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Abstract

In many markets, being competitive echoes with the ability to propose customized prod-

ucts at the same cost and delivery rates as standard ones. As a result, companies provide

their customers with online Web configurators to facilitate the product customization

task. Web configurators offer a highly interactive configuration environment for cus-

tomers to specify products that match their individual requirements and preferences.

They provide capabilities to guide the customer through the multi-step and non linear

configuration process, check consistency, and automatically complete partial configura-

tion.

To get a better grasp of what is the current practice in engineering Web configurators,

we conducted a systematic empirical study of 111 configurators. We quantified their nu-

merous properties, categorized patterns used in their engineering, and highlighted good

and bad practices. We provided empirical evidence that Web configurators are complex

information systems. Despite of this fact, this study revealed the absence of specific,

adapted, and rigorous methods in their engineering. The lack of dedicated methods

for efficiently engineering Web configurators leads to reliability, runtime efficiency, and

maintainability issues.

To migrate legacy Web configurators to more reliable, efficient, and maintainable solu-

tions, we offer to systematically re-engineer these applications. This encompasses two

main activities: (1) reverse engineering Web configurators to extract their configuration-

specific data and encoding it into dedicated formalisms, and then (2) forward engineer-

ing new improved configurators. In this study, we are concerned with the reverse-

engineering process. We developed a consistent set of methods, languages and tools to

semi-automatically extract configuration-specific data from the Web pages of a configu-

rator. Such data is stored in variability models (e.g., feature models). These models can

later be used for verification purposes (e.g., checking the completeness and correctness

of the configuration constraints) as well as input for forward-engineering techniques.

To reverse engineer variability models from Web configurators, we developed techniques

that target static structure and dynamic behaviour of Web configurators to locate and

extract configuration-specific data. Experimental results on existing real Web configu-

rators confirm the applicability of our contribution.
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Résumé

Dans de nombreux marchés, la compétitivité passe par la possibilité de fournir des

produits dédiés à des taux de production et à des prix identiques à ceux dits “standards”.

A cette fin, les sociétés fournissent à leurs clients des “configurateurs” web afin que

ceux-ci puissent spécifier les options des produits répondant à leurs attentes. Ces outils

offrent des environnements interactifs qui guident les utilisateurs à travers des processus à

plusieurs étapes et souvent non-linéaires, vérifient la correction des options et complètent

automatiquement les configurations partielles.

Afin de mieux comprendre les pratiques actuelles de conception de ces configurateurs,

nous avons effectué une étude empirique sur 111 configurateurs. Nous avons examiné et

quantifié leurs divers attributs, organisé les différents patrons de conception utilisés et

souligné les bonnes et les moins bonnes pratiques. Cette étude a révélé qu’un configu-

rateur est en fait un système d’information complexe. Notre étude à aussi révélé qu’il

n’y avait pas d’approche systématique, dédiée et rigoureuse pour construire de tels con-

figurateurs. Ce manque nuit fortement à la fiabilité, la performance et la maintenance

de ces systèmes.

Pour pouvoir migrer les configurateurs existants vers des solutions offrant une meilleure

performance, fiabilité et evolutivité, nous pensons qu’il faut les reconcevoir de manière

systématique. Cette approche comprend deux grandes étapes : 1) rétro-conception de

configurateurs web afin d’en extraire les données de configuration et leur encodage dans

des langages facilitant l’analyse, et 2) Génération de configurateurs améliorés. Dans

cette thèse, nous intéressons à la première étape, pour laquelle nous avons développé

une approche cohérente visant à extraire de manière semi-automatique les informations

de configuration spécifiques des configurateurs web. Ces données sont ensuite encodées

dans des modèles de variabilité (“feature models”). Ces modèles peuvent être utilisés

par la suite pour pour vérifier la cohérence et la complétude des contraintes de config-

urations. Ils servent aussi de point de départ au processus de génération de nouveaux

configurateurs.

Nos outils de rétro-conception ciblent la structure et le comportement dynamique des

configurateurs pour localiser et extraire les informations spécifiques de configuration.

Nos résultats empiriques obtenus sur des configurateurs existants établissent l’applicabilité

de notre approche.
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7.1.2 Pattern matching algorithm

Given a configuration file and a Web page, the Wrapper operates within the block

of the source code identified by the region pattern and looks for code fragments that

structurally match the data pattern (and auxiliary patterns used in the specification of

the data pattern). The Wrapper uses a data extraction procedure to find matching code

fragments. Our proposed algorithm for the data extraction procedure provides a two-

step solution to find matching code fragments: (1) first finding candidate code fragments

that may match the given data pattern and then (2) traversing each candidate code

fragment to find out if it is exactly matching the pattern. The algorithm seeks to find

mappings between elements of a code fragment and the given patterns using their tree

representations. During the mapping, if a conflict is detected the target code fragment

is excluded from the data extraction process. During the traversal of a code fragment,

its data items are also extracted.

7.1.2.1 Finding candidate code fragments

The data extraction procedure parses the source code of a Web page to extract data.

It ignores as much as possible the source lines of code that do not have any data of

interest, and considers all those may have. The region pattern delimits the extraction

procedure to operate within a specific portion of the source code. Consequently, many

irrelevant lines of code are automatically discarded by the extraction procedure.

We offer to divide the source code within the given region (identified by the region

pattern) into a number of candidate code fragments, each of which may match the given

data pattern. Clearly, those lines of code that are not covered by the candidate code

fragments are ignored by the data extraction procedure as well.

We now present the algorithm for finding candidate code fragments. The algorithm

works on the HTML tag tree of the given patterns (the content of the configuration file)

and DOM of the target Web page. The proposed algorithm is based on the following

three key assumptions:

• A code fragment that matches the given data pattern has a unique element, mean-

ing that there is one and only one instance of that element in the code fragment.

• All elements in the path from the unique element up to the root element of the data

pattern (excluding the root pattern element in the data pattern) are predefined

HTML elements. This path defines the signature of the unique element. The

length of a signature is the number of its included elements.
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• The elements included in the signature of the unique element in the pattern spec-

ification must not have the skip(all) element neither as an immediate, nor as an

indirect sibling element.

Our empirical observation (Chapter 3 and [Abbasi et al., 2013]) shows that the first

expectation is true. For example, each option is represented using a widget and the

element implementing the widget is a unique element in the code fragment of the option.

Note that the element tag name together with its attributes may make an element

unique. The user uses the data-att-met-unique = "true" attribute to mark the unique

element in the data pattern specification. This underlying assumption acts as the first

parameter to find candidate code fragments.

The second assumption ensures that the unique element must be included and marked

in the data pattern. If it is contained in an auxiliary pattern, so the pattern element of

the auxiliary pattern will be part of the signature of the unique element, this will violate

the assumption.

skip(all) does not preserve the parent-child relationships between elements in a pattern,

and therefore makes it impossible to accurately compute the signature of the unique

element. For this reason, the third assumption is made.

Candidate code fragment. A candidate code fragment of a given data pattern is a

code snippet in the source code of the given page such that:

• there is a one-to-one mapping between its first-level HTML elements and those of

the data pattern,

• it contains an element that is identical to the unique element marked in the data

pattern specification, and

• the identical element in the code fragment has the same signature (with the cal-

culated length) as the unique element in the data pattern.

The algorithm uses a bottom-up tree traversing to find candidate code fragments. It first

finds all HTML elements in the source code that are identical to the unique element and

have the same signature as the unique element. For each found identical element, the

algorithm then walks l steps up, in which l is the length of the signature. At the end of

the bottom-up traversing, the algorithm stops on an HTML element, called the index

element – in the source code it corresponds to a first-level HTML element in the data

pattern. The algorithm then propagates the mappings between the siblings of the index

element in the source code and the data pattern. When the algorithm draws an analogy
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between the first-level elements of the data pattern and a code fragment in the source

code, it records that code fragment as a candidate code fragment. Each candidate code

fragment is identified with its first-level elements.

The algorithm for detecting and recording the candidate code fragments is given in

Figure 7.1. getCandidateCodeFragments is a function that takes as input the HTML

tag tree of a configuration file (configFile) and the DOM of the source code of the given

page (pageSource). We use the source code shown in Figure 7.2 and the configuration

file presented in Figure 7.3 as inputs to describe the algorithm. To make it easy for the

reader to find the code lines from the text, we optionally use al:, sc:, and cf:before the

line number(s) to respectively refer to Figure 7.1, Figure 7.2, and Figure 7.3.

The algorithm first finds the unique element of the data pattern (line al:2). If more than

one element is marked as unique, the algorithm returns the first matching element. In

the given configuration file, the input element (line cf:3) is returned as uniqueElement.

Then, the algorithm finds the element identifying the data region in the source code (line

al:3). Since the <table class="tagselect"> element is defined to be the root element of

the data region (line cf:20) in the configuration file, the algorithm looks for an identical

element in the source code. It finds the element in line sc:1 and returns the element as

regionElement.

getSignature (line al:5) computes the signature of uniqueElement, i.e., td and assigns it

to uniqueElementSignature. Next, the getIdenticalElements function (line al:6) finds

all elements within regionElement that are identical to uniqueElement. Consequently,

the input elements in lines sc:4, 25, and 43 of the source code are identified by the

function and stored in the identicalElements array.

Lines al:7-14 iterate for each identified identical element and exclude those elements

whose signature does not conform to the signature of uniqueElement. In this step, the

input element in line sc:43 is excluded, because its signature is div that is distinct from

that of uniqueElement. Note that since the length of the signature of uniqueElement is

1, then, for each identical element a signature with the length of 1 is computed. For

each identical element that has the same signature as uniqueElement, an instance of

candidateCodeFragment is created. So, two instances of this type are created for the

example source code given in Figure 7.2. This object has two data members. mappingIn-

dexElement that holds the root element of the signature of uniqueElement (line al:10),

i.e., the td element (line cf:2) in the configuration file. mappedIndexElement stores the

root element of the signature of the identical element (line al:11). Consequently, when

the algorithm reaches line al:15, the objects have the following states:

candidateCodeFragment[0].mappingIndexElement = td
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Figure 7.1: The algorithm for finding candidate code fragments.
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Figure 7.2: An example source code (http://www.mydogtag.com/, May 14 2013).
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Figure 7.3: Pattern configuration file.

candidateCodeFragment[0].mappedIndexElement = td

candidateCodeFragment[1].mappingIndexElement = td

candidateCodeFragment[1].mappedIndexElement = td

It means that the td elements in lines sc:3 and 24 of the source code are mapped onto

the td element of the data pattern (line cf:2). In fact, mappingIndexElement is the first-

level element of the data pattern containing uniqueElement, and mappedIndexElement

is an element in a candidate code fragment that maps to mappingIndexElement.

Lines al:15-36 attempt to find mappings between the previous (left) sibling elements

of mappingIndexElement in the data pattern and mappedIndexElement in a code frag-

ment. It first takes mappingElement as the previous immediate sibling element of map-

pingIndexElement (line al:19). If this element is an instance of skipSiblingElement (line

al:20), i.e., skip(sibling, Multiplicity), the algorithm skips the n previous sibling

elements (in which n is the multiplicity value, line al:21) of mappedIndexElement in

the code fragment and returns the n+1 th previous sibling element as mappedElement

(line al:22). Now that skipSiblingElement is resolved, its previous element is assigned to
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mappingElement (line al:23). By definition, previous (left) and next (right) immediate

sibling elements of skipSiblingElement is an HTML element, thus mappingElement is

an HTML element. If mappingElement is not an instance of skipSiblingElement, the

algorithm returns the previous immediate sibling element of mappedIndexElement in

the code fragment as mappedElement (line al:25). If mappingElement and mappedEle-

ment are identical elements (line al:27), then they are captured in the codeFragment

object. codeFragment has two previousMappingElement and previousMappedElement

arrays. previousMappingElement[i] holds mappingElement of the data pattern and pre-

viousMappedElement[i] its corresponding mapped element, i.e., mappingElement, of the

code fragment (lines al:28 and 29). During the mapping, if a conflict is detected (both

mapping and mapped elements are not identical), mappingIndexElement is set to null

(line al:32), meaning that the code fragment no longer matches the data pattern and

must not be further processed (e.g., see lines al:38-40). The aforementioned steps are

iterated for all previous sibling elements of mappingIndexElement (line al:19). In our ex-

ample in Figure 7.3 since there is no previous sibling element for mappingIndexElement

(line cf:2), lines al:15-36 are not executed.

Lines al:37-61 perform the same steps as lines al:15-36, but for the next (right) sibling

elements of mappingIndexElement in the data pattern and mappedIndexElement in the

code fragment. Consider the example source code in Figure 7.2 and the configuration file

in Figure 7.3. The td element (mappedIndexElement) in the code fragment (line sc:3)

is mapped to the td element (mappingIndexElement) in the data pattern (line cf:2).

The next sibling element of mappingIndexElement is skip(sibling,[1]) (line cf:5), thus

one next immediate sibling element of mappedIndexElement must be discarded, i.e., the

td element in line sc:6. Consequently, when the algorithm reaches line al:52, mappin-

gElement is the td element (in line cf:6) and mappedElement is the td element (in line

sc:11). Since mappingElement and mappedElement are identical, the mapping is cap-

tured in the codeFragment object (lines al:53 and 54). Note that in the next iteration

of lines al:37-61, the td element in line sc:32 of the source code is mapped onto the td

element of the data pattern in line cf:6.

When the getCandidateCodeFragments function terminates for this example, it re-

turns two candidate code fragments (an array of candidateCodeFragment objects) from

the source code that match the data pattern: one code fragment starts at line sc:3 and

ends at line sc:20 (candidateCodeFragment[0]), and another starts at line sc:24 and ends

at line sc:37 (candidateCodeFragment[1]). A candidate code fragment is identified by its

first-level elements, each of which maps into one first-level HTML element of the data

pattern.
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Figure 7.4 depicts the tree representations of the data pattern (lines cf:1-12) at the top,

and the code fragment (lines sc:3-20) at the bottom. For each element, the corresponding

line number is enclosed in parentheses. The dashed line shows elements mapped together.

Note that the td element in line sc:6 is mapped into the skip(sibling,[1]) element (but

not into an HTML element) in the pattern and therefore it and its children (marked

with ×) are discarded and not included in the recorded candidate code fragment.

7.1.2.2 Traversing the candidate code fragments

Figure 7.5 presents dataExtractionProcedure, the main entry procedure of our data

extraction system. It first checks the configuration file (configFile) for syntax and some

semantic errors (line 2). validConfigFile parses the configuration file to an HTML

tag tree and ensures that pattern-specific attributes and elements are properly defined,

and match predefined naming conventions. Moreover, it validates that patterns are

well-formed and all the referenced patterns exist in the configuration file.

In line 4, the procedure calls getCandidateCodeFragments which returns back the

candidate code fragments. Lines 5-29 iterate for each candidate code fragment and ex-

tract their data according to the data pattern (and the auxiliary patterns if they are

used in the specification of the data pattern). Data extracted from a code fragment is

stored in the outputData object (line 6). We later describe in this chapter the schema

(data model) of outputData (see Section 7.2). Note that getCandidateCodeFrag-

ments only finds elements from a code fragment that map to the first-level children of

the data pattern (see Figure 7.4). To find all other mappings and extract data, we use

the traverseTree procedure (Figure 7.6). This procedure uses the tree representations

of both the data pattern and the code fragment, traverses them in parallel and tries to

find mappings between their elements. It uses a mixture of both depth-first and breadth-

first traversals to trace the tag trees. traverseTree is called for every two mapped

elements (one from the data pattern and one form the code fragment). Lines 8-14 call

the procedure for the mapped elements preceding the index elements, line 17 calls it for

index elements, i.e., mappingIndexElement and mappedIndexElement, and finally, lines

20-26 call the procedure for the mapped elements following the index element. Note that

everywhere during traversal of the code fragment, if a conflict is detected, meaning that

the code fragment no longer matches the data pattern, the code fragment should not be

further processed. To implement this, mappingIndexElement is passed to traverseTree

and within the procedure in the case of a conflict, this parameter is set to null. When

the procedure terminates, mappingIndexElement is checked (lines 12− 13, 18− 19, and

24 − 25 ), and if it is null, the current code fragment is discarded and the next code

fragment is considered. When the code fragment is successfully traversed, outputData
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Figure 7.4: Tree representation (1).
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Figure 7.5: Data extraction procedure.

is validated (line 27), ensuring that a valid data is extracted. validData checks, for

instance, that all the mandatory data items marked in the patterns are extracted. If the

data is valid, it is reported out (line 28).

