Web Configurator 37

We now focus on the capabilities of the reasoning procedures, namely decision propaga-

tion, consistency checking and undo.

Decision propagation. In some configurators, when an option is given a new value

and one or more constraints apply, the reasoning procedure automatically propagates

the required changes to all the impacted options (Figure 3.13). We call it automatic

propagation (97%). We observed that in some cases by selecting an option its consistent

options are loaded in the page. We counted these cases as automatic decision propagation

as well. For instance, in Figure 3.1, by selecting an option in the “Model line” group, new

options are loaded to the “Body style” group. In other cases, the reasoning procedure asks

to confirm or discard a decision before altering other options (Figure 3.14). We call this

controlled propagation (8%). Finally, we also observed some cases of guided propagation

(3%). For example, if option A requires to select option B or C, the reasoning procedure

cannot decide whether B or C should be selected knowing A. In this case, the configurator

proposes a choice to the user (Figure 3.15). Some of the configurators implement multiple

patterns.

Figure 3.13: Automatic decision propagation (http://www.opel.ie/, August 9
2013).

Consistency checking. An important issue in handling formatting and cross-cutting

constraints is when the reasoning procedure instantiates the constraints and checks the

consistency. In an interactive setting, the reasoning procedure interactively checks that

the configuration is still consistent as soon as a decision is made by the user. For example,

the permanent control of the number of letters in a text input with a maximum length

constraint is considered interactive. In some cases, the reasoning procedure checks the

consistency of the configuration upon request, for instance, when the user moves to

the next configuration step. We call this batch consistency checking. Among the 83

Chapter 3. The Anatomy of a Web Configurator 38

Figure 3.14: Controlled decision propagation (http://www.jaguarusa.com/, July 31
2013).

Figure 3.15: Guided decision propagation (http://configurator.audi.co.uk/,
August 9 2013).

configurators supporting both formatting and cross-cutting constraints, 76% implement

interactive and 59% implement batch consistency checking patterns. Some configurators

implement both mechanisms, depending on the constraint type.

Chapter 3. The Anatomy of a Web Configurator 39

Undo. This operation allows users to roll back on their last decision(s). Among all

configurators in the survey, only 11% support undo. Note that, supporting undo requires

the configurator to keep a log of operations done by the user.

3.4.3 Configuration process (RQ3)

Process pattern. A configuration process is divided into a sequence of steps, each of

which includes a subset of options. Each step is also visually identified in the GUI with

containers such as navigation tabs, menus, etc. Users follow these steps to complete the

configuration. We identified three different configuration process patterns:

• Single-step (48%): All the options are displayed to the user in a single graphical

container.

• Basic multi-step (45%): The configurator presents the options either across several

graphical containers that are displayed one at a time, or in a single container that

is divided into several observable steps.

• Hierarchical multi-step (7%): It is the same as a multi-step except that a step can

contain inner steps.

Activation. Among the 58 multi-step configurators, we noticed two exclusive step

activation strategies:

• Step-by-step activation (59%): Only the first step is available and other steps

become available as soon as all options in the previous step have been configured.

• Full-step activation (41%): All steps are available to the user from the beginning.

Backward navigation. Another important parameter in multi-step configuration

processes is the ability to navigate back to a previous step. We noticed two different

strategies:

• Stateful arbitrary (69%): The user can go back to any previous step and all con-

figuration choices are saved.

• Stateless arbitrary (14%): The user can go back to any previous step but all

configuration choices made in steps following the one reached are discarded.

Chapter 3. The Anatomy of a Web Configurator 40

We observed that all full-step activation configurators follow the stateful arbitrary nav-

igation pattern. We also noticed that 17% of multi-step configurators do not support

backward navigation.

We gathered two additional facts about configuration processes: visual product and con-

figuration summary. With the visual product criteria we assess whether the configurator

offers a rendering mechanism to display the product being configured. 50% of the con-

figurators support this feature. By configuration summary, we mean a summary of the

selected options at the end of the configuration process. We observed that 13% of the

configurators display this information in the final step. 82% of them show this summary

in the shopping cart. 3% of them do not support this feature. If a configurator pro-

vides both final step and shopping cart summaries, we counted it as final step. Some

configurators simply allow users to select an existing product in the database. In these

configurators, options are search criteria and the configuration summary corresponds to

the (set of) product(s) matching the search criteria. 2% of the configurators fall in this

category.

3.5 Qualitative Results

The previous section focused on technical characteristics of configurators. We now take

a step back from the code to look at the results from the qualitative and functional

angles. We discuss below the bad and good practices we observed. This classification

reflects our practical experience with configurators and general knowledge reported in the

literature [Hubaux et al., 2012; Hvam et al., 2008; Rogoll and Piller, 2004; Streichsbier

et al., 2009; Trentin et al., 2012]. Note that the impact of marketing or sales decisions

on the behaviour of configurators falls outside our scope of investigation. We focus here

on their perception by end-users that are likely to influence the way configurators are

implemented.

3.5.1 Bad practices

• Absence of propagation notification: In many cases, options are automatically en-

abled/disabled or appeared/disappeared without notice. This makes configuration

confusing especially for large multi-step models as the impact of a decision becomes

impossible to predict and visualise. 97% of the configurators automatically prop-

agate decisions but rarely inform users of the impact of their decisions.

• Incomplete reasoning: Reasoning procedures are not always complete. Some con-

figurators do not check that mandatory options are indeed selected, or do not

Chapter 3. The Anatomy of a Web Configurator 41

verify formatting constraints. 26% of the configurators do not check formatting

constraints during the configuration session.

• Counter-intuitive representation: The visual discrepancies between option repre-

sentations are striking. This is not a problem per se. The issue lies in the improper

characterisation of the semantics of the widgets. For instance, some exclusive op-

tions are implemented by (non exclusive) check boxes. Consequently, users only

discover the grouping constraint by experimenting with the configurator, which

causes confusion and misunderstanding. It also increases the risk of inconsistency

between the intended and implemented behaviour.

• Stateless backward navigation: Stateless configurators lose all decisions when nav-

igating backward. This is a severe defect since users are extremely likely to make

mistakes or change their mind on some decisions. 31% of the configurators do not

support backward navigation or are stateless.

• Automatic step transition: The user is guided to the next step once all options are

configured. Although this is a way to help users [Rogoll and Piller, 2004], it also

reduces control over configuration and hinders decision review.

• Visibility constraints: When a visibility constraint applies, options are hidden

and/or deactivated. This reduces the solution space [Hvam et al., 2008] and avoids

conflictual decisions. However, the downside is that to access hidden/deactivated

options, the user has to first undo decisions that instantiated the visibility con-

straint. These are known problems in configuration [Hubaux et al., 2012] that

should be avoided to ensure a satisfying user experience. 89% of the configurators

with cross-cutting constraints support visibility constraints.

• Decision revision: In a few cases, configurators neither provide an undo operation

nor allow users to revise their decisions. In these cases, users have to start from

scratch each time they want to alter their configuration.

3.5.2 Good practices

• Guided consistency checking : 3% of the configurators assist users during the con-

figuration process by, for instance, identifying conflictual decisions, providing ex-

planations, and proposing solutions to resolve them. These are key operations

of explanatory systems [Hvam et al., 2008], which are known to improve usabil-

ity [Rogoll and Piller, 2004].

• Auto-completion allows users to configure some desired options and then let the

configurator complete undecided options [Janota et al., 2009]. Auto-completion is

Chapter 3. The Anatomy of a Web Configurator 42

typically useful when only few options are of interest for the user. Common auto-

completion mechanisms include default values. Web configurators usually support

auto-completion by providing default configuration for mandatory options.

• Self-explanatory process: A configurator should provide clear guidance during the

configuration process [Hvam et al., 2008; Rogoll and Piller, 2004; Streichsbier et al.,

2009]. The multi-step configurators we observed use various mechanisms such as

numbered steps, “previous” and “next” buttons, the permanent display of already

selected options, a list of complete/incomplete steps, etc. Configurators should

also be able to explain constraints “on the fly” to the users. This is only available

in 11% of the configurators.

• Self-explanatory widgets: Whenever possible, configurators should use standard

widget types, explicit bounds on intervals, optional/mandatory option differenti-

ation, item list sorting and grouping in combo boxes, option selection/deselection

mechanisms, filtering or searching mechanisms, price live update, spell checker,

default values, constraints described in natural language, and examples of valid

user input.

• Stateful backward navigation and undo: These are must-have functionalities to

allow users to revise their decisions. Yet, only 69% and 11%, respectively, of the

Web configurators do support them.

3.6 Reverse Engineering Challenges

Our long-term objective, i.e. developing methods to systematically re-engineer Web con-

figurators, requires accurate data extraction techniques. For the purpose of this study,

we implemented a semi-automated tool to retrieve options, constraints and configuration

processes (see Section 3.2.2). This tool can serve as a basis for the reverse-engineering

part of the future re-engineering toolset. This section outlines the main technical chal-

lenges we faced and how we overcame them. The impact of our design decisions on our

results are explored in the next section.

Discarding irrelevant data. To produce accurate data, we need to sort out relevant

from irrelevant data. For instance, some widgets represent configuration while others

contain product shipment information, agreement check boxes, etc. A more subtle ex-

ample is the inclusion of false options such as blank (representing “no option selected”),

none or select an item values in combo boxes. Although obviously invalid, values such

as none indicate optionality, which must be documented. To filter out false positive

Chapter 3. The Anatomy of a Web Configurator 43

widgets, we either delimited a search region in the GUI, or forced the search engine to

ignore some widgets (e.g., widgets with a given [attribute:value] pair).

Unconventional widget implementations. Some standard widgets, like radio but-

tons and check boxes, had unconventional implementations. Some were, for instance, im-

plemented with images representing their status (selected, deselected, undecided, etc.).

This forced us to use image-based search parameters to extract the option types and

interpret their semantics. To identify those parameters, we had to manually browse the

source of the Web page to map peculiar implementations to standard widget types.

Discriminating between option groups and configuration steps. An option

group and a configuration step are both option containers. But while the former de-

scribes logical dependencies between options, the latter denotes a process. To classify

those containers, we defined four criteria: (1) a step is a coarse-grained container, mean-

ing that a step might include several groups; (2) steps might be numbered; (3) the term

‘step’ or its synonyms are used in labels; and (4) a step might capture constraints be-

tween options. If these criteria did not determine whether it was a step or a group, we

considered it a group.

The above issues give a sense of the challenges that we had to face for extracting rel-

evant data from the configurators. They are the basic data extraction heuristics that

a configurator reverse-engineering tool should follow, and hence represent a major step

towards our long-term goal.

3.7 Threats to Validity

The main external threat to validity is our Web configurator selection process. Although

we tried to collect a representative total of 111 configurators from 21 industry sectors,

we depend on the representativeness of the sample source, i.e. Cyledge’s database.

The main internal threat to validity is that our approach is semi-automated. First,

the reliability of the developed reverse-engineering techniques might have biased the

results. Our tool extracts options and detects cross-cutting constraints by using jQuery

selectors, a simple code pattern matching algorithm, and a simulator. For instance, to

detect all cross-cutting constraints, all possible option combinations must be investigated

but combinatorial explosion precludes it. The impact this has on the completeness of

our results is hard to predict. This, however, does not affect our observations related to

the absence of verification of constraints textually documented in the Web pages.

Chapter 3. The Anatomy of a Web Configurator 44

Second, arbitrary decisions had to be made when analysing configurators. For example,

some configurators allow to customise several product categories. In such cases, we

randomly selected and analysed one of them. If another had been chosen, the number of

options and constraints could have been different. We also had to manually select some

options to load invisible options in the source code. We have probably missed some.

The manual part of the study was conducted by the author of this thesis. His choices,

interpretations and possible errors influenced the results. To mitigate this threat, the

other researchers interacted frequently to refine the process, agree on the terminology,

and discuss issues, which eventually led to redoing some analyses. The collected data was

regularly checked and heavily discussed. Yet, a replication study could further increase

the robustness of the conclusions.

3.8 Related Work

Rogoll et al. [Rogoll and Piller, 2004] performed a qualitative study of 10+ Web config-

urators. The authors reported on usability and how visual techniques assist customers

in configuring products. Our study is larger (100+ configurators), and our goal and

methodology differ significantly. We aim at understanding how the underlying con-

cepts of Web configurators are represented, managed and implemented, without study-

ing specifically the usability of Web configurators. Yet, the quantitative and qualitative

insights of our study can be used for this purpose. Streichsbier et al. [Streichsbier et al.,

2009] analysed 126 Web Configurators among those in [Cyledge, 2014]. The authors

question the existence of standards for GUI (frequency of product images, back- and

forward-buttons, selection boxes, etc.) in three industries. Our study is more ambitious

and also includes non-visual aspects of Web configurators. Interestingly, our findings can

help identify and validate existing standards in Web configurators. For example, our

study reveals that in more than half of the configurators the selected product compo-

nents are summarised at the end of the process, which is in line with [Streichsbier et al.,

2009]. Trentin et al. [Trentin et al., 2012] conducted a user study of 630 Web configura-

tors to validate five capabilities: focused navigation, flexible navigation, easy comparison,

benefit-cost communication, and user-friendly product-space description. We adopted a

more technical point of view. Moreover, their observations are purely qualitative and

no automated reverse engineering procedure is applied to produce quantitative observa-

tions.

Chapter 3. The Anatomy of a Web Configurator 45

3.9 Chapter Summary

In this chapter, we presented an empirical study of 111 Web configurators along three

dimensions: configuration options, constraints and configuration process.

Quantitative insights. We quantified numerous properties of configurators using

code inspection tools. Among a diversity of widgets used to represent configuration

options, combo box items and images are the most common. We also observed that in

many cases configuration options, though not visually grouped together, logically depend

on one another: more than half of the configurators have cross-cutting constraints,

which are implemented in many different ways. As for the configuration process, half of

the configurators propose multi-step configuration, two thirds of which enable stateful

backward navigation.

Qualitative insights. The empirical analysis of Web configurators reveals reliability

issues when handling constraints. These problems come from the configurators’ lack

of convincing support for consistency checking and decision propagation. For instance,

although verifying mandatory options and constraints are basic operations for config-

urators, our observations show that they are not completely implemented. Moreover,

the investigation of client-side code implementation verifies, in part, that no systematic

method (e.g., solver-based) is applied to implement reasoning operations. We believe

that the use of variability models to formally capture configuration options and con-

straints, and solvers used in more academic configuration tools (e.g., SAT and SMT) to

reason about these models, would provide more effective and reliable bases. We also no-

ticed that usability is rather weak in many cases (e.g., counter-intuitive representations,

lack of guidance).

Chapter 4

Reverse Engineering Web

Applications: State of the Art

Reverse engineering a feature model from a Web configurator requires intersecting ap-

proaches coming from three fields of study: reverse engineering Web applications, Web

data extraction, and synthesizing feature models. This chapter is dedicated to describing

relevant work in these fields of research. We first present several approaches applied to

the reverse engineering of Web applications (Section 4.1), we then provide an overview

of existing Web data extraction methods (Section 4.2) and continue with techniques

used for synthesizing feature models (Section 4.3). Finally, we conclude this chapter

by a discussion about the limitations of existing approaches to reverse engineer feature

models from Web configurators (Section 4.4).

4.1 Reverse Engineering Web Applications

Reverse engineering is the process of analysing a subject system to identify the system’s

components and their interrelationships, and create a representation of the system in

another form or at a higher level of abstraction [Chikofsky and Cross II, 1990]. This

definition fits our purpose quite well. For us, the subject system is a Web configurator,

its configuration options are components to be identified and extracted, and constraints

defined over options are their interrelationships that will be documented. Variability

models and process models are higher abstractions that are synthesised at the end of

the reverse-engineering process.

46

Chapter 4. Reverse Engineering Web Applications: State of the Art 47

In the context of Web application reverse engineering, it is important to understand and

consider the types of target applications [Patel et al., 2007]. Web applications can be

categorised into three classes [Tilley and Huang, 2001]:

• Class 1: Static applications implemented in HTML with no user interaction,

• Class 2: Client-side interaction with Dynamic HTML (DHTML), typically using

mouse clicks, and

• Class 3: Contain dynamic content created “ on-the-fly”, typically use technologies

such as JSP, Java Servlets, ASP, PHP, etc.

