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ABSTRACT

Software architectures are meant to represent complex systems often composed by
many components interrelated by different communication facilities and deployed
on complex infrastructures. Architecture models depict systems at different levels of
detail and must take into account multiple requirements and constraints. Without an
appropriate documentation, retrieving the links between a model and its concerns
may be troublesome. By loosing the design rationale, part of the architectural
knowledge is lost, but recording such knowledge and the links to architectural parts
is highly time consuming, even if its utility is vastly recognized.

With the multiplicity of deployment constraints, in terms of computational
architectures or storage resources for example, the amount of explored alternatives
also increases. Likewise, those alternatives are meaningful piece of information and
are an important part of the architectural knowledge.

Many versions of a system may also co-exist and the delta between each model
is sometimes arduous to identify. The traceability of evolutions between subsequent
versions of a model may be useful to isolate reusable architectural patterns. The
other way around, injected patterns may be scattered all over a model so that they
are not recognizable anymore.

In the present thesis, we propose an architectural framework that closely relates
software architectures to their requirements with their rationale, mainly in terms
of design decisions. The framework relies on specific languages for component-
based modeling, requirement listings and model transformations. We propose a
transformation-wise approach where architectural changes are applied and docu-
mented by stepwise model transformations. These transformations play the role
of traceable model evolutions that may be extracted and reproducible in different
contexts, under some conditions.

Meanwhile, architecturally-significant requirements are recorded in particular
listings where software engineers may refine their definitions or explore design
alternative solutions. All these requirements with their decisions may be further
documented with their rationale to explain the reasons why the decision has been
taken, its strengths, weaknesses, hypotheses or constraints under which they have
been evaluated.
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RÉSUMÉ

L’architecture d’un programme informatique sert à décrire des systèmes complexes,
souvent composés par de nombreux composants logiciels inter-connectés par divers
moyens de communications et déployés sur des infrastructures complexes. Un
modèle d’architecture permet de représenter un système à différents niveaux de
détail et doit prendre en compte de multiples exigences et contraintes. Sans une
documentation appropriée, retrouver les liens entre un modèle et ses objectifs peut
devenir problématique. En perdant les justifications derrière un design, une partie
de la connaissance architecturale est perdue. Cependant, enregistrer ce savoir et les
liens entre les parties d’une architecture consomme beaucoup de temps, même si
son utilité est communément reconnue.

Avec la multitude des contraintes de déploiement, en termes d’architecture
physique de calcul ou de ressources de stockage, le nombre d’alternatives qui peu-
vent être explorées augmente. De même, ces alternatives sont d’importantes infor-
mations et représentent une partie conséquente de la connaissance architecturale.

Plusieurs versions d’un système peuvent co-exister et le delta entre chaque mod-
èle est parfois difficilement identifiable. La traçabilité des évolutions entre versions
successives d’un modèle peut être utile pour isoler des patrons architecturaux. A
l’opposé, des patrons injectés peuvent être disséminés au sein d’un modèle, les
rendant non-identifiables a posteriori.

Dans cette dissertation, nous proposons un cadre architectural reliant étroite-
ment une architecture système, ses exigences avec ses principes, dont les décisions
de design. Ce cadre se base sur des langages spécifiques pour modéliser des sys-
tèmes orienté-composants, une liste d’exigences et des transformations de modèles.
Nous proposons une approche itérativo-transformationnelle où les changements
architecturaux sont appliqués et documentés par transformations progressives. Ces
transformations jouent le rôle d’évolutions traçables qui peuvent être extraites et
reproduites dans divers contextes, sous certaines conditions.

Parallèlement, les exigences architecturales sont enregistrées dans des listings
dédiés où les ingénieurs logiciels peuvent affiner leurs définitions ou explorer
d’autres alternatives de design. Toutes ces exigences, avec leurs décisions, peuvent
être justifiées plus en détail avec leurs forces, faiblesses, hypothèses ou contraintes
sous lesquelles ces décisions ont été évaluées.
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INTRODUCTION

Context and Problem Statement

The design and maintenance of software architectures are important challenges in
the software engineering practice. For years now, systems are moving from an iso-
lated and monolithic implementation deployed on a single platform to distributed
and highly-decentralized combinations of components available on multiple techno-
logical devices. Furthermore, systems are involving heterogeneous teams that evolve
in time and space. As business organizations have to cope with changes in their
customers’ habits, their pieces of software have to evolve too. Such maintenance
and continuous evolution may lead to many problems as the system is modified
by many people, but its structural representation is not updated accordingly. After
some time it becomes complicated to understand the link between requirements,
high-level and detailed architectural representations, and their rationale.

Problem statement (based on the IRATI project [Salvestrini et al., 2013])

A particular software system may be composed by many components, interre-
lated by many different communication facilities and deployed on complex target
infrastructures. It is often relevant to separate between an abstract description of an
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architecture, a running instance and its actual mapping onto computational nodes.
Frequently, software engineers find it convenient to annotate models or architectural
parts with user-defined properties to increase the understandability of models too.

An architecture model must depict a system at different levels of detail and must
take into account a series of requirements and constraints. Without an appropriate
documentation, the links between a model and its realized concerns are trouble-
some to retrieve. As we will discuss in this dissertation, many researchers have
investigated different solutions to represent software architectures and trace the
design decisions behind their representations. By loosing the design rationale, part
of the architectural knowledge is lost, but recording such knowledge and the links to
architectural parts is highly time consuming, even if its utility is vastly recognized.

With the multiplicity of deployment constraints, for example in terms of target
operating systems, available computational, storage or communication resources,
the quantity of alternatives explored by software designers also increases. Likewise,
those alternatives are meaningful documentation support on the long run and are
part of the architectural knowledge.

Many versions of a system may also co-exist and the delta between each model
is sometimes arduous to isolate. Similarly, the traceability of evolutions between
models may be valuable to extract potential reusable solutions ex post. The other
way around, architectural patterns offer turnkey-style solutions that may be injected
in a model to address a recurrent concern, but are sometimes diluted all over a
model so that they are not recognizable anymore.

An Architectural Framework

Architectural frameworks are meant to offer a foundation to represent software archi-
tecture with the involved parties and targeted concerns [ISO/IEC/IEEE, 2011]. Many
frameworks, modeling languages or documentation facilities have been proposed,
we will discuss them in details in the following chapter, but they either miss impor-
tant structural concepts, do not consider the relations to the requirements, omit
model analysis facilities or are complicated to be understood by non-practitioners.

On the other hand, combinations of dedicated approaches and tools increase the
number of models and mapping rules between these models, such that the needed
documentation time grows considerably. Tracing the design decisions and rationale
is a key feature, but with the time pressure on system development, it is sometimes
unfeasible to invest too much time on documentation activities.

In the present thesis, we propose an architectural framework dedicated to tackle
the aforesaid problems. Our framework closely relates software architectures to
their requirements with their rationale, mainly in terms of design decisions, with
specific modeling languages. Software architectures are produced through iterative
formal transformation steps, also written in a dedicated language, close to the
structural one. We call our approach transformation-wise because changes are
applied and documented by stepwise model transformations. These transformations
play the role of traceable model evolutions that may be extracted and reproducible
in different contexts, under some conditions.
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Meanwhile, architecturally-significant requirements are detailed in particular
listings were software engineers may refine their definitions, explore alternatives,
highlight conflicts or implications between identified solutions. All these require-
ments and decisions may be further documented directly in the listing with dedi-
cated constructs to explain the reasons why the decision has been taken, its strengths,
weaknesses, hypotheses or constraints under which it has been evaluated.

With such a document-and-transform method, architects, as well as other stake-
holders, are able to keep a tight rein on the architecture with the evolution history
of the model, together with the decision-process followed by the designers to cre-
ate that particular model. Iterative design steps and evolutions are recorded as
model transformations, and any decision regarding architecturally-significant re-
quirements are also traced into specific listings, enhanced with semi-formal rela-
tionships and justifications. As we will develop in the following chapters, and as
observed during an empirical study we set up, the additional work required by our
stringent method is notably counter-balanced by the improvement in documenta-
tion in terms of a more systematic decomposition of requirements and recording of
design rationale.

We partially built our architecture language on a preliminary work by Englebert
and Vermaut [Englebert and Vermaut, 2004]. They proposed to closely relate logical
and deployment architectures, annotated with attributes. An early attribute-driven
design method was specified where components are iteratively refined into types of
architectures. The initial idea was to use Colored Petri nets [Jensen, 1996] to specify
the semantics of components, interfaces and connectors.

Thesis Contributions

Firstly, in this dissertation, we define an architecture description language that
separates the definition of building blocks, that can be instantiated, concretely as-
sembled and deployed over an abstract representation of a target infrastructure. This
3-layer language is defined upon state-of-the-art conceptual constructs with seman-
tically rich connection facilities, as well as the possibility to refine their semantics
with built-in or user-defined properties.

The second contribution is a formalization of flexible component composi-
tions, close to the duck typing in programming languages, that enables to connect
software components in an evolutionary manner. This connection facility also sep-
arates the concepts of connectors and communication protocols to reconcile the
linkages of components from their abstract specifications to their deployment on
hardware nodes.

Thirdly, an architecturally significant requirement listing, attached to architec-
ture models, is proposed to record requirements with their relationships with each
other, such as refinements, alternatives, mutual exclusions and so forth. This semi-
formal representation also encompasses the justifications behind design decisions
with dedicated rationale annotations in order to keep traces of the architectural
knowledge. A semi-formal requirement template is also introduced to systematize
the formalization of requirements.
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The fourth contribution is a specific transformation language, working on the
concrete syntax of architecture models, dedicated to modify models in a fully-
traceable way. This language is able to transform a model in any way and is meant
to inject new concerns or architectural patterns in a formal manner.

Based on all these contributions, a software architecture framework is pro-
posed, where architecture models are iteratively transformed to implement new
concerns expressed in their referenced requirement listings. This transformation-
wise method aims at systematically record modifications in architectural models
and keep a full history of explored alternatives with their rationale.

As a last contribution, a tool support for the architecture framework is intro-
duced, based on the Eclipse ecosystem, to design software architectures through
model transformation, record all their requirements, design rationale and explored
alternatives.

Thesis Content

This dissertation is organized in seven chapters, with the following content:
In Chapter 1, after a brief historical overview of the software and model driven

engineering fields, we first cross over the state of the art for structural and architec-
tural modeling languages. We discuss about existing design decisions and rationale
recording techniques that are relevant to our domain. We present some representa-
tive model transformation approaches from each paradigm.

In Chapter 2, we introduce our research questions articulated around software
architecture modeling (RQ1), architectural knowledge (RQ2) and systematic iterative
architectural design (RQ3).

In Chapter 3, we introduce a 3-layer architecture description language that
integrates abstract building blocks definition, assemblage of running instances,
deployment constraints and user-defined properties. We propose a special type of
component assembly verification, close to the duck typing system. We present a
case study over an online library system that we use all over this dissertation and
illustrate the architectural modeling constructs with this case study.

In Chapter 4, we depict a semi-formal language to list architecturally significant
requirements and draw relationships between them. The decision making process
is captured in such listings, completed by design rationale directly inside the listing
itself. We also introduce a specific template to specify requirement descriptions in a
semi-formal manner. We provide some illustrations of requirement listings with the
online library.

In Chapter 5, we discuss the advantages of a formal modification mechanism for
software architectures in terms of traceability and evolutions. We define a specific
concrete syntax-based transformation language. This transformation language is
able to create, delete or modify any architectural element in a formal and fully trace-
able way. We give concrete examples of evolutions through model transformations
on the online library.

In Chapter 6, we combine all three aforementioned languages in an architectural
framework. We formalize the iterative design activity and compare it to a reference
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architecture design model. We introduce the tool support for the overall framework
with textual editors for all languages, a transformation engine and a Java template
generator.

In Chapter 7, we discuss the validation possibilities we envisioned and we de-
scribe the approach we selected. We detail the protocol of the comparative case
study we conducted on a class of master students at the University of Namur. We also
conducted a survey to complement the case study. We discuss the results we gath-
ered from the study, the survey and the evaluation reports written by the participants.
The applicable threats to validity are finally analyzed.

The dissertation ends with a summary of the conclusions drawn thorough the
various chapters, identifies the limitations of our approach and pinpoints some
directions for future developments and research that worth exploring.
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TECHNIQUES

1.1 A Brief Historical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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To set up the scene, we present the historical context of software engineering and
modeling techniques. As a starting point, we talk about object orientation and soft-
ware design methods, from early top-down approaches to model driven engineering.
We present a set of domain specific modeling techniques related to system architec-
tures and deployment infrastructures. We highlight notable design documentation
approaches and discuss their benefits for software development. Finally, we depict
several model transformation languages and transformation-oriented tools developed
in the industry and in the academic world.

1.1 A Brief Historical Overview

Early programming languages were mainly hardware-dependent. Each time a new
computer architecture was released, it was accompanied with its set of programming
languages. New hardwares were appearing at a regular frequency, round every one
and a half or two years, asking programmers to write new programs. This production
of new hardware created a profusion of languages with a rather short living time.
To tackle this write and throw-away problem, high-level programming languages
were designed to allow non hardware specialists to develop programs that could
be compiled, i.e. transformed into specific machine code, for a wider range of
computers.
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CHAPTER 1. SOFTWARE ENGINEERING AND MODELING TECHNIQUES

With the emergence of high-level programming languages in the 50’s and 60’s,
such as FORTRAN [Backus et al., 1957] and ALGOL 60 [Backus et al., 1960], the
need for easy support of component definition [Dahl et al., 1970] has been rapidly
expressed, where a program is defined by identifiable sub-programs, or parts, that
interact via formalized operations.

1.1.1 Object Orientation Pioneer – SIMULA 67

Object orientation concepts in programming languages were formally introduced
in the SIMULA 67 programming language [Dahl et al., 1970]. The authors set up
the basis for a high-level programming language which was a superset of ALGOL
60. SIMULA 67, augmented version of SIMULA I at first designed as a discrete event
simulation language, introduced the notions of classes with associated operators,
property inheritance between classes and garbage collection.

The outside view of an object, making available some operations regarding this
object, was separated from its inside view, dealing with the concrete implementation
of it [Broy and Denert, 2002]. The relation between both views was formalized
by Hoare’s representation function [Hoare, 1972], also called abstraction function.
This separation between an abstract specification and the concrete implementation
made possible the inheritance mechanism where one can substitute a particular
implementation to another one at compile-time for SIMULA 67.

With SIMULA 67, the ideas of encapsulation, reusability and substitutable pieces
of code were born which revealed to be a major step forward for what we call now
the software engineering practice.

1.1.2 Early Age of Software Engineering, Top-Down to Iterative

The word engineering was notably used for the first time during the 1968 NATO
Conference on Software Engineering. At that time, a major crisis was hurting the
software development industry, especially for very large systems. Projects were
often overrunning their budgets and maintenance costs were very high. A common
observation made by the software industry and universities at that time was the
« awareness of the rapidly increasing importance of computer software systems in many
activities of society » and that « software engineering is in a very rudimentary stage of
development as compared with the established branches of engineering » [Naur and
Randell, 1969].

Software design was mainly conceived as a linear process, with a lack of theo-
retical basis. However, the need for iterative design was already stressed in the late
Fifties [Larman and Basili, 2003] as well as the recording of design decisions during
the aforementioned conference [Naur and Randell, 1969]. One of the first recognized
software development method was formalized by Benington in the mid-Fifties [Ben-
ington, 1983]. This purely linear design method consists in multiple phases from
an operational plan where computer scientists and stakeholders define broadly the
requirements of the system-to-be, to the system evaluation done after the complete
testing in the production environment of the system.

8



1.1.2. Early Age of Software Engineering, Top-Down to Iterative

The first reference to an iterative design process can be found in a report from
Zurcher and Randell in 1968 [Zurcher and Randell, 1968]. They introduced the con-
cept of levels of abstraction for a model, i.e., a set of calls between sub-components
expressed in an event-based programming language, like SIMULA for example. They
proposed a hierarchical view where designers refine the definition of a component
iteratively by introducing new details at each step, going from a broad simulation
program to a very detailed one, close to a functional prototype.

Alternatively, a first attempt to add feedback loops in the top-down process was
defined by Royce in the waterfall method [Royce, 1970], wrongfully often known as a
strictly sequential life cycle. In its work, Royce notably insisted on two important
practices for software development:swrite a preliminary program design to highlight machine-related constraints,

mainly time, storage and operational constraints;swrite a substantial and accurate documentation during the whole process and
especially during the design phases.

The first recommendation was especially meaningful in its do-it-twice method
where a first prototype of the system-to-be was developed in parallel with further
system analysis and design. The pilot system could then be analyzed regarding the
identified constraints so that corrective actions could be taken on the design.

The second recommendation is still relevant for nowadays systems. As we will
detail in section 1.3, much research has highlighted the link between lacking docu-
mentation and problematic system maintenance. Documentation is crucial for the
communication between each practitioners that appears during the system devel-
opment: from requirement analysts to system designers or from system analysts to
coders. Documentation is also particularly valuable for the customer that will live
with the final product, since usually, a system is intended to evolve over time.

However, the waterfall model is not free of limitations. Its top-down approach
is often too naive so that major high-level design rework must be done because a
low-level element was not correctly specified. Second, the software evolution and
components reusability is not taken into account. Third, possible discordances
between the specification of a requirement and its implementation in the final
product are discovered very late in the development live-cycle during the acceptance
tests that are conducted at the very end of the process.

A set of alternative life-cycle models were developed to tackle the limitations
of the waterfall approach. Among them, a number of iterative design methods,
parents of Agile-based methods, were specified where a system is developed in
successive analysis-coding steps. A first proposal for iterative specification and
development was formulated by Edmonds when the requirements could not been
fully specified beforehand [Edmonds, 1974]. In his work, Edmonds envisioned the
system design through simulation models that could be validated by end-users in
successive writing and evaluation times with high implication of stakeholders.

According to Larman and Basili, the first known reports on the use of iterative
design methods with feedback-driven refinements are dated from the early seventies
in the Department of Defense of the United States [Larman and Basili, 2003]. In
their projects, software engineers always conducted a major analysis up-front the
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iterations, with review of the produced software after each iteration. In many of
these projects, from a first naive implementation of part of the system, engineers
incrementally added further functionalities up to the full implementation [Basili
and Turner, 1975].

A first discussion of an incremental technique for software development was
published by Gilb in the book Software metrics where the author advocated for a
design process controlled by metrics and introduced the term evolution for a software
as « a designed characteristic of a system development which involves gradual stepwise
change » [Gilb, 1977]. He suggested to implement a system in small steps to ease its
evaluation and to gather user feedbacks more frequently.

These early incremental and iterative design processes differ from the ones devel-
oped from the eighties where the requirements are also analyzed, i.e. refined, during
the iterations, putting the overall software development process inside iteration
loops. McCracken and Jackson argued in favor of a « heavy end-user involvement in
all phases » since even the stakeholders do not always exactly know what they want
and that user needs may change during the system development [McCracken and
Jackson, 1982].

Boehm defined the spiral model based on a repetitive development cycle without
enforcing a preliminary major requirement analysis [Boehm, 1986]. Each cycle
started by determining the objectives, the alternatives and constraints of (part of)
the system-to-build. Then, a risk analysis is performed and strategies are identified
for resolving these risks. The results of the risk resolution are then analyzed and a
plan for the next cycle phase is defined. During the risk resolution phase, a prototype
can be written and/or modified with the implementation of the selected objectives
for the current development round. Even if this method was not the first iterative
one, Boehm has been the first to formalize it and to articulate its process around risk
assessments at each iteration. The software engineering practice was now moving
from a top-down approach to more flexible method with frequent user-feedbacks
and faster response time to changing requirements.

1.1.3 Putting More Agility in Software Design Methods

In his well-known « No silver bullet » article, Brooks, a recognized IBM software
engineer, extensively praised for a switch to incremental development in order to
« grow, don’t build software » [Brooks, 1987]. At the same time, Curtis et al. con-
ducted an empirical study to investigate the communication and decision-making
processes in nineteen large system projects [Curtis et al., 1987]. They observed that
a significant part of the success relied on a cyclic learning process, ensuring involved
people shared a common vision of the system design. Iterative methods were now
quitting the up-front major requirement specification phase and were incorporating
refinement of their definitions in the iteration cycles.

Gilb extended his metrics-based design method in Principles of Software En-
gineering Management where he presented the Evolutionary Project Management
(Evo) method, still articulated around quantifiable metrics, but with time-boxed
iterations [Gilb, 1988]. The book presents a holistic and iterative framework capable
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to deal with from-scratch or running projects, as well as for software maintenance
and evolution tasks. The method is highly user- and result-centered. Each iteration
step, called evolutionary step, is planned with, among others, focused functionalities,
validation rules, constraints, assumptions, risks, costs and quantified goals that are
evaluated after each step.

Among the profusion of nascent iterative approaches, the term Rapid Applica-
tion Development (RAD) became to be extensively used by a large community of
practitioners. Based on the method defined by Martin, inspired by the Rapid Iterative
Production Prototyping method developed by Schultz, the Dynamic System Develop-
ment Method (DSDM) was born from a small group of sixteen founding members of
a devoted consortium [Larman, 2003]. This method, originally focused on software
development, is now a holistic approach also used for business change management.
Besides its highly prototype-oriented method, two main characteristics of DSDM
are a high involvement of stakeholders during the whole project and a large decision
freedom for the team members concerning the system to develop [Stapleton, 1997].

Sharing a common idea of distributed knowledge learning and decision making
process as well as a time-boxed iterations, the Scrum method, originally defined
for non-software goods by Takeuchi and Nonaka [Takeuchi and Nonaka, 1986], was
formalized by Beedle et al. around sprints, the current iteration, backlogs, the work
to be done, and daily scrum-meetings to evaluate the sprint progress [Beedle et al.,
1999; Schwaber and Beedle, 2001].

A somewhat different approach was formalized by Beck [Beck, 1999]. In contrast
to iterative methods where the requirement analysis-design-code-test tasks are orga-
nized sequentially, the eXtreme Programming mix all these activities and put much
freedom into the programmers’ hand. They decide what tasks, called stories, they will
implement in pair, based on their own estimations and during the implementation,
the customer writes the functional tests corresponding to these stories. However, XP
is not the legalization of the cowboy programming since it requires the programmers
to correctly plan and analyze the stories they are responsible to implement, so that a
non trivial forethought activity is highly necessary.

Practitioners from, among others, DSDM, Scrum and XP communities, gath-
ered in 2001 to produce a common set of principles in the Agile Manifesto [Beck
et al., 2001]. The main idea of Agile Software Development methods is to encourage
communication in teams and to lower the response time to requirement changes.
However, extreme usage of Agile methods is not the panacea and most of the time,
a mix between plan-driven and agile-based methods provides better success for
software development [Boehm, 2002; Beck and Boehm, 2003]. Although, in several
observed projects where an agile method was introduced, designers and developers
even tended to produce formal documents and models [Cohn and Ford, 2003].

On the other side, the Rational Unified Process® (RUP), an iterative approach
with extensive use of Unified Modeling Language™ (UML) artifacts was proposed
by Rational Software [Rational Software, 1998]. In the RUP method, the software is
built in four phases : inception, elaboration, construction and transition [Kroll and
Kruchten, 2003]. All phases can be composed by multiple iterations and a prototype
is rapidly implemented during the elaboration phase to define and validate the
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general architecture of the system. RUP is then a kind of rapid prototyping method,
but at the opposite of agile methods, with a significant use of formal documents and
models.

1.1.4 Model Based Development

The usage of models probably appeared in the beginning of the XXth century with
the process charts specified by F.B. and L.M. Gibreth to abstractly represent business
workflows [Gilberth and Gilberth, 1921]. The proposed formalism was designed for
management purpose, i.e, « routine of production, selling, accounting and finance »
in order to improve existing procedures.

Later, Goldstine and von Neumann defined flow diagrams to represent code
sequences, i.e. programs [Goldstine and von Neumann, 1947]. They introduced
operation boxes (instructions), substitution boxes (variable assignments), alternative
boxes (condition branching), remote connections (code jump) and induction loops.
Many flowcharting formalisms were introduced in the later years with analogous
constructions [Böhm and Jacopini, 1966; Floyd, 1967; Dahl et al., 1972].

From program-centered or event-based models, the software engineering prac-
tice incorporated broader modeling techniques to represent other aspects of a
system than the final code. An early top-down command-and-conquer approach
was defined in the Structured Analysis and Design Technique (SADT) [Ross, 1977;
Marca and McGowan, 1982]. The SADT method introduced the separation between
models, diagrams and viewpoints. This distinction is also present in the IEEE stan-
dard for software architecture description [IEEE, 2000], that has been superseded as
an ISO/IEC/IEEE standard [ISO/IEC/IEEE, 2011].

Several object-oriented modeling methods were introduced in the beginning
of the nineties. The most notables of them were developed concurrently by the
three researchers that wrote the specification of the UML, designed to be a general-
purpose and graphical modeling language [OMG, 1997]. Rumbaugh created the
Object Modeling Technique [Rumbaugh et al., 1990] gathering object, dynamic and
functional diagrams. In Booch’s method, six types of diagrams were defined: object,
class, state event, module, process and interaction diagrams [Booch, 1991]. Jacobson,
in its Object-Oriented Software Engineering method, added a requirement dimension
with a graphical formalization for use cases [Jacobson et al., 1992]. Other methods
were also developed at the same, but with analogous concepts, like Object Oriented
Analysis [Coad and Yourdon, 1991], Object Oriented Structured Analysis [Shlaer and
Mellor, 1992] and Hierarchical Object-Oriented Design [Delatte et al., 1992].

The first release of the UML specification in 1997 widely introduced the sepa-
ration of concerns in a stammering software modeling community. A system can
be modeled in terms of user-centric functionalities, static architectural or operable
structures, interactions or collaborations between objects, and so forth. From a
rather informal and ambiguous formalization of UML 1 concepts, UML 2 mainly rely
on two specification documents, one to describe the language foundations (namely
the infrastructure) [OMG, 2011c] and one for the concrete modeling constructs
(namely the superstructure) [OMG, 2011d]. The language gained in formalization,
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but defined semantic variation points where modelers can plug their own semantics
into UML constructs, making them responsible to actually transmit correctly the
model semantics to others [France et al., 2006]. UML also concretized its 4-layer
meta-modeling approach making possible to define Domain Specific Languages
(DSL) via its profiling mechanism.

The OMG proposed a general framework to enhance the separation between
the core business modeling and the underlying technologies in its Model Driven
Architecture (MDA™) approach [ORMSC, 2001]. Based on their established general
purpose modeling standards, i.e, UML, Meta Object Facility (MOF™) [OMG, 2014b]
and Common Warehouse meta-model (CWM) [OMG, 2003], a system can be speci-
fied in platform independent models separated to platform specific models where
particular technologies are used to implement concretely the system. This separa-
tion is intended to ease the maintenance and evolution of both models separately
since the business and the technology are usually not changing the same way at the
same time.

From general purpose modeling languages, a recent approach consists in devel-
oping the right modeling languages for the right domain. More than just dialects
or subset of general purpose languages, DSLs are usually defined as complete pro-
gramming or modeling languages in order to enhance modelers and programmers
productivity [Fowler, 2010]. Such languages are not a new concept. For example
Structured Query Language (SQL) for relational databases or Cascading Style Sheets
(CSS) for webpages style definition, are extensively used for years. Many compa-
nies also defined their own DSLs, like in the automotive industry. Besides, with
the current enthusiasm for modeling techniques, domain specific formalisms and
frameworks are being developed for a wide range of domains [Kelly and Tolvanen,
2008].

1.1.5 Model-Driven Engineering and Model Transformations

As presented in the previous section, at first, models have been used to formal-
ize, represent and document a software. The production of lower order models or
program code remained a time-consuming hand-made task which could induce
translation or interpretation errors [Atkinson and Kühne, 2003; Bézivin, 2005; France
and Rumpe, 2007]. From this documentation-oriented perspective, a current trend
in modeling techniques articulates the development process around models and
(formal) transformations between models. By raising the abstraction level higher,
Model Driven Engineering (MDE) methods are trying to get closer to the system’s do-
main model and to discharge developers from implementation or platform-related
details [Kent, 2002; Bézivin et al., 2006]. Figure 1.1 shows the big picture of MDE
approaches.

In a nutshell, analysts draw a model, model A, conforming to a given meta-
model MA, i.e. the definition of their accepted concepts, properties and the relations
between them, write a transformation in a dedicated language, also conforming to
a meta-model MT, and produce a new model B. All languages meta-models must
conform to a common meta-meta-model MMwhich is nothing more than the meta-
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Figure 1.1: Big picture of Model Driven Engineering

model of these meta-models. There could also be more than one input and/or
output models, like merging multiple models or breaking one into pieces [Kleppe
et al., 2003; Mens et al., 2005; Metzger, 2005].

Models A and B can share a common meta-model, we then talk about endoge-
nous transformations. On the contrary, if both models are expressed in different
formalisms, the transformation is exogenous. As an example, the injection of a de-
sign pattern into a UML class diagram is an endogenous transformation where the
production of Java code from a class diagram is an exogenous one. Alternatively, a
vertical transformation refines a model by adding more concrete implementation
details. A horizontal transformation, on the other hand, does not change the ab-
straction level neither the semantics of the model but mainly deals with model or
code refactoring [Wirth, 1971].

Many MDE approaches are developed around ad-hoc modeling languages and
transformation engines to address the increasing complexity of target running en-
vironments and put designers closer to the domain model [Schmidt, 2006]. In this
dissertation, we will not address all these approaches since they apply to a very
wide range of domains from system simulations based on the Simulink© tool1 to
generative approaches based on the UML standards.

In the present dissertation, we are mainly concerned by two aspects of software
systems: (i) the design of the architecture taking into account the platform and
deployment constraints, (ii) keeping explicit the links between the produced archi-
tecture models and the system’s requirements and (iii) iteratively design a software
architecture with model transformations. In the following, we will first present rep-
resentative system architecture modeling approaches. Second, we discuss about
existing infrastructure and deployment modeling facilities. Afterwards, in Section 1.3
we cross over existing architectural knowledge traceability techniques and their pos-
sible assets to modeling techniques. We then present the concepts behind the main
model transformation languages and discuss their advantages and drawbacks.

1http://www.mathworks.nl/products/simulink/
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1.2 Software Architecture Modeling

Several modeling languages have been proposed to model a system architecture in
terms of coarse-grained components and the relations between them2. However,
no real consensus exists on what should be represented in a software architecture,
neither how formal the description language should be [Medvidovic and Taylor,
2000]. Many of them were academic projects and were abandoned in the early 2000
at the latest. A recent survey conducted in the industry highlighted that architects
and other non-practitioners are especially interested in, among others, tool support,
iterative design, model versioning and analysis [Malavolta et al., 2013].

In this section, we selected some definitions of software architecture (SA) and
discuss them. Afterwards, we highlight the major key aspects of architecture descrip-
tion languages. We then present eight modeling languages before we discuss the
main missing features of these modeling formalisms.

UML2 OMG component and deployment diagrams from UML2
D&C OMG Deployment and Configuration standard

SysML OMG system modeling with requirement specifications
ACME a generic architecture description language
xADL a highly extensible XML-based architecture description language

SafArchie an academic contract- and aspect-oriented language
π-ADL a formal description language for dynamic architectures
AADL an industry standard for real-time system modeling

MARTE OMG modeling standard of real-time systems
ArchiMate Open Group standard for enterprise architectures

We decided to discard several modeling languages from the present discussion,
based on previous argumentation [Hilliard and Rice, 1998], comparison [Medvidovic
and Taylor, 2000] and industrial survey [Malavolta et al., 2013]. We first discarded
implementation specific or constraining languages, like MetaH [Vestal, 1996], Uni-
Con [Shaw et al., 1995], ArchJava [Aldrich et al., 2002] or DAOP-ADL [Pinto et al.,
2003] because we believe a platform-independent formalism is needed and more
suitable, especially with the profusion of implementation platforms and technolo-
gies. Second, we do not talk over inextensible languages, such as Darwin [Magee
et al., 1995] or Wright [Allen, 1997], especially for non functional properties. Third,
we do not consider languages that do not have support for evolution or architectural
description refinement, like Rapide [Luckham et al., 1995], because once more, evo-
lution and iterative enrichment has been highlighted as needed features. Fourth, we
do not discuss about highly domain-specific languages, such as EAST-ADL [Blom
et al., 2012; EAST-ADL, 2013] or AUTOSAR [AUTOSAR, 2013a,b] since we focus on
generic software architecture modeling. Last, we rejected purely enterprise architec-
ture languages like the Zachman Framework [Zachman, 1987] or the Architecture of
Integrated Information Systems (ARIS) [Scheer and Nüttgens, 2000] approach since
they focus on business process management with insufficient support for detailed
modeling of software systems.

2we use the component in its broadest sense as defined in the Oxford dictionary, as « a part or element
of a larger whole, especially a part of a machine or vehicle »
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1.2.1 A Discussion of Existing Definitions of Software Architecture

The literature, as well as the Internet, offer a wide range of definitions for a software
architecture (SA). Across the profusion of available definitions, we selected six of
them that are sufficiently concise and representative of a common vision about SA.
We will discuss about these definitions afterwards.

An early very concise definition was given by Perry and Wolf where they model
the software architecture as [Perry and Wolf, 1992]:

S A = {
El ement s,For m,Rati onal e

}
Garlan and Shaw « treat an architecture of a specific system as a collection of

computational components – or simply components – together with a description
of the interactions between these components – the connectors » [Garlan and Shaw,
1994].

Gacek et al. added the list of stakeholders’ requirements in the definition. Ac-
cording to them, « A software system architecture comprises:sA collection of software and system components, connections, and constraints.sA collection of system stakeholders’ need statements.sA rationale which demonstrates that the components, connections, and con-

straints define a system that, if implemented, would satisfy the collection of
system stakeholders’ need statements. »[Gacek et al., 1995]

As defined by Bass et al., « the software architecture of a program or comput-
ing system is the structure or structures of the system, which comprise software ele-
ments, the externally visible properties of those elements and the relationships among
them. » [Bass et al., 2003]

Alternatively, Kruchten stated that « Architecture encompasses significant deci-
sions about the following:s the organization of a software systems the selection of the structural elements and their interfaces by which the system

is composed together with their behavior as specified in the collaboration among
those elementss the composition of these elements into progressively larger subsystemss the architectural style that guides this organization, these elements and their
interfaces, their collaboration, and their composition.

Software architecture is concerned with not only structure and behavior, but also con-
text: usage, functionality, performance, resilience, reuse, comprehensibility, economic
and technological constraints and tradeoffs, and aesthetics. » [Kruchten, 2003]

In the ISO/IEC/IEEE standard on architecture description, the (software) archi-
tecture is the « fundamental concepts or properties of a system in its environment
embodied in its elements, relationships, and in the principles of its design and evolu-
tion » [ISO/IEC/IEEE, 2011]

At our sight, the union of the definitions given by Perry and Wolf and by Gacek et
al. supersedes all these definitions. We can represent a SA as (i) the structural and
behavioral definitions of the architectural constructs, (ii) the relationships between
those elements as well as the alternative structures, (iii) the design rationale, em-
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bedding the design choices and motivations sustaining the resulting architecture
and (iv) the links to stakeholders’ requirements. Even if both definitions have been
provided in the early ages of the SA discipline, many later definitions, formalisms
and methods have ignored the Rationale dimension [Jansen and Bosch, 2005]. Fur-
thermore, the link between an architecture and the implemented requirements is
crucial to avoid knowledge evaporation [Lehman and Belady, 1985; Zdun, 2009].

1.2.2 Key Aspects of a Software Architecture Language

The software architecture discipline emerged among other, to reduce the design and
maintenance costs of software systems by increasing reusability and substitutability
of architectural elements [Perry and Wolf, 1992; Garlan and Shaw, 1994]. Practition-
ers had to move their focus from program-related concerns to architectural design
since systems were becoming bigger and more complex. New methodological tools
and frameworks were then needed to assist developers in their tasks. A set of spe-
cific languages were defined in the nineties mainly articulated around components,
connectors, interfaces and interconnected structures.

Shaw and Garlan characterized seven levels of « specification power » for software
architecture languages [Shaw and Garlan, 1995]:

capture to represent a definition
construction to assemble constituent parts to build an instance
composition to combine multiple instances

selection to guide designers in their choices
verification to evaluate an implementation regarding its specifications

analysis to measure the impact of the specification
automation to construct instances from external properties

The authors observed that only a few studied languages offered mechanisms
beyond structural definition, construction and composition. They also stressed the
need for analysis and evolution capabilities in architecture descriptions.

Hilliard and Rice evaluated the expressiveness of some Architecture Description
Languages (ADL) [Hilliard and Rice, 1998]. They described a set of « expressive
challenges » for architectural languages including multiple viewpoints for models,
design alternatives and decisions traceability, quantifiable property definitions and
support for architectural pattern and styles.

Medvidovic and Taylor introduced a classification framework in which they
compared a significant number of ADLs [Medvidovic and Taylor, 2000]. In their
framework, they highlighted a list of needed features for such languages around
three categories: modeling components, modeling connectors and modeling config-
urations. They evaluated the expressive power of the language constructs as well
as their configuration abilities, like among others, scalability, model refinement,
evolution support or non-functional properties. As a result of their field study, they
highlighted that few of the investigated languages offered mechanisms to specify
non-functional properties and to define architectural refinements. More surprising
to them was the inconsistency in the definition of connectors that were often re-
duced to a simple semantic-less link between two components. The authors argued
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for richer connector specifications and the profusion of available communication
protocols and technologies nowadays underpins this claim [Beugnard et al., 1999].

