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Linear perturbations in K-mouflage cosmologies with massie neutrinos
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LInstitute for Computational Cosmology, Department of RtsysDurham University, Durham DH1 3LE, UK
2Institute for Particle Physics Phenomenology, Departniehysics, Durham University, Durham DH1 3LE, UK
3Institut de Physique Theorique, CEA, IPhT, CNRS, URA 23081 191Gif/Yvette Cedex, France
“Namur Center of Complex Systems (naXys), Department ofelfitics,
University of Namur, Rempart de la Vierge 8, 5000 Namur, Bielg

We present a comprehensive derivation of linear pertushaguations for different matter species, including
photons, baryons, cold dark matter, scalar fields, masalessnassive neutrinos, in the presence of a generic
conformal coupling. Starting from the Lagrangians, we show the conformal transformation affects the dy-
namics. In particular, we discuss how to incorporate coesily the scalar coupling in the equations of the
Boltzmann hierarchy for massive neutrinos and the subsedlugd approximations. We use the recently pro-
posed K-mouflage model as an example to demonstrate the icaiieplementation of our linear perturbation
equations. K-mouflage is a new mechanism to suppress thédifth between matter particles induced by the
scalar coupling, but in the linear regime the fifth force isuppressed and can change the clustering of different
matter species in different ways. We show how the CMB, lempistential and matter power spectra are affected
by the fifth force, and find ranges of K-mouflage parameterssetedfects could be seen observationally. We
also find that the scalar coupling can have the nontrivigatfdf shifting the amplitude of the power spectra of
the lensing potential and density fluctuations in oppositections, although both probe the overall clustering
of matter. This paper can serve as a reference for those whHoomaeneric coupled scalar field cosmology, or
those who are interested in the cosmological behavioureoKtmouflage model.

. INTRODUCTION can give a heavy mass to the scalar fiéld [11], or trap it to
values that make the interaction strength very weak([12, 13]

The confirmation that our Universe is experiencing a phasé regions of high matter density. In these models the kineti
of accelerated expansion [see, €.5[] 1-3] has provoked-exteterm of the scalar field is assumed to be standard.
sive research aiming to find out an underlying driving force. Non-standard (non-canonical) kinetic terms can also natu-
The majority of models proposed so far involve one or morerally lead to suppression of the fifth force, such as in thecas
scalar fields, which experience self interactions eithentgh  of the Dvali-Gabadadze-Poratti (DGP) [14] and the Galileon
a self potential, such as the quintessence modell[el.g, dr 5], [15, [16] models, where the matter density, or equivalently
via non-standard kinetic terms, such as the K-essence mod®&°®, is high. This is known as the Vainshtein mechanism
[e.g.[6]7]. If a scalar field is present, it is both theomdtic ~ [17]. Another example of a coupled scalar field with a non-
and phenomenologically interesting to assume that it interstandard kinetic term is the K-mouflage model [18, 19], which
acts with either matter or curvature, considerations ofciWwhi is a K-essence-type scalar field coupled to matter.
have led to the developments of coupled quintessence§.g.,  The idea of K-mouflage offers a novel perspective on the
and extended quintessence [€lg. 9] models, with both types @creening of scalar interactions in dense environmend-It
models having a standard kinetic term for the scalar field.  fers from the chameleon mechanism, for which the screening
The existence of a scalar field coupling to matter or curvatakes place in regions where the Newtonian potential islarg
ture can be problematic, because the scalar field can mediatghan a threshold value determined by the scalar field itiéf.
so-called fifth force between matter particles, in conflithw  z|so different from the Vainshtein mechanism that operiates
local gravity tests [e.gl. 10]. To avoid this problem, it & 0 Galileon models, in which the screening occurs in regions of
ten assumed that either the scalar field does not interalat Wiqarge scalar curvature. Instead, in the case of K-mouﬂ*@fl t
baryoniC components of matter, such as in the COUp|Ed dar&:reening happens in regions Wheregmitationa| acceler-
energy model, or there is some mechanism to suppress thgionis large enough. The phenomenology of the K-mouflage
fifth force where gravity experiments are carried out. The la screening can therefore be qualitatively different froiat tf
ter idea may sound odd, but it can be a natural consequence gfe chameleon and Vainshtein screenings, and has been stud-
the nonlinearity of the self-interacting potential of theakr jed less intensively so far (see, e.g., Sec. I of [18] foriafor
field. Some well known examples of such ‘screening mechcomparison of these three types of screening mechanisms).
[T%sms are t.he chamelecn [11], d'latdﬂ.[lz] anql Symmelron | e static regime, the existence of a K-mouflage radius,
] mechanisms. In these models, the interaction of Mattefe 0w which the screening happens, and of a static solution
of the Klein-Gordon equation, depends crucially on the form
of the LagrangianM*K (c), whereo = (Vp)?/2M*, M
* [Email am.r barreira@durham ac.uk is the dark energy _scale and (o) is a noplinear function
t Email: philippe brax@cealfr (cf. Eq. below); if K(o) = o, the kinetic term becomes
t|[Email: sebastien.clesse@unamuir.be canonical. K-mouflage models can also be extended to non-
§ Email: baojiu.li@durham.ac.uk static cosmological backgrounds for a restricted clas& of
9 Email: patrick.valageas@cea.fr ; Author names listed phabetical order. functions. Healthy K-mouflage models are those where the
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screening can be achieved in the static regime and cosmologfe not present in those works — this is not necessarily prob-
ical solutions can be defined down to arbitrarily early casmi lematic, but we should bear in mind that standard Boltzmann
times. This implies that the potentials defined&s (y) = codes, such as the one used in this paper and in[R&f. [21], usu-
yK' :|:y2/2) are monotonic and go to infinity at large posi- ally silently switch to this approximation at late times #ffi-

tive 1f]. Moreover, the value of” (_y2/2) must be large for ~ ciency considerations, and inconsistency would ariseeié¢h
large enoughy? to suppress the scalar fifth force inside the @PProximation equations are not modified accordingly te tak
K-mouflage radius — theabove means a derivative w.r.t. to into account the scalar field coupling. Here we will presbat t
argument ofi’ (see [20] for more details). modified e_quations in t.he fluid gpproximation for neu;r.inos.

Cosmologically, the effects of the scalar interaction @ppe _ 10 obtain cosmological predictions, we have modified the
both at the background and perturbation levels. At the backCAMB code [23] to solve our linear perturbation equations. In
ground level [1B], healthy K-mouflage models all cross thethis paper, itis not our goal to perform a thorough explorati
phantom divide in the recent past and the effective energy de Of the parameter space of the K-mouflage model. Instead, we
sity of the scalar becomes negative in the distant past. Thighall focus on a number of illustrative parameter valuesyto t
does not lead to instabilities as the Hubble rate squareld is al© build intuition about the regions of the parameter sphae t
ways positive: the K-mouflage field is subdominant, i.e.; cos@re more likely to be ruled out, or alternatively, provideoad
mologically screened, in dense cosmological densitiefatat f!t to the data. We shall pay particular attention to the poten
times, the growth of density perturbationsis changed asfthe tial degener_ames be_tween the K-mouflage parameters and the
fective gravitational strength can either be increagéd 0) ~ Mass of active neutrinos. _ _
or decreasedK’ < 0) in a scale independent wdy [19]. Ex-  The present paper is organised as follows. [fil @e will
amples of healthy K-mouflage models are polynomials whoséescribe the conformal transformation between the Jonddn a
higher degree monomiali,o™, is such that, > 0 andm Einstein framefs, and apply this to the Lagrang|an c_ie_nsnﬁes
is an odd integer, wher&, andm are model parameters, see photons_, neutrinos (massless and massive), cIassmajI_part
Eq. [IZ7). Models with K, < 0 have a ghost-like behaviour (baryonlc gnd cold _dark matter),.and gengral spalar flelds to
and require a contrived UV cutoff at a rather low energy scalederive their respective conservation equations in thet_Elms_

In this paper, we will focus on cases with either = 2 or frame, Where_ our calcylatlons are done. The scalar f|elql is a
m = 3, andK, of both signs. The reader should bear in mind K-mouflage fleld. for this work, although some of our deriva-
that this is done for illustration purposes. Only the casiwi tions hold generically for any coupled scalar field. il8we

m = 3andK, > 0 is both healthy and ghost-free (in both the Present the covariant and gauge invariant linear pertiobat
cosmological regime and the small-scale static regime).  €quations for standard gravity and, using the resultdRfce-

In this paper, we numerically study the evolution of linear Ve the perturbation equations for matter species, witfipa
perturbations in the K-mouflage model. One of our main goald!lar attention paid to the case of massive neutrinos. Iifgec.
is to analyse the model predictions for observables sudmeas t We present and discuss our numerical results. We start by de-
CMB temperature, CMB lensing, and matter power spectra. scribing the det_all_s of our numerical setup and then discuss

We shall start by deriving the perturbation equations in thdn€ model predictions for the CMB temperature, CMB lens-
presence of a conformally coupled scalar field. Althoughesom INd @nd matter power spectra. Finally, we summarise our find-
of these equations have been derived in the past and are sc#tds In SedV] where we also briefly compare the K-mouflage
tered in the literature, we feel that a more complete and conModel with other popular modified gravity models.
sistent derivation is needed, for the following reasons:

(i) In cosmological studies, we are often interested in a uni
versal coupling of the scalar field with all matter speciesl a
thus the effect of the coupled scalar field must be consigtent
included for all these species. We shall do this from the La-
grangian level.