The degree of complexity associated with the reverse-engineering process of applications

in Class 3, and therefore the effort required, is higher than that associated with classes 1

and 2 [Patel et al., 2007]. A Web configurator is a highly interactive application and new

content is dynamically created and added to the page when the application is executing

(see Chapter 3.3). Consequently, Web configurators fall in Class 3.

Over the years, many approaches have been proposed to reverse engineer Web appli-

cations for different purposes. Among all existing approaches, we present and discuss

some here. We refer the reader to [Bouillon, 2006; de Silva, 2010; Patel et al., 2007] for

a more detailed state of the art in reverse engineering Web applications.

GUITAR. GUITAR [Nguyen et al., 2013] is a flexible framework used for automated

testing of GUI-driven software. It supports a wide variety of GUI testing techniques for

different platforms. WebGUITAR 1 is a tool provided by this framework for automated

testing of Web applications. The WebGUITAR workflow process has four major steps:

• Web Ripper: The purpose of Ripper is to discover as much structural information

about the GUI as possible using automated algorithms and some human input.

Web Ripper automatically executes the target Website and extracts elements such

as links, buttons, images, etc. and creates a structure called GUI Tree. The GUI

Tree is an XML file containing information about the ripped windows and their

contained elements. The dependencies between these elements and windows are

documented as well.

• Event Flow Graph (EFG) Converter: Once the GUI Tree is created, EFG Con-

verter converts it into a format to be used by Test Case Generator to build test

cases.

1http://sourceforge.net/apps/mediawiki/guitar/index.php?title=WebGuitar

http://sourceforge.net/apps/mediawiki/guitar/index.php?title=WebGuitar

Chapter 4. Reverse Engineering Web Applications: State of the Art 48

• Test Case Generator: Based on the dependencies of the GUI, Test Case Generator

creates meaningful test cases.

• Web Replayer: Given the GUI Tree, Event Flow Graph structure, and generated

test cases, Web Replayer tests the Website for proper functionality and outputs re-

sults to a State File. State Files contain the Website’s state after each intermediate

step of the test case.

The use of WebGUITAR to reverse engineer variability models from Web configurators

requires substantial changes to its core procedures. It implements algorithms to auto-

matically generate GUI-based test cases. For this reason, during ripping it extracts only

GUI objects (widgets, windows, etc.) and ignores data objects represented in the page.

For instance, if we use WebGUITAR to extract options from a Web configurator, the

generated GUI Tree will contain widgets representing these options and exclude key data

items such as options’ names and other associated descriptive information. Adapting

those algorithms to consider configuration aspects and specific properties of Web config-

urators is an effortful task and we believe that will not lead to satisfactory results. For

example, Ripper should be improved to also consider configuration semantics of GUI

elements. It needs to be somehow parametrised to only consider GUI elements that

represent configuration objects (e.g., radio buttons, check boxes, etc.) not all elements

of the page. Moreover, in addition to GUI elements, Ripper should also extract and

structure data objects.

VAQUISTA. VAQUISTA (reVerse engineering of Applications by Questions, Informa-

tion Selection, and Transformation Alternatives) [Vanderdonckt et al., 2001] addresses

the problem of migration of the UI of a Web page to another environment. Figure 4.1

presents the complete process envisioned with VAQUISTA. It provides a user-interface

reverse-engineering process and recovers a presentation model from a single Web page

at a time based on mapping rules between HTML elements and presentation elements.

VAQUISTA does not aim to reverse engineer a whole Website, rather its goal is to export

highly interactive parts (e.g., input forms) of a Web page to another context. Once the

presentation model is created, it is then used in a forward-engineering process to gener-

ate a new UI in a given context. For instance, using SEGUIA they can automatically

generate a Windows UI from a presentation model.

VAQUISTA scans the HTML code of a given Web page, identifies types of HTML

tags, elements, and possible attached values, and represents them in a presentation

model. The produced presentation model is just an abstraction of the DOM of the

page and represents the visual elements provided by a UI to its user. Consequently, the

presentation model of a page does not give an advantage over the page itself to extract

Chapter 4. Reverse Engineering Web Applications: State of the Art 49

Figure 4.1: UI migration process with VAQUISTA ([Vanderdonckt et al., 2001]).

variability data. Moreover, VAQUISTA applies a static analysis of HTML elements

of a Web page without executing the application. It means that VAQUISTA does

not document runtime behaviour of the target application. A Web configurator is an

interactive application and the amount of data as well as widgets that are dynamically

generated and added to the page when the configurator is executing is considerable.

VAQUISTA is not able to deal with this runtime behaviour.

GuiSurfer. GuiSurfer [de Silva, 2010; Silva et al., 2010] is a generic tool to reverse

engineer the GUI layer of interactive computing systems. Its main goal is to enable

analysis of interactive systems from source code. Figure 4.2 shows the architecture of

the tool. GuiSurfer is composed of two phases: a language dependent phase and a

language independent phase. Hence, for a new language to be targeted by GuiSurfer,

only the language dependent phase should be transformed.

GuiSurfer first creates an Abstract Syntax Tree (AST) using a parser on the source

code of the target application. The generated AST represents the entire code of the

application. However, since GuiSurfer’s focus is on the GUI layer, not the entire source

code, it analyses the AST and retrieves only the GUI relevant nodes and ignores the

others. This is achieved by using techniques such as strategic programming [Visser,

2004a] and code slicing. Strategic programming allows novel forms of abstraction and

modularization that are useful for program construction in general [Visser, 2004b]. Code

slicing, aka program slicing, is the task of computing program slices. A program slice

consists of the parts of a program that (potentially) affect the values computed at some

point of interest [Tip, 1995].

To create the GUI layer, GuiSurfer looks for the GUI elements in the source code. The

considered elements are widgets that enable users to input data (user input), widgets

that enable users to choose between several different options such as a command menu

(user selection), any action that is performed as the result of user input or user selection

Chapter 4. Reverse Engineering Web Applications: State of the Art 50

(user action), and any widget that enables communication from the application to users

(output to user). Once the GUI layer model has been created, GuiSurfer performs

reasoning over the generated model. For instance, it creates Event-Flow Graph models

that abstract all the interface widgets and their relationships.

Figure 4.2: GuiSurfer’s tool architecture ([Silva et al., 2010]).

We claim that GuiSurfer is not applicable to reverse engineer feature models from Web

configurators. First, it considers only the GUI layer of the application and ignores the

data layer, while our focus in reverse engineering Web configurators is on their data layers

to extract variability data. Second, GuiSurfer relies on the static analysis of the source

code of an application to reverse engineer the user interface behaviour and structure

without executing the application. If GuiSurfer is applied to a Web configurator, it is

not able to study its dynamic aspects, and consequently, it is not able to extract those

widgets that are dynamically created at runtime and require dynamic analysis to be

identified.

Chapter 4. Reverse Engineering Web Applications: State of the Art 51

CRAWLJAX. CRAWLJAX is a tool for crawling AJAX-based applications through

automatic analysis of user-interface-state changes in Web browsers. It scans the DOM

tree, spots candidate elements that are capable of changing the states, fires events on

those candidate elements, and incrementally infers a state machine that models the var-

ious navigational paths and states within an AJAX application. The inferred model

can be used in program comprehension and in analysis and testing of dynamic Web

states [Mesbah et al., 2012]. The main components of CRAWLJAX are shown in Fig-

ure 4.3. The embedded browser provides a common interface for accessing the DOM. The

robot is used to simulate user actions (e.g., click, mouseOver, text input). The controller

controls the robot’s actions and updates the state machine when relevant changes occur

on the DOM. The DOM Analyzer is used to check whether the DOM tree has changed

after an event has been fired by the robot. The Finite State Machine is a data com-

ponent maintaining the state-flow graph. The state-flow graph records the states and

transitions between them. Figure 4.4 depicts the visualization of the state-flow graph of

an AJAX site. Each vertex represents a runtime DOM state and each edge represents a

transition between two participating states. The edges between states are labelled with

an identification (either via its ID attribute or an XPath expression) of the clickable

element. For instance, clicking on the //DIV[1]/SPAN[4] element in the index state leads

to the s1 state.

Figure 4.3: Processing view of CRAWLJAX ([Mesbah et al., 2012]).

Although CRAWLJAX analyses and records relationships between widgets in the state-

flow graph, it does not consider the semantics behind these relationships. For instance,

the selection of a check box that implies selection of another check box, for which

CRAWLJAX creates and adds a new state to the state-flow graph, should be interpreted

as the presence of a require constraint between the corresponding options of these two

Chapter 4. Reverse Engineering Web Applications: State of the Art 52

Figure 4.4: The state-ow graph of an AJAX site created by CRAWLJAX ([Mesbah
et al., 2012]).

check boxes. Moreover, CRAWLJAX's focus is on the GUI layer of a Web application

and ignores the data layer, where most of the variability data resides.

WARE. The WARE (Web Application Reverse Engineering) approach [Di Lucca et al.,

2004; Tramontana, 2005] implements a process, including reverse-engineering methods

and a supporting software tool, that helps to understand existing undocumented Web

applications to be maintained or evolved, through the reconstruction of UML diagrams.

Figure 4.5 illustrates the reverse-engineering process in the WARE approach. In the

�rst step, the source code of the application is statically analysed in order to identify

Web application entities (such as pages, forms, scripts, and other Web objects) and their

static relations. The code instructions producing link, submit, redirect, build, and other

relationships are identi�ed as well. In the second step, dynamic analysis is executed with

the aim of recovering dynamic information, for instance, retrieving the actual content

of dynamically built client pages, deducing links between pages that were de�ned at

runtime, etc. In the third step, the problem of grouping together sets of components

that collaborate to the realization of a functionality of the Web application is addressed,

and the components are partitioned into clusters. In the �nal step, UML diagrams are

created on the basis of the information extracted in the previous steps. For instance,

the class diagram describing the structure of the application is obtained by analysing

the information extracted about the application entities and their relationships.

The goal of the WARE approach is to retrieve, from the source code of a Web application,

Chapter 4. Reverse Engineering Web Applications: State of the Art 54

These methods mostly focus on GUI elements and do not seek to extract and structure

data objects that are associated with that elements. They also do not propose dedicated

techniques for (1) locating configuration objects (e.g., options) in a Web page or for (2)

analysing the dynamics and the specificity of a configuration process.

4.2 Web Data Extraction

A Web data extraction system is generally defined as a software system that extracts

data from Web pages and delivers the extracted data to a database or some other

application [Baumgartner et al., 2009; Laender et al., 2002b]. A Web data extraction

system implements a sequence of procedures, called Web wrappers. A Web Wrapper,

that might implement one or different class(es) of algorithms, seeks and finds data

required by a human user, extracts them from unstructured or semi-structured Web

sources, transforms them into structured data, merges and unifies this information for

further processing, in a semi-automatic or fully automatic way [Ferrara et al., 2012].

The challenging aspect of wrappers is that they must be able to recognize the data of

interest among many other uninteresting pieces of text [Laender et al., 2002b]. Moreover,

when the content or structure of data of a page is changed, the wrapper should be

adapted accordingly to keep working properly [Baumgartner et al., 2009; Ferrara et al.,

2012]. A common goal in Web data extraction systems is that the wrapper developed

for a given Web page or Website should be able to extract data from any other similar

Web pages or Websites [Laender et al., 2002b].

Due to the difficulty in manually writing and maintaining wrappers [Laender et al.,

2002b], several approaches have been proposed to address the problem of automatically

generating wrappers [Crescenzi et al., 2001; Kushmerick, 2000; Liu et al., 2000; Muslea

et al., 2001; Sahuguet and Azavant, 2001] in order to minimize the effort required from

the wrapper developers. In practice, it should be a satisfactory trade-off between the

degree of the automation of a tool and the accuracy of the extracted data [Phan et al.,

2005]. Many automatic tools are either inaccurate or make many assumptions [Zhai and

Liu, 2005].

Over the past years, many Web data extraction approaches have been proposed. A

number of reviews surveyed these approaches and provided taxonomies to classify them.

We first present three of those taxonomies:

Laender et al. [Laender et al., 2002b] presented a taxonomy for grouping the various

tools based on the main technique used by each tool to generate a wrapper: languages

for wrapper development offer formalisms for the development of wrappers [Arocena

Chapter 4. Reverse Engineering Web Applications: State of the Art 55

and Mendelzon, 1999; Crescenzi and Mecca, 1998; Hammer et al., 1997], HTML-aware

tools rely on the formal structure of Web pages to extract data [Baumgartner et al.,

2001b; Crescenzi et al., 2001; Liu et al., 2000; Sahuguet and Azavant, 2001], natural

language processing-based (NLP) tools extract data of interest from highly grammatical

and natural-language documents [Freitag, 2000; Soderland, 1999], ontology-based tools

recognize and extract data presented in documents given an ontology [Embley et al.,

1999], modelling-based tools, given a target structure for objects of interest, try to locate

in Web pages portions of data that implicitly conform to that structure [Adelberg, 1998;

Laender et al., 2002a], and wrapper induction tools generate extraction rules from a

given set of training examples [Hsu and Dung, 1998; Kushmerick, 2000; Muslea et al.,

2001]. There are cases where a tool could fit in two or more of the identified groups.

Chang et al. [Chang et al., 2006] surveyed the major Web data extraction approaches

and tools and classified them into four classes: manually-constructed, supervised, semi-

supervised, and unsupervised systems. In manually-constructed systems [Arocena and

Mendelzon, 1999; Crescenzi and Mecca, 1998; Hammer et al., 1997; Liu et al., 2000;

Sahuguet and Azavant, 2001] users program a wrapper for each Website by hand using

general programming languages such as Perl or by using especially-designed languages.

Supervised Web data extraction systems [Adelberg, 1998; Califf and Mooney, 1999;

Freitag, 1998; Hsu and Dung, 1998; Kushmerick et al., 1997; Laender et al., 2002a;

Muslea et al., 1999; Soderland, 1999] take a set of Web pages labelled with examples of

the data to be extracted and output a wrapper. Semi-supervised systems require a rough

example from users for extraction rules [Chang and Kuo, 2004; Hogue and Karger, 2005].

Unsupervised Web data extraction systems [Arasu and Garcia-Molina, 2003; Chang and

Lui, 2001; Crescenzi et al., 2001; Liu et al., 2003; Wang and Lochovsky, 2002, 2003]

do not need any labelled training examples and have no user interactions to generate

a wrapper. The authors then compared these systems in three dimensions: the task

domain, the automation degree, and the techniques used. They proposed some criteria

for each dimension and then evaluated the capabilities of the surveyed systems based on

these criteria.

Ferrara et al. [Ferrara et al., 2012] categorised Web data extraction approaches into

two main categories: approaches based on Tree Matching algorithms and approaches

based on Machine Learning algorithms. They also presented how each category ad-

dresses the problems of automatic wrapper generation and maintenance. Tree-based

approaches [Baumgartner et al., 2001b; Meng et al., 2003; Sahuguet and Azavant, 1999;

Zhai and Liu, 2005] rely on the semi-structured nature of Web pages presented using

a labelled ordered rooted tree, usually referred to as DOM (Document Object Model).

Machine-learning approaches [Hsu and Dung, 1998; Kushmerick, 2000; Muslea et al.,

2001; Phan et al., 2005] are learning-based Web data extraction systems which require

Chapter 4. Reverse Engineering Web Applications: State of the Art 56

large amounts of manually labelled Web pages. These approaches are used to extract

domain-specific data from Web sources, since they rely on training sessions during which

a system requires a domain expertise. There are some hybrid approaches [Crescenzi

et al., 2001] as well.

Considering the classification given by Laender et al., languages designed for wrapper de-

velopment require the user to have substantial computer and programming backgrounds,

so they are expensive. Moreover, the user has to program a wrapper for each Website

by hand [Chang et al., 2006; Ferrara et al., 2012; Laender et al., 2002b]. NLP-based

tools are useful to solve specific problems such as extraction of facts from newspaper

articles, email messages etc. [Ferrara et al., 2012], and from Web pages consisting of

free text [Laender et al., 2002b]. Ontology-based approaches rely directly on the data

(not the structure of presentation features of the data) to generate rules or patterns to

perform extraction. This approach requires the careful construction of an ontology, a

task that must be done manually by a domain expert [Laender et al., 2002b].

Due to the aforementioned limitations of languages for wrapper development, NLP-

based, and ontology-based tools, we do not cover and discuss them further in this chap-

ter. However, from HTML-aware, wrapper induction, and modelling-based tools, we

choose the most representative tools and discuss their applicabilities to extract variabil-

ity data from Web configurators. Since Web configurators usually have template-based

and dynamically generated Web pages, and the modelling-based approach is a good ap-

proach for the extraction of data from Web sources based on templates [Ferrara et al.,

2012; Laender et al., 2002b], we mostly focus on modelling-based tools.