Malavolta et al. conducted a questionnaire- and interviews-based survey on
48 industrial and academic practitioners over 40 IT companies [Malavolta et al.,
2013]. Concurrently to open questions regarding the needed features of architectural
languages (ALs), they asked the participants to rank the facilities provided by existing
modeling approaches, such as tool, life-cycle wide, multiple view and styles/pattern
supports. Their survey was articulated around these two research questions:s« What are the architectural description needs of practitioners? »s« What features typically supported by existing ALs are useful (or not useful) for

the software industry? »
At the end of the survey, they highlighted nine main findings:smost used architectural languages (ALs) have an industrial origin;sALs should support both effective communication and methodical design;sparticipants prefer semi-formal and generic approaches than formal;s tool support should provide collaboration and flexible architecture design;scomplex ALs discourage their usage (perceived high learning curve);sadoption of an AL depends on tool and community supports;sdesign, communication, analysis and link to requirements are the prior needs;sand a ranking of the available features offered by their familiar ALs.
As already stated in academic research and comparisons of existing approaches,

the penultimate recommendation summarizes adequately the major key aspects of
an effective software architecture language: (i) it should offer appropriate design
facilities to iteratively model a software architecture from different viewpoints and
versions, (ii) it should be an effective communication mean between practition-
ers and stakeholders regarding structural and behavioral aspects of a system, (iii)
it should enable some form of model analysis and (iv) it should provide explicit
linkage to requirements with design rationale and decisions traceability.

1.2.3 UML™ Component and Deployment Diagram

Among the Object Management Group (OMG) Unified Modeling Language (UML)
diagrams, a set of dedicated constructs have been defined to represent the structure
of software systems with components [OMG, 2011d]. From an implementation
artifact perspective in UML 1.4 [OMG, 2001], the abstraction level of components
has been raised to the architecture level in UML 2 to stick to the component-based
development methodologies. Figure 1.2 shows a sample component diagram3.
Components specify modular, replaceable and refinable units with well-defined

Interfaces. Interfaces are expressed in terms of properties and features. They
are even provided or required by a Component and the set of Interfaces owned by
a Component is called a contract. Since the semantics of Components and contracts
are loose, logical as well as physical Components can be represented in UML 2. Con-
nections between Components are defined through Connectors. Those ones are

3All diagrams presented in this section are inspired and adapted from the UML 2.4.1 specification
document [OMG, 2011d]
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Figure 1.2: Sample component diagram

either delegations, i.e. binding contracts of the same polarity from the externally
visible port to its implementation; or assemblies of multiple ports of opposite
polarities. Assembly connectors are not necessary binary, as the Person interface
provided by the Store and the Organization components. Note that the latter pro-
vides a Client interface which is a subtype of Person. Connector semantics can be
refined by a set of constraints, expressed in Object Constraint Language OCL [OMG,
2012c], text, or any other formalism, and have its own behavioral specifications.

A Component can contain other Components to give a more detailed white-box
view. In Figure 1.3, the use of delegation Connectors is illustrated by showing the
internal representation of the Store Component from Figure 1.2.

Figure 1.3: Sample nested component diagram

A component can be realized by a set of UML Classifiers, i.e. Classes, Inter-
faces, Datatypes, etc., that effectively implement the contract owned by this
Component. The Component represents then an abstraction for all these concrete
Classifiers. This flexibility offers to modelers a wide range of freedom since
Classifiers can be specified by structural or behavioral features. The compo-
nent semantics can be expressed in many different ways from statically defined
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Interfaceswith operations and parameters to more formal activity diagrams or
state machines constrained by OCL statements for pre- and post-conditions of
exposed features.

Usually, Connectors are linked to Components through Ports, but this is not
mandatory by the UML specification. Port has been introduced in version 2 to
refine the semantics of interaction points from Classifiers. Ports are associated
to Interfaces and can redefine other Ports, again to offer the possibility of further
semantics refinement from coarse to fined-grained component models.

Components can also be linked to implementation Artifacts. Artifacts
are part of the deployment package of UML [OMG, 2011d] dedicated to describe
execution platforms and depict any physical piece of information used or produced
during a software development process. Examples of Artifacts include models,
source code, database tables or deployment descriptors.

Deployment diagrams allow modelers to represent a target physical architecture
with execution parameters. Such diagrams are mainly composed by Nodes and
CommunicationPaths. Nodes are possibly nested computational resources that
may host executable artifacts. Nodes can be specialized as Devices or Execution-
Environments. A Device represents a concrete physical Node and an Execution-
Environment refers to an execution software platform. The precise semantics of
ExecutionEnvironmentsmay be further refined by user-defined UML profiles.
A CommunicationPath is simply the link between two Nodes that enables the com-
munication between them. These are nothing more than UML Associations
without any dedicated physical properties, such as communication bandwidth for
example.

Artifacts may be deployed on Nodes under DeploymentSpecifications
that specify execution parameters for these Artifacts. The exact semantics of these
specifications is also intended to be further specialized in a user-defined profile.
In a similar fashion, modeling elements are concretely rendered by Artifacts by
Manifestation associations. Figure 1.4 illustrates a simple deployment configura-
tion with three Devices, one containing an ExecutionEnvironment and one ab-
stract Node. Also, the diagram shows the Manifestation of the Service Component.

Plenty of commercial and open source modeling tools exist on the market. All
these tools do not have the same capabilities and do not allow to draw all types of
diagrams. Also, some of them do not fully implement the standard for the models
they support.

With UML 2, component diagrams became an effective component-based mod-
eling formalism. The possibilities to refine the semantics of, among others, Inter-
faces, Operations and Connectors with constraints and behavioral specifica-
tions is a valuable assets for architecture modelers. However, even if the compo-
nent diagrams may represent systems at different abstraction levels, the refinement
mechanism is only possible via Realization relations which are also used to link a
Component to any other UML Classifier, i.e Components, Classes, Interfaces
and Datatypes. It is then difficult to know if the target realization is an abstract
semantics refinement or a concrete system architecture.

On the other hand, deployment diagrams are rather simplistic, especially to
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Figure 1.4: Sample deployment diagram

model communication facilities between Nodes. Deployment diagrams focus mainly
on the static affectation of artifacts onto computational nodes. The way to define
communication, processing, memory space or runtime properties is left up to the
user to specialize the deployment constructs by UML profiles. Also, the graphical
notation is quite poor, since the distinction between devices, databases or runtime
environments can only be expressed by stereotypes.

1.2.4 OMG Deployment and Configuration Standard

The OMG wrote a dedicated standard for the Deployment and Configuration of
Component-based Distributed Applications (D&C) [OMG, 2006]. This standard fo-
cuses on the deployment of complete software systems and is structured around
three dedicated models and one deployment process. All models are augmented by
management interfaces with predefined operations to manipulate the created mod-
els and artifacts metadata. The general idea relies on the Model-Driven Architecture
(MDA) approach that separates platform independent and platform specific models.
The standard defines also a UML 2 profile for all structural modeling concepts.

The Platform Independent Model (PIM) describes components somehow differ-
ently than UML component diagrams in order to be applicable to a wide range of
component-based modeling language. In a Component Data Model, the logical archi-
tecture is mainly depicted in terms of components, interfaces and ports. Interfaces
and ports are only referenced by their names. Nested components are expressed by
ComponentAssemblyDescriptions and allow to define complex white box views
of a particular implementation. Connections between ports are done in a broadcast
way analogously to an electrical circuit. Many description constructs are available
to specify deployment constraints, like the Locality saying if a component must
be isolated onto a physical node, or whether the component satisfies a requirement.
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The physical infrastructure, called the Domain, is described in a Target Data
Model, which is close to the UML deployment diagram. Basically, Nodes are directly
bound to each other through Interconnects or indirectly via communication
Bridges. Nodes can have access to SharedResources, which can be themselves
Nodes, Interconnects or Bridges.

The deployment planning is modeled in an Execution Data Model. The Deploy-
mentPlan describes the artifacts that will be deployed and how they will be instanti-
ated. A DeploymentPlan is nothing more than a flattened aggregated Component-
AssemblyDescription of the overall system with additional properties. Other
common elements to all model types can also be defined, such as Properties,
DataTypes and Requirements. The latter is used to link implementation or assem-
bly descriptions to their fulfilled requirements, but remains semantics-less in the
standard so that any type of requirement can be expressed.

The standard describes a set of abstract Actors that may intervene in the imple-
mentation and deployment phases of a software system. These persons are in charge
of writing the various description documents and are divided into development and
deployment Actors.sDevelopment Actors

Specifier writes the interface specification
Developer implements a component interface
Assembler reuses existing components to satisfy an interface
Packager packages various implementations of the same interfaces

Domain admin models the target DomainsDeployment Actors
Repository admin installs a package into a repository

Planner defines and plans the deployment of a software
Executor supports the software release phase

The Planner is the key actor of the D&C standard. He is in charge of finding valid
deployment configurations of the software and checks whether the requirements
are actually fulfilled by the selected components, connectors and resources.

To effectively start the deployment process, the software must have been pack-
aged according to required metadata. This process is divided in five phases:

Installation put the packages into a repository
Configuration specify the runtime options of the software

Planning decide how, when and where the software will run
Preparation any needed conditional actions on the runtime system

Launch components instantiation and runtime configuration

The standard finally describes the mapping from their PIM models to the Com-
mon Object Request Broker Architecture (CORBA®) Component Model (CCM) [OMG,
2012b]. The data models are either mapped to Extendable Markup Language (XML)
schemas [W3C, 2012a,b] or to CORBA Interface Description Language (IDL) data
structures [OMG, 2012a]. All management interfaces defined alongside the data
models are translated into IDL interfaces.

This document specifies generic objects and is particularly dedicated to support
automated (re-) deployment of a software application. However, the semantics of
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many structural constructs is very poor (especially the Requirementwhich has no
semantics description at all). It also relies a lot on textual and untyped descriptions
for the usage, the assemblage or even the ports of components. The modeling of
communication paths with Bridges to which no properties can be added is not
really useful and concrete binding between distributed components is not trivial in
many cases where routers or firewalls are in the middle. Furthermore, the concept
of SharedResource lacks of properties since, for instance, using a network shared
drive implies different constraints than requiring a local shared memory space for
two applications running on the same machine. Besides, dynamic or incremental
development and deployment of components is not supported.

To the best of our knowledge, the Deployment And Configuration Engine (DAnCE)
is the only D&C compliant tool [Deng et al., 2005]. This academic tool focuses on
the deployment of real-time and embedded systems based on Quality of Services
concerns.

Upon its advantages of standardizing the deployment of distributed component-
based applications, D&C is not really suitable to model a target infrastructure during
the software development process for in-development physical constraints veri-
fications. Also, the mapping from PIM to PSM is sufficiently adequate with the
Corba Component Model, but no further proof is given regarding other existing
component-based technologies or features.

1.2.5 OMG System Modeling Language™

The OMG System Modeling Language (SysML) is a UML 2 profile intended to describe
systems applications [OMG, 2012d]. SysML focuses on any engineering system that
embed pieces of software but is flexible enough to depict hardware, processes,
information or even personnel systems. SysML reuses part of UML 2 constructs
and provides additional features, such as requirement-related elements. The main
evolutions from the first version [OMG, 2007] until the actual one include primarily
alignments to changes in UML semantics and some improvements on the definition
of units of measure. Although, the most significant change was released in the
last version and concerned the definition of ports which now enable to represent
hardware connections on systems in an easy and straightforward way with typed
flows of ”objects”.

The standard is divided in three different types of constructs: structural, cross-
cutting and behavioral. The basic SysML structural element is called block and is
defined as a collection of structural and behavioral features that are exposed to the
outside. SysML structural models are either representing a black-box view, namely
Block Definition Diagram (BDD) or a white-box view, the Internal Block Diagram
(IBD). A BDD represents the externally visible features of blockswith relations be-
tween them. An example is depicted in Figure 1.5 where a high-level decomposition
of a hybrid car system is presented (without block properties)4.

4All models presented in this section are inspired from the SysML 1.3 standard [OMG, 2012d]. All
models are mostly hardware-oriented, but SysML can obviously represent software components.
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Figure 1.5: Sample BDD of an HybridCar system

The diagram presents a hierarchical view of the whole HybridCar system. It is
composed by six parts, depicted by black diamond links which are the direct children
blocks from Brake to Body. This PartAssociation is equivalent to a composition
in UML 2 class diagram. At the opposite, the Battery is shared between the Chassis
and Engine. A first usage of a rationale comment is also presented in the model.
Actually, SysML allows to add extra free-format details on any modeling element,
even on relations, to further detail a decision regarding, for example, the design or
requirements, as we will discuss later in this section.

Structural blocks are defined by Properties. A property can express a us-
age or role that plays a block within the context of its parent block. The precise
semantics of a property is defined through its type. First, it can be an attribute
to which values can be assigned. These values can depend on the usage of the
block as a part of another block in a specific context (a part is then a type of
property). This mechanism allows modelers to specify one type of block that can
be aggregated in different blocks with different values. Second, blocks can also
contain constraints that are typed by special constraint blocks. The third type of
properties are references to other blocks, either with UML-like class associations, or
fully-typed interactions through Ports. Ports can be specialized as proxy or full
ports5. A proxy exposes (part of) the features of a block or the ones of its parts.
It does not express behavioral feature by itself, but exposes the ones defined in its
typing InterfaceBlock gathering some features that are owned by other blocks.
At the opposite, a full port exposes features that it handles by itself, thus that are
not owned by its parent block. Figure 1.6 shows the type of the ICombustion port
(that will be used in Figure 1.8). Concretely, this port type is a blockwith four value

5This specialization, i.e. stereotype, is left out to the modeler, depending on its freewill, even if the
standard identifies only these two usage patterns. Additionally, since this specialization appeared in
the last version of SysML, the standard does not constraint to choose between both types for backward
compatibility reasons.
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properties and two operations. Another way of typing a connector between
blocks is by flow properties that represent a single item that may flow from one
block to another. Figure 1.7 illustrates the Transmission block of the car system
with three different flows.

Figure 1.6: Definition of the ICombus-
tion port type

Figure 1.7: Flow properties of the
Transmission block

Aside these black-box views, Internal Block Diagrams are meant to depict the
white-box structure and concrete relations between the properties that compose
a block. Each block defined in a BDD can be refined into an IBD containing other
blocks that can be refined again, and so forth. The refinement process ends when
an IBD contains only parts, i.e. block instances, with their relations. This tech-
nique allows SysML modelers to represent systems at diverse levels of abstraction.
Figure 1.8 presents the internal structure of the Engine and illustrates the usage of
simple associations, typed ports and flows6.

Figure 1.8: Sample IBD of the PowerSubsystem

Full and proxy ports are represented by a ball-and-socket notation and flow
ports with angle brackets. One block, the Battery has been represented with

6According to the examples in the specification, the ball-and-socket elements from a port type
should have different names of the form ICombustionCmd and ICombustionData, to express the direc-
tion of the call from the command to the data. However, the modeling tool we used did not enable us to
differentiate the names of both parts of the same interface.
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dotted box to denote the « use-not-composition » relation as presented in Figure 1.5,
meaning that the Engine uses it but does not own it.

Next to structural models, system requirements are listed in a requirement
table and can be represented in dedicated models to express:

refinement a use case is refined into a full text requirement
derivation a lower order requirement is derived from a higher order one

satisfaction a requirement is satisfied by a block
verification a testcase verifies the completeness of a requirement

documentation traces rationale and problems between requirements
Figure 1.9 illustrates the requirement model for the Master Cylinder Safety (id.1)

and Reuse Brake Energy (id.2) requirements. From the Decelerate Car use case,
more complete descriptions of requirements are derived. The first requirement
is the union of two higher order and less descriptive requirements (with id.1.1
and 1.2). A rationale is attached to requirement with id.2 to further justify the
design choices and express the reason why the requirement is actually satisfied.
Last, testcases are linked to the Separate Reservoir requirement to verify that it
is actually implemented.

Figure 1.9: Sample Requirement diagram of the hybrid car

Modelers can create domain specific viewpoints. A viewpoint is designed to
abstract particular aspects of the system for identified stakeholders. A view is then
the subsystem that conforms to a viewpoint.
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The system behavior can be specified by specialized UML 2 activity diagrams,
interaction diagrams and state machines. Activity diagrams have been augmented
to define special activities to match the semantics of SysML ports. Timing, com-
munication and interaction overview diagrams have been excluded from the SysML
profile. UML2 state machines can be used as-is. All these models enable semi-formal
specifications for the concrete interactions of blocks and ports.

The block construct is a very flexible mechanism to define a wide range of
structural modeling elements. The ports and the type of connectors complete
this flexibility since software interface-based communication as well as flows of
tangible objects can be exchanged between blocks. Besides, the BDD-IBD semantics
refinement mechanism, coupled to domain specific views, enable layered repre-
sentations of systems depending on the desired abstraction level and stakeholder
viewpoint. Linkage from requirements to model elements and the possibility to
add design rationale to models are also interesting assets of the SysML standard.

Re-using UML 2 behavioral specification mechanism is a relatively effective way
of communication to non practitioners since the syntax and semantics are easy to
learn. Also, UML 2 is somehow used in the industry [Malavolta et al., 2013] and
sequence diagrams and state charts are one of the most popular diagrams [Petre,
2013], so the learning curve of SysML behavioral aspects should be negligible for
UML practitioners.

However, one of the goal of SysML is to support the development of engineering
systems including avionics and automotive. Constraints can be used to verify
some properties of a system, but behavioral aspects cannot be validated because no
formal notation is provided. Furthermore, the extensive flexibility of blocks and
ports is quite complex to get familiar with at first sight. Patterns or styles definition
and usage in SysML models is quite complex, again because of the considerable flexi-
bility of structural constructs. Coupled to the nested BDD-IBD mechanism, it would
have been interesting to define a versioning and linkage mechanism between related
models instead of depending on the model description or rationale properties.

1.2.6 ACME - Architectural Description of Component-Based Systems

ACME has been designed as a generalization of other existing Architecture Descrip-
tion Language (ADL) [Garlan et al., 1997, 2000]. It mainly deals with the static
structure of an architecture and it does not provide any behavioral mechanism.
However it is intended to be extensible by user-defined properties.

ACME contains seven core concepts:

component computation or data store element
port interface point of Component

connector communication mediator
role interface point of a Connector

representation internal description of a Component
system configuration of Components and Connectors

bindings mapping between internal representation and external interface
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Because ACME is intended to be generic, any definition of an ACME model
element can be refined by user-defined properties. A property has a name, an
optional type and a value. The type must be either primitive, like integer or string,
or complex, like sets, records or lists. The core ACME elements are illustrated with a
simple Client-Server sample in Listing 1.17.

1 system simple_cs = {
2 component client = { // client definition with one port
3 port send-request;
4 property source-code = "CODE-LIB/client.c";
5 };
6 component server = { // server definition with one port
7 port receive-request;
8 property max-concurrent-clients : integer = 1;
9 };

10 connector rpc = { // connector with two roles
11 role caller;
12 role callee;
13 property synchronous : boolean = true;
14 };
15 // binding between the client and the server via the connector
16 attachment client.send-request to rpc.caller;
17 attachment server.receive-request to rpc.callee;
18 }

Listing 1.1: A Client-Server sample in ACME

ACME does not process property-related values. Since its is somehow designed as
an interchange description language, it is up to the implementation tool to make use
of these properties. Also, the definition of the concrete semantics of such properties
remains in the users’ hands.

An ad-hoc constraint language has been added to ACME to specify logical predi-
cates and primitive functions over architectural specifications [Garlan et al., 2000].
Usual First Order Predicate Logic (FOPL) operators are available, such as conjunction,
implication or quantification. Furthermore, designers can check for the existence
of a property or retrieve the architectural elements of a lower order model element
with predefined ACME functions like the connectors of a system or the roles of a
connector. The constraints mechanism is illustrated in Listing 1.2.

1 connector MessagePath = {
2 role source;
3 role sink;
4 property bufferSize : int;
5 property expectedThroughput : float = 512;
6 rule bufferLimit = invariant (bufferSize >= 512) and (bufferSize <= 4096);
7 rule expectedTP = heuristic expectedThroughput <= (queueBufferSize / 2);
8 }

Listing 1.2: Simple constraints in ACME

Two types of constraints can be defined: invariant and heuristic. An inva-
riant is a rule regarding a property that may never be violated. The heuristic is
an observed rule that may be violated in specific cases. When writing constraints

7All examples have been adapted from [Garlan et al., 1997, 2000] or from the ACME website according
to the latest release of ACME studio. The grammar is available at http://www.cs.cmu.edu/~acme.
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inside an element, references to that element are made by the use of the self
keyword. In the above listing, the MessagePath must have a bufferLimit between 512
and 4096 (bits). It also may have an expectedThroughput lesser than the half of its
queueBufferSize.

ACME provides a way to define architectural styles. Taylor et al., define archi-
tectural style as « a named collection of architectural design decisions that (1) are
applicable in a given development context, (2) constrain architectural design decisions
that are specific to a particular system within that context, and (3) elicit beneficial
qualities in each resulting system » [Taylor et al., 2009].

Two mechanisms are available in ACME. First, an architect can specify a struc-
tural type for components, connectors, ports and roles. A type is defined ex-
actly the same way as another construct, with properties and/or constraints. It can
be reused in any system definition. Second, an overall system can be defined as
a family (the ACME keyword for a style) to constraint a particular architectural
structure and make it reusable. ACME provides type-checking facilities in order to
ensure a system respects the definition of its possibly multiple types. Both concepts
are illustrated in Listing 1.3.

1 family PipeFilterFam = {
2 component type tilterT = {
3 port stdin;
4 port stdout;
5 property throughput : int;
6 };
7 component type UnixFilterT extends FilterT with {
8 port stderr;
9 property implementationFile : String;

10 };
11 connector type PipeT = {
12 role source;
13 role sink;
14 property bufferSize : int;
15 };
16 property type StringMsgFormatT = record [size:int; msg:String;];
17 rule typecheck = invariant forall c in self.connectors | HasType(c, PipeT);
18 }
19

20 system simplePF : PipeFilterFam = {
21 component smooth : FilterT = new FilterT;
22 component detectErrors : FilterT = new FilterT;
23 component showTracks : UnixFilterT = new UnixFilterT extends with {
24 property implementationFile : String ="IMPL_HOME/showTracks.c";
25 };
26

27 connector firstPipe : PipeT;
28 connector secondPipe : PipeT;
29

30 attachment smooth.stdout to firstPipe.source;
31 attachment detectErrors.stdin to firstPipe.sink;
32 attachment detectErrors.stdout to secondPipe.source;
33 attachment showTracks.stdin to secondPipe.sink;
34 }

Listing 1.3: Architectural style in ACME

In the example above, a pipe and filter architectural style is defined with two types
of components, one type of connector and some related properties and constraints.
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This style is instanciated in a 3-Componentsmodel where the concrete attachments
between the components are specified. Note that the example above shows also the
extension facility, i.e. component inheritance, where the UnixFilterT extends the
FilterTwith an additional port and specific properties.

In ACME, a component can be refined into a representationwhere an inner
system is specified and the linkages between the outer Ports to the inner ones are
mapped in bindings rules. A component can have multiple representations and
representations are recursive, i.e., a system defined inside a representation
can be further refined into lower-level ones. We show an internal representation of a
Component in Listing 1.4.

1 component theComponent = {
2 port easyRequests;
3 port hardRequests;
4 representation {
5 system details = {
6 component fastButDumbComponent = { port p; };
7 component slowButSmartComponent = { port p; };
8 };
9

10 bindings {
11 easyRequests to fastButDumbComponent.p;
12 hardRequests to slowButSmartComponent.p;
13 };
14 };
15 };

Listing 1.4: Representation and rep-map rules sample

Behavioral specifications are not supported by the language itself, but an exten-
sion is provided to add Finite State Process (FSP) definitions to components. The
FSP specification is compliant to the Labeled Transition System Analyzer (LTSA) of
the Imperial College of London8.

ACME is supported by a modeling tool called ACME studio9, developed as an
Eclipse 10 plugin. It provides a graphical and textual editor for ACME models and
integrates the Armani [Monroe, 2001] constraint checker. It also allows designers to
define their own notations for architecture models. The tool is still currently main-
tained11. It has been extended by undocumented performance and FSP analysis
plugins.

However, the edition of textual models is relatively complicated since no auto-
completion facility is implemented and the only available formal documentation
is the Armani BNF grammar12 which is not really readable. Hopefully, a summary
of the syntax is provided on the website, but does not always respect the formal
grammar. For example, the definition of attachments are still compliant to the
initial syntax, but does not comply to the actual second version. Also, the tool is not

8http://www.doc.ic.ac.uk/ltsa/
9http://www.cs.cmu.edu/~acme/AcmeStudio/

10http://www.eclipse.org
11according to their bug tracking system at http://acme.able.cs.cmu.edu/mantis/my_view_page.php,

the last bug date back to September 27th , 2013
12http://www.cs.cmu.edu/~acme/html/ArmaniParser.html
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free of bugs. Among others, the constraint validation process often keeps references
to old errors and the concurrent graphical visualization and edition of the same
model sometimes delete parts of a that model if some inconsistencies arise.

ACME offers a lightweight and extensible modeling language for software archi-
tecture. Structural elements can be refined by constraints and first order logic state-
ments can also be expressed to define more complex conditions on properties. Types
and architectural patterns can also be defined in a reusable manner through mod-
els. Components can also be represented at different level of abstractions through
representations. However, ACME does not allow to define interfaces with their
operations, like in many other component-based languages, with precise object
oriented method-like semantics. Ports are mainly entry/exit points in components
with no semantics at all. Connectors are limited to point-to-point bindings between
components. Furthermore, no viewpoint definition mechanism is supported and
neither technological nor platform-related structural elements exist for abstract
deployment validation, for example.

1.2.7 A Highly Extensible Architecture Description Language

As an answer to the plethora of architectural notations, Dashofy et al. introduced
an extensible XML-based Architecture Description Language (xADL) [Dashofy et al.,
2001, 2002, 2005]. The main objectives of xADL is to propose a syntax-based infras-
tructure to provide [Dashofy et al., 2005]:san extension mechanism to rapidly build a custom ADLsa reusable set of features, or modules, devoted to ADL developmentsflexible tools to support the development and usage of the ADL

xADL is made of a collection of XML schemas addressing specific concerns
such as, among others, Structure and Types, Runtime Instances, Java Source or
Variants [Dashofy, 2007]. The basic primitive constructs are defined in the Structure
and Types module which can be viewed as the structural core of the xADL language.
It defines:

Component computation block with a set of interfaces
Connector communication block with interfaces
Interface semantic-less interaction point

Link connections between interfaces
Subarchitecture composite component and/or connector topology

General group semantic-less grouping of elements (may be extended)

Figure 1.10 illustrates a sample architecture of a TV tuner connected to an in-
frared receiver, its XML representation being illustrated in Listing 1.5.

Figure 1.10: Sample TV tuner architecture (from [Dashofy, 2007])
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1 <xArch> <!-- the TV set architecture model -->
2 <archStructure id="tvset">
3 <description>TV Set</description>
4

5 <component id="tuner"> <!-- the TV component -->
6 <description>TV Tuner Component</description>
7 <interface id="tuner.channel">
8 <description>ChangeChannel Interface (in)</description>
9 <direction>in</direction>

10 </interface>
11 </component>
12

13 <component id="ir"> <!-- the infrared receiver component -->
14 <description>Infrared Receiver Component</description>
15 <interface id="ir.channel">
16 <description>ChangeChannel Interface Tuner to Connector (out)</description>
17 <direction>out</direction>
18 </interface>
19 </component>
20

21 <connector id="tvconn"> <!-- the connector -->
22 <description>TV Connector</description>
23 <interface id="tvconn.in">
24 <description>ChangeChannel Interface (in)</description>
25 <direction>in</direction>
26 </interface>
27 <interface id="tvconn.out">
28 <description>ChangeChannel Interface (out)</description>
29 <direction>out</direction>
30 </interface>
31 </connector>
32

33 <link id="link1"> <!-- link from TV tuner interface to connector -->
34 <description>Tuner to Connector</description>
35 <point> <anchor href="#tuner.channel"/> </point>
36 <point> <anchor href="#tvconn.out"/> </point>
37 </link>
38

39 <link id="link2"> <!-- link from connector to infrared receiver -->
40 <description>Connector to IR</description>
41 <point> <anchor href="#tvconn.in"/> </point>
42 <point> <anchor href="#ir.channel"/> </point>
43 </link>
44 </archStructure>
45 </xArch>

Listing 1.5: Sample TV tuner in xADL 2.0 XML format (from [Dashofy, 2007])

Two components and a connector are defined in the model, respectively the tv
tuner, the ir receiver and the tvconn. Both components have a single interface of
opposite polarities (called direction). The tvconn connector has two interfaces
that will be used to link on one side the tuner and on the other side the ir. By
default, any construct semantics may be refined by a description, but no details on
the interface can be defined structurally. An structural xADL model concentrates
mainly on the model topology.

The question of an appropriate and flexible tooling support is critical in xADL.
Since the language needs to be extended, the tool cannot rely on neither fixed
syntaxes or meta-models. To that purpose, the authors developed an extensible
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framework called ArchStudio13 as an Eclipse plugin. The collection of tools mainly
consists in a xArchADT facade used by two editors (graphical and tree-based), an
XML DOM Implementation [W3C, 2004] that handles extension schemas, an Apigen
tool that generates Java interfaces from the extension schemas and a Data Binding
Library that provides these interfaces to the facade. The current version of Arch-
Studio emerged from an initiative started in the 90’s with the C2SADL architecture
description language [Medvidovic et al., 1996, 1999] and evolved to the creation of
xADL. At the opposite of ACME that has been proposed as an interchange architec-
ture language, xADL is more an architectural framework and tooling environment to
develop software architecture notations instead of being a language by itself.

Many extensions have been proposed to xADL like behavioral specifications with
statecharts [Naslavsky et al., 2004], architectural aspects [Fuentes and Gámez, 2007]
or Service-Oriented concerns [Pannok and Vatanawood, 2013]. Also, an analysis
framework, namely Archlight [Dashofy, 2007], offers possibilities to add custom
architectural test-based model verifications, close to model checking practices. The
overall ArchStudio tooling is still under development, currently on xADL 3.0, even
if no technical reports or research papers have been published later than the Ph.D
dissertation of Dashovy in 2007 that relied on xADL 2.014.

xADL offers an interesting platform for architecture specific language develop-
ment. It provides syntactic support to build custom viewpoints concerning a soft-
ware architecture. However, except for implementation artifacts, no research to
date has been made to connect xADL features to other life-cycle documents like
requirement definitions. With available current extensions, design alternatives can
only be represented in terms of variants which are alternative configurations based
on hardcoded conditions, close to the Product Line Architecture [Bosch, 2000] do-
main. Finally, the available construct expressiveness is, by design, weak since the
authors reject the responsibility of semantics definition and verification on the ADL
developer.

1.2.8 SafArchie and TranSAT

SafArchie is an academic 3-layer architecture description language designed to de-
fine separately a type of software architecture, its instance and the deployment target
with validation facilities for component compositions [Barais, 2005]. The language
is expended by the TranSAT transformation framework devoted to describe and in-
ject pattern-based concerns, i.e. architectural aspects, into an existing architecture
model.

SafArchie models can represent an architecture from three different viewpoints:
type model, logical model and physical model. An architecture type relies on a small
set of constructs, such as primitive and composite components, communication
ports, synchronous operations and links. The logical model is very close to
the type model and depicts a valid instance of its type model. A physical model

13http://isr.uci.edu/projects/archstudio/
14http://isr.uci.edu/projects/archstudio/publications.html
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represents the target deployment infrastructure in terms of site, communication
interface, communication channel, routing node and route.

SafArchie provides textual, XML and graphical notations to describe models. An
example depicting a DataPhoneCenter type model is shown in Figure 1.11.

Figure 1.11: Example typemodel in SafArchie (from [Barais, 2005])

In SafArchie, in order to validate the composition of components, three types of
contractsmust be specified [Meyer, 1992; Beugnard et al., 1999]:

port define the set of operations a portmust at least offer
assertion pre/post conditions on operations

behavioral a labeled transition system of the behavior of a component
The port contract is simply defined as possibly multiple conjunctions of available

operations, of the form:

open + close + (r ead |wr i te)

where + denotes an unordered conjunction and the | denotes alternatives.
The above contract specifies that the target element must offer the open and close
operations and either the read or the write operation.

Assertions are defined in an OCL dialect. For instance, the condition saying
that the withdraw limit is set to 2000 in the Bank context accessible via port p17, is
expressed by the following assertion:

context B ank :: p17 :: wi thdr aw(amount : long ) : long

pr e : sel f .amount < 2000

The behavioral specification is expressed in ad-hoc extension of the Finite State
Process language [Magee, 1999], named Simple FSP (SFSP) where transitions are
labeled with visible input/output messages, with the following syntax:

!m emitted message m
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!m$ answer to emitted message m
?m received message m

?m$ answer to received message m
As an example, the specification of the EmailReader component depicted in

Figure 1.11 is shown in Figure 1.12.

Figure 1.12: Behavioral contract for the EmailReader (from [Barais, 2005])

Components behaviors are then formally specified using automata to enable
compatibility verifications of component compositions based on their contracts.
Further analyses can also be performed regarding safety and liveness properties of
components, since their internal behaviors are specified in an algebraic language.

TranSAT adds an aspect-oriented dimension to SafArchie models [Barais et al.,
2005; Barais, 2005]. Alongside to structural architectures, technical models focused
on specific concerns are specified and weaved into the architecture by model trans-
formations. A TranSAT canvas is defined by:

an archi. plan structural pattern that provides an answer to a concern
a joint mask constraints on the possible target model (called basis plan)

transfo. rules structural changes to weave the new plan into the basis plan
Figure 1.13 depicts the general process to inject an encryption pattern into a

client-server-like architecture model.
The basis plan on the top left-hand side of Figure 1.13 specifies a composite

component D composed by three components A, B and C. On the right-hand side,
an encryption pattern is defined, composed by the three aforementioned elements,
i.e., the joint point mask (Cm1 and Cm2 abstract components), the encryption
architecture plan and a set of transformations linking the elements of the mask and
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Figure 1.13: Pattern injection example in TranSAT (adapted from [Barais et al., 2005])

the plan together. Two compatible join points are identified in the basis plan and one
is selected in particular by the pointcut expression bm.name = b2 . The resulting
architecture is depicted in the bottom part of the picture.

On top of these two frameworks, Barais specified an incremental architecture
design method around three main actors:
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domain expert specifies the structural patterns
architect draws the architecture model by weaving patterns

integrator writes the transformation rules and masks
Iteratively, the architect specifies pointcuts and the TranSAT weaver executes the

selected transformations to produce the new architecture model.
The overall approach is supported by an extension of the ArgoUML tool15. The

last stable version of ArgoUML dates back from end of 2011 and no new release is
planned. Also, only UML 1.4 diagrams are supported and no plan to move to UML
2 is foreseen. SafArchie Studio relies on an unmaintained Prolog framework and is
roughly undocumented.

Even if the SafArchie/TranSAT framework is very promising, especially in terms
of formal verifications of component compositions, the approach has been aban-
doned and is not further developed in recent research. Furthermore, the behavioral
specification formalism used does not scale very much for the needed abstraction
level for software architecture design. The EmailReader component behavior pre-
sented in Figure 1.12 is barely complicated with only a few external operations.
Because of the needed formal semantics for component compositions, connectors
are synchronous only, which is rather simplistic. Even if the transformation pro-
cess is extensively detailed, the model versioning question is not addressed and no
structural construct is provided to attach documentation to patterns although the
TranSAT approach relies on stepwise integration of architectural concerns.

1.2.9 π-ADL and the ArchWARE Development Environment

π-ADL is a formal architecture description language designed to express component-
based embedded systems with dynamic concerns [Oquendo, 2004, 2008b]. The
language is part of a holistic framework, called ArchWare, that encompasses archi-
tecture modeling, analysis, run-time and software development aspects [Morrison
et al., 2004; Oquendo et al., 2004].

The ADL is defined on top of the concepts of the π-Calculus [Milner, 1982]16.
Structural and behavioral aspects of systems can be expressed in a procedural lan-
guage with predefined dynamic reconfiguration rules or behavioral changes. Struc-
tural models are expressed in terms of components connected through ports linked
by connectionswith connectors.

component exposes ports and has a behavior
port connects a component to its environment

connection simple communication channel between components
connector special kind of component intended to connect components

Hierarchical components can also be expressed in π-ADL, i.e. any architecture
model can be encapsulated into a composite component. Communication is always
done through value-passing between components. Figure 1.14 illustrates a sample
client-server architecture with login facilities.

15http://argouml.tigris.org/
16π-Calculus is a functional language that focuses on distributed process interactions through dy-

namic or private communication channels.
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Figure 1.14: Sample client-server architecture in π-ADL (from [Oquendo, 2008a])

Listing 1.6 shows the textual representation of the externally visible ports of the
LoginManager. Twoports are defined. An update port receives inputconnections
with a Login value (user defined type). A request port receives input connections
with a UserId value of type Any, i.e whatever value. And an output connection sends
a Password value, also of type Any. For the request port, a protocol specifies that
a connection is received via the log input and sent via the pwd output.

1 architecture LoginManager is abstraction() {
2 type UserId is Any. type Password is Any.
3 type Login is tuple[UserId, Password].
4 port update is { connection upd is in(Login) }.
5 port request is {
6 connection log is in(UserId).
7 connection pwd is out(Password)
8 } assuming {
9 protocol is { ( via log receive any. true*. via pwd send any )* }

10 }
11 }

Listing 1.6: LoginManager textual specification (from [Oquendo, 2008a])

Behavioral aspects of components are expressed in a procedural way. Listing 1.7
illustrates how the LoginDB component handle login requests.

1 component LoginDB is abstraction() {
2 database is location(Set(Login)).
3 behaviour is { decrypt is function(p : Password) : Password { unobservable }. }
4 choose {
5 via incoming::fromLink receive login : Login.
6 project login as userId, password.
7 database := database’ including(tuple(userId, decrypt(password))).
8 behaviour()
9 or via select::log receive query : Login.

10 via select::pwd send (database’
11 selecting( lg | project lg as userId, password. userId=query)).
12 behaviour()
13 }
14 }

Listing 1.7: LoginDB textual specification (from [Oquendo, 2008a]

The LoginDB component is declared as a storage location that saves Login
values. Its main behaviour is a function that decrypt incoming passwords and
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this functionwill be used in the other clauses afterwards (by calling behaviour()).
The choose clause expresses the variation of behaviors depending on the invoked
port. When its incoming port from the fromLink connection receives a login, the
database will add or update the password for this login. When receiving connection
on its other port, the component sends back the password for the given userId.
Other variability and predefined reconfiguration rules can be defined in a similar
fashion.