(i) some matter species, e.g., massive neutrinos, have not
been extensively studied in the presence of a scalar cayplin  The Einstein Hilbert action is
although the role played by massive neutrinos in cosmolegy i 1
increasingly becoming a topic of interest. There are previo S= /d4“7\/__9 {ngg’lR + E@(‘F’)] + S, 1)
works along this direction, [e.d.,21,/22], but there thetriaa _
perturbation equations are derived in the synchronousegaud‘”th
rather than in a more general gauge-invariant formalisrd, an _ 4, /T4 (~(i) ~ )
these works are focused on a coupling between the scalar field S ; / d :v\/_gﬁm G ) @)
and massive neutrinos only. A subtler point relates to the ne
trino equations in the so-called fluid approximation, which

II. EQUATIONS IN CONFORMALLY COUPLED SCALAR
FIELD COSMOLOGY

A. The general field equations

whereg (g) is the determinant of the Einstein (Jordan) frame
metric tensorg,, (§..), Lm is the matter Lagrangian den-

sity in the Jordan frame an,fﬁ) symbolically denotes théh
species of matter fields. The Jordan and Einstein frame enetri

L Here,y — +/I25 and note thab o« —(Fp)2/2 < 0, whered denotes tensors are related by a conformal transformation,

- R . B 5
the spatial derivative, in the static case. Guw = A (sp)glw7 (3)
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with A a function of the scalar fiel@d. Above and throughout, wherec is the gauge coupling constant. To change this to the
M, is the reduced Planck mass, and it is related to Newton'€instein frame, we define a new gauge field strength as
constant by M;,> = 87G. _ -

It can be shown straightforwardly that the Christoffel sym- Fuv = Fu, ~ ~ 1)
bols in the two frames are related by Frv = ghog'BE 5 = AYp)gh§"PFap = A*(@)FM,

l“fw _ fxy _ 53 (Ind)  + ) (In A)-,u — g (In A)’k} (4) and the above action can be re-expressed as

where a comma denotes the partial derivaive= dyp/0z", Sy = /d4$\/_ FY Fuy, (12)
andp* = g"p .

In the Jordan frame, matter is uncoupled to the scalar fieldeavingae unchanged.
and the energy momentum tensor for a given species (the su- From the above actions, using EdS) &nd [7), one obtains
perscript?) is dropped to lighten the notation) is defined as  the energy momentum tensors for photons in the two frames:

= 5 T~ 2 n n 1 I A
- 2 g {‘ _gﬁm (wvg“”)} Tl; = FHAFV)\ - Zélﬁ/F&ﬁFa57 (13)
T;LV - \/_—g 5‘&#” ’ (5)

which satisfies the following conservation equation

1
TH = FFMF,\ — Z5*;F°‘51~1w, (14)

so that Eq.[@) is satisfied as expected.
In the case of photons, note that the trdte= 7%, = 0 in
Eq. @), so thatT'*¥ is conserved even in the Einstein frame.

v, IY =0, (6)

whereV is the covariant derivative compatible with the metric
guu-

Similarly, the energy momentum tensor defined in the Ein-
stein frame is

C. Neutrinos

T - 2 0[V/=9Lm (¥, Al®), 9] % Neutrinos are fermions and their action in the Jordan frame
W =g Sghv ’ can be written as
which satisfies the following (non)conservation equation S, = /d4x /=5 {i\iﬁ“[)u\i/ _ m\f,ﬁ,} ’ (15)
v d ln A(QO) - =
VT, = dy TV e, (®) whereW denotes a Dirac fermion field; its conjugateyn its
] ) o ) ] . mass, and* are the Dirac matrices satisfying
whereV is the covariant derivative compatible with the metric
g @ndT" = T}!. The energy-momentum tenshy, is related AHAY + AYAR = 2T (16)
0 T by with T being the identity matrix, and
Tl = AY()TY, ©) o 1
T . . . DH_Ha M + w)\pu'7 ’7 (17)
where indices for (un)tildered quantities are raised amnd lo
ered by the (un)tildered metric. One can check Bybf us- s the covariant derivative of a spinor with respect to the-co
ing Egs. @ 6,9). nectionwy ;..

In the next few subsections, we will look at the individual ~ Transforming from the Jordan to the Einstein frame, from
matter species and see how the above equations hold for eattte above relations we have

of them. ~
= A(p)7", (18)
w)\p;LV)\’Yp = (D)\puﬁ/)\ﬁ/p -6 [ln A((p)]”u L (19)
B. Photons ) ) o
If we further consider the following definitions:
In the Jordan frame, the action for photons is U= A2 ()0, (20)
1 -~ - =A n, 21
_ /d4x\/—_§4—F’“’FNV, (10) m (QO)’ITL ( )
@ then the above fermion action can be recast in canonical form
as
_ 4. T T
2 This can be done by noticing that in Ed3. (5) dAd (7) the temtisa brack- Sy = /d TV g [Z\I/'WD#\IJ B m\I/\IJ} : (22)

ets are the same because the matter action is invariant tiedeonformal
transformzation; Then by using EQ(3) it is straightforwaedshow that ~ Therefore, if we assume, rather reasonably, that in theadord
Ty = A% (@) T - frame the bare mass of the fermionic particte is a constant,
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then in the Einstein frame the mass depends on the scalar fielde spatial and time dependencgsalso depends og, in par-
©, and changes in time and space via &) ( ticular its directionn.
Let us consider now the energy momentum tensor of neutri- The components of the energy momentum tensor are given
nos on a FRW background. In the Jordan and Einstein frameby
the line elements for the background universe can be written

respectively as 74—t [ ddeefol@) 1+ ¥ an ). (30
ds* = a* (dt* — dx?) , (23) 0 _ 1 [ 40dud? 3
d82 _ a2 (dt2 _ dx2) ’ (24) T’L =a /d dqq nifO(Q)\Ij(xaqvnv t)a ( 1)

. 4
wherea _anda are the scale factors in these two frames, and le — —a_4/deqq—nmjf0(q) [1+ ¥(x,q,n,t)],(32)
they satisfy ¢

i=A(p)a (25) in whichn; is the unit vector in théth direction andif2 is the
’ solid angle of the volume element in momentum spacée,
according to Eql3). One important observation here is thain these expressions
Without loss of generality, consider active neutrinos whos depends on the combinatiam: = am, such that the integra-

mass can reach up values of a feW[27,28]. At early times, tions above are the same in both the Jordan and the Einstein
before decoupling from other species, these neutrinosfgati frames. Consequently, E@)(s satisfied for both massive and
the equilibrium Fermi-Dirac (FD) distribution: massless neutrinos (as it should be), becausee, and the
only transformation off'*. between the Einstein and Jordan

— — 9 1 frames in the above equations is through the scale factor
fo = fole) h3 1+ exp(e/kgTa)’ (26) therein. | ’
wherer: is the reduced Planck constahg, is the Boltzmann Recall thall’;; is not conserved in the Einstein frame, even
constant] is the equilibrium temperature at scale faatpy, ~ though it has the same functional formi (though with the
is the number of fermionic degrees Of freedom, and quan““es expressed N the Einstein fl’ame). ThIS IS b&!:E[US
this frame the mass of the neutrinos depends explicitlypon
€ =+/q* + (ma)? (27)  (cf.Eq.[2D). For massless neutrinos, on the other hand, due to

] ) ) ) ) the vanishing trace of the energy-momentum tensor, we have
is the energy of a neutrino particle with massand comoving  patv 7v — vV, T" =0
v Iz :

momentumy. Note that we have not specified which frame is
used in the above expression, but instead tried to make gen-
eral statements (hence no tildes are used until we staimgalk D. Dark matter and baryons
about frames below).

Because neutrinos are highly relativistic when they decou-
ple, then we have ~ ¢ > ma, and so the distribution before
decoupling can be written as

In the context of cosmological structure formation, it ia+e
sonable to treat cold dark matter particles and baryonseas fr
(collisionless) point masses at the microscopic level, thed
folg) = Js (28) Lagr_ang_ian is givel_’l by, = —Fm,_ wherel’ = ds/dt is the
1+exp(q)’ relativistic boost, withls anddt being respectively the proper
in which, and in what follows, the unit 1 is used and is and physical times. In the Jordan frame, the action is giyen b

. . . ; S,, = [ Ldt and can be re-expressed as
expressed in units dfg7'a. In a unperturbed universgu is a m=J P
constant equal to the temperature today, N dor da?