Tree traversing

Table 7.1: Element instances.

Element instance Tag/element

htmlElement any valid HTML tag

patternElement <pattern>pattern-name</pattern>

relationElement <relation>or</relation>

skipAllElement skip(all)

dataMarkingTextElement a data marking text element

skipSiblingElement skip(sibling, Multiplicity)

skipTextElement skip(A STRING VALUE)

traverseTree is a recursively defined procedure that takes as input mappingIndexEle-

ment of the target code fragment, two mapping elements patternElement from the data
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pattern and targetElement from the target code fragment that is mapped to patternEle-

ment, the tree representations of the configuration file (configFile) and the target code

fragment (pageSource), as well as the ouputData object which gathers the extracted

data as the code fragment is progressively processed.

Line 2 checks that the target code fragment is still valid, otherwise returns back. Line 3

ensures that patternElement is not null. If patternElement is not null, but targetElement

is (line 4), it means that there is no mapping and a mismatch between the code fragment

and the data pattern is discovered. In that case, the process must not be continued.

Line 5 validates that patternElement and targetElement are identical, otherwise there is

a mismatch and the process is aborted. extractAttributeData traces patternElement

and if it contains data marking attributes, extracts their corresponding data items from

targetElement and adds them to outputData.

In each execution of treeTraversing, the procedure traverses the first-level children

of patternElement, and accordingly targetElement, meaning that the procedure uses a

breadth-first order for traversing (lines 11-90). Everywhere during this traversing, if two

HTML elements (one from the data pattern and one from the target code fragment) are

structurally mapped, a new call of treeTraversing is made for these two elements. This

recursive calling of the treeTraversing procedure constitutes a depth-first traversal of

the data pattern and the target code fragment. To start, the first immediate child of the

data pattern (currentPatternElement, line 7) and the code fragment (currentTargetEle-

ment, line 8) are taken. If currentPatternElement is null, it means that patternElement

is a leaf node and there is no more node to be processed (line 9). If patternElement

exists, however, there is no mapped element from the code fragment, a mismatch is

detected and the process is terminated (line 10).

Lines 11-90 iterate until all first-level children of patternElement are visited or a conflict

is detected. We explain the algorithm and present how it operates when it visits different

types of elements (see Table 7.1) in the data pattern. Note that we mostly present the

true conditions and so blocks of code to be executed when a condition is not true (which

may lead to terminate the process) are usually omitted.

currentPatternElement is an instance of htmlElement. Lines 12-40 show the

block of code to be executed if currentPatternElement is a predefined HTML element

(not a pattern-specific element). If the element is assigned a multiplicity attribute (line

13), multiple HTML elements from the code fragment will be mapped to currentPatter-

nElement. The algorithm first retrieves lowerValue and upperValue, respectively, as the

lower- and upper-bound values of the multiplicity (lines 14-15).
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Figure 7.6: Tree traversing.
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If lowerValue and upperValue are both set to the wildcard symbol (*) (line 16), it

means that all adjacent HTML elements starting from currentTargetElement that are

identical to currentPatternElement must be mapped to it. Consequently, the algorithm

examines currentTargetElement and its next sibling elements (lines 17-20) and for every

two identical elements calls treeTraversing. The iteration continues until a dissimilar

HTML element form the code fragment is visited or no HTML element is left. After

the iteration, the current pattern element is processed, its next sibling element is taken

(line 21) and the program logically continues again from line 11.

If lowerValue and upperValue are both set to an integer number (line 22), it means that

a predefined number of adjacent HTML elements starting from currentTargetElement

that are identical to currentPatternElement should be mapped to it. lowerValue (and

also upperValue) specifies up to how many HTML elements from the code fragment will

be mapped to currentPatternElement.

If lowerValue is 0 and upperValue is 1 (line 29), it means that currentPatternElement

is an optional element and there might not exist a matching element from the code

fragment for this pattern element. If such an element is found (line 30), a new call for

treeTraversing is made to process the two mapping elements.

If currentPatternElement does not have a multiplicity attribute (line 36), it means that

only one HTML element form the code fragment is mapped to it. currentPatternElement

and currentTargetElement are passed to treeTraversing (line 37) and their next sibling

elements are considered (lines 38-39).

currentPatternElement is an instance of patternElement. If currentPatternEle-

ment is a patternElement (line 41), the procedure also checks its next sibling element

(line 42). If the next sibling element of currentPatternElement is an instance of rela-

tionElement, it means that there exist an or-relationship between two patterns. Ac-

cording to the grammar, these two patterns are the left and the right sibling elements

of an element of type relationElement. currentPatternElement and nextPatternElement

(line 43) both are instances of patternElement, meaning that their child text element is

the name of an auxiliary pattern. These two elements with currentTargetElement are

passed two handleOrRelation (line 44). The main task of this procedure is to find the

matching pattern for currentTargetElement and then to continue traversing within the

chosen pattern. We recall that an auxiliary pattern has only one first-level child. han-

dleOrRelation queries the first-level child of the two patterns, the one is identical to

currentTargetElement, its owning pattern is chosen. handleOrRelation finally returns

back the current target element (line 44).
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If the next sibling element of currentPatternElement is not an instance of relationEle-

ment (line 46), currentPatternElement is a pattern that should be individually pro-

cessed. handlePattern takes the responsibility for checking if currentTargetElement is

identical to the first-level child element of the auxiliary pattern referenced in current-

PatternElement. If true, it continues traversing within the pattern.

currentPatternElement is an instance of skipAllElement. If currentPatter-

nElement is the skip(all) element (line 50), then its next sibling element might be an

instance of htmlElement, patternElement, or dataMarkingTextElement. The procedure

first queries the next sibling element of skip(all) in nextPatternElement (line 51). If

nextPatternElement is an instance of htmlElement (line 52), findMatchingElement

finds all HTML elements in the target code fragment whose (immediate or indirect)

parent element is targetElement and extracts their data items (line 53). If nextPatter-

nElement is an instance of patternElement (line 54), findMatchingPattern looks for

instances of the auxiliary pattern (whose name is referenced in nextPatternElement)

within the targetElement element (line 55). If nextPatternElement is an instance of

dataMarkingTextElement (line 56), getWholeInnerText collects the values of all text

elements of children and grandchildren of targetElement (line 57), and addDataToOut-

put appends them as a single value to outputData (line 58). The name of the output

data is specified with nextPatternElement. Remember that an HTML element can have

only one child data marking text element. Therefore, as soon as the procedure processed

one data marking text element, it checks if there exists another instance. If it finds it, it

means that a conflict is observed and the process must be left (line 59). Also note that

according to the grammar, if there exists a skip(all) element within the first-level chil-

dren of an HTML element, every first-level child element of that HTML element must be

led by a skip(all) element. To implement this restriction, once the skip(all) element

and its following element are processed, the next element must also be an instance of

skipAllElement (lines 61-62). If not, there is a mismatch: the target code fragment no

longer matches the data pattern, and the process is aborted (line 63).

currentPatternElement is an instance of dataMarkingTextElement. If the

current pattern element is a data marking text element (line 64), the values of all the first-

level children text elements of targetElement are gathered and appended to outputData.

The name of the output data is specified with currentPatternElement (lines 65-66).

Again, the procedure ensures that only one data marking text element exists within the

first-level children of targetElement (line 67).

currentPatternElement is an instance of skipSiblingElement. If the current el-

ement is an instance of skipSiblingElement (line 69), then its next sibling element must
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be an instance of htmlElement or patternElement. The multiplicity value of currentPat-

ternElement defines how many elements must be skipped after the last visited element of

the target code fragment. The procedure first queries the next sibling element of current-

PatternElement in nextPatternElement (line 70). If nextPatternElement is an instance

of htmlElement (line 71), handleMatchingElement skips some sibling elements of

currentTargetElement according to the multiplicity value, and finds the next HTML el-

ement that matches nextPatternElement and continues traversing (line 72). Once done,

handleMatchingElement returns back the next HTML element of the target code

fragment to be considered. If nextPatternElement is an instance of patternElement (line

73), it means that nextPatternElement is a reference to an auxiliary pattern. In this

case, handleMatchingPattern finds the only child HTML element of the pattern and

moves ahead the process with this HTML element and currentTargetElement (line 74).

Similarly, handleMatchingPattern returns back the next HTML element of the target

code fragment to be considered.

currentPatternElement is an instance of skipTextElement. If currentPatter-

nElement is an instance of skipTextElement (line 76), it means that currentPatternEle-

ment specifies a value that must be contained within the value of the first-level children

text elements of targetElement. getValue first returns back the value specified in cur-

rentPatternElement (line 77) and then it is checked if the value is contained within the

value of the first-level children text elements of targetElement (line 78). If true, the

algorithm then visits the next sibling element of currentPatternElement. If this element

is an instance of dataMarkingTextElement (line 80) the procedure collects the value of

all children text elements of targetElement (line 81). Since the value defined in an in-

stance of skipTextElement must be visited but not extracted, it is removed from the

gathered data (line 82), and data is added to outputData (line 83). If the value specified

in currentPatternElement is not found within targetElement, then a conflict is observed

(line 86). We would recall that an HTML element can only have one instance of a

skipTextElement element. If targetElement has more, there is a mismatch between the

target code fragment and the data pattern and the process must be aborted (line 87).

If treeTraversing is called for the tag tree representations of the data pattern and the

target code fragment shown in Figure 7.4, the td(2) and td(3) elements are assigned

to patternElement and targetElement, respectively. As the procedure is executing, the

input(3) element is considered as the first child of patternElement and assigned to

currentPatternElement (line 7). Accordingly, the input(4) is assigned to currentTar-

getElement. Since currentPatternElement is an HTML element and has no multiplicity

attribute (see cf:3), line 37 is executed and a new call of treeTraversing for these two

elements is made. Note that the input(3) and input(4) does not have sibling elements.
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Therefore, when line 38 is executed, currentPatternElement is set to null, the condition

in line 84 becomes false, and consequently, the procedure terminates.

When treeTraversing is called for the input(3) and input(4) elements, extractAt-

tributeData (line 6) is executed. For the input element in the configuration file (line

cf:3), the data-att-mar-type data marking attribute is defined and its value is the value

of the type attribute of the matching element from the target code fragment, i.e., radio

(line sc:4). So, radio is assigned to data-att-mar-type and added to outputData. Since

input(3) has no children, the condition in line 9 is true, treeTraversing terminates,

and the control is returned back to the calling procedure. Figure 7.7 presents the current

state of the mapping elements.

Figure 7.8 shows the state of the mapping elements when treeTraversing is called for

td(6) and td(11) as patternElement and targetElement, respectively. The first child

element of td(6) is skip(all) which is an instance of skipAllElement and its next sib-

ling element is label(8) which is an HTML element. So, treeTraversing calls the

findMatchingELement procedure (line 53). findMatchingELement skips all chil-

dren and grandchildren of td(11) (thus h6(12) is skipped) and stops at label(13) in

the code fragment. Then, a new treeTraversing is called for label(8) and label(13)

respectively as patternElement and targetElement. The first child of label(8) is a data

marking text element, named data-text-mar-option-name (line cf:8). Consequently, the

value of the child text element of label(13) is extracted, i.e. “Embossed Characters”,

assigned to data-text-mar-option-name, and appended to outputData (lines 65-66).

Backing to treeTraversing called for td(6) and td(11), the next pattern element to

be considered is skip(all) in line cf:9. This element is followed by the the description

auxiliary pattern with the multiplicity value of 1 (line cf:10). findMatchingPattern

(line 55) first finds the immediate child element of the pattern, i.e., the p(14) element. It

then skips all children and grandchildren of td(11) in the code fragment and looks for a p

element. findMatchingPattern finds an identical p(15) element in the code fragment

and calls a new treeTraversing for p(14) and p(15). The first child element of p(14)

is skip(all) in line cf:15, and its next sibling element is the data-tex-mar-description

data marking text element. Therefore, getWholeInnerText (line 57) skips all children

and grandchildren of p(15) in the code fragment (span(16) and span(18) are discarded)

and collects the value of all children and grandchildren text elements of the p(15). As a

result, the values in lines sc:16, 17, and 18 are gathered as a single string value, assigned

to data-tex-mar-description, and added to outputData (line 58).

Now that all elements of the code fragment are mapped to the elements of the data

pattern, then all calls of treeTraversing successfully terminate, the control is returned
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back to line 27 of the dataExtractionProcedure (Figure 7.5). validData validates

outputData and since the data is valid, it is printed out.

The next candidate code fragment is the block lines sc:24-37. treeTraversing finds a

conflict at line 55, because when findMatchingPattern is called, it queries the child

element of the description pattern, i.e. the p(14) element. However, findMatching-

Pattern can not find any p element in the children and grandchildren of td (line sc:32)

in the code fragment, and since the description pattern is not an optional pattern, a

mismatch is observed and the code fragment in lines sc:24-37 is ignored.

Now that no candidate code fragment is left to be considered by dataExtractionPro-

cedure, the data extraction process completes.

7.2 Data Presentation

The data extracted by the Wrapper (in fact, dataExtractionProcedure) is hierarchi-

cally organized according to a predefined data model (Section 7.2.1) and serialized using

an XML format (Section 7.2.2). The produced XML file is processed to add missing

data, remove noisy data, etc. The clean XML file is then transformed into a TVL model

(Section 7.2.3).

7.2.1 Data model

Figure 7.9 shows our proposed data model to structure the output data. The data model

is divided into three packages: configuration process, option, and constraint.

Configuration process

A Configuration Process is constituted of a sequence of Steps and optionally nested

steps. Users follow these steps to complete the configuration of a Product. Each step

includes a subset of Options which are chosen by users to be included in the final

product. Within a step, options are organized in different Groups and nested groups.

We recall that a group describes logical dependencies between options, while a step

denotes a part of the configuration process.

In our data model, the configuration process in a Web configurator must have at least

one step and each step must have at least one group. If not, the user should define them

in the pattern specification (the data-att-mar-step-name and data-att-mar-group-name

attributes). A step is identified with its name and can optionally have a unique ID, an
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Figure 7.7: Tree representation (2).
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Figure 7.8: Tree representation (3).
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integer value denoting its order among other steps of the configuration process, and a

description.

Option

A Product is characterized by a set of Options. Each option is contained in a Group

and is configured in a Step. A group is identified with a name and may be hierarchically

organized as nested groups. An option can be contained in one and only one group or

nested group.

An option must have a name and is represented by a widgetType. If more than one

instance of an option can be included in the final product, the option is cloneable. If

the user does not have to configure an option, meaning that the option is optional. If

an option is configured at the beginning of the configuration process, then its selected-

ByDefault attribute is set to true.

If the widget type of an option is image or its widget is combined with an image, then

the src attribute stores the (absolute or relative) URL of the image. If, to configure an

option, the user has to enter a value (in a textBox, fileChooser, etc.) the option might

have a defaultValue.

An option may have subOptions. For instance, we consider a list box as an option

and its items as suboptions. An option can also optionally have one or more Descrip-

tiveInformations associated to the option. A description information of an option is

identified with a name, its value, and the dataType of the value.

Constraint

A Constraint determines valid combinations of options or imposes restrictions on values

that can be entered for that option. We consider three types of constraints in our data

model: formatting, group, and cross-cutting constraints.

Formatting constraint. A formatting constraint ensures that a valid value is set by

the user. A TypeChecking constraint forces the user to enter a strongly typed value;

a RangeControl constraint defines upper and lower bounds or defines the set of valid

values to be entered; and a FormattedValue constraint controls that the value that is

entered is in a special format.