A service-oriented extension of the language as been defined to map Business
Process Modeling Notation (BPMN) [OMG, 2011a] constructs onto π-ADL [Oquendo,
2008b]. A complete toolset17 is available with two target virtual machines, one
specific to ArchWare and a Microsoft®.NET platform [Qayyum and Oquendo, 2008].
The toolset also provides analyzing, animation and property tracing mechanism.

π-ADL is part of a larger framework for software modeling, analysis and de-
ployment. It has the advantage to rely on a strong algebraic theory for component
definition. Properties evaluation is then possible since they are expressed in predi-
cate logic. A UML profile has also been defined to enhance model understandability
with a graphical notation.

However, no deployment constraints are considered in π-ADL, but rely on the
ArchWare tool. No requirement-related or design rationale can be expressed and, as
far as we know, no dedicated mean exists in the toolset. Also, the textual syntax is
quite complex to get familiar with. Many keywords are defined and the definition of
textual models is somewhat verbose, even if the amount of primitive architectural
constructs is rather small. For example, value types must be declared in every com-
ponent they are used and the communication is done only through value passing.
No support is provided for patterns or architectural styles. Finally, the design of
an architecture with π-ADL implicitly targets a specific virtual machine under the
ArchWare environment. As stated in Section 1.2, we believe an ADL should not
restrain the technological possibilities of the underlying technologies, thus we will
not consider π-ADL in the discussion in Section 1.2.13, but we thought important to
depict the basic concepts of the approach in the present work.

1.2.10 Architecture Analysis & Design Language

Architecture Analysis & Design Language (AADL) is a standard to formally describe
embedded and real-time systems [Feller et al., 2006]. AADL offers facilities to model
systems in terms of components with many forms of interactions between them,
as well as the mapping to computational hardware. AADL has been published as
a Society of Automotive Engineers (SAE) standard for the first time in 2004 and the
last revision was published in 2012 [SAE, 2012]. Many projects have used AADL
in the avionics industry [Feiler et al., 2010] and a wide range of research has been
published on case studies or methodological aspects for AADL [Wang et al., 2011;
Dajsuren et al., 2012; Song et al., 2012]. The core concepts of the original version are
depicted in Figure 1.15.

17https://www-archware.irisa.fr/software/pi-adl-toolset/
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Figure 1.15: Core AADL elements (from [Feller et al., 2006])18

Components are defined in term of types and implementations. A type de-
picts the externally visible interfaces and attributes of a component. The implemen-
tation specifies the internal structure of a component. As shown on Figure 1.15,
there are three categories of components: application software (like threads,
subprograms ordata), execution platform (likeprocessors, buses ordevices)
and composite (a hybrid system).

A component type can be specified by the following subclauses that describe
more precisely its semantics:

features the interfaces (among predefined interaction types)
flows the abstract information path between components

properties predefined characteristics (dependent on the category)
extends possibility to subclass an existing type

Alike, an implementation is described by the following subclauses:

subcomponents collection of internal components (hierarchal decomposition)
calls subprogram calls

connections link between two features
flows the implementation of an abstract flow
modes alternate configurations (subcomponents-calls-connections)

18version 2 of the standard mainly introduces syntactical sugar and add new types of constructs, like
layered architectures or abstract features (incomplete or template component) [Feiler et al.,
2012]
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properties predefined characteristics (dependent on the category)
extends possibility to subclass an existing implementation
refines refine the semantics of its type by adding properties

Components can be grouped in packages identified by a namespace. AADL is
extensible by defining domain specific property sets to target components types.
Also, annex libraries, with domain specific notations or formal languages can be
developed, but are subject to a formal approval by the SAE AADL committee.

AADL model can be expressed in textual form, in a graphical notation or in XML
format. Listing 1.8 presents a sample AADL textual specification.

1 -- a process type definition with an input and an output feature
2 process control_processing
3 features
4 input: in data port sensor_data;
5 output: out data port command_data;
6 end control_processing;
7 -- its empty implementation
8 process implementation control_processing.speed_control
9 subcomponents

10 control_input: thread control_in.input_processing_01;
11 control_output: thread control_out.output_processing_01;
12 end control_processing.speed_control;
13 -- declaration of the thread types and their empty implementations
14 thread control_in
15 end control_in;
16 thread implementation control_in.input_processing_01
17 end control_in.input_processing_01;
18 thread control_out
19 end control_out;
20 thread implementation control_out.output_processing_01
21 end control_out.output_processing_01;
22 -- declaration and implementation of data structure
23 data sensor_data end sensor_data;
24 data command_data end command_data;

Listing 1.8: Sample AADL textual specification, adapted from [Feller et al., 2006]

In this example, a simple process type (containing one input and one output)
is specified with its implementation containing two threads. Many types of com-
ponents exist in the AADL standard to enable low level descriptions of software
systems, with the possibility to refine the semantics with predefined or user-defined
properties, like the computation time for a thread. Analogously, execution platform
components can be specified to represent a physical architecture with processors,
communications buses, physical memory and devices (interaction points between
the system and the environment, like screens, sensors, etc). Once both software
and hardware descriptions are complete, software components must be bound to
platform components in order to specify a complete system. This binding is done
via binding properties that can be either allowed bindings, actual bindings or
available physical resources.

In Listing 1.9, we present the application model of a producer-consumer
system expressed in AADL.

1 package ProdConsSoft -- namespace
2 public -- visibility
3 -- a user-defined data structure
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4 data chunk
5 end chunk;
6

7 -- the producer program
8 subprogram Produce
9 features

10 output : out parameter chunk;
11 end Produce;
12

13 -- the consumer program
14 subprogram Consume
15 features
16 input : in parameter chunk;
17 end Consume;
18

19 -- sending thread
20 thread Send
21 features
22 output : out event data port chunk;
23 end Send;
24

25 thread implementation Send.Impl
26 calls
27 prod : { producer : subprogram Produce; };
28 connections
29 parameter
30 producer.output -> output;
31 end Send.Impl;
32

33 -- receiver thread
34 thread Receive
35 features
36 input : in event data port chunk;
37 end Receive;
38

39 thread implementation Receive.Impl
40 calls
41 cons : { consumer : subprogram Consume; };
42 connections
43 parameter
44 input -> consumer.input;
45 end Receive.Impl;
46 end ProdConsSoft; -- end of model

Listing 1.9: AADL software applicationmodel for a producer-consumer system

We created two subprograms, namely Produce and Consume that are running as
separated threads. The Send thread pushes events of type chunk and The Receive
thread receives events of the same type chunk.

Now, we are going to encapsulate the threads in processes in order to be able
to deploy them on hardware nodes. In Listing 1.10, we present the compositemodel
gathering platform and system components.

1 package ProdConsHard
2 public
3 with ProdConsSoft;
4

5 -- the producer process
6 process Prod
7 features
8 outport : out event data port ProdConsSoft::chunk;
9 end Prod;

10

11 process implementation Prod.Impl
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12 subcomponents
13 prodprocess : thread ProdConsSoft::Send.Impl;
14 connections
15 port prodprocess.output -> outport;
16 end Prod.Impl;
17

18 -- the consumer process
19 process Cons
20 features
21 inport : in event data port ProdConsSoft::chunk;
22 end Cons;
23

24 process implementation Cons.Impl
25 subcomponents
26 consprocess : thread ProdConsSoft::Receive.Impl;
27 connections
28 port inport -> consprocess.input;
29 end Cons.Impl;
30

31 -- a processor
32 processor the_processor
33 features
34 ETH : requires bus access Ethernet_Bus; -- need access to ethernet bus
35 end the_processor;
36

37 -- a communication bus
38 bus Ethernet_Bus end Ethernet_Bus;
39

40 -- the description of the system
41 system ProdConsSystem end ProdConsSystem;
42

43 system implementation ProdConsSystem.Simple
44 subcomponents
45 prodinstance : process Prod.Impl; -- producer process instance
46 consinstance : process Cons.Impl; -- consumer process instance
47 CPU : processor the_processor; -- shared CPU
48 the_bus : bus Ethernet_Bus; -- shared ethernet bus
49 connections
50 bus access the_bus -> CPU.ETH; -- declare access from ethernet to CPU
51 port prodinstance.outport -> consinstance.inport { -- connect both instances’ ports
52 -- actually connected on the same bus
53 Actual_Connection_Binding => (reference (the_bus));
54 };
55 properties
56 -- prod process running on shared CPU
57 Actual_Processor_Binding => (reference (CPU)) applies to prodinstance;
58 -- cons process running on shared CPU
59 Actual_Processor_Binding => (reference (CPU)) applies to consinstance;
60 end ProdConsSystem.Simple;
61 end ProdConsHard; -- end of model

Listing 1.10: AADL compositemodel for a producer-consumer system

Two processes are specified, respectively for the producer and the consumer
thread implementations. The Prod process declares one feature, which is an
output event of type chunk and analogously, the Cons process declares a type-
compatible input event. Both process implementations expose ports typed by
the aforementioned features. Additionally, a simple processor and a (dummy)
communication bus are also defined. Afterwards, a concrete system instance is spec-
ified with two processes, one processor and one bus. A connection is specified
between the bus and the processor and both processes are also connected using
their respective ports through the bus. Finally both process instances, namely
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prodinstance and consinstance are running on the CPU processor.

A new annex is currently being developed to add a requirement modeling lan-
guage, the Requirements Definition and Analysis Language (RDAL) [SAE, 2012].
RDAL provides hierarchical decomposition of requirements (close to the KAOS
language [van Lamsweersde et al., 1991]), constraints over requirements, design
rationale documentation and a traceability mechanism between requirements and
AADL model elements.

Plenty of tools are available on the market to write and analyze AADL models, like
OSATE 2 open source Eclipse plugin19, to generate application code, like Ocarina20,
or refine AADL models like Ramses21. These tools are supported by a large commu-
nity and OSATE is a very stable and usable tool developed on top of the Xtext22 DSL
development framework and the Eclipse Graphical Editing Framework23.

We do not detail here all features offered by the AADL modeling language, like
flows, properties, modes and inheritance capabilities. AADL is a very broad mod-
eling language putting a strong relation between software and hardware concerns.
Also, the separation between types and implementations of components, cou-
pled to the modemechanism to define alternative system configurations upon given
conditions and properties, makes it a very operable modeling language. Further-
more, the programming language compliance [SAE, 2006] and behavioral [SAE, 2011]
annexes places AADL as a good candidate for effective model driven engineering of
critical software systems. For example, among other aspects, behavioral execution
of subprograms or threads can be specified by state machines. Transitions are
triggered on the receptions of events, by the evaluation of boolean expressions, the
combination of both or periodically in case of periodic threads. States can be com-
plete so that the execution of the state machine is stopped until further awakening
condition occurs.

However, even with limited properties and a very simple instantiation and de-
ployment of a system, the textual representation of an AADL model contains many
lines of code and is quite complex to manipulate, like we have seen with our Pro-
ducer/Consumer example in Listings 1.9 and 1.10. Also, an AADL model is very close
to an implementable product, making very tight the difference between platform
independent and specific models. AADL has been designed for embedded and criti-
cal systems with analysis possibilities, so it needed a very precise semantics, which
drastically augment the amount of modeling constructs and further increases the
models complexity. The AADL modeling language is not really suitable to model
component-based architecture models at a high abstraction level since even at for
application model, a certain level of details is required when operational features
need to be expressed.

19https://wiki.sei.cmu.edu/aadl/index.php/Osate_2
20http://libre.adacore.com/tools/ocarina/
21http://penelope.enst.fr/aadl/wiki/Projects#RAMSES
22http://www.eclipse.org/Xtext
23http://www.eclipse.org/gef/
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1.2.11 A Few Words about the MARTE UML Profile

The Modeling and Analysis of Real-Time and Embedded Systems (MARTE) UML
profile has been designed, as its name suggests, for Real-Time and Embedded Systems
(RTES) [OMG, 2011e]. MARTE provides, on one hand, constructs for software and
hardware aspects of systems with support of non-functional properties. On the other
hand, it provides constructs that can be used for analysis purposes, especially for
schedulability and performance properties. MARTE relies on the following models:

Non-func. Properties notation for non-functional properties specifications
Time notation for time and clock specifications

Generic Component component-based view with flow specifications
High-level Application real-time and behavioral specifications

Detailed Resource software and hardware platforms properties

Coupled to these notations, the specification defines a textual syntax, namely
Value Specification Language (VSL) to write expressions in MARTE models. VSL
extends the UML ValueSpecification and Datatype constructs to specify pa-
rameters, relationships between these parameters and composite structures.

In many ways, MARTE is close to the Architecture Analysis and Design Language
we presented in Section 1.2.10, but with a narrower scope, especially for code gen-
eration aspects and target platform specifications. It has the advantage to add a
precise timing semantics for UML-based components, so model analysis can be
performed. In order to represent a full system, MARTE must be combined to SysML
block constructs [OMG, 2012d]. The UML profile is also relatively complex to ma-
nipulate and provides many additional concepts to UML models, which further
increases its complexity. MARTE plugins are available for, among other, MagicDraw,
a commercial modeling tool for many languages, including UML 24 and Papyrus,
an open source Eclipse plugin with support for almost the overall UML models and
many profiles 25.

1.2.12 The Open Group ArchiMate® Modeling Language

Enterprise Architecture (EA) is defined as a broader discipline that integrates software
architecture as one of the aspects of an enterprise. EA focuses on guiding businesses
with a holistic approach, usually by integrating business goals, strategical aspects,
people and technologies. From a set of recognized EA definitions from the industry
and the academic worlds, Dankova stated that « enterprise architecture represents
(an approach to developing) a general conceptual plan, which describes the structure
of the enterprise with its separate components and links between them; it defines the
principles and rules for the design and operation of the organization structure, the
processes and information systems in the enterprise, and it synchronizes information
technologies in the enterprise with its business goals and processes. » [Dankova, 2009]

EA modeling frameworks usually provide mechanisms to support business, data,
application and technological architectures [Lapkin et al., 2008; Open Group, 2011;

24http://www.nomagic.com/
25http://www.eclipse.org/papyrus/
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Mentz et al., 2012]. Among architectural modeling languages, the ArchiMate lan-
guage is quite popular [Malavolta et al., 2013] and offers interesting features for
software architecture modeling with requirements traceability [Open Group, 2013].
The ArchiMate is based on a layered representation of an enterprise: Business, Appli-
cation and Technology. The language core concepts are expressed in terms of active
elements that perform some behaviors on passive objects.

The Business layer represents the processes executed by actors. Actorsmay
have roles that defines their responsibility to perform some behaviors. In case
many roles are responsible for a behavior, a collaboration can be specified to
link multiple roles to one or more behaviors. Actors are placed into location that
can be either geographical or conceptual. Business services are exposed through
interfaces that represent the point of access from the outside environment. Busi-
ness behaviors are processes, functions, interactions, events and services.
Processes are ordered activities that produce services. A process can be part of
a service that fulfills someone’s need. Services and processes can be grouped under
user-defined criteria in a business function. Events are occurrences that triggers
or influences behaviors. Interactions are collaborative processes. The standard
defines also a set of passive concepts at the business layer. An object is anything
relevant from a business perspective, its physical appearance or format being a
representation and their contextualized semantics are expressed as meanings. A
product is a collection of correlated services offered to a customer. The relative ben-
efit of a service or a product is a value. A contract is the agreement associated
with a product.

Figure 1.16 depicts the process flow of the Take out insurance service that
is triggered by an insurance request event and assigned to the Insurance agent.
The service can be accessed through two interfaces, a Web page or the Phone
provided by the Insurance agent role. The insurance can be rejected, depicted by
an or-junction that generates a Request rejected event. If the insurance request is
accepted, a policy object is created and its paper representation is sent out to
the client.

Figure 1.16: Insurance request Business process26

The Application layer is a software-oriented support for the Business layer. Close
to UML 2 component diagrams, components support functions exposed as ser-

26All models presented in this section are inspired from the ArchiSurance case study [Open Group,
2013]
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vices on interfaces. Internal interactionsmay be defined into components
for application collaborations. Application layer behavioral constructs share the
same names as the ones at the Business layer and are in some ways the translation of
business behaviors into software processes. The only application passive structure
is the data object representing a computable object. Figure 1.17 illustrates an
Application model. A Financial Application component contains two functions,
each of them with two services. The invoice-related services access to an Invoice
data object. An interaction is also described between the Financial and Client
applications to retrieve the Client details.

Figure 1.17: Financial application component

The Technology layer mixes underlying software technologies, such as operating
systems or application servers, and hardware infrastructure. Closely to UML 2 de-
ployment diagrams, nodes and devices can host artifacts. Nodes are bound via
communication paths and devices through networks. System software are
UML 2 ExecutionEnvironment. But The ArchiMate language introduces also
interfaces at the infrastructure level to model logical or physical gateways for
other nodes or application components. Figure 1.18 represents a sample infras-
tructure view with on the left-hand side the Main Office location that contains the
Financial and Client application components deployed respectively as a SAP-FI/CO
artifact on a an SAP Server device and as a CRM.jar file deployed on an EJB
Container system software. A DBMS offering Data Access functions is accessi-
ble via a JDBC infrastructure interface to the Client Application. All these nodes
are connected to each other in a LAN network. The Take out insurance process is
accessible on Client Browser application interface deployed on a Client Personal
Computer node.

User-defined views and viewpoints can be specified to abstract part of archi-
tecture models depending on the model users, as defined by the ISO/IEC/IEEE
standard on software architecture description [ISO/IEC/IEEE, 2011]. A viewpoint
defines the intended audience, i.e. stakeholders, the purpose, like communication,
design or decision, the abstraction level and the available modeling elements. A set
of standard viewpoints as well as a methodological framework to select among these
viewpoints is also introduced in the specification document.

Similarly to the UML profiling mechanism, extensions can be added to the Archi-
Mate language. At current stage of development, two standard extensions have been
defined, one for motivational aspects and one for the implementation and migration
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Figure 1.18: Sample infrastructure view

of systems. The latest has been developed to stick to the Architecture Development
Method (ADM) as specified by the TOGAF® framework [Open Group, 2011]27.

The Motivation extension is aimed to represent, among others, analysis assess-
ments, business goals, system requirements or stakeholders. Figure 1.19 il-
lustrates how from a legal obligation to be insured assessment for a Customer, a
Contract insurance goal is refined in a Personalized and an Automated policy defini-
tion requirements. They both are offered by the Take out insurance service via
specific interfaces and implemented by an application component.

In our opinion, the holistic approach advocated by Enterprise Architecture mod-
eling approaches have significant assets that could be integrated into software
architecture descriptions. Upon its relative complexity induced by the high number
of modeling element, The ArchiMate language offers interesting features, especially
with the Motivation extension that relates requirements to actors or components.
The layered architecture representation, coupled to adequately used viewpoints, is
also an effective mean of communications for non IT specialists. The possibility
to model physical gateways with interfaces provides also a more flexible and
accurate way of modeling concrete bindings between nodes. Model versioning is
somehow addressed by the implementation and migration extension within the
plateau construct where an overall architecture is stored at specific points in the
ADM method.

However, since it mainly focuses on business-oriented features, application
interfaces are poorly defined and logical connections between processes through
these interactions cannot be formally expressed. Services, at business as well as
application layers, and data objects, that partially define an interface semantics,
are also specified in an informal manner. Besides, the nature of the communica-
tion in a collaboration or in an interaction is also expressed in a fuzzy way
where the exact content of the exchange information, data, or anything whatsoever

27TOGAF is outside the scope of the present dissertation. In brief, an ADM cycle is composed by
eight repeating tasks (also divided into steps): architecture vision, business architecture, information
systems architectures, opportunities and solutions, migration planning, implementation governance and
architecture change management. The first cycle is usually preceded by a preliminary phase.
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Figure 1.19: Motivation extension sample view

has no semantics attached. Furthermore, rationale or alternative design are not
documented and no modeling constructs are offered to keep track of such piece of
information. Last, the behavioral specification mechanism are rather informal so
that verification processes, even manual, are quite complex to perform.

1.2.13 What Are They Missing ?

We will now review the aforementioned architectural modeling approaches regard-
ing the four key aspects we introduced in Section 1.2.2.

Design Facilities

They all provide model elements to represent an architectural definition, except
MARTE that must be combined to SysML, D&C that focuses on deployment man-
agement and ArchiMate that offers few semantics on components interfaces. xADL
provides only syntactical blocks with no semantics, so they need to be refined by
the modelers. However, except for UML 2 and SysML which allow the definition
of behavioral specifications on connectors, the concrete semantics of the binding
between abstractly defined components or interconnected computation nodes is
either trivial, not clear, or even sometimes unspecifiable. AADL offers many inter-
esting features to refine the semantics of any model element by separating the type
and instance levels, but the amount of primitive construct is so large that a complete
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architecture for a simple system, such as the producer/consumer (Listing 1.10 in
Section 1.2.10) is already pretty complex.

Except ACME and D&C, all investigated languages offers multiple viewpoints
for architectural model. Coupled to structural representations, architecture models
can be extended at least by behavioral specifications at different levels of detail
or formality. For example, ArchiMate mainly focuses on business processes, UM-
L/SysML lets users free to define their own level of details and xADL is extended with
state machine features. At the opposite, SafArchie, requires modelers to specify the
component behavior with a labeled transition system based on a strong algebraic
theory. Regarding platform or deployment viewpoint, all languages excluding ACME,
roughly provide the same constructs, but with different level of expressiveness28.

Also, model refinement, enrichment and versioning are scarcely addressed by
these modeling approaches. Usually, modelers are in charge of maintaining the links
between different versions or views of a model. SysML enables to represent systems
at different abstraction levels with nested BDD-IBD. ACME offers a somewhat similar
mechanism by distinguishing between a component and its possibly recursive inter-
nal representation. Modifications applied to models, especially when developing in
an iterative manner, cannot be easily or formally retrieved so that exploration and
documentation of design alternatives need extra work to be efficiently maintained.
AADL and MARTE share a common view of system mode for dynamic reconfiguration
under certain circumstances, but do not specifically support iterative enrichment
and versioning of models.

Finally, except ACME and UML 2 components, the definition and reuse of archi-
tectural patterns or styles is even complex, or not addressed by the aforementioned
approaches.

Mean of Communication

Another prior asset for modeling languages resides in their communication faculty.
Models are not designed for practitioners only, but also for stakeholders. An impor-
tant trade-off must be found between formal and generic notations. More formal
and domain-specific approaches empower a higher expressiveness and facilitate
model analysis, but lower the understandability by non-practitioners. At the oppo-
site, lazy or fuzzy construct semantics usually avoid analysis possibilities. In the
SafArchie 3-layer representation, component and port semantics must be expressed
by algebraic automata which may be too difficult to understand, manipulate and
maintain. AADL, in its second annex, share a close approach by providing a formal
syntax to define execution semantics with extended state machines. ACME has a
completely opposite approach where constructs have a generic semantics than can
be refined by properties29. In the middle of these antagonist approaches, UML-
based formalisms and ArchiMate use constraints or semi-formal behavioral models

28since MARTE is a UML profile, it may reuse UML deployment diagrams.
29Note that its FSP extension allow to formally define component behavior in a similar fashion as

AADL behavior annex, but since the approach is rather undocumented, we do not consider it to be part
of the language.

50



1.2.13. What Are They Missing ?

to provide human-readable execution semantics that can be used as a basis of com-
munication of verification of models. xADL relies once more on the user-defined
extensions to properly specify the semantics of the models.

Furthermore, the number of primitive constructs, which influences the lan-
guage complexity, should be considered. With complex meta-models, the effort
to understand and maintain models can become more complex, as observed with
UML 2 [Solberg et al., 2005]. Again, an important trade-off must be considered
between a high expressiveness and an explosion of primitive constructs to combine
in order to draw a model [Sen et al., 2009]. AADL and MARTE are made of many
primitive constructs, so that, even for toy samples, architecture models contains
many line of codes, making them quite complex to understand. But with ACME mod-
els, constructs must be refined by non-standard properties, so the understandability
relies mainly on the level of documentation of the semantics of these properties.

Model Analysis

Regarding model analysis, some languages propose interesting features. SafArchie
integrates a framework for compositional verification based on algebraic automata.
MARTE has been conceived to support model verification regarding non functional
properties, especially for schedulability and performance. SysML also support some
kind of analysis via constraint blocks. AADL models are refined by standard prop-
erties and can be extended by behavioral aspects for analysis purposes30. ArchiMate
provides analysis support via dedicated types of diagrams, but only for business-
related concerns. ACME components semantics can be refined by FSP definitions
supported by an LTS analyzer, but the concrete way to use this extension is not
documented even if the FSP formalism and the analyzer tool are actually well docu-
mented. xADL proposes basic structural features for model analysis, especially on
model consistency checking.

As we can see, analysis is usually performed by the mean of dedicated properties
expressed in a formal manner or by transition systems with different level of abstrac-
tions. ACME and AADL provide the more flexible features since both mechanisms
can be used and state machines must be expressed in a formal manner, which suit
particularly to effective model analysis.

Many recent approaches for behavior specifications based on the Foundational
UML (fUML) initiative [OMG, 2013c] and the Action Language for fUML (Alf) [OMG,
2013a] are emerging [Lai and Carpenter, 2012; Mayerhofer et al., 2013]. fUML defines
a subset of UML concepts with a precise execution semantics. The Alf language is a
textual Java-like syntax to describe and manipulate fUML models. The combination
of fUML and Alf enables simulation and verification possibilities. These approaches
make fuzzier the line between modeling and programming, but does it really mat-
ter? We believe such behavioral specification mechanisms better suits the needed
abstraction level for software architectures.

30Further domain specific annexes can also be written, but are subject to approbation by the Society
of Automotive Engineers board.
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Requirement Linking

A needed feature for today’s modeling languages is the linkage from requirements to
software artifacts in order to face, even partially, architectural drift and erosion [Perry
and Wolf, 1992]. Architectural drift may be seen as the gradual incoherence of the
concrete architecture in terms of its deployed artifacts regarding to the modeled
architecture. Such a drift is due to the evolution of the system, but it does not break
any constraint in the model. At the opposite, the erosion is a similar phenomenon
that violates the architectural model. Exposed to these types of degradations, a
system architecture may become too obscure and hermetic to changes.

Even in UML component diagrams where there could have been a link to Use
Cases for example, or in TranSAT with the iterative injection of patterns, this linkage
is not explicitly kept so that there is a need to define and maintain extra models
or documentation for that purpose. SysML and ArchiMate are the only explored
languages that are providing this linkage between component-like artifacts and
addressed requirements. They also provide refinement traceability between require-
ments. In SysML, design rationale can also be added to any modeling elements,
including associations. ArchiMate is completed with a Motivation Extension, but
uses rationale in the opposite way. Assessments and Drivers are used to derive
Requirements, then the Requirements are linked to Application Components
or to Actors. However, alternative solutions or refinements of requirements as well
as impacts between requirements cannot be expressed. Within SysML, an extensible
trace dependency can be defined between requirements but it is up to the modeler
to specify its semantics. This mechanism offers the possibility to create ad-hoc trace-
ability associations like, for examples, inter-dependencies between requirements or
mutual exclusions.

Summary Table

Table 1.1 summarizes our appreciations of the explored languages regarding our
four key aspects. Ratings are expressed with qualitative values compiled from our
aforementioned remarks:

– major lacks concerning this aspect
o most of the aspect is taken into account
+ the aspect is appropriately taken into account

KEY UML2 D&C SYSML ACME XADL SAFARC π-ADL AADL MARTE ARCHIM

DESIGN + – + o o + o + o –
COMM. + – + o – o – – – –
ANALY. o o o o o + + o + +
LINK – – + – – – – o – +

Table 1.1: Summary of appreciations regarding the key aspects

52



1.3. Design Rationale and Requirement Traceability

1.3 Design Rationale and Requirement Traceability

The value of appropriate documentation for software design and maintenance
has been widely stressed by the scientific community [Royce, 1970; Parnas and
Clements, 1986; Curtis et al., 1988; Watkins and Neal, 1994; Clements et al., 2002;
Avgeriou et al., 2007] and in the industry [Tang et al., 2006; Ali Babar et al., 2006,
2007; Malavolta et al., 2013]. It is even more important as design rationale and
knowledge is often diluted into the overall design and tends to evaporate with system
evolutions, because the knowledge mainly remains in the head of some key experts
or architects [Rus and Lindvall, 2002; Zdun, 2009]. Recording techniques for design
rationale has been extensively studied for years and many tools and models have
been proposed with few success in practice [Jarczyk et al., 1992; Shum, 1996; Tang
et al., 2006]. These early methods were mainly text-based with a lack of reasoning
and analysis capabilities [Ali Babar et al., 2006]. Furthermore, the perceived return
on investment of such techniques is usually very low since the needed additional
work does not produce its benefits right away.

In the software architecture community, Bosh and Jansen postulated that an
architecture can be seen as the set of decisions that produced the model, with the
explored and discarded alternatives accompanied by the reasons sustaining this
model [Bosch, 2004; Jansen and Bosch, 2005]. From the suggestion made by Tyree
and Ackerman to explicitly record and model architectural design decisions [Tyree
and Akerman, 2005], Kruchten et al. identified four types of decisions and intro-
duced a first classification for design decisions and their rationale [Krutchen, 2004;
Kruchten et al., 2006]. A set of Architecture Knowledge (AK) frameworks and tools
have then emerged in the past decade to capture the rationale behind the production
and evolution of architecture models [Bjørnson and Dingsøyr, 2008; Farenhorst and
de Boer, 2009]. In the present section, we will review notable and recognized meth-
ods, models, frameworks and tools in the field of AK. We do not provide a systematic
literature study31, but we tend to highlight recurrent needed traceability features for
design decisions and rationale that should be incorporated into a component-based
modeling framework.

1.3.1 Architecture Tradeoff Analysis MethodSM

Kazman et al. introduced the Architecture Trade-Off Analysis Method (ATAM) to
analyze software architecture regarding its expected quality attributes [Kazman
et al., 2000]. ATAM is a risk-oriented method intended to help architects to make the
correct trade-offs at early design stages. ATAM tends to make explicit the relations
between the model quality attributes, i.e. the software ilities, and their responsible
structural elements and properties. This is thus a decision reasoning and knowl-
edge recording technique about architectural design and decisions based on the
identification of:

risks dangling or unevaluated decisions

31Such reviews are available in an article written by Bjørnson and Dingsøyr [Bjørnson and Dingsøyr,
2008] and in a technical report written by Biehl [Biehl, 2010]
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sensitivity points architectural elements liable to quality attributes
tradeoffs elements being multiple sensitivity points

The method is organized around nine steps, some of them may be repeated
twice, and is supported by predefined document templates and organization agenda.
In a nutshell, the steps are grouped in presentation, investigation and analysis,
testing and reporting tasks. The presentation focuses on presenting the ATAM, the
business driver and the proposed architecture. In the investigation and analysis,
architects first identify architectural approaches. Then, they define and prioritize
quality attributes, and define scenarios that conform to these quality attributes
in so-called utility trees. Finally, they analyze the approaches regarding the high-
priority attributes. The testing consists in the elicitation of a larger set of scenarios
with all stakeholders, not only the architects present during the previous phase and
they all analyze these scenarios and possibly produce new risks-sensitivity points-
tradeoffs. Last, the results of the ATAM process are presented to the stakeholders in
the reporting task.

The ATAM method also defines a characterization framework illustrated for
performance, modifiability and availability quality attributes. They identified three
categories:

external stimuli causes behind architectural changes
architectural decision structural changes induced by the stimuli

responses measurable effects of an architectural decisions

This characterization is not meant to be fully exhaustive, but the goal of the
method is to propose a framework to reason about quality attributes. It focuses then
on the impact analysis and elicitations of architectural decisions regarding quality
attributes, exclusively in terms of structural responses to architectural changes. It has
been developed to make early analysis and enforce more accurate documentation to
evaluate the risks induced by architectural changes. The proposed documentation
does not consider other type of rationale regarding the design, such as alternative
solutions or technological/hardware constraints, for example.

1.3.2 4 + 1 View Model of Architecture

Kruchten introduced a composite representation of software architecture based on
the following four views [Kruchten, 1995]:

logical platform independent structural features of an architecture
process the communication, timing and other non functional aspects

development platform dependent and detailed system description
physical the mapping to hardware with physical constraints

A scenarios view compose the glue between all these representations gathering
a subset of software requirements. It does not provide additional information, but
is an interesting mean to illustrate and validate the design on paper, as well as
discovering architectural aspects in early design phases.

From the definition given by Perry and Wolf, as presented in Section 1.2.1, all
views are augmented by an explicit recording of the rationale and constraints. Ar-
chitectural elements are also bound to some of the requirements. This method has
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been fine tuned and used at Rationale Software with some success, according to the
author. As far as we know, this is the first report of such an explicit recording in a
software development method. However, no concrete details on the form or on the
nature of these recordings are provided.

1.3.3 Process-based Knowledge Management Environment

Ali Babar et al. proposed a methodological framework to record tacit knowledge in
architecture-based system development [Ali Babar et al., 2005a]. The idea relies on
a dedicated process decomposed into four tasks: planning, capture, organization
& validation, and storage. During the planning phase, the nature and sources of
knowledge are identified and an appropriate recording technique is selected. The
knowledge capture is organized in two ways: through the implication of the devel-
opment team with explicit tool-supported recordings, or by a dedicated knowledge
engineer in charge of the acquisition and recording either during the project or
from a retrospective exploration of patterns. In order to appropriately extract ar-
chitectural knowledge from patterns, they must have been documented at least as
reusable patterns with, among other information, the addressed problem space and
the intended consequences [Buschmann et al., 1996]. Afterwards, the knowledge
must be organized and validated, but, unfortunately, the authors do not give any
details on this third phase and do not point to any other method or technique. Last,
this validated information must be stored in a repository and made available to
others.

A web-based tool has been developed on top of the Hipergate collaborative and
open-source platform32 to support the overall framework [Ali Babar et al., 2005b;
Ali Babar and Gorton, 2007]. It has been live-tested in an Australian Defense project
for an aircraft system [Ali Babar et al., 2008]. Upon some advantages of recording
and using architectural knowledge in an industrial environment, the experiment
notably highlighted the need for variability and design alternatives management as
well as an appropriate pattern-based documentation.

1.3.4 Architectural Design Decision, a First Classification

Based on the observations and suggestions by Bosch [Bosch, 2004] and Tyree and
Ackerman [Tyree and Akerman, 2005] to raise design decisions as first-class modeling
artifacts in the software development life cycle, Kruchten et al. proposed an ontology
of design decisions [Krutchen, 2004; Kruchten et al., 2006]. The authors identified
four types of decisions from implicit and undocumented to explicit and documented.
They defined a classification made up four classes, their attributes and relationships.
Design decisions are either:

ontocrises existence decisions, i.e. an element is present in the design
anticrises opposite of ontocrises stating that an element will not exist
diacrises property decisions that express a quality of (part of) the system

pericrises organizational decisions influencing the development life-cycle

32Hipergate is a Content Resource Management tool, see http://www.hipergate.com
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Any design decision is refined by attributes to capture as much information
as possible, with among others, a text based description, its rationale, a scope, its
state (among predefined values) and the history regarding the authors, dates and
successive changes made to the decision.

Also, numerous relations can exists between two decisions or between a decision
and another artifact, like an element present in another model or a concrete system.
Twelve types of relations where defined to this end:

constrains a lower-order decision cannot live without a higher-order one
forbids a decision excludes another one

enables a decision makes available, but does not implies another one
subsumes a decision is more general, i.e, surround another one

conflicts with mutual exclusion of decisions
overrides exception to another decision that has a wider applicability

comprises decomposition of a higher-order decision
is bound to both decisions must be in the same state

is an alternative to fully substitutable decisions
is related to any other type of decision not listed above

traces to relation between a decision and an artifact (code or model)
does not comply a concrete artifact prevents from taking a decision

This ontology stated the basis for much research and many tools focusing on
architectural knowledge management. We will present some of them in the following
sections.

1.3.5 Architecture Rationale and Element Linkage

Tang et al. introduced the Architecture Rationale and Element Linkage (AREL) model
to capture and trace design rationale[Tang et al., 2007]. The AREL model traces the
reasoning process and the history behind an architecture model. The authors made
a distinction between motivational reasons and design rationale. The rationale is
produced by the decision and justifies it with details such as the alternative options
and tradeoffs. A motivational reason is an input to a decision and is either:

causality incentive for a design decision
goal objective to be achieved

influence decision that can constraint another one
factuality factual piece of information or assumption

The AREL model has been implemented as a UML profile for adoption and
compliance reasons, since UML models are relatively popular in the industry. Archi-
tectural rationale are concretely linked to any architectural element with a single
type of traceability link. One rationale can be linked to many elements, but only one
rationale can be bound to an element. AREL considers architectural elements from
four different perspectives, i.e. viewpoints in the sense of the ISO/IEC/IEEE stan-
dard [ISO/IEC/IEEE, 2011], as defined in the TOGAF [Open Group, 2011] method-
ological framework: business, data, application and technology. AREL models are
also extended to capture versions of architectural elements in order to retain infor-
mation over system evolution.
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AREL has been implemented as an Enterprise Architect extension33. It requires
to draw extra models and the evolution traceability mechanism has not been fully
implemented because of compiler compatibility reasons. The approach has been
retrospectively tested on a partial case study to retrieve and encode architectural
decisions, but the reasoning capabilities of AREL and whether it helps in designing
software systems have not been evaluated.

1.3.6 The Core Model and the GRIFFIN Collaborative Community

From an initial conceptual model for Architectural Knowledge (AK), de Boer et al.
conducted an experiment in four different organizations with distinct perspectives
on what they actually consider as part of the AK [de Boer et al., 2006, 2007]. The
main concerns of these companies were either on effective knowledge sharing, ar-
chitectural rules compliance, AK recovery and AK traceability. The initial model
was highly compliant to the IEEE-1471 standard [IEEE, 2000] but the experiment
revealed some discrepancies with the organizations’ views. Instead of growing their
models with new entities, the authors created a minimalistic core model by gath-
ering closely-related concepts. The resulting model does not intimately relate to
the aforementioned IEEE standard but leaves more freedom on the actual archi-
tecture description formalism. The authors also validated their model to other AK
formalisms present in the literature, such as the ontology introduced by Kruchten
that we presented in Section 1.3.4.