The decoupling of neutrinos could be approximately con- Sy = — /d‘*a;mz gﬂy——(S(?’) (x —yi), (33)
sidered as an instantaneous process, in which case thiequil i=1 dt dt
rium distribution above is preserved after neutrino detiogp . L .
[29], since the momentum and the temperature redshift in th Whichm stands generally for the bare mass of the particles,
same way. We neglect any possible effects of a scalar cag,lplinand the DlraQS-fgr_lctlon reflt_ects the fa_ct that the point mass
on the neutrino decoupling, which happens at very earlyﬁimeIS located at positioy;. In th|s_express.|on, we have assumed
when neutrinos are highly relativistic so that the scalad e that the system contain$é particles for illustration purposes.

essentially decoupled from it (though the neutrino maséctou In the Einstein frame, the action structure remains the same
still be time varying) but must be expressed in terms of the metfic and a re-

In a perturbed Universg, is no longer a strict FD distribu- defined mass :
tion, but instead can have time and space dependences:

f(X7 q, t) = fO(Q) [1 + \I/(X7 qQ, t)]

- 1 + \IJ P 8 at 9 29 ~ . B H H
Jol@)| (.0, )] (29) wherem = A(¢)m. As in the case of massive neutrinos, in
in which ¥ (not to be confused with the fermion field above) the Einstein frame the particle mass depends on the scathr fie
denotes the deviation from the FD distribution. In addition and therefore can vary in both space and time.

S TamS dzt da” 5o 34
m——/ xm; I ar (x—yi), (34)



By applying Egs.[B, [7), one finds the energy momentum E. The scalar field
tensor in the two frames as
R m da® dgB17 Y2 The scalar field Lagrangian in E@@)(is already written in
TH(2) = — Z [gaﬂ— —] the Einstein frame, and thus there is no need to change frames
vVT9i 4 dt dt In the case of the K-mouflage field, the Lagrangian is purely
dat da? kinetic:
X gl/)\ii(s(?)) (X - yl)? (35)
N a L(p) = —M*K (o) (39)
« 681~
TH(z) = o Z [gaﬂdidi] in which M is the characteristic mass scale of the model, and
VTIH de dt we have defined the dimensionless variable
dat dz? X 1
7 5O (x — v = = ___y°r
X g 0 (X~ yi)- (36) o= = gV PV (40)

A quick inspection confirms that the above equations satisfyo lighten the notation.

Eq. 9. Note that the energy momentum tensor has mass di- By varying the action in Eq) with respect to the scalar

mension 4 as expected, as the 3D Dirac funcich(x) has  field ¢, one obtains the K-mouflage equation of motion
mass dimension 3.

. Equatiqn;BE,BE hold for a number of discrete point par- v, [KU(U)VN;:] _ _dln A(so)T(,,) B Z dA(p) T(i)(41)

ticles, while in the real world cold dark matter and baryores a de dy

usually collectively treated as fluids on macroscopic scdle

this end, the standard practice is to perform a volume ageragn which the subscript denotes partial derivative w.rd.and

in microscopically large but macroscopically small volune 7 are, respectively, the traces of the energy momentum

and the resulting energy momentum tensor describes an effetensors for massive neutrinos, cold dark matter and baryons

tive fluid. The relevant perturbed equations will be deriired As photons and massless neutrinos are traceless, they do not

Secs[TCI]andlTC2] contribute to this equation. Note that, as we mentionedeat th
In the Einstein frame, although the particle number of non-end of the previous subsectidhit*) should be understood as

relativistic species is conserved, their energy-momentm  the hatted quantities, and so is multiplied by an extra famfto

sor is not, because of the varying particle mass inducedeby thA() compared withT"™), which is why it has a coefficient

scalar coupling (cf. EqXD). As a result, it is convenientto 0of dA/dy instead oidIn A /dp.

separate the effects of the varying mass by writing the gnerg

momentum tensor for matter as

T = A(p)TH, 37)

so that?™ is conserved at the background level. This can be In this section, applying the methodf- 1 [24] space-time

checked by substituting the above relation into B¢ get decomposition, we derive and summarise the fully covariant
and gauge invariant (CGlI) linearly perturbed equationfién t

V#T‘,j _ _dln Alp) (T*; -~ T5*,§) ) (38) K—mouﬂage model. We sha_ll_ first present the general formal-
dep ism of the3 + 1 decomposition, and then focus on the per-

where the covariant derivatives are still taken with respec  Urbations of the individual matter species. We pay pakdicu
the metricg,, and7’ = 7* . Indeed, at the background level attention to the perturbations of the massive neutrinoglwh
nZ - . 1 ’

the right-hand side of Edﬁﬂ) vanishes for nonrelativistic par- we believe have not been th_oroughly _explorgd in the past. We
. o P hope that the treatment outlined in this section can serze as
ticles (I'y = T)E. At the perturbed level, howevef,,, is not

conserved. The interpretation of this is that dark mattel an useful reference for future works.

baryon particles feel a fifth force and a frictional forceticed

by the scalar coupling (see Seli§C ] andIlI'C 1lbelow). A. The3 -+ 1 decomposition
In what follows, we will neglect the overhat af* and

on its components when referring to baryons and cold dark

matter, to lighten our notation. However, bear in mind that

WhenTl,j (or T*# hereafter) enters thEinstein equatiorand

the scalar field equatiorieq. @1), it should always be multi-

plied by an extra factor ofA(y) compared with the™ for hyw = Guv — Uy, (42)

other matter species.

i=c,b

Ill.  LINEAR PERTURBATION EQUATIONS

The idea of3 + 1 decomposition is to make spacetime splits
of physical quantities with respect to an observer’s 4-gigyo
u*. One can define a projection tenggy, as

which can be used to obtain covariant tensors which reside on
3-dimensional hyperspaces perpendiculartoFor example,
the covariant spatial derivativé® of a tensor field7”” 7, is

...
3 The fact that the hatted energy momentum tensor satisfiesahdard con-  defined by the following relation
servation law in background cosmology makes it more sttighard to

calculate its background density evolution. @aTBm; = hfjh'ﬁ...hZhg...hKV“T:"';. (43)
O...



Using this, the general energy-momentum tensor of mattewhereas the five propagation equations are given by
and covariant derivative of the 4-velocity can be splitpess

. .1 .
tively, as 0:9+§92—V-w+g(p+3P), (53)
2 . k
T;ux = Tuv + 2q(,uu1/) + PUUYy — Ph;u/a (44) 0= duu + geo—uu - v(;ﬂ”u) + guu + 57‘—“1/1 (54)
1 2 )

Vyty = 0y + @ + gehiw +upwy, (45) 0=, + gew,ﬂ, = V[ wy, (55)
inwhich,, is the projected symmetric and trace-free (PSTF) 0 = £ [7%,“, + l@w,w] _k [(p + P)o, + ?wqw}
anisotropic stress,, is the heat flux vector? is the isotropic 2 3 2
pressureg,,, the PSTF shear tensar,,, = @[Mu,j] the an- _ [g'w + 08, — ?“Bm#eu)yguq 7 (56)
tisymmetric vorticity tensord = V®u, = 3a/a = 3H the ) . 5
expansion scalar and,, = 1,,; the overdot denotes a time 0 = Buy + 0B, + V*Es(€,), ,u” (57)
derivative defined ag = u*V,¢, brackets denote antisym- Kea B~ 58
metrisation and parentheses symmetrisation. The nornalis + 2v Byt (58)

tion is such that:“u, = 1, which is consistent with our met-
ric sign convention+, —, —, —). The quantitiesr,,, g,, p

and P are usually calle_d dyna_mlcal quantities angd, @, ._andB,, are, respectively, the electric and magnetic parts of
¢ and w, are called kinematical quantities. The dynamical ' — o B
" ) the Weyl tensorV,,,. 3, defined bye,,, = u*u" W, and
guantities can be derived from the energy momentum tensolzj; _ 1. a B 46
T,.., Eq. @), as v = — U €, Wasug.
s EQ- ' In addition to the above equations, it is often useful to ex-
press the projected Ricci scalét, onto the hypersurfaces or-

thogonal tou”, as

In these equations,,,..s is the 4-dimensional covariant per-
mutation tensory - w = V®w, (for any vecton,), and&,,,,

— g,V
p = Tu'u”,

1 v
P: —gh'u TP'V’

- 2

R =2kp— =6 (59)

qu = hZupT,,p, 3

Ty = WORIT,r + Phy,. (46)  The covariant spatial derivative of the projected Ricciaca
! n, = aV,R/2, can be derived from the above equation, as

. 2a -
Ny = KaVyp — —QGVHG, (60)
B. Einstein equations 3
and its time evolution is governed by the following propaga-

The Einstein field equations can also be splitinghe 1 tion equation

framework [24], to obtain a set of five propagation equations 20 200 ~ A .