STALKER. STALKER [Muslea et al., 2001] is a supervised learning-based wrapper

induction tool to extract data from semi-structured Web pages. It presents a Web page

in a tree-like structure called embedded catalog (EC) in which the leaves are the items

of interest for the user. The internal nodes of the EC represent list of k-tuples. The EC

tree represents the target document as a sequence of tokens (any piece of text or HTML

tag is considered as a token in the document). Having the EC tree of the document and

a set of training examples, STALKER generates extraction rules that cover the given

examples. Extraction rules are described using directives such as SkipTo, SkipUntil, and

NextLandmark. For example, SkipTo (T) tells that all tokens have to be skipped until

the first occurrence of the token T is found.

For instance, considering a restaurant description presented in Figure 4.6, STALKER

generates the following extraction rule to identify the beginning of the restaurant name,

i.e., Yala:

R1 = SkipTo()

Chapter 4. Reverse Engineering Web Applications: State of the Art 57

which means start from the beginning of the document and skip everything until the

 landmark is found.

Figure 4.6: An example input to STALKER ([Muslea et al., 2001]).

STALKER and other wrapper induction tools generate delimiter-based extraction rules

derived from a given set of training examples and rely on formatting features that

implicitly delineate the structure of the pieces of data found [Laender et al., 2002b].

These tools assume that the desired data to be extracted are surrounded by common

tokens [Chang et al., 2006] and based on these tokens they generate extraction rules. The

extraction rules are represented using regular grammars (e.g., regular expressions). We

observed that in some Web configurators such common tokens surrounding the data to

be extracted can be found. However, in some other cases it is rarely possible to generate

a concise and formal grammar to locate the desired data in the page. Figure 4.7 shows

an example Web page from a configurator in which options presented using images are

not attached any individual textual description. Instead, data items to be extracted are

located in the tag attributes of the corresponding HTML elements (e.g., the src and

alt attributes of the img elements). STALKER is not able to deal with tag attributes,

neither in creating the EC tree, nor in analysing training examples to generate extraction

rules. It means that in the generated EC tree for this example, leaves are HTML tags,

not data items. Consequently, STALKER will not extract any data for image-based

options. In addition, the authors in [Crescenzi et al., 2001] presented nested structures

that STALKER cannot handle.

Data Extraction By Example (DEByE). DEByE [Laender et al., 2002a; Ribeiro-

Neto et al., 1999] is a supervised, modelling-based and interactive Web data extraction

tool for wrapper generation (Figure 4.8). It targets specific data rich Web pages and

assumes that there is an implicit structure associated with the objects in the pages.

By analysing a set of input example objects taken from a sample Web page, DEByE

recognizes the structure of the presented data in the given page and generates objects

extraction patterns that denote the structure of the data. These extraction patterns are

then used by a module called Extractor to find and extract new objects from the given

page and also from other similar pages.

Chapter 4. Reverse Engineering Web Applications: State of the Art 58

Figure 4.7: An example of STALKER fail.

Figure 4.8: Modules of the DEByE tool ([Laender et al., 2002a]).

The DEByE approach is restricted to the specific domain of Web applications with data

rich pages [Laender et al., 2002a] which contain uniform and regularly formatted data

records [Phan et al., 2005]. In contrast to STALKER that also uses HTML tags to

identify a common structure for the presented data in the page (and so is applicable to

some Web pages in configurators), DEByE exclusively relies on the textual surroundings

of the data to be extracted. We observed that inducing such a structure associated with

the objects in Web configurators is difficult (if not impossible). It becomes even more

challenging when we know that a page in a Web configurator may contain various kinds

of data objects, objects with complex structures, objects that are not configuration-

specific and so must not be extracted, objects that have no attached textual data items

(e.g., images) etc. DEByE is not able to deal with these issues.

Chapter 4. Reverse Engineering Web Applications: State of the Art 59

Our analysis of Web configurators shows that for data objects presented in the pages

that have an identifiable implicit structure (required by DEByE), the structure may be

slightly different from one object to another. It means that the data extraction approach

needs to be flexible enough to deal with these variations. However, the experimental

results in [Phan et al., 2005] show that DEByE fails to recognise and handle such changes

(e.g., the change of record layout, order of fields, etc.) because its extraction rules are

fixed.

ROADRUNNER. ROADRUNNER [Crescenzi et al., 2001] is an un-supervised Web

data extraction system that proposes an approach to wrapper inference for Web Pages.

It targets data-intensive Websites in which pages are automatically generated using

scripts. A collection of pages in a Website produced by the same script is called a

class of pages. ROADRUNNER receives a set of (at least two) sample Web pages

that belong to the same class, analyses the schema of the data contained in the pages,

infers a common structure, generates a wrapper considering the identified structure,

and uses that wrapper to extract data from the sample pages as well as from other

pages of the same class. The structure discovery is based on the study of similarities

and dissimilarities between the given sample pages. ROADRUNNER is able to identify

structural features such as tuples and lists, handle structural variations, and resolve

string and tag mismatches during parsing of the sample pages. The wrapper generated to

describe the identified common structure is presented as a union-free regular expression

(UFRE). Figure 4.9 shows two sample pages and the generated wrapper.

ROADRUNNER needs at least two Web pages to generate the wrapper and requires

that these pages are generated from a same template. Our observation shows that Web

configurators usually use a single-page user-interface paradigm to present the configu-

ration space (i.e., all objects representing the configuration-specific data). Even if those

follow the multi-page paradigm, the structure of the configuration-specific data is differ-

ent form one page to another. ROADRUNNER will fail to discover a common structure

and generate a wrapper for these cases. Another problem of ROADRUNNER is that it

is not expressive enough to describe all structures presented in Web pages, so its applica-

bility is limited. For example, ROADRUNNER assumes that Web pages are generated

by a union-free grammar, and therefore fails for Websites that use disjunctions (e.g.,

multi-ordered attributes) [Chang et al., 2006; Crescenzi et al., 2001] , and disjunctions

appear frequently in the grammar of Web pages [Lerman et al., 2004]. ROADRUNNER

also assumes that any data represented in a page is the extraction target. This poses

a serious data accuracy threat for Web configurators because not all data presented in

the page is configuration-specific, and therefore, another effort is required to elicit the

configuration-specific data from other irrelevant data.

Chapter 4. Reverse Engineering Web Applications: State of the Art 60

Figure 4.9: Two sample pages and the generated wrapper by ROADRUNNER
([Crescenzi et al., 2001]).

XWRAP. XWRAP (XML-enabled Wrapper) [Liu et al., 2000] is an HTML-aware tool

for semi-automatic generation of wrapper programs. Figure 4.10 shows the wrapper

construction process. The first phase consists of fetching the remote document and

repairing bad HTML syntax. This step inserts missing tags, removes useless tags, etc.

Once the HTML errors and bad formatting are repaired, the clean HTML document

is parsed into a syntactic token tree. The usual tokens are HTML tags (paired and

singular tags), semantic token names, and semantic token values. In the generated tree,

all non-leaf nodes are tags and all leaf nodes are text strings (i.e., semantic token nodes),

each in between a pair of tags. The main phase of the wrapper construction process

is the information extraction phase in which the target document is explored and its

structure is specified in a declarative extraction rule language. This phase takes as

input the syntactic token tree. It first interacts with the user to identify the semantic

tokens and the important hierarchical structure. Then XWRAP annotates the tree nodes

with semantic tokens in a comma-delimited format and nesting hierarchy in context-free

grammar. Based on the semantic tokens and the nesting hierarchy specification and

using a set of data extraction heuristics, XWRAP generates the wrapper code (described

in the XWRAP’s XML template-based extraction specification language) for the chosen

document. The generated wrapper code is tested and once the user is satisfied with the

test results, the release version of the wrapper program is obtained.

Chapter 4. Reverse Engineering Web Applications: State of the Art 61

The wrappers generated by XWRAP can handle only pages where tables are used for

layout, therefore its applicability is limited. In addition, XWRAP uses DOM tree paths

to address elements in a Web page and assumes that the data to be extracted are co-

located in the same path of the DOM tree of the target Web pages [Chang et al., 2006].

It means that the generated wrapper is strictly related to the structure of the page on top

of which it is defined. Since the content and the structure of pages in Web configurators

may be changed at runtime, this will corrupt the correct operation of the wrapper.

Figure 4.10: Data wrapping phases and their interactions in XWRAP ([Liu et al.,
2000]).

DEPTA. DEPTA (Data Extraction based on Partial Tree Alignment) [Liu et al.,

2003; Zhai and Liu, 2005] is a tree-based un-supervised Web data extraction method.

The method targets those Web pages that contain regularly structured objects, called

data records. DEPTA is based on two observations about data records in Web pages:

• A group of data records that contain descriptions of a set of similar objects are

typically presented in a particular region of a page and are formatted using similar

HTML tags. Such a region is called a data region.

Chapter 4. Reverse Engineering Web Applications: State of the Art 62

• A group of similar data records being placed in a specific region is reflected in the

tag tree2 by the fact that they are under one parent node.

DEPTA proposes a two-step approach. In the first step, which is called MDR (Mining

Data Records), the method segments the page to mine data regions in the given Web

page and then identifies data records from each data region without extracting its data

items. In the second step, a partial tree alignment algorithm is applied to align and to

extract corresponding data items from the discovered data records. The extracted data

items are put in a database table.

The drawback of DEPTA is that its recall performance might decay in case of complex

HTML document structures. In addition, the functioning of the partial tree alignment

is strictly related with the structure of the Web page at the time of the definition of

the alignment. This implies that the method is very sensitive even to small changes,

that might compromise the functioning of the algorithm and the correct extraction of

information [Ferrara et al., 2012]. Since the structure of pages in Web configurators

changes at runtime, the maintenance problem arises. Another important issue to note

is that DEPTA does not know which regular data records are useful to a user and it

simply finds all of them [Zhai and Liu, 2005]. Additional heuristics must be designed

to identify and output those that are of interest. Moreover, this method assumes that

every HTML tag is generated from the template from which the page is generated and

other tokens are data items. However, the assumption does not hold for many collection

of pages [Chang et al., 2006]. Finally, this method assumes that (1) exactly the same

number of sub-trees must form all records, and (2) the visual gap between two data

records in a list is bigger than the gap between any two values from the same record.

These assumptions do not hold in all Web pages [Álvarez et al., 2010].

Automatic Web News Extraction. Reis et al. [Reis et al., 2004] proposed a domain-

specific approach to extract content of news Websites based on the analysis of the struc-

ture of their Web pages. This approach relies on the basic assumption that pages in

news Websites are generated from a template. A template is the set of common layout

and format features that appear in a set of Web pages that is produced by a single

program or script that dynamically generates the Web page’s content. In addition, the

proposed approach assumes that news Websites have almost the same organization: (a)

a home page that presents some headlines, (b) several section pages that provide the

headlines divided in areas of interests (e.g., sports, technology, etc.), (c) pages that

actually present the news, containing the title, author, date and body of the news.

2The nested structure of HTML tags in a Web page naturally forms a tag tree.

Chapter 4. Reverse Engineering Web Applications: State of the Art 63

Figure 4.11 depicts the main extraction steps. The approach first evaluates the structural

similarities between pages in a target Website using a tree edit distance algorithm and

clusters together pages with similar structure. It then finds a generic representation of

the structure of the pages within a cluster. This generic representation is called node

extraction pattern (ne-pattern). Taking as input a page cluster, the approach generates

a ne-pattern that accepts all the pages in this cluster. A ne-pattern is a rooted ordered

labelled tree that contains special vertices called wildcards. Every wildcard must be a

leaf in the tree and corresponds to a data-rich object in the template from which the

page is generated. Once the ne-patterns have been generated, the approach matches

the set of generated ne-patterns to the set of crawled pages. For each page, its tree

and the tree of the relevant ne-pattern are traversed and for each wildcard found in the

ne-pattern its matching text passage is extracted from the page. The extracted data is

finally labelled as the title or the body of the news using simple heuristics.

Figure 4.11: The main steps of news extraction process ([Reis et al., 2004]).

This approach is domain-specific and is strictly related to the common characteristics

and organization of news Websites. Consequently, a substantial effort is required to

generalize it to deal with extracting data from Web configurators.

Other related works. Baumgartner et al. developed a commercial interactive and

visual Web data extraction system called Lixto [Baumgartner et al., 2001a,b]. It allows

for extraction of target patterns based on surrounding landmarks, on the order of ap-

pearance, on semantic and syntactic concepts, etc. These generated patterns are then

used to extract new data objects from the given page and also from other similar pages.

Chapter 4. Reverse Engineering Web Applications: State of the Art 64

Arasu et al. [Arasu and Garcia-Molina, 2003] studied the problem of automatically ex-

traction of database values from template-generated Web pages. The proposed approach,

called EXALG, takes as input a set of template-generated pages, deduces the unknown

template used to generate the pages, and extracts as output the values encoded in the

pages. EXALG requires more than one training page as input to work. It also extracts

data objects in whole pages which may contain records of multiple kinds. Another draw-

back of this approach is that it does not support multi-ordered attributes [Chang et al.,

2006]. And finally, the proposed approach assumes that the data records are represented

in a list, are shown contiguously in the page, and are formatted in a consistent manner:

that is, the occurrences of each attribute in several records are formatted in the same

way and they always occur in the same relative position with respect to the remaining

attributes [Álvarez et al., 2010].

Lerman et al. [Lerman et al., 2004] proposed an approach to automate the extraction and

segmentation of data records from template-generated Web pages. The approach relies

on the common structure of many Websites, which present information as a list or a

table, with a link in each entry leading to a detail page containing additional information

about that item.

Hogue et al. [Hogue and Karger, 2005] developed Thresher, a system that lets non-

technical users teach their browser how to extract semantic content from Web pages.

The user specifies examples of semantic content by highlighting them in a browser and

describing their meaning. Thresher then uses the tree edit distance between the DOM

subtrees of these examples to create a general pattern for the content and allows the user

to bind Resource Description Framework (RDF) classes and predicates to the nodes of

these patterns. The system then matches the generated pattern against the target page

by simply looking for subtrees on the page that have the same structure. Each time the

system finds a match to the given pattern, the matched text of the subtree is labelled

according to its RDF predicate in the pattern.

Zheng et al. [Zheng et al., 2009] proposed a record-level wrapper system. First, a set

of training pages are converted to DOM trees by an HTML parser. Then, semantic

labels of a specific extraction schema are manually assigned to certain DOM nodes to

indicate their semantic functions. Based on these labels, an algorithm is applied on each

DOM tree to extract records. The extracted records are fed to a module to generate

their corresponding wrappers. When a new page enters the system, it is first converted

to a DOM tree, and then from the wrapper set generated in the training process, one

or more wrappers are automatically selected to align with the DOM tree. Labels on

selected wrappers are accordingly assigned to the nodes of the DOM tree. Finally, data

contained in those mapped nodes is extracted and saved in an XML file. This approach

Chapter 4. Reverse Engineering Web Applications: State of the Art 65

assumes that records in a Website can be grouped by their tag-paths. In addition, this

approach is not able to deal with distinctive data items.

In [Álvarez et al., 2010] the authors presented a set of techniques for detecting structural

records in a template-generated Web page and extracting their data values. The method

starts by identifying the data region of interest in the page. Then it is partitioned into

records by using a clustering method that groups similar subtrees in the DOM tree of the

page. Finally, attributes of the data records are extracted by using a method based on

multiple string alignment. This method is able to detect and extract lists of structured

data records embedded in Web pages. It assumes that the pages containing such list

are generated according to the page generation model described in [Arasu and Garcia-

Molina, 2003], that is, all instances of an attribute have the same path in the DOM tree,

and the same applies to the remaining attributes. The drawback of this approach is

that it does not support multi-ordered attributes. Moreover, the authors declared that

a limitation of their approach arises in the pages where attributes constituting a data

record are not contiguous in the page, and their approach is unable to deal with them.

4.3 Synthesizing Feature Models

Synthesizing a feature model from an existing artefact is the task of locating and ex-

tracting features from the artefact, identifying the dependencies exist among features,

and then constructing a consistent feature model. In this section, we present several

approaches that have been proposed to reverse engineer feature models from existing

artefacts.