Group constraint. A group constraint defines the number of options that can be se-

lected from a group of options. The allowable number of options to be selected is defined
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in the allowableCardinality attribute of a group. If an option is cloneable, cloneRange

specifies the minimum and maximum number of instances of the option to be included

in the final product.

Cross-cutting constraint. A cross-cutting constraint is defined over two or more

options. The selection of an option may require/exclude the selection of other options.

More complex constraints may exist that can be described in a formal way or in

natural language.

7.2.2 Output XML file

The extracted data is serialized in an XML file whose structure conforms to the data

model described in Section 7.2.1. The names of the data marking text elements and

attributes in the data and auxiliary patterns are the tag names of XML elements repre-

senting their corresponding data items in the XML file. Moreover, a list of predefined

and built-in tag names is used by the Wrapper to create/rename elements in the XML

file.

For the source code in Figure 7.2 and the configuration file in Figure 7.3, the Wrapper

created the XML file presented in Figure 7.10. Except for the tag names in lines 13

and 14, all other tag names are predefined in our system. By definition, the step name

element represents the step name, and group name has the group name as its child text

element. The option name marked in the configuration file as data-tex-mar-option-name

(line cf:8) is documented as the feature name element (line 11) in the XML file. The

properties element presents the descriptive information extracted for an option (lines

12-15). data-att-mar-type and data-tex-mar-description data marking elements are

used as tag names in the XML file (lines 13 and 14, respectively), with a minor change:

the hyphen sign (-) in the names of the data marking elements in the configuration

file is replaced with the underscore sign ( ) in the output XML file. The reason for

this replacement is that some software may think of the hyphen sign as the subtract

operator.

7.2.3 TVL model

The final step of our reverse engineering process is to transform the XML file into a TVL

model. This is performed by a module written in Java. The transformation may require

some changes in the extracted data to produce valid content in TVL. For instance, in

TVL a feature name (that corresponds to an extracted option name) has to start with

an uppercase letter and can contain numbers as well as the underscore. If an option
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Figure 7.9: Schema of output data.



Chapter7. Data Extraction Procedure 140

Figure 7.10: An example output XML file.

name extracted by the Wrapper breaks one of these rules, a conflict will be raised when

generating the TVL model. To resolve these transformation conflicts, the user has to

configure the transformation module to handle different types of conflicts. For instance,

for each invalid character that may appear in the names of options, she should define

replacement character that is valid in TVL. We designed an XML configuration file that

the user can use to set up the transformation module.

7.3 Tool Implementation

To implement the algorithms discussed in this chapter (and those that will be discussed

in Chapter 8 as well) we developed a Firebug2 extension (3 KLOC, 2 person-month).

Firebug is a powerful Web development tool that allows to inspect and modify the source

code of Web pages in real-time (Figure 7.11). The user can select an element on the Web

page and inspect its source code in a panel. Moreover, she can edit an element (e.g.,

add, edit, or delete an attribute) or delete an element and inspect its impact on the Web

page. Firebug is compatible with all major browsers, but our extension is tested only

for Firefox. It is installed on the browser as an add-on and has access to the source code

of the page currently loaded in the browser as well as its DOM.

Firebug provides a set of APIs that can be used to add new features. The extension

we developed is built on top of Firebug. It adds a new panel called Web Wrapper to

the existing panels of Firebug. The Web Wrapper panel (see Figure 7.12) provides a

GUI using which the user can define/load/update a configuration file, run the extraction

2http://getfirebug.com/

http://getfirebug.com/
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procedure, and inspect the output XML file. If needed, the user can define a data region

by easily adding a new element to the Web page or editing an existing element.

The algorithms are implemented in JavaScript. We used built-in JavaScript functions

and jQuery APIs 3 to traverse and manipulate the HTML tag tree of the configuration

file and DOM of the given Web page.

Once the XML file is produced by our extension, the user may need to edit the file.

There are many XML processing tools to edit the XML file, e.g., XMLSpear4, a free

XML editor with real-time validation.

We also implemented a Java module (550 LOC, 1 person-week) to transform an XML

file to a TVL model. It takes as input an XML file and a configuration file for resolving

transformation conflicts, and generates as output a TVL file.

The delivered tools are available at http://info.fundp.ac.be/~eab/result.html.

7.4 Chapter Summary

In this chapter, we explained our proposed algorithm and illustrated its behaviour to find

and extract data from code fragments that structurally match a given data pattern. The

algorithm provides a two-step solution to find matching code fragments. It first attempts

to find candidate code fragments by finding mappings between their first-level elements

and those of the data pattern. Once the candidate code fragments are identified, the

algorithm traverses each code fragment to find other mappings between it and the data

pattern. During the traversal of a code fragment, its data items are also extracted.

During the mapping, if a conflict is detected the target code fragment is excluded from

the data extraction process.

We also presented the data model based on which the extracted data is hierarchically

organized, the XML format of the output data, and the transformation into TVL. We

finally described the tools we developed to support the data extraction procedure.

3http://jquery.com/
4http://www.donkeydevelopment.com/

http://info.fundp.ac.be/~eab/result.html
http://jquery.com/
http://www.donkeydevelopment.com/
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Figure 7.11: Firebug.
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Figure 7.12: Web Wrapper extension.



Chapter 8

Extracting Dynamic Variability

Data

Web configurators are highly interactive applications and as they are executing, new

content may be automatically added to the page, and existing content may be removed

or changed. The exploration of the configuration space (e.g., navigation through the

configuration steps) and the configuration of options are two common actions that may

change the content of the page.

This chapter presents our solution to extract dynamic variability data. We first intro-

duce the notion of dependency between patterns, the main foundation on top of which

our solution is developed (Section 8.1). We then present our crawling technique to

automatically explore the configuration space and configure options (Section 8.2). We

specifically explain how the Wrapper and the Crawler collaborate together to simulate

the users’ actions to systematically generate new content or alter the existing content,

and to deduce and extract configuration-specific data. We finally explain the methods

we offer to trigger and to extract constraints defined over options (Section 8.3).

8.1 Dependencies between vde Patterns

A motivating example. Figure 8.1 shows a configuration step that contains a set of

packages which can be selected to be included in the product (a car in this example).

Each package is represented by a parent option (which is presented through a selectable

check box) and a set of child options (which are presented through a “•” or a disabled

check box). Figure 8.2 presents the code fragments that implement “M Sport Package”

shown in Figure 8.1. The code fragment in lines 2-10 corresponds to the parent option

144
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and the code fragments in lines 11-38 implement the child options. We identified three

templates that are used to generate the structure of a package: one to generate the

parent option, one for the child options presented using a dot (“•”), and one for the child

options presented through a disabled check box. To extract packages, one may think

of specifying a data pattern to extract the parent options and two auxiliary patterns to

extract their child options. Besides being a complicated data pattern, this specification

does not document the parent-child relationship between a parent option and its child

options. The documentation of parent-child relationships between options facilitates the

creation of feature hierarchy when generating the TVL model of the target configurator.

In addition to the parent-child relationship, we observed other types of relationships

between data objects in a Web page that should be documented, because they exploit

configuration-specific data. For instance, consider a case in which by selecting an option

its implied options are dynamically loaded in the page. It means that there are underly-

ing constraints (a kind of relationship) between the chosen option and the newly added

options. These constraints should be identified and extracted as well.

To deal with these issues, we define the notion of dependency between vde patterns.

Definition: Dependency between vde patterns Let P1 and P2 be two data pat-

terns. A dependency is a relationship that semantically relates the set of code fragments

that match P2 to a code fragment that matches P1. We respectively call P1 and P2 as

independent and dependent patterns.

To define the dependency, we use the data-att-met-dependent-pattern meta attribute.

This attribute is specified in the region pattern (independent region pattern) that denotes

the independent data pattern. The value of the attribute is a comma-separated list of

region patterns (dependent region patterns) that indicate the dependent data patterns.

In the configuration file that contains two or more region patterns, it should be explicitly

indicated which of those patterns is the first pattern to be processed by the Wrapper. We

use the data-att-met-root-pattern = "true" attribute to denote the starting pattern in

the configuration file.

Figure 8.3 presents the patterns specified to extract packages from the page shown in

Figure 8.1. parentOptionData (lines 8-16), childOptionData (lines 22-27), and childOp-

tionSelectableData (lines 33-40) are three data patterns specified to extract the parent

options, the child options presented using a dot, and the child options presented using

a disabled check box, respectively. parentOptionRegion (lines 1-7), childOptionRegion

(lines 17-21), and childOptionSelectableRegion (lines 28-32) are region patterns that
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Figure 8.1: Parent-child relationship between objects (http://www.bmwusa.com/,
October 22 2013).

respectively denote the parentOptionData, childOptionData, and childOptionSelectable-

Data patterns. Note that all the region patterns point to the same region in the page

(lines 4,18, and 29).

In Figure 8.3, a dependency is defined between parentOptionData as the independent

pattern and childOptionData and childOptionSelectableData as the dependent patterns

(line 2). The Wrapper starts the data extraction process with the parentOptionData

pattern (line 3). It first extracts data from a code fragment that structurally matches

parentOptionData and then seeks to find and extract data from all code fragments in

the indicated region that match childOptionData or childOptionSelectableData.
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Figure 8.2: The code fragments for “M Sport Package” shown in Figure 8.1.

The data object extracted with respect to a dependent data pattern is documented as the

child data object of the object extracted with respect to the corresponding independent

data pattern. For instance, in Figure 8.4 that represents the data extracted from “M

Sport Package” shown in Figure 8.1 given the configuration file presented in Figure 8.3,

“M Sport Package” is the parent object (line 2) and all other objects are documented as
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the child objects. In the XML file, each child object has a <parent feature> element

that contains the name of the parent object (lines 10, 14, 18, 22, and 31).

Figure 8.3: The configuration file to extract options shown in Figure 8.1.

Using the notion of dependency between patterns, we offer a technique to automati-

cally crawl the configuraion space (Section 8.2) and a method to trigger and extract

constraints defined over options (Section 8.3).



Chapter 8. Extracting Dynamic Variability Data 149

Figure 8.4: An excerpt of the XML file representing the extracted data for “M Sport
Package” shown in Figure 8.1.

8.2 Crawling the Configuration Space

In a configurator, the whole configuration space, i.e., configuration steps, groups, and

configuration-specific objects, is not presented in the currently loaded page. It may

be distributed over multiple pages each having a unique URL and including a sub-

set of configuration-specific objects (multi-page user interface paradigm), or all the

configuration-specific objects are contained in a page (single-page user interface paradigm).

These paradigms are not mutually exclusive and a configurator can implement both.

For configurators that follow the single-page paradigm, we observed two common pat-

terns to present options:
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• Once the page is initially loaded in the browser, it presents all the configuration-

specific objects to the user.

• When the page is initially loaded in the browser, not all content is represented

at once, but instead, as the application is executing, new configuration-specific

content may be automatically added to the page, and existing content may be

removed or changed. For instance, in the configurator appearing in Figure 8.6, the

selection of an option from the “Model line” group loads its consistent options to

the “Body style” group.

To extract all the configuration-specific content, the whole configuration space should

be explored. It means that all the pages of a configurator containing configuration-

specific content should be navigated and all the actions that may generate dynamic

configuration-specific content should be performed. Due to the diversity of patterns

used by configurators to generate and present data objects, developing a generic and

automatic technique to crawl the configuration space is rather complicated (if not im-

possible). We observed that configurators following the multi-page paradigm usually

consist of a relatively small set of pages containing configuration-specific content. The

user can manually explore them and run the data extraction procedure for each page

individually. In this PhD, we offer a semi-automatic approach to crawl the configuration

space in a Web page and extract dynamic configuration-specific content.

Crawling the configuration space for the purpose of dynamic data generation and extrac-

tion requires (1) the exploration of the configuration space, i.e., activating all containers

in a page that may include configuration-specific content, and (2) the configuration of

options, i.e., giving new value to options. For instance, activation of a configuration step

makes available/visible its contained options in the page and makes unavailable/hidden

those of other steps.

Automatically crawling the configuration space in a Web page requires (1) the simulation

of users’ exploration and configuration actions to systematically generate new content or

alter existing content of the page, and then (2) the analysis of the changes made to the

page to extract or deduce configuration-specific data. We implemented a Web Crawler

that simulates some of the users’ actions to generate new data. The newly generated

data is then extracted by the Wrapper.

8.2.1 Simulating users’ actions

In a Web page, the exploration and configuration actions are clicking on clickable widgets

(e.g., menu, button, check box, radio button, image), selecting an item from a list box,
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and entering a value in text inputs. Simulating the action of entering a value in a text

input is a way to trigger the corresponding input-validation function and then to deduce

from that the formatting and cross-cutting constraints defined over the text input (see

Section 8.3.1). At present, the Crawler provides no support for the simulation of entering

input values.

In the pattern specification, the element to be clicked by the Crawler is identified by the

data-att-met-clickable = "true" attribute in the data pattern. If this element is a list

box, the Crawler selects all the items of the list box one by one, otherwise it clicks on

the element.

8.2.2 Analysing page state changes

The simulation of user actions may change the content of the page and move the page

to a new state. Therefore, after simulating every clickable element, the page’s content

must be analysed to identify the newly added content and to deduce from that the

configuration-specific data. We observed that when an exploration or configuration

action is performed by the user, a few identifiable regions on the page are impacted and

their content may be changed. Consequently, rather than analysing the whole page,

only those regions should be investigated. Based on this observation, we divide the

configuration space into two groups: independent and dependent regions. When an

action is performed on a configuration-specific object in an independent region, new

objects are added to the dependent regions or existing ones are changed.

Using the notion of dependency between patterns we formulate this observation. In

fact, the region pattern owning the independent pattern denotes the region of clickable

elements, and the region patterns owning the dependent data patterns indicate the

regions of added/changed objects. This formulation, for instance, allows to specify a

relationship between a pattern specified to extract configuration steps (the independent

pattern) and patterns specified to extract options included in each step (the dependent

patterns).

Figure 8.5 presents the data extraction procedure followed by the Web Wrapper and

the Web Crawler. This algorithm is the modified version of the algorithm shown in

Figure 7.5 in Chapter 7. The algorithm is improved to be used for the crawling purpose.

Comparing with the previous version, dataExtractionProcedure requires two more

input parameters. First, currentRegionPatternName denotes that among all the region

patterns defined in the configuration file (configFile) which one should be currently

processed by the Wrapper and the Crawler. Since each region pattern has only one data

pattern, having the name of a region pattern is enough to identify the data pattern to



Chapter 8. Extracting Dynamic Variability Data 152

be processed. Second, parentObjectName is the name of the data object that the data

objects extracted from the currently processing region pattern have dependency with

that data object. For instance, parentObjectName can be the name of a configuration

step and currentRegionPatternName the name of the region pattern that indicates the

region containing options of that step. Or, parentObjectName can be the name of an

option and currentRegionPatternName the name of the region pattern that denotes the

region of options loaded in the page as the result of selecting that option. Before calling

dataExtractionProcedure for the first time, the name of the region pattern with

which the extraction process starts is identified (line 3) and then the procedure is called

(line 4). Note that parentObjectName is null.

For each candidate code fragment, the Web Wrapper first extracts its data (lines 8-

30). If parentObjectName is not null (line 9), it is also added to the output data (line

10). When the extraction process is completed by the Wrapper for the current code

fragment, the Crawler starts the crawling process. It identifies the clickableElement

in the code fragment (line 31) with respect to the specification of the data pattern.

The element with the data-att-met-clickable = "true" attribute in the data pattern

is used to identify the clickable element in the code fragment. The Crawler also finds

out the name of the extracted data object (line 32). This name, in fact, is the extracted

value in outputData marked with either the data-att-mar-option-name attribute or the

data-tex-mar-option-name text element in the data pattern.

If clickableElement exists (line 33), the Crawler retrieves the list of the dependent region

patterns from the data-att-met-dependent-pattern attribute of the current region pat-

tern (line 34). If clickableElement is a list box (line 35), the Crawler first gets the list of

items of the list box (line 36) and then iterates over each item (lines 37-43). The parent

object name to be assigned to the dependent pattern consists of the name of the list box

and the name of the currently selected item of the list box, separated by a dot (line 38).