(those which govern the time evolution of perturbation vari o+ 3= =5~ VaVow—akV, Vg (61)
ables) and five constraint equations (those which specéy th -

relations between different perturbation variables). Sinec- | N€ total energy-momentum tensor satisfies the conserva-
ture of Einstein equations, tion (continuity and Euler) equations,

p+(p+P)O+V-g=0, (62)
G = KT, (47) 4 . .
G+ 300+ (p+ Plwy = VP + V'm,, = 0. (63)
with x = 87 G, holds for all models, such as the K-mouflage
model, as long as the extra terms are properly absorbgg in
Decomposing the Riemann tensor, and after linearisatien,

In this paper, we focus on spatially-flat cosmologies, for
t Which the spatial curvature vanishes at the background, leve

five constraint equations are given by R = 0. Therefore, from Eq[H9), we obtain the first Fried-
mann equation
N v B 92
0 vw(eeaﬂu ww) , (48) 2 (64)
Ky = — 3“ + @”aw + @”ww, (49) Recallthat at the background level only the zeroth-ordense
. . contribute to the equations. The second Friedmann equation
B = [VQCT,@(H + Vaw@(u} ey)falﬂ, (50)  and the energy-conservation equation can be obtained by tak
A 1T, 9 9 . ing the zeroth-order parts of Eq&3[62), as
VY = o {wa + §9q# + gvﬂp} , (51) T o
9+§92+§(p+3P):O, (65)

Va4 1 v af, v
VB, = 3 {Vaqﬁ +(p+ P)waﬁ} gwﬁu , (52) p+ (p+P)o =0, (66)



For the purpose of facilitating the numerical calculations This also simplifies the equations. To move the equations to
it is customary to work ink-space (Fourier space), in which Fourier space we use the following harmonic expansions for
spatial partial derivatives can be replaced with produtts o the perturbed quantities that enter the above equations:
(here k denotes the wave number of a given perturbation).

k2 k v k2 k k3 k k k k k
g;,uj = - Z a_2¢Q;u/a vue = Z a_QZQN’ N = Z gan wy, = Z EwQM’ Ouv = Z EUQW/’
k k k

k k
- k - k k
Vip = D -XQL VP = D -XPQL g = Y aQ muw = ) TIQL,. Vg = Y ~€Qp (67)
k k k k k

whereQ* is the eigenfunction of the comoving spatial Lapla- 1. Cold dark matter
ciana®] operator, which satisfies

The cold dark matter fluid is collisionless, and as a result,
aQkF = = Q*, (68)  generates no pressure or anisotropic stress. Hence, aiebt
a? the energy-momentum tensor for cold dark matter as
andQf andQF, are respectively defined hy¥ = av,Qk
andew = %@WQ,,). We represent the scalar field perturba-
tion mode in Fourier space @snotdyp, to highlight the fact
that this has been obtained in a covariant way (typicéaiyis

used in the literature to denote gaugadnvariant scalar field  in which we have omitted the "hat" on the different compo-

T = puu, + 2u(,q") 77

v)

perturbations). nents of the tensor defined in EBZ. By applying Eq.[B9
In terms of these harmonic expansion variables, E48. ( and keeping the terms that are parallel to the 4-velocithef t
51,54 56, [60, [67) can be rewritten as observer, we obtain the continuity equation
gk% ~ 2) = rqa?, (69) P+ 0p) + V¢ =0, (78)
ko = _lmf [k(I1 + x) + 3Hq] , (70)  whose background part gives the usual energy conservation
2 equation
1
k(o' 4+ Ho) = k(¢ + w) — =ka?11, 71 '
k(¢ + Hep) = =ka® [k(p+ P)o + kq — 1" — HII] (72 _ o
(@ ¢) 2" K Jo + kg 172 The terms perpendicular to the observer’s 4-velocity giee t
k*n = kya® — 2kHZ, (73)  Euler equation up to linear order:
kn' = —kqa® — 2kHw, 74
K e v (74) . 4 dln A(p) .
- _ o i@ + 20g©) 4 gy, 4 TP o (0)
in whichH = o’ /a and a prime represents the derivative with " 3 ! de "
respect to the conformal time(adr = dt, with ¢ the physical dln A(p)

time). P(C)ﬁuw =0, (80)
Similarly, the conservation equations, E{g2,&3), can be

written in k-space as, in which we have dropped the overbarsfiop(®) andy, since

, the context determines that these are background quantitie
X'+ (k2 = 3Hw)(p + P) + 3H(X + &) + kg = 0, (75) The fact that cold dark matter satisfies the standard conti-
¢ +4Hq+ (p+ P)kw — kX? + gkl'[ =0.(76) nhuity equation, at both the background (cf. HAD] and the
3 linear perturbation (cf. EqIZ8)) level, is a consequence of the
redefinition of the energy-momentum tensor in &) (How-
ever, even after this redefinition, cold dark matter paetico
not satisfy the standard Euler equation. Instead, theyrexpe
ence an additional "fifth" force, as determined by the lashte
In this subsection we present the linear perturbation equasf Eq. {80). In addition to the fifth force, the scalar coupling to
tions for the evolution of each of the individual matter §pec  the cold dark matter particles induces also an additiomna! fr
that we consider: cold dark matter, baryons, photons, msssl| tion term, as represented by the second last term. Thiséspli
and massive neutrinos and the K-mouflage field. changes in the dark matter perturbation evolution.

C. Perturbation equations of the individual species
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In k-space, the continuity and Euler equations can be writ- Note that the above Euler equation is derived assuming no
ten as interaction between baryons and photons. To account fey thi

o we simply add the term that describes the Thomson scattering

(o) TEZ — 3Ew + kv() =0,(81)  tothe equation to get

a dln A(y) a
’UEC) + E’U(C) + kw + T ((plv(c) - kg) = 0, (82) 0= va) + Ev(b) + kw — kch(b)
) ) ) — (o) ) dlnA(p) ,
in which we have defineg® = p'“v(.) andA . is the den- 4+ —" (sp V() — kg)
sity contrast for cold dark matter. de o
P[4
+ anEUTW <§v(b) - U(ﬂ) y (89)

2. Baryons
in whichn, is the free electron number denstty; is the cross

Baryons are similar to cold dark matter, with the differenceSection for Thomson scattering,,) is the peculiar velocity
that they produce a non-negligible pressure at the linear pefor the photon fluid, ang(? is the background energy density
turbation level. The pressure, however, vanishes on the coef photons.
mological background. The energy momentum tensor is then
given by

3. Photons
T;Szli) _ P(b)uuuu _ P(b)hwj + 2U(pq(b) (83)

V)
and following the same steps as for cold dark matter we obtain AS We have found in Seffll the photon Lagrangian density
the continuity equation is confprmally invariant, anq the_ photon energy momentum
tensor is conserved in the Einstein frame (the frame where we
perform our calculations). Consequently, the evolutiothef
photon fluid is the same as it would be in the case of the ab-
sence of the scalar coupling. Nevertheless, for complsetene
we simply note that the first two moments of the angular ex-
pansion of the photon distribution function lead to thedo#
ing continuity and Euler equations in real space [24]

A dln A
50 +6(p + PO) 47 = -3 podnAW) oy
de
and the modified Euler equation
. 4 o
qftb) + gqu’) + pWw, —v,P®

dInA(p) . )  dInA(p) )¢
AP oo RAW) —0, (85
+d¢‘pqu d@pvuso,()
up to linear order in real space. We have neglected terms .¢,) , 4, ) . 4 () le () L ev ()
- + =0q.) + =pVw, — =V, p\" + V77
such as”®w,, and PV ¢, which are higher than firstor- ™ 3 TP T T g el "
der in perturbations becaug¥® is a perturbed quantity (i.e. 4p) (b)
S0 - - - —neor q
P® = 0). The modified continuity equation actually reduces 3p(b)
to the standard one, becau$gA is of importance only atlate _ _
times where? is very small. On the cosmological background, in which we have added the Thomson scattering term. As ex-
taking the zeroth-order terms, we obtain the standard gnergected, at the background level, we recover the standaid rad

4 A
o)+ ggp(v) + V- ¢ =0,(90)

- q,<7>> —0,(91)

conservation equation ation conservation equation
A+ 3Hp) = 0. (86) P +4Hp = 0. (92)
In k-space, the continuity and Euler equations for baryons |n  space the perturbed continuity and Euler equations be-
become, respectively, come
, a 4 a
a  dlnA(p) 9 4 1 2
43 <E + Tcp’ c;Awp) =0, (87) vzv) + gkw - gkA(v) + gkﬂ'(w
/ 4
’Uzb) —+ %'U(b) + kw — kC?A(b) +an€UT (U(’Y) - gv(b)) = O’ (94)
dln A(p
+T() (#'v@w) — kE) =0, (88) inwhichv,) = ¢ /p", 7,y = 11D /) (z here should

not be confused with the real space quantity in Eq. @4))

in which we have defined the baryon sound speed squdred andA . is the density contrast of photons.

asc? = xr®) / x®), andv,), Ay, are, respectively, the pe-  For brevity, the higher order moments of the angular expan-
culiar velocity and density contrast of baryons. sion of the photon distribution function are not shown here.
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4. Massless neutrinos nonminimal coupling is only a straightforward generalizat
for completeness, we shall nevertheless summarise the main

Massless neutrinos are very similar to photons, except thaiteps of the derivation. Let us start with the geodesic éouat
they do not interact with the baryons via Thomson scattering®f @ point particle in the presence of the scalar couplinghn
The real space continuity and Euler equations are thereforginstein frame),

given by dut

A e are
P+ §9p(r) +V ¢ =0,(95) ds

— \vi4 100
P 1 ®, (100)

da:”} dA(p)

A4, 1o A (r whereds is the proper length of the line element. In this equa-

a + geq;(t '+ gp( Jwp gvup( '+ V') =0.(96)  tion, theA(y) factor on the left-hand side represents the vary-
) » .. Ing particle mass (or an effective frictional force), whilee

We use(r) to denote massless neutrinos quantities, to distiny ;) factor on the right-hand side is responsible for the fifth
guish them from the massive neutrinos ones, which we denoi@ce  In the case of non-relativistic particles, thesentecor-
by (v). At the cosmological background level, the energy denyegpond, respectively, to the extra friction and fifth foleens

sity satisfies the usual radiation conservation equation identified e.g. in EqI80). For highly relativistic particles, on

50 a0 0. @7) the other hand, the proper Ier?gth vanishis,— 0, and the
geodesic equation reduces to:
In k space, the perturbed continuity and Euler equations .
become Urv,U” =0, (101)
4 a as in the usual uncoupled case
L oF kZ — 45w+ kv =0 08 P . . .
O 3 a’ + R ’ (%8) In the K-mouflage model, massive neutrinos can still be de-

’UET) + %kw — %kA(T) + %/WT(T) =0, (99)
in which v,y = ¢™/p"), m(,y = T /p), andA, is the
density perturbation of massless neutrinos.