Reverse Engineering Feature Models. She et al. [She et al., 2011] proposed a

tool-supported approach for reverse engineering feature models. Given a list of feature

names, descriptions and propositional formula specifying dependencies, the task of con-

structing the relevant feature model reduces to the selection of a parent for each feature

in order to build a feature hierarchy. First, using the list of features and the proposi-

tional formula, a feature implication graph is constructed in which each vertex denotes a

feature name and each directed edge indicates a dependency between the participating

features. Then, to identify parents, two complementary forms of data are used: (1)

dependencies that describe the configuration semantics of the feature model, and (2)

descriptions that are used to approximate the feature model’s ontological semantics.

The authors presented heuristics for identifying the likely parent candidates for a given

feature using this data. They also provided automated procedures for finding feature

groups, requires and excludes constraints. The building process provided by this ap-

proach is interactive and requires a domain expert modeller. The procedures present a

Chapter 4. Reverse Engineering Web Applications: State of the Art 66

list of parent candidates (typically five or less, as shown by experiments) for a feature’s

parent and the modeller selects the most suitable one. The approach is evaluated on

Linux, eCos, and FreeBSD kernels.

On Extracting Feature Models from Product Descriptions. Acher et al. [Acher

et al., 2012] proposed a semi-automated approach to extract feature models from prod-

uct descriptions. It is assumed that product descriptions are organized through semi-

structured data, typically tabular data where each row of the table specifies a product,

and each column has a label that will be used as a feature name in the extracted feature

model. Each cell in the table specifies the value of a feature (identified by the label of the

corresponding column) for a specific product (identified by the label of the correspond-

ing row). Moreover, the cells may contain variability-specific data. For instance, in a

table documenting several Wiki engines, a column (which denotes a potential feature)

may contain a list of values for Licence Cost Fee. Values such as US 10, Community,

“Yes” or “No” indicate that this is an optional feature. The authors also developed a

language, called VariCell, using which the user can programmatically parameterize the

extraction process.

Figure 4.12 shows the proposed semi-automated process. The process takes as input a

set of product descriptions and directives expressed in VariCell and synthesizes a feature

model for each product description. The built feature models are then merged to produce

a new feature model that represents all the variability of the set of input products.

Figure 4.12: The process of extracting feature models from product descriptions
([Acher et al., 2012]).

Efficient Synthesis of Feature Models. Andersen et al. [Andersen et al., 2012]

addressed the problem of automatically synthesizing feature models from propositional

constraints. The proposed feature model synthesis takes as input a formula representing

a set of feature dependencies or product configurations, and outputs a feature model or

a feature graph (FG). A FG is a symbolic representation of all possible feature models.

The synthesis process (Figure 4.13) includes two steps: (a) Directed Acyclic Graph

(DAG) hierarchy recovery, and (b) group and cross-tree constraint (CTC) recovery.

Chapter 4. Reverse Engineering Web Applications: State of the Art 67

The first step takes as input a formula in either conjunctive normal form (CNF) or

disjunctive normal form (DNF), and produces a DAG that contains all possible feature

model tree hierarchies – possibly with multiple parents for a feature. The second step

identifies all feature groups and CTCs given the propositional formula, DAG and an

optional tree hierarchy. The output for this step is a FM or a FG.

The authors then used these two steps in three FM synthesis scenarios:

• Scenario 1: This scenario describes the process of synthesizing a FG from a set of

product configurations represented as a formula in DNF.

• Scenario 2: This scenario describes reverse engineering a FM from code. This sce-

nario can be used to build a FM for variability-rich software, such as the FreeBSD

kernel. The dependencies among features can be extracted from the source code

using static analysis, yielding a formula in CNF.

• Scenario 3: This scenario describes binary operations of two FMs, such as merging,

diffing, comparing, and slicing. The two feature models are first translated to their

propositional formulas, and then an operation is applied to merge the two models,

resulting in a single formula. This formula is converted to CNF to serve as input

for FM synthesis.

Figure 4.13: Components of feature model synthesis ([Andersen et al., 2012]).

Feature Model Extraction from Large Collections of Informal Product De-

scriptions. Davril et al. presented an automated approach for constructing FMs

from publicly available product descriptions found in online product repositories and

marketing Websites such as SoftPedia and CNET.

The proposed process (Figure 4.14) consists of two main phases. In the first phase,

features are discovered and then are used in the second phase to build a FM. The

first phase starts with mining product descriptions from online software repositories by

using the Screen-scraper utility (Ê). The extracted product descriptions are processed to

identify features and generate a product-by-feature matrix in which the rows correspond

to products and the columns correspond to features (Ë). Meaningful names are selected

for the mined features (Ì).

Chapter 4. Reverse Engineering Web Applications: State of the Art 68

In the second phase, using the product-by-feature matrix, a set of association rules

are mined for the features (Í) which are then used to generate an implication graph

(IG) (Î). The IG is a directed graph in which each node represents a feature and each

edge represents a binary configuration constraint between the two participating features.

Given the IG and the content of the features, the tree hierarchy and then the FD are

generated (Ï). Finally, CTCs and or-groups are identified (Ð), and together with the

extracted FD, form the final FM.

Figure 4.14: The two-phase process of mining features and building FM from informal
product descriptions ([Davril et al., 2013]).

Reverse Engineering Architectural Feature Models. Acher et al. [Acher et al.,

2011] proposed a tool-supported approach to reverse engineer software variability from

an architectural perspective. The reverse engineered feature model is called architectural

feature model, noted FMArch. It is extracted from several software artefacts (files,

descriptions, informal documents) and combines different variability descriptions of the

architecture of the target software system.

Figure 4.15 shows the process of extracting architectural FMs. The process starts with

extracting a raw architectural feature model, noted FMArch150 , from a 150% architecture

of the system (1○). A 150% architecture consists of the composition of the architecture

fragments of all the system plugins. The authors call it a 150% architecture because

Chapter 4. Reverse Engineering Web Applications: State of the Art 69

it is not likely that the system may contain them all. FMArch150 thus includes all the

features provided by the system.

To derive inter-feature constraints from inter-plugin constraints, the specification of the

system plugins and their declared dependencies are analysed and based on this informa-

tion a plugin feature model FMPlug is built (2○). Then, the bidirectional mapping that

holds between the features of FMArch150 and those of FMPlug is reconstructed (3○).

Finally, this mapping is used to derive FMArch, where additional constraints have been

added.

Figure 4.15: The process of extracting architectural FMs ([Acher et al., 2011]).

Other related works. Lora et al. [Lora-Michiels et al., 2010] proposed a method to

construct Product Line Models (PLMs) by exploiting mining techniques (e.g., apriori

algorithm, independence test, etc.) to identify candidate features, group cardinalities,

and dependencies. The method starts with a collection of Product Models (PMs) and

produces PLMs in the FORE [Streitferdt, 2004] notation. It arranges features of the

collection of product models into a matrix of occurrences. Then, the process guides the

construction of the general tree architecture by detecting candidate parent-child depen-

dencies, mandatory and optional relationships, and completes it with group cardinalities.

It also guides the identification of other dependencies such as requires and excludes.

In [Weston et al., 2009] the authors introduced a tool suite which automatically trans-

forms natural-language requirement documents into a candidate feature model, which

can be refined by the requirements engineer. The authors consider features as clusters of

related requirements. Statistical methods are used to measure the similarity between the

Chapter 4. Reverse Engineering Web Applications: State of the Art 70

texts of the requirements and similar requirements are clustered together. The features

(i.e., the clusters) are structured in a tree based on their similarity. The user can add,

remove, and manually name the extracted features.

John [John, 2006] proposed an approach called PuLSE-CaVE (Commonality and Vari-

ability Extraction) for the extraction of requirements from user documentation, which

gives guidance on how to elicit knowledge from existing user documentation and how to

transform information from this documentation into product line models.

Alves et al. [Alves et al., 2008] proposed a framework for identifying commonalities and

variabilities in requirement specifications for software product lines of a given domain.

The framework takes as input a set of documents, where each document comprises

requirements specifications of different applications. Then, for each such document,

information retrieval (IR) techniques are used to automatically determine a similar-

ity relationship between its requirements. Next, based on this relationship, clusters of

requirements are identified and abstracted further into a configuration. Finally, the con-

figurations corresponding to all requirement documents are merged into a fully-fledged

feature model.

Ziadi et al. [Ziadi et al., 2012] presented a three-step approach to feature identification

from source code of software products. In the first step, an abstract model is reverse

engineered from the source code of each product by reducing the noise induced by spu-

rious differences in the various implementations of the same feature. In the second step,

feature candidates are produced by identifying pieces of software that appear identical in

the available products. The proposed algorithm works on product abstraction induced

by the first step. In the third step, the irrelevant candidates are manually pruned and

missed features are added.

Haslinger et al. [Haslinger et al., 2011] presented an algorithm that reverse engineers

a basic feature model from the feature sets which describe the features each system

provides in a family of systems.

4.4 Conclusion

Reverse engineering Web applications. Existing methods to reverse engineer Web

applications mostly focus on recovering models at a high level of abstraction, at GUI

(presentation) and sometimes business levels. They do not target the data layer where

most of the configuration-specific data resides. Their use to reverse engineer feature

models would require substantial changes to their core procedures: the algorithms they

implement do not consider configuration aspects (e.g., configuration semantics of GUI

Chapter 4. Reverse Engineering Web Applications: State of the Art 71

elements) nor specific properties of the highly dynamic and multi-step nature of a config-

uration process (e.g., choices may force the selection of/exclusion of some other options,

make visible new options or even new steps).

Web data extraction. Most of the available Web data extraction methods are domain-

specific as constructing a generic method is complex (if not impossible) [Reis et al.,

2004]. Moreover, their scalability has not been adequately evaluated to verify if they

can be applied across different application domains (see [Ferrara et al., 2012] for a

brief discussion on this possibility). We conclude that existing Web data extraction

methods do not meet three important requirements we face when reverse engineering

Web configurators:

• Most of these approaches usually aim at providing automatic data extraction tech-

niques. Consequently, they assume that meaningful naming of the extracted data

is done as a post-processing task (notable exceptions are [Hogue and Karger, 2005;

Zheng et al., 2009]). This poses a serious data accuracy threat for Web configura-

tors, because: (1) not all data presented in a page is configuration-specific. Data

not relevant should be ignored for reverse engineering; (2) each data item should

be labelled meaningfully (option name, description, price, constraint, etc.). There-

fore, another effort is required to elicit and properly name the configuration-specific

data from otherwise irrelevant data.

• Existing Web data extraction approaches neither consider specific characteristics

of Web configurators nor study the configuration semantics and relationships be-

tween extracted data. For instance, for options presented in a group and repre-

sented using radio buttons, not only the options should be extracted, but the fact

that an alternative group constraint defined over these options exists should be

documented as well. This means that in addition to the data presented in the

pages of a configurator, some data must be deduced from the presentation and

documented.

• Web configurators are highly interactive applications: as they are executing, new

content may be automatically added to the page, and existing content may be

removed or changed. A technique is required to automatically generate and ex-

tract this data. Existing Web data extraction approaches do not provide sufficient

support for generation and extraction of dynamic content. Some available Web

data extraction and reverse-engineering approaches offer a Web crawler to navigate

hyper-linked Web pages and extract data. In Web configurators, a more specific

Web crawler is required to be able (1) to automatically explore the “configuration

space” (i.e., all object representing configuration-specific content), (2) to simulate

Chapter 4. Reverse Engineering Web Applications: State of the Art 72

the users’ different configuration actions in order to automatically generate dy-

namic content, and (3) to track and detect changes made to the page with the

aim of identifying and extracting newly added configuration-specific data through

dynamic analysis. For instance, for options in the “Model line” group in Figure 3.1

(Section 3.1), the Web data extraction method should select each option, extract

new options loaded in the “Body style” group, and record that there exist cross-

cutting constraints between these options.

Synthesizing feature models. The approaches that address the (semi-automatic)

reverse engineering feature models use sources such as user documentation, natural-

language requirements, formal requirements, product descriptions, dependencies, source

code, architecture, etc. to recover feature models. None of these approaches tackles the

extraction of variability data from Web configurators.

In the light of these observations, we argue that a new method is needed. This new

method is described in the next chapter. Wherever relevant, the new method takes

inspiration from existing techniques. More precisely:

• The variability data extraction pattern language we developed takes inspiration

from the notion of node extraction pattern (ne-pattern) [Reis et al., 2004] for its

general structure, but it is substantially different in both syntax and semantics (see

Chapter 6). Moreover, we implemented a different pattern-matching algorithm to

locate in a Web page code fragments that structurally conform to a given pattern

(see Chapter 7).

• In our approach, a data extraction procedure, i.e., the Wrapper, traverses the code

fragments in the source code and extracts their data items. During the traversal,

some HTML elements must be ignored by the Wrapper because they do not hold

any variability data. We use a directive similar to the SkipTo directive presented

in [Muslea et al., 2001] to guide the Wrapper to skip the noisy elements (see

Section 6.3.2). The user can set up the Wrapper to skip a predefined number

of consecutive sibling elements, or to ignore all descendants of an element until

finding a specific HTML or text element.

• Inspired by the robot component of CRAWLJAX [Mesbah et al., 2012], we im-

plemented a Web Crawler to simulate the users’ configuration actions (see Chap-

ter 8). Similarly, in our approach, the user tells the Crawler which elements should

be clicked to simulate the user actions. However, unlike the robot, if the Crawler

has changed the state of an element, it can change it back to the previous state.

For instance, if the Crawler selected a check box, it can change back its state to

undecided.

Chapter 4. Reverse Engineering Web Applications: State of the Art 73

• Zheng et al. [Zheng et al., 2009] proposed to manually assign semantic labels of a

specific extraction schema to certain DOM nodes to indicate their semantic func-

tions. Based on these labels, an algorithm is applied on each DOM tree to extract

records. Similarly, in our approach, the user uses a variability data extraction

pattern to mark data objects of interest to be extracted from a page. Moreover,

using the pattern, the user defines the structure of objects of interest. Finally,

in our approach, the user can mark data items of interest that exist in the tag

attributes of an HTML element.

However, to a large extent, the approach is novel as needed by the specificities of the

domain of Web configurators. The major innovations we introduce are:

• A pattern specification language that can be used to identify and manage the

implicit templates (structure and layout of data) followed in Web development.

• A novel pattern-matching algorithm to locate code fragments in the source code

of a page that structurally match a given pattern.

• A technique for analysing the dynamics and the specificity of a configuration pro-

cess.

• A set of methods to trigger, identify, and extract constraints defined over options

in a Web configurator.

Chapter 5

The Reverse Engineering Process

Our investigation of existing approaches shows that none of those tackles the problem

of extracting variability data from Web configurators (Chapter 4). The adaptation of

these approaches to reverse engineer feature models from Web configurators requires

substantial changes to their core procedures because the algorithms they implement

do not consider specific properties of Web configurators. We conclude that we need a

different approach.

This chapter presents our tool-supported reverse engineering solution for extracting con-

figuration options, their associated descriptive information, and constraints, altogether

called variability data, from the Web pages of a Web configurator, and then construct-

ing a feature model [Abbasi, 2013; Abbasi et al., 2014]. The proposed supervised and

semi-automatic reverse-engineering process implements a sequence of interactive and au-

tomatic activities to obtain a feature model by static and dynamic analyses of the client

side of a Web configurator. The input for the reverse engineering process is a set of

variability data extraction patterns, expressed in an HTML-like language to specify vari-

ability data to be extracted from a Web page, and the output is an XML file containing

the extracted data represented in a predefined data model. We first describe the main

reverse-engineering challenges (Section 5.1). We then present our reverse-engineering

process and briefly explain its activities (Section 5.2). The chapters ahead elaborate the

activities individually in great detail.

74

Chapter 5. The Reverse Engineering Process 75

5.1 Main Challenges

5.1.1 Designing a generic Web data extraction approach adapted for

configurators (RQ2)

The first challenge in designing an efficient Web data extraction approach is its generality.

It should to deal with variations in data presentation in the heterogeneous pages of Web

configurators. Although strong domain knowledge is needed, a convincing approach for

the extraction of data from dynamically template-generated Web pages is a modelling-

based approach in which given a target structure for data objects of interest tries to

locate portions of data that implicitly conform to that structure [Ferrara et al., 2012;

Hogue and Karger, 2005; Laender et al., 2002a,b; Zheng et al., 2009]. We use templates

in reverse order to extract configuration-specific data encoded in the code fragments

generated using these templates. Given a template, specified using a set of variability

data extraction patterns (vde patterns), the Web Wrapper seeks to find code fragments

that structurally match the template and then extract their data.