For each item, the Crawler chooses it as the selected item (line 39) and then calls the

dataExtractionProcedure (relaunches the Web Wrapper) for each dependent region

pattern (lines 40-42). If clickableElement is not a list box (it may be a radio button,

check box, button, image, etc.), the Crawler simulates its click event (line 45) and calls

dataExtractionProcedure (lines 46-48). When the Crawler simulates the selection

of an item from a list box or the click event on an element, it in fact programmatically

makes changes to the regions denoted by the dependent region patterns, therefore the

Wrapper is recalled to extract data from those regions (lines 41 and 47).

Example 8.1. Figure 8.6 presents three option groups in a configurator, namely “Model

line”, “Body style”, and “Model”. Because of underlying cross-cutting constraints between

options included in these groups, the selection of an option from “Model line” adds its
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Figure 8.5: The adopted data extraction procedure for the purpose of crawling.

consistent options to “Body style”, and in turn, the selection of an option from “Body

style” loads its consistent options into “Model”. We use the dependency between patterns

to crawl the whole configuration space of these three groups.
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Figure 8.7 shows the patterns specified to extract variability data from the page shown

in Figure 8.6. dataPattern (lines 1-6) is a data pattern defined to extract options.

The region patterns modelLineRegion (lines 7-12), bodyStyleRegion (lines 13-18), and

modelRegion (lines 19-24) denote respectively the “Model line”, “Body style”, and “Model”

groups.

The Wrapper starts the process from the “Model line” group (data-att-met-root-pattern

= "true" – line 8). It extracts data from the first code fragment that matches dataP-

attern. Consequently, the option “Audi A1” is extracted. When data for the “Audi A1”

option is extracted, the Crawler selects this option by clicking on the widget representing

it. This selection loads the new options “3 door” and “Sportback” to the “Body style” group.

From the specification of the modelLineRegion pattern, the Crawler finds that the next

region pattern to be investigated is bodyStyleRegion (data-att-met-dependent-pattern

= "bodyStyleRegion" – line 8). It thus calls the Wrapper to process this region pattern.

The Wrapper starts the process for the “Body style” group (denoted by the bodyStyleRe-

gion pattern) and extracts the option “3 door”. Then, the Crawler selects this option

which loads “A1” to the “Model” group (Figure 8.6(a)). Similarly, by analysing the

bodyStyleRegion pattern, the Crawler finds out that modelRegion is the next region

pattern to be examined (data-att-met-dependent-pattern = "modelRegion" – line 14 ).

It therefore calls the Wrapper for this pattern. The Wrapper starts extracting data

from the “Model” group (denoted by the modelRegion pattern) and extracts data for

the option “A1”. Once done, the Crawler selects “A1” but since there is no dependent

region pattern defined for modelRegion, the Crawler stops. The Wrapper finds no more

data to be extracted from the “Model” group, comes one step back, and considers the

“Sportback” option in the “Body style” group. The Wrapper extracts data for “Sportback”.

The Crawler selects the option which loads “A1 Sportback” to the “Model” group (Fig-

ure 8.6(b)). Then, the Wrapper extracts data for “A1 Sportback” and the Crawler selects

it. Once that all the options in the “Body style” and the “Model” groups are extracted,

the Wrapper returns back to the “Model line” group and takes the “Audi A3” option as

the next option to be processed. This process iterates until all the options in “Model

line”, and accordingly in “Body style” and “Model”, are extracted.

Note that data objects extracted from the independent and dependent regions inherit

their dependency. For instance, there is a dependency between “Audi A1” (the indepen-

dent option) and “3 door” and “Sportback” (the dependent options). When generating

the TVL model, these dependencies are interpreted and documented.

Figure 8.8 presents an excerpt of the output XML file generated for the options shown

in Figure 8.6. Note that for each option in the “Body style” and “Model” groups a parent

option (represented through the parent feature XML element) is also documented that
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(a) Options Audi A1 and 3 door are selected.

(b) Options Audi A1 and Sportback are selected.

Figure 8.6: Dynamic content (http://configurator.audi.co.uk/, July 3 2013).

Figure 8.7: The patterns specified to crawl the page shown in Figure 8.6.

is its corresponding parent option respectively in the “Model line” and “Body style” groups.

For example, the parent option for the “3 door” and “Sportback” options is the option

“Audi A1”. It means that by selecting “Audi A1” in the “Model line” group, “3 door” and

“Sportback” are loaded in the “Body style” group.
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Figure 8.8: Output XML file for the page shown in Figure 8.6.
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8.3 Extracting Constraints

Extracting constraints defined over configuration options is a challenging issue because

of different strategies used by Web configurators to implement them. In some cases, a

combination of crawling scenarios with the data extraction approach is needed in order

to systematically trigger and extract constraints. This section presents our solutions to

extract formatting, group, and cross-cutting constraints.

8.3.1 Formatting constraints

A formatting constraint ensures that values set in input elements (e.g., text boxes) are

valid. In this PhD thesis, we target those formatting constraints that are encoded/pre-

sented in the page.

Textual formatting constraints. Some configurators describe formatting constraints

in the GUI with textual explanation. Such constraints can be extracted by marking such

text in the vde patterns.

Example 8.2. Figure 8.9 presents a configuration step containing text boxes whose

values should be set by the user. Allowed characters that can be used to enter val-

ues are shown to the user ( ! ). The patterns appearing in Figure 8.10 are speci-

fied to extract text boxes (as options) and the formatting constraint shown in Fig-

ure 8.9. Note that the constraint is presented generally and not attached to a spe-

cific option. Therefore, we define a dependency (data-att-met-dependent-pattern =

"constraintRegion" – line 2) between the pattern specified to extract options (option-

Data – lines 7-12) and the one specified to extract the constraint (constraintData – lines

18-23). data-tex-mar-constraint-valid-characters (line 21) is a data marking element

that captures the allowed characters ( ! in Figure 8.9). Figure 8.11 represents an excerpt

of the produced XML file for applying the patterns (Figure 8.10) to extract data from

the given page (Figure 8.9).

Formatting constraints defined in tag attributes. We observed that some for-

matting constraints can be extracted from tag attributes of an input element. For

instance, a common formatting constraint is the constraint that defines up to how many

characters can be entered by the user in an input element. The attribute maxlength

is usually used to specify the maximum number of allowed characters. In fact, by ex-

tracting the value of these attributes we can extract such formatting constraints. The

data-att-mar-constraint-length in Figure 8.10 (line 9) is defined to extract the max-

length formatting constraint defined for input elements in Figure 8.9.
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Figure 8.9: Textual formatting constraint (http://www.mydogtag.com/, June 13
2013).

Figure 8.10: Patterns specified to extract text boxes and their formatting constraints
shown in Figure 8.9.
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Figure 8.11: The XML file produced for options shown in Figure 8.9.

data att mar constraint max length in the output XML file documents this constraint

(Figure 8.11 – line 6).

Formatting constraints controlling bounds of a slider. A slider element lets

the user either enter a value bounded by a minimum and maximum value or move its

handle to select a value from a predefined domain. We extract the lower and upper

bounds (Figure 8.12 – A ) of a slider as formatting constraints.

Figure 8.12: Formatting constraints controlling bounds of sliders
(http://www.bluenile.com, February 24 2014).
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Deduce formatting constraints from the context data. Our analysis of Web

configurators reveals that in some cases there are valuable clues in the option name or

other attached descriptive information that can be used to deduce formatting constraints.

For instance, the words such as size, length, width, inches. . . in the option name are

signs showing that the valid value to be set is an integer or real number. Using a

natural language processing-based approach we can detect and extract such formatting

constraints. We leave this approach for future work.

Extracting formatting constraints by dynamic analysis. Our practical experi-

ence with Web configurators shows that using the aforestated approaches we can extract

a large number of constraints. However, we observed a few cases where detection and

extraction of formatting constraints requires dynamic analysis and simulation strategies.

Since this requires the simulation of entering values in input elements. At present the

Wrapper and the Crawler do not support this.

8.3.2 Group constraints

A group constraint defines the number of options that can be selected from a group of

options. Widgets used to implement groups directly handle these constraints. There-

fore, to detect and extract group constraints we need to analyse the types of widgets

used to represent the grouped options. When extracting each option, the Wrapper also

documents its widget. data-att-mar-widget-type and data-att-mar-sub-widget-type

are used in the pattern specification to record the widget type of every extracted option.

Once done, this data is analysed to deduce the applied group constraint. The constraint

defined on a group is documented in the cardinality attribute of the relevant element

in the output XML file.

The cardinality attribute is assigned to the XML element that denotes the name of the

group containing the extracted options. In two situations an option can be also assigned

the cardinality attribute. First, if the option contains sub-options. A common example

is a list box that contains a number of items. In this case, the cardinality attribute

is assigned to the XML element that contains the list box name. Second, if there is a

dependency relationship between an independent option and a set of dependent options.

We assume that the dependent options build an implicit group. The cardinality of this

implicit group is defined in its corresponding independent option.

Grouped options are represented using radio buttons. For the options repre-

sented using radio buttons, in addition to their widget type, we also need to extract the

value of their name attributes. Options represented through radio buttons and having

the same value for their name attributes belong to a group. They in fact implement
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an alternative group. An alternative constraint is documented with the cardinality =

"[1..1]" attribute in the appropriate element in the output XML file. We would note

that configurators may use custom attributes to encode the type, the name, etc. of

widgets. For these cases, we mark and extract these attributes and then analyse them

to deduce the group constraints.

Example 8.3. In the pattern specification appearing in Figure 8.7,

data-att-mar-widget-type = "@class" (line 2) records the widget type of options that

match the given data pattern. The value of the attribute class represents the widget

type of the corresponding option. The element data att mar widget type in the output

XML file (Figure 8.8) contains this extracted data (i.e., radioButton). Since all the

options are represented using radio buttons (see Figure 8.6), the cardinality of the “Model

line”, “Body style”, and “Model” groups is defined to be 1..1 in the XML file. Also

note that, an option in the “Model line” group (“Body style” group, respectively) has

dependent options in the “Body style” group (“Model” group). Therefore it is assigned

the cardinality attribute as well.

Figure 8.13 presents a set of options which are rendered through radio buttons. Al-

though all options are contained in one group, i.e., “GENERAL”, they are semantically

organized into three different alternative groups. In these cases, the Wrapper creates

and adds a dummy group in the XML file and categorizes options within this group. The

name of the dummy group is the value of the name attribute of the contained options.

For this example, the Wrapper creates three dummy groups, namely “generalShoulders”,

“generalBack”, and “generalBelly”.

A list box represents an option. When an option is represented using a single-

selection list box, we assume its items being the sub-options. These sub-options consti-

tute an implicit alternative group. Therefore, the Wrapper assigns the cardinality =

"[1..1]" to the element that denotes the option name in the output XML file.

Grouped options represented using images. If all the extracted grouped options

are represented through images, they implement an alternative group.

Grouped options represented using check boxes. If all the extracted grouped

options are represented using check boxes, they implement a multiple choice group. A

multiple choice constraint is documented with the cardinality = "1..*" attribute in

the appropriate element in the output XML file. In very rare cases we observed that

some exclusive options are implemented by (non exclusive) check boxes. We leave the

automatic detection of these cases for future work.

Grouped options represented using text boxes. If all the extracted grouped

options are represented using text boxes, they implement a multiple choice group.
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Figure 8.13: Three groups of options presented using radio buttons
(http://www.shirtsmyway.com/, October 24 2013).

A slider with a discrete domain represents an option. When the domain of a

slider representing an option consists of a finite number of discrete values (Figure 8.12

– B ), the Wrapper considers such values as the sub-options of the slider. In this case,

the Wrapper assigns an alternative group constraint defined as cardinality = "[1..1]"

to the element that denotes the option name in the output XML file.

8.3.3 Cross-cutting constraints

A cross-cutting constraint is defined over two or more options regardless of their inclu-

sion in a group. Extracting cross-cutting constraints is a challenging issue in reverse

engineering of Web configurators because they follow different strategies to implement

and handle cross-cutting constraints (Chapter 3). This makes it hard and likely impossi-

ble to implement a generic approach to deal with this variation in the implementation of

cross-cutting constraints. In this thesis, we nevertheless propose a number of approaches

to tackle the problem of extracting cross-cutting constraints.
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8.3.3.1 Cross-cutting constraints displayed in the GUI

In some Web configurators, cross-cutting constraints are documented as annotations to

the corresponding options. The constraint may be described with a textual explanation

or be a list of required or excluded options attached to an option. For these cases, cross-

cutting constraints can be marked in the vde pattern specification and be extracted like

other data.

Example 8.4. Figure 8.14 shows an excerpt of the configuration environment of a Web

configurator. Each option is annotated with a list of required options. It means that

there is a required cross-cutting constraint between the parent option and the listed child

options. A cross-cutting constraint is also attached to the “Ergonomic sports front seats”

option with a textual explanation, i.e., “changes seat trim to Lace Cloth”. Cross-cutting

constraints displayed in the GUI can be treated and extracted like other data presented

in the page.

Figure 8.14: Cross-cutting constraints displayed in the GUI (http://www.opel.ie/,
February 24 2014).
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8.3.3.2 Cross-cutting constraints defined between independent and depen-

dent options

A very common scenario followed by configurators is the loading of new consistent

dependent options to the page upon the selection of an existing independent option.

Here, in fact, there is a cross-cutting constraint between the independent option and

the dependent options. To extract such cross-cutting constraints, we use the notion

of dependency between vde patterns. The independent and dependent patterns are

respectively defined to extract the independent and dependent options. By crawling the

configuration space, i.e., selecting all independent options and recording their dependent

options, we can extract the underlying cross-cutting constraints as well. We should

indicate that in the XML file where we document the dependency between independent

and dependent options. The appropriate cross-cutting constraints are deduced and

recorded when generating the TVL model from the XML file. Note also that as it

is discussed in Section 8.3.2, in some cases, we also assume a group constraint defined

over the dependent options.

Example 8.5. Figure 8.15 presents the configuration environment of a configurator in

which options are represented using list boxes. There are cross-cutting constraints be-

tween items included in the “Manufacturer” ( A ) and the “Model” ( B ) list boxes, so that

by selecting an item from the former (the independent option) new items are automati-

cally added to the latter (the dependent options). Figure 8.16 shows patterns specified

to extract data from the “Manufacturer” (lines 1-14) and the “Model” (lines 16-28) list

boxes. Note that “Manufacturer” is the independent option and “Model” the dependent

option (data-att-met-dependent-pattern = "frameModelRegion" – line 2). The Wrapper

first extracts all the items of the “Manufacturer” list box, and then the Crawler selects its

items one by one. The modification of an item in “Manufacturer” automatically changes

the items in the “Model” list box which are recorded by the Wrapper. The output XML

file is presented in Figure 8.17. For example, lines 48 to 61 show that by selecting “Aragon

18” in the “Manufacturer” list box (line 50) the following items are loaded to the “Model”

list box (lines 55-59): “Choose a Model”, “——”, “Krypton”, “Gallium”, and “Gallium Pro”.

8.3.3.3 Cross-cutting constraints shown in popup windows

In some configurators, when an option is given a new value and one or more constraints

apply, the configurator asks the user to confirm or discard a decision before altering

other options (controlled decision propagation pattern). In some cases, the configurator

requires the user to resolve a conflict before proceeding with the configuration process.

In this case, the configurator presents the conflict and a choice to the user, and the
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Figure 8.15: Independent and dependent options
(http://www.wrenchscience.com/, February 24 2014).

Figure 8.16: Specified vde patterns to extract data from the page shown in Fig-
ure 8.15.
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Figure 8.17: The output XML file produced for the page shown in Figure 8.15 and
the patterns given in Figure 8.16.
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user makes the required decisions (guided decision propagation pattern). Configurators

that follow these decision propagation patterns present a popup window to the user

and display that which options are affected and how. Therefore, the contents of these

windows carry valuable data about the cross-cutting constraints. By analysing these

contents we can extract such constraints. Our empirical analysis confirms that these

windows are template-generated objects and, consequently, vde patterns can be specified

to extract their content, i.e., cross-cutting constraints defined over options.