For brevity, we shall not show the full hierarchy of equa- of dat 8f dqof
tions satisfied by the higher-order angular moments of the or T dros drog =
massless neutrinos distribution function.

scribed by the collisionless Boltzmann equation in the ex@as
are interested in, but are subject to an external force dtresto
scalar coupling. Up to linear order in perturbed quantjties
Boltzmann equation is approximately given by

0, (102)

whereq is the magnitude of neutrino momentum (not the heat
. . flux), and remember that = f(x, ¢, n, 7). Using Eq. [[00
5. Massive neutrinos to replacelq/dr in this equation, and moving to space, we
reach the following evolution equation fér(x, ¢, n, 7):
The case for massive neutrinos is slightly subtler. For-typi

cal masses within the allowed observational bouhds[[27, 28] U4 (k . n) 910
the equation-of-state parameter of massive neutrinovesol €
from w,, = 1/3 at earlier times (when they are highly rel- dln fo(g) [(1 / )2

L . +——= | zko =W | —(k-n) ko
ativistic) tow,, ~ 0 at later times (once they become non- dlng 3

relativistic). For this reason, we can not simply redefireirth . dln fo(q) . [dIn A(p) a®m
energy momentum tensor such ti#t) evolves as a power- +i (k ‘ ) 1 {
law function of the scale facto, (as we have done for cold na
;thaerkcgflltter a_nd ba?j/)o US)- HOV\_/ever, this fact does not mak\?vherez' = /=1, k andn are respectively the unit vectors in
putation op'”) in the K-mouflage model any more the directions ok andn. and
complicated. Indeed, it is straightforward to check thatha '
background level, Eq430,[32) satisfy the conservation equa- 1 o
tions, Eq. B), provided one takes into account the fact that n = ng v (104)
the massm, in these equations, is time varying. The evolu-
tion 5(*) is normally computed by working out the integrals in a general frame.
in Eq. 30) numerically. In our case, we do the same except To solve the above Boltzmann equation, one can expand the
that we must replace: with A(¢(a))m, to account for the angular dependence @fin a series of Legendre polynomials
scalar coupling (where the bare neutrino mass known). P, (k . ﬁ) as:
In this sense, the calculation pf*) in the K-mouflage model
does not involve any more work compared to the standard un- o
coupled scenario, except for the operation of multiplying U(k,q,n,7) = Z(_i)e(% L 1)U(k,q,7) P, (k: . ﬁ)lOS)
by A(p(a)). ~
The linear perturbation evolution of massive neutrinofiwit
no scalar coupling is well understoad[25]. Although adding so that eacti-mode satisfies the following mode equation:

2
€ — Ew] = 0,(103)
de qe q
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dIn fo(q)
dlngq

dln A(p) © a’*m?

— oeh’ | ,(106
dQO 3(]6 E 60l a( )

k
0=0,+ " {0+ 1)y — 00,4 +

2 €
Sop—ko — Srp—kw + 6
2Wile 25RO~ Oueg kw01

in which éq¢, 1, anddo, are Kroneckeb-functions. One can heat flux. We will show below that this is not the case, and that
check this equation by verifying, with its help, that E@J¢ the density and pressure of massive neutrinos are alsdedfec
[32) satisfy the conservation equation, H8), to linear order. by the coupling.

Theéog term-in the Boltzmann e.quation makes sure that the At late timeS, neutrino momenta redshift away, and the so-
local perturbations of the expansion rate [26] (recall fak  called fluid approximatior [26] (which involves considagin
Z, which is thek-space mode oV/6) are properly taken into  only the mode$ < 2) is often used to speed up the numerical
account in the calculation of the density contrast, whicdllsh calculations. The evolution equations under this appraxim
be expressed as an integraliaf according to EqI07%). The  tion can be derived as follows. For each valug/of 0, 1,2
41, terms contain the contributions from the scalar couplingwe (i) define
and the 4-acceleration. Note how the equation reduces to tha
of massless neutrinos, when= 0 or A(¢) = 1. An N

Eq. (IO indicates that only thé = 1 mode is affected by I, = oy /dqq% (—) folq) ¥y, (107)
the scalar coupling. Aé = 0, 1, 2 contribute, respectively, to pria €
the energy density, heat flux and anisotropic stress of imestr
(see the definition and discussionlpfoelow), it might seem (i) multiply Eq. (I08) with 47/5*)a*, and (iii) integrate the
that the scalar coupling only changes the evolution of meaitr  resulting equation ovetqq?e(q/€)’ fo(¢). Doing so, we find

, pw) Pw Pw dln A4
I{)+a—<J0—3TIo)+k11+3(l+ ())h’+<Jo—3()Io) p ) o, (108)
a pt P P de
/ B (V) p(v)
T SR i 2., L P
L+ (1 3p<”>)11+ ghlz = ghJot (H 7o )
dIn A PW dln A P
LA Al) (G PYN L dinAlp) (0 PUN e, (109)
dp ) dyp o)
! pP® 3 2 pP® PN dln A
B+ (2-3=— )L+ kly — ZkJy —2——ko + (2 - 3—— | == ((p)scv’b:(), (110)
a p(”) 5 5 p(V) p(”) d(p

in which we have defined
240
[aare(9) fww. a1

whose evolution can be obtained by multiplying EE0®) by
47 /pa* and integrating ovedqq?e(q/€)> fo(q):

m
Jo= ——
o

/ |20 |20 PON dln A
T+ (23— ) Jo+kJi+15—n + (23 M@’Joz . (112)
a p(”) p(”) ®

Note that the fluid approximation is characterised/y=  This can be confirmed by observing thatAf") — 5(*)/3,
0,1,2 for I, and¢ = 0, 1 for J,. We note also that to ensure then the terms that involvéIn A/dy do not vanish, as they

consistency we have used the following approximation: should for massless neutrinos (cf. SBC 4). The reason for
A A this is that the fluid approximation itself relies on the aspu
dafol 2m2 ~ [ dof, L tion that massive neutrinos are non-relativistic. Consedjy,
afo zam = afo—-. . . - :
€ € the fluid approximation breaks down in the case of massless

Héeutrinos, for whichum = 0 < ¢ instead ofam > ¢. The

The above equations do not reduce to the equations for t . . . )
case of standard massive neutrinos with no scalar cougling,

¢ =0, 1,2 moments of massless neutrinos in the limit— 0.
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the other hand, can be recovered by settiig) = 1. which are valid up to the linear order in perturbations anaco
One may wonder whether or nff, Jo, I1, I can be identi-  sistent with the fluid approximation. Note that the correxs

fied with A (), 3x7 ) /p) v,y andIl,, /p(*) respectively, to the heat flux and anisotropic stress due to the spatial vari

whereA, is the neutrino density contrast angd, the pecu-  ation of the neutrino mass are at most second order in pertur-

liar velocity. This is the case for standard uncoupled nvassi bations and can therefore be neglected in our study.

neutrinos. However, in the coupled case the answer is no, and

one could check that the conservation equation, By does

not hold in this case if the above mapping is done. The reason

lies in the spatial variation of the neutrino mass= A(¢)m,

whose contribution should be added to the components of the

perturbed energy momentum. Doing so, the above quantities

are then related as

B 4 @ 5 5, dInA(p)
A(V) = IO + W /dq?a m foTé—
P®Y dlnA
g (1520 dnAl) (113)
p(v) de
) P®) dln A(p)
o 3T T a v (t14)
vy =11, (115) Finally, it can be checked the completed variables, defined
I in Eqs. @13-[119), satisfy the conservation equations in the
_((”)) =1L = 7, (116) Einstein frame, Eq8), up to linear order:
p v

" dln A ) p) P® 4 PW
(,,)+3(a + 22 (‘p)go’) ( - A(,,))+(1+—) k2 + kg, — 35 (1+—>w

a de OO 5@ @ 5@
dln A(p) PWYN |, d?InA(p) PN B
_T 1_3ﬁ(”) & — 12 1 _3ﬁ(”) ©'& =0(117)
! p(v) P (v) p(v) p(v)
, a P X 2 P dln A(p) P , B
U(U) + E (1 - 3W) V) — kw + gkﬂ(y) + (1 + W kw + T 1-— 3@ ((p V) — kg) = 0(118)