The core model is articulated around twelve concepts:
stakeholder any party that has an interest in the system

concern actual interest of a stakeholder
artifact any tangible and meaningful piece of information
language representation formalism or notation of artifacts

archi. design combination of artifacts
decision topic concern that must be addressed by a decision
alternative possible implementation option

ranking classification value attached to an alternative
decision selected alternative

design decision decision that has an impact on the architecture
activity action that produces or uses artifacts

role stakeholder’s hat in activities
The same authors also propose a sort of open-source virtual community upon

their core model serving as a reference model for AK management [Lago et al., 2010].
They argue for a hybrid strategy that mixes codified and personalized knowledge
management [Hansen et al., 1999]. Codification consists in carefully recording
knowledge in dedicated storage, sometimes made available in a standardized man-
ner. Personalization is the opposite method where knowledge stays in people’s mind
and is shared via direct human contacts. Extreme codification strategies induce a
significant effort for documentation activities where highly personalized ones live

33Enterprise Architect is a commercial tool for the overall software development life-cycle and it
includes UML modeling facilities. See http://www.sparxsystems.com
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under the threat of loosing knowledge with employee turnover. The authors envision
a social network where professionals may publish (part of) their own AK on sharing,
discovery, traceability and requirement compliance techniques. They argue that
such a community, supported by the industry, will provide reusable practices and
solutions to common AK management problems.

1.3.7 Viewpoint-Based Documentation Framework

Based on the conceptual model and definitions defined in the ISO/IEC/IEEE 42010
standard on software architecture [ISO/IEC/IEEE, 2011], van Heesch et al. proposed
a documentation framework composed by dedicated viewpoints for architecture
decisions [van Heesch et al., 2012]. All viewpoints are compliant with the definition
of an architecture framework as stated in the standard, i.e. « conventions, principles
and practices for the description of architectures established within a specific domain
of application and/or community of stakeholders ». The conceptual meta-model of
an architecture framework is depicted in Figure 1.20.

Figure 1.20: Architecture framework meta-model (from [ISO/IEC/IEEE, 2011])

First, the Decision Detail viewpoint is a text-based description and concen-
trates on the design decision with, among others, the explanation of the addressed
problem, the decision with its possible alternatives, the related decisions and re-
quirements and the history with the authors of earlier revisions. Since the expected
level of details is rather high, the authors observed during pilot studies that only
important decisions were recorded using this viewpoint.

Second, the Decision Relationship viewpoint focuses on a snapshot of the de-
cisions with the relations between them and their statuses. The framework does
not define the precise semantics of the relationship so that domain or organization
specific types of relations may be defined.

The third viewpoint addresses the responsibilities of the stakeholders involved
in the decision-making process. A Decision Stakeholder Involvement view aims at
modeling personalized knowledge by connecting stakeholders to decisions. It also
capture a temporal view of the development process since this viewpoint must be
defined for a specific development iteration.

58



1.3.8. Issue-Based Information Systems

Last, the temporal evolution of decisions is depicted from a Chronological view-
point that represents the decisions with their statuses along the architecture itera-
tions. This viewpoint is particularly useful to understand the history of an architec-
ture development and the decisions-making chronology of the overall process.

Except for the Decision Stakeholder Involvement viewpoint, the approach was
validated in an industrial case study. The authors observed a positive effect on
the communication between stakeholders concerning the technical architecture
without requiring an unacceptable overwork for documentation.

In a comparative case study, the authors tested their framework on software
engineering students working on industrial projects [van Heesch et al., 2013]. As a
result of the study, they observed that their framework induced a more systematic
exploration of design alternatives, but did not significantly helped at managing
system complexity.

1.3.8 Issue-Based Information Systems

Issue-Based Information Systems (IBIS) have been introduced by Kunz and Rittel to
structure issues and their solutions in collaborative problem-solving activities [Kunz
and Rittel, 1970]. The main asset of such systems is to keep track of the argumen-
tation and decision processes related to a particular problem or topic. Many tools
have been developed based on the IBIS concepts in the past years [Shum et al., 2006].
In the present section, we give an overview of two of them.

A rationale capture mechanism integrated into the Eclipse environment has been
introduced in the Software Engineering Using RATionale (SEURAT) system [Burge,
2005; Burge and Brown, 2008]. Even if the main goal of the approach is on rationale
capture for the complete system life-cycle, the authors initially focused on mainte-
nance activities and defined an argumentation-based language called RATSpeak,
inspired by the Decision Representation Language [Lee, 1989, 1991]. The argumenta-
tion starts from a decision problem that can be refined in sub-decisions, solved
by alternative solutionswith arguments. Questions can be made during the
decision process and express the need for additional information before further
argumentation. System requirements are derived from arguments. Arguments
can also be justified by claims or assumptions, the latter being system-specific and
unreliable claims that may be dropped at some time. Claimsmust be linked into a
predefined argument ontology, like Development Cost or Portability, for example.
The approach has been tested in a comparative experiment on maintenance tasks
of a Java application. It revealed to be partially useful and time-saving, especially for
developers with few or advanced expertise with Java coding.

The Design Rationale Editor (DRed), primarily developed at Cambridge Univer-
sity, has been successfully integrated in the standard toolset at Rolls-Royce [Bracewell
et al., 2009]. DRed has been initially designed to diagnose problems, design solu-
tions, complete a standard checklist and communicate the design and its rationale.
DRed models are composed by ten primitive elements, among others, by issues,
requirements, answers or arguments. Any of these model elements has a status
attached, for example an issue can be opened, resolved, insoluble or rejected.
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External documents can be linked into a model as well as system blocks of the fi-
nal product. Directed relations may be defined between any type of elements and
depicts how the origin influences the destination (neutral, harmful or useful).
According to the authors, the tool is an helpful support to structure design think-
ing, capture design rationale and had the side effect to reduce the need for extra
documentation in external reports.

1.3.9 A Few Words about the OMG Decision Model and Notation

The Object Management Group is currently working on a standard for a Decision
Model and Notation (DMN) [OMG, 2014a]. The main objective of DMN is bridging
the gap between business process modeling, such as BPMN [OMG, 2011a] and
decision logic, like OMG Production Rule Representation (PRR) [OMG, 2009]34. It is
intended to capture details about human and automated decisions in either natural
language or in a decision logic formalism, into a Decision Requirements Graph (DRG),
possibly split into Decision Requirements diagrams (DRG). These models can then
be used to automate decision-making processes. It also aims at modeling business
knowledge with the related business-level decisions. The standard is still under
review and targets a business audience with interest in automated decision logic,
rather than a software engineering community.

1.3.10 Goal-Oriented Requirement Modeling

In the Requirements Engineering field, a quite large community has grown around
goal-oriented modeling for early requirements engineering [Mylopoulos et al., 1999;
van Lamsweerde, 2001]. Those approaches concentrate on organizational concerns
that may lead to software requirements. In a sense, their focus is the application do-
main, where the late requirements and other object-oriented modeling techniques
concentrate on the system’s representation. By nature, those frameworks address
a distinct, but related, aspect of system modeling. However, for the sake of com-
pleteness, we introduce three main languages that, at some points, have tended to
interconnect with the software architecture modeling.

An early approach was defined by van Lamsweerde et al. with its Knowledge
Acquisition in Automated Specification of Software (KAOS) [van Lamsweersde et al.,
1991; Dardenne et al., 1993; Darimont et al., 1997]. KAOS empowers formal speci-
fications of, among others, goals, constraints, agents, or objects, with formal links
between those concepts. KAOS enables to verify requirement models regarding
user-defined constraints, expressed as formal specifications. The KAOS framework is
still evolving nowadays, integrating new concerns like risk management or exception
handling [Cailliau and van Lamsweerde, 2012, 2014].

Another approach emerged somewhat later, called the i∗ framework [Yu and
Mylopoulos, 1994; Yu, 1997]. This modeling and reasoning technique relies on two

34PRR is a vendor-neutral representation language for business rules management systems, i.e. software
systems based on business rules, like for example legal regulation or credit contingency calculation, that
can be abstracted and maintained separately from the software application code.
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types of model: a Strategic Dependency (SD) and a Strategic Rationale (SR). The first
type of model addresses relations between stakeholders, namely actors, in a particu-
lar organizational context. The latter focuses on the relations between those actors
and a (software) environment. Like KAOS, formal definitions of relations between
modeling elements may be stated and verified. Some research has tempted to link
i∗ models to software architectures, but the semantic expressiveness of such system
models was standing at a coarse-grained levels, i.e. mainly in terms of components
and connectors [Gross and Yu, 2001]. The i∗ models have been integrated into a
more general requirement framework named Goal-oriented Requirements Language
(GRL), that also integrates aspects of late requirement engineering [Liu and Yu, 2004;
Amyot et al., 2010; Marosin et al., 2014].

1.3.11 Lessons Learned from Architectural Knowledge Methods

In the present section, we crossed over significant research regarding design de-
cisions with a special attention to architectural knowledge management. We did
not aim at being exhaustive, other tools and techniques exists with similar con-
cerns [Winkler and Pilgrim, 2010; Tang et al., 2010]. The ARCHIUM tool, for example,
focuses on keeping explicit the link between a component-and-connector model and
the implementation code in Java [Jansen et al., 2007; Jansen, 2008]. Zimmermann et
al. proposed a formal decision model framework with predefined relations between
decisions and alternatives such as refinement, decomposition and incompatibil-
ity associations [Zimmermann et al., 2007, 2009]. In a workshop report, Avgeriou
et al. identified that, among others design patterns are also valuable parts of the
architectural knowledge [Avgeriou et al., 2007]. They offer reusable solutions to
recurring problems if documented appropriately with their addressed issues and
decisions [Harrison et al., 2007].

As observed in the survey as well as the pilot and case studies we mentioned
in the current section, putting some effort into the documentation of the decision-
making process is not useless. These studies highlighted some interesting benefits in
knowledge communication, maintenance activities, and in a systematic exploration
and recording of alternative solutions.

However, an important tradeoff must be found between the needed additional
work and the expected return on investment. The right level of details should remain
project-specific or even could depend on the type of the decision itself, i.e, how
deeply the solution will affect the architecture or how critical the decision is for
the stakeholders. We thus argue for a flexible knowledge management technique
combining codification and personalization strategies where architectural artifacts
are related to the addressed requirements with a semi-formal representation of the
decision-making process.

1.4 Transformation Languages

The Model-Driven Engineering discipline highly count on model transformations
to, among others, afford the excessive work of maintaining different representa-
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tions of the same system. In the past years, many dedicated languages and tools
have been developed to write and execute model transformations. Czarnecki and
Helsen proposed a feature-based classification framework from an extensive sur-
vey they conducted on languages coming from the scientific literature, the OMG
Query-View-Transformation (QVT) standard, implemented in open-source tools and
from commercial products [Czarnecki and Helsen, 2003, 2006]. They analyzed the
languages features concerning, among others, directionality, application conditions,
definition and uses of patterns and variable typing. Mens et al. proposed a taxon-
omy intended to help developers to choose among the transformation approaches
according to their needs [Mens et al., 2005]. The authors introduced two orthogonal
dimensions to model transformation approaches, endogenous/exogenous versus ver-
tical/horizontal and highlighted some properties they consider as important assets
for such languages and tools.

As stated in Section 1.1.5, we concentrate on model-to-model (M2M) facilities
and languages. In this field, we can identify four main paradigms: imperative, declar-
ative, graph-based and more recently concrete-syntax-based. Hybrid approaches
also exist that combine imperative and declarative constructs [Gardner et al., 2003;
Tamura and Cleve, 2010; Kappel et al., 2012]. In the following section, we will illus-
trate all four paradigms with the OMG standard on Query/View/Transformation, the
ATLAS Transformation Language, the Graph Grammar approaches and the Model
Transformation By Example techniques. We will afterwards discuss the reusability
problem of model transformations and what kind of approach we believe is the more
appropriate to our current needs.

1.4.1 OMG Query/View/Transformation

At the early ages of the MDE and based upon their MDA standard, the Object Man-
agement Group wrote a request for proposal for MOF 2.0 Query / Views / Transforma-
tions [OMG, 2002]. From the eight initial proposals, the first adopted version of the
Query / View / Transformation (QVT) standard was proposed in 2008 [OMG, 2008]
and the actual version was adopted in 2011 [OMG, 2011b].

QVT is supported by three transformation languages: Relations, Operational
Mappings and Core. The Relations declarative language defines rules for pattern
matching and creation of templates. A source model is transformed into a target
model, i.e. a relation is created between both models, with mapping rules and
possibly depending on OCL expressions specifying only when this relation must
hold and everywhere another condition also holds as a consequence. Complex
mappings can be defined with structural templates. Listing 1.11 illustrates two
simple relations to transform a UML class diagram into a Relational DataBase
Management System (RDBMS) formalism where UML packages are mapped to
schemas and classes to database tables.

1 relation PackageToSchema { /* map each package to a RDBMS schema */
2 domain uml p:Package { /* a ’Package’ in the domain ’uml’ */
3 name = pn /* has a name */
4 }
5 domain rdbms s:Schema { /* a ’Schema’ in the ’rdbms’ domain */
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6 name = pn /* receives the same name as the Package */
7 }
8 }
9 relation ClassToTable { /* from UML classes to RDBMS table */

10 domain uml c:Class { /* ’Class’ definition with a specific template */
11 namespace = p:Package {},
12 kind = ’Persistent’, /* the property ’kind’ must have the value ’Persistent */
13 name = cn
14 }
15 domain rdbms t:Table { /* definition of ’Table’ the in ’rdbms’ domain */
16 schema = s:Schema {}, /* a table into the schema as defined above */
17 name = cn, /* the table has the same name as the uml class */
18 column = cl:Column { /* a column is created */
19 name = cn + ’_tid’, /* ’_tid’ is concatenated to the name of the table */
20 type = ’NUMBER’ }, /* the column type is set to ’NUMBER’ */
21 primaryKey = k:PrimaryKey {
22 name = cn + ’_pk’, /* a primary key is defined on this table */
23 column = cl } /* that points to the created column */
24 }
25 when { PackageToSchema(p, s); } /* condition to invoke PackageToSchema */
26 where { AttributeToColumn(c, t); } /* external relation that must hold */
27 }

Listing 1.11: UML Class to RDBMS Table in QVT-Relations (from [OMG, 2011b])

Operational Mappings is a hybrid declarative and imperative language where
transformations are mainly expressed in an imperative language that can be ex-
tended with relational transformations. A simple example of a Book to Publication
model is presented in Listing 1.12 where books with chapters are transformed into
publications with their aggregated number of pages.

1 metamodel BOOK { /* definition of meta-model BOOK */
2 class Book { /* a book is composed by chapters */
3 title: String;
4 composes chapters: Chapter [*];
5 }
6 class Chapter { /* a chapter contains an amount of pages */
7 title : String;
8 nbPages : Integer;
9 }

10 }
11 metamodel PUB { /* definition of meta-model PUB */
12 class Publication { /* pub. has an amount of pages */
13 title : String;
14 nbPages : Integer;
15 }
16 }
17

18 /* declaration of operational transformation */
19 transformation Book2Publication(in bookModel:BOOK,out pubModel:PUB);
20 main() { /* main execution procedure */
21 /* invoke mapping rule */
22 bookModel->objectsOfType(Book)->map book_to_publication();
23 }
24 mapping Class::book_to_publication () : Publication {
25 title := self.title; /* copy title name */
26 nbPages := self.chapters->nbPages->sum(); /* aggregate number of pages */
27 }

Listing 1.12: Book to Publication example in QVT-Operational (from [OMG, 2011b])

The Core language is also declarative, like the Relations language, but matchings
are directly defined on model elements in meta-models. It is then more verbose
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since it requires to define explicitly the patterns, the creation and deletion of objects
and the transformation traces (in a MOF-compliant model), all being implicitly
created by in the Relations language.

Operational and Relations languages have been implemented, mainly on top of
the Eclipse tool, like in the Eclipse M2M platform35.

From the QVT standard, a high interest for transformation facilities was born
and many other declarative or hybrid languages were proposed as alternatives to
QVT, but often still compatible with the underlying MOF architecture.

1.4.2 ATLAS Transformation Language

The ATLAS Transformation Language (ATL) is a hybrid declarative and imperative
language [Jouault and Kurtev, 2005; Jouault et al., 2008]. Models are expressed in
OMG XML Metadata Interchange (XMI) [OMG, 2013b] format or in a dedicated text-
based DSL named Kernel Metameta-model (KM3) [Jouault and Bézivin, 2006]. A
sample transformation rule for a UML class to RDBMS table handling monovalued
attributes only is illustrated in Listing 1.13.

1 rule Class2Table { -- handle class
2 from
3 c : Class!Class -- input model is a class
4 to
5 out : Relational !Table ( -- output is a table
6 name <- c.name, -- its name is the class’s name
7 -- all monovalued attributes are added in the ordered list ’col’
8 col <- Sequence {key}->union(c.attr->select(e | not e.multiValued)),
9 key <- Set {key} -- unordered set of retrieved keys

10 ),
11 key : Relational!Column ( -- definition of the key
12 name <- ’objectId’,
13 type <- thisModule.objectIdType
14 )
15 }
16 rule ClassAttribute2Column { -- handle monovalued attributes
17 from
18 a : Class!Attribute (
19 -- any OCL function can be used in ATL
20 a.type.oclIsKindOf(Class!Class) and not a.multiValued
21 )
22 to
23 foreignKey : Relational!Column (
24 name <- a.name + ’Id’,
25 type <- thisModule.objectIdType
26 )
27 }

Listing 1.13: UML class to RDBMS table in ATL (adapted from [Jouault et al., 2008])

A number of imperative extension can be used within ATL transformations.
Helper functions can be defined in the context of a specific model object to compute
an attribute or to create reusable pieces of code. Opposed to the above listing that
presented declarative matched rules, a called rule is intended to be explicitly called
to generate target model element from imperative code block. Imperative block can
be called from the action block of a matched rule in combination with the target

35http://iot.eclipse.org
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pattern (after the keyword to) or in the body of a called rule. For all transformed
element, traceability links are automatically created in the transformation engine
and bind the source and target elements with the involved rule.

The execution order of mapped rules is nondeterministic since the rules are
called as the transformation engine navigates through the source model. ATL trans-
formations are unidirectional, from a single read-only source model to possibly
multiple write-only target models. Thus, no change may be applied on the source
model neither the target models may be crossed during a transformation. Model
merging is then not possible in ATL too. Persistent transformations, i.e incremental
model transformation with change propagation, is not fully supported in ATL so
any manual change made in the source or target models are not preserved after a
transformation [Tratt, 2005; Jouault and Tisi, 2010].

The language is supported by an Eclipse plugin composed by a dedicated lan-
guage editor, a compiler and a virtual machine, and is part of the aforementioned
M2M platform [Jouault et al., 2008]. According to the authors, the ATL transforma-
tion engine is widely used in the academic and industrial worlds.

1.4.3 Graph Grammars

Aside the programmatic declarative and imperative approaches, graph grammars are
becoming a popular field of study for model transformations. Graph grammars were
first introduced to handle picture processing problems with web grammars by Pfaltz
and Rosenfeld [Pfaltz and Rosenfeld, 1969]. Independently, Schneider proposed
n-diagrams to give a formal definition for programming with diagrams and transfor-
mation of programming languages [Schneider, 1971]. The main purpose of graph
grammars is to parse and generate graphs through production rules. Graph gram-
mars are based on strong theoretical basis, mainly algebraic or set theoretic [Nagl,
1987; Fahmy and Blostein, 1992]. They may apply to various aspects of the software
engineering practice from code optimization, formal semantics analysis or database
engineering [Nagl, 1978]. Many graph grammar approaches have been developed in
the model transformation field, like Algebraic Graph Grammar (AGG) [Ehrig et al.,
1973], or Triple Graph Grammar (TGG) [Schürr, 1995].

The starting point of TGG is a proposal made by Pratt with its pair grammars
that represent links between languages, especially from a concrete program syntax
to its abstract syntax defined as a directed graph [Pratt, 1971]. Based on Pratt’s
proposition, Schürr introduced the notion of Correspondence Graph to face the lacks
of graph rewriting or graph grammars approaches that were mainly restricted to
instance-specific transformations [Schürr, 1995]. TGG is rule-based, purely declara-
tive and relies on a formally-defined mathematical basis. Many implementations
are still extensively developed with various expressiveness, scope, limitation and
performance [Ehrig et al., 2005; Hildebrandt et al., 2013]. Figure 1.21 depicts a
sample example that illustrates the general idea behind TGG approaches on the
aforementioned UML Class to RDBMS example.

Bidirectional mapping must be defined with elements from both source and tar-
get models, with the creation or deletion rules between them. In Figure 1.21, CT and
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Figure 1.21: Overview of a Triple Graph Grammar for UML to RDBMS transformation
(adapted from [Schürr and Klar, 2008])

AC denotes the correspondence structures from UML classes to RDBMS tables. Such a
correspondence is composed by five productions (or rules) informally described as:

(1) creation of the root class with a new table
(2) association of a new subclass of an existing class with an existing table
(3) creation of the first attribute of a class together with the first column of a table
(4) creation of the first attribute and a new last column
(5) creation of a new last attribute with a new last column

In order to avoid invalid input processing and output creation, Negative Ap-
plication Conditions (NAC) should be specified, i.e. a pattern found on the input
graph forbids the application of the rule on the target graph. Figure 1.22 depicts
the graphical representation of the fourth rule previously defined. The first NAC on
the left states that the class may not have any attribute already defined. The second
condition enforces to add the new column at the end, i.e. the created column has a
previous one that cannot be followed by another column.

Figure 1.22: Sample rule with related NACs (adapted from [Schürr and Klar, 2008])

TGG is particularly promising for incremental and bidirectional transformations
for models that can be represented as graphs, because forward and backward rules
can be derived and executed separately if, among others, no concurrent modifi-
cation is executed on the source and target model elements [Giese and Wagner,
2006; Schürr and Klar, 2008; Hildebrandt et al., 2013; Leblebici et al., 2014]. Further-
more, the native abilities for bidirectional links and incremental transformations
are valuable assets to maintain traceability links between models produced by dif-
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ferent tools [Königs and Schürr, 2006] or at different levels of abstractions [Rieke
and Sudmann, 2012]. However, the average complexity of TGG approaches still
remains high for some type of model transformations where operational semantics
must be added to transformation rules and the lack of support for negative appli-
cation conditions in some tools tends to accept or produce invalid models [Schürr
and Klar, 2008; Buchmann et al., 2009]. Furthermore, with purely declarative ap-
proaches, backtracking may be needed to generate a target model, but very recent
proposals tend to tackle this problem and now enable advanced concurrent model
synchronization [Hermann et al., 2012; Gottmann et al., 2013].

1.4.4 Model Transformation By Example

Recently, a new trend in the model transformation field consists in deriving semi-
automatically transformation rules from source and target example models [Varró,
2006; Wimmer et al., 2007]. Model Transformation By Example (MTBE) is inspired
by similar approaches in the database domain with Query-by-Example genera-
tion [Zloof, 1975] or for (semi-) automatic generation of eXtensible Stylesheet Lan-
guage Transformations [W3C, 2007] (XSLT) [Ono et al., 2002]. MTBE is not really a
different paradigm by itself since the generated code is either declarative or hybrid,
but at the opposite of the aforementioned languages, transformations are defined
on the concrete syntax directly.

Two main methods can be distinguished: correspondence- and demonstration-
based. Correspondence-based approaches are somewhat similar to TGG, they use
a triple containing an input model, its semantically equivalent output model and
correspondence mapping rules. Current MTBE tools generate either graph transfor-
mations or ATL code [Kappel et al., 2012]. Model Transformation By Demonstration
(MTBD) approaches require the user to illustrate and annotate each transformation
with input/output models so that transformation rules can be (semi-) automatically
inferred from these examples [Langer et al., 2010]. MTBD usually need multiple
iterations to fine-tune the examples, the generated transformation rules or both.

By definition, MTBE by-correspondence are limited to exogenous and horizon-
tal transformations because both models must be semantically equivalent with
the same level of details and correspondence rules are always expressed from one
language to another [Kappel et al., 2012]. Their usage is then limited to model trace-
ability and change propagation between models when they rely on bidirectional
formalism, such as graph grammars. However, they are offering a user-friendly alter-
native to abstract syntax-based approach since there is no need for practitioners to
learn a new language, either being familiar with the overall permitted construct and
constraints of the language they manipulate. MTBD approaches have interesting
assets for test-driven development of model transformations since they rely on exam-
ple models. But this by-example technique is also one if their main drawback since
users are often required to fine tune the transformation rules themselves, requiring
them to dive into the abstract syntax of the modeling language. Finally, the lack
of empirical studies in the MTBE field avoid to actually evaluate their benefits and
weaknesses on real-world case studies.
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1.4.5 Lessons Learned from Model Transformations

In the present section, we introduced the main paradigms of model to model trans-
formation languages with some selected methods and tools. Many other languages
and frameworks exist in the literature, such as MOLA [Kalnins et al., 2005], Ker-
meta [Muller et al., 2005a,b], GReAT [Balasubramanian et al., 2006], MT [Tratt, 2006],
VIATRA [Ráth et al., 2008] or JTL [Cicchetti et al., 2010]. The present discussion and
enumeration does not pretend to be exhaustive but to give an overview of the dif-
ferent approaches with their benefits and limitations and to highlight the common
challenges to the model transformation practice.

Probably the first lesson to learn from the present study is that there is no such a
best approach. The decision to use a transformation technique instead of another
primarily depends on the domain and the intended usage. Declarative transforma-
tion rules, including graph grammars, offer a simple mean for pattern definition and
cover the overall spectrum of the transformation taxonomy introduced by Mens et
al. [Mens et al., 2005]. Besides their bidirectional and incremental abilities, Triple
Graph Grammars are also very suitable to define traceability links between different
types of models without affecting the source and target models [Königs and Schürr,
2006; Rieke and Sudmann, 2012]. However, they do not support rule inheritance,
complex computation requiring an operational semantics and can consume much
memory [Kusel et al., 2013a].

Reusability of model transformations is also becoming a popular research topic.
Many languages integrate mechanisms to empower the definition of reusable mod-
ules, rule inheritance or higher-order-transformations [Tisi et al., 2009], i.e. transfor-
mations that use a transformation as input and produce another transformation as
output [Kusel et al., 2013b]. However, concrete reusability should probably require
some kind of standardization to tackle the heterogeneity of transformation and
meta-modeling frameworks [Wimmer et al., 2010]. Recent research are also target-
ing to apply a model driven development method for transformations themselves in
order to support the overall life-cycle of transformations [Guerra et al., 2010, 2013].

In our software architecture specific domain, as stated in Section 1.2.13, we are
mainly interested in (i) traceability links between architecture models and addressed
requirements, and (ii) endogenous horizontal and vertical model transformations.
As argued in Section 1.3, patterns play an important role in software architecture
for systematic reuse of best practices and architectural documentation purposes.
We then need a mechanism close to the TGG and MTBE correspondence-rules to
externally define structural patterns as reusable artifacts. Upon the heterogeneity in
meta-models of current transformation engines, we do not believe that an absolute
reusability in the large through complex higher-order-transformations or binding
models is achievable in a user-friendly way. Abstract syntax-based transformations,
especially for declarative rules, require software architects to learn an additional
language and to manipulate more complex conceptual tools than structural concepts
and first-order predicate logic properties. Thus, we do believe a concrete syntax
approach is more suitable for our purpose and would raise the AK traceability
without requiring much external documentation effort.
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We introduce now what are the main contributions of the present dissertation. We
first recapitulate the problems we are addressing, as stated in the previous chapter.
Afterwards, we formalize and discuss our research questions.

2.1 What kind of problems do we intend to solve?

In the previous chapter, we presented the main research in software architecture
modeling techniques. We discussed about their modeling facilities as well as their
expected benefits on academic research and on industrial sights. We especially com-
pared their characteristics as communication means, model analysis facilities, re-
quirement linking and design rationale traceability. As argued in Section 1.2.13, cur-
rent software architecture modeling languages usually neglect the decision-making
process that actually produced a specific architecture. Also, many of these languages
do not provide flexible mechanisms to represent the communication between inde-
pendent entities.

We crossed over notable work in the software architectural knowledge domain,
from a formal ontology of design decisions to effective recording techniques evalu-
ated in industrial case studies or actually used in the industry. We identified their
advantages for software architecture design, maintenance and communication.
As we discussed in Section 1.3.11, architectural knowledge with design rationale
and alternatives must usually be recorded in external tools or must be retrieved by
dedicated experts afterwards, these practices being highly time-consuming. Fur-
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thermore, the expected level of details for documentation and traceability is usually
project-specific or depends on companies’ goals and practices. However, the need
for appropriate recording of architectural knowledge is recognized by a significant
amount of researchers as well as in polled industrial organizations.

We also illustrated the main trends in today’s model transformation languages.
We considered their intended advantages in the software architecture field, especially
for model design and traceability. In Section 1.4.5, we talked about the reusability
problem in current transformation approaches and we argued that a concrete-
syntax-based transformation technique should suit more appropriately for endoge-
nous model to model transformations where these transformations play a significant
role in architectural knowledge recording, documentation and communication.

2.2 Research questions

We now formulate our contribution around three main research questions, refined
into more concrete sub-questions.

2.2.1 RQ1 How can we model software architectures (SA) as effective
means of communication ?

One of the main objective of an architecture model is to depict the structure of a
software system in such a way it can be discussed between practitioners and com-
municated to other stakeholders. What kind of modeling constructs and techniques
should we integrate in an architecture modeling language ? More precisely, we can
refine this first research question into three sub-questions.

RQ1.1 How can we represent SA models at different levels of abstraction ?

Depending on the involved stakeholder, the expected level of details of a software
architecture model should be configurable with some freedom, like offering a black-
box only representation of the system or concentrating on specific user-defined
requirements.

RQ1.2 How can we represent SA models with flexible communication facilities ?

Software architectures may be composed by lots of semantically different building
blocks that may communicate through a wide range of technological alternatives.
How such a flexibility can be included in an architectural language without drasti-
cally augment the number of modeling constructs neither the model complexity ?

RQ1.3 How can we represent SA models with deployment constraints ?

Target platforms and infrastructures play an important role in software development.
Many physical constraints may have an impact at the architectural level, like the
available network interfaces, the actual bandwidth, the storage disk space or the
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processor power. How can all these constraints be modeled with regards to the
software architecture in order to enable user-defined model checking capabilities ?

2.2.2 RQ2 How can we remember pieces of architectural knowledge for
SA models ?

Besides structural models, the rationale are often an important piece of information
to understand why the architecture has been designed as it is. Hidden behind
a particular model, many alternative solutions have probably been explored and
discussed. A significant part of the architectural knowledge is concentrated in
the decisions concerning an architecture model. We particularly reformulate this
questions into two sub-questions.

RQ2.1 How can we explicitly retain the link between SA models and related
significant requirements ?

One of the prior objectives of a software architecture is to translate stakeholders’
requirements into components or architectural elements that may be intercon-
nected and collaborate to achieve the latter needs. However, as the system grows
and evolves, the link between the architecturally significant requirements and the
architecture model is often lost. What kind of mechanism can be used to enforce
this link throughout the life of the system ?

RQ2.2 How can we document the decision-making and argumentation
processes when designing SA models ?

As the system is specified, many alternative solutions and design decisions are taken.
In order to have a more straightforward understanding of an architecture model,
the argumentation of the reasons that produced that particular model are often
valuable. How design rationale and alternatives can be captured in a reusable and
non-intrusive manner ?

2.2.3 RQ3 How can we iteratively design SA models in a systematic
manner ?

Model transformation techniques offer a systematic way to produce models. When
used appropriately, they can automate some aspects of model development and al-
low formalized traceability between models. How can such techniques be integrated
into a component-based architecture design method with the aforementioned goals
in mind ? More specifically, we can expand this question into two sub-questions.

RQ3.1 How can we use model transformation techniques to iteratively refine SA
models with new concerns ?

A common practice to tackle complex system requirements is to successively refine
structural models from a high-level of abstraction to a finer-grained model. Aside,
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reusable concerns can be injected into structural models in a systematic and reusable
manner through model transformations. To what extend would it be possible to
generalize this technique to any modification made to an architectural model to
formally trace the model evolution ?

RQ3.2 How can we use model transformation techniques to build and document
reusable architectural patterns ?

Consequently to the previously stated questions, patterns are key aspects of both
architectural models and architectural knowledge. They define reusable pieces of
blocks that address recurrent problems and from these patterns, architecturally
significant requirements may be retrieved to enhance model understandability. How
such definitions can be expressed in an individual, self-defined and reusable way for
software architecture design ?
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In this chapter, we present the structural formalism dedicated to represent system ar-
chitectures in three specific layers: Definition, a type-level definition of architectural
constructs and styles, Assemblage, a concrete instantiation of a software architec-
ture and Deployment, the mapping of the concrete architecture to infrastructure
constructs. We also present the example case we use throughout this dissertation to
illustrate our modeling formalisms.

3.1 Language Overview

The work depicted in this dissertation is partially based on a custom Architecture
Description Language (ADL) for component-based systems. We first introduce the
main principles and objectives of our ADL and explain the reasons why we decided
to adopt a layered representation. We then reproduce the language meta-model that
we detail and discuss in the subsequent sections.
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3.1.1 Main Principles and Objectives

In Section 1.2, we identified the main assets and shortcomings of actual component-
based modeling approaches. Upon the consensus of using components and connec-
tors syntactical constructs, a wide range of semantically different definitions were
developed, especially regarding the interfaces and the types of connections.

The definition of architectural styles and patterns is important to enhance the
reusability of solutions to common problems. Styles and patterns are also valuable
as architectural templates in early design phases. An architectural language should
thus enable to separate a type of architecture to its instances.

Furthermore, a component may be instantiated more than once, or it can be
created or deleted by other ones. This piece of information usually needs external
behavior specifications or relies on a specific deployment and runtime platform, so
that it cannot be expressed on the structural model itself.

Deployment constraints are scarcely addressed by existing approaches, espe-
cially during the overall design phase. It is not uncommon to know infrastructure-
related constraints very early in a software development process and an explicit
recording of these constraints related to the logical components can help to identify
incompatibilities as soon as they arise.

As pointed in Section 1.2.13, the semantics of communication links are mainly
either restrictive (like synchronous operation calls or value passing, for example),
must be defined by dedicated behavioral specifications in another formalism (like
UML statecharts, for example) or need to be selected among many different mod-
eling elements. More flexibility in connector definition should be found without
leading to an unacceptable level of complexity or an explosion of the amount of
modeling possibilities.

3.1.2 Why a Layered Representation ?

From these observations, we decided to propose a three-layer ADL that addresses
these three concerns: types of architectural elements and styles, possible running
instances and deployment mapping rules on hardware/software platforms. We use a
sort of layered representation to separate these three aspects, but to make possible
to describe all of them with their inter-relations.

We chose to provide a separate layer to specify abstract modeling element types
and possible structural configurations using these types. These element types and
architectural patterns or styles can then be exported and reused in a convenient
manner since they are specified independently. Abstract computation and commu-
nication modeling elements can also be defined with user-defined properties. These
constructs are used to depict a physical configuration of machines and network
paths and will be particularly useful for the deployment mappings. These definitions
can be externalized in dedicated libraries and reused across models.

From these types and patterns, one or more concrete configurations can be
defined. One architectural style can be instantiated in several ways, depending on
the number of concrete instances of each component, for example. An abstract
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Figure 3.1: Definition-Assemblage-Deployment meta-model

connection between types of components may also be concretely materialized by
many concrete communication protocols.

The instances can be mapped to abstract representations of a deployment in-
frastructure with user-defined properties. Such a mapping may help at identifying
incompatibilities between a possible instantiation and the available computing
and communication material. Alternatively, needed properties for a particular con-
figuration can also be specified to define runtime constraints very soon during a
development project.

In some ways, the separation between types and concrete instances is close to the
Platform Independent Model and Platform Specific Model as introduced by the OMG
Model Driven Architecture approach [ORMSC, 2001], the instances being specific to
the platform depicted in the deployment mapping.
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3.1.3 Language Meta-Model

We now introduce our formalism dedicated to depict structural models for software
system architectures. It is called Definition-Assemblage-Deployment (DAD), each
term identifying one of the aforementioned layer. All layers can be defined separately,
but are dependent on the upper one, so that a Deployment depends on a particular
Assemblage of modeling elements defined at the Definition layer. The meta-model
is illustrated in Figure 3.1. The violet and blue elements belong to the Definition
layer, the green ones to the Assemblage and the orange elements to the Deployment.

3.2 Definition

The Definition layer can be separated into three types of modeling elements: the
Types, the Structural Model Elements and the Running Infrastructure.

3.2.1 Types

The Types, depicted in Figure 3.2, aim at defining the types of data that can be
exchanged in a software system, as well as how they can be exchanged.

Figure 3.2: Types-related modeling elements

GenericType

A GenericType is an abstract object used to type Parameters. It may be a Primi-
tiveType, a DataStructure or an Interface. It has an identifying name and a
boolean value named mult saying if the type is multivalued.

PrimitiveType

A PrimitiveType is a data type that may hold values of the same type only. It can
be mappedto another type defined elsewhere (referred with its full name). At present
time, Java classes can be referenced and imported as PrimitiveTypes.
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DataStructure

A DataStructure is a complex type containing an ordered list of heterogeneous
DataFieds. This list may be empty.

DataField

A DataField is a data variable contained in a DataStructure. It holds a value of a
certain GenericType, that GenericType may be multivalued, expressed by the mult
boolean flag.

Interface

An Interface is a special type that contains Services. It gathers semantically-
correlated interaction points between components in a software system. The list of
Servicesmay be empty.

Service

A Service is an interaction point identified by a name that may be used to pro-
vide some visible effect, like exchanging data Flows, producing Events or execut-
ing Operations that may raise Exceptions. A Service contains an ordered list
of Parameters of given GenericTypes, this list may be empty. All these types
of Services empower to abstractly represent a wide range of communication
standards or technologies like for example, CORBA [OMG, 2012b], REST architec-
tures [Fielding, 2000] or other types of web services. They will be detailed in the
following paragraphs.