The second Web data extraction challenge is the accuracy of the extracted data. From

all data presented in a page, only configuration-specific data must be extracted and

labelled. Most of the existing (automatic) approaches assume that labelling (or naming)

the extracted data is done as a post-processing step or they produce data without labels.

In our approach, the user manually marks and names data to be extracted by giving it

a meaningful label in a vde pattern specification. Consequently:

• The user distinguishes configuration-specific data from the other irrelevant and

noisy content; technically, the Wrapper considers the data marked by the user and

ignores the rest.

• The user explicitly and accurately organizes data items in the extracted data

records by assigning them different labels.

• Representing the extracted data in a predefined data model becomes feasible, be-

cause the types and logical relationships of data to be extracted from pages of Web

configurators are mostly known. We specified a data model (see 7.2.1) that defines

the schema of the extracted data from Web configurators. Therefore, our Web

data extraction system produces homogeneous structured data from unstructured

or semi-structured Web pages of heterogeneous Web configurators.

A template-generated Web page contains a set of template instances, which are HTML

code fragments in a page that are generated from a same template. Template instances

Chapter 5. The Reverse Engineering Process 76

are syntactically identical code fragments except for variations in values of data slots

(text elements and tag attribute values) as well as minor changes to their structure. We

take advantage of templates used in generating Web pages in reverse order to extract

the required data. Our main proposal is the notion of variability data extraction pattern

(vde pattern), supported by an HTML-like language to specify templates. A vde pattern

specifies (1) which configuration-specific data items from (2) which code fragments of

the Web page will be extracted. For the former, the pattern marks text elements and

attributes carrying the content of interest, and for the latter, it defines the structure of

code fragments (in fact, template instances) that may contain the marked data. The

Wrapper takes as input the specification of a set of vde patterns (all contained in a

configuration file) and a Web page, seeks and finds code fragments in the source code of

the page that structurally match the given patterns, and extracts as output data items

(represented in the predefined data model) from those code fragments corresponding to

the marked data in the patterns.

Several approaches attempt to automatically deduce the implicit and unknown templates

used to generate the pages, and then use these templates for data extraction [Arasu and

Garcia-Molina, 2003; Hogue and Karger, 2005; Reis et al., 2004] (Section 4.2). However,

they are either inaccurate or make many assumptions [Zhai and Liu, 2005] (e.g., on

the structure of the data presented in the pages). They usually assume that there is a

structure associated with all the objects presented in a page, meaning that there is only

one template from which almost all the data objects are generated. They conduct an

automatic template-induction process to mine this implicit template. A page in a Web

configurator may contain various kinds of data objects generated from several templates

and therefore deducing a generic structure covering all these templates is a complex, or

even impossible, task. Consequently, a fully automated Web data extraction approach

in the context of Web configurators is neither realistic nor desirable. We consider that

the data extraction process should be supervised. The user inspects the source code of

the pages of a configurator, finds out templates used to generate configuration-specific

objects, and then writes appropriate patterns to specify those templates to extract data

from their instances.

The start element of a pattern specification is a pattern element. Each pattern is given

a unique name in the data-att-met-pattern-name attribute of the pattern element in the

configuration file. We consider three types of patterns:

• A data pattern specifies the structure of code fragments representing the data of

interest and marks data items to be extracted from them.

Chapter 5. The Reverse Engineering Process 77

• A region pattern highlights a portion of a page. It specifies within which part of

the source code, code fragments may match the given data pattern and thus where

the Wrapper should operate .

• An auxiliary pattern extends the specification of a data pattern.

The Wrapper requires the specification of at least one region pattern and one data

pattern to operate. The type of a pattern is defined in the data-att-met-pattern-type

attribute of the pattern element.

Figure 5.1 presents the specification of vde patterns to extract options from the page

shown in Figure 3.6. The region pattern (lines 12-16) guides the Wrapper to look for

code fragments that may structurally match the equipment data pattern (line 14) in the

region starting with the <table class="SectionCheckBoxList"> element (line 13). The

data pattern (lines 1-11) defines the structure of the template used to generate options

in the page in Figure 3.6. It also defines that from each matching code fragment three

data items will be extracted:

• The string value of the immediate child text element of the element

 will be extracted and labelled as

data-tex-mar-option-name (line 4).

• The string value of the immediate child text element of the element will be

extracted and labelled as data-tex-mar-require-option (line 6).

• The string value of the immediate child text element of the element

 will be extracted and labelled as

data-tex-mar-price (line 9).

Note that the element ul is an optional element (line 5), meaning that it may be missing

in some code fragments. The attribute data-att-multiplicity="[0..1]" denotes the

optionality of this element (and obviously its descendant elements). Therefore, for some

code fragments there will be no data named data-tex-require-option. The multiplicity

of the li element (line 6) is defined to be 1..*, which means that the Wrapper should

seek for one or more li elements in the matching code fragments having the ul element.

5.1.2 Developing a Web crawler (RQ3)

While the previous section targets the static aspect of Web configurators, this section

focuses on their dynamic aspect. We aim to provide a technique to automatically gener-

ate dynamic configuration-specific content. The two actions that usually add dynamic

Chapter 5. The Reverse Engineering Process 78

Figure 5.1: The configuration file containing the specified vde patterns to extract
options from the page shown in Figure 3.6.

configuration-specific content are the exploration of the configuration space and the con-

figuration of options, both called crawling actions. For instance, when the user activates

a configuration step (e.g., by clicking on a menu containing the step’s options) its op-

tions are loaded in the page (Figure 3.6). Configuring an option may also dynamically

generate new content and add it to the page (e.g., in the “Model” step in Figure 3.5, the

selection of an option in a group loads new options in another group), or may change

the configuration state of existing options (e.g., in the “Equipment & Options” step in

Figure 3.6, the selection of the “Climate Pack” option implies the selection of “Automatic

lights and wipers” and “Duel zone climate control”, consequently, their corresponding check

boxes are checked).

Manual exploration of a large-scale configuration space and configuration of all options

in order to generate and extract dynamic configuration-specific data is tedious and error-

prone. On the other hand, devising a generic and fully automatic crawling technique

is not realistic, because Web configurators use different GUI paradigms, business-logic-

management policies, and data presentations. Therefore, we developed a Web Crawler

that automatically explores a simple configuration space and simulates some of the users’

configuration actions. If the exploration and the configuration actions add new data to

the page, the Wrapper extracts the newly added data.

Chapter 5. The Reverse Engineering Process 79

5.2 The Reverse Engineering Process

Figure 5.2 depicts our proposed supervised and semi-automatic approach to reverse

engineer feature models from Web configurators. Interactive (I) and automatic (A)

activities are distinguished. We now describe the activities in detail.

Figure 5.2: The Reverse Engineering Process.

Specify vde patterns (Ê). The process starts with the specification of vde patterns for

a given Web page. The user inspects the source code of the page, identifies templates

from which the data objects of interest are generated, specifies the appropriate vde

patterns defining the structure of those templates, and marks the required data in the

patterns. All patterns required to extract data are specified in a configuration file. A

configuration file contains the specification of at least one data pattern and one region

pattern.

Extract variability data (Ë). Once that the vde patterns are interactively defined by

the user, they are given to the Web Wrapper. Given a configuration file containing the

specified patterns and a Web page, the Wrapper operates within the block of the source

code identified by the region pattern and looks for code fragments that structurally

Chapter 5. The Reverse Engineering Process 80

match the data pattern. From the matching code fragments, the Wrapper extracts data

items corresponding to the marked data in the data pattern.

The Web Wrapper implements a source code pattern matching algorithm to find match-

ing code fragments. Our proposed algorithm provides a two-step solution to find map-

pings between elements of a code fragment and the given pattern using their tree repre-

sentations. The algorithm first uses a bottom-up tree traversing to find candidate code

fragments that may match the given data pattern. Note that a data pattern may be op-

tionally extended by a set of auxiliary patterns. Once the candidate code fragments are

identified, the algorithm uses a mixture of both depth-first and breadth-first traversals to

find mappings between each code fragment and the data pattern. During the traversal

of a code fragment, its data items are also extracted. During the mapping, if a conflict

is detected the target code fragment is excluded from the data extraction process.

Crawl Web page (Ì). The whole configuration space is not presented in the cur-

rently loaded page. It may be distributed over multiple pages each having a unique

URL (multi-page user interface paradigm), or all the configuration-specific objects are

contained in a page (single-page user interface paradigm). Note that, multi-page and

single-page paradigms are not mutually exclusive and a Web configurator may use both.

We observed that configurators following the multi-page paradigm usually consist of

a relatively small set of Web pages and the user can manually explore them and run

the data extraction process for each page (i.e., specifying vde patterns and extracting

variability data).

For configurators following the single-page paradigm, we observed two common scenar-

ios. In the first scenario, when a Web page is loaded, the configuration space contains

some configuration-specific objects and as the application is executing, new objects may

be added to the page, and existing objects may be removed. Configuring an option and

exploring configuration steps are common actions to change the content of the page.

By configuring an option its implied options are loaded in the page. For instance, the

selection of an option in the “Model line” group in Figure 3.5 loads new options to the

“Body style” group. The activation of a step makes available/visible its contained options

in the page and makes unavailable/hidden those of other steps. In the second scenario,

all configuration options are loaded in the configuration space. However, by configuring

an option, the configuration state of other impacted options is changed. For instance,

in the “Equipment & Options” step in Figure 3.6, the selection of the “Climate Pack” option

implies the selection of “Automatic lights and wipers” and “Duel zone climate control”.

To generate and extract dynamic data we need to automatically crawl the configuration

space in a Web page. Automatically crawling requires (1) the simulation of the users’

configuration and exploration actions to systematically generate new content or alter

Chapter 5. The Reverse Engineering Process 81

the exiting content, and then (2) the analysis of the changes made to the page to deduce

and extract configuration-specific data. The Web Crawler and the Wrapper collaborate

together to deal with these cases.

At present, the Crawler is able to simulate some of the users’ actions, for instance, the

selection of items from a list box and the click on elements (e.g., button, radio button,

menu, image, etc.), both called a clickable element. The clickable element to be con-

sidered by the Crawler is identified in the vde pattern by the data-att-met-clickable

= "true" attribute. Once the Wrapper has treated a matching code fragment and ex-

tracted its data, the Crawler looks for a clickable element in the pattern specification,

and if it finds it, it identifies the mapping clickable element in the matching code frag-

ment and simulates its click event. For instance, in the pattern specification given in

Figure 5.1, the check box elements are marked as clickable elements (line 2). So, the

Crawler clicks on each check box element shown in Figure 3.6.

The simulation of user actions may change the content of the page and move the page

to a new state. Therefore, after simulating every clickable element, the page’s content is

analysed by the Wrapper to identify the newly added content and to deduce from that

the configuration-specific data (Ë).

The extracted data is hierarchically organized in a predefined data model and serialized

using an XML format. The data model reflects the structure of variability data to be

extracted from a Web page and is independent from the structure of the page presenting

this data.

Process data (Í). Once the data has been extracted, it is further analysed. The

following manual/semi-automatic activities are performed to achieve an accurate data

and a complete model:

• Add data. The user may need to add more data to the automatically extracted

data. It can be either missing data that the Wrapper and the Crawler could

not identify and extract it, or complementary data that the user adds to achieve

completeness and accuracy in creating feature models. For instance, the user may

add a new parent option to categorize already extracted options in a group.

• Remove noisy data. An extracted data (or a portion of it) may not be relevant

from a configuration perspective and should therefore be removed. For instance,

we observed that in some configurators the price data items of options are prefixed

with the term price: (e.g., price: $25) which may be removed by the user.

• Build option hierarchy. Our data extraction tool has to some extent the

capability of identifying and documenting the hierarchical relationship between

Chapter 5. The Reverse Engineering Process 82

options, i.e., their parent-child relationship. In some cases, either due to limitations

of the approach or because the user did not set up the tool to record data on option

hierarchy, the user may manually construct a hierarchy.

Generate TVL model (Î). The clean XML file is then given to a module (written

in Java) which transforms it into a feature model represented in TVL [Classen et al.,

2011b]. The module creates a TVL model for each XML file.

Reasoning on feature models (Ï and Ð). At the end of the reverse engineering

process of a configurator there are typically several generated XML files (e.g., each

corresponding to a specific configuration step), and accordingly several TVL models.

To produce a fully-fledged TVL model, all these models are fed to FAMILIAR [Acher

et al., 2013b], a tool-supported language to merge partial feature models into a single

final feature model.

FAMILIAR also provides other useful feature model analyses. For instance, it can

compute the differences between two feature models. Using this technique we are able

to compare the model generated by our approach to the one generated by the expert to

validate the accuracy of the extracted models.

5.3 Chapter Summary

In this chapter, we presented our supervised and semi-automated process to reverse

engineer feature models from a Web configurator by static and dynamic analyses of

the Web pages. We continue this dissertation with the presentation of the syntax and

semantics of vde patterns in Chapter 6, and the data extraction procedure in Chapter 7.

We then move on to Chapter 8 which is dedicated to the description of the proposed

crawling technique. The evaluation of our reverse engineering process is presented in

Chapter 9.

Chapter 6

Variability Data Extraction

Patterns

In our approach to reverse engineer feature models from Web configurators we consider

that the data extraction process should be supervised. We propose the notion of vari-

ability data extraction pattern (vde pattern in short) using which a user manually marks

and names variability data to be extracted from the Web pages of a configurator. The

user can specify a vde pattern, expressed in an HTML-like language, to define the struc-

ture of objects of interest and to mark data items to be extracted from those objects.

A Web Wrapper, given a vde pattern, tries to locate in a Web page code fragments

(presenting objects of interest) that structurally conform to that pattern, and extracts

as output data items from those code fragments corresponding to the marked data in

the pattern. The extracted data is hierarchically organized and serialized using an XML

format.

We start this chapter by explaining observations based on which vde patterns are pro-

posed (Section 6.1). We then present some preliminary definitions (Section 6.2) to clearly

define the basics and concepts which are necessary to understand the rest of the chapter.

At the main part of this chapter, we introduce vde patterns and describe their syntax

and semantics using examples (Section 6.3). We then represent a context-free grammar

for the syntax of vde patterns (Section 6.4).

6.1 Observations

Due to the heterogeneous nature of the Web, Web data extraction systems are rather

domain-specific [Reis et al., 2004]. It means that the specific characteristics of the domain

83

Chapter 6. Variability Data Extraction Patterns 84

should be carefully studied and considered when developing such tools. Our analysis of

the client-side source code of a sample set of Web configurators shows that Web objects

representing variability data are usually generated from a number of templates. We think

of a template as an HTML code fragment that defines the structure and layout of data to

be visually presented in a page. In a template, text elements and tag attributes are data

slots filled by data instances when generating the page. Each Web page contains a set

of template instances, which are syntactically identical fragments except for variations

in some values for data slots as well as minor changes to their structure. A Web page

may be generated from several different templates.

We also observed that tag attributes play a dual role in a template. One the one hand,

they can be data slots, therefore, their corresponding values should be extracted from

template instances. For example, values of the src and title attributes in an img element

might be of interest to a user. On the other hand, a tag attribute might be an invariable

part of a template specification, and therefore, all template instances have the same value

for this attribute. Consequently, this attribute can be used by a data extraction proce-

dure to find instances of a template. For example, <td class="optionName">Space Gray

Metallic </td> shows that the child text element of the <td class="optionName"> el-

ement is the name of an option. Thus, we can extract option names by finding all td

elements having the class="optionName" attribute and reading the value of their child

text element.

Another observation is that in a Web page of a configurator, the configuration envi-

ronment is divided into a number of data regions and each region contains a subset of

configuration-specific data objects (which is in line with [Liu et al., 2003]). Configura-

tion steps and options groups are examples of regions in Web configurators. Objects

contained in a region are likely generated from a same template. A data region is usu-

ally identified with a special element. For example, <div id="selection"> is the parent

element of a data region containing a set of options.

Based on these observations, we propose a method to extract variability data from Web

pages of a configurator. We take advantage of templates used in generating Web pages in

reverse order to extract the required data. Our main proposal is the notion of variability

data extraction pattern (vde pattern) to specify templates and also to mark data required

by a user. Then, a data extraction procedure seeks and finds code fragments (in fact,

template instances) that structurally match the given pattern and extracts from them

values marked in the pattern.