These equations reduce to those in the case of massless neuitn which the superscript’) stands for K-mouflage. Using
nos whenP™") — 5()/3 and X7} — p(")A (/3. More-  Egs. @), up to linear order, its components are given by
over, whenP) — 0 and X?(*) — 0 the Euler equation

L ) (K) — 22 _ At
reduces to the case of non-relativistic matter, but notetkis p = Kq¢" — M'K, (120)
is not the case for the continuity equation due to our redefini P = M*K, (121)
tion in Eq. B). ¢ = K.V .0, (122)
x5 = o, (123)

1
These reduce to the results of a quintessence scalar fidid wit
no potential wher (o) = o.

The background equation of motion of the scalar field can

D. Scalar field equation be read from Eq4]) as

0= (K,+20K,,)p+3K,Hp (124)
From the Lagrangian density of the K-mouflage field spec- +d1nA(9") (ﬁ(u) _ 3p(u)) + M (ﬁ(c) + ﬁ(b)) ,
ified in Eq. B9), one obtains the energy-momentum tensor for de de

the scalar field as where we have omitted the overbars on quantities sudki as

ande, to lighten the notation.
The perturbed equation of motion can be obtained by taking
T = K,V,0Vp — M Kg,., (119)  the covariant spatial derivative of E@), and we get
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(Ko +20K,0) Vap + (60Koo + 402 Kooy) g@agb + K0V 4 KoVl 4+ 20K 500V 0 + K,V Vi

dIn A(p) /= ) ) dA(p) (e (€ . & (b
+T(CQP — 3Vl )+—d(p (;ap Vap )

d*In A(p) 5(v) p)) % d?A(e) 5¢) 1 5(0)) ¥

7(" - 3P )Va“cTa?(” +7) Vap = 0.0125)

Moving the above equation te-space yields

/

11
4 (60K 0 +40°Ky00) ‘p—/} ¢
a ®

2 7[111‘1# ~(v) _ (v) 2 L“l% —~(c) —~(b) 2
—i—[ng + 3 (p 3P )a + 5 (p +p )a &

(Ko +20K,0)&" + [(21{0 — 20K, — 40%Kyo0)

dln A(p) _(v) dA(p) [ =
! SR (A _axp (1)) 42 o 2 (o) (b) 2
+K,0'kZ + 1 (p Ay —3& ) a® + 1 (p Ay +p A(b)) a

/
+ (K, +20K,,) o'w' + [2 (Ko +50K00 4 20°Ko00) ¢" + (Ko — 40 Koo — 40° K00 %4 w=0. (126)

Using this equation, one could check that the total energy- For numerical considerations, it is more convenient tottrea
momentum tensor for matter species that couple to the scaléne scalar field with units af/py, i.e., we make the following
field (cold dark matter, baryons and massive neutrinos)ns co field redefinition:
served up to linear order, even though each of the individual
component is not conserved as a consequence of the scalar
coupling. Recall that the energy momentum tensors for pho- © + p/Mp1. (129)
tons and massless neutrinos are not affected by this cauplin o
and therefore are individually conserved. Such a checkef thVe& can also writél/* as
global conservation equations constitutes a robust \idida M* = \2M2 H? (130)
of the equations derived so far. 0’

in which X is the newly-defined dimensionless parameter. The
condition that the K-mouflage field drives the current aaeele
IV. NUMERICAL RESULTS ated cosmic expansion implies that- O(1).

According to these considerations, the K-mouflage model is
specified by four dimensionless parametefsisy, m, 3, A}.
However, the value ok can be fixed by the condition that the
o ) i K-mouflage field has a present-day energy density that makes
For the numerical implementation one needs to specify thene Unijverse spatially flat (non-flat models can also be ebnsi

following: (i) the functional form ofK () in Eq. 89 and its  gred, but these are beyond the scope of the current paper):
parameters, (i) the functional form aff( ) in Eq. [3) and the

parameters therein, and (i) the value of the K-mouflagesmas  Qxo = 1 — Q40 — Qeo — Qo — Qo — Q0o = 0, (131)
scaleM, which appears in the definition\/4 = %V”gpv#gp.

A. Numerical implementation and model parameters

- . whereQ,o = pio/paro IS the fractional energy density of the
In this paper, we follow([14. 19] and consider i-th species today angl,, = 3HZ M3, is the critical density
K(o) = -1+ 0+ Ko™ (127) (note that, for generality, we have included both massless (

and massivey) neutrinos). This way the dimensionality of the
in which K, is a real dimensionless parameter and> 2 a K-mouflage part of the parameter space is reduced from four

dimensionless integer. We consider also to three. The expression fercan then be written as
1
A(p) = exp (Bp/Mpy), (128) o= Wv“wvu% (132)

whereg is a another dimensionless model parameter that deg,q the coupling function as
termines the strength of the coupling. Note that i 0, then
A(p) = 1, which corresponds to the standard uncoupled case. A(p) = exp (Byp) . (133)
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Accordingly, in Egs.[24 [128 [I28), » and¢ are considered ter power spectra. We shall focus on a number of combina-
as dimensionless, provided the energy densities and pesssuions of K-mouflage parameters to illustrate the relativédiz
for dark matter, baryons and massive neutrinos are divigied bphenomenology of the model, paying particular attention to
MZ3,. We will use the redefined equations in our numericalthe degeneracies between the K-mouflage parameters and the
calculations, but for brevity will not present these redefin summed mass of active neutrindsp,,. This will help us pre-
equations here. dict the types of observational constraints that can beeglac
For numerical convenience, linear perturbations are impleupon this model.
mented in the frame where = 0. This is the so-called cold For the time being, we analyse the following three scenar-
dark matter frame (which is coincident with the synchronoudos: (i) K-mouflage withYm, = 0, (i) ACDM model with
gauge) in standard uncoupled models, but in the coupled cas&m,, # 0, and (iii) K-mouflage with2m,, # 0.
the frame comoving with cold dark matter and the one where
w = 0 are not the same. This will not affect our conclusions,
since the choice of frame has a negligible impact on the matte
power spectrum on the scales where we have data, and since
CMB temperature anisotropies and the lensing potential are

B. K-mouflage with ¥m, =0

frame-independent.

We sett and¢’ to zero as our initial conditions for the scalar
field perturbation, and we have checked that changing them
values different from zero does not affect the numericalltes
noticeably, provided the values are not too exotic (nortiexo
here means that the values chosen should guarantee that the

mouflage density perturbation is much smaller than its bacI\-/e

ground density to remain in the linear perturbation regime)
We choose to implement the homogeneous and linear pe
turbation dynamics of the K-mouflage model into the publicly
available @mB code [28]. We independently developed two
versions of modified @vB code which are in excellentagree-
ment. We have also checked that ouxMB solutions satisfy

the global conservation equations at both the backgroudd an

linear perturbations levels, and for all matter species. 0
we adopt a simple bisection trial-and-error method to fisd it
value with al0—° accuracy. Our results also agree very well
with the numerical solver used in [18,/19]. These robusstest
make us confident about our codes and results.

induced by the K-mouflage coupling relative to the standar
ACDM paradigm. For this reason, we shall compare these twi
model predictions for the fixed set of cosmological paransete

{TCMB, Nett, Qeoh?, Quoh?, b, ng, 109 A, 7’}

= {2.73,3.046,0.118,0.0221, 0.68,0.964, 2.17,0.864},
(134)

whereh = H,/(100km/s/Mpc) is the dimensionless present
day Hubble expansion rate,, A, are, respectively, the scalar
spectral index and amplitude (gi,o; = 0.05 Mpc ') of the
power spectrum of the primordial scalar fluctuatiofsyg

is the CMB monopole temperature today (in K)is the op-
tical depth to reionisation and/.¢; is the effective number
of neutrino-like relativistic degrees of freedom. Notettf¥g,
and)., are hatted and defined égc = pu,c/per- This choice

r:fer density perturbation (see Section 111.C1 lof/[19]). listh

Q

Considering first the effects on the matter power spectrum
(bottom panels of Fidl)), compared to the CDM paradigm,

tvf?\:e find that the result depends qualitatively on the sigR gf

particular, the K-mouflage model predicts more clustgrin
than ACDM for Ky > 0, and less clustering fak, < 0. On

per horizon scaleg (< 2 x 10~*hMpc—1), the modifica-

ns are scale-independent on the matter power spectrom. O
ry large scales, terms involving powerskobecome negli-
ible, which effectively eliminates thiedependence from the
gquations. The modifications toCDM on these large scales
are driven by the modified expansion history, time variatibn
particle masses and clustering of the K-mouflage field (simil
to that of the quintessence field on horizon scales).

Fork > 0.01 hMpc~!, the modifications are again scale-
independent but the size is different. This ‘plateau’ inrisla-
tive difference fromACDM is reached at smaller scales, if the
deviation fromACDM is larger. On these sub-horizon scales,
the terms involving powers of dominate in the equations,
and the static approximation of [19] holds, in which the acal
field density perturbation is negligible compared with theg:m

t

regime, the scalar field affects matter clustering through t
modified expansion history, the varying particle masses, th
fifth force, and the frictional force, which is itself a conse
guence of varying particle masses.