Parameter

A Parameter is a variable of a certain GenericType that may hold a value. It is
contained in a Service. It has also a direction attribute saying how it is handled by
the Service. The Direction type is an enumerated type with the following values:

in input parameter (read-only)
out output parameter (write-only)

inout combined input and output parameter (read-write)
return output value

Flow

A Flow is a special type of Service that provides output values of a single type. A
Flowmay supply only one out Parameter, but the parameter may be multivalued.
A DAD Flow is analogous to a SysML item flow and is mainly used to represent
value-passing channels, like gas, water or emergency transmitters.
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Event

An Event is a Service that is triggered by an internal stimulus and performs some
behavior with a visible effect, i.e, some internal condition activates some behavior
that produces a structured message. An Eventmay contain in Parameters only. As
examples, interrupt signals in operating systems or signals from peripherals may be
represented as Events.

Operation

An Operation is a Service that performs some behavior with notable or visible
effects from external calls, i.e, is activated from the outside of its owner object and
has a meaning in terms of its behavior for a software system. An Operation has
a type saying if it is synchronous or asynchronous. A Parameter in a synchronous
Operationsmay be of any direction, but asynchronous Operationsmay only
have in Parameters. synchronous Operationsmay raise Exceptions. Typically,
Operations are program calls.

Exception

An Exception is a special structured message triggered from the execution of a
synchronous Operation. It indicates that the normal execution flow of the asso-
ciated behavior encounters an unexpected condition. Exceptions may have in
Parameters.

3.2.2 Structural Models

Structural models are used to define configurations of component types connected
by link types in order to form an abstract architecture model. Figure 3.3 concentrates
on these modeling elements.

Figure 3.3: Structural modeling types

78



3.2.2. Structural Models

ComponentType

A ComponentType is an identifiable model element with computational capabilities
that may use and/or implement Facets. ComponentTypes can be either connected
to each other through their Facets with a LinkType or through a LeakUsage de-
pendency when the precise semantics of this dependency is not known. This type of
dependency has two main goals. First, it lets more freedom to modelers to draw an
architectural draft at early design stages when the precise semantics of the bindings
between components is not defined yet. Second, it is useful to define dependencies
to external components, such as APIs or software libraries.

A ComponentType can be composite, so that it is composed by other composing
ComponentTypes that can be likewise connected to each other using their Facets
or LeakUsage dependencies and form an inner-configuration. Any ComponentType
can be recursively refined into inner-configurations: a parent ComponentTypemay
have children, that may be parents of other children, and so forth. The Facets
of the composite ComponentType are named its external Facets and all Facets
defined by its directly composing parts are named its internal ones. The same
ComponentType may be child of multiple parents. It must be defined once as a
standalone ComponentType and reused in multiple inner-configurations.

A ComponentTypemay inherit from one or more other ComponentTypes. The
inheritance relationship means that the sub-ComponentType gathers all external
Facets from its super-ComponentTypes and may add other external Facets. It may
also overwrite its inner-configuration completely, i.e its internal representation may
be defined differently than its super-ComponentTypes inner-configurations. Analo-
gously to the Java programming language, it may be tagged as final to disallow further
extensions of its definition. Since the inheritance mechanism delete and replace
the inner-configurations, one may want to restrain the usage of a ComponentType
in order to guarantee its behavior.

Facet

A Facet is the materialization of an Interface inside a ComponentType, i.e, the
Interface is made available as an access point for the ComponentType. A Facet has
a name that identifies it locally to its parent ComponentType. The Interface is ei-
ther used or implemented by a ComponentType. A ComponentType that uses a Facet
denotes a require dependency, i.e. the ComponentType needs the Interface refer-
enced by the Facet. At the opposite, a ComponentType that implements a Facet
denotes a provide offer, i.e. the ComponentType implements the behavior described
in the Interface typed by the declared Facet. This type of dependency is called
the polarity of the Facet. Facets are meant to connect ComponentTypes to each
other either through provide-require or delegation contracts via Linktypes. Provide-
require contracts connect Facets of opposite polarities. Delegation contracts con-
nect two Facets of the same polarity and are used in composite ComponentTypes.
It indicates that the behavior of an external Facet is effectively transmitted to an
internal Facet.
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Protocol

A Protocol is used to specify the properties that may be used to support the com-
munication between structural modeling elements. A Protocol has an identifying
name and its semantics may be refined by user-defined properties. The Protocol is
used to specify the behavior of the communication and makes it independent from
the way the ComponentTypes are linked to each other. It also indicates on which
communication layer it operates. The communication layer is a mandatory feature
for the Protocol because it will be used to ensure that the connection between
ComponentTypes’ instances is effectively possible. Furthermore, we want to pro-
vide enough flexibility to represent many types of connections between any type of
components (software and hardware) using any type of communication technology.
As we will detail through this Chapter, the Protocol has a key-role in the overall
communication mechanism of DAD models

As a basic implementation, we extended the 7-layer Open Systems Interconnec-
tion (OSI) model [ISO, 1994] with one more possibility to express the communication
between programs sharing the same memory space, like in the same Java virtual
machine for example. We use the OSI as our reference model to be as generic as pos-
sible and to enable to represent a wide range of existing communication protocols.
Alternative layered models, like the IEEE 802.X protocols, as the Local Area Network
standard [IEEE, 2013] or TCP/IP protocols [Braden, 1989], can be mapped to the OSI
layers. The Bluetooth® specification defines its own protocol stack [Bluetooth SIG,
2013]. Even if the correspondence to the OSI model is not as straightforward as for
the other two layered models, such a mapping is still possible. All these representa-
tions are specific to some technologies or protocols and we would rather stick to an
abstract model. This layering is expressed as properties such that any other model
can be defined and used as Protocol properties.

A set of general purpose properties has been defined as a common library, with
among others, security-related attributes. An extensible mechanism that is further
detailed in Section 3.5, has been included into the DAD framework to specify user-
defined properties.

LinkType

A LinkType is an abstract object that connects two Facets to each other. The same
LinkTypemay be used in more than one connection, but for a given connection,
a LinkTypemay not connect more than two Facets. The LinkType specifies the
characteristics of the binding of two Facets, so ComponentTypes, but does not
specify the orchestration of the communication itself, as the Protocol is intended
to do. A taxonomy of LinkTypes is presented in Figure 3.4.

LinkTypes are eitherConnectorTypes orDelegationTypes. ALinkType spec-
ifies the binding pattern between two Facets, i.e. how the instances of these Facets
will be concretely connected in an Assemblage specification1. A ConnectorType
will be used to connect two Facets of opposite polarities, from the Facet that re-

1This feature will make more sense in Section 3.3 when we talk about the Assemblage layer.
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Figure 3.4: Built-in LinkType taxonomy

quires the Interface to the Facet that provides it, i.e. in a provide-require contract,
using the following patterns:

One2one This is a point-to-point connection with one required instance con-
nected to exactly one providing instance. All kind of Serviceswith
all types of Parameters are allowed on such ConnectorTypes.

One2many one required instance is connected to all providing instances of the
bound Facet. If the ConnectorType is distributive, then the con-
nection is a point-to-point connection between the required Facet
to each of the providing instances. In this cas, output and return
Parameters as well as Exceptions for Operations are accepted.
In case of a non-distributive connection, only input Parameters
are allowed. Event and Flows are also unrestrictedly accepted as
type of Services for One2many Connectors.

Many2many many instances from the required side are connected to multiple
ones on the providing side. It may be any number of instances,
from none of them to all of them on each side. The same re-
strictions regarding the Services as the ones expressed for non-
distributive One2many ConnectorTypes apply here.

A DelegationType is used to connect two Facets of the same polarity, from a
facade Facet of any polarity to a delegate of the same polarity. A DelegationType is
used to transfer the behavior defined in an Interface and exposed by a Facet from
a parent ComponentType to another one from a child ComponentType. Delegation-
Types are also refined into a set of subtypes to specify the linkage around the follow-
ing patterns:

Simple simplest delegation between the father instance to one of its chil-
dren Facets. Only one instance may be defined on both side of the
DelegationType. Similarly to One2one ConnectorType, this type
of connection is point-to-point and, like all other Delegation-
Types, it accepts all type of Services.

Broadcast one instance delegates the Facet’s behavior to all its delegate in-
stances either in a one-to-many or in a point-to-point connection
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depending on the value of the point2point boolean attribute. The
forward attribute specifies the number of Events, Flows or an-
swers to synchronized Operations that will be processed from
delegates. If forward is set to true, all delegates are intended to act
the same way, i.e., they have to all produce the Events, Flows or
compute the return value before the Service is actually activated
in the facade. If any delegate produce a different behavior to the
same Service, it is discarded from the delegate. In the worst case,
if all delegates produce a different behavior, the first to answer
is kept as the unique delegate. If forward is set to false, the first
activation or answer from a delegate is sent back to the facade.

Random one delegate is randomly chosen to execute the called Service.
Each call may be redirected to a different delegate, or not. No as-
sumption on the order of the selected instances either on a fair dis-
tribution of the workload between the delegates may be taken with-
out adding more user-defined properties to the DelegationType.
A Random DelegationType only ensure that a call will be transmit-
ted to one and only one delegate.

LoadBalancing more elaborated connection between a Facet and its delegates
may be defined with the LoadBalancing DelegationType. User-
defined strategies can be specified at least by a strategy name.
Any other DelegationType strategy is then considered as a Load-
Balancing.

A LinkTypemay extend another LinkType. Even if we represented the extends
relationship on the LinkTypemodeling elements for readability reasons, a concrete
LinkTypemay only extend another LinkType of the same concrete type. For exam-
ple, a One2one ConnectorTypemay only extend another One2one ConnectorType
and the same rule applies to all other concrete LinkType.

When extending a LinkType, the subtype may not restrict the list of accepted
Protocols, such that it does not accept a Protocol supported by its supertype.
Besides, it may overwrite any other user-defined property.

LinkageType

At this level, types of architecture configurations, i.e. styles or patterns, can be
expressed with LinkageTypes, depicted as the highlighted relationships between a
LinkType and a Facet in Figure 3.3. A LinkageType always binds a source Facet
to a target Facetwith a LinkType. The polarities of the source and target Facets
will depend on the concrete LinkType used, from a required to a provided Facet
for ConnectorTypes and from the facade to its delegate for DelegationTypes.

LinkageTypesmay not interconnect more than two Facets at a time, such that
it is not possible to express a sort of grouping of connections between Facets that
would model a complex interaction between components. This modeling choice
has been made to somehow reduce the semantic uncertainty in such n-ary bindings
that would require supplementary specifications in order to fully understand the
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exact nature of the connection, i.e is there any priority between Facets, is there a
calling order between two Services from interrelated Facets or does it express a
specific policy or communication protocol, for examples.

3.2.3 Running Infrastructure

A set of construct types are dedicated to represent a particular running infrastructure.
To this end, four modeling elements have been defined in the DAD language that
are depicted in Figure 3.5 and detailed hereafter. All these elements are intended to
be refined by user-defined properties to specify more precisely their semantics. The
property definition mechanism is further detailed in Section 3.5.

Figure 3.5: Physical infrastructure types

GateType

A GateType represents a type of physical communication port that can be plugged
onto a hardware device or a platform environment. It is aimed to model the possible
interaction points that can be placed into NodeTypes. It is identified by its name
and may extend one other GateType. A GateType can accept a list of Protocols.
It will be used to type Gates that are present in NodeTypes.

NodeType

A NodeType describes abstractly any type of physical hardware or software environ-
ment that may receive a piece of part of the architecture model to be run on it. It
is identified by its name and may extend one other NodeType. It exposes a list of
Gates that makes it reachable from other NodeTypes.

Gate

A Gate is the entry point of a NodeType for any type of communication. It is typed by
a GateType. It is identified by a name. It also inherits the list of accepted Protocols
and user-defined properties from its type. It can be replicated into a NodeType,
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according to its size integer value, such that the Node contains multiple Gates of the
same type.

MediumType

A MediumType is the concrete link that holds the communication between two
Gates. It is identified by a name and supports a possibly empty list of communica-
tion Protocols. The same MediumTypemay be used to bind multiple Gates. It may
also extend one other MediumType, but exactly as LinkTypes, it may not restrict the
list of supported Protocols and may redefined any other user-defined properties.

3.2.4 Semantics of Model Element Extensions

We already discussed in detail the extends relationship for ComponentTypes, but
not for the other modeling elements. Except for ComponentTypes which has a
more complex extension mechanism, as presented in Section 3.2.2, all these other
constructs may only extend one other construct. We detail here for each of them
why we decided to allow only single inheritance relationships for these elements.

Extending more than one communication Protocolmakes no sense to us since
many incompatibilities between ProtocolAttributes can arise from such a multi-
inheritance. As far as we know, we could not find any example of such a Protocol
that combine orthogonal properties in one definition.

The LinkTypemay extend at most one other LinkType or the same type since
the proposed taxonomy in Section 3.2.2 is orthogonal. Again, this makes no sense to
extend, for example, a Simple and a Broadcast DelegationType at once because
their communication semantics is not compatible at all. The same remark holds for
all pairwise definitions of concrete LinkTypes.

Analogously to Protocols, GateTypesmay only extend one other GateType.
This choice is mainly motivated to avoid complex verifications and possible in-
compatibilities in the accepted list of Protocolswhen merging the definitions of
multiple GateTypes.

Last, NodeTypesmay extend only one other NodeType at a time. As presented
in Section 3.2.3, NodeType semantics is intended to be refined by user-defined
properties that may express, for example, the disk capacity, the processor power
or even a running platform environment. We could not find any valid example
of extending two or more hardware or software platforms (what would it mean
if two CPUs have different computation speeds or architecture, for example), so
we also decided to restrain the extension mechanism to a single model element.
MediumType extension capabilities follows the same reasoning since the same kind
of incompatibilities between properties may arise.

3.2.5 Semantics of ComponentTypes containments

As explained in Section 3.2.2, a ComponentType may recursively contain other
ComponentTypes. In DAD models, the inclusion mechanism is transitive, i.e., if
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a ComponentType has children that have children themselves, the grand-children
are also considered to be included into their grandfather. Formally, ifsC denotes a ComponentTypes ⊂ denotes the inclusion of a ComponentType, such that Cc ⊂ Cp indicates

that Cc is a child of Cp

The inclusion is defined as a transitive relationship,

Cc ⊂Cp ∧ Cg ⊂Cc ⇒ Cg ⊂Cp

Likewise, the reference to the direct parent ComponentType is denoted by the
function p(C), which is defined as follow:

p(C) =
{

r oot , @ Cp | C⊂Cp

Cp | C⊂Cp ∧@ Cc | ( Cc ⊂Cp ∧C⊂Cc
)
, other wi se

Both these inclusion mechanism and parent function will be particularly useful
in Chapter 5 when we will talk about DAD model transformations.

3.2.6 Qualified Names and Visibility

In DAD models, we use qualified names to identify elements through models. As
we will illustrate in Section 3.7, a model belongs to a package. A package is simply
a directory where all correlated models can be placed. Packages can be nested in
other packages, exactly like directories on a file system or Java packages, so that a
hierarchy of packages can be created.

From this structure, we can identify three types of names for any model elements:
name name as specified in the name attribute of the element

qualified for nested elements (like Facets) contained in other elements
fully qualified complete name with all packages and model names as prefixes

All names that compose a (fully) qualified name are separated by a dot “.”, like in
the Java programming language. This simple mechanism allows to always unam-
biguously identify any model element.

For example, for a Facet AFacet in a Component ComponentType (its container)
that is contained in the mymodel placed in the mypackage directory, its names will
be of the form:

packag e︷ ︸︸ ︷
mypackage .

model︷ ︸︸ ︷
mymodel .

cont ai ner︷ ︸︸ ︷
Component .

el ement︷ ︸︸ ︷
AFacet︸ ︷︷ ︸

name︸ ︷︷ ︸
qualified name︸ ︷︷ ︸

fully qualified name

Along with this naming convention, the visibility and uniqueness of a model
element depends on its fully qualified name. All elements defined inside the scope of

85



CHAPTER 3. A THREE-LAYER ADL, DEFINITION-ASSEMBLAGE-DEPLOYMENT

another element, typically children ComponentTypes and Facets, must always be
referenced by their qualified names. This mechanism offers some naming flexibility
for inner elements with the same semantics. For example, the same Interface
implemented in multiple ComponentTypesmay be exposed with the same name
for convenience. Since the Facets are contained in other ComponentTypes, their
qualified names will then be different. An element is never visible outside his model,
i.e. scope, except as otherwise imported2.

3.2.7 Validity of LinkageTypes between Facets

In order to evaluate the compatibility of two Facets linked by either a Connector-
Type or a DelegationType, two different types of checks are performed. First, both
names are checked. If their Interface’s qualified names are identical, then the
LinkageType binds two identical Facets, so the binding is obviously valid. In case
of different names, a signature-based check is performed for all Services. The
following compatibility verification rules offer more flexibility to combine compo-
nents that can be defined by different organizations or for different contexts. We
specify a kind of duck-typing3 for DAD Interfaces to allow loose coupling between
Interfaces as well as the possibility to combine different middlewares or commu-
nication technologies, especially like web services [Leff and Rayfield, 2010]. This
way, at the moment a service provider offers at least the required Services, such a
binding is possible.

Informally, we verify for the Services of the source Facet if we can find a
Service of the same type with the same Parameters (without considering the
names) in the same order in the target Facet. Each time a compatible match is
found, the Services are removed from the inspected lists. A match must be found
for all required Services, but the set of provided Services can be larger. The
Exceptions that are raised from a Service are also verified, but the check is more
stringent in this case. All Exceptions raised by the provided Servicemust be taken
into account by the required Facet. More formally, let:sp denotes a Parameter, such as p = (d , g ) with d the parameter direction

and g its GenericTypese denotes an Exceptions s denotes a Service, such as s =< p1, ..., pn >< e1, ...,em > , an ordered list of
Parameters followed by an ordered list of Exceptions.s I denotes an Interface, such as I= (s1, ..., sm) , a list of ServicessF denotes a Facets |= denotes the is typed by relationship, such as F |= Is F ∈C denotes that the Facet F is exposed by the ComponentType Cs L
+ denotes the directed LinkageType between Facetswith a LinkType L

2Model imports will be detailed in Section 3.6.2
3Duck-typing is a dynamic typing technique in object oriented programming where the semantics of

a method relies on its signature, instead of being specified by the inheritance of a particular interface
or class. It has been named that way in reference to the poet James Whitcomb Riley for his well-known
quote «When I see a bird that walks like a duck and swims like a duck and quacks like a duck, I call that
bird a duck.»
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s a represents a LeakUsage, such that C1 aC2 denotes C1 uses C2

For two Parameters p1 and p2, they are considered equivalent, denoted by ≈ ,
if formally,

p1 = (d1, g1) ∧ p2 = (d2, g2)

p1 ≈ p2 ⇔ d1 = d2 ∧ g1 = g2

For two Service, s1 and s2, they are considered as equivalent, denoted by ≈ , if
formally,

s1 =< p1
1, ..., pn

1 >< e1
1, ...,em

1 > ∧ s2 =< p1
2, ..., pn

2 >< e1
2, ...,ep

2 >
s1 ≈ s2 ⇔ ∀pk

1 ∈ s1, ∃ pk
2 ∈ s2 | pk

1 ≈ pk
2

∧ ∀e i
1 ∈ s1, ∃e j

2 ∈ s2 | e i
1 = e j

2

Then, let C1, C2 two ComponentTypes and I1, I2 two Interfaces. If a Linkage-
Type has been defined between two Facets, the following conditions must hold:

∀ F1 ∈C1,F2 ∈C2 | F1 |= I1 ∧F2 |= I2

F1
L
+ F2 ⇒ ∀ si

1 ∈ I1, ∃ s j
2 ∈ I2 | si

1 ≈ s j
2

We do not consider type compatibility in the above definition since DAD types
may not be extended, i.e. we do not provide mechanism to define a hierarchy
of datatypes. Again, this extension could be envisioned in a future release of the
language and the ≈ relationship can be modified accordingly.

3.3 Assemblage

The second layer of DAD models concentrates on the definition of valid instantia-
tions of architecture constructs and/or configurations specified at the Definition
layer. As discussed in Section 3.1.2, we separate the type of architecture to its possible
instantiations for two main purposes. First, some dynamicity-related attributes, such
as the amount of running instances, are specified at this level, independently from
the abstract definition of an architecture. Second, the concrete binding between
instances must rely on one specific communication Protocol, where LinkageTypes
at the Definition layer concentrate on the architectural topology.

The Assemblage modeling elements and rules are depicted in Figure 3.6. Some
elements from the Definition layer are also shown on the figure to highlight the
relations and reuse between both layers.

We present in the remaining of this Section all Assemblage modeling elements
and discuss the verification rules of the concrete configurations specified at this
layer.
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Figure 3.6: Assemblage modeling elements

SetOfInstance

A SetOfInstances is the materialization of a ComponentType in a concrete archi-
tecture. It is typed by a ComponentType, identified by a name and has a minimum
(min-card) and a maximum (max-card) cardinality. These cardinalities express
the amount of instances of the same ComponentType that may run simultaneously.
Combined to user-defined properties, they can be useful to clearly state the con-
ditions under which these properties hold. Furthermore, they will be particularly
profitable for the Deployment layer where the mapping between software compo-
nents and a target platform infrastructure can be defined.

A SetOfInstancesmay be flagged as bigbang to indicate that it must be manu-
ally instantiated. The bigbang flag can be seen like the mainmethod holder class
for a Java application. A SetOfInstancesmay manage other SetOfInstances to
create or destroy them and may be managed by multiple ones.

It may use other SetOfInstances in an analogous way as the LeakUsage de-
pendency for ComponentTypes. At this level, this dependency is particularly useful
when using Components Off The Shelf (COTS) or other types of reusable libraries. It
exposes zero or more Ports that define its entry-exit communication points. Finally,
it can be refined by user-defined properties to add software-related constraints
on, for example, memory or CPU usage, minimum version number of underlying
libraries and so forth.

Port

A Port is a communication point at the boundaries of a SetOfInstances. It is typed
by a Facet and identified by a name. It can be compared to an interaction point
between pieces of software. A Portmay be replicated according to its size attribute,
so that it offers multiple entry points to the same Interface’s behavior. A Port
supports one and only one Protocol because a particular Assemblage expresses
one possible instantiation of a configuration specified at the Definition layer. Ports
may be interconnected via LinkTypes.
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Linkage

A Linkage is the concrete connection between two Portswith one LinkType. As
LinkageTypes, a Linkage is directed from the Port typed by a requiring or facade
Facet to the providing or delegate one. We reuse directly the LinkTypemodeling
element and do not instantiate individually each LinkType to create a Linkage.
Requiring modelers to create a link for each of these bindings would have been
counter-productive and verbose. Furthermore, we are only interested in the prop-
erties associated to the connection facility used to bind two SetOfInstances via
their respective compatible Ports.

The validation of Linkages is analogous to the one for LinkageTypes, instead
that for a given Portwe have to retrieve its typing Facet and we have to ensure that
the chosen Protocol for the Port belongs to the accepted list of Protocols for the
LinkType actually used. Formally, letsS denotes a SetOfInstance, being a set of PortssP denotes a Port and P ∈ S denotes that P is exposed by Ss |= denotes the is typed by relationship, such as S |=CsT denotes a ProtocolsL denotes a LinkTypes ` denotes the Protocol support, such that P`T and L`T

If a Linkage exists between two Ports with a LinkType L, noted by
L
_ , the

following conditions must hold:

∀ P1 ∈ S1,P2 ∈ S2 | P1 |=F1 ∧P2 |=F2

P1
L
_P2 ⇒ ∃ C1 : S1 |=C1 ∧∃ C2 : S2 |=C2

∧ (
F1 ∈C1 | F1 |= I1 ∧F2 ∈C2 | F2 |= I2

) | F1
L
+ F2

∧ ∃ T | L`T∧P1 `T∧P2 `T

3.4 Deployment

Last, the third layer of DAD models first focuses on the definition of a deployment in-
frastructure based on physical types, as presented in Section 3.2.3. Second, mapping
rules are specified between a concrete architecture configuration, i.e. Assemblage,
onto the representation of the running infrastructure. Figure 3.7 spotlights on the
Deployment modeling elements with the linked Definition and Assemblage con-
structs to highlight the relations between the three modeling layers.

We detail here the Deployment modeling elements and mapping rules. We
afterwards specify the validation conditions used to ensure that the communication
ports and paths provided by a deployment infrastructure are able to support the
architecture Assemblage.
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Figure 3.7: Deployment modeling elements

Node

A Node is an abstraction of a software environment or hardware that is part of a
deployment infrastructure and may host one or more SetOfInstances that are de-
ployed on it. It is typed by a NodeType and identified by a name. A Node inherits from
the Gates exposed by its type. It is used to model an infrastructure of interconnected
computation entities that will be used to support a particular Assemblage.

Site

A Site is a geographical place that contains Nodes. It is used to define a cluster or
grouping of Nodes that are located at the same place. It is identified by a name and
refined by a situation description. The Site is mainly used for documentation and
visualization purposes. Further user-defined properties may be added to a Site
definition, if needed.

Deploy

A Deploy is a mapping rule from a SetOfInstances to a Node. It depicts the ab-
stract deployment of a software resource onto a running environment. Checks may
be performed in case of compatible user-defined properties have been expressed on
SetOfInstances and Nodes regarding available disk space, runtime environment,
required system architecture, etc.

Plug

A Plug is the action of plugging a MediumType between two Gates in order to
support the communication between Nodes. This rule is used to ensure that a Gate
is actually connected to a communication path that supports its definition in terms
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of Protocol. At this level, paths between Nodeswill support the Linkages defined
at the Assemblage, these Linkages using a particular Protocol too. Formally, let:sN denotes a NodeType, being a set of GatessH denotes a Node and inherits from the Gates defined in its typing GateTypesG denotes a GateTypesA denotes a Gate and A ∈H denotes that A is exposed by Hs |= denotes the is typed by relationship, such that H |=N and A |=GsM denotes a MediumTypes ` is overloaded such that M`T , T supports the Protocol T

If a Plug exists between two Gates with a MediumType M, noted by
M
^ , the

following conditions must hold:

∀ A1 ∈H1 ∧ ∀ A2 ∈H2

A1
M
^A2 ⇒ ∃ T | A1 `T∧A2 `T∧M`T

Opening

An Opening rule expresses that a Gate is opened to receive calls for a given Port, i.e.
a given Port is deployed on this Gate and makes available calls to the behavior de-
picted by the typing Interface. Many Portsmay be accessible on the same Gate,
but one Port cannot be reachable via multiple Gates. However, a SetOfInstances
may have multiple Ports typed by the same Facet such that the same Interface
may be exposed on multiple Gates.

The Opening rule ensures that, if there exists some Linkages defined in an
Assemblage clause with Ports that are opened on the involved Gates, then they
must support the Protocol used in the Linkage. Formally, lets ,→ denotes the Deploy rule, such that S ,→Hs } denotes an Opening, such that P}A , the Port P is opened on A

Then, the following conditions, must hold:

∀ A1 ∈H1 ∧ ∀ A2 ∈H2 ∧ ∀ P1 }A1 ∧ ∀ P2 }A2

P1
L
_P2 ∧ A1

M
^A2 ⇒ ∃ S1 | P1 ∈ S1 ∧ ∃ S2 | P2 ∈ S2

∧ S1 ,→H1 ∧ S2 ,→H2

∧ ∃ T | L`T ∧ M`T

∧ A1 `T ∧ A2 `T

3.5 User-defined Properties

In the previous Section, we briefly talked about user-defined properties. DAD model
elements may be refined by (key, values) properties. The specification of such
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properties is defined in dedicated libraries that can be imported into DAD models.
They must be specified by the following attributes:

name an identifying property name
type the property type

target the modeling construct type to which such property can be assigned
order whether the type is (strictly) ordered (ascending or descending)

unit description and/or acronym of the measurement unit
semantics text-based description of the meaning of the property

Only the three first attributes are mandatory for a property. A property is always
referred by its fully qualified name, so the name is identifying a property locally into
its library. The order attribute is meant to be used with int, decimal and boolean
property types only. For numeric values, an ascending order means that (strictly)
higher values are better and a descending order means that (strictly) lower values
are better. For boolean values, we defined the ascending order as f al se, tr ue and in
the opposite way for a descending order. The available types are:

int a signed integer value (32 bits)
decimal a decimal value (32 bytes)
boolean a boolean value (true or false)

string a sequence of characters (limit of 231 −1 characters)
enum enumerated value (the enumerated type must be previously defined)

A property can be defined for a majority of Definition element types, i.e. Ser-
vices, Interfaces, ComponentTypes, LinkTypes, Protocols, NodeTypes, Gate-
Types and MediumTypes, as well as for Sites. Also, meta-information regarding
models may be added with the same mechanism, like authorship, versioning data,
project management-related information regarding the development method, and
so forth.

Properties for the same modeling element type may be grouped based on user-
defined criteria. These correlated properties must then be specified in groups by
the modeler. This is particularly useful to define boundaries of values, like a mini-
mum and maximum connection bandwidth, for example. References to previously
defined properties are also possible into a group. In that case, the sequence of the
properties is important. For example, in the following code snippet 3.1, we define
some properties and one group of properties that reuse another previously defined
property4.

1 package be.iodass.sample;
2 dadproperties group_sample {
3 // define the CPU frequency property
4 property for nodetype CPU {
5 type decimal asc; // ascending decimal values (higher values are better)
6 unit "Giga Hertz (GHz)"; // Unit of measurement
7 semantics "CPU core frequency in GHz"; // meaning of the property
8 }
9

10 // define an enumeration of values for the communication layer
11 enum CommunicationLayer {
12 physical, datalink, network, transport, session,
13 presentation, application, samespace

4all syntactic details will be further described in Section 3.7
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14 }
15

16 // define the property for the communication layer
17 property for protocol layer {
18 type CommunicationLayer;
19 semantics "Communication layer: seven OSI layers with an extra one
20 for processes sharing the same memory space";
21 }
22

23 // define the ’author’ property
24 property for model author {
25 type string;
26 semantics "Model’s author name.";
27 }
28

29 // define a group of properties that reuse the author previously defined
30 group for model {
31 modification_date {
32 type string;
33 semantics "Date on which a modification as been done into the model.";
34 }
35 author; // reference to previously defined ’author’ property
36 }
37 }

Listing 3.1: Sample property definitions

First, a CPU property is specified as a decimal value that indicates the clock
frequency of the Central Processing Unit expressed in Giga Hertz. An enumeration
of values is also illustrated, based on the communication layer we discussed in
Section 3.2.2. The enumeration is used to type a layer property for the Protocol
modeling construct. The author property can be used individually or in combina-
tion with the modification_date, so wherever a modeler uses this property, he
must also specify the author.

A standard language library has been defined with reusable properties and
group of properties. We specified a list of ProtocolAttributes to add high-level
properties regarding communication Protocols. Also, some meta-information can
be added to any type of models such as authorship, creation date and versioning
details. More details about the available libraries will be presented in Section 3.6.1
and 6.4.4.

3.6 Model Reusability

As pointed in Chapter 1 and 2, a needed asset for architectural languages nowadays
is their reusability facilities. Two interrelated mechanisms have been developed
to that purpose for DAD models: the possibility to define reusable libraries and
to import these libraries into any DAD model. The present section presents both
mechanisms.

3.6.1 Writing Reusable Libraries

The proposed language has been defined as flexible as possible. The modeling
constructs we introduced in the present chapter, especially the infrastructure ones,
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the data types and the communication Protocols, are intended to be refined and
specialized by user-defined properties to create reusable building blocks. They can
be placed in dedicated models for further reuse. Because many types of modeling
constructs can be extended, as presented in Section 3.2.4, modelers have the possi-
bility to reuse the definitions of previously defined construct and even rewrite part
of their definitions in a flexible manner.

Also, architectural styles and patterns can be separately defined in DAD Defini-
tion models. Libraries of reusable solutions can be built that way and integrated
into other architecture Definitions or instantiated into specific Assemblages. The
separation between types and instances offered by both layers will be particularly
useful to that purpose.

User-defined properties may also be placed in dedicated models to build domain-
specific libraries. Combined to reusable Definition modeling elements, domain-
specific architectural languages may be specified that way by modelers. Because
Definition elements allow to model software as well as hardware components with
many interconnection capabilities, a wide range of domains can be expressed on
top of our modeling elements.

As we mentioned in the previous section, we wrote a standard library that comes
together with the language. This library is composed by a set of PrimitivesTypes
such as integer (int), logical value (boolean), floating point number (float), single
character (char), character chain (string) and byte. A second part of the standard
library (also referred as the base library) contains reusable properties that can be
attached to modeling constructs.

3.6.2 Model Imports

As we will detail in Section 6.4.4, two mechanisms are available to import DAD
library models into another model: implicitly or explicitly. The framework uses a
naming convention to offer a location for implicit imports. By storing models in that
specific place, any element defined in these models are implicitly imported into all
new models5.

We especially used that mechanism ourselves to create the aforementioned
standard library with a list of primitive data types and meta-information regarding
models, such as authorship, for example. We also defined some properties for
infrastructure modeling elements to specify, for example, minimum requirements
regarding NodeType’s CPU frequency and architecture, memory space, MediumType
bandwidth or transmission rate and so forth.

At the opposite, explicit imports must be defined explicitly by dedicated state-
ments in DAD models6. These models may then be defined anywhere and can be
imported using their qualified names. An example of such import will be provided
in the following section.

5this is valid for any type of models defined in the present dissertation, as depicted in the following
two chapters regarding architecturally-significant requirements and model transformations.

6and this is also valid for the other types of models too.
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Modelers are free to decide which strategy they prefer and both mechanisms
may obviously be mixed, depending on user-defined rules or modeling habits for
example.

3.7 The Online Book Library, a DAD Model Illustration

In order to illustrate the formalism presented in the current chapter, we will use a
fictitious case study on an online book library. We first give an informal description
of the case study. We then present the UML Use Case diagram [OMG, 2011d] that
formalize the main functionalities for the involved subsystems. Finally, we build a
set of DAD models to illustrate and discuss the main constructs.

The depicted example case study will be used thorough this dissertation to
illustrate the other languages developed around the DAD formalism. This case
study had also been used to validate our approach on a comparative case study we
conducted to challenge it and gather feedbacks from users. The details concerning
the case study itself will be presented in Chapter 7.

3.7.1 Case Study Overview

As an example, we will model a software system that allows customers to buy books
on a web site. Customers will use their preferred web browser to connect to an online
library webpage that offers a catalog of books. These books may be furnished by
multiple bookstores, each of these stores being free to fix their own prices. The books
being sold are then dispatched by a parcel deliverer directly from the bookstores to
the customers.

Concretely, when a customer buys a book, the library organizes an auction be-
tween all available bookstores to determine the smallest actual cost and, by this
mean, maximize its profit. The auction is lead by the library that contacts all book-
stores, gathers all answers, selects the lowest price and contacts again all stores to
request a new offer, lower than the previous price. This process is repeated until no
store is able to lower its price for the given book. Once the winning store is found,
the deliverer is requested to take care of the delivery from the store to the customer.

All stores must register to the library by sending their list of books with an
indicative price. For each book, the stores have a cost price and a selling price
(the indicative price sent to the library). They also freely define their own minimum
margin, expressed as a ratio that is applied to the cost prices. This margin constraints
the lower price limit they can propose for a book during an auction.

3.7.2 Main System Functionalities

We summarize the Customer functionalities of the three subsystems with a UML
Use Case diagram in Figure 3.8.

The Customerhas two main objectives on the OnlineLibrary subsystem (using
the UML terminology). First, a Customerwants to consult a catalog of books. To this
end, the OnlineLibrarymust gather all catalogs from the Bookstore subsystems.
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Figure 3.8: UML Use Case diagram of the OnlineLibrary subsystem

Second, the Customerwants to buy a book and this requires to know all Bookstores
that have that particular book from the catalog, find the cheapest price via an auction
and finally ask the delivery of the book to the ParcelDelivery subsystem.

3.7.3 A First Representation with a DAD Model

From these high-level requirements, we can specify a first naive architecture rep-
resentation for the scoped system. This first model is simplified in a graphical
representation of a DAD model in Figure 3.9. As a graphical formalism, we imple-
mented some modeling elements in a UML profile7 that extends the component and
deployment diagrams.

Figure 3.9: Simplified graphical representation of the OnlineLibraryDAD model

The Customer actor is represented as a ComponentType that requires a Book-
Selling Interface provided by the OnlineLibrary. Both ComponentTypes are
bound with a One2one LinkType. The OnlineLibrary needs, i.e. through a Leak-
Usage dependency, the other two ComponentTypes, depicted by the dotted arrows.
The complete model is illustrated and commented in Listing 3.2.

1 // a model always belongs to a package
2 package be.iodass.onlinelibrary;
3

4 // identifying name for the DAD model

7A discussion regarding the tool support is provided in Chapter 6, and more particularly in Sec-
tion 6.4.4.
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5 dadmodel onlinelibrary_naive {
6

7 // definition layer
8 definition {
9

10 // book details (using primitive types defined in the standard library
11 struct Book {
12 int isbn;
13 string title;
14 string author;
15 int year;
16 string publisher;
17 float price;
18 }
19

20 // interface in charge of the "Buy book" and "Browse book catalog" use cases
21 interface BookSelling {
22 sync Book[] browseCatalog(); // sync. operation that returns a list of books
23 sync boolean buyBook(in int isbn); // sync. op. with input parameter
24 event confirmDelivery(Book book); // event with Book parameter
25 }
26

27 // specification of a dummy Customer
28 componenttype Customer{
29 uses BookSelling as bs; // requires the service from the interface
30 }
31

32 // specification of the OnlineLibrary
33 componenttype OnlineLibrary {
34 implements BookSelling as bs; // provides the services
35 }
36

37 // empty specification of the stores
38 componenttype Bookstore {}
39

40 // empty specification of the deliverer
41 componenttype ParcelDelivery {}
42

43 // a basic one2one connector
44 connectortype One2one {
45 mode one2one; // point to point communication
46 }
47

48 // customer is connected to the library (from required to provided interface)
49 linkagetype from Customer.bs to OnlineLibrary.bs with One2one;
50

51 // the library needs the book catalogs and the auction service
52 usage from OnlineLibrary to Bookstore;
53

54 // the library transfers the customer and store details to the deliverer
55 usage from OnlineLibrary to ParcelDelivery;
56 }
57 }

Listing 3.2: Naive OnlineLibrary architectural representation

A model always belongs to a package and is identified by a name inside the
package. The concatenation of the package and the name using dotted qualified
names allows modelers to uniquely reference and import models. The Definition
layer elements is grouped in a definition clause. The model is first composed
by a DataStructure that defines a Book with some details. The BookSelling
Interface is also defined with the Services that are proposed to the Customer.
The OnlineLibrary and the Customer are connected through their Facets typed
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by the BookSelling Interface with a One2one ConnectorType. The point-to-
point connection is set up since the library is unique in the architecture, as defined
in Section 3.7.1. The dependencies between the OnlineLibrary and the other
ComponentTypes are not yet defined precisely, so usage dependencies are used
instead of typed connections.