Figure 8.18: Controlled decision propagation (http://www.jaguarusa.com/, July 31
2013).

Example 8.6. Figure 8.18 presents an example of a configurator that follows the

controlled decision propagation pattern. It shows the situation where the option “Sport

Portfolio Pack with 19” Aq” is selected and a popup window appeared which tells that the

selection of this option will lead to ADDING and REMOVING other options, meaning

that there are required and excluded cross-cutting constraints between them. By ex-

tracting the content of this window we can extract constraints defined over options. The

popup window is encoded in a region of the page and becomes visible when needed. The

vde patterns to crawl and to extract data from this page are displayed in Figure 8.19.

Each option represented in the page is an independent option and the popup window that

appears after the selection of the option is a dependent object. The conflictResolution-

Region pattern denotes the region of the window in the page, and conflictResolutionData

is a data pattern that specifies the template from which the window is generated. Fig-

ure 8.20 shows the produced output XML file. The constraints are documented in the

constraints XML element (lines 20 and 45).
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Figure 8.19: vde patterns specified to extract data from the page shown in Figure 8.18.

It is worth pointing out that the window in Figure 8.18 is not a modal window. Con-

sequently, when it is shown to the user it does not block all the other workflows in the

application. It means that the Wrapper and the Crawler can progress with the extraction

process without waiting for the user to interact with the window and close it. However,

it may be the case that a modal window is used, thus preventing the extraction process.

In these cases, the window can be programmatically closed. If it can not, the user has

to manually close the window to resume the extraction process.

8.3.3.4 Deducing cross-cutting constraints from state changes

In some cases, when an option is configured and one or more cross-cutting constraints ap-

ply, the configurator automatically propagates the required changes to all the impacted

options in the page and alters their configuration states (automatic decision propaga-

tion strategy). Since an option is represented using a widget, when its configuration

state is changed, the user-interface state (selected, deselected, unavailable, etc.) of the

corresponding widget will be changed accordingly. As a consequence, by analysing the
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Figure 8.20: The output XML file produced for the page shown in Figure 8.18 and
the patterns given in 8.19.

user-interface-state changes of widgets representing options we can find out which op-

tions are impacted and how, and then we will be able to deduce the applied cross-cutting

constraints.

Usually an attribute of the widget (e.g., the checked attribute in a check box or the
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selected attribute in a list box) or another HTML element in the code fragment repre-

senting an option denotes the state of the option. By documenting and then analysing

the changes made for this state attribute during a crawling process we can deduce cross-

cutting constraints.

The extraction of constraints from configuration state changes requires addressing two

challenges. First, the set of configurations must be recorded. A configuration presents

options and their states. Second, the state changes made to options in different config-

urations should be studied to infer the cross-cutting constraints.

To deduce all cross-cutting constraints, we must collect all valid configurations, and then

use a feature model synthesis algorithm (e.g., [Acher et al., 2013b; Haslinger et al., 2013])

to infer the constraints. Collecting all valid configurations requires that the Crawler

navigates the whole configuration space, investigates all possible option combinations,

and records the state of all options. Due to the following limitations of our approach, it

can not collect all valid configurations:

• Our approach does not provide support for automatically crawling the Web pages

of configurators that follow the multi-page paradigm. Consequently, it can not

identify constraints across pages.

• For options included in a Web page, the Crawler selects/deselects them one by

one. It can not simulate different combinations of options. It means that, the

Crawler is only able to collect a subset of all valid configurations.

We believe that it is a hard problem to develop a generic approach to gather all valid

configurations from the client-side of Web configurators because of variations in their

implementation. Moreover, in many cases it might simply be unrealistic to gather all

valid configurations in an acceptable time since their number is in the order of 2n where

n is the number of options.

In this PhD, we tackle a simpler case of the problem in which there are no dependen-

cies between options included in the target page and those that are included in the

other pages of the configurator. We now explain our solution for collecting the set of

configurations and inferring the cross-cutting constraints.

Producing the set of configurations. To systematically generate the configura-

tion state changes of options in a page, we again rely on the dependency between vde

patterns. An independent pattern denotes options to be automatically configured and

one (or more) dependent pattern indicates those options whose state changes should be
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documented. The independent and dependent patterns may point to the same set of

options in the page.

When the configuration state of an option is changed by the Crawler and the changes

made to the states of other options are documented by the Wrapper, the Crawler may

either keep the configuration of the option in the new state or may change it back to

the previous state. The data-att-met-reset-state = "false" in the independent data

pattern tells the Crawler to follow the former scenario. This is a way to supervise the

crawling strategy.

Given the independent and dependent patterns, the crawling process is implemented

using the algorithm shown in Figure 8.5. We recall the main steps in Figure 8.21 for

generating the set of configurations. For convenience, we use one independent and one

dependent patterns to describe the algorithm. Before starting the crawling process, the

current configuration state of all options (all options denoted by the independent and

dependent patterns), called index configuration state, is extracted and documented by

the Wrapper (lines 2 and 3). independentPattern and resetState that are respectively

the independent region pattern and the value of the data-att-met-reset-state attribute

are taken (lines 4 and 5). Then, for each option in the region defined by the independent

region pattern (lines 6-12), the Crawler changes the configuration state of the option

(line 7) and the Wrapper extracts the current configuration state of all the options

(including options in both the independent and the dependent regions – line 8). The

extracted data is added to the output XML file (line 9). Note that the option clicked by

the Crawler (line 7) is also documented in the XML file. If data-att-met-reset-state =

"true" (line 10), the Crawler undoes the change made to the option (line 11) and takes

the next option into consideration (line 6).

Figure 8.21: Algorithm for generating the configuration set.

Example 8.7. Figure 8.22 displays an excerpt of a configuration environment in which

options are represented using check boxes. In Figure 8.23, the index configuration states
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of these options are given (in the data att mar configuration state elements). The

“Emergency tyre inflation kit” option is checked and disabled. The “Driver’s seat belt warning

- buckle activated” option is disabled. Other options are undecided. Figure 8.24 presents

the vde patterns specified to crawl and to extract options (data-tex-mar-option-name

– lines 15 and 32) and their configuration states (data-att-mar-configuration-state

which records the value of the class attribute of the span element in the code fragment

representing an option – lines 14 and 31). Since to define the dependency between

patterns at least two patterns should be involved, the independentOptionsRegion (lines

1-8) and dependentOptionsRegion (lines 19-26) region patterns are defined, but both

patterns denote the same region of the page (lines 3 and 21). The Crawler uses the

independentData pattern (lines 10-17) to identify options to be automatically configured

and the Wrapper uses the dependentData pattern (lines 28-34) to identify options to be

extracted. Again note that both data patterns point to the same set of options because

their corresponding region patterns point to the same region of the page. In Figure 8.25,

an excerpt of the output XML file is shown. The text value of all the parent feature

elements is “Space-saver spare wheel”. It means that the selection of the “Space-saver spare

wheel” option (“ui-checkbox-state-checked” – line 13) generated the configuration.

Figure 8.22: An example configuration environment (http://www.opel.ie/, August
3 2013).

Analysing configuration state changes. The algorithm presented in Figure 8.21

generates the set of configurations. This set is then analysed to deduce cross-cutting

constraints. Figure 8.26 shows the algorithm (the deduceConstraints procedure) we

proposed to detect constraints from a given set of configurations. Since the state changes

of an option in all the recorded configurations should be studied, the instances of all the

options in all the configurations are taken (line 2). Then, for each option in the list (lines
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Figure 8.23: Index configuration state for the options shown in Figure 8.22.

Figure 8.24: vde patterns specified to crawl the options shown in Figure 8.22.
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Figure 8.25: The output XML file – the option “Space-saver spare wheel” is selected
by the Crawler in Figure 8.22.

3-22), its state in the previous configuration (line 4) and in the current configuration

(line 5) are extracted. In addition, the option whose selection/deselection generated

the current configuration (line 6) and its state in the current configuration (line 7) are

identified. The configured option is highlighted by the parent feature element in the

extracted data (Figure 8.25).

Considering the condition that the previous and current states of the target option

are respectively checked and undecided (line 8), if the current state of the configured

option is checked (line 9) then the configured option excludes the target option (line 10),

otherwise the configured option requires the option (line 12).

If the previous and current states of the target option are respectively undecided and

checked (line 15), and if the current state of the configured option is checked (line 16)

then the configured option requires the target option (line 17). Otherwise, the configured

option excludes the target option (line 19).
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Our constraint synthesis algorithm can correctly detect constraints of the forms:

• f requires F

• f excludes F

in which f is an option and F is a set of options. This algorithm will detect false positives

of the aforementioned forms. For example, it will detect “fa requires fb”, while the true

constraint is “fa AND fx requires fb”. We plan to integrate our tool with FAMILIAR

to more accurately infer constraints.

Figure 8.26: Algorithm for deducing constraints from the state changes.

In Figure 8.25, by comparing the current state of each option with its previous state (i.e.,

its index configuration state – Figure 8.23), the deduceConstraints procedure detected

that the configuration state of the “Emergency tyre inflation kit” is changed from the checked

(“ui-checkbox-state-checked-disabled” – line 5 in Figure 8.23) to the undecided (“ui-checkbox-

state-disabled” – line 6 in Figure 8.25). Since the current state of the configured option,

i.e., “Space-saver spare wheel”, is checked (line 13 in Figure 8.25), there is an exclusion

cross-cutting constraint between the “Space-saver spare wheel” and the “Emergency tyre

inflation kit” options. The states of other options remained unchanged.
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8.4 Chapter Summary

In this chapter, we introduced the notion of dependency between patterns to formu-

late the logical relationship between objects in a Web page. Based on this formulation,

we then presented our solution to crawl the configuration space, i.e., automatic explo-

ration and configuration of options in a page: the independent pattern denotes clickable

Web objects (e.g., widgets representing options, configuration steps) to be automatically

clicked by the Crawler, and the dependent pattern indicates data objects (e.g., options

dynamically loaded in the page as the result of the selection of an option, options made

available as the result of activating a configuration step) to be extracted by the Wrapper.

We also described our proposed methods to extract formatting, group, and cross-cutting

constraints. Using the dependency between patterns, we are able to trigger and then

extract cross-cutting constraints defined over options.



Chapter 9

Evaluation

In this chapter, we present the experiment we set up to evaluate the proposed reverse-

engineering process. We describe our evaluation model, i.e., goals, questions, and metrics

(Section 9.1) and report on our experiment and the results (Section 9.2). We then discuss

the results and present the qualitative observations (Section 9.3), and finally explain the

threats to validity (Section 9.4).

9.1 Experimental Setup

Goal and scope. We aim to evaluate the application of our approach to reverse

engineer feature models from Web configurators. The first criterion to be examined is

the accuracy of the extracted data, i.e., the extracted data is the right data and the

reverse-engineered models are complete models. We neither have base models to which

we could compare our generated models nor have access to the developers of the studied

configurators who can validate our models. Therefore, we have not been able to compute

and report on recall to indicate which fraction of all configuration-specific objects has

been recognized. As to the precision, our goal is to specify a minimum set of patterns

to extract all options (100% coverage, if possible) presented in the page. For automatic

constraint extraction, we plan to apply the methods presented in Section 8.3 and assess

the correctness of the extracted constraints.

The second criterion to be evaluated is the generality of our approach. By generality

we mean (1) the expressiveness of the vde patterns to deal with variations in presen-

tation and implementation of configuration-specific entities in Web pages of different

configurators, and (2) the ability of our crawling approach to extract dynamic data.

177
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Since our approach is supervised and semi-automatic, the third criterion to be measured

is the users’ manual effort required to perform the extraction. It should be noted that the

usability of the tool was not a high-priority requirement as this is a research prototype.

Questions and metrics. We address the following main questions (Q):

• Q1. How accurate is the extracted data?

• Q2. How expressive is the proposed vde pattern language?

• Q3. How applicable is the proposed pattern dependency notion?

• Q4. How much manual effort is needed to perform the proposed reverse-engineering

process?

The underlying metrics (M) are formulated as follows:

• M1. The number of patterns required to extract data.

• M2. The number of pattern dependencies specified in order to either crawl the

configuration space or document relationships between objects.

• M3. The number of lines of code (LOC) of all patterns written to extract data.

• M4. The number of times the data extraction procedure is executed.

• M5. The number of automatically extracted options.

• M6. The number of object not presented in the page but identified and extracted

by the crawling technique (dynamic data objects).

• M7. The number of manually added options.

• M8. The number of constraints automatically identified and extracted.

• M9. The number of constraints manually added.

• M10. The manual activities performed to organize and refine the extracted data,

add the missing data, etc.

Table 9.1 presents the questions and their associated metrics.

If a pattern is used in two or more configuration files, we reported it once. We also

consider two patterns similar if and only if their structures exactly match. To compare

the structure of two patterns, we take into account their tag names, tag positions,

structural text elements, and structural attributes.
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Table 9.1: Questions and metrics

Questions Q1 Q2 Q3 Q4

Metrics M5, M8 M1, M5 M2, M6, M8 M1, M3, M4, M7, M9, M10

Table 9.2: Example Web configurators chosen for evaluation.

Name URL System

Dell’s laptop configurator http://www.dell.com S1

BMW’s car configurator http://www.bmwusa.com S2

Dog-tag generator http://www.mydogtag.com S3

Chocolate maker http://www.choccreate.com S4

Shirt designer http://www.shirtsmyway.com S5

To count the number of lines of code for each pattern, we put one and only one element

in each line. For example, the following pattern has eight lines of code.

<pattern data -att -met -pattern -type="data" data -att -met -pattern -name=" option">

<div >

skip(all)

<div >

data -tex -mar -option -name

</div >

</div >

</pattern >

Data set. We took the five example configurators S1-S5 listed in Table 9.2, chosen

from the sample set of configurators we know from our empirical study (Chapter 3). S1

is Dell’s laptop configurator. We took the “Inspiration 15” model in this experiment. S2

is the car configurator of BMW. For this study, we chose the “2013 128i Coupe” model.

S3 is a dog-tag generator. In S4 the customer can choose her chocolate and create its

masterpiece and ingredients. S5 is a configurator that allows customers to design their

shirts.

Execution. The author of the thesis supervised the reverse-engineering process. For

each Web page of the target configurator, we first inspected its source code using the

Firebug’s HTML panel to find out which templates are used to generate the page and

then specified the required patterns with respect to these templates to extract data

objects of interest. Our goal was to specify a minimum set of patterns to extract all

options (100% coverage, if possible) presented in the page. For each option, we extracted

its name, widget type, image source (for image options), and other attached descriptive

information (e.g., price). After running the Wrapper for the given patterns, we manually

compared the extracted data with that presented in the page to find out the missing

or noisy data. We either altered the existing patterns or specified new ones to achieve

100% coverage for the extracted options.

http://www.dell.com
http://www.bmwusa.com
http://www.mydogtag.com
http://www.choccreate.com
http://www.shirtsmyway.com


Chapter 9. Evaluation 180

Using the Web Crawler we simulated the click event on every option to recognize whether

it creates and adds new data objects to the page or triggers a constraint. If yes, we then

applied the crawling approach to extract this data. To know whether a change has

been made to the page, we used the Firediff 1 add-on. Firediff is an extension to track

changes in Firebug. It implements a change monitor and records all of the changes made

by Firebug and the application itself to CSS and the DOM.

If all the extracted options from a group are presented through images, the Wrapper

considers them in an alternative group and extracts an alternative constraint for these

grouped options. If all the extracted options from a group are represented using check

boxes, they implement a multiple choice group and therefore the Wrapper reports for

them a multiple choice constraint. We observed that image options that are visually

grouped together may implement a multiple choice group. In very rare cases we also

observed that some exclusive options are implemented by (non exclusive) check boxes.

Therefore, for these two cases, after extracting group constraints by the Wrapper, we

also manually checked them to ensure that the identified group constraints are true.

To denote the target region within which the Wrapper and the Crawler should work

(the specification of the region pattern) we tried to find an HTML element that points

exactly to the region we need. If we could not find such element, we either edited the

attribute value of an existing element, added a new attribute, or added a new indicator

HTML element to the page.