The bottom panels of Fidfl also show that increasing the
coupling strengtl® leads to a stronger deviation frahCDM.
This can be seen by comparing the blge= 0.2) and the red
(8 = 0.1) curves. Finally, for the K-mouflage models stud-
ied here, the effect of increasing the exponents to boost
the size of the modifications on all scaleskif > 0. How-
ever, forKy < 0 (orange curves), we find that increasimg
increases the difference froACDM on small scales, but sup-
presses it on large scales. The detailed interplay of thadtnp
of Ky, m and3 on the growth of structure gives room for de-
generate effects to arise. Some of these degeneraciesheight
broken by considerations of theoretical stability![20] &md

is somewhat arbitrary but will have some impact when com-observational constraints with different datasets (as ise d
paring K-mouflage effects on the matter and lensing potentiacuss below).

power spectra. (The motivation for this choice is that itis t
hatted matter density that obeys the usual continuity equa-
tion and decreases as? at the background level.)

The above results for the matter power spectrum are in good
agreement with the estimations presented ih [19]. In therlat
it is shown that ifKy > 0 is sufficiently large, then the K-

Below, we analyse the impact the K-mouflage field has ormouflage model approacha&£DM. We have confirmed this
the CMB temperature, CMB lensing potential and linear mat+esult with our @MB versions, as well. This suggests that the
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data from galaxy clustering (lower left panel of Hijj.should  lensing potential power spectrum can also be affected by the
not put any upper limits ot , given thatACDM currently  values ofs andm, and as a result, we expect that current data

provides a reasonably good fit. Our results indicate that fomay be able to place constraints on these parameters as well.
Ky ~ O(100) ands ~ O(0.1), the size of the deviation from

ACDM is at the level of a few percent. We have also checked |t is often said that both the matter power spectrum and the
that decreasingy, and increasing’ boosts these differences |ensing potential power spectrum are sensitive probeseof th
further (not shown). From this we anticipate that current an cjystering of matter in the Universe. The linear matter powe
future data should at least be able to place lower bounds ogpectrum is the Fourier transform of the two-point corielat
Ko and upper bounds ofi. The stringency of such bounds fynction of the linear densityontrastof matters = 8p,, /.
can only be fully determined through a detailed explorationThe |ensing potential, on the other hand, is a weighted proje
of the parameter space. Nevertheless, a robust compagson Rion of the gravitational potential on the two-dimensiosi,
tween theory and galaxy clustering data requires also apropyhich is obtained by integrating along the lines of sightriro
modelling of the effects of galaxy and halo bias, redship today up to the recombination epo¢h/[32]. The CMB lensing
distortions, and mode couplings on smaller scales induged byotential power spectrum therefore probes the matter gjensi
nonlinearities in the density field. All of these can only be perturbationssince the latter directly control the gravitational
properly addressed with N-body simulations, which is beyon potential via Eq[T0). Hence, it might be confusing to observe
the scope of the present work. that some of the K-mouflage parameters seem to have oppo-
Due to these complications in comparing linear theory presite effects on the amplitudes of these two spectra. Inqarti
dictions with the large scale clustering of galaxies, ifkely  lar, the case fok, = —5 < 0 in Fig.[D boosts the amplitude
that the CMB data (which is more robust and less prone to thef the lensing potential power spectrum, but suppresséstha
effects of nonlinearities) will be more useful in constingn  the matter power spectrum, and vice-versaifgr= 100 > 0.
the K-mouflage model. The effects of the K-mouflage field onThis seems contradictory since both probes are expectez to b
the CMB temperature power spectrum are shown in the toproportional to the amount by which matter clusters.
panels of Figll On small angular scales (higis), the relative
difference fromACDM shows a series of oscillations that are The above apparent tension follows from a nontrivial con-

roughly in phase opposition for the two valuesiof shown.  sequence of the scalar coupling in the K-mouflage model. For
These oscillations of the relative difference follow fromad| all the model Considered, the input C05m0|ogica| parameter
horizontal shifts in the CMB power spectrum (barg_ly vjsible Q0 andQ are identical and, as already mentioned, they are
in the upper left panel of Fidl) caused by the modifications gefined as the fraction of hatted matter densities, scaing a
to the expansion _h|story in the K-mouflag_e_ model. The fact,-3 5ng being conserved at the background and perturbed
that these oscillations are in phase oppositionf@r= 100 |eyels, This choice is somewhat arbitrary and alternatives
and Ky = —5, indicates that these two cases shift the overqid have normalized the models with fixed valuesgf
all spectrum in opposite directions. Indeed, as first shawn i gnqq . Background and linear perturbations in our modified
[1€], if Ko > 0, then the Hubble expansion rate is smaller cayg are solved in the Einstein frame, where the hatted mat-
th_an inACDM at late times. This shifts the _spectrum towardsier gensities angerturbations(but not the densitgontrasts
higher?. Qonversely, the spectrum gets shﬂ‘tgd towqrds loweg e multiplied byA (). Indeed, the nonmininal coupling of
¢valuesifKy < 0.0n large scales (low), we find again that  nonre|ativistic particles to the scalar field induce a tiragiv
the deviations from\CDM depend qualitatively on the sign ation of the particle mass in the Einstein frame and thiseextr
of K. This region of the CMB power spectrum is mostly de- scajing on the particle masses translates directly intethe
termined by the integrated Sachs-Wolfe (ISW) effect, whicheqy density of the matter particles, at both the background
is a secondary anisotropy induced on the temperature of CMB, perturbation levels (recall the discussion about B@). (
photons as they cross time-evolving gravitational po&#iti ) gince the gravitational potential is related to the Hiirst
The ISW effectis sensitive to the details of the late-timekea  frame matteperturbationsit is also sensitive to the effects of
ground expansion history, but in the K-mouflage models, thgne coupling. On the other hand, the density contrast isgthe
fifth force can also have a strong impact on the time variationjg of two densities, thus it is not affected by the couplimgla
of the potential. However, for these very large angularesal s frame independent. This explains the opposite effectate g
the cosmic variance makes it difficult for stringent conisti®® o the matter and lensing potential power spectra: consider
to be derived. As for the case of the matter power spectrumpg pegative values of, the resulting fifth-force weakens
changes in the values of the coupling strengind exponent  {he density contrast and the matter power spectrum, but on
m can amplify the size of the modificationsAcCDM. the other handA(y) > 1 atz = 0 which amplifies the den-
The K-mouflage model has also an important effect on thesity perturbations sufficiently to change the sign of theiaev
lensing potential power spectrum (middle panels of B)y. tion of the gravitational potential fro’dCDM in the Poisson
For the range of-values spanned by the Planck data, we findequation. The amplified gravitational potential then letuls
that the two values oK, lead to different amplitudes for the an enhancement of the lensing potential power spectrum. A
spectrum, indicating that these data may be able to putgtrorsimilar conclusion can be drawn whésy > 0. This rather
constraints onK,. For the parameter values shown, the dif- nontrivial aspect of the K-mouflage model illustrates itshri
ferences to\CDM are more pronounced at lowéfor which ~ phenomenology, and will be the focus of a more in-depth anal-
there is currently no data available. The amplitude of theBCM ysis in future work.
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C. ACDMwith ¥m, # 0 the K-mouflage parameters on the growth of structure leave
room for some breaking of degeneracies, although we recall,

Before analysing the effects of massive neutrinos in the K€omparisons with galaxy clustering data require a bettet-mo
mouflage model, it is instructive to remind ourselves oftthei elling of certain aspects of nonlinear structure formation
role in standard\CDM. This is shown in Fig2 for three val- Finally, since massive neutrinos also lower the amplituide o
ues ofSm,,. We consider three active neutrinos with a degenhe lensing potential power spectrum, then some of the boost
erate mass spectrum, because for the current level of fmecis ing effects of the K-mouflage field for negative valuesiaf
of the data one can safely ignore the mass splittings. Fad fixe(cf. Fig.[) can be cancelled out. However, recall that the peak
Qeoh? andQyoh?, increasing the value atm,, increases the Positions of the CMB are likely to determine a degeneracy be-
expansion rate at late times, after the neutrinos become nofveen larger values dfm,, and positive valuesy, not nega-
relativistic. Consequently, adding massive neutrinos lelads ~ tive. As a resul_t, combined constraints from the CMB temper-
to the appearance of oscillations wittvhen one takes the rel- ature and lensing spectrum have the potential to partlykorea
ative difference to a model without massive neutrinos (uppethis degeneracy. For instance, the middle panels o@sow
right panel of Figl). In particular, increasingm,, shifts the  that increasingm,, on the K-mouflage model with', > 0
power spectrum slightly towards low&rwhich is opposite to ~ (Pink curve), further suppresses the amplitude of the repsi
the effect of positive values ok, displayed in Figlll (note ~ POWer spectrum, compared ta\CDM model without mas-
that the oscillations induced Bm,, in the ACDM model are ~ Sive neutrinos. Consequently, if the CMB peak positiondatou
in phase opposition to those inducedA&y > 0). This suggests €ope with large massive neutrino fractions for a posifiig
that the peak positions of the CMB temperature data might dethis may still lead to an amplitude of the lensing power spec-
termine a strong degeneracy betwdénandXm,,. The im-  trum that is too low to be compatible with the observations.
pact neutrinos have on larger angular scales should berharde
to distinguish because of the weaker constraining powereof t