Among all information presented in the Web pages of a configurator, we mainly aim at

extracting the following data, altogether called variability data:

Chapter 6. Variability Data Extraction Patterns 85

• Configuration options: Users gradually select the options to be included in the

final product.

• Descriptive information: Additional information associated to an option such as

its price, size, using instructions, etc.

• Constraints: A constraint determines valid combinations of options to specify a

valid product.

Moreover, we are sometimes able to extract the following complementary configuration-

specific data:

• Group: Grouping is a way to organize related options together. A group is iden-

tified with a name.

• The configuration process: A process is a sequence of configuration steps that the

user follows them to complete the configuration of a product.

• Optionality of options: Non-grouped options can be either mandatory (the user

has to enter a value) or optional (the user does not have to enter a value).

We also need to extract some data items that do not present variability data but can be

used to deduce this data. For instance, for each option we extract the widget type used

to represent the option. We then use the widget types of grouped options to deduce the

group constraint defined over these options.

6.2 Preliminary Definitions

This section introduces a number of preliminary definitions used throughout this chapter.

Definition 6.1: HTML Code Fragment An HTML code fragment is a valid and

well-formed sequence of HTML code lines that conform to the HTML specification given

in [HTML5, 2014]. A code fragment is defined as a seven-tuple: C = 〈 V , A, S, E, R,

λ, ρ〉, where V is the nonempty set of HTML elements and each v ∈ V corresponds to

an opening and closing pair of tags (some HTML elements do not have the closing tag),

A is the set of zero or more tag attributes, each coming in the form of name="value", S

is the set of zero or more text elements, each containing a single string value, E is the

set of zero or more parent-child relationships between V and S, R is the nonempty set

of root elements and R ⊆ V , λ is a function that assigns each HTML element a string

label:

Chapter 6. Variability Data Extraction Patterns 86

• For each x ∈ V, λ(x) = the tag name of x,

• For each x ∈ S, λ(x) = x, meaning that string label of a text element is the same

as its text value,

and ρ is a function that gives each HTML element a set of attributes: ρ : A→ V .

Definition 6.2: Ordered Tree (from [Nierman and Jagadish, 2002]) An ordered

tree T is a rooted tree in which the children of each node are ordered. If a node x has

k children then these children are uniquely identified, left to right as x1, x2, ..., xk.

Definition 6.3: Labeled Tree (from [Nierman and Jagadish, 2002]) A labelled tree

T is a tree that associates a label, λ(x), with each node x ∈ T . λ(T) denotes the label

of the root of T .

Definition 6.4: HTML Tag Tree An HTML tag tree of a code fragment with a

single root element is a rooted ordered labeled tree in which each node is either

• an element node corresponding to an HTML element and is labeled with the name

of the HTML element in the code fragment, or

• a text node corresponding to a text element and is labeled with #text1,

and the tree hierarchy represents the nested structure of HTML elements (parent-child

relationships) forming the code fragment. A text node is a leaf node and so has no

children. If C is a code fragment and T is an HTML tag tree, we represent TC to denote

that T is the corresponding tree structure of C.

We note that since an HTML tag tree is defined to have only one root node and a code

fragment may have more than one root element, a code fragment might be represented

as a forest of HTML tag trees in the case of having two or more root elements.

Definition 6.5: Data Item A data item is a unit of data describing a meaningful

value. For instance, a configuration option name, a step name, a price value, etc., are

considered data items in our context. A data item is modelled as (the substring of) the

value of a text element or a tag attribute. Let di be a data item, then di ∈ S ∪ Av, in

which S is the set of text elements and Av is the set of values of tag attributes in a code

fragment.

Definition 6.6: Data Record or Data Object A data record (DR) consists of one

or more related data items of a specific object in a Web page: DR = {di1, di2, ..., din}
1According to the W3C specification, the element name returned for a text element is #text.

Chapter 6. Variability Data Extraction Patterns 87

in which each dij (1 ≤ j ≤ n) is a data item. In our problem formulation, for instance,

each configuration option is counted as an object, and for each configuration option a

data record is created in the output data.

Definition 6.7: Template (adapted from [Reis et al., 2004] and [Arasu and Garcia-

Molina, 2003]) A template is a code fragment that is comprised of a set of common

layout and formatting features, and is used by a program (we call it Web Page Maker)

to (most likely dynamically) generate the Web page content. A Web page might be

produced using more than one template. Let MD be a nonempty set of templates and

DID a nonempty set of data items taken from a database. We denote the Web page

D resulting from encoding DID using MD by ζ(DID,MD). The encoding means to

fill the fields (see Definition 6.8) of the template instances (see Definition 6.9) with

corresponding data items.

Definition 6.8: Field A field in a template denotes a data slot that is filled by a

data item when a Web page is being generated using the given template(s). Therefore,

the value of a text element or a tag attribute are places specified by a field. Fields in a

template define the structure or schema of data to be encoded in the template.

Definition 6.9: Template Instance An instance of a template is a code fragment

in a Web page that is generated from the given template and its fields are filled with

corresponding data items. Let C be a code fragment and M be a template, then we use

CM to denote that C is generated from M .

Definition 6.10: Data Region A data region is a portion in a Web page that

contains a set of data objects. A Web page may contain one or more data regions each

with variable number of data objects.

Example 6.1: An example HTML code fragment. Figure 6.1(a) shows an

example Web page taken from a car Web configurator. The page presents configuration

options which can be selected by users to be included in the final product (a car in

this example). Each option is considered as a data object. Figure 6.1(b) depicts the

corresponding code fragment2 of the option “1.4i 16v VVT (100PS), Manual 5-speed”. Data

items are encoded in bold italic typeface. Figure 6.1(c) presents the fields, data items,

and data record of the option shown in Figure 6.1(b).

Web page generation model. Figure 6.2 presents our considered Web page gener-

ation model. Web Page Maker implements the function ζ described in Definition 6.7.

It reads data items from a database, generates template instances from the given tem-

plate(s), and for each instance fills its fields with their corresponding data items. Fields

2The text fonts are changed for the sake of readability.

Chapter 6. Variability Data Extraction Patterns 88

(a) A Web page containing objects (configuration options).

(b) HTML code fragment for an option (“1.4i 16v VVT (100PS), Manual 5-speed”).

(c) Field, Data Item, Data Record

Figure 6.1: An example Web page (Opel Web Configurator:
http://www.opel.ie/tools/model-selector/cars.html, May 8 2013).

Chapter 6. Variability Data Extraction Patterns 89

are highlighted with boldfaced FIELD text string in the template and text strings in

parentheses refer to the corresponding field names. Note that Web Page Maker may

use different templates for different parts of a Web page. We are solely interested in

those used to encode and present variability data. We also make no assumption neither

about how data items are structured and modelled, nor about their underlying schema.

Moreover, the Web Page Maker component might reside in the server side, in the client

side, or even distributed over the two. Web Page Maker does not necessarily create the

whole page in its every execution, it may only affect a part of an existing page, without

creating and reloading the whole page from scratch. It means that Web Page Maker

may create and add dynamic content to the page at runtime. The dynamic data can

be generated by server-side activities (using technologies such as PHP, ASP, JSP, etc.)

and/or client-side code (e.g., using JavaScript functions).

6.3 Variability Data Extraction Patterns

Definition 6.11: Variability Data Extraction Pattern A variability data ex-

traction pattern (vde pattern in short) is a code fragment used to specify data to be

extracted from Web pages. It defines the structure of data objects of interest to a user.

It marks and names data items to be extracted from those objects. Patterns can be

defined hierarchically, meaning that a pattern can be used in specification of another

pattern. Patterns are uniquely identified by their names.

The structure of an object is specified by the code fragment that implements it in the

source code. If this code fragment is generated from a template, it is also an instance of

that template.

Definition 6.12: Data Extraction Procedure or Web Wrapper A Web Wrapper

is a program that takes as input the specification of a set of vde patterns and a Web

page, seeks and finds code fragments in the source code of the page that structurally

match the given patterns, and extracts as output data items from those code fragments

corresponding to the marked data in the patterns.

A vde pattern, in fact, is the representative of one or more templates used to generate

objects in a Web page. It specifies which fields of those templates are of interest to a user

and their corresponding data items will be extracted from the template instances. From

this point of view, our data extraction system reverse engineers the page generation

process shown in Figure 6.2. Figure 6.3 presents this reverse engineering process. ζ−1 is

the inverse of ζ and takes a Web page D and a number of vde patterns P as input and

Chapter 6. Variability Data Extraction Patterns 90

Figure 6.2: Web page generation model.

Chapter 6. Variability Data Extraction Patterns 91

returns data items (DI): ζ−1(D,P). Let M be a template and P be a vde pattern. We

use M 7→ P to denote that M is represented by P .

In brief, given a vde pattern, the Wrapper first detects candidate code fragments that

may match the pattern. From the candidates, it then selects those that are struc-

turally matching the pattern. For each matching code fragment, the Wrapper binds

one (or more) element, called mapped element, from the code fragment to one element,

called mapping element, in the pattern and extracts data from the mapped elements

with respect to the marked data in their corresponding mapping element. For in-

stance, in Figure 6.3, the input element in Template Instance 1 (line 3) is bound to

the input element in the pattern (line 4). In the input element in the pattern specifica-

tion, data-att-mar-value = "@value" is a data marking attribute (see Section 6.3.1) that

marks the attribute value. Consequently, the string text of the attribute value from the

input element in Template Instance 1 is extracted as output.

Figure 6.3: Data reverse engineering process.

Chapter 6. Variability Data Extraction Patterns 92

We should indicate that a code fragment that implements a data object may match two

or more different given patterns. It means that duplicate copies of a data object may

be extracted. Duplicate data objects will be identified and eliminated when generat-

ing/merging the TVL models.

6.3.1 The Syntax of vde patterns

We now describe the syntactical constructs of a vde pattern, for operating over at-

tributes, HTML, and text elements.

6.3.1.1 Attributes

We distinguish three types of element attributes in a vde pattern: data marking, struc-

tural, and meta.

Data marking attribute

A data marking attribute denotes the data item to be extracted from code fragments that

match the pattern. The user uses a data marking attribute to mark an attribute whose

value is of interest to her. It can mark an existing attribute or is given a string value when

defining the pattern. A data marking attribute name is prefixed with data-att-mar-.

We use the following syntax to define a data marking attribute:

• data-att-mar-a-name = "@var", in which data-att-mar-a-name is the name of a

data marking attribute and var is the name of an attribute. The symbol @

tells the Wrapper to treat var as a named attribute, not a string value. When

the Wrapper maps an element in a code fragment to the element containing the

data-att-mar-a-name attribute in the pattern, it seeks to find an attribute with

the name var in the mapped element. If the attribute is found, it then assigns its

value to data-att-mar-a-name and extracts it.

• data-att-mar-a-name = "Constant-String-Value", in which Constant-String-Value

is a string value given by the user in the pattern specification. This syntax gives

the user the opportunity to append user-defined data to the output.

We already predefined and reserved the following data marking attribute names:

• data-att-mar-option-name used to mark an attribute whose value denotes the op-

tion name.

Chapter 6. Variability Data Extraction Patterns 93

• data-att-mar-sub-option-name used to mark an attribute whose value denotes a

sub-option name of an option.

• data-att-mar-widget-type used to mark the widget type representing the option.

• data-att-mar-sub-widget-type used to mark the widget type representing the sub-

option.

• data-att-mar-step-name used to mark the step name containing data objects are

being extracted.

• data-att-mar-group-name used to mark the group name containing options are

being extracted.

• data-att-mar-id used to temporarily assign an id to an element. It is internally

used by the Wrapper and the Crawler and has no language-level semantics.

Example 6.2. Figure 6.4 presents the specification of a vde pattern, named en-

gine, (and defined to extract data from the page shown in Figure 6.1(a)) and a code

fragment which structurally matches the pattern. The Wrapper maps the input ele-

ment in the code fragment (line 3) onto the input element in the pattern (lines 4 and

5). data-att-mar-value is assigned the value attribute. The Wrapper looks for this

attribute in the input element of the code fragment, and assigns its value (i.e., “pack-

age version:0PC68 GY52”) to data-att-mar-value and records it as output. The value of

data-att-mar-widget-type is set to radio button and extracted as output. In fact, us-

ing data-att-mar-widget-type = "radio button", the user defines the widget type of the

option as radio button.

Example 6.3. Figure 6.5(a) shows an excerpt of the configuration environment of a

computer system configurator. The option “Ram” is represented using a list box and

its sub-options are represented using list box items. Figure 6.5(b) presents a pattern

(defined to extract data from list boxes) as well as the code fragment of the option

“Ram” that matches the pattern. In the pattern specification, data-att-mar-widget-type

is set to listbox (line 2) and data-att-mar-sub-widget-type to listboxitem (line 3). It

means that the Wrapper will report listbox as the widget type of the option “Ram”,

and listboxitem as the widget type of its sub-options (“Kingston 8GB DDR3-1600 ECC

(2x4GB)”, “Kingston 16GB DDR3-1600 ECC (2x8GB)”, and “Kingston 32GB DDR3-1600 ECC

(4x8GB)”).

Chapter 6. Variability Data Extraction Patterns 94

Figure 6.4: vde pattern example (1).

Structural attribute

A structural attribute denotes a template-generated attribute, and therefore, all tem-

plate instances generated from a template share the same list of structural attributes.

Consequently, a structural attribute can be used to measure the similarity between a

given pattern and a code fragment.

When the Wrapper maps two HTML elements from a given pattern and a code fragment,

it counts the two elements identical if they have the same tag name and an analogy can

be drawn between their structural attributes. The value of a structural attribute can

contain the following three special symbols:

Chapter 6. Variability Data Extraction Patterns 95

(a) Configuration environment (Puget Systems: http://www.pugetsystems.com/, May 9 2013).

(b) vde pattern and a matching code fragment.

Figure 6.5: vde pattern example (2).

• The wildcard symbol (*) that captures zero or more characters and may be dis-

carded when mapping two structural attributes. The wildcard symbol can be

placed at the beginning, at the end, or both, of an attribute value.

• The OR operator (|) that represents an or -relationship between values of the struc-

tural attribute.

• The NOT operator (!) that is the logical not operator.

The OR operator has the highest precedence in the attribute value. The NOT operator

and the wildcard symbol can not be simultaneously used in the attribute value.

Example 6.4. In the pattern specification in Figure 6.4, the input element (line 4)

contains three structural attributes, namely type, name, and value. An input element

in a code fragment can be mapped onto the input element in the pattern, if it has the

same tag position as that of the mapping input element (structural similarity), and has

the attribute type whose value is “radio” or “radio button”, the attribute name whose value

is “featureSelection”, and the attribute value whose value starts with “package version:”.

Chapter 6. Variability Data Extraction Patterns 96

Note that the attribute value is a structural attribute and that its value is assigned to

a data marking attribute, i.e., data-att-mar-value (line 5).

Meta attribute

A meta attribute represents a pattern-specific characteristic in the pattern specifica-

tion and its name is prefixed with data-att-met-. All meta attributes are predefined

and reserved words in the pattern specification language. Their purpose is to guide

the Wrapper and the Crawler during the data extraction process. We predefined the

following meta attributes:

• data-att-met-pattern-name defines the name of a vde pattern.

• data-att-met-pattern-type defines the type of a vde pattern. We specify three

types of patterns: region, data, and auxiliary.

• data-att-met-multiplicity presents the multiplicity of an element or a pattern.

• data-att-met-unique indicates an HTML element in the pattern specification that

there is one and only one instance of that element in the matching code fragments.

• data-att-met-clickable marks an HTML element in the pattern specification and

tells the Crawler that this element should be clicked to simulate the user actions.

• data-att-met-root-pattern denotes a pattern with which the Wrapper should start

the extraction process. It is used when there are several input patterns.

• data-att-met-dependent-pattern is an attribute with comma-separated values that

is used to define dependencies between patterns.

• data-att-met-reset-state is an attribute with a boolean value (true or false)

used to reset the configuration state (selected, deselected, etc.) of an option when

it is changed by the Crawler when simulating the selection of that option.

The first four meta attributes are described in this chapter and the others in Chapter 8.