All user requirements are not already taken into account in this first model. We
complement the first representation to add more details into the architecture, as
graphically illustrated in Figure 3.10.

Figure 3.10: Graphical representation of the updated version of the OnlineLibrary

In Listing 3.3, we present the complete textual model with the new Interfaces
and LinkType.

1 package be.iodass.onlinelibrary;
2 author : "Fabian Gilson"; // authorship user-defined property
3

4 dadmodel onlinelibrary {
5 definition {
6 struct Book { /* skipping details */ }
7

8 // customer details
9 struct CustomerDetails {

10 string name;
11 string surname;
12 string street;
13 int number;
14 string box;
15 int zip;
16 string city;
17 string country;
18 }
19

20 // bookstore details for the delivery of the book
21 struct BookstoreDetails { /* to be further defined later */ }
22

23 // details regarding the delivery
24 struct DeliveryDetails { /* to be further defined later */ }
25

26 // interface in charge of the "Buy book" and "Browse book catalog" use cases
27 interface BookSelling {
28 sync Book[] browseCatalog();
29 sync boolean buyBook(in int isbn);
30 event confirmDelivery(Book book, BookstoreDetails details);
31 }
32

33 // interface in charge of the "Gather book catalogs"
34 interface BookCatalog {
35 sync Book[] getBookCatalog();
36 }
37

38 // interface in charge of the auction process
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39 interface Auction {
40 sync float getPriceForBook(in int isbn, in float currentprice);
41 }
42

43 // interface for the delivery
44 interface Delivery {
45 sync DeliveryDetails deliverBook(in Book book, in CustomerDetails customer, in

BookstoreDetails store);
46 }
47

48 // specification of a dummy Customer
49 componenttype Customer{
50 uses BookSelling as bs;
51 }
52

53 // specification of the OnlineLibrary
54 componenttype OnlineLibrary {
55 implements BookSelling as bs; // provides the services to the customer
56 uses BookCatalog as bc; // requires the services to retrieve all catalogs
57 uses Auction as a; // requires the auction service
58 uses Delivery as d; // requires the delivery service
59 }
60

61 // specification of the stores
62 componenttype Bookstore {
63 implements BookCatalog as bc; // provides the catalogs of books
64 implements Auction as a; // provides the prices for the auction
65 }
66

67 // specification of the deliverer
68 componenttype ParcelDelivery {
69 implements Delivery as d; // provides the details for the delivery
70 }
71

72 // a basic one2many connector
73 connectortype One2many {
74 mode one2many;
75 }
76

77 // a basic one2one connector
78 connectortype One2one {
79 mode one2one;
80 }
81

82 // customer is connected to the library
83 linkagetype from Customer.bs to OnlineLibrary.bs with One2one;
84

85 // the library needs the book catalogs and the auction service
86 linkagetype from OnlineLibrary.bc to Bookstore.bc with One2many;
87 linkagetype from OnlineLibrary.a to Bookstore.a with One2many;
88

89 // the library transfer the customer and store details to the deliverer
90 linkagetype from OnlineLibrary.d to ParcelDelivery.d with One2one;
91 }
92 }

Listing 3.3: OnlineLibrary architectural style

Three more Interfaces are specified, that will be in charge respectively of the
retrieval of the catalogs, the negotiation of the cost price for the books and the
delivery to the customer. To that purpose, three more DataStructures are also
identified, from which the CustomerDetails is specified. A new ConnectionType
is defined to connect the library to the stores. Following the description given
in the case study, there are many bookstores and a single library, so a One2many
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ConnectorType is used to connect the OnlineLibrary to the Bookstore. Finally,
the ComponentTypes are connected to each others through their Facetswith this
One2many ConnectorType.

The above model presents a type of architecture with three type of components
interconnected through their compatible interfaces. Some details regarding the type
of connection, point-to-point or one-to-many, are also expressed. However, the
one-to-many connections should be further specified to refine the semantics of the
connection, i.e. what kind of connection should be used: is the OnlinLibrary con-
nected with multiple point-to-point connections to the Bookstores or in broadcast
manner ? What are then the properties of the communication Protocol to use ?
Moreover, how can we define a possible instantiation of this type of architecture ? In
the next section, we will present how these pieces of information can be added into
our model.

3.7.4 Adding More Properties and Specifying a Possible Instance

We depict in Figure 3.11 a possible instantiation of the architectural model presented
in the previous section, with one SetOfInstance per ComponentType. These con-
structs are tagged with attributes to reference their types and to define their instanti-
ation boundaries.

Figure 3.11: Graphical representation of an Assemblage for the OnlineLibrary

In order to refine the definition of the connections between theComponentTypes,
we introduce a Protocol into Listing 3.4 where we provide the code of the complete
DAD model. We also refine the semantics of the ConnectorTypes and detail the
Assemblage illustrated in Figure 3.11.

1 package be.iodass.onlinelibrary;
2 dadmodel onlinelibrary_upd {
3 definition {
4 struct CustomerDetails { /* skipping details */ }
5 struct Book { /* skipping details */ }
6 struct BookstoreDetails { /* to be further defined later */ }
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7 struct DeliveryDetails {/* to be further defined later */ }
8

9 interface BookSelling { /* skipping details */ }
10 interface BookCatalog { /* skipping details */ }
11 interface Auction {/* skipping details */ }
12 interface Delivery {/* skipping details */ }
13

14 componenttype Customer{
15 uses BookSelling as bs;
16 }
17 componenttype OnlineLibrary {
18 implements BookSelling as bs;
19 uses BookCatalog as bc;
20 uses Auction as a;
21 uses Delivery as d;
22 }
23 componenttype Bookstore {
24 implements BookCatalog as bc;
25 implements Auction as a;
26 }
27 componenttype ParcelDelivery {
28 implements Delivery as d; // provides the details for the delivery
29 }
30

31 // new HTTP protocol
32 protocol HTTP {
33 layer application;
34 reliable : true;
35 ordered : true;
36 }
37 connectortype One2many {
38 mode one2many;
39 distributive : true; // means many point-to-point
40 accepts HTTP; // connectortype accepts the HTTP protocol
41 }
42 connectortype One2one {
43 mode one2one;
44 accepts HTTP; // connectortype accepts the HTTP protocol
45 }
46

47 // unchanged linkagetypes
48 linkagetype from Customer.bs to OnlineLibrary.bs with One2one;
49 linkagetype from OnlineLibrary.bc to Bookstore.bc with One2many;
50 linkagetype from OnlineLibrary.a to Bookstore.a with One2many;
51 linkagetype from OnlineLibrary.d to ParcelDelivery.d with One2one;
52 }
53

54 // let’s define a possible instantiation
55 assemblage {
56 // the architecture may contain up to 1000 customer simultaneously
57 soi customer [0 1000] : Customer { Customer.bs as bs on HTTP; }
58 // the library is unique
59 soi library : OnlineLibrary bigbang {
60 OnlineLibrary.bs as bs on HTTP;
61 OnlineLibrary.bc as bc on HTTP;
62 OnlineLibrary.a as a on HTTP;
63 OnlineLibrary.d as d on HTTP;
64 }
65 // there could be up to 20 stores, but always at least one
66 soi stores [1 20] : Bookstore {
67 Bookstore.bc as bc on HTTP;
68 Bookstore.a as a on HTTP;
69 }
70 // the deliverer is unique
71 soi delivery : ParcelDelivery {
72 ParcelDelivery.d as d on HTTP;
73 }
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74

75 // linkages are almost a copy of the linkage types on instances
76

77 // up to 10 request can be handled at a time
78 linkage from customer.bs [0 10] to library.bs with One2one;
79 // library can be linked to 1 to 20 stores
80 linkage from library.bc to stores.bc [1 20] with One2many;
81 // library can be linked to 1 to 20 stores
82 linkage from library.a to stores.a [1 20] with One2many;
83 linkage from library.d to delivery.d with One2one;
84 }
85 }

Listing 3.4: Updated OnlineLibrary architectural model

The introduced HTTP Protocol is specified as a reliable and ordered commu-
nication protocol8. Both ConnectorTypes now accept this Protocol and One2many
is defined as distributive.

In the Assemblage clause, the boundaries of the amount of possible instances
for all ComponentTypes are specified. For example, we decided to fix the maximum
amount of simultaneous customer instances to 1000. On the other side, there must
always be at least one stores instance at every moment for the system to correctly
function. For each SetOfInstances, the Ports that materialize the Facets of their
typing ComponentTypes are exposed on the HTTP Protocol.

Finally, the SetOfInstances are connected following the patterns defined at
the Definition layer. In concrete Linkages, modelers may specify constraints on
the amount of simultaneous instances that can connect from a requiring instance to
its providing counterpart. For example, the library can handle up to 10 requests
from customers in a point-to-point connection, but at some point, no customer
may be connected. At the opposite, the librarymust always know about at least
one stores instance to be able to handle customer requests. The library is also
tagged as bigbang to highlight the need to manually create it. The customer being
a component out of our hands, its instantiation is out of our scope. The other two
SetOfInstances could have also been tagged, but we decided here to represent the
model from the library point-of-view, the other SetOfInstances being possibly
managed by other instances.

From an Assemblage, we can now define a deployment mapping to an abstrac-
tion of a running platform. In the next section, we first specify some infrastructure
constructs and then write mapping rules between the Assemblage and a running
Deployment configuration.

3.7.5 Defining a Possible Deployment

We will now illustrate the Deployment layer in Figure 3.12, that will be further
detailed in Listing 3.5. We present five groups of Nodes, bound by two different
MediumTypes. The host attribute represents the hosted SetOfInstances by the

8these properties are also part of the standard library of DAD models. A reliable protocol ensures
that all transmitted packets are received in the same order they’ve been sent by the sender. An ordered
protocol ensures that all transmitted packets are received in the same order they’ve been sent by the
sender.
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Node. Thwo Nodes, namely the gateway and server, are also placed into a ge-
ographical Site, named TheOffice. The gateway does not host any SetOfIns-
tances, but simply depicts a network gateway placed at the entrance of TheOffice.

Figure 3.12: Graphical representation of the Deployment platform.

In Listing 3.5, we illustrate the extension mechanism for some types of constructs.
The Deployment mapping rules are specified in the deployment clause. In the
following listing, we also introduce the import mechanism to reference the model
presented in Listing 3.4. Imported elements are referenced by their names as they
were defined in the current model.

1 package be.iodass.onlinelibrary;
2

3 // models can be imported with their fully qualified names
4 import be.iodass.onlinelibrary.onlinelibrary_upd;
5

6 dadmodel onlinelibrary_dep {
7 definition {
8 // create a gatetype that accepts HTTP requests
9 gatetype Ethernet { supports HTTP; }

10 // another gatetype that accepts HTTP requests too
11 gatetype GenericGatetype { supports HTTP; }
12

13 // simple client nodetype
14 nodetype Client { Ethernet eth0; }
15

16 // another node type (with the same definition)
17 nodetype BasicServer { Ethernet eth0; }
18

19 // generic gateway (network modem)
20 nodetype GenericGateway { Ethernet[2] eth; GenericGatetype gengate; }
21

22 // an extension of the basic server with a second interface and some properties
23 // these properties are part of the standard library
24 nodetype Server extends BasicServer {
25 Ethernet eth1;
26 CPU : 3.2; // cpu frequency in GHz
27 CPUArchitecture : "Intel Itanium"; // CPU architecture
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28 CPULogicalCore : 8; // number of logical cores
29 RAMSize : 64; // size in Gigabyte
30 }
31

32 // generic mediumtype that supports the HTTP protocol
33 mediumtype GenericCable {
34 supports HTTP;
35 DataTransmission : 1.5; // transmission rate in Mbits/s
36 }
37 // common Ethernet network cable
38 mediumtype E100BaseT extends GenericCable {
39 Bandwidth : 100; // bandwidth in MHz
40 DataTransmission : 100;
41 }
42 }
43

44 deployment {
45 node bserver[21] : BasicServer; // create 21 nodes for stores and deliverer
46 node server : Server; // one server for the library behind a gateway
47 node gateway : GenericGateway; // library gateway
48 node client[1000] : Client; // client machines
49

50 // deploy all set of instances (indexes starts at 0)
51 deploy customer[0 999] on client[0 999];
52 deploy library on server[0];
53 deploy stores on bserver[0 19];
54 deploy delivery on server[20];
55

56 // geographical site that contains the server and the gateway
57 site TheOffice {
58 situation "Where our office is";
59 contains server, gateway;
60 }
61

62 // open the software interfaces (ports) on network interfaces (gates)
63 open library.bs on server::eth0; // customer requests on eth0
64 open library.bc on server::eth1; // book catalog requests on eth1
65 open library.a on server::eth1; // auction requests on eth1
66 open library.d on server::eth1; // delivery requests on eth1
67 open stores.bc on bserver[0 19]::eth0; // stores book catalog requests on eth0
68 open stores.a on server[0 19]::eth0; // stores auction on eth0
69 open delivery.d on server[20]::eth0; // delivery on eth0
70

71 // all clients are connected with a generic cable to the gateway
72 plug GenericCable from client[0 999]::eth0 to gateway::gengate;
73 // library server is connected with an Ethernet cable to the gateway
74 plug E100BaseT from server::eth0 to gateway::eth[0];
75 // library uses a second gate for its other ports
76 plug E100BaseT from server::eth1 to gateway::eth[1];
77 // bserver[0 21] are the nodes for the deliverer and the stores
78 plug GenericCable from gateway::gengate to bserver[0 21]::eth0;
79 }
80 }

Listing 3.5: OnlineLibrary deployment constructs and mapping rules

In the above model, we introduce a GenericGatetype and an Ethernet Gate-
Type that can receive HTTP connections. The Client and BasicServer NodeTypes
only declare an Ethernet Gate. A GenericGateway is defined with two Ethernet
and one GenericGatetype gates, and represents a network gateway. The Server ex-
tends the BasicServer by adding a second Ethernet Gate and other user-defined
properties, notably concerning the CPU. All these properties have been specified in
the standard library we already referred to in Section 3.6.1.
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Two MediumTypes are also defined, a GenericCable and its extension E100-
BaseT [IEEE, 2013]. The GenericCable supports the HTTP Protocol and guaran-
tees a TransmissionRate of 1.5 Mbits/s. The E100BaseT overrides the Transmission-
Rate property and specifies a Bandwidth property of 100 MHz.

Now we have defined infrastructure constructs to model a target running plat-
form, we can specify mapping rules between the concrete Assemblage, i.e. SetOf-
Instances and Ports, onto Nodes and Gates connected by MediumTypes. To this
end, first, a list of Nodes are instantiated to receive the client, library, stores
and delivery SetOfInstances (line 45 to 54 in Listing 3.5). The customer from
index 0 to 999 are deployed on the Client Nodeswith the same indexes. The same
syntactic sugar is used to deploy the stores onto 20 BasicServer Nodes (from in-
dex 0 to 19) and the delivery on the remaining bserver. Basic checks are performed
on cardinalities in the deploy clauses. The amount of deployed SetOfInstances
must be sufficient for the specified amount of Nodes. If some SetOfInstances have
been specified in the Assemblage and remains un-deployed, a warning message is
issued.

Second, a geographical Site is declared and it contains the server (so the
library software application) and the network gateway.

Third, the software Ports are made available from the outside on Gates (line
63 to 69). All Ports from the SetOfInstances depicted in Listing 3.4 are mapped
to Gates. The library will use two different Gates to handle, on one hand, the
client requests and, on the other hand, the communication with the other compo-
nents. Like for deploy clauses, shortened statements can be used for open clauses,
like on line 69 in Listing 3.5.

Last, we concretely connect Gates to each other to define a running configura-
tion of interconnected Nodes. Communication paths are created between Gates
to reflect the Linkages defined at the Assemblage layer. Analogously to the usage
of LinkTypes in Assemblage connection clauses, we use directly MediumTypes in
binding rules between Nodes because we focus on the properties attached to a
logical and physical communication paths instead of the amount of logical con-
nections or network cables we would need. For example, at line 72, by plugging
a GenericCable from all clients to the gateway, we specify that all clients may
join the gateway via its gengate Gate disregarding how the clients are physically
connected to the gateway. These client Nodes are maybe placed behind a modem
and multiple network routers, but these considerations are out of the scope if this
particular model, even if they could have been modeled too.

3.7.6 Concluding Remarks on the Example Case Study

In the above example, we illustrated a significant part of the modeling constructs
offered by the DAD language. However, we did not provide a complete example with
all possible modeling elements, but we intended to exhibit the main assets of the
proposed language. Other aspects of the DAD structural language will be provided
in Chapters 6 and 7.
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3.8 Wrap-Up and Conclusions over DAD Modeling

In the present section, we introduced the Definition-Assemblage-Deployment for-
malism, a component-based modeling language that integrates communication,
runtime infrastructure and user-defined properties facilities. We advocated the
usage of a layered representation for system architectures. We detailed the available
modeling elements to define abstract architectures, concrete instance models with
dynamicity-related properties, deployment mapping rules and custom properties.
We also presented the binding mechanism used to connect compatible interfaces,
close to the duck typing in object oriented programming. We finally illustrated this
structural formalism with a case study on a book library system.

As a first objective, the formalism had to allow system designers to model soft-
ware and hardware components in a lightweight and reusable way with a separation
between types and instances. The layered representation of DAD models was de-
signed to that purpose.

Likewise, hardware and deployment constraints play a major role in component-
based system development since the amount of technological frameworks and
running platforms exploded in the last years. User-defined properties may be easily
specified for many types of modeling constructs in DAD models. These properties
may refine the semantics of modeling elements and build libraries of reusable
constructs or domain-specific architectural languages.

Besides, one of the main goals of the DAD modeling language was to define
extensible communication facilities for component-based systems. Some effort
has been put into the communication-related constructs and a taxonomy of link-
age types between components has been defined. Communication protocols may
be specified with user-defined properties and the separation with the connection
support serves this flexibility to define architectural configurations. Furthermore,
the linkage mechanism between interfaces based on the verification of services’
signatures instead of type hierarchy reinforce system evolvability and composition
flexibility.
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The present chapter concentrates on the definition of architecturally-significant re-
quirements and, on the one hand, the relations between them, and on the other hand,
the relations to architectural constructs. We first define the notion of architecturally-
significant requirements. We then recap the advantages and usages of design rationale.
We introduce afterwards our Architecturally-Significant Requirement (ASR) formal-
ism and detail its modeling elements. Next, we suggest to adopt a semi-formalized
method to write requirements and discuss the advantages of using such an approach
in our context. Based on the case study depicted in the previous chapter, we finally
illustrate the ASR modeling language.

4.1 What are Architecturally Significant Requirements ?

In Section 1.3, we presented several design rationale and requirement traceability
methods and tools. We identified their expected outcomes and assets in the context
of system architecture design and knowledge management, mainly in terms of
maintenance and knowledge transfer activities.

In the present dissertation, we focus on architecturally significant requirements,
defined as requirements having « a measurable impact on the software system’s
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architecture » [Chen et al., 2013]. However, the derivation from business goals to
such requirements is far from straightforward. There is often a « mismatch » between
what information is expressed in a business goal and what an architect effectively
needs [Clements and Bass, 2010]. Most requirements are often exclusively related
to business goals or concentrate on expected functionalities, which are not always
the best drivers for a system architecture. The link between both business and
architectural goals (or quality requirements) has been mainly addressed by goal-
oriented or template-based techniques [Gross and Yu, 2001; Velasquez and Weiss,
2006; Clements and Bass, 2010; Open Group, 2011]. They concentrate on keeping
explicit this link, but still does not provide support between the architecturally
significant requirements and the architecture model itself. Some of the approaches
we summarized in Section 1.3 attempted to address this problem.

We observed to some extent a kind of consensus in the type of relations be-
tween requirements, design decisions and rationale. From the ontology proposed by
Kruchten et al. [Kruchten et al., 2006] and the core model of de Boer et al. [de Boer
et al., 2007] to the classification proposed by Zimmermann et al. [Zimmermann
et al., 2009], design decisions and rationale have been raised as first-class entities in
system development activities and documentation. As we mentioned earlier, recent
experience reports, surveys and case studies highlighted some benefits and targeted
several positive outcomes by integrating these concepts in system design methods
and models.

In this chapter, as a first objective, we will focus on how architectural require-
ments can be recorded and attached to architecture model elements in a simple and
non-intrusive manner. A second objective is to add rationale-based information to
these requirements to trace the motivations behind the decision that created the
architecture model, as well as the explored design alternatives.

4.2 Design Rationale, Is It Worth the Pain ?

But why do we really need to trace design rationale ? And what kind of rationale
should be recorded ? As advocated in Section 1.3, especially in the experimentations
conducted with the various techniques and tools dedicated to decisions and ratio-
nale traceability, these pieces of information play a key role in software maintenance
and architectural knowledge transfer.

More and more researchers and practitioners are convinced by the utility of such
methods for the software engineering field [Gruber et al., 1991; Carroll, 1996; Tang
et al., 2006; Ali Babar and Lago, 2009; Lago et al., 2010]. However, probably one of
the main obstacles to their adoption is the extra amount of work needed to encode
the decision-making process with its justifications.

Instead of settling the matter, we suggest to let the decision in the project man-
agers and designers’ hand. Every project may have its own rules, standards and
expectations regarding the completeness and quality of the deliverables. Even,
every decision regarding the architectural design may not be critical enough to
require an exhaustive and formalized argumentation. According to empirical obser-
vations [Ramesh and Jarke, 2001] and survey [Malavolta et al., 2013], the link between
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architectural artifacts and requirements should be kept in a non-obtrusive manner
with, at least, some details on the reason why the requirement is fulfilled by the
implementing element. Mechanisms should also be provided to relate requirements
to each other in order to help designers to make trade-offs between alternative solu-
tions or understand the consequences of selecting a particular solution regarding
the other impacted requirements.

In the following section, we introduce a set of modeling and recording facilities
for architecturally significant requirements and design rationale. Even if the pro-
posed modeling constructs are related to the DAD structural elements presented
in the previous chapter, the concepts and relations between requirements can be
easily reused in combination with other component-and-interface languages.

4.3 Architecturally Significant Requirement Modeling

We present now the concepts and relations of our formalism, simply called Architec-
turally Significant Requirement (ASR). We first reproduce the meta-model of the
ASR language. Afterwards, we discuss all introduced concepts in two categories, first
the requirement-related modeling elements and relations, and second, the types of
rationale that can be recorded into an ASR model.

4.3.1 Requirement Language Specification

Our meta-model is highly inspired from the ontology of Kruchten et al. [Krutchen,
2004; Kruchten et al., 2006] and the classification of Zimmermann et al. [Zimmer-
mann et al., 2007, 2009]. We reused many concepts from both approaches and, for
some of them, slightly adapted their definitions to stick to our domain or intents.
Figure 4.1 depicts the ASR meta-model.

The language is separated into two main parts: the requirements with their possi-
ble relationships depicted in red and the type of rationale, highlighted in yellow. The
DADElement is an abstract supertype for all DAD modeling elements we discussed in
Chapter 3. The pink box that represents the TransformationRulewill be detailed
in Chapter 5. It consists in any transformation that can be applied onto a DAD
model.

4.3.2 Requirement-related modeling elements and relations

The essential element in an ASR model is the requirement itself. In such a model,
a set of relationships are available to bind either requirements to each others, to
DADElement or to TransformationRules.

Asr

An Asr represents a requirement of the system that may influence the structure
of the architecture model in terms of its topology, functionalities, qualities, and
instantiation or deployment constraints. It is identified by a name and is either
functional or non-functional, as specified by its type attribute. Its full definition is
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Figure 4.1: Architecturally Significant Requirement meta-model

recorded in the description attribute. A priority can also be assigned to an Asr. This
priority is expressed with a float value, but the rules or prioritization method are left
to the users. One may use it to represent a (strict) order of Asr’s implementations,
or to specify a weight that will be used in an Agile planning poker [Grenning, 2002],
for example. An Asr can also be flagged as final to avoid any other Refinement or
assignment of it. This may be useful when the Asr expresses a concrete implemen-
tation solution from which no possible alternative may be explored, or to ensure
the responsibility of its fulfillment may not be transfered to other model element,
for example. It must be assigned to one DADElement, this model element being
responsible of its fulfillment into the architecture model. The DADElement is then
referenced as the owner of the Asr. Finally, it can be the source or target of one or
more DesignDecisions.

DesignDecision

A DesignDecision is an abstract modeling element that represents any decision
that can be taken onto an Asr. It always binds two or more Asr and it is traced, i.e.
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justified, by one or more Rationale that document the link itself.

Assignment

assignment is the decision of committing the responsibility of an Asr to a DAD-
Element. During development, as the analysis is conducted, some requirements
may have been assigned to the wrong DAD model element or must be reassigned to
finer-grained components. Also, as a system may evolve over time, the duty of some
requirements can be transfered from one element to another, for example because
of the usage of a dedicated technological framework or component off the shelf. Such
assignment flexibility is thus needed, especially in iterative software development
methods.

Refinement

Requirements may be split into one or more other requirements for multiple reasons,
all expressed by a Refinement relationship. First, an incomplete or ill-defined
requirement definition can be refined into one or more precise ones. Second, a broad
requirement may be split into a set of lower-level ones, each of them having disjoint
concerns. Third, alternative solutions may be expressed with the flag alternative
set to true. If an higher-order Asr has multiple refining requirements marked as
alternatives, they all provide a solution for the same concern such that only one of
them should be selected at a time. In case an Asr is refined with requirements that
are alternatives and others are not, all alternatives express substitutable solutions
for the same matter. In other words, an Asr cannot be refined in multiple group of
alternatives. If such a situation would occur, intermediate Asrmust be created that
will be refined into alternative Refinements.

By default, a lower-level requirement is assigned to the same modeling element
than his higher-order parent. However, a refined Asrmay be assigned to another
model element. This situation typically happens when a fuzzily described Asr is
split into more detailed pieces that must be implemented by distinct components,
like, for example, when a system must gather some information that is provided by
multiple external source systems. The ASR formalism is flexible enough to directly
reassign sub-requirements to the right target model element that will be in charge
to its fulfillment, such that no extra assignment decision must be taken separately.

Selection

Within an alternative group, at some point of the design process, an alternative
Refinement will be selected. The Selection expresses the decision of choosing
one alternative as the current implementation solution within all other alternatives.

Implication

An Implication between two Asr indicates that one requirement triggers one or
more other requirements. Implications are typically specified on Asr that are
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part of alternatives to define dependencies between a possible solution and its
implications in other alternative groups if the Asrwas selected. An Implication is
unidirectional, so that in case of mutual implications, relations must be defined for
all involved requirements in both ways.

Exclusion

An Exclusion is somehow the opposite relation of an Implication. It specifies a
mutual rejection between one source Asr and a list of target Asr. It is used to specify
a negative implication between requirements typically on alternative Asr. In this
case, if an alternative requirement is selected, it will forbid the selection of other
solutions in another group of alternatives. Unlike an Implication, the Exclusion
relationship is bidirectional.

Impact

An Impact is any other type of relation between two or more Asr. It means that a
requirement has some effect on other ones, the exact nature of the influence being
project- or method-specific. An Impact is unidirectional and must be specified as
having a negative, positive or neutral influence. The neutral type of Impact indicates
that there is a dependency between the requirements, but the precise significance
and/or consequences are unknown.

Usage

A Usagemeans that an Interface is required to fulfill the requirement. The Inter-
face provides the needed behavior and properties that are required by the Asr’s
owner. The Interfacemust either exist in the DAD model referenced by the current
ASR model or it must be explicitly imported, analogously to the import mechanism
for DAD models discussed in Section 3.6.2. A Usage dependency may be related to
only one Interface. If an Asr requires more than one Interface to be fulfilled,
it must be split, i.e. refined, into lower order requirements beforehand. Usage
relationships, like Implementations, may only be used with ComponentTypes.

Implementation

An Implementation means that an Interface will be provided to fulfill the re-
quirement. The Interface provides the expected behavior, such that the Asr’s
owning ComponentType will implement it. The Interfacemust already exist in
the referenced DAD model or must be explicitly imported. An Implementation
dependency may relate one Interface, or similarly to Usages, the source Asrmust
be split into multiple refinements.

Realization

A Realization gathers more complex structural changes that must be applied to
the referenced DAD model in order to fulfill the Asr. It will induce one or more

112



4.3.3. Rationale-related modeling elements

TransformationRules involving one or more DADElements. In Chapter 5, we will
introduce a dedicated language to express transformation on DAD models, but
transformations can be expressed in any transformation language, according to
modelers or project management decisions.

4.3.3 Rationale-related modeling elements

Our requirement formalism is enhanced with the possibility to document the afore-
mentioned type of decisions with design rationale. As depicted in Figure 4.1, every
DesignDecisionmust be documented by a Rationale. Figure 4.2 recaps the avail-
able types of rationale for an ASR model, that are detailed right after.

Figure 4.2: ASR’s rationale modeling elements

Rationale

A Rationale is an abstract element that represents any motivation or hypothesis
behind a DesignDecision. It is usually composed by a text description where
requirement engineers or modelers further explain their thoughts regarding their
decisions.

Assessment

An Assessment is the only mandatory piece of information for a DesignDecison.
It is used to justify the decision with the main reason why the decision has been
taken. Alternatively or in case of template-based requirements (see Section 4.5.1),
it may be used to reformulate or give more unstructured information regarding
the requirement, especially when higher-level requirements are refined into lower-
level and more precise ones. The completeness of the explanation is out of the
scope of the present language. We simply offer a structured way of recording the
major argumentation point hold by the modeler or to further detail the goal of the
requirement.

Assumption

An Assumption represents any hypothesis taken on the system to build or the
environment that can influence the decision. By definition, an Assumption is always
considered as a true fact. As the other types of Rationale except the Assessment,
an optional Property, as introduced in Section 3.5, may be added to the description
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in order to formalize it in a structured way. This feature opens the possibility to
verify if some hypothetic properties are not violated in a DAD model, for example.

Constraint

A Constraint expresses either a condition that must be taken into account regard-
ing the decision and the Assessment of it, or a future consequence induced by
the decision. Any type of constraint can be defined on the system to build, on the
environment or on human resources, for example. A structured Propertymay be
included in the description to possibly enable checks on a required Constraint for
a given Asr and its existence in a referenced DAD model.

Strength

A Strength is used to support a decision with its possible advantages. One of the
objective of this type of Rationale is for argumentation purposes when evaluating
multiple alternatives. One may detail the benefits of one decision regarding an
alternative design decision or even structural configuration, if the Rationale is
bound to a Realization decision, for example.
Strengths are especially valuable to understand the viewpoint of the modeler

in terms of expected qualities regarding the Asr. When considering multiple alter-
natives, modelers may evaluate the possible effects of a decision regarding some
(non-functional) expectations on the system. With Strengths, they are able to
specify clearly why a decision should be taken or why they select this particular
alternative.

Weakness

A Weakness has the same purpose as a Strength, but has the opposite meaning.
It records the shortcomings linked to an (alternative) Asr, possible limitations or
known failures of an Asr. Similarly to Strengths, identified Weaknesses would
probably focus on the expected qualities of the system under development or on the
impact on its environment.

Both Strengths and Weaknesses are particularly valuable for architectural
knowledge transfer or recovery because they record the identified aspects of a deci-
sion that were taken into account when evaluating the design alternative or decision.
They further justify the criteria, i.e. viewpoint, of the modeler when (s)he took a
decision regarding an Asr.

4.4 User-Defined Properties in ASR Model Too

Exactly as DAD models, some modeling elements from ASR models may be refined
by user-defined properties, using the same mechanism as described in Section 3.5.
These properties are first used to specify meta-information regarding the model or
the requirements themselves. Ownership, timing or project specific information can
then be added to these elements.
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Second, typed-Rationale can be defined along with their descriptions. By
offering a structured mechanism to define design rationale, the proposed language
may support analysis of DAD models regarding the properties expressed in an ASR
model and their effective fulfillment in the related DAD model. Remember an Asr
is always assigned to a DADElement, depending on the type of Rationale, some
consistency checks can be performed. Before going into details of these possible
strategies and to be able to concretely illustrate the present discussion, we first
introduce the ASR model formalism in its graphical representation in Figure 4.3 an
with its full textual description in Listing 4.1. Then, we detail, per Rationale, the
possible verification strategies that can be applied.

Figure 4.3: Architecturally Significant Requirement graphical sample

The graphical syntax is close to the UML use case diagram[OMG, 2011d] with
ellipses for requirements and a box around all requirements that concerns a DAD
model element. In this sample ASR model, we show three requirements that are
assigned to the MyComponent ComponentType. The “DoSomething” functional re-
quirement (depicted in a yellow ellipse) is refined into two lower-order requirements,
from which the “AnotherSubRequirement” is non-functional (orange ellipse). The
graphical syntax concentrates on the relations between Asr. As we will show in Sec-
tion 4.6, the other types of relationships can be represented with dedicated graphical
items. The detailed and commented textual model is presented in Listing 4.1.

1 package be.iodass.sample; // belong to a package, as DAD models
2 import be.iodass.sample.propsample; // import dadproperties model
3 asrmodel asrsample with be.iodass.sample.dadsample { // corresponding DAD model
4 // functional requirement with ID "DoSomething"
5 func DoSomething assigned MyComponent {
6 description "This requirement concerns a feature we absolutely need";
7 priority 1; // ordered priority
8 }
9 // functional requirement that refines DoSomething

10 func ASubRequirement assigned MyComponent {
11 description "The important functional feature";
12 priority 1;
13 refines DoSomething { // link to higher-level requirement with rationale
14 assessment "Concentrate on the functional aspect"; // mandatory
15 // assumption is defined as a structured property
16 assumption stateless : true; "The component type is stateless.";
17 }
18 }
19 // non functional sub-requirement that also refines DoSomething
20 nonfunc AnotherSubRequirement assigned MyComponent {
21 description "The important feature needs fast answers";
22 priority 2;
23 refines DoSomething {
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24 assessment "Split functional and non-functional aspects";
25 // constraint can be formalized as a structured property
26 constraint responsetime : 10; "The component answers to requests in max 10msec";
27 }
28 }
29 }

Listing 4.1: ASR sample model

As illustrated in the above Listing, an ASRmodel is associated to a structural DAD
model since each Asrmust be assigned to a modeling object that will be the owner of
the requirement, until no other assignment is performed. We can identify one main
requirement DoSomething that is refined into two sub-requirements, a functional
and a non-functional one. For both sub-requirements, the Rationale is composed
by a user-defined property and a description, assuming that both properties are
defined for ComponentTypes in the referenced DAD properties model. As its name
suggests, the stateless property indicates that a ComponentType can be stateless,
so that each call to its implemented Services are independent. The responsetime
property defines the maximum response time in millisecond that the component
need to answer to client requests. This simple mechanism that mixes user-defined
properties and text-based descriptions may enable automatable verifications across
models, as we will depict in the subsequent sections.

4.4.1 Active Asr and Property Verification

In order to define the following verification rules, we first have to introduce the
notion of active Asr. An active Asr is a requirement that either is not part of an
alternative group, or is a selected alternative in the current ASR model.

In order to perform analysis on the values assigned to Rationalewith structured
properties, we also define the notion of incompatible values. Verification on the
compatibility may be performed on numeric, i.e. int and decimal values, and on
boolean properties. The verification rely on the order attribute. If the order is
(strictly) ascending, then any value (strictly) under the value of the current property
is incompatible. For (strictly) descending types, any value (strictly) above the focused
value is incompatible1. If no order attribute is specified, any different value for the
same property will be considered as incompatible.

Both these notions are particularly important for the consistency verification of
properties defined inside types of Rationale. Note that the following verifications
can only be performed on boolean and ordered numeric properties. Also, the follow-
ing strategies always use the type of Rationale under focus as the current point of
view. Conflicting verifications can arise if strategies are mixed and, usually, manual
trade-offs or priority between the strategies are required.

1Remember that we specified the order attribute for boolean values in Section 3.5 too, with ascending
values defined as the order f al se − tr ue and descending as tr ue, f al se.
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4.4.2 Assumptions

Since an Assumption is an hypothesis considered to be always valid, for any user-
defined property expressed as an Assumption in an ASR model, no counter example
may be found for the owner of the requirement in the referenced DADmodel. For
example, if the modeler determined that the responsetime of a ComponentType
must stay beyond a certain limit, the owner cannot be tagged with the same prop-
erty and a worst value. Or, like in the example above, if the ComponentType is
intended to be stateless and this property as no defined order, it cannot be tagged as
st atel ess : f al se in the corresponding DAD model for the same ComponentType.

In general, all properties defined as Assumptions in an Asr definition for a given
DADELement cannot be specified with an incompatible value in the referenced DAD
model. For unordered properties, the value must be the same in the Rationale
property and in the definition of the owner DADElement.

Similarly, consistency checks can be performed for all Assumptions across all
active Asr assigned to the same DADElement to ensure no incompatible hypothesis
are made on the same modeling element. If such incompatibility is found, a manual
trade-off must be found between all values to determine which one is actually the
most plausible or acceptable for the requirement engineers or system architects.

Also, no Constraint in an active Asr can be more stringent that an Assumption
for the same element. What would it mean if, for example, a component’s response-
time is estimated to stay under 10msec in an Assumption and an Asr requires it
to be under 5msec in a Constraint ? Here again, some manual decision must be
taken to decide which value must be used for that property.

The validation is more straightforward regarding Strengths and Weaknesses
because the latter are used for documentation purpose. No incompatible values can
be found in an active Asr, or they should be simply replaced by the value specified
in the Assumptions since they are used for argumentation purposes.