9.2 Experiment and Results

We now report on our experience and results for each configurator. The tools and the

complete set of data are available at http://info.fundp.ac.be/~eab/result.html.

Table 9.3 presents the experimental data, Table 9.4 displays different pattern-specific

elements we used in the pattern specifications, and in Table 9.5 the number of lines of

code of the generated TVL files for each configurator is given.

S1: Dell’s laptop configurator. In S1 (Figure 9.1), options are presented using radio

buttons and check boxes. We specified only one data pattern and one region pattern

for extracting all options (M1). S1 provides a four-step configuration process such that

by activating each step the page is reloaded so as to contain the step’s options. So, we

had to manually activate each step and then run the extraction procedure for that. It

explains why we did not specify a dependency (between an independent pattern that

denotes the step names and the dependent one that indicates options) and we did not use

1https://addons.mozilla.org/En-us/firefox/addon/firediff/

http://info.fundp.ac.be/~eab/result.html
https://addons.mozilla.org/En-us/firefox/addon/firediff/


Chapter 9. Evaluation 181

Table 9.3: Experimental results.

PATTERN SPECIFICATION

System
Pattern

(M1)

Dependency

(M2)
LOC
(M3)

Executions
(M4)

Manual Work
(M10)

S1
Data 1

Region 1 24 4
Rename 46
Replace 12

S2
Data 5

Region 3 5 90 14 Highlight 10

S3
Data 5

Region 4 2 82 8
Highlight 7
Remove 126

S4
Data 2

Region 2 1 40 2

S5
Data 6

Region 3 86 11
Rename 5
Remove 8

Total
Data 19

Region 13 8 322 39

Rename 51
Remove 134
Highlight 17
Replace 12

DATA

System

Options

(M5)

Dynamic objects

(M6)

Manual objects

(M7)
Constraints

(M8)

Manual
constraints

(M9)

S1 233 3 Group 49 Group 12

S2 97 7

Group 7
False group 1

Cross-cutting 30 Group 4

S3 137
Option 44
Data 19 8

Group 14
Formatting 10 Formatting 1

S4 24 95 2 Group 7

S5

233
False positive 6
Redundant 2

Group name 11
Text input 3

Group 26
Formatting 40

Total

True 724
False positive 6
Redundant 2 158 34

Group 103
Cross-cutting 30
Formatting 50
False group 1

Group 16
Formatting 1

PRECISION

Precision

Option
t = 863
N = 905 P ' 95%

Constraint
t = 183
N = 201 P ' 91%

AVERAGE (DYNAMIC OBJECTS)

Average

Option
d = 158
N = 882 Adynamic ' 18%

Constraint
d = 30

N = 183 Adynamic ' 16%

AVERAGE (MANUAL OBJECTS)

Average

Option
m = 34
N = 916 Amanual ' 4%

Constraint
m = 17
N = 200 Amanual ' 9%

the crawling technique to extract all options in one execution, instead of four (M4 = 4).

Given the specified patterns, the Wrapper could extract all 233 options (M5) presented
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Table 9.4: Pattern-specific elements.

System skip(all) skip(STRING) Multiplicity
Structural
Attribute Or Operator Wildcard

S1 X X X X
S2 X X X
S3 X X X X
S4 X X X X
S5 X X X X X

Total 3 3 3 5 2 4

Table 9.5: LOC of the generated TVL files.

System LOC

S1 1212

S2 428

S3 1127

S4 598

S5 1113

Total 4478

in the pages as well as group names for options categorized in alternative and multiple

choice groups. To categorize options extracted from each step in a group, we manually

added three group names (M7) to the extracted data. Note that we also count group

names as options in this experiment.

The Wrapper could correctly identify and extract 49 option groups and group con-

straints defined on these groups (M8). In TVL, a group is represented with a parent

feature (i.e., the group name), its decomposition or constraint type (i.e., and-, xor-,

or-decompositions, or a cardinality), and its sub-features (i.e., options included in the

group). For 46 of the identified groups, the Wrapper could not extract a group name

(because either it is not specified in the data pattern to extract group names or there

is no explicit group name specified in the page for some groups). However, we noticed

that options grouped together have the same value for the name attribute of their wid-

get elements. Therefore, we extracted the value of this attribute for all options and

when transforming from the XML file to TVL, the transformation module used these

values to create and label the parent feature of the grouped sub-features. Values of the

name attributes are not meaningful identifiers in S1, they are constituted of abbrevia-

tions, numbers, and symbols. To give meaningful names for automatically added parent

features, we manually renamed these feature names in the generated TVL files (M10).

In S1, the table element is used as the basic building block for the page layout. In

this implementation, we could not recognize a clear template from which an option

and its sub-options are generated. Consequently, we could not extract and document

the hierarchical relationships between options. To build a feature hierarchy in TVL

that reflects the hierarchy of options presented in the Web pages of S1, we manually
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replaced 12 feature and group blocks in the generated TVL files (M10) and added 12

decomposition types (M9).

Figure 9.1: Dell’s laptop configurator (http://www.dell.com, January 5 2014).

S2: BMW’s car configurator. S2 presents options using images and check boxes.

We specified a data pattern to extract image options and one for those represented

using check boxes. For some check box options, there is a list of attached sub-options,

which are either presented using check boxes or labels (Figure 9.2). We defined two

data patterns to extract these sub-options. When an option is given a new value and

one or more cross-cutting constraints apply, the configurator asks the user to confirm or
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discard the decision before propagating the required changes to all the impacted options

(controlled decision propagation strategy – Figure 9.3). It presents a conflict window

and lists the names of the impacted options. The content of this window is generated

using a template. We therefore specified a data pattern to extract the content of this

window. Overall we defined five data patterns to extract data from S2. We also defined

three region patterns to point to the regions we needed (M1).

We specified five dependencies between patterns (M2). Two dependencies are defined

between the patterns that denote options and the pattern that indicates the conflict

window (Figure 9.3). These dependencies are used to crawl the configuration space

in order to trigger and extract cross-cutting constraints. Two other dependencies are

specified to document the parent-child relationships between the parent options (i.e.,

options have a list of attached sub-options) and their sub-options (Figure 9.2). One

dependency is also defined to produce and record the set of configurations in a step

(which is used to deduce cross-cutting constraints – Figure 9.4).

We could extract all 97 options presented in the pages of S2 (M5) using the specified

patterns. We also manually added seven options to the extracted data (M7). These are

group names used to categorize the extracted options. In some cases, we had to edit

an element in the page to highlight the portion of the page within which the Wrapper

and the Crawler should operate (M10). This element is used in the specification of the

region patterns.

As to group constraints, the Wrapper identified and extracted seven group constraints

(M8) and we manually added four more (M9). One of the group constraints reported

by the Wrapper was incorrect. In this case, all the options extracted from a group were

image options. Therefore, the Wrapper considered the group as an alternative group.

However, manual testing of these options revealed that they semantically implement two

different alternative groups (Figure 9.3).

To trigger and extract cross-cutting constraints, we used three different strategies de-

pending on their implementations in S2. First, in some cases, by configuring an option a

conflict window is presented showing which options are impacted and how (Figure 9.3).

Using the Crawler, we simulated configuration actions on options and if the conflict

window was displayed, then the Wrapper extracted its content and analysed the content

to deduce the cross-cutting constraints. Second, in one case, by selecting an option

in a step (i.e., the “Packages” step – Figure 9.4) its implied options are selected in the

following step (i.e., the “Options” step). For this case, we selected each option from the

“Packages” step and recorded the selected options in the “Options” step. When generating

the TVL model, the transformation module documented them as requires constraints.

The third strategy we used to identify the cross-cutting constraints in S2 is the analysis
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of the configuration state changes (Figure 9.4). We recorded all configurations for a

step and applied our algorithm discussed in Section 8.3.3.4 to deduce constraints from

this set of configurations. Using these three strategies, we could identify and extract 30

cross-cutting constraints (M8).

We executed the data extraction procedure 14 times (M4) in total to extract options

and constraints from S2.

S3: Dog-tag generator. Options in S3 are presented using either text boxes or radio

buttons (some combined with images – Figures 9.5 and 9.6). We specified four regions

patterns and five data patterns (M1) and executed them eight times (M4) to extract

options. We specified one data pattern for text options. We also identified three different

templates from which radio button options are generated. Therefore, we had to specify

three data patterns to extract these options. The reason for using different templates

for radio button options is that they present different attached descriptive information

(Figures 9.5 and 9.6). For some options, only the option’s short name is presented

and when the user clicks on the option, its full name, size, and price are dynamically

added to the page (Figures 9.6 – Step 6 ). We so defined a data pattern to denote these

dynamically-generated data objects.

The Crawler detected two cases that require the crawling scenario to extract dynamic

data objects. In one case, the selection of an option loads its implied options in the

page and hides the irrelevant options (Figures 9.6 – Step 5 ). We defined a dependency

between the corresponding patterns (M2) to dynamically generate and extract these

data objects by the Crawler. The Crawler identified 44 dynamically-generated options

for this case (M6). In the second case, by clicking an option its additional descriptive

information (i.e., full name, size, and price) is dynamically added to the page (Figures 9.6

– Step 6 ). We defined another dependency (M2) here to extract this data. The Crawler

collected 19 data objects for this case (M6). We extracted 181 options (137 options

presented in the page plus 44 dynamically-generated options) from S3 and manually

added eight group names (M7) to the extracted data.

The Wrapper also extracted 14 group constrains and ten formatting constraints (M8).

These formatting constraints control the maximum length of strings that the user can

enter in text options. We also manually added a formatting constraint to the extracted

data. This constraint specifies the set of allowed characters that the user can use to

enter strings in text options. We could define a pattern to extract this data object, but

manually adding this object in the extracted data is much quicker than writing new

code.
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Figure 9.2: BMW’s car configurator (http://www.bmwusa.com, January 5 2014).

In S3, some radio buttons representing options are combined with images (Figures 9.5

and 9.6). For these options we also needed to extract the image’s URL. We noticed that

for these cases, the URL of the image is located in the JavaScript code of the onclick

event handler of the <input type="radio"> element. Therefore, to extract the URLs,
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Figure 9.3: controlled decision propagation strategy in BMW’s car configurator
(http://www.bmwusa.com, January 5 2014).

we extracted the JavaScript code of these radio button options (126 options in total)

and then manually removed the noisy lines of code (M10). We then kept the line that

presents the URL.

To denote regions that are used in the specification of region patterns, we also had to

manually edit attributes of seven HTML elements in the page (M10).

S4: Chocolate maker. S4 provides a two-step configuration process (Figure 9.7).

In the first step, the customer chooses her chocolate type and then in the second step,

she selects ingredients. The chocolate types are presented using radio buttons and

ingredients are check box options. We specified a data pattern to extract both radio

button and check box options. The ingredients are also categorized into a set of groups,

each of which is presented with a menu. We specified another data pattern to extract

the name of these groups. We also specified two region patterns (M1).
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Figure 9.4: Configuration state changes in BMW’s car configurator
(http://www.bmwusa.com, January 5 2014).

When the page is initially loaded, the radio button options (three objects), the group

names (six objects), and the ingredients of one group (15 objects) are presented to the

customer. Given the specified patterns, the Wrapper could extract all these 24 options

(M5). By activating a group (i.e., activating its corresponding menu) its contained

ingredients are presented to the customer and other groups become hidden. We defined
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Figure 9.5: Dog-tag generator (http://www.mydogtag.com, January 5 2014).

a dependency (M2) between the pattern that denotes the groups and the one that

indicates the ingredients (check box options) and ran the Crawler. The Crawler detected

95 dynamically-generated options (M6) which are then extracted by the Wrapper. By

running the Wrapper and the Crawler twice (M4), we extracted 119 options from S4

(24 + 95). In addition, the Wrapper identified seven group constraints (M8). We also

manually added two group names to the extracted data (M7) to categorize options

extracted from each step.
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Figure 9.6: Dynamic data in Dog-tag generator (http://www.mydogtag.com, Jan-
uary 5 2014).

S5: Shirt designer. S5 uses different types of widgets to present options. We

specified two data patterns to extract image options and four data patterns to extract

options presented using text boxes, radio buttons, and list boxes. Moreover, three region

patterns are specified (M1). We called the data extraction procedure 11 times (M4) to

extract data objects of interest.

In some steps in S5, options are categorized in different groups and each group is repre-

sented using a button. The user has to click on each button to make its relevant options

visible (Figure 9.8). We could specify a dependency between a pattern that denotes the

buttons (as the independent pattern) and the pattern for the contained options (as the

dependent pattern) to extract groups and their contained options. However, we noticed
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Figure 9.7: Chocolate maker (http://www.choccreate.com, January 5 2014).

that all these options are encoded in the source code and they just become visible/hid-

den when needed. Therefore, we did not use the crawling scenario here. We used the

Wrapper and extracted all these options. We also observed that options contained in

the same group have the same value for the name attribute of their widget elements. We

used this attribute to identify the relevant group names. Overall we extracted 233 true

positive options from S5 (M5). Six options are also incorrectly identified. The reason

for these false positives is that we did not consider the visibility of options and extracted

all options encoded in the source code of the page. Using the crawling scenario we could

avoid all these false positives. We also noticed that two extracted image options are re-

dundant. The reason for this redundancy is that when the user selects an image option,

the configurator creates another data object for this selected option and displays it in

the page as well. The Wrapper in fact extracted both these data objects. We had to

manually remove false positive and redundant options from the extracted data (M10).

In some cases, all options presented in a region are represented using the same widgets,
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except one option that is represented using a different widget. In these cases, writing a

specific pattern only for this option and using the Wrapper to extract that single option

does not pay off. The engineer can manually add this option to the extracted data.

We observed three such cases in S5 and manually added text options to the extracted

options. In addition, we manually added 11 group names in the generated XML file

(M7). When generating the TVL model from the XML file, the transformation module

detected that five options have the same names. Therefore, we renamed these options

to generate consistent TVL models (M10).

In S5, the Wrapper could identify 26 group constraints and 40 formatting constraints

(M8).

Figure 9.8: Shirt designer (http://www.shirtsmyway.com, January 6 2014).

9.3 Discussion

9.3.1 Evaluation results

We now discuss the key results of the application of our approach on the Web configu-

rators studied in this experiment.

Accuracy of the extracted data (Q1). Overall, the accuracy of the extracted

data is promising. Hundreds of configuration options and their associated descriptive
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information are extracted. In addition to options, our approach could also identify and

record the logical relationships between options, i.e., constraints defined over options.

Let N be the total number of all the reported objects (i.e., the sum of the automatically

extracted true positive objects, false positives, redundant objects, and manually added

objects) for all the five studied configurators, and t be the total number of true positive

objects automatically extracted by the Wrapper (in collaboration with the Crawler).

Then, we define the precision P by: P = t
N × 100.

As to options, our approach could extract all 724 options presented in the pages, plus

139 options identified by the crawling technique (M5, 44 in S3 plus 95 in S4). We

only had six false positive and two redundant extracted options. 34 options had to be

manually added to the extracted data. So, overall, we achieved 95% precision for option

extraction.

Considering constraints, we cannot claim that our approach could detect and extract

all constraints implemented by the configurators. However, we state that almost all

the extracted constraints are true (except for a group constraint in S2). Overall, the

proposed approach identified and collected 103 group constraints, 30 cross-cutting con-

straints, and 50 formatting constraints (M8). 16 group constraints and one formatting

constraint were manually added. One of the automatically extracted group constraints

was incorrect. The calculated precision for constraint extraction is 91%.

It is worth to mention other experiences in reverse engineering contexts [Acher et al.,

2013a; Davril et al., 2013; She et al., 2011] that also obtain incomplete feature models,

and thus call for intervention of the user or any kind of knowledge/artefact to further

refine the model [Henard et al., 2013].

Expressiveness of the proposed pattern language (Q2). We could specify pat-

terns to cover all code fragments that encode configuration-specific objects in the subject

systems (M1). Given these patterns, the Wrapper extracted all options presented in the

pages as well as those that are dynamically generated by the Crawler (M5).