Example 6.5. In the pattern specification in Figure 6.4, data-att-met-pattern-name

and data-att-met-pattern-type define the pattern name and the pattern type to re-

spectively be engine and data (line 1). Also, data-att-met-unique = "true" for the

input element (line 5) tells the Wrapper that in the matching code fragments, the

input element (considering its structural attributes as well) should appear only once.

data-att-met-multiplicity="[1..*]" in the pattern specification (line 3) in Figure 6.5

Chapter 6. Variability Data Extraction Patterns 97

tells the Wrapper to look for one or more option elements in the matching code frag-

ments.

6.3.1.2 HTML elements

In addition to the predefined HTML elements, we add two pattern-specific elements

used in the pattern specification language, namely pattern and relation.

The pattern element is used to define a vde pattern or to refer to the name of a pattern

in the specification of another pattern.

The relation element contains a mandatory child meta text element or and represents

the logical disjunction between two patterns (see 6.3.2).

Example 6.6. Figure 6.6 presents the specification of three patterns: engine, sin-

gleProperty, and listProperty. The root element of a pattern specification must be a

pattern element (lines 1, 16, 19). Moreover, when a pattern is used in the specification

of another pattern, the name of the referred pattern is the mandatory single child text

element of a pattern element in the pattern specification (lines 5-7 and 11-13).

6.3.1.3 Text elements

We consider three types of text elements in a vde pattern specification: data marking,

structural, and meta.

Data marking text element

A data marking text element indicates a text element representing a data slot required

by a user. It, in fact, denotes a data item that will be extracted from the matching code

fragments.

A data marking text element is prefixed with data-tex-mar-. We have reserved the

following text elements:

• data-tex-mar-option-name used to mark a text element whose value denotes an

option name.

• data-tex-mar-sub-option-name used to mark a text element whose value denotes

a sub-option name of an option.

Chapter 6. Variability Data Extraction Patterns 98

Figure 6.6: vde pattern example (3).

Example 6.7. data-tex-mar-option-name in the pattern specification (line 6) in Fig-

ure 6.4 is a data marking text element that tells the Wrapper to extract the immediate

child text element of the label element in the matching code fragments and record it as

the option name. Also, data-tex-mar-sub-option-name in the pattern specification (line

4) of Figure 6.5 indicates that the immediate child text element of option elements in

the matching code fragments will be recorded as sub-option names in the output data.

Structural text element

A structural text element is used in the following situations:

• A structural text element denotes a template-generated text value, and therefore,

all template instances generated from a template share the same structural text

elements. Consequently, a structural text element can be used to measure the sim-

ilarity between a given pattern and a code fragment (i.e., a template instance). We

Chapter 6. Variability Data Extraction Patterns 99

use a function-style syntax skip(Text-Value) to present a structural text element

in which Text-Value is the template-generated text value (e.g., skip(Price:)).

• The user may need to set up the Wrapper to skip some elements during mapping

code fragments and a pattern. We use two variants of the skip function to specify

skipped elements: skip(all) and skip(sibling, Multiplicity). These functions

are further discussed in Section 6.3.2.

Example 6.8. Consider skip(Price:) data-tex-mar-price in the

pattern specification (line 12) in Figure 6.4. The “Price:” string in the inner child text

element of the span element is part of the template and the remaining suffix, that is the

price value, is part of data. It, in fact, tells the Wrapper that the inner child text element

of the span element of the matching code fragments must contain and start with the

string “Price:”. The Wrapper skips this string and records the remaining suffix portion

of the text (i.e., “€18,995.00” – line 10 in the code fragment) in the data marking text

element data-tex-mar-price. Using this syntax, the Wrapper partitions the template

and the data segments in a text element.

Meta text element

A meta text element is used to present a pattern-specific text value in the following

cases:

• A meta text element denotes a pattern name when this pattern is used in the

specification of another pattern (lines 6 and 12 in Figure 6.6).

• A meta text element is used to define the disjunction between two patterns (line

9 in Figure 6.6).

6.3.2 The expressiveness of vde patterns

This section presents how vde patterns can be used to deal with well-known expressive-

ness problems already reported in the general field of Web data extraction [Chang et al.,

2006] and likely to impact the extraction of data from Web configurators.

Multi-instantiated elements

It is a common scenario for a code fragment to have multiple instances of an HTML ele-

ment. To present this, we specify multiplicity of an element in the pattern specification.

Chapter 6. Variability Data Extraction Patterns 100

Multiplicity. The multiplicity of an element is defined in the data-att-met-multiplicity

meta attribute . The value of this attribute is either a single positive integer number,

the infinity symbol (“*”), or a range. A range is defined by stating the minimum and

maximum positive integer values, separated by two dots. The maximum value can be

the infinity symbol. The value of a multiplicity attribute should always be enclosed in

square braces (e.g., [1..5]). The user may define the multiplicity of a pattern as well.

Semantically, the value of a multiplicity attribute specifies how many instances of the

pertaining HTML element (respectively, the pattern) will be visited in a target code

fragment (the source code) by the Wrapper. By definition, the multiplicity of a vde

pattern is 1..* and of an HTML element is 1, if it is not explicitly defined. The pattern

in Figure 6.5 is specified to define the list box structure. The multiplicity of the listbox

pattern is not defined, but by definition, considered to be 1..*. The multiplicity of the

option element is explicitly defined as 1..* (line 3). The Wrapper in the code fragments

that match the pattern and within the select element looks for one or more option

element(s).

Optional elements

In code fragments representing similar objects, one common variation is that an element

may appear in some fragments and but not in all. This element is called an optional

(or missing) element. To present this variation in a vde pattern, we define the 0..1

multiplicity for the optional element.

Example 6.9. Figure 6.7(a) depicts an excerpt of the configuration environment of

a car configurator. Each configuration option is characterized by a name and its price,

except for the last option in the list (i.e., “Climate pack”) that additionally contains a list

of sub-options (“Automatic lights and wipers” and “Dual zone climate control”). The list of

the sub-options in this example is an optional data, meaning that not all objects contain

this data. In Figure 6.7(b), two code fragments of the last two options are represented.

The first code fragment (lines 1-7) is for an option without the optional data, and the

second one is for an option including the optional data (8-19). The optional data is

implemented using a code snippet with the ul element as the root element (lines 12-15).

In the pattern specification, the pattern sub-options is defined (lines 10-14) to encode

the optional data, then is used in the options pattern as an optional element (line 5).

Note that the multiplicity of the sub-options pattern is defined to be 0..1 to denote its

optionality.

Chapter 6. Variability Data Extraction Patterns 101

(a) Configuration environment (Renault car configurator: http://www.renault.co.uk/, May 12 2013).

(b) vde pattern and two matching code fragments.

Figure 6.7: vde pattern example (4).

Chapter 6. Variability Data Extraction Patterns 102

Pattern relationships

Let P1 and P2 be two vde patterns. Then, we define two different relationships between

P1 and P2: parent-child and disjunction.

Parent-child. P1 is a child of P2 if P1 is used in the specification of P2. This presents

the hierarchical relationship between patterns.

Disjunction. P1 and P2 are two disjunctive patterns if their occurrences are mutually

exclusive. In this case, the relation element with a predefined mandatory child meta

text element or defines the or-relationship of the two patterns. Two disjunctive patterns

are the left and the right siblings of the relation element. Each pattern has its own

multiplicity.

Example 6.10. In Figure 6.6, the singleProperty and listProperty patterns are used

in specification of the pattern engine and they are the child patterns of the engine

pattern. In fact, singleProperty and listProperty extend the specification of the engine

pattern. The relation element is also used to define an or-relationship between the

singleProperty and listProperty patterns (lines 5-13). Semantically, it means that after

the label element (line 4), the Wrapper should look for a <p class="property"> element

(the first element of the singleProperty pattern, line 17) or for a <ul class="property">

element (the first element of the listProperty pattern, line 20).

Skipped elements

When the user specifies a vde pattern to present a set of templates in the abstract,

she might find that some HTML elements neither hold data of interest nor are useful

in measuring the structural similarity between the pattern and code fragments. These

noisy elements should be skipped by the Wrapper during the pattern-matching process

(see Chapter 7). We use the function-style skip text element to denote skipped elements.

We use the following variant forms of skip:

• skip(sibling, Multiplicity), in which sibling is a reserved word and Multiplicity

is a multiplicity specification. Semantically, it means that a number of consecutive

sibling elements should be skipped by the Wrapper. The value of Multiplicity

defines how many elements should be discarded. The right sibling element of the

skip(sibling, Multiplicity) element must be an HTML element or a pattern.

• skip(all): Let v be the parent element of the skip(all) text element in a pattern

specification. Then, skip(all) tells the Wrapper that it should skip all descendants

Chapter 6. Variability Data Extraction Patterns 103

of v and then consider the element that follows skip(all). A skip(all) element

must be followed by an HTML element, a data marking text element, or a pattern.

Example 6.11. Figure 6.8 shows a code fragment encoding an option and the corre-

sponding pattern options. The user finds the two img elements (lines 3 and 4) in the

first td element to be noisy. Therefore, in the pattern she uses a skip text element (line

4) to tell the Wrapper to ignore all elements until it finds an input element (line 5).

Figure 6.8: vde pattern example (5) (FIAT car configurator: http://www.fiat.ie,
May 13 2013).

Example 6.12. Figure 6.9 presents a code fragment that represents an option. Assume

that the user wants to extract only the option name (line 5) and its price (line 24).

These two data items can be uniquely identified by the and <div

class="single"> elements respectively. The vde pattern tells the Wrapper to discard

all other elements (line 3) until it finds a element (line 4) and

discard all other elements (line 5) until it finds a <div class="single"> element (line

6).

Example 6.13. A code fragment representing an option and a vde pattern specified to

extract data from that are presented in Figure 6.10. skip(sibling,[1]) in the pattern

specification (line 6) tells the Wrapper to discard one element after the first td element.

Chapter 6. Variability Data Extraction Patterns 104

Figure 6.9: vde pattern example (6) (Audi car configurator:
http://configurator.audi.co.uk, May 13 2013).

Chapter 6. Variability Data Extraction Patterns 105

Consequently, the Wrapper considers the first td (lines 2-4) but ignores the second td

element (lines 5-9) in the code fragment. skip(all) (line 8) tells the Wrapper to ignore

all other descendent elements of the td element and consider the label element (line

9). skip(all) (line 10) guides the Wrapper to ignore all other descendent elements of

the td except a p element (line 11). skip(all) (line 12) tells the Wrapper to extract all

text values contained in the p element. It means that all text values from lines 17 to

23 in the code fragment are extracted and assigned to data-tex-mar-description. Note

that the last td element (line 26) in the code fragment is automatically discarded by the

Wrapper because the element is not mapped to an element in the pattern.

6.3.3 Pattern types

We specify three types of patterns: data, auxiliary, and region.

Data pattern. A data pattern marks text elements and attributes carrying the content

of interest and denotes code fragments (i.e., template instances) that match certain

properties and thus contain the relevant data. The first-level children of a data pattern

must not contain any variations of the skip element except skip(sibling,[Integer]) in

which Integer is an integer number. The value of data-att-met-pattern-type for a data

pattern is data.

Auxiliary pattern. An auxiliary pattern provides additional specification to the defi-

nition of a data pattern. By definition, the first level of an auxiliary pattern must contain

one and only one HTML element. Therefore, no variations of the skip element can ap-

pear in the first level of an auxiliary pattern. The value of data-att-met-pattern-type

for an auxiliary pattern is auxiliary.

Region pattern. A region pattern highlights a portion of a page. It specifies which

part of the source code of a Web page code fragments may match the given pattern

and thus where the Wrapper should operate. A region pattern denotes the root element

of the region. No variations of the skip element can appear in definition of a region

pattern. The value of data-att-met-pattern-type for a region pattern is region.

All patterns required to extract data from a Web page are specified in a configuration

file. A configuration file contains the specification of at least one region pattern, one

data pattern, and optionally a set of auxiliary patterns. If more than one region pattern

is contained in a configuration file, one and only one of those must have the attribute

data-att-met-root-pattern="true". Within a configuration file, patterns are uniquely

identified by their names.

Chapter 6. Variability Data Extraction Patterns 106

Figure 6.10: vde pattern example (7) (http://www.mydogtag.com/, May 14 2013).

Chapter 6. Variability Data Extraction Patterns 107

The Wrapper takes the configuration file as input and interprets it to find out within

which part of the source code (defined by the region pattern) which code fragments (de-

fined by the data and auxiliary patterns) should be parsed to extract data. Figure 6.11

depicts a pattern configuration file. The file contains a data pattern, named options

(lines 1-12), an auxiliary pattern, named description (lines 13-18), and a region pattern,

named region (lines 19-23). The region pattern tells the Wrapper to look within the first

visited element in the source code that is identical to the <table class="tagselect">

element (line 20) for code fragments that match the options pattern (line 21). The

description pattern is used in the specification of the options pattern (line 10).

Figure 6.11: Pattern configuration file.

6.4 Grammar

In this section, we present a context-free grammar for the syntax of vde patterns. The

grammar is given in Extended Backus-Naur form (EBNF). The following conventions

are used:

Chapter 6. Variability Data Extraction Patterns 108

• Each production rule starts with the rule’s name, followed by the replacement

symbol (::=) and the rule’s value.

• Terminals are written in lowercase and non-terminals in uppercase.

• Parentheses are used for grouping.

• An optional element is followed by ?: E? means E is optional.

• Repeated elements are enclosed in parentheses and followed by + or *: (E)+ means

E repeats one or more times and (E)* means E repeats zero or more times.

• The vertical bar (|) separates alternatives when the rule has several different

values.

• When the value of a production rule is described outside our grammar, we use

natural language to describe it.

Since a vde pattern has an HTML-like syntax, each HTML element is represented by

its opening and enclosing pair of tags in the grammar. Moreover, whenever an HTML

element is used in a production rule and the element has attributes, the attributes can

appear in any order.

Note that Firefox (on top of which we implemented our data extraction system) treats

empty white spaces or new lines as text elements. However, our pattern specification

language is a free-form language, and therefore, there is no semantics behind indents in

the grammar rules or presenting an HTML element in multiple lines. They are used to

help the reader to easily determine where the body of a block begins and ends. We should

also indicate that in our pattern specification language, | and * are also considered as

terminals. From the context in which they are used, it is easy to distinguish them from

punctuation elements (| and *) of the grammar.

Configuration file

The starting non-terminal is the configuration file that contains at least one region

pattern, one data pattern, and optionally a number of auxiliary patterns. Patterns can

appear in any order in a configuration file.

CONFIGURATION_FILE ::= (REGION_PATTERN DATA_PATTERN (AUXILIARY_PATTERN)*)+

Chapter 6. Variability Data Extraction Patterns 109

Attributes

HTML elements and the pattern element can have attributes which are always specified

in the opening tag of the element. An attribute comes in the form of name="value".

Attribute values are enclosed in double quotes, and in some rare situations when the

attribute value itself contains double quotes, it is enclosed in single quotes. We present

only double quotes in the grammar, but single quotes are allowed as well.

HTML_ATTRIBUTE ::= ATTRIBUTE_NAME = "ATTRIBUTE_VALUE"

ATTRIBUTE_NAME ::= a valid HTML attribute name

ATTRIBUTE_VALUE ::= a valid HTML attribute value

Pattern name. Each vde pattern is given a unique name in the configuration file that

contains it. The pattern name is specified in the data-att-met-pattern-name attribute

of the pattern element.

PATTERN_NAME_ATTRIBUTE ::= data -att -met -pattern -name = "ATTRIBUTE_VALUE"

The pattern names must be unique in a given configuration file.

Unique element indicator. The attribute data-att-met-unique="true" marks an

element in a data pattern that appears only once in the matching code fragments. In

the current implementation of our data extraction system, one and only one HTML

element must be marked as the unique element in the data pattern.

ELEMENT_UNIQUENESS_ATTRIBUTE ::= data -att -met -unique = "true"

Clickable element indicator. The attribute data-att-met-clickable="true" marks

an element in a data pattern that is clickable.

CLICKABLE_ELEMENT_ATTRIBUTE ::= data -att -met -clickable = "true"

Root region pattern indicator. In a configuration file that contains several region

patterns, the attribute data-att-met-root-pattern="true" denotes the region pattern

with which the extraction process starts. In a configuration file, one and only one region

pattern can have this attribute.

ROOT_REGION_PATTERN_ATTRIBUTE ::= data -att -met -root -pattern = "true"

Dependent pattern indicator. In a configuration file that contains several region

patterns, the comma-separated value of the attribute data-att-met-dependent-pattern

denotes the region patterns that depend on the region pattern owning this attribute (the

independent pattern).