4.4.3 Constraints

Constraints express properties that must be respected by a modeling element.
Assumptionswith incompatible values in active Asr should be avoided. For exam-
ple, if a component is constrained by a r esponseti me : 10msec , no Assumption
can go beyond this limit, since the responsetime is defined as an ascending integer
value.

Also, compatibility checks can be performed in the referenced DAD model to
ensure that the Constraint property is not violated in the DAD model, i.e. no
incompatible values are found for the same modeling element.

4.4.4 Strengths and Weaknesses

Strengths and Weaknesses are devoted to influence and support the design deci-
sions, so they are mainly used as documentation means. For any property defined
as a Strength or as a Weakness, it may not be incompatible with an Assumption
or a Constraint assigned to the same DADElement.
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4.5 Clues for The Right Level of Details

In our ASR models, we decided to put forward semi-formal requirement definitions.
Text-based recording in requirement engineering tools is still very popular in the
industry [Liu et al., 2010; Carrillo de Gea et al., 2012]. Requirement documents
are still often made of plain text in natural language, sometimes illustrated with
some UML diagrams or ad-hoc dialects. Many companies also rely on their own
template documents that can change from projects to projects, depending on the
team manager or even external consulting companies with their own standards.

However, the current practice is moving to more formal techniques for require-
ment recordings, system design and verification [Woodcock et al., 2009]. We argue
here that a combination of semi-formalized requirement specification based on
structural templates coupled with formal relationships between requirements and
design rationale can improve the requirement exploration as well as the architec-
tural knowledge of the system to build. Some recent experiments or usage reports
of explicit recordings of rationale tend to highlight the aforementioned benefits in
controlled environments or in the industry [Bracewell et al., 2009; van Heesch et al.,
2013].

4.5.1 Template-Based Requirements

Many document templates have been proposed to write requirements in a struc-
tured and referable manner. The Open Group Architecture Framework (TOGAF) we
mentioned in Chapter 2 provides a list of text documents with predefined sections
for all phases addressed by the TOGAF® framework [Open Group, 2011]. For all doc-
uments, versioning and authorship information must be provided. In its Architecture
Requirements Specification document, the framework requires modelers to provide
details regarding the architecture requirements, the interoperability requirements,
the constraints, assumptions and success measures. Except regarding this last piece of
information2, all other sections may be written in a structured way in our framework.

The Volere requirement specification template, from the Atlantic Systems Guild
Limited is another example of a widely used template [Robertson and Robertson,
2012]. This document is articulated around five categories: project drivers (purpose
and stakeholders), project constraints (naming conventions and assumptions), func-
tional requirements, non-functional requirements and project issues (open issues,
risks, costs and documentation). It reuses UML diagrams [OMG, 2011d] to depict
functional use cases but requirement engineers may simply use a requirement table
which is very similar to a simple spreadsheet. For behavioral or data specification,
no prerequisite or suggested formalism is specified. Only a UML class diagram is pre-
sented as an example for a data representation. However, as the TOGAF templates,
it does not provide structured referencing mechanisms between requirements so
that refinement or conflicts between them can only be expressed textually.

2Even if such a user-defined property could be easily defined in a DAD property model, like the
versioning and authorship properties from the built-in library.
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Mavin et al. propose the EARS templates to write requirements in a structured
way [Mavin and Wilkinson, 2010; Mavin, 2012]. Two types of requirements can be
expressed: normal operations (expected applications) or unwanted behaviors (excep-
tions handling). We extended the general EARS template to specify the counterpart
system in the communication, if any. All requirements must be written around this
generic xEARS template, of the form:

<pre-condition(s)> <trigger> the system shall response <counterpart(s)>

Optional parts are denoted between angle brackets (“<>”). Every part must
always be put at the same place, with the following meaning:

pre-condition prerequisite to the requirement (zero to many)
trigger discrete event that causes the requirement (one at most)
system identifiable and explicit name

response behavioral reaction of the system (one to many)
counterpart referable system involved in the communication (zero to

many)
Simplest requirements are called ubiquitous and are defined as the most simple

form of the template without any optional parts. They consist in requirement of
the form « the system shall do something ». The authors defined a set of four typical
constructions as pre-conditions or triggers:

state-driven (while) behavior active while some condition stands
event-driven (when) condition triggered at the system boundary

option (where) behavior activated if presence of an optional component
unwanted (if ) answer to an undesired event or failure

Our custom counterpart extension allows to define the communication between
the system that is the subject of the requirement and the other involved systems.
Two types of dependencies can be expressed, the required dependencies and the
provided ones. Both constructions are useful to depict dependencies between
systems, especially for higher-level requirements that may have a broader scope and
describe more complex behaviors or system qualities. They are identified by the
keywords from and to.

required (from) system that provides (part of) the requirement
provided (to) system that requires the requirement

All these constructions can also be combined to create complex requirement
definitions. The EARS templates have been developed and used in the aeronautic
industry and they are becoming more popular also in IT companies [Terzakis, 2013].
Concrete examples of the usage of the extended EARS templates will be provided in
Section 4.6.

When using Volere or TOGAF-like templates, no structured strategy for refer-
encing, decomposing or defining requirements is suggested. Requirements may be
written at any level of details. These document templates offer boxes to be filled with
some information, but let free the requirement engineers to write, split or group
requirements according to their own method. At first sight, this practice looks fair
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enough, but we believe that, at least, a structured mechanism should be provided to
record design rationale and relations between requirements.

Approaches like the EARS templates, with predefined slots and keywords in pat-
tern sentences are definitely promising since they open the door for text extraction
possibilities in order to migrate or transform textual requirements to formal mod-
els. With such a writing strategy, requirement engineers may stick to their habits if
they were used to textual descriptions, but with appropriate tooling support, some
verifications may be applied on extracted requirements models.

However, such alike templates by themselves miss the capability to easily cross
over requirements and alternatives without going into the textual description itself.
No structured relationships may be defined between requirements which reduce the
ability to identify dependable or conflicting solutions, for example. Therefore, in the
next section, we discuss the possible advantages of using formal relations between
requirements.

4.5.2 Formal Relationships

As discussed in Section 1.3, many researchers advocated for structured relations
between requirements as an important feature in requirement engineering. More-
over, as pointed by practitioners in the aforementioned survey on architectural
languages [Malavolta et al., 2013], the link between system requirements and archi-
tectural artifacts is crucial, especially to lower the cost of architectural changes.

As discussed in Section 1.3.10, many modeling languages uses formal relation-
ships between business goals and/or requirements. They usually define formal
decompositions of higher-order goals into lower order ones or to represent strategic
decision-making processes with involved stakeholders. In some sense, we share a
common view of formalized relationships, where the actors are system elements, but
the only goals we are interested in are the ones having an influence on the system’s
architecture.

The ASR formalism focuses on two types of relationships: between requirements
themselves and with architectural constructs. The main goal of the first type of
relations is to help requirement engineers, as well as system architects, to iden-
tify refinements, alternatives and any other type of conflicts between architectural
requirements. These pieces of information are especially valuable during design
phases to help with decisions, highlight possible problems induced by these deci-
sions and trace the decomposition of higher-level requirements into lower-level
ones. The second type of relations, with architectural constructs, is particularly
useful for maintenance and knowledge transfer activities. A particular requirement,
especially the ones that are translated into architectural aspects or patterns, is often
diluted into the overall model. The roles played by every construct can then become
unclear and the system concrete architecture starts to derive from its representa-
tion. This phenomenon has been identified during the early ages of the software
architecture discipline as the architectural drift and erosion [Perry and Wolf, 1992]
we already discussed in Section 1.2.13. Both phenomena contribute to increase the
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architectural rigidity to structural changes and can be partially tackled by reinforcing
the link between the requirements and their implementation artifacts.

But in order to further enhance change traceability and architectural knowledge
documentation, the rationale concerning principal design decisions should also be
recorded along with the requirements and architecture models. Furthermore, this
recording activity should be done in a straightforward and tool-supported manner
to lower the extra work needed and lower the cost for architectural documentation
activities.

At the opposite to many graphical approaches, in our requirement modeling
language, the links between Asrmust be defined the other way around, from the
target to the source. This may seen quite counter-intuitive, but we designed it this
way to avoid having to crawl all over a requirement listing every time we add an
alternative or any other type of relationship. For example, the Refinement link
is specified in the Asr that refines a higher-order one. Similarly, new alternatives
may be added into a listing without modifying the content of the Asr to which the
alternatives points to.

4.5.3 Rationale or Not ?

This question could be reformulated into “when does it become ineffective to record a
design rationale ?” We believe there is no such a universal answer to this controversy,
but this is instead a matter of project management and development context. From
a project to another, the prescriptions regarding documentation may be low or high,
based on, for example, company policy, expected time-to-market, development
method, available tool support, etc. Also, depending on the type of system to be
developed, the level or decision traceability may vary too. For example, the docu-
mentation expectations are different for a non-critical system that will be thrown
away in a couple of years than an autopilot system for a plane.

With ASR models, requirement engineers and modelers are free to add as much
information as they want. The mechanisms introduced in the preceding sections are
flexible enough to be adapted to a wide range of project-specific managements. The
only mandatory rationale is the Assessment description that expresses the main
reason behind the decision taken.

One of the most important feature for an architectural documentation formalism
is probably its simplicity and lightness. As highlighted in Section 1.3, the perceived
return on investment of architectural documentation frameworks is usually low, even
if many practitioners admit its usefulness. By recording the design rationale directly
together with the requirements in a free-text format, the additional work is limited,
especially because only few details are mandatory. Relations between requirements
are also expressed in a simple manner, without having to draw additional models.

4.5.4 A Hybrid Visualization for a Hybrid Definition

To fully benefit from our hybrid requirement definition mixing text-based descrip-
tions and formal relations, a combination of a textual representation and a graphical
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overview should be created. We advocated for textual template-based descriptions
regarding its handover facility for requirement engineers used to textual require-
ment definition. Coupled to formal relationships, their work should be facilitated
to make decisions regarding alternatives with a clear understanding of the known
impacts. A fully textual description of these impact relationships is not always in-
tuitive, especially to identify them at a glance, so that the advantages brought by
this formalization could be lost by the lack of conciseness and clarity of large textual
models.

In the present chapter, and as we will detail in Chapter 6, the graphical overviews
must be maintained separately from the textual models. As for DAD models, a
two-way synchronization mechanism between textual and graphical representation
should be investigated to help requirement engineers and architects to identify
refinements, alternatives and exclusions/impacts more intuitively.

4.6 Formalizing the Requirements, Rationale and Decisions for
the Online Library

We will now illustrate the ASR modeling constructs with the online library system
introduced in the preceding chapter. We first translate the use case diagrams pre-
sented in Figure 3.8 in Section 3.7 into an ASRmodel. Afterwards, we will exemplify
the available relationships between Asr and other DAD constructs.

4.6.1 High-Level Requirement Definition

We translated the use case diagrams of the online library system into the ASRmodel
presented in Figure 4.4. We used the same identifying names (but in a concatenated
version) for all requirements as the ones defined in the use case diagrams.

Figure 4.4: Architecturally Significant Requirement model for the OnlineLibrary

The ASR graphical representation depicted in Figure 4.4 contains five functional
requirements that correspond to the five use cases presented in the previous chapter.
At this level, the interactions between the components is not visible, like we did in
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the use case diagram (even if this representation is not very common, but accepted
by the UML standard). As we will discuss later in this section and in Chapter 7,
these interactions may appear in ASR models, at certain point of development, with,
for example assignment decisions or Interface Usage or Implementation. The
complete model expressed in the textual syntax is reproduced in Listing 4.2.

1 package be.iodass.onlinelibrary;
2 asrmodel onlinelibrary_hl with be.iodass.onlinelibrary.onlinelibrary_naive {
3 func BrowseBookCatalog assigned OnlineLibrary {
4 description "The OnlineLibrary shall display a catalog of books to Customers.";
5 }
6

7 func BuyBook assigned OnlineLibrary {
8 description "The OnlineLibrary shall sell books to Customers.";
9 }

10

11 func GatherBookCatalog assigned OnlineLibrary {
12 description "The OnlineLibrary shall gather the books from all BookStores and
13 display them to Customers.";
14 refines BrowseBookCatalog {
15 assessment "To display the catalog, the library must first retrieve them.";
16 }
17 refines BuyBook {
18 assessment "The library must compile all catalogs from the stores.";
19 }
20 }
21

22 func FindCheapestByAuction assigned OnlineLibrary {
23 description "When the Customer buys a book, the OnlineLibrary shall determine
24 the selling price by an auction with all BookStores.";
25 refines BuyBook {
26 assessment "The sell price is determined by an auction between the stores.";
27 }
28 }
29

30 func AskBookDelivery assigned OnlineLibrary {
31 description "When the cheapest price for a book is found, the OnlineLibrary shall
32 send the Customer and BookStore details to the ParcelDelivery.";
33 refines BuyBook {
34 assessment "Delegate the responsibility to the deliverer.";
35 }
36 }
37 }

Listing 4.2: ASR model in textual syntax

In the textual representation, the requirements are fully defined with a textual
description that follows the xEARS templates, together with the refinement relations
and more details about the split into lower level requirements. For now, we simply
translated the main objectives of the library systems into a more structured model.
In the next section, we will illustrate the other ASR modeling constructs in a larger
model where we refine the “GatherBookCatalog” Asr.

4.6.2 Adding Alternatives and More Rationale in ASR Models

The ASR formalism offers the possibility to define a wide range of relations between
requirements. In Figure 4.5, we give a larger overview of the available types of
relations between requirements.
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Figure 4.5: More detailed ASR model for the OnlineLibrary

In the above model, the requirement “GatherBookCatalog” has been refined
into two lower level functional requirements: “RetrieveCatalogFromStore” and “Cre-
ateCatalogPage”. Assuming that the BookCatalog Interface already exists in the
referenced DAD model, the “RetrieveCatalogFromStore” Asrwill use it (depicted by
the directed thick turquoise blue arrow). The other Asr, “CreateCatalogPage”, is
refined in three non-functional requirements to specify the intended qualities of the
webpage. The “DynamicGUI” is also refined into alternatives (depicted by dotted
arrows) from which the “JQueryBased” is selected (directed thin turquoise blue ar-
row). The other alternative, “AdobeFlashBased” is declared in mutual Exclusion
with the “ResponsiveDesign” (thick red line), since Adobe® Flash® is a graphical
rendering technology that is currently not well supported by portable devices. Also,
the same Asr has a negative Impact on the “SystemResponsiveness”, because it is a
rather greedy technology (depicted by the pink dotted arrow).

In Listing 4.3, we detail the ASR model depicted in Figure 4.5.

1 package be.iodass.onlinelibrary;
2 asrmodel onlinelibrary with be.iodass.onlinelibrary.onlinelibrary {
3

4 func BrowseBookCatalog assigned OnlineLibrary {
5 description "The OnlineLibrary shall display a catalog of books to Customers.";
6 }
7

8 func BuyBook assigned OnlineLibrary {
9 description "The OnlineLibrary shall sell books to Customers.";

10 }
11

12 func GatherBookCatalog assigned OnlineLibrary {
13 description "The OnlineLibrary shall gather the books from all BookStores and
14 display them to Customers.";
15 refines BrowseBookCatalog {
16 assessment "To display the catalog, the library must first retrieve them.";
17 }
18 refines BuyBook {
19 assessment "The library must compile all catalogs from the stores.";
20 }
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21 }
22

23 func RetrieveCatalogFromStore assigned OnlineLibrary {
24 description "The OnlineLibrary shall retrieve the catalogs from all BookStores.";
25 refines GatherBookCatalog {
26 assessment "Concentrate on communication to bookstores.";
27 }
28 uses BookCatalog {
29 assessment "Reuse existing interface proposed by bookstores.";
30 strength "No needed extra development.";
31 weakness "Dependency to external changes, no hands on it.";
32 }
33 }
34

35 func CreateCatalogPage assigned OnlineLibrary {
36 description "The OnlineLibrary shall create a webpage with an aggregated view of
37 all catalogs retrieved from the BookStores.";
38 refines GatherBookCatalog {
39 assessment "Build webpage from retrieve catalogs.";
40 }
41 }
42

43 nonfunc SystemResponsiveness assigned OnlineLibrary {
44 description "The OnlineLibrary shall be responsive to Customer requests.";
45 refines CreateCatalogPage {
46 assessment "Responsiveness is an important feature for today’s webpages.";
47 constraint responsetime : 1000; "response time should stay beyond the second";
48 }
49 }
50

51 nonfunc ResponsiveDesign assigned OnlineLibrary {
52 description "The OnlineLibrary shall offer a responsive design for the book catalog
53 to Customers.";
54 refines CreateCatalogPage {
55 assessment "Mobile applications/browsing must be taken into account too.";
56 }
57 }
58

59 nonfunc DynamicGUI assigned OnlineLibrary {
60 description "The OnlineLibrary shall offer a dynamic and eye-candy
61 graphical interface to Customers.";
62 refines CreateCatalogPage {
63 assessment "Dynamic UI is a must for web pages.";
64 }
65 }
66

67 nonfunc AdobeFlashBased assigned OnlineLibrary {
68 description "The OnlineLibrary shall use Adobe Flash technology for the catalog
69 webpage.";
70 refines CreateCatalogPage is alternative {
71 assessment "Adobe Flash is trendy";
72 weakness "Pretty greedy on CPU and not fully supported on all platforms";
73 }
74 exclude ResponsiveDesign {
75 assessment "Flash technology currently not supported in all (mobile) platforms.";
76 }
77 impact negatively SystemResponsiveness {
78 assessment "Client devices can suffer from responsiveness problems (updates or
79 low-end CPUs).";
80 }
81 }
82

83 nonfunc JQueryBased assigned OnlineLibrary {
84 description "The OnlineLibrary shall use JQuery-based technology for the catalog
85 webpage.";
86 refines CreateCatalogPage is selected {
87 assessment "JQuery is a reference technology based on javascript and ajax.";
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88 strength "Library well tested and easy to use.";
89 weakness "Exclude ’disabled-javascript’ webbrowsers.";
90 }
91 }
92 /* skip remaining of file with FindCheapestByAuction and AskBookDelivery */
93 }

Listing 4.3: More Detailed ASR model in textual syntax

This ASR model is bound to the onlinelibraryDAD model given in Listing 3.3
in Section 3.7.3. A set of new requirements are introduced in this model from the
“GatherBookCatalog” Asr, starting at line 24. The “RetrieveCatalogFromStore” refines
the “GatherBookCatalog” Asr and uses the BookCatalog Interface. For each of
these DesignDecisions, at least an explanation is given in the Assessment clause
and the Usage is further argued with a Strength and a Weakness. In the listing,
we also illustrate the usage of a structured property for a Constraint at line 47 to
precisely define the maximum response time of the OnlineLibrary regarding its
responsiveness for the “CreateCatalog” Asr. The two last requirements, from line
67, illustrate the Impact and Exclusionmechanism. Again, such decisions must
be enriched with some Rationale. Note that alternative Asr, i.e. possible choices
regarding a design decision, are identifiable by the keyword is alternative and
are pointing to their higher-level requirement. The selected alternative is annotated
by is selected.

4.6.3 Concluding Remarks on the Examples

We do not illustrate all relations or types of rationale in the above samples, but the
mechanisms are analogous to the ones exposed here. The textual syntax used for
the definition of Asr has been designed as simple as possible, with few keywords,
and remains understandable by non-practitioners with rather few effort. As DAD
models, user-defined properties can be included to add meta-informations or, as
illustrated in Listing 3.3, to formally specify some Rationale.

Also, ASR models may import other DAD or ASR models too. Externally defined
patterns may be imported to fulfill a specific requirement or a large system can be
split into multiple ASR files, each of them related to an identifiable part of the overall
system, for example.

However, we do not expose the Realization relationships in the current sam-
ples. As defined in Section 4.3.2, Realizations are complex structural changes that
must be applied to a DAD model in order to implement an Asr. These changes must
be expressed as model transformations and will be the subject of Chapter 5.

4.7 Wrap-Up and Conclusions on ASR Modeling

In this section, we introduced the Architecturally Significant Requirement (ASR)
modeling language. Combined to their textual specifications, system engineers
are able to trace the relations between them as well as to record the design ra-
tionale behind each decision in a structured and straightforward manner. The

126



4.7. Wrap-Up and Conclusions on ASR Modeling

available relations and types of rationale have been defined on top of existing aca-
demic research [Kruchten et al., 2006; Zimmermann et al., 2009] and similar con-
cepts are available in academic and industrial architectural knowledge management
tools [Tang et al., 2006; Jansen et al., 2007; Burge and Brown, 2008; Bracewell et al.,
2009].

However, the current modeling language has no explicit support for business
goals, but the Refinement relationship can be used to that purpose to bind organi-
zational goals to system requirements. This extension would need to be coupled to
user-defined properties in order to describe other types of requirement than archi-
tecturally significant ones. For example, one may define its own set of properties to
specify subtypes of requirements.

A second extension to the current language would be to add the ability to define
an order between requirements in case of sequential executions of requirements.
The simplest manner, but far from optimal, would be to reuse the priority attribute
to that purpose. But a more generic strategy would be to ask requirement engineers
to follow similar patterns as the extended EARS templates presented in Section 4.5.1
and extract from the textual description of Asr these kind of relations. A simple
technique would consist in first extracting the « is preceded by » relations from pre-
conditions and trigger expressed in the first part of the xEARS sentences, and in a
second pass over the ASR model, add the opposite « is followed by » relations to the
involved requirements.

To sum up, with ASR models, requirement engineers are able to record require-
ments with their relationships and design rationale together with an architectural
model, since a particular ASR model is always bound to a DAD model. The combi-
nation of both models gives a snapshot of the identified architectural requirements
and the corresponding architectural model at a given state of development.
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In the present chapter, we now propose an ad-hoc concrete syntax-based transfor-
mation language to manipulate DAD architectural models. We first consider the
applicability of using transformation languages as first-class entities in architecture
design activities. We also discuss the relevance to define a custom transformation lan-
guage directly on concrete model elements instead of reusing an abstract syntax-based
transformation framework. Afterwards, we consider the assets of architectural styles
and patterns and their roles in system architecture design and evolution. We then
detail the available transformation rules to manipulate DAD models and, finally,
illustrate the approach with our online library system.

5.1 Why Do We Need a Transformation Language ?

The two preceding chapters introduced the core modeling languages of our architec-
tural framework. The first language focuses on structural descriptions of software
architectures around three inter-related layers. The second language is dedicated to
record architecturally significant requirements with design decisions and rationale.

In this dissertation, we pointed many times the maintenance and evolution prob-
lems of software architectures that tend to become too obscure to accept changes,
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as time goes by. In the present and following chapters, we will argue that a formal-
ized architectural design and change management will help to keep control over an
architectural representation on the long run.

Before going into detail over the proposed design framework in Chapter 6, we
first introduce a custom transformation language working on the concrete syntax of
DAD modeling elements. We rely on a transformation language to apply changes
in a predefined, structured and reproducible manner. Coupled to an adequate doc-
umentation, likewise Jansen and Bosch’s view on « software architecture as a set of
architectural design decisions » [Jansen and Bosch, 2005], we use model transforma-
tions to formally record architectural changes as decisions implementations.

Since in the current dissertation, we raise model transformations as primary
means to draw and modify architecture models, we decided to create an ad hoc
transformation language working on the concrete syntax directly. As we discussed
in Section 1.4, several model transformation techniques exist, articulated around
four paradigms: imperative, declarative, graph-based and concrete-syntax-based. We
highlighted the main assets of all types of languages, with at least one particular
language of each paradigm and we argued for the most appropriate approach to use
in our framework.

We came to the conclusion that we need a concrete syntax-based formalism for
two main reasons. First, we intend to lower the learning curve for a new language
with complex notions such as meta-modeling or higher-order transformation rules,
so that practitioners stick to architectural concepts only. Second, styles and patterns
play a key role in the software architecture field because they offer reusable solutions
to common problems or provide effective technical answers to frequent needs for
architectural qualities. Instead of describing a pattern only structurally, the DAD-
Transformation language allows to specify them in some kind of instantiation rules
so that they can be imported directly as model transformations.

As an introduction, we will depict a simple client-server architecture that will be
partially created by model transformations. Then, we will concentrate on the roles
played by styles, pattens and model transformations for common problems in the
software engineering field, at first for reusability problems, then for requirement
traceability and architecture maintenance.

5.2 An Introductory Sample: Build a Client-Server by Model
Transformations

To give an overview of our concrete syntax-based transformation language, we will
create a simple Client-Server architecture with model transformations. First, in List-
ing 5.1, we define two empty ComponentTypes, a Client and a Server, without any
connection between them. They will be bound later by dedicated transformations
rules.

1 package be.iodass.sample;
2

3 dadmodel clientserver {
4 definition {
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5 componenttype Client { }
6 componenttype Server { }
7 }
8 }

Listing 5.1: Sample Client-Server architecture model

Then, in Listing 5.2, we create their respective Facets, typed by a common
Hello Interface, also created by a transformation in the same code snippet.

1 package be.iodass.sample;
2

3 /* some details are hidden for the sake of simplicity */
4

5 transformationset myfirsttransformation /* some details hidden here */ {
6

7 // create interface
8 create interface Hello {
9 sync void hello();

10 }
11

12 // create facets on each part
13 alter componenttype Client{
14 uses Hello as hello;
15 }
16 alter componenttype Server {
17 implements Hello as hello;
18 }
19

20 // create ConnectorType
21 create connectortype One2One { mode one2one; }
22

23 // create binding
24 create linkagetype from Client.hello to Server.hello with One2One;
25 }

Listing 5.2: Sample transformation rules to created a typed connection in the Client-
Server architecture

The resulting architecture model now contains the created Interface and both
Client and Server are connected using that Hello Interface.

1 package be.iodass.sample;
2

3 dadmodel clientserver {
4 definition {
5 componenttype Client {
6 uses Hello as hello ; // used facet correctly created
7 }
8 componenttype Server {
9 implements Hello as hello ; // implemented facet created too

10 }
11

12 // new model elements created
13 interface Hello { sync void hello (); }
14 connectortype One2One { mode one2one; }
15

16 // new linkage type created
17 linkagetype from Client.hello to Server.hello with One2One ;
18 }
19 }

Listing 5.3: Resulting Client-Server architecture model
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In the present chapter, we will specify how modelers may influence architecture
models through formal model transformations. But, first, we will discuss about the
links between styles, patterns, model transformations and system architectures.

5.3 Styles, Patterns, Transformations and Architectures

The usage of patterns has been pushed forward for many years in the software
engineering field. In the present section we first go back to the roots of design
patterns and we list their core assets for software development. We then discuss the
current problems in pattern reusability and how we intend to address this issue. We
finally discuss the possible benefits of formalized model transformations in terms of
traceability, maintenance and evolution of architecture models.

5.3.1 What Are Patterns and Styles, and What Are They Used For ?

According to many authors, the origin of the interest in design patterns traces back to
a series of books mainly written by the professor and architect Christopher Alexan-
der [Alexander, 1999]. In their “A Pattern Language - Towns, Building, Construc-
tion” [Alexander et al., 1977], the authors defined a list of 253 architectural patterns,
when interconnected to each other, specify a whole language to construct towns
and buildings. According to the authors, « Each pattern describes a problem which
occurs over and over again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this solution a million times
over, without ever doing it the same way twice. » Each pattern is described following
exactly the same structure with an illustrative picture, an introductory paragraph,
the description of the problem and solution, a schematic diagram of the pattern and
finally the relations to the other patterns.

In a seminal paper, Gamma et al., aka the ”Gang of Four”, defined patterns as
a mean to « capture intent behind a design by identifying objects, their collabora-
tions, and the distribution of responsibilities » [Gamma et al., 1993]. In a very similar
fashion as generics in many programming languages, also defined as parameterized
types, where object types are specified in a generic and reusable manner with other
types as parameters, patterns are parameterized structures that may be reused in a
wide range of domains. They usually offer structural or behavioral principles to re-
current problems. They abstract a whole architectural knowledge, with its rationale,
decisions and consequences [Harrison et al., 2007]. The scientific literature abounds
in pattern reference books over various domains like, among others, organizational
processes [Coplien, 1994], software architecture [Buschmann et al., 1996], enterprise
architecture [Fowler, 2002], information visualization [Heer and Agrawala, 2006] or
service-oriented applications [Daigneau, 2011].

From the interest born from the original paper, Gamma et al. concentrated in
an influential book named “Design Patterns, Elements of Reusable Object-Oriented
Software”, a list of object-oriented patterns using a very detailed structure. In an
average of ten pages, a pattern was specified by its intent, motivation, applicability,
structure, participants, collaborations, consequences, implementation, sample code,
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known uses, and related patterns [Gamma et al., 1995]. At the opposite to this very
meticulous description, the Portland pattern paragraph1 is a text-based form with
a few sentences describing the problem and a few lines depicting the solution,
separated by the term “therefore”. Many other forms exists in the literature, like in
the aforementioned articles or books, such that, no real consensus exists in the way
of specifying patterns.

In Section 1.3, we already stressed the relevance of design decisions in architec-
ture design activities. Encompassing Jansen ad Bosch’s view on software architectures
as a set of design decisions [Jansen and Bosch, 2005], Taylor et al. articulate architec-
tural patterns and styles around architectural design decisions [Taylor et al., 2009].
In their book, they defined a style as « a named collection of architectural design
decisions that (1) are applicable in a given development context, (2) constrain archi-
tectural design decisions that are specific to a particular system within that context,
and (3) elicit beneficial qualities in each resulting system. » Similarly, a pattern is « a
named collection of architectural design decisions that are applicable to a recurring
design problem, parameterized to account for different software development con-
texts in which that problem appears. » In the authors’ view, styles and patterns are
expressed in terms of decisions, which may comprise architectural configurations,
i.e. models, but not only. Other guidelines and constraints may also be expressed in
an informal manner to raise the level of genericity as much as possible.

Even if both definitions look very similar, they differ in their applicable scope and
their abstraction level. Patterns are specified for a particular problem where styles
apply to a particular context. Also, styles are often subject to human interpretation
since they depict general guidelines instead of parameterized architectural blocks,
as patterns do. In a very shortened way, styles constrain a whole architecture where
patterns offers reusable parts to build that architecture.

According to Prechelt et al. and as commonly claimed in the software engineering
practice [Prechelt et al., 2002], design patterns (i) improve productivity and software
quality, (ii) help juniors to develop their design skills, (iii) promote best practices and
(iv) support the communication between practitioners. In a rather wide literature
review, Zhang and Budgen identified that « the variety of form and scope that arises
means that “blind” application of patterns with any sense of the potential limitations
is unwise » [Zhang and Budgen, 2012]. On top of methodological recommendations
to define and evaluate the usage of patterns, they observed a lack of documentation
over why a specific pattern was chosen to tackle a given problem, so that juniors had
troubles to understand the system design. In other words, without an appropriate
documentation, it gets hard to understand the purpose of a design pattern, then
to re-apply it to other similar concerns. On the other side, if the documentation is
too specific, the capability to reuse a pattern for a similar problem, but in a distinct
domain is almost void. That is what we call the genericity and reusability problem.

1pattern description form used by three authors from Portland (Oregon, United States) at the Pattern
Languages of Programs conference in 1994, see http://c2.com/ppr/about/portland.html
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5.3.2 The Genericity and Reusability Problem

However, to make them reusable across people, projects and domains, some im-
portant pieces of information are needed, especially for novice designers with few
knowledge over a domain or a problem. In Schema-based approaches inspired by
the artificial intelligence community [Minsky, 1974; Rich, 1981], « schemata can rep-
resent knowledge at all levels-from ideologies and cultural truths to knowledge about
the meaning of a particular word, to knowledge about what patterns of excitation are
associated with what letters of the alphabet. We have schemata to represent all levels
of our experience, at all levels of abstraction. Finally, our schemata are our knowledge.
All of our generic knowledge is embedded in schemata. » [Rumelhart, 1980] According
to the knowledge schema theory transposed into the software development field,
practitioners may develop their knowledge around semantic structures that may
be combined to build software from these generic concepts instead of concrete
solutions [Détienne, 1990].

As defined in the above section, patterns are made to conceptualize concrete
solutions into abstract and reusable concepts. As Zhang and Budgen, we believe
patterns may potentially fulfill the role of knowledge schemata for the software
architecture domain if they are specified with an appropriate formalism, such that
patterns may be reused crosswise domains. By appropriate formalism, and closely
to other pattern definition styles, we advocate for a combined structural definition
of patterns with architectural models and a semi-formalized text-based description
to refine the semantics of the pattern. In our framework, we already introduced a
modeling language to represent system architectures in Chapter 3 that we will reuse
in the present chapter. On the other side, we proposed a semi-formal language to
record architecturally significant requirements with structured design rationale and
decision traceability.

In the present dissertation, we argue that the combination of both views may
help in documenting the pattern in a reusable manner with the following pieces of
information:

(1) a structural description in a platform independent formalism, i.e. a Definition-
Assemblage-Deployment model with a meaningful name

(2) a description of the problem it tackles, i.e. an Architecturally Significant
Requirement model

(3) an argumentation of the rationale behind the pattern in the ASR model
(4) the links to other patterns, if any, through their related ASR models

Indeed, the genericity of the patterns defined that way highly depends on the
ability of the modelers to specify them in a reusable manner. Transformations should
be defined in a self-contained document, with abstract elements, exactly as in any
other pattern formalism. When a pattern is inserted into a specific model, map-
ping rules, i.e. transformations, will bound the abstract model element to existing
architectural elements. Examples of such pattern definitions will be illustrated in
Sections 5.5.2 and 5.6.2.

The coupled architectural and requirement models provide a structured mecha-
nism to formally define patterns, as well as architectural styles. Their usage condi-
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tions may be fully described with details regarding, on the one hand, the benefits,
weaknesses, constraints and hypotheses of using the pattern, and on the other hand,
the impact to other patterns, like mutual exclusions, for example. Furthermore,
because of the flexibility of both languages, patterns may be specified with very
abstract components linked by semantic-less usage relationships associated to a
very generic textual description. At the opposite, very detailed component structures
with domain-specific concerns may also be expressed. The description style may
depend on the modeler’s wish or on project-specific requirements, for example.

5.3.3 Traceability, Maintenance and Evolution

In Section 1.3, we discussed about many research focusing on architectural knowl-
edge documentation and design decision traceability. Both problems have been
identified to be crucial, also at the eye of the industry. In the preceding chapter,
we specified a requirement formalism to raise traceability links concerning a set of
design decisions as first class entities in system architecture development. However,
complex structural changes in such architectural models cannot be represented as
simple decisions as the ones we detailed in Chapter 4. Applying patterns or archi-
tectural styles into models are part of the job, but custom modifications must be
applied at some point of the development, maintenance or evolution of a software
system.

In our proposal, we suggest to express any change as model transformations
to reinforce once more the traceability links of the subsequent injections of new
concerns into an architecture model. The traceability of these modifications are
materialized by the Realization links in ASR models we defined at the end of
Section 4.3.2. Exactly as any other type of DesignDecision, the Realization link
may be further justified with any type of Rationale.

The second part of the traceability is gathered in a transformations set were
architects formally define the structural changes they want to apply to a model. This
way, architects, or any involved stakeholder with a basic understanding of the DAD
formalism, is able to retrieve the structural changes made into the model in order to
implement a new requirement. A full traceability of the successive changes is kept
for later reference or, even rollback to older versions of the model, if needed. Also,
alternative styles or patterns may be evaluated concurrently by modelers without
losing previous versions of a model, or even under some conditions, reuse a set of
transformations that has been defined in some other explored alternative solutions.

5.4 Manipulate DAD Models with Model Transformation

In order to balance the effort induced by our stringent mechanism to make changes
in architectural models, a dedicated concrete-syntax based language has been de-
fined. It reuses the same logic and, wherever possible, the same syntax as the DAD
textual formalism presented in Section 3.7. We put some effort in making the syntax
and transformation rules as concise and self-explaining as possible.
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5.4.1 Overview of DAD Transformation Rules

Likewise the DAD and ASR languages, we summarize the main concepts of the DAD-
Transformation (DAD-T) language, in the meta-model depicted in Figure 5.12.

Figure 5.1: DAD-Transformation meta-model

Six types of TransformationRulesmay be defined on DADmodels: renaming,
creation and deletion of elements, fine-grained alternation of composite structures
(ComponentTypes, Interface, DataStructures or SetOfInstances), moving of
ComponentTypes’ children, and replacement of model elements by other ones. We
detail in the following sections all types of transformations as well as the verifications
done on the produced models 3.

5.4.2 Creation Rules

Many types of constructs can be created with dedicated transformations rules. All
Definition structural model elements, as presented in Section 3.2.2 and the three
types of GenericTypes, can be added into a model with creation statements.
Namely, these elements are GenericTypes, ComponentTypes, Protocols, Link-
Types, NodeTypes, MediumTypes, GateTypes, LinkageTypes and LeakUsages.

For all these types of elements, except ComponentType, they are created at the
root of the target DAD model. ComponentTypes may be created as children of a
parent ComponentType, since they can be composite.

2Note that for clarity reason, many TransformationRules are linked to a DADElement, but some
restrictions exist for some transformations. These particular cases will be detailed in the following
sections.

3The complete grammar is provided in Appendix D.
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Inner configurations of ComponentTypes, i.e. LinkageTypes or LeakUses be-
tween children ComponentTypes, are directly created using their fully qualified
names4.

All creation transformations use the create keywords followed by the definition
of the modeling elements expressed in DAD notation. For ComponentTypes, the rule
may be followed by the reference to a parent where the newly created element will
be placed. Listing 5.4 illustrates the creation of a ComponentType in an existing
parent5 with one Facet implementing a previously defined Interface.

1 create componenttype Child {
2 // example facet that reference an interface defined elsewhere
3 implements AnInterface as aFacet;
4 } parent Father;

Listing 5.4: Creation of a ComponentType inside a parent ComponentType

Newly created elements can be directly referenced in the same transformations
set. For example, two ComponentTypes can be directly used to create a LeakUses
dependency, as illustrated in Listing 5.5.

1 create componenttype ct1 { /* empty */ }
2 create componenttype ct2 { /* empty */ }
3 create usage from ct1 to ct2;

Listing 5.5: Creation of a two ComponentTypes and a dependency between them

5.4.3 Creation Verifications

For every newly created element, a check is performed on the uniqueness of the
fully qualified name. When the transformation engine will execute the DAD-T set, it
will apply the transformations as it reads them, so in the same order as they were
defined by the modeler. If a new element is created with an existing fully qualified
name, the transformation will be aborted6.