Pattern-specific elements and operators that we designed in our language gave us a lot

of support for the studied configurators. We used the wildcard operator in pattern

specification of four configurators. The skip(all), skip(STRING), and skip(sibling,

MULTIPLICITY) elements were used for three configurators. The or operator was used for

two configurators (Table 9.4).
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Applicability of the notion of dependency between patterns (Q3). The notion

of dependency between patterns addresses the dynamic nature of the configuration pro-

cess. We gain numerous additional configuration options with the crawling approach,

which is implemented based on the pattern dependency.

In S3, by specifying two dependencies (M2), the Crawler could identify and extract 63

dynamic objects (M6). The use of this technique in S4 (M2 = 1) leads to extracting

95 dynamic options, which is almost three times more than options extracted without

crawling (M5 = 24 and M6 = 95).

We also used the crawling technique to trigger and extract 30 cross-cutting constraints in

S2 (M8). Moreover, dependency between patterns allowed us to document the parent-

child relationships between options in S2.

Let N be the total number of true positive data objects and d be the total number of true

positive dynamic data objects, both extracted from the five target Web configurators.

Then, we define the average of dynamically extracted data objects by: A = d
N × 100.

The average of dynamic objects and constraints extracted by the crawling approach are

18% and 16%, respectively.

Nevertheless, we cannot claim that the crawling technique can detect and extract all

objects that may be dynamically generated at runtime. It also cannot automatically

generate the complete set of configurations that is required to deduce all cross-cutting

constraints defined over options.

The manual effort required to perform the extraction process (Q4). In

this experiment, we specified in total 13 region patterns and 19 data patterns (M1),

wrote 322 lines of code for these patterns (M3), and executed them 39 times (M4) to

extract all data. We also manually added 34 options (M7), 16 group constraints and

one formatting constraint (M9) to the extracted data. We also had to remove 134 noisy

data items and rename 51 extracted options. In addition, to denote the regions within

which the Wrapper and the Crawler should operate, we manually edited 17 HTML

elements in the source code of the pages. To reflect the hierarchical relationships that

exist between the presented options in the pages, we manually changed the position of

12 feature blocks in the generated TVL files (M10).

Let N be the total number of true positive data objects either extracted automatically or

added manually and m be the total number of true positive data objects that are man-

ually added to the extracted data objects in the five studied Web configurators. Then,

we define the average of manually added data objects by: A = m
N × 100. The average of

objects and constraints manually added by the user are 4% and 9%, respectively.
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Table 9.6: The time spent for writing patterns.

System Time (mins)

S1 30

S2 100

S3 85

S4 25

S5 110

Total 350

We believe that our semi-automatic and supervised approach provides a realistic mix of

manual and automated work. It acts as an interesting starting point for re-engineering a

configurator while mining the same amount of information manually is clearly daunting

and error-prone. The manual writing of 322 lines of code to specify the required patterns

in this experiment leads to generating TVL models with a total 4478 lines of code (see

Table 9.5). Although this was not formally measured, we deem it important to indicate

that the total amount of time spent by the author of the thesis to inspect the source

code of the example configurators and write the required patterns was approximately

350 minutes (see Table 9.6 for details). The time needed for post-processing activities,

e.g., adding missing data, removing noisy data, and generating TVL files is not included.

9.3.2 Qualitative observations

Specification of patterns

As it is expected, when the templates from which the configuration-specific objects are

generated are structurally similar, a small set of patterns is required. We specifically

observed that the use of wildcard (*) and or (|) operators in the attributes, and the

skip(sibling, Multiplicity) and skip(all) elements are very useful in minimizing the

set of required patterns and lines of code for each pattern. For instance in S4, the

templates for options represented using radio buttons and those represented using check

boxes are the same, except for the type attribute of the input elements, which is “radio”

and “checkbox” respectively for radio buttons and check boxes. Using the or operator

between values of the type attribute we could specify only one data pattern for both

templates: <input type="radio|checkbox">.

We also found the notion of multiplicity of an element (the data-att-met-multiplicity

meta attribute) very practical in this experiment. For instance, the list of impacted

options in the conflict window in S2 and the items of list boxes in S5 are examples of

multi-instantiated elements that we could model in the patterns. In addition, in S1 we
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used the multiplicity element to denote the optional elements. The use of the skip(all)

element in S3 also allowed us to shorten 13 lines of code in a pattern specification.

We found the use of structural attributes in the specification of patterns extremely

useful. They provide significant measurement information for the Wrapper in finding

code fragments that match a given pattern (in the pattern matching algorithm). As

it is presented in Table 9.4, we used structural attributes in patterns of all the studied

systems. In some cases, structural attributes are the only means to find objects of interest

and ignore the irrelevant data objects. For instance in S2, some options are presented

using images. In addition to these image options, there are a lot of image objects in

the page that do not present configuration-specific objects and must be ignored by the

Wrapper. If we use only the <img> element in the pattern specification, the extracted

data will contain a lot of noisy data objects. However, we noticed that the img elements

that present options have the class="byoColorChipImage" attribute. Therefore, we used

the <img class="byoColorChipImage"> element in the pattern specification to extract

image options.

Our Web data extraction approach provides a tag-level encoding [Chang et al., 2006]

and considers any text string between two HTML tags or the value of a tag attribute

as a token. It cannot treat each word of a string as a token. Consequently, we cannot

automatically extract configuration-specific data if it is a substring of a text string. In

S3, for instance, to extract the URL of the image options, we had to extract the whole

string of a tag attribute and then manually extract the substring that presents the URL.

The only tokenization capability of our pattern language is the skip(STRING) element

that tells the Wrapper to visit the STRING value in the target text element but not extract

it. We used this element in S3 to skip the word “Add” before the price data items, in

S4 to ignore the word “select” before option names, and in S5 to remove the “:” symbol

after option names.

Crawling the configuration space

For S1, we specified only one data pattern and one region pattern to extract options from

all steps. However, we cannot directly apply the crawling approach to automatically

explore the steps and extract all options in one execution because it uses the multi-

page interface paradigm. We can envision to adapt our tool to support the multi-page

interface paradigm, i.e., when different pages with different URLs are used.

For S2, S3, and S4, since some steps use different templates, and therefore different data

patterns are required, we manually activated each step and did not use the crawling
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approach to automatically explore the steps. An interesting lesson learned is as fol-

lows: there is a tradeoff to find between spending time/effort in specifying patterns and

manually helping the tool to navigate in the configuration space.

In S2, there are cross-cutting constraints defined over options contained in two con-

secutive steps “Packages” and “Options”: by selecting an option in the former step, its

required options are selected in the later step. To deduce these cross-cutting constraints,

we specified a dependency between the data pattern defined for options in the “Packages”

step and the data pattern that denotes the options in the “Options” step. We aimed to

simulate the selection of options in “Packages” and the extraction of the selected options

in “Options”. For this special case, the Crawler failed to trigger the click event of options

in “Packages”. Due to this technical issue, we had to manually select options in “Packages”

and then run the Wrapper to extract options from “Options”. It explains why we had

relatively high execution rate for S2.

Mining of constraints

To automatically deduce group constraints, we rely on the widget types and attributes

such as name used to represent options. This experiment shows that this method perfectly

works: only one out of 104 extracted group constraints is incorrect.

The runtime performance of the pattern-matching algorithm

All the data extraction algorithms are implemented in JavaScript. This gives us a

high-performance execution time when looking for code fragments of matching objects.

However, when using the crawling technique, we have to wait for the application response

(e.g., load new options in the page, display the conflict window, change the configuration

state of options, etc.). Even for these cases, we observed that the response time is fast

enough and the data extraction process provides almost real-time responses.

The extraction of other configuration-specific data

In some cases, in addition to options and constraints, we also could extract other

configuration-specific data. For instance in S3, we recorded the default configuration,

i.e., the string values of the text options and the list of the selected options when the

configuration space is initially loaded in the page.
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9.4 Threats to Validity

The main external threat to validity is the sample set of the subject systems involved

in our evaluation. We only chosen samples from five sectors. A larger-scale evaluation

is needed to further confirm the generality of the approach.

An internal threat to validity is that our approach is supervised and the technical

knowledge of the user running the extraction process, her choices, and interpretations

can influence the results. This experiment was conducted by the author of the thesis.

He proposed and developed the notion of vde patterns and implemented the tools. He

already knows the chosen configurators and how they work. First, his choices on what

data objects to be extracted from each Web configurator influenced the number of re-

quired data patterns. For instance in S3, if a user intends to extract only the name of

options (and to exclude their widget type and price) four (instead of five) different data

patterns are required. Second, in this experiment we considered the group names as

well as (some of) the menus as configuration-specific objects. If another user does not

make this assumption, the number of extracted objects will decrease. In a real reverse

engineering context an engineer would have to be familiar with the configurators and be

trained in using the reverse-engineering tools as well.

Another internal threat to validity is related to deducing cross-cutting constraints. To

detect all cross-cutting constraints, all possible option combinations must be investigated

but combinatorial explosion precludes it. The impact this has on the completeness of

the extracted constraints is hard to predict.
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Conclusion and Future Work

10.1 Contributions

Nowadays, mass customization has been embraced by a large portion of the industry.

As a result, the Web abounds with configurators that assist customers in customizing all

kinds of products and services to their specific needs. A Web configurator is an online

product configuration environment that presents hundreds of configuration options to

customers who gradually select the options to be included in the final product. In

many cases, Web configurators have become the single entry point for placing customer

orders. As such, they are key assets for companies and act as a privileged interface

between customers and companies.

Despite the high importance of Web configurators, a consistent body of knowledge ded-

icated to their engineering is still missing. To tackle this problem, empirical data on the

current practice is required. In particular, we needed to understand the intrinsic nature

of Web configurators. We therefore set out to answer the first research question in this

PhD study:

• RQ1 What is the current practice in engineering Web configurators?

To get a better grasp of main characteristics of Web configurators, we conducted an

empirical and systematic study of 111 configurators from different industry sectors. We

notably investigated their three essential dimensions: rendering of configuration options,

constraint handling, and configuration process support. Based on this, we highlighted

good and bad practices in engineering Web configurators.

Our empirical study exposed that configurators are complex systems: a diversity of Web

widgets used to represent configuration options in different layouts, numerous kinds of

199
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constraints govern the options, the configuration process can be multi-step and non

linear, and advanced capabilities are provided to check consistency, propagate user deci-

sions, etc. This study also revealed that although such applications have specific common

characteristics, they are developed in an unspecific way, that is, like any other Web ap-

plication. The absence of specific, adapted, and rigorous methods in engineering Web

configurators leads to maintainability, usability, and reliability issues. Specifically, we

identified a number of bad practices in the configurators: incomplete reasoning, counter-

intuitive representation of options, losing of all decisions when navigating backward, etc.

The empirical study provided enough evidence that for Web configurators qualities like

usability and correctness are not convincingly satisfied. This opened avenues for re-

engineering support and methodologies to migrate legacy Web configurators to more

reliable, efficient, and maintainable solutions. We offered to first systematically reverse

engineer a variability model, i.e., a feature model (in TVL), from a legacy Web con-

figurator and then to use this model to forward engineer a new improved configurator

that has a customized and easily maintainable user interface as well as an underlying

reliable reasoning engine. The good practices we identified in our empirical study can

be used in the forward-engineering process to improve the usability of the new config-

urators. Examples of such practices are: guided consistency checking, self-explanatory

configuration process, stateful backward navigation, etc.

The major difficulty in reverse engineering Web configurators is that, despite having a

common goal and similar features, they vary significantly. A first notable variation lies

in the way variability data are implemented and presented in the Web pages (or in a

multiplicity of intermediate panels/pages): they use a variety of Web objects to visually

represent variability data; a page can contain various kinds of data objects with different

structures; the data objects can have complex structures, etc. Web configurators also

vary in the way they load data in the pages, handle different kinds of constraints, and

control the configuration process. They are highly interactive and dynamic applications.

As they are executing, new content may be created and automatically added to the page,

and existing content may be removed or changed.

In the second part of this PhD research, we were concerned with the reverse-engineering

of Web configurators. We planed to develop a consistent set of methods, languages and

tools to extract variability data from a Web configurator. More precisely, our main

research questions is:

• RQ2 What generic Web data extraction methods can we use to collect accurate

variability data from the Web pages of a configurator?
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Our survey of the state of the art in reverse engineering Web applications, Web data

extraction, and synthesis of feature models shows that the problem of extracting feature

models from Web configurators had not been studied. Existing approaches do not con-

sider specific properties of such applications. They are either too general or designed for

a different application domain.

To answer RQ2, we first investigated the client-side of a sample set of Web configurators

to understand how configuration-specific objects are implemented. We observed that

objects presenting variability data are usually generated from a number of templates. A

template is a code fragment that specifies the structure and layout of data to be visually

presented in the page. In a template, text elements and tag attributes are data slots

filled by data items when generating the page. We thought that we could use these

templates to extract data of interest. In order to achieve this aim, we proposed the

notion of variability data extraction pattern (vde pattern). The user specifies a pattern,

expressed in an HTML-like language, to define the structure of objects of interest and

to mark data items to be extracted from these objects. A pattern, in fact, represents a

number of templates from which the objects of interest are generated.

The specified patterns are given to a data extraction procedure, called a Web Wrapper,

that tries to locate in a Web page code fragments (presenting objects) that structurally

conform to input patterns, and extracts as output data items from those code fragments

corresponding to the marked data in the patterns. We also proposed and implemented

a novel pattern matching algorithm using which the Wrapper finds the matching code

fragments.

RQ2 addressed the problem of extracting structured variability data by static analysis

of a Web page. However, a static analysis is clearly not sufficient in general. It does not

account for the dynamic nature of the configuration process and the runtime behaviour

of Web configurators. We therefore formulated the third research question of this PhD

thesis as follows:

• RQ3 How to support the extraction of the dynamic variability content from the

Web pages of a configurator?

To address RQ3, we developed a crawling technique, provided by a Web Crawler. The

Crawler automatically explores the configuration space (e.g., navigates through the con-

figuration steps) and simulates users’ configuration actions. The exploration and con-

figuration actions usually add new data objects to the page or change existing data

objects. The Wrapper then analyses the content of the page to identify and extract
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newly added data, or deduce variability data from the changes made to the data ob-

jects. We also implemented an approach that uses the crawling technique to trigger and

extract constraints defined over options.

The extracted data is hierarchically organized and serialized using an XML format. We

implemented a Java module to transform the generated XML file into a feature model

represented in TVL.

Once we developed our tool-supported and supervised reverse-engineering process, we

then set up an experiment and evaluated our approach. In particular, we evaluated the

generality of the approach, the accuracy of the extracted data, and the users’ manual

effort required to run the reverse-engineering process. Experimental results on five

existing Web configurators show that the specification of a few patterns allows to identify

hundreds of options and constraints.

10.2 Limitations

This section presents the limitations of the proposed approach and the future work that

is needed to better address these problems.

Only the client-side of configurators is considered. In the empirical study of

Web configurators, we considered their client sides because a lot of valuable information

can be extracted: GUI data, constraint management, configuration process, etc. We

recognized that the server-side can be also considered for some aspects of the study

(e.g., to determine how reasoning operations are implemented) and gaining additional

insights.

Building a complete feature model requires, ideally, analysing both the client and server

sides of a configurator. It typically also requires consulting other sources such as docu-

mentation, expert knowledge, etc. We investigated here the visible parts of configurators,

i.e., the GUI and the Web client because it is the entry point for customer orders and

most of the variability data is somehow represented in Web pages. Moreover, analysing

the server-side will require the use of completely different reverse-engineering techniques,

on various kinds of artefacts. Furthermore, server code is much more difficult to obtain,

even for research purpose.

The method relies on the expert’s manual effort. At present, the expert inspects

the source code of the page, identifies templates from which the data objects of interest

are generated, and then specifies the appropriate patterns for these templates. This

activity can be cumbersome in some cases. A possible improvement for this limitation
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is to integrate our approach with methods that can infer templates used to generate a

given page. From these identified templates, the expert can choose those which are used

to generate configuration-specific objects. It can decrease the practitioners’ effort when

re-engineering their (legacy) configurators. A problem with these methods is that they

make many assumptions on how the page is formatted and the data is represented (e.g.,

data records are presented in a list). We are working on a template-induction approach

to deduce the template from which data objects in a page are generated.