DEPENDENT_REGION_PATTERN_ATTRIBUTE ::=

data -att -met -dependent -pattern = "ATTRIBUTE_VALUE1(,ATTRIBUTE_VALUE2)*"

Chapter 6. Variability Data Extraction Patterns 110

ATTRIBUTE VALUE1 and ATTRIBUTE VALUE2 refer to the names of region patterns that

exist in the configuration file. Note that * is a punctuation here, not a terminal.

Reset configuration state of an option. When an option is automatically config-

ured when crawling, data-att-met-reset-state = "true" tells the Web Crawler to reset

the configuration state of the option to the state it was in before crawling.

RESET_CONFIGURATION_STATE_ATTRIBUTE ::=

data -att -met -reset -state = "true "|" false"

Data marking attribute. A data marking attribute name must match the data \ \ −

tex \ \ −mar \ \ − [a − zA − Z0 − 9 \ \−]+ regular expression. Its value can be either a

valid HTML attribute value or an attribute name starting with the @ symbol.

DATA_MARKING_ATTRIBUTE ::=

DATA_MARKING_ATTRIBUTE_NAME = DATA_MARKING_ATTRIBUTE_VALUE

DATA_MARKING_ATTRIBUTE_NAME ::= a valid HTML attribute name matching

the data\\-att\\-mar\\-[a-zA -Z0 -9\\ -]+

regular expression

DATA_MARKING_ATTRIBUTE_VALUE ::= "ATTRIBUTE_VALUE"

| "@ATTRIBUTE_NAME"

If the Wrapper finds an attribute named ATTRIBUTE NAME in the mapped element of the

target code fragment, assigns its value to DATA MARKING ATTRIBUTE NAME, otherwise,

ignores the attribute.

Step name and group name attributes. These attributes are used to define the

name of the step and the group that contain the options being extracted.

STEP_NAME_ATTRIBUTE ::= data -att -mar -step -name = "ATTRIBUTE_VALUE"

GROUP_NAME_ATTRIBUTE ::= data -att -mar -group -name = "ATTRIBUTE_VALUE"

Structural attribute. Structural attributes are used to evaluate if two HTML elements

(one from the pattern and one from the target code fragment) are identical. If an HTML

element in the target code fragment is mapped to an HTML element in the pattern, they

are identical elements if they have the same tag name and an analogy can be drawn

between their structural attributes. Let assume that the element in the pattern has an

attributed named ATTRIBUTE NAME:

(1) If ATTRIBUTE NAME="ATTRIBUTE VALUE" is in the element in the pattern, the mapped

element in the code fragment must exactly have ATTRIBUTE NAME = "ATTRIBUTE VALUE".

(2) If ATTRIBUTE NAME="ATTRIBUTE VALUE*" is in the element in the pattern, the mapped

element in the code fragment must have an attribute named ATTRIBUTE NAME which value

starts with ATTRIBUTE VALUE.

Chapter 6. Variability Data Extraction Patterns 111

(3) If ATTRIBUTE NAME="*ATTRIBUTE VALUE" is in the element in the pattern, the mapped

element in the code fragment must have an attribute named ATTRIBUTE NAME which value

ends with ATTRIBUTE VALUE.

(4) If ATTRIBUTE NAME="*ATTRIBUTE VALUE*" is in the element in the pattern, the

mapped element in the code fragment must have an attribute named ATTRIBUTE NAME

which value contains ATTRIBUTE VALUE.

(5) If ATTRIBUTE NAME="!ATTRIBUTE VALUE" is in the element in the pattern, the mapped

element in the code fragment must not have ATTRIBUTE NAME = "ATTRIBUTE VALUE".

(6) If ATTRIBUTE NAME="ATTRIBUTE VALUE1|ATTRIBUTE VALUE2" is in the element in

the pattern, the mapped element in the code fragment must have an attribute named

ATTRIBUTE NAME which value is either ATTRIBUTE VALUE1 or ATTRIBUTE VALUE2.

STRUCTURAL_ATTRIBUTE ::=

ATTRIBUTE_NAME= "STRUCTURAL_ATTRIBUTE_VALUE" | COMPOUND_STRUCTURAL_ATTRIBUTE_VALUE

STRUCTURAL_ATTRIBUTE_VALUE ::= ATTRIBUTE_VALUE

| ATTRIBUTE_VALUE*

| *ATTRIBUTE_VALUE

| *ATTRIBUTE_VALUE*

| !ATTRIBUTE_VALUE

COMPOUND_STRUCTURAL_ATTRIBUTE_VALUE ::=

"STRUCTURAL_ATTRIBUTE_VALUE (| STRUCTURAL_ATTRIBUTE_VALUE)+"

The or operator (|) has the highest precedence in the attribute value. Note that | in

the last production rule is a terminal.

Multiplicity. One or more adjacent elements in the target code fragment may be

mapped to an element in the pattern. The value of the data-att-met-multiplicity

attribute in the pattern specifies up to how many adjacent elements in the target code

fragment can be mapped to the element owning the data-att-met-multiplicity attribute

in the pattern. The value of a multiplicity attribute should always be enclosed in square

braces ([]) and it can either be a positive integer number, the wildcard symbol *, or a

range.

MULTIPLICITY_ATTRIBUTE ::= data -att -met -multiplicity = MULTIPLICITY_SPECIFICATION

MULTIPLICITY_SPECIFICATION ::= DEFINITE_MULTIPLICITY_SPECIFICATION

| INDEFINITE_MULTIPLICITY_SPECIFICATION

| RANGE_MULTIPLICITY_SPECIFICATION

DEFINITE_MULTIPLICITY_SPECIFICATION :: = "[A]"

INDEFINITE_MULTIPLICITY_SPECIFICATION ::= "[*]"

RANGE_MULTIPLICITY_SPECIFICATION ::= "[A..B]" | "[A..*]"

A ::= a positive integer number

B ::= a positive integer number equal to/greater than A

Chapter 6. Variability Data Extraction Patterns 112

Region pattern

All specified patterns in the configuration file have a pattern element as the root element.

Each pattern is given a name using the data-att-met-pattern-name attribute and its

value must be unique in the configuration file. When the extraction process starts, the

Wrapper first looks for a region pattern in the configuration file. A region pattern is

distinguished from the others by the data-att-met-pattern-type = "region" attribute.

The multiplicity of a region pattern is restricted to be 1 and the user is not allowed to

define a new multiplicity value.

Structurally, a region pattern has only one child HTML element that optionally can

have one or more attributes. This HTML element, in turn, must have a child pattern

element whose child text element refers to a data pattern name (DATA PATTERN NAME).

If the Wrapper finds more than one element matching the given HTML element of the

region pattern, it considers the first one and ignores the others.

REGION_PATTERN ::=< pattern data -att -met -pattern -type=" region"

PATTERN_NAME_ATTRIBUTE

ROOT_REGION_PATTERN_ATTRIBUTE?

DEPENDENT_REGION_PATTERN_ATTRIBUTE?

STEP_NAME_ATTRIBUTE?

GROUP_NAME_ATTRIBUTE?>

REGION_PATTERN_BODY

</pattern >

REGION_PATTERN_BODY ::= <HTML_TAG (STRUCTURAL_ATTRIBUTE)*>

<pattern MULTIPLICITY_ATTRIBUTE?>

DATA_PATTERN_NAME

</pattern >

</HTML_TAG >

DATA_PATTERN_NAME ::= a defined data pattern name

HTML_TAG ::= a predefined valid html tag

Data pattern

A data pattern is the key pattern to extract data. It is identified from the other patterns

by the data-att-met-pattern-type = "data" attribute. By definition, the multiplicity of

a data pattern is considered to be 1..*, but the user can specify a different multiplicity

using the data-att-met-multiplicity attribute. The user also can optionally define the

multiplicity for a data pattern where it is referred in the region pattern.

A data pattern can have one ore more HTML elements as first-level children. Moreover,

skip(sibling,DEFINITE MULTIPLICITY SPECIFICATION) elements can appear in the first

level of a data pattern, but each of those elements must be surrounded by two HTML

elements.

Chapter 6. Variability Data Extraction Patterns 113

DATA_PATTERN ::=< pattern data -att -met -pattern -type="data"

PATTERN_NAME_ATTRIBUTE

MULTIPLICITY_ATTRIBUTE?>

DATA_PATTERN_BODY

</pattern >

DATA_PATTERN_BODY ::=

(FIRST_LEVEL_HTML_ELEMENT)+

|

(FIRST_LEVEL_HTML_ELEMENT SKIP_DEFINITE_SIBLING_ELEMENT FIRST_LEVEL_HTML_ELEMENT)*

SKIP_DEFINITE_SIBLING_ELEMENT ::=

skip(sibling ,DEFINITE_MULTIPLICITY_SPECIFICATION)

An HTML element in the data pattern can be marked as a unique element and may have

one or more data marking and structural attributes. Except for the first-level HTML

elements, all other HTML elements can be optionally assigned a multiplicity attribute.

Each HTML element in turn can have as children elements any number of HTML ele-

ments, referred auxiliary patterns, skip elements, and relation elements specifying the

or-relationship between two auxiliary patterns.

FIRST_LEVEL_HTML_ELEMENT ::= <HTML_TAG

ELEMENT_UNIQUENESS_ATTRIBUTE?

CLICKABLE_ELEMENT_ATTRIBUTE?

RESET_CONFIGURATION_STATE_ATTRIBUTE?

(DATA_MARKING_ATTRIBUTE)*

(STRUCTURAL_ATTRIBUTE)*>

(STRUCTURAL_ELEMENT)*

| (SKIP_ALL_ELEMENT_FIND_HTML)*

| SKIP_ALL_ELEMENT_FIND_TEXT

| (STRUCTURAL_ELEMENT)*

DATA_MARKING_TEXT_ELEMENT

(STRUCTURAL_ELEMENT)*

| (STRUCTURAL_ELEMENT)*

SKIP_TEXT_ELEMENT

(STRUCTURAL_ELEMENT)*

</HTML_TAG >

STRUCTURAL_ELEMENT :: = HTML_ELEMENT

| AUXILIARY_PATTERN_REFERENCE

| SKIP_SIBLING_ELEMENT

| PATTERN_RELATION_ELEMENT

HTML_ELEMENT ::= <HTML_TAG

ELEMENT_UNIQUENESS_ATTRIBUTE?

CLICKABLE_ELEMENT_ATTRIBUTE?

RESET_CONFIGURATION_STATE_ATTRIBUTE?

MULTIPLICITY_ATTRIBUTE?

(DATA_MARKING_ATTRIBUTE)*

Chapter 6. Variability Data Extraction Patterns 114

(STRUCTURAL_ATTRIBUTE)*>

(STRUCTURAL_ELEMENT)*

| (SKIP_ALL_ELEMENT_FIND_HTML)*

| SKIP_ALL_ELEMENT_FIND_TEXT

| (STRUCTURAL_ELEMENT)*

DATA_MARKING_TEXT_ELEMENT

(STRUCTURAL_ELEMENT)*

| (STRUCTURAL_ELEMENT)*

SKIP_TEXT_ELEMENT

(STRUCTURAL_ELEMENT)*

</HTML_TAG >

A reference to an auxiliary pattern. An auxiliary pattern can be referred within

a data pattern by giving its name as the only child text element of a pattern element.

AUXILIARY_PATTERN_REFERENCE ::=

<pattern MULTIPLICITY_ATTRIBUTE?> AUXILIARY_PATTERN_NAME </pattern >

AUXILIARY_PATTERN_NAME ::= a defined auxiliary pattern name

The skip(sibling, Multiplicity) element. A skip sibling element must be either

followed by an HTML element or a pattern element referring to an auxiliary pattern.

SKIP_SIBLING_ELEMENT ::=

skip(sibling ,MULTIPLICITY_SPECIFICATION) HTML_ELEMENT

|

skip(sibling ,MULTIPLICITY_SPECIFICATION) AUXILIARY_PATTERN_REFERENCE

The relation element. A relation element is surrounded by two auxiliary pattern

references and defines an or-relationship between those two disjunctive patterns. This

element has a mandatory child meta text element or.

PATTERN_RELATION_ELEMENT ::= LEFT_AUXILIARY_PATTERN_REFERENCE

<relation > or </relation >

RIGHT_AUXILIARY_PATTERN_REFERENCE

LEFT_AUXILIARY_PATTERN_REFERENCE ::= AUXILIARY_PATTERN_REFERENCE

RIGHT_AUXILIARY_PATTERN_REFERENCE ::= AUXILIARY_PATTERN_REFERENCE

The names of the two disjunctive patterns can not be equal, meaning that they should

refer to different patterns.

Data marking text element. An HTML element can have only one child data

marking text element. The Wrapper extracts values of all the first-level children text

elements of the HTML element and assigns them together to the data marking text

element. A data marking text element name must match the

data \ \ − tex \ \ −mar \ \ − [a− zA− Z0− 9 \ \−]+ regular expression.

Chapter 6. Variability Data Extraction Patterns 115

DATA_MARKING_TEXT_ELEMENT ::= a valid HTML text element matching

the data\\-tex\\-mar\\-[a-zA -Z0 -9\\ -]+

regular expression

The skip(STRING VALUE) element. Only one instance of a skip(STRING VALUE)

can be contained within an HTML element. The Wrapper must visit the STRING VALUE

in the target code fragment but does not extract it. This element can be optionally

followed by a data marking text element, meaning that values (except STRING VALUE)

of all the first-level children text elements of the HTML element will be extracted and

assigned to the data marking text element.

SKIP_TEXT_ELEMENT ::= skip(STRING_VALUE) DATA_MARKING_TEXT_ELEMENT?

STRING_VALUE ::= a valid HTML string value

The skip(all) element. A skip(all) element can be followed by an HTML element,

an auxiliary pattern reference, or a data marking text element. An HTML element can

have multiple instances of the skip(all) element as the children, but only one of those

can be followed by a data marking text element.

SKIP_ALL_ELEMENT ::= SKIP_ALL_ELEMENT_FIND_HTM | SKIP_ALL_ELEMENT_FIND_TEXT

SKIP_ALL_ELEMENT_FIND_HTML ::= skip(all) HTML_ELEMENT

| skip(all) AUXILIARY_ PATTERN_REFERENCE

SKIP_ALL_ELEMENT_FIND_TEXT ::= skip(all) DATA_MARKING_TEXT_ELEMENT

Auxiliary pattern

An auxiliary pattern is syntactically similar to a data pattern, except that it can only

have one first-level child HTML element. It is identified from the other patterns by the

data-att-met-pattern-type = "auxiliary" attribute.

AUXILIARY_PATTERN ::= <pattern data -att -met -pattern -type=" auxiliary"

PATTERN_NAME_ATTRIBUTE

MULTIPLICITY_ATTRIBUTE?>

AUXILIARY_PATTERN_BODY

</pattern >

AUXILIARY_PATTERN_BODY ::= FIRST_LEVEL_HTML_ELEMENT

The multiplicity of data and auxiliary patterns can be specified either where the pattern

is specified or where it is referenced in the specification of another pattern. The Wrapper

first looks for the multiplicity attribute where the pattern is referenced and if it finds

Chapter 6. Variability Data Extraction Patterns 116

it there then considers it. If not, it tries the pattern specification. In the case of not

explicitly defined multiplicity, it relies on the default multiplicity.

6.5 Chapter Summary

Configuration options, descriptive information associated to an option, and constraints

are the key variability data to be extracted from the Web pages of a configurator.

Our observations reveal that the developers of a Web configurator usually use a set of

templates to automatically generate the Web pages of the configurator. We thus use

these templates in reverse order to extract variability data encoded in the code fragments

generated using these templates. To this aim, we proposed the notion of variability data

extraction pattern. The HTML-like structure of a pattern tells the Wrapper to look for

code fragments whose structure is similar to the structure of the pattern. Data marking

text elements and attributes specified in a pattern denote the data items that will be

extracted from those similar code fragments.

In this chapter, we explained the syntax and semantics of variability data extraction

patterns. We presented several real world examples taken from different Web configura-

tors to show how patterns can be used to extract data from such configurators. We also

showed how patterns can deal with well-known Web data extraction challenges such as

multi-instantiated elements, distinctive elements, optional data, and noisy data. We also

gave a context-free grammar to describe the legal syntax of variability data extraction

patterns to make them unambiguous for tool implementation.