CMB data there. V. SUMMARY AND DISCUSSION
Furthermore, massive neutrinos also lower the amplitudes
of the linear matter and CMB lensing potential power spectra A.  Summary

Note that here, contrary to the effects of the scalar cogplin
the ch_anges in the amplitude of these two spectra are consis- |n this paper, we have derived the fully covariant and gauge
tentwith one another. The presence of a sufficiently laefr  invariant linearly perturbed equations for cosmologie®xeh
tion of massive neutrinos can also lead to scale dependenggscalar degree of freedom couples directly to matter. In our
in the growth of the matter fluctuations, because of the fregjerivation we have analysed, in detail, the case for eadfeof t
streaming of massive neutrinos (cf. lower panels of Bjg. species that make up the energy content of the Universe. We
aimed at being comprehensive, in the hope that the equations
presented in this paper can serve as useful referencegudos fu
D. K-mouflage with ¥m,, # 0 works.
Although our equations are general, we have focused
Figure@serves to confirm and illustrate some of the degenspecifically on the case where the scalar field is a K-mouflage
eracies between the K-mouflage parametersdang, which  field. The Lagrangian structure of such a field is charactdris
have been anticipated in the discussion above. In partidnla by non-canonical kinetic terms that can hide the effectbef t
terms of the high%part of the CMB temperature power spec- coupling to matter in regions where the gravitational aeeel
trum in the K-mouflage models, we note that the presence dion (i.e. first derivatives of the gravitational potenfiekceeds
massive neutrinos can considerably cancel out the osoilat some threshold. The study presented here, however, focuses
that appear in the relative difference td&DM model with-  on linear theory, for which the effects of the screening mech
out massive neutrinos. Following from the discussion aboveanism do not play a role. We have solved our set of equations
this is because the massive neutrinos and the K-mouflage para suitably modified version of theA™B code.

rameters can shift the spectrum horizontally in oppositedi One of our main goals was to determine the impact of the K-
tions, and in such a way to preserve the position of the amoustmouflage model on observables such as the CMB temperature,
peaks (pink curve in the upper right panel of &B}y. CMB lensing potential, and linear matter power spectrum. We

Massive neutrinos cluster less strongly than cold dark matwant to compare our results with those of the stand@@®M
ter, and so their presence leads to an overall suppresstha of paradigm, and as a result, we have used a fixed set of cosmo-
total matter clustering power. Their free streaming introes  logical parameters for both models. With this spirit, weyonl
also scale dependences in the growth of structure, which belowed ourselves to vary the summed mass of the three active
come more prominent on smaller scales. These effects coulteutrinos (to illustrate potential degeneracies) and #rarp-
conspire with the scale-independent boosts in the clusteri eters that enter the K-mouflage Lagrangian.
predicted by some of the K-mouflage parameter combinations We found that the coupled K-mouflage field modifies the
on sub-horizon scales (e By > 0) to leave the matter power background dynamics and hence shifts the CMB temperature
spectrum nearly unchanged compared wi@DM (cf. lower- ~ power spectrum horizontally. This translates into a sesfes
right panel of Figl8lfor £ > 0.1h/Mpc). However, the differ-  oscillations when we look at the relative differenceMGDM.
ences in the scale-dependent features introducéthipyand  For certain K-mouflage parameters, however, this effect can
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be cancelled by having massive neutrinos. This can potgntia gravity [36,40[ 41] can also lead to background solutioms th
lead to interesting degeneracies between the modification tare different fromACDM, in a way that its impact on the peak
gravity and neutrinos masses. The K-mouflage model can algmositions might also prefer nonzero values ¥or,. On the
have a visible impact on the larger angular scales of the CMBther hand, chameleon models typically possess free fincti
temperature power spectrum, through its modificationséo ththat can be tuned to yield exatCDM expansion histories.

ISW effect. However, it is unlikely that this signal wouldake On linear sub-horizon scales, the effects of the K-mouflage
to significant constraints, given the large size of the éneds  and Galileon fields on the growth of structure are both scale
due to cosmic variance. independent. On even smaller scales, however, the two sodel

Our results show that matter clustering can also be signifreact differently to the nonlinear density field due to thuir
icantly affected by the coupled K-mouflage field, especiallyferent screening mechanisms. For Galileons, N-body simula
on sub-horizon scales, where the scalar coupling with mattetions [33/ 38| 39] show that the effects of the screening mech
has the strongest impact. Again, massive neutrinos caretancanism start to become important on scaleg 0.1h/Mpc,
out some of the effects, but introduce also scale-depergencwhich correspond to the typical size of dark matter clusters
on the growth that might be used to break some degeneraci@s the K-mouflage model, on the other hand, the screening
and impose constraints on the model parameters. We remamiechanism only becomes important on much smaller scales
that a proper use of galaxy clustering data to constrain modg > 10h/Mpc ,[20]. On scales of.1 AMpc™! < k <
els of modified gravity should only be performed after a more10hMpc ™!, the nonlinear regime of structure formation in
careful analysis of the nonlinear regime of structure fdiam  the K-mouflage model should therefore resemble more the
(see e.g. Sec. IV.D. of [33]). case of Nonlocal gravity models [36], for which the modifi-

The K-mouflage models which enhance (suppress) the antations to gravity are not screened. For chameleon models,
plitude of the linear matter power spectrum, seem to suppreshe environmentally dependent Compton wavelength of the
(enhance) the amplitude of the lensing potential power-speachameleon field leads to a scale-dependent growth, even on
trum. This seems to be contradictory at first sight, sincé botlinear scales. However, the current observational coinssra
observables should probe the overall matter clusterinig.i€h  on chameleon model parameters essentially make these mod-
because of a rather nontrivial effect of the scalar couping els’ large scale structure predictions to be nearly unuisti
the magnitude of the gravitational potentials. The latteres-  guishable frorACDM (see e.g![42]).
sentially determined by the sizes of the (absolute) depsity ~ As we hope to have shown above, the variety and size of
turbations, which are rescaled in the same way as mattés parthe observational signatures that characterise the K-ageifl
cle masses. However, when one computes the density contragbdel leave us with an interesting playground to explore sev
to calculate the matter power spectrum, the time dependencera| degeneracies with a number of cosmological parameters
in the matter density perturbation and background matter de |n this paper, we have focused specifically on the case of mas-
sity caused by varying particle masses cancel out. This<ffe sjve neutrinos, but we note that degeneracies with other pa-
tively leads to different qualitative predictions on themm  rameters, such @sand(.,h2, could also be present, because
tudes of the matter and lensing potential power spectrd 8uc poth have an impact on the expansion history and clustering
feature of the K-mouflage model may lead to interesting constrength. The K-mouflage model is different from other pop-
straints on the model’s parameter space. ular modified gravity models, making it of interest for fugth

investigations. In particular, in a coming work we will dete
. . mine its overall goodness-of-fit, by exploring the globas-co
B. Discussion and Outlook mological parameter space with Monte Carlo Markov Chain
methods.

We conclude by briefly comparing the predictions of the K-
mouflage model with those of other recently studied modified
gravity models.

The background evolution of the covariant Galileon model
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FIG. 2. CMB temperature angular power spectrum (top leéfising potential power spectrum (middle left) and mattengrospectrum
(bottom left) for ACDM with Q,h* = 0.64 x 10~ (dotted brown) corresponding 8, m, = 0.06 eV, Q,h* = 1.28 x 10~ (dashed
brown) corresponding tp°, m,, = 0.12 eV andQ, h? = 1.92 x 10~3 (solid brown) corresponding >, m, = 0.18 eV. We consider three
active neutrinos with a degenerate mass spectrum. Theagésuthe K-mouflage model witio = —5, 5 = 0.2, m = 3 are also displayed
for comparison (solid orange line). The right panels shawbrresponding relative differencest€DM with Xm, = 0 (solid black). In the
upper left and middle left panels, the data points with ér@os correspond, respectively, to the CMB temperature emglrig potential power
spectra as measured by the Planck satellite [30]. In therltefiepanel, the data points show the SDSS-DR7 Luminous Radx$ (LRG)
host halo power spectrum as presented ih [31].
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FIG. 3. CMB temperature angular power spectrum (top leéfising potential power spectrum (middle left) and mattengrospectrum
(bottom left), as well as the corresponding relative dédfese between the K-mouflage aAdCDM models (right panels), fof{, = 50,

B8 =102 m=3andtm, = 0.18 eV (Q A% = 1.92 x 1073, in pink). TheACDM model used in the ratios is that wittrn, = 0 (solid
black). For comparison, the results for the LCDM model withssive neutrinos ard, h? = 1.92 x 10~2 (brown) and for the K-mouflage
model with same parameters afdh,, = 0 (blue) have been displayed. In the upper left and middlepifiels, the data points with errorbars
correspond, respectively, to the CMB temperature andngnsdtential power spectra as measured by the Planck sa(&lli]. In the lower
left panel, the data points show the SDSS-DR7 Luminous Réak@&_RG) host halo power spectrum as presented in [31].