The crawling technique provides no support for multi-page Web applica-

tions. The Crawler is able to explore the configuration space in a page and unable

to navigate through the pages of a Website. For this reason, the approach does not

support constraints across pages. We intend to integrate our approach with Web crawl-

ing approaches aiming to explore pages in Web applications that follow multi-page user

interface paradigm.

Only the template-based Web configurators are investigated. Our approach

relies on the basic assumption that pages in a Web configurator are generated from a

number of templates. There may be, however, Web pages that have unstructured data

objects. In such cases, we cannot apply our approach.

The Cascading Style Sheets (CSS) language is not fully supported. We

developed techniques that target static structure (i.e., the HTML code) and dynamic

behaviour (handled by client scripting languages such as JavaScript and/or server-side

technologies such as PHP) of Web configurators to find and extract configuration-specific

data. CSS used to control the style and layout of a Web page, can be used for locating

and extracting configuration-specific data as well. A notable example is a visibility

constraint that determines when options are shown or hidden in the GUI. Consequently,

by analysing the CSS visibility property of options we can deduce some cross-cutting

constraints defined over those options.

The structural and data marking attributes we designed in our pattern specification

language give us support to use inline style information (i.e., the style attribute in

HTML elements) for the purpose of data extraction. However, it may be required to

analyse the internal CSS code (i.e., the content of the style element in the head section

of the page) and the external CSS files to infer configuration-specific data.
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10.3 Perspectives

10.3.1 Forward engineering

The main motivation for reverse engineering feature models from Web configurators is to

use them for forward engineering more reliable and maintainable configurators. Boucher

et al. have already studied the problem of deriving user-friendly configuration interfaces

from feature models [Boucher et al., 2012c]. They discussed the main challenges and

possible solutions, from the visual and behavioural perspectives. The authors then

presented a generic model-driven method to use a feature model for the generation of

configuration GUIs [Boucher et al., 2012b]. In this approach, the GUI is supported by

an underlying reasoning engine to control and update the GUI elements. Figure 10.1

presents the model-view-controller (MVC) architecture proposed by Boucher et al. to

design configurators. In this architecture:

• The model is a feature model presented in TVL. The feature model is connected

to a reasoning engine (SAT/SMT solver), which is responsible for controlling the

interactive configuration through a generic API.

• The view contains a description of the GUI to be displayed to the user. This

description is generated from the feature model using the XML User Interface

Language (XUL).

• The controller, as the central component of the architecture, listens to user ac-

tions, updates the feature model (selected features, attribute values, etc.) and

interacts with the reasoning engine to determine the list of changes to be propa-

gated to the GUI. Once done, it updates the GUI model by hiding, making visible

or updating elements affected by the changes.

The combination of a model-based approach to produce customized GUIs from a feature

model with a reliable engine to reason about this feature model would provide an easily

maintainable user interface and correct configurations.

10.3.2 Configuration verification

In addition to a feature model, our proposed reverse-engineering process also produces

a process model. The process model is a description of configuration steps, options

contained in each step, and optionally the steps’ order (i.e., the workflow of the con-

figuration process). The reverse-engineered feature models and process models can be
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Figure 10.1: A MVC-like architecture for configurators [Boucher et al., 2012b].

used for verification purposes, e.g., checking the completeness and correctness of the

configuration constraints.

We developed a tool that provides a lightweight environment for validation of feature

models and verification of the configuration process [Abbasi et al., 2011a,b]. This tool

can be used by the developers of the configurators to test their models before using

them in development of actual Websites. The conceptual foundations for this tool are

laid on the notions of multi-view feature models [Hubaux et al., 2010, 2013] and feature

configuration workflows (FCW) [Hubaux et al., 2009]:

Multi-view feature model. A view is defined on a feature model as a subset of its

features. Several views allow to divide the feature model into smaller, more manageable

parts. Views can be defined for specific stakeholders, roles, configuration steps, or

particular combinations of these elements.

Feature configuration workflow (FCW). FCW is a formalism that proposes to use

a workflow to drive the configuration of views. The workflow defines the configuration

process and each view on the feature model is assigned to a task in the workflow. A

view is configured when the corresponding workflow task is executed (Figure 10.2).

Support for FCW has been implemented by extending and integrating two third-party

tools: SPLOT [Mendonca et al., 2009]1 and YAWL2. SPLOT supports feature modelling

and configuration. To provide efficient interactive configuration, SPLOT relies on a SAT

solver (SAT4J3) and a BDD solver (JavaBDD4). We extended SPLOT to support view

creation, configuration, and view-to-workflow mapping. Workflow design, execution,

analysis and user management is provided by YAWL. Interactive services were added to

1http://www.splot-research.org/
2http://www.yawlfoundation.org/
3http://www.sat4j.org/
4http://javabdd.sourceforge.net/

http://www.splot-research.org/
http://www.yawlfoundation.org/
http://www.sat4j.org/
http://javabdd.sourceforge.net/
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Figure 10.2: Example of FCW.

YAWL so as to trigger view-based configuration in SPLOT. We also implemented a new

configuration environment, the FCW engine, which is responsible for managing configu-

ration sessions, conveying the information between YAWL and SPLOT, and monitoring

the whole configuration process.

Figure 10.3 shows the essential components of our integrated tool as well as a typical

usage scenario.

Design time: Configuration preparation. At design time, the user defines and

stores views in SPLOT (Ê). A view is defined with an XPath-like expression [Hubaux

et al., 2010]. The XPath expression specifies paths to features in the feature model that

should be part of the view. A coverage test is run to verify that the whole feature model
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can be configured through the defined views, i.e., that no feature can be left undecided

after the views have been configured (Figure 10.4). The user also designs the workflow

and stores it in the repository in YAWL (Ê). Once created and checked, the workflow is

uploaded and registered in SPLOT (Ë). Once the required views and workflow are made

available, the mapping of the views to tasks of the workflow is performed in SPLOT (Ì).

A view not only has to be mapped to a task that triggers its configuration, but also to

a stop that tells when it should be fully configured. The stop is materialized in the

workflow by a condition. The mapping is correct and complete when (1) all the views

are mapped to exactly one task and one stop, and (2) the coverage of the mapped views

is complete.

Runtime: Product configuration. At runtime, the product configuration process

starts in YAWL (Í). The user executes a task (Î), which calls the associated Web service.

When an element is activated in YAWL, the Web service sends its name, its type (task or

condition) and the session information to the FCW engine. The Coordinate configuration

service in the engine handles messages received from YAWL and SPLOT (Ï). The

FCW engine controls the status of tasks and conditions. The status of a task can be

Ready, Configured, or Completed. Similarly, the status of the stops can be Ready or

Completed. The FCW engine initiates either a view configuration request if the element

is a task, or a configuration status if it is a condition. If it is a configuration request,

SPLOT loads the corresponding view (Ð). In the interactive configuration form, the user

performs the configuration by selecting/deselecting the features (Ñ). SPLOT controls

the configuration process to guarantee that only valid decisions are made (Figure 10.5).

We extended SPLOT to support partial and complete configuration, persistency and

recovery, and decision logging.

When the configuration of the view is terminated, the FCW engine updates the status

of the task (Ò), and the user can mark the task as complete in YAWL (Ó). If the place is

a condition, the FCW engine requests the list of views attached to the stop (Ð). SPLOT

returns the status of each of the views to the FCW engine (Ñ), which then checks

whether the stop is satisfied, i.e., whether all the views are completely configured (Ò).

When the final condition is reached, the configuration stops, and the resulting product

can be retrieved from the repository in SPLOT.

10.3.3 Other application scenarios

In this section, we present some further application scenarios that can exploit the results

of this thesis.
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Figure 10.3: Overview of the essential components and typical use case scenario.

Identifying functionality related to user actions. We developed a Web Crawler

to deal with dynamic behaviour of Web configurators. It is able to simulate some of

the users’ actions. By integrating this ability with Firebug’s capability to track function

calls, we are able to identify which functions (e.g., JavaScript functions) handle an

action, which request is generated to be sent to the Web server, or even (in some cases)

which server page is responsible for handling the request. Moreover, we can attach a

new handler, and therefore a new functionality, to an action using jQuery at runtime.

These capabilities give us a lot of support for logging execution traces, testing, debug-

ging, finding similar operational functionalities to be reused/replaced, improving the

quality of existing Web configurators, etc. For instance, developers can add a new func-

tionality to configuration actions so that when an option is configured, it registers itself

to the list of configured options. Consequently, developers can build a trace log of user

decisions that can be used to provide an undo operation for configurators that do not

already offer it. Moreover, the configuration summary can be generated and presented

to the customer.
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Figure 10.4: View creation menu.

More importantly, configurator developers can use our tool to verify that their develop-

ment accurately implements the latest configuration options and constraints. It can be

achieved by comparing the base feature model used for development of the configurator

to the one that reverse-engineered by our approach.

Comparing the new and old configurator Websites. Once a new version of a

Web configurator has been developed, it should be verified that the new configurator

implements everything that must be kept from the old configurator, changes (e.g., op-

tions, constraints) made to the old version are identified and tested, etc. This can be

to some extent achieved by comparing the reverse-engineered feature models of the old

and new configurators.

Analysing competitors’ Websites. Web configurators coming from the same indus-

try sector most likely present products with similar characteristics (e.g., configuration

options). Using our proposed Web data extraction techniques, we can acquire market
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Figure 10.5: View configuration menu.

information from these competitors and compare their products (e.g., price comparison,

option comparison). Baumgartner et al. [Baumgartner et al., 2007, 2005] presented that

Web data extraction systems aim to provide services for acquiring market information,

and should provide support for deep navigation and dynamic content pages as well.

The Crawler can play a crucial role in exploring the configuration space and extracting

dynamic data from different Web configurators.

Acquiring domain knowledge. Some configurators allow to customise several prod-

uct categories. We can reverse engineer a feature model for each product and then merge

them into a fully-fledged feature model. This new feature model represents all the vari-

ability of the set of products presented in a configurator. Similarly, we can merge the

generated feature models of a family of configurators in a domain to build a body of

knowledge for that domain.

Reverse engineering other kinds of applications. Although the reverse-engineering

approach proposed in this thesis is used to reverse engineer feature models from Web

configurators, there is the possibility of re-using it in other Web application domains as

well. For instance:
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• Online shopping systems (e.g., amazon.com) usually use templates to generate and

present structured data [Arasu and Garcia-Molina, 2003].

• Conference registration applications have rather the same core design as the Web

configurators we described in this thesis. Earlier user choices and decisions change

what is presented to the user later.

• Student academic course planning applications guide the student through choices

and offer courses based on prerequisite requirements. These applications have

characteristics and organization similar to the Web configurators we studied.
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Käköla, T. and Duenas, J., editors, Software Product Lines, pages 127–159. Springer

Berlin Heidelberg.

Kang, K., Cohen, S., Hess, J., Nowak, W., and Peterson, S. (1990). Feature-oriented

domain analysis (foda) feasibility study. Technical report, Software Engineering In-

stitute.

http://www.w3.org/TR/html5/


Bibliography 220

Kotha, S. (1995). Mass customization: Implementing the emerging paradigm for com-

petitive advantage. Strategic Management, 16(S1):21–42.

Kushmerick, N. (2000). Wrapper induction: efficiency and expressiveness. Artificial

Intelligence, 118(1-2):15–68.

Kushmerick, N., Weld, D. S., and Doorenbos, R. B. (1997). Wrapper induction for

information extraction. In IJCAI (1), pages 729–737. Morgan Kaufmann.

Laender, A. H. F., Ribeiro-Neto, B., and da Silva, A. S. (2002a). Debye - date extraction

by example. Data and Knowledge Engineering, 40(2):121–154.

Laender, A. H. F., Ribeiro-Neto, B. A., da Silva, A. S., and Teixeira, J. S. (2002b). A

brief survey of web data extraction tools. SIGMOD Record, 31(2):84–93.

Lerman, K., Getoor, L., Minton, S., and Knoblock, C. (2004). Using the structure of web

sites for automatic segmentation of tables. In Proceedings of the 2004 ACM SIGMOD

international conference on Management of data, SIGMOD ’04, pages 119–130, New

York, NY, USA. ACM.

Liu, B., Grossman, R., and Zhai, Y. (2003). Mining data records in web pages. In Pro-

ceedings of the ninth ACM SIGKDD international conference on Knowledge discovery

and data mining, KDD ’03, pages 601–606, New York, NY, USA. ACM.

Liu, L., Pu, C., and Han, W. (2000). Xwrap: An xml-enabled wrapper construction sys-

tem for web information sources. In Proceedings of the 16th International Conference

on Data Engineering, ICDE ’00, pages 611–, Washington, DC, USA. IEEE Computer

Society.

Lora-Michiels, A., Salinesi, C., and Mazo, R. (2010). A Method Based on Association

Rules to Construct Product Line Models. In Proceedings of the Fourth International

Workshop on Variability Modelling of Software-intensive Systems, VaMoS ’10, pages

147–150.

Maras, J., Carlson, J., and Crnkovi, I. (2012). Extracting client-side web application

code. In Proceedings of the 21st international conference on World Wide Web, WWW

’12, pages 819–828, New York, NY, USA. ACM.

Mendonca, M., Branco, M., and Cowan, D. (2009). S.p.l.o.t.: software product lines

online tools. In Proceedings of the 24th ACM SIGPLAN conference companion on

Object oriented programming systems languages and applications, OOPSLA ’09, pages

761–762, New York, NY, USA. ACM.



Bibliography 221

Meng, X., Hu, D., and Li, C. (2003). Schema-guided wrapper maintenance for web-data

extraction. In Proceedings of the 5th ACM international workshop on Web information

and data management, WIDM ’03, pages 1–8, New York, NY, USA. ACM.

Mesbah, A., van Deursen, A., and Lenselink, S. (2012). Crawling ajax-based web appli-

cations through dynamic analysis of user interface state changes. ACM Transactions

on the Web, 6(1):3:1–3:30.

Michel, R., Classen, A., Hubaux, A., and Boucher, Q. (2011a). A formal semantics

for feature cardinalities in feature diagrams. In Proceedings of the 5th Workshop on

Variability Modeling of Software-Intensive Systems, VaMoS ’11, pages 82–89, New

York, NY, USA. ACM.

Michel, R., Classen, A., Hubaux, A., and Boucher, Q. (2011b). A formal semantics for

feature cardinalities in feature diagrams. In VaMoS’11, pages 82–89. ACM.

Muslea, I., Minton, S., and Knoblock, C. (1999). A hierarchical approach to wrapper

induction. In Proceedings of the third annual conference on Autonomous Agents,

AGENTS ’99, pages 190–197, New York, NY, USA. ACM.

Muslea, I., Minton, S., and Knoblock, C. A. (2001). Hierarchical wrapper induction for

semi-structured information sources. Autonomous Agents and Multi-Agent Systems,

4(1-2):93–114.

Nguyen, B., Robbins, B., Banerjee, I., and Memon, A. (2013). Guitar: an innovative

tool for automated testing of gui-driven software. Automated Software Engineering,

pages 1–41.

Nierman, A. and Jagadish, H. V. (2002). Evaluating Structural Similarity in XML

Documents. In Proceedings of the Fifth International Workshop on the Web and

Databases (WebDB 2002).

Ong, S. K., Lin, Q., and Nee, A. Y. C. (2006). Web-based configuration design system

for product customization. Production Research, 44(2):351–382.

Patel, R., Coenen, F., Martin, R., and Archer, L. (2007). Reverse engineeing of web

applications: A technical review.

Phan, X.-H., Horiguchi, S., and Ho, T.-B. (2005). Automated data extraction from the

web with conditional models. Business Intelligence and Data Mining, 1(2):194–209.

Pine, B. J. (1993). Mass Customization: The New Frontier in Business Competition.

Harvard Business School Press.



Bibliography 222
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