For LinkageTypes, the same verifications as the ones exposed in Section 3.2.7
are also performed to ensure the compatibility between bound Facets. Again, if
any error occurs, the engine will stop and feedback messages will be displayed to
the modeler.

5.4.4 Renaming Rule

Model elements can be renamed by renaming rules. Any structural Definition layer
construct, i.e. GenericType, ComponentType, Protocol, LinkType, NodeType,
MediumType or GateType, may receive a new name. The target element must be
referred by its qualified name, but only the new simple name must be specified in
the second attribute of the transformation rule, as illustrated in Listing 5.6.

4in a dotted notation, as defined in Section 3.2.6
5the target DAD model is always implicitly imported.
6As we will discuss in Chapter 6, all these verifications will generate error or warning messages to

users in the tool suite we provide next to this dissertation.
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1 rename Father.Child as NewChildName;

Listing 5.6: Rename of a nested ComponentType

In this example, the Father.Child ComponentType will be renamed into Fa-
ther. NewChildName. Obviously, every references to the old name will be updated
accordingly, like for example in the LinkageTypeswhere it appears. Exactly as for
creation rules, the transformation engine will avoid name clashes by aborting a
transformations set that contains a conflicting rule. The same kind of user feedbacks
will also be provided in such cases.

5.4.5 Deletion Rules

A large set of DAD model elements can be deleted. Among, this list, we first have
the same constructs as the ones available for creation rules, i.e. GenericTypes,
ComponentTypes, Protocols, LinkTypes, NodeTypes, MediumTypes, GateTypes,
LinkageTypes and LeakUsages.

A deletion rule is simply denoted with the delete keyword and is represented in
Listing 5.7 where the Child ComponentType is being deleted. For sub-components,
the reference must always be expressed using their qualified name. The other
elements, that cannot be nested, are referenced by their simple names. All deletion
rule for these Definition elements are similar to Listing 5.7.

1 delete Father.Child;

Listing 5.7: Deletion of a nested ComponentType

Additionally, all Assemblage and Deployment layer elements, without any re-
striction, as well as Facets, may be deleted by a transformation. For those elements,
the delete keyword must be followed by the type of the element to be deleted, writ-
ten in lower case. An example is provided in Listing 5.8 where the Facet called
aFacet of the Child ComponentType is deleted. Depending on the element to be
deleted (nested or not), the deletion rule will need a simple or qualified name. In
Listing 5.8, the Facet is referenced by its qualified name.

1 delete facet Father.Child.aFacet;

Listing 5.8: Deletion of a Facet

Last, for all types of relationships, which are unnamed model elements, the
whole statement must be preceded by the delete keywords. We illustrate the deletion
of a LinkageType in Listing 5.9. The other types of connections can be deleted in a
similar fashion.

1 delete linkagetype from AComponentType.aFacet to AnotherOne.aFacet with ALinkType;

Listing 5.9: Deletion of a LinkageType

Finer-grained deletions are also possible on modeling elements defined in the
scope of other container element, like Parameters that are nested into Services.
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In these cases, we will not talk about deletion rules of the contained elements, but
about alterations of their containers, as we will detail in Section 5.4.10.

5.4.6 Cascade Deletion Policies

All deletions are done in cascade, i.e. every modeling element typed by7 the sup-
pressed element will be deleted too. Additionally, every relationship where the
deleted element is involved will be removed as well. The only two exceptions to this
policy concern the GenericTypes that can involve some substitutions in Service
Parameters and for the Protocol that does not trigger any other deletion.

The deletion transformation rule of a modeling element E is denoted by the
procedure del ete(E). We reuse the same identifiers and conventions that the ones
presented in Chapter 3.

Informally, when a ComponentType is deleted, all subcomponents are sup-
pressed as well as all linkages or usages where this ComponentType appears. The
deletion of the children ComponentTypes is done in priority in order to first delete
recursively all contained ComponentTypes, their relationships to other elements
and instantiations as SetOfInstances. Also, all SetOfInstances typed by this
element are suppressed. We formally define the deletion for a ComponentType C as:

del ete(C)
{

∀ Ci | Ci ⊂C : del ete(Ci ) ;

∀ Fi ∈C : del ete(Fi ) ;

∀ Ci | ∃ CyCi : del ete(CyCi ) ;

∀ Ci | ∃ Ci yC : del ete(Ci yC) ;

∀ Si |=C : del ete(Si ) ;}
The deletion of a Facet includes the deletions of all related LinkageTypes.

Additionally, any Port typed by this Facet is also removed, as we specify in the
following:

del ete(F)
{

∀ Fi , Lk | ∃ F Lk+ Fi : del ete(F
Lk+ Fi ) ;

∀ Fi , Lk | ∃ Fi
Lk+ F : del ete(Fi

Lk+ F) ;

∀ Pi | Pi |=F : del ete(P) ;}

7Remember the typing (namely types and has_type) relations depicted in Figure 3.1 from Chapter 3.
For example, SetOfInstances are typed by ComponentTypes, or Gates are typed by GateTypes
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Similarly to ComponentTypes, when a SetOfInstances is suppressed, all Lin-
kages and LeakUsages where it appears must be deleted. Also, the Deploy state-
ments of this SetOfInstances and all related Ports’ Openingsmust be removed
too. The y operator is overloaded to express usage dependencies betweenSetOfInstan-
ces too. The deletion of a SetOfInstance S is formally defined as follow:

del ete(S)
{

∀ P j ∈ S : del ete(P) ;

∀ Si | ∃ Sy Si : del ete(Sy Si ) ;

∀ Si | ∃ Si y S : del ete(Si y S) ;

∀Hi | ∃ S ,→H1 : del ete(S ,→H1) ;}
The deletion of a Port suppresses all involved Linkages as well as all related

Openings:

del ete(P)
{

∃ L, ∃ Pi ∈ Si | P L
_Pi : del ete(P

L
_Pi ) ;

∃ L, ∃ Pi ∈ Si | Pi
L
_P : del ete(Pi

L
_P) ;

∀ Ai | ∃ P}Ai : del ete(P}Ai ) ;}
Concerning platform-related types Definition and Deployment elements, the

suppression of a NodeTypeN triggers the deletions of all typed Nodes, as we formally
express in the following rule:

del ete(N)
{

∀Hi |Hi |=N : del ete(Hi ) ;}
The deletion of a NodeN triggers the suppression of all concerned Deploy state-

ments, Ports Openings on the Nodes’ Gates and Plugs in those Gates:

del ete(H)
{

∀ Si | ∃ Si ,→H : del ete(Si ,→H) ;

∀ Ai ∈H : del ete(Ai ) ;}
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The deletion of GateType G simply triggers the removals of all its Gates in-
stances:

del ete(G)
{

∀ Ai |=G : del ete(Ai ) ;}

The deletion of a Gate A suppresses all concerned Openings and Plugs:

del ete(A)
{

∀ Pi | ∃ Pi }A : del ete(Pi }Ak ) ;

∀ Ak | ∃ A M
^Ak : del ete(A

M
^Ak ) ;

∀ Ak | ∃ Ak
M
^A : del ete(Ak

M
^A) ;}

Regarding architectural configuration Definition and Assemblage connections,
for LinkTypes and MediumTypes, the same logic applies, all concrete connections
using those elements are also suppressed. Formally, for LinkTypes:

del ete(L)
{

∀ Fi ,F j | ∃ Fi
L
+ F j : del ete(Fi

L
+ F j ) ;

∀ Pk |=Fi , ∀ Pl |=F j | ∃ Pk
L
_Pl : del ete(Pk

L
_Pl ) ;}

And for MediumTypes:

del ete(M)
{

∀ Ai ,A j | ∃ Ai
M
^A j : del ete(Ai

M
^A j ) ;}

As we noticed in the beginning of the current section, two exceptions exist
to this cascade policy: GenericTypes and Protocols. In case of GenericTypes
deletions, any Service Parameter typed by this GenericType will be removed
from the Service signature or set to a void type if it was a return Parameter value.
Formally, if the GenericType g is deleted, then:
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del ete(g)
{

∀ si =< p j
i > ∧ p j

i = (d j
i , g ) ∧ d j

i 6= r etur n : del ete(p j
i ) ;

∀ si =< p j
i > | ∃ p j

i = (d j
i , g ) ∧ d j

i = r etur n : p j
i = (d j

i , voi d) ;}
For Interfaces, additional deletions must be triggered too for all implementing

Facets. Formally,

del ete(I)
{

∀ si =< p j
i > | ( ∃ p j

i = (d j
i , g ) ∧ g = I

)
: del ete(g ) ;

∀ Fk | Fk |= I : del ete(Fk ) ;}
Finally, the second and last exception concerns the Protocol. Its deletion

triggers no other subsequent deletions, so that any reference to this Protocol
is simply lost. If a deleted Protocol was actually used in a Linkage, the modeler
will be required to either replace the Protocol (see Section 5.4.7) or to modify the
Linkages a posterio.

This cascade policy has been defined to simplify the work of modelers. Except for
Protocols, they do not have to care about the links and references to the deleted
element. All subsequent deletion rules will be calculated by the transformation
engine.

5.4.7 Replacement Rules

Substitutions of many types of model elements can be performed on DAD mod-
els, possibly with overriding rules on specific contained elements, when necessary.
Replacement transformations are particularly useful to replace an API or a Com-
ponent Off The Shelf by another one or in case of highly decentralized systems
that combine different parts developed by distinct teams. Old versions or com-
patible solutions may be replaced by newer ones with a few transformation rules.
Replacementsmay only apply on GenericTypes, ComponentTypes, Protocols,
LinkTypes, NodeTypes, MediumTypes and GateTypes.

A replacement rule always substitutes model elements of the same type, but
their semantics can slightly vary. Informally, the substitute must at least provide
the same “features” than the target element it replaces. This transformation is
specified by the replace keywords, possibly refined with specific override rules (for
containers) to explicitly define the matches between old contained elements to their
substitutes. A simple replacement transformation is illustrated in Listing 5.10.

1 replace OldInterface by NewInterface keepname;

Listing 5.10: Replacement of an Interface
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As deletion rules of Definition layer objects, old and new elements from a repla-
cement rule are directly referenced by their (qualified) names, again to keep the
syntax as light as possible. In the above rule, the OldInterface is replaced by the
definition of the NewInterface. The keepname attribute states that the old name is
conserved for the newly introduced model element. It is a kind of shortcut to the
combination of a replace transformation immediately followed by a rename rule
to the old name.

For ComponentTypes and Interfaces, override rules may be added to redi-
rect children ComponentTypes, Facets and instantiated Ports to other compatible
elements either defined or used inside the substitute. Overriding rules simply map
elements defined in the target or referred from this target to other elements of the
same type or with compatible definitions. Listing 5.11 illustrates a more complex
replacement transformation with the definition of both the target and substitute
ComponentTypes.

1 create interface AnInterface {
2 sync void do(in string something);
3 }
4 create interface AnotherInterface {
5 sync void doOther(in string other);
6 event someEvent();
7 }
8 create componenttype Target {
9 implements AnInterface as iface;

10 }
11 create componenttype Substitute {
12 implements AnotherInterface as otherIface;
13 }
14 replace Target by Substitute overrides {
15 facet Target.iface by Substitute.otherIface;
16 };

Listing 5.11: Complex remplacement rule

If both ComponentTypes contain exactly the same types of Facets, i.e. refer-
ring the same Interface, they will be implicitly matched to each other. But, if
no obvious matches can be found, explicit overriding rules must be specified. In
the above sample, both Facets are not identical, but they are compatible in our
typing system since AnotherInterface contains a synchronized Operation that
is compatible with the only Operation defined in AnInterface8. Analogously
to the verification of the semantic fulfillment of a provided Facet that must at
least provide the required Services, a replacement Facetmust at least cover the
Services to be substituted. Also, if the target ComponentType has been instanti-
ated, its SetOfInstanceswill be now typed by the substitute ComponentType and
their Portswill be updated accordingly to point to the newly Facets, if needed.

A slightly different overriding mechanism for replacement transformations may
be defined for Interfaces. When an Interface is replaced by another one, every
reference to this Interface is updated to point to the newly introduced substitute,
except if specific overriding rules on Facets have been defined. Here with overriding
rules, only the specified elements will be updated following these rules, otherwise

8remember we use a kind of duck-typing for Interface compatibility checks (see Section 3.2.7)
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all typed Facetswill be updated. Again, the existing LinkageTypeswill be checked
for composition compatibility after the transformation. Also, if an overriding rule
creates a duplicate LinkageType, it will be implicitly removed.

To sum up, replacement transformations of all types of modeling elements,
excluding Interfaces, are always performed for all references to this modeling ele-
ment and for the specific overriding rules. At the opposite, replacement of Interfaces
can be constrained by overriding such that the replacements will be performed only
for the specified overrides. This method offers more flexibility for ComponentTypes
compositions and Interfaces substitutions.

Finally, when substituting two ComponentTypes, both definitions can be merged
into the replacement element, such that the old inner-configurations and Facets are
kept inside the replacement ComponentType. This merging possibility is particularly
interesting for pattern injections, as we will illustrate in Section 5.6.2.

5.4.8 Validity Checks on Replacements

Some verifications must be performed when replacing modeling elements by other
ones. First, for Interfaces, and by extension Facets and ComponentTypes, simi-
lar verifications as the one performed for LinkageTypes presented in Section 3.2.7
are executed. The transformation engine will ensure that the substitute Interface
matches the definition of its target, as well as the Port overriding rules, if any.

When replacing ComponentTypes and NodeTypes, every entry point in-use
must also be checked. If aFacet or aGate is actually used, i.e. part of aLinkageType
or Plug, the substitutes must offer compatible entry points, otherwise the trans-
formation is aborted. This verification is meant to avoid breaking a (platform)
architecture model by introducing elements that will not provide the necessary
connection facilities, as previously defined by their targets.

For LinkTypes and MediumTypes, the substitutes must still allow the existing
connections to work properly. If there exist Linkages, LinkageTypes or Plugs on
specific Protocols, the newly introduced elements must at least support these
Protocols, otherwise warning messages will be issued. The same verification
stands for Protocol replacements. For example, when a specific Protocol is used
for a Linkage between two Ports, the substitute LinkTypemust obviously support
this new Protocol or the LinkTypemust be updated to support it.

Finally, for any model element, in case of it has been refined with user-defined
properties, additional checks may be performed. For ordered properties, the substi-
tute model element should be tagged with at least the same or higher value for these
properties. For unordered properties, the same value should be specified. If such
mismatch occurs, warning messages are issued.

5.4.9 Moving Rules

At some point in the software architecture development or maintenance, a compo-
nent must be moved inside a container to restrain its visibility or, at the opposite,
it must be exposed as an individual component with its own life. In DAD models,
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ComponentTypes may be moved inside other ComponentTypes or outside their
parents, i.e. in the root of the Definition layer.

The moving rule can only be applied to ComponentTypes and has the following
form, as depicted in Listing 5.12. To move a ComponentType inside another, the
name of the new parent is simply specified instead of the root keyword.

1 move ChildComponent to root;

Listing 5.12: Move of a child ComponentType to the root of the model

Additional processing must be done when moving components from a container
(the root is also a container) to another: all LinkageTypes must be updated ac-
cordingly, as well as all related Ports and Linkages. Informally, all Facets of the
ComponentTypemust be checked to update the LinkageTypes that should be trans-
formed from a DelegationType to a ConnectorType when the ComponentType
is moved to the root, or to create new delegations (with the needed Facets) if it
is moved inside another ComponentType. In the following formal definition, the
moving rule is denoted by the move(Ct ,Cd ) procedure to move a target Ct into
a destination Cd . We only present the rules for LinkageTypes going to the target
ComponentType, i.e. to its implementedFacets. Obviously, the otherLinkageTypes
are also updated following an identical process, but we hide them for conciseness
reasons. Also, for readability reason, we split the different possible cases into four
sub-rules. But the move transformation is a recursive process that combines all four
cases.

move(Ct ,Cd ) ∧ ∃ Cp | Ct ⊂Cp ∧Cd 6=Cp
{

move(Ct , p(Cp ) ;

∀ Fi
t ∈Ct , Fi

p ∈Cp , L | Fi
p

L
+ Fi

t : r epl ace(Fi
t ,Fi

p ) ;

∀ Fi
i ∈Ci | Fi

i
L
+ Fi

t : Cp =Cp ∪{
pr ox y(Fi

t )
}

;}

First, the move procedure is called with the parent of the new container to raise
recursively the target to either its destination or the root. Second, still recursively,
the transformation will update the delegations for nested ComponentTypes that
are raised up to their grand-parent container by bypassing the direct parent of
the target. It will reconnect the LinkageTypes from the grand-parent directly to
the grand-son by substituting the target Facets to the parent ones. The inner-
configurations that involved the target will be updated too with proxies for the
concerned Facets that will be added into the old parent ComponentType. These
proxies are clones of Facets from the target ComponentType that will be bound to
the inner-configuration Facets.
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move(Ct ,Cd ) ∧ ∃ Cp | Cd ⊂Cp
{

move(Ct ,Cp ) ;

∀ Fi
t ∈Ct ,Fi

i ∈Ci | ∃ Fi
t

L
+ Fi

i : Cp =Cp ∪{
pr ox y(Fi

t )
}

;}
Second, when the ComponentTypemust be lowered down into a new container,

new proxies must be created and added into the new container ComponentType. The
content of the target must be moved to this new container too by calling recursively
the move procedure and the required proxies will be created too.

move(Ct ,Cd ) ∧ Cd = r oot
{

p(Ct ) = r oot ;}
Third, if the destination is the root, the first part of the moving transformation

where the ComponentType has been raised up from its original container have been
already performed, so no other action must be done than setting the parent of the
target ComponentType to the root.

move(Ct ,Cd ) ∧ p(Ct ) =Cd
{

∀ Fi
t ∈Ct : Cd =Cd ∪{

pr ox y(Fi
t )

}
;}

Last, if the target is actually contained in the destination ComponentType, i.e. it
has been recursively moved until either the child of the destination (with the first
sub-rules) and/or to the direct parent of the destination (with the second sub-rules).
Some needed proxies must still be created to let the target being accessible from
inside the destination.

The combination of the two first sub-rules will converge to either the third or
the fourth case such that the target will be moved from its original container to the
destination and Facet proxies will be created at each move call.

5.4.10 Alteration Rules

In order to modify the content of some model elements, fine-grained transformation
rules have been defined to alter the internal structure of these elements. To illustrate
alteration rules, we will refer to the code samples given in Section 3.7 and modify
some model elements introduced in the online library case study.

First, new Facetsmay be added into ComponentTypes9, as illustrated in List-
ing 5.13 where the OnlineLibrary ComponentType created in Listing 3.2 now uses

9We already discussed the Facets’ deletions in Section 5.4.5.
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the AnotherInterface created in Section 5.4.7. The syntax is very close to the
definition of a ComponentType only preceded by the keyword alter.

1 alter componenttype OnlineLibrary { uses AnotherInterface as another; }

Listing 5.13: Alter ComponentType to add new Facets

After the execution of the alter transformation, the Child ComponentTypewill
now contain the new Facet, so that new LinkageTypes can be created for this
Facet or corresponding Portsmay be instantiated. These alteration rules offer
a straight and traceable way to modify the semantics of structural model elements.
Gatesmay be added in a similar fashion to NodeTypes, again using the syntax

as defined in DAD models.
Protocols may be added or deleted from the supported list in LinkTypes,

MediumTypes or GateTypes. For any of these model element, the alteration
transformation follows the same syntax, as illustrated in Listing 5.1410 for the
One2One ConnectorType and the GenericGatetypewe defined in Listing 3.3.

1 alter connectortype One2One add HTTP;
2 alter gatetype GenericGatetype remove HTTP;

Listing 5.14: Alter list of Protocols in communication-related model elements

SetOfInstances can be fully altered, except for its related ComponentType and
for Ports’ deletion11. Changing the type of a SetOfInstances is only possible by
replacement of its typing ComponentType. All other attributes may be changed
with alteration rules, as shown in Listing 5.15 where we modify the library as
specified in Listing 3.4.

1 alter soi library {
2 rename biglibrary; // rename it
3 card [1 10]; // change cardinality
4 OnlineLibrary.another as another on HTTP; // create new port
5 creates stores; // instantiates the stores
6 destroys stores; // and destroys them
7 }

Listing 5.15: Alter the library SetOfInstances

With alteration rules, Nodesmay be added or removed from a Site. It can
also be renamed or its situation description may be updated. Listing 5.16 illustrates
all possible modification of TheOffice Site introduced in Listing 3.512.

1 alter site TheOffice {
2 rename TheExtendedOffice;
3 situation "Its new extended situation";
4 add newGateway;
5 remove gateway;
6 }

Listing 5.16: Alter TheOffice Site

10Many Protocols can be added/removed in one rule, each of them separated by a “,” (comma).
11Already addressed in Section 5.4.5 with the deletion policy.
12As for alteration for accepted Protocols, many Nodesmay be added/removed.
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DataStructures can also be altered by adding, removing or replacing Data-
Fields. These transformations offer a flexible way to update an existing structure,
while keeping the history of the modifications made. The following Listing 5.17 illus-
trates the three types of modification on the CustomerDetails structure introduced
in Listing 3.3.

1 alter struct CustomerDetails {
2 add string nickname; // add a new field in structure
3 replace number by string number; // change type of number
4 remove country; // suppress ’country’ field
5 }

Listing 5.17: Creation and modification of a DataStructure

Last Interfaces can be modified to add, remove or even rewrite partially or
completely its Services. This alteration transformation has been defined for
two main objectives: traceability and version control. First, an Interface is an in-
teraction point through which ComponentTypes can communicate. If its semantics
is modified, it is often valuable to know exactly what has been changed to update
accordingly the behavior of the implementation or the other dependent software.
This traceability can be fulfilled by such a transformation rule. Second, Interfaces’
updates are sometimes related to new versions of a product. New releases of a
software component can introduce new services or updated exceptions handling.
Thus, a DAD-T set can play the role of an architectural patch between two versions
of a (group of) Interfaces, for example.

In Listing 5.18, we alter the BookSelling Interface from Listing 3.3 to add
exception handling to a Service and update the signature of another one.

1 alter interface BookSelling {
2 add exception NoSuchBook(); // create a new exception
3 rewrite buyBook {
4 replace isbn by string isbn; // change type of isbn
5 add float price; // add new parameter
6 } // fully rewrite browseCatalog (name may also be changed, if necessary)
7 rewrite browseCatalog by sync Book[] browseCatalog(in string genre) raises NoSuchBook;
8 }

Listing 5.18: Alteration of an Interface

As we detailed in the present section, both alterations for DataStructures
andInterfaces are particularly useful for evolution purposes when someServices
must be extended or new DataFieldsmust be introduced or modified in an archi-
tecture model.

5.4.11 Alteration Verifications

When adding new Ports, a verification is performed to ensure the Port actually
exists in the ComponentType, otherwise an error message will be displayed and the
transformation will be aborted. In this scenario, a typing constraint is violated, so
the transformation may not be executed.
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When removing a Protocol that was used in an existing binding between model
elements, a warning will be issued to the user. We use here the same policy as the
exception defined for Protocol deletions in Section 5.4.5.

5.4.12 Summary of Available Transformations per Modeling Element

We recap now the model transformations we presented in the preceding sections.
In Table 5.1, we summarize the existing transformations for all DAD elements. The
first column lists the main DAD model elements, with first all Definition layer con-
structs, then the Assemblage elements and finally the Deployment ones. The other
six columns gather the possible effects that can be expressed as dedicated trans-
formations or as sub-rules from an alteration transformation. The table shows
then the matches either between the DAD-T rules and the DAD elements, as well
as the possible transformations from alterations of the container elements13. For
example, a Servicemay not be created by a creation rule, but via an alteration
of its containing Interface.

DAD Element CREATE RENAME DELETE REPLACE MOVE ALTER

PrimitiveType 3 7 3 3 7 7

DataStructure 3 3 3 3 7 3

Interface 3 3 3 3 7 3

Service 3 3 3 3 7 3

Parameter 3 3 3 3 7 3

ComponentType 3 3 3 3 3 3

Facet 3 7 3 7 3 7

Protocol 3 3 3 3 7 3

LinkType 3 3 3 3 7 3

LinkageType 3 7 3 7 7 3

NodeType 3 3 3 3 7 3

GateType 3 3 3 3 7 3

MediumType 3 3 3 3 7 3

SetOfInstances 7 3 3 7 3 3

Port 3 7 3 7 7 7

Linkage 7 7 3 7 7 3

Site 7 3 3 7 7 3

Node 7 7 3 7 7 7

Open 7 7 3 7 7 7

Plug 7 7 3 7 7 7

Table 5.1: Summary of available transformations

As shown in the above table, any DAD element can be deleted from a trans-
formation. All Definition layer elements can be created, some of them through

13Note we use verbal forms as column names to disambiguate from the DAD-Transformation rules.
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alterations of their container (like Services or Ports). Almost all modeling
elements may also be altered to update their definitions or their content according
to architectural maintenance or evolution.

We decided to disallow the possibility to add or remove supertypes toComponent-
Types directly through alteration transformations. Instead, modelers will have to
substitute a new ComponentType to the old one. We decided to use the replacement
rule because, to us, such a modification resembles more to a substitution of architec-
tural artifacts with different semantics than just an update of an existing semantics.
Since transformation are meant to support an effective traceability of architectural
changes, we selected that solution, even if it looks more verbose and stringent.

At current time, no alteration of properties assigned to model elements is possi-
ble. Even if such a mechanism could be integrated into the transformation language,
this feature has been left out for one main reason. Properties are mainly useful for
Definition layer elements that are specified once and may be reused many time.
Adding a property with a dedicated transformation would be rather verbose and
ineffective, in comparison of editing directly the definition of an element.

The only elements that cannot be created directly by a dedicated model transfor-
mation are either Assemblage or Deployment layer objects. We defined DAD-T sets
as hybrid models to be able to specify Assemblage or Deployment clauses directly,
as we will discuss in the following section.

5.5 DAD-T Set as a Hybrid Model

When creating new Definition layer elements, a set of Assemblage and/or Deploy-
ment statements must be specified. Besides, transformations are meant to be
reusable to some extent. For these two reasons, the DAD-T language as been de-
signed as a hybrid modeling facility with the possibility to add both latter clauses
and to include other transformations defined in external DAD-T sets.

5.5.1 Assemblage and Deployment Clauses

Exactly as in a DAD model, any Assemblage and Deployment statement can be
specified in a DAD-T set. The transformation language reuses both clauses natively
and any statement will be imported in the target DAD model when the transforma-
tions defined in the DAD-T set will be applied by the engine. Listing 5.19 shows the
general template of a DAD-T set.

1 package be.iodass.example;
2

3 asrmodel be.iodass.example.myasrmodel; // the involved asr model (mandatory)
4 dadmodel be.iodass.example.mydadmodel; // the involved dad model (optional)
5 // the transformation model name pointing to the concerned requirement
6 transformationset template concerns SomeRequirement {
7 /* there should be some transformation rules in here */
8 assemblage { /* some new assemblage can be defined */ }
9 deployment { /* some deployment mapping can be defined */ }

10 }

Listing 5.19: Template of a DAD-T set
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A DAD-T model is always bound to one or more requirements, the SomeRequire-
ment Asr in the above listing, specified in the model imported with the keyword
asrmodel at line 3. Optionally, a DAD model may be imported too, when the trans-
formations must be applied to elements defined in another model. This is actually
the usual goal of a transformations set. However, as we will detail in the next section,
a DAD-T set may be created as a standalone artifact, only bound to an ASR model
that describes its objective.

Right after the list of transformation rules, Assemblage and/or Deployment
statements can freely be defined in the model, so that the elements that cannot be
created by dedicated transformation rules, can be specified in these clauses, exactly
as in a DAD model.

Coupled to the close syntax of element creations or alterations we pre-
sented in the preceding sections, the amount of DAD-T–specific keywords remains
low to minimize the needed additional work to learn those concepts.

5.5.2 Inclusion Mechanism

To enhance transformations reusability, DAD-T sets can be included in other sets in
a simple manner. A dedicated include keyword is used to execute all transformations
declared in the imported model. If Assemblage or Deployment clauses are also
present in the included model, they will be added in the target model too, right after
the Assemblage and/or Deployment statements of the main transformations set.

This inclusion mechanism is particularly useful for design pattern injection
in DAD models. As an example, we will illustrate this method with the Observer
pattern graphically depicted in Figure 5.2.

Figure 5.2: Representation of the Observer pattern in DAD graphical syntax

The above model corresponds to the following DAD-T set, reproduced in List-
ing 5.20.

1 package iodass.base.patterns;
2

3 asrmodel iodass.base.patterns.observer;
4

5 transformationset observer concerns Observer {
6 create interface IObserver {
7 async notify();
8 }
9

10 create interface ISubject {
11 async register(IObserver o);
12 async unregister(IObserver o);
13 async notifyObservers();
14 }
15
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16 create componenttype Observer {
17 implements IObserver as iobserver;
18 uses ISubject as isubject;
19 }
20

21 create componenttype Subject {
22 implements ISubject as isubject;
23 uses IObserver as iobserver;
24 }
25

26 create connectortype Simple {
27 mode one2one;
28 }
29

30 create connectortype Aggregation {
31 mode one2many;
32 }
33

34 create linkagetype from Subject.iobserver to Observer.iobserver with Aggregation;
35 create linkagetype from Observer.isubject to Subject.isubject with Simple;
36 }

Listing 5.20: DAD-Tmodel of the Observer pattern

The pattern is directly expressed as transformation rules in order to be injected
quite easily. The DAD-T set is related to the specification of the Observer pattern
in an ASR model where its benefits and limitations can be argued. Architects will
need to write mapping rules, i.e. replacements, to identify the element(s) that
must implement the Observer and the one that will be the Subject. Also, new
connections and/or instances may be specified to define an Assemblage and/or
Deployment. Listing 5.21 illustrates how such mapping rules will look like on an
existing Target ComponentType. Only the Subject is merged into the Target’s
existing definition.

1 package be.iodass.example;
2

3 asrmodel be.iodass.example.dummyasr;
4 dadmodel be.iodass.example.dummydad;
5

6 transformationset injectobserver concerns Observer {
7 // include all rules from observer_pattern DAD-T set
8 include iodass.base.patterns.observer;
9 // replace the newly created Subject by the existing Target

10 replace Subject by Target merge;
11 }

Listing 5.21: Inject Observer pattern into a DADmodel

The resulting model will look like the Listing 5.22. The Target received the
Subject’s Facets and the pattern LinkageTypes have been updated accordingly
to the replacement transformation.

1 package be.iodass.example;
2

3 dadmodel dummy {
4 definition {
5 interface IObserver { /* omitting definition */ }
6 interface ISubject { /* omitting definition */ }
7 componenttype Target { // now uses the IObserver and implements the ISubject
8 /* previously defined elements stays untouched */
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9 implements ISubject as isubject;
10 uses IObserver as iobserver;
11 }
12 componenttype Observer { // Observer is now part of model (no replace/merge)
13 implements IObserver as iobserver;
14 uses ISubject as isubject;
15 }
16 // new connectors included
17 connectortype Multi { /* omitting definition */ }
18 connectortype Simple { /* omitting definition */ }
19 // linkage types created with Target as part of them
20 linkagetype from Target.iobserver to Observer.iobserver with Multi;
21 linkagetype from Observer.isubject to Target.isubject with Simple;
22

23 /* omitting remaining of file */
24 }
25 }

Listing 5.22: Sample DAD model after injection of Observer pattern

Modelers can build their own list of architectural patterns, always related to
their descriptions as ASR models. The amount of mapping rules is usually lesser
to the number of model elements in the patterns, so remains quite low. The afore-
mentioned replacement transformation mechanism updates the references of the
introduced pattern elements to point to the target elements from the existing model.
This update mechanism lower significantly the manual maintenance effort on the
DAD model itself since no manual modification must be done to implement the con-
nections between pattern elements that are merged into existing elements, thanks
to replacement rules.

5.6 Inject Structural Changes into the Online Library

In the present chapter, we introduced and formalized the available transformation
rules to be applied on DAD models in order to inject new requirements or maintain
architectural models. We will now concretely illustrate the usage of these transfor-
mation rules onto our online library system, from a simple update of the model, to
a more intrusive pattern injection. By these examples, we will highlight the ben-
efits of such a formalized approach in terms of manual model maintenance and
architectural changes traceability.

5.6.1 A First Example with a Simple Modification

As a first illustration, we introduce a simple evolution of the online library system.
We suppose that the Customermay accept or refuse the book at the delivery. In
any case, the OnlineLibrary will receive an acknowledgment message from the
ParcelDelivery. If the book is refused by the Customer, then a credit note must be
issued. We summarize the newly created Asr in Figure 5.3.

The complete xEARS-compliant descriptions of the new requirements are pre-
sented in the ASR model excerpt in Listing 5.23.
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Figure 5.3: Graphical excerpt of the ASR model with the acknowledgment-related
requirements

1 package be.iodass.onlinelibrary;
2

3 asrmodel onlinelibrary with be.iodass.onlinelibrary.onlinelibrary {
4 /* skip beginning of file with all other requirements that remains untouched */
5

6 func Acknowledgment assigned ParcelDelivery {
7 description "When the book is delivered, the ParcelDelivery shall acknowledge
8 the reception of the book by the Customer to the OnlineLibrary. ";
9 refines BuyBook {

10 assessment "new requirement asking for an ACK at delivery.";
11 }
12 }
13 func GenerateAck assigned ParcelDelivery {
14 description "The ParcelDelivery shall generate an acknowledgment saying if the
15 Customer accepted the delivery or not to the OnlineLibrary.";
16 refines Acknowledgment {
17 assessment "Must create ack message with customer and book references.";
18 }
19 realisation be.iodass.onlinelibrary.handleack {
20 assessment "Create needed ack-related interface since existing interface
21 between both components hasn’t the right polarity.";
22 }
23 }
24 func CreateCreditNote assigned OnlineLibrary {
25 description "When a delivery acknowledgment concern a refusal, the OnlineLibrary
26 shall send a paper-based credit note equal to the book’s selling price
27 to the Customer.";
28 refines Acknowledgment {
29 assessment "Must refund customer.";
30 }
31 realisation be.iodass.onlinelibrary.handleack {
32 assessment "Create event in new interface to warn a refusal has been received";
33 }
34 }
35 func ReturnBook assigned ParcelDelivery {
36 description "When a Customer refuses a book, the ParcelDelivery shall send the book
37 back to the BookStore.";
38 refines Acknowledgment {
39 assessment "A new delivery must be created in the system, system will have to
40 listen for a new event.";
41 }
42 realisation be.iodass.onlinelibrary.handleack {
43 assessment "Warn itself by an event to generate delivery.";
44 }
45 }
46 }

Listing 5.23: ASR model excerpt for the acknowledgment requirement
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Four new requirements are introduced in the existing ASR model (we only re-
produced the concerned Asr in the above listing): one higher-level requirement
refining the “BuyBook” Asr that generally describes the acknowledgment mecha-
nism and three lower-level ones that detail the needed features to implement the
new requirement. All Asr are realized by the same transformations set, which is
presented in Listing 5.24.

1 package be.iodass.onlinelibrary;
2

3 asrmodel be.iodass.onlinelibrary.onlinelibrary;
4 dadmodel be.iodass.onlinelibrary.onlinelibrary;
5

6 transformationset handleack concerns
7 GenerateAck, CreateCreditNote, ReturnBook {
8

9 // generate ACK of delivery
10 create interface DeliveryAcknowledgment {
11 async bookDelivered(DeliveryDetails details, boolean ack);
12 }
13

14 alter componenttype ParcelDelivery {
15 uses DeliveryAcknowledgment as dack;
16 }
17

18 alter componenttype OnlineLibrary {
19 implements DeliveryAcknowledgment as dack;
20 }
21

22 create linkagetype from ParcelDelivery.dack to OnlineLibrary.dack with One2one;
23

24 // credit note creation
25 alter interface DeliveryAcknowledgment {
26 add event generateCreditNote(DeliveryDetails details);
27 }
28

29 // return book to store
30 create interface BookRefusal {
31 sync boolean makeNewDelivery(DeliveryDetails details);
32 }
33

34 alter componenttype ParcelDelivery {
35 implements BookRefusal as bk_impl;
36 uses BookRefusal as bk_use;
37 }
38

39 create linkagetype from ParcelDelivery.bk_use to ParcelDelivery.bk_impl with One2one;
40 }

Listing 5.24: DAD-T set to inject the acknowledgment-related requirements

In this DAD-T set, we decided to explicitly separate each new concern with dedi-
cated rules. The resulting model is then more verbose, but this design choice was
made for demonstration purposes in order to identify the transformations related to
each of the implemented requirement.

A condensed version of the resulting DAD model is reproduced in Listing 5.25.

1 package be.iodass.onlinelibrary;
2

3 dadmodel onlinelibrary {
4 definition {
5 /* skip unchanged data structures and interfaces */
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6

7 componenttype Customer { /* unchanged */ }
8

9 // specification of the OnlineLibrary
10 componenttype OnlineLibrary {
11 implements BookSelling as bs;
12 uses BookCatalog as bc;
13 uses Auction as a;
14 uses Delivery as d;
15 // new facet created
16 implements DeliveryAcknowledgment as dack;
17 }
18 componenttype Bookstore { /* unchanged */ }
19

20 // specification of the deliverer
21 componenttype ParcelDelivery {
22 implements Delivery as d;
23 // new facets created
24 uses DeliveryAcknowledgment as dack ;
25 implements BookRefusal as bk_impl ;
26 uses BookRefusal as bk_use ;
27 }
28

29 connectortype One2many { mode one2many; }
30 connectortype One2one { mode one2one; }
31

32 // newly created interfaces
33 interface DeliveryAcknowledgment {
34 async bookDelivered ( DeliveryDetails details, boolean ack ) ;
35 event generateCreditNote ( DeliveryDetails details ) ;
36 }
37 interface BookRefusal {
38 sync boolean makeNewDelivery ( DeliveryDetails details ) ;
39 }
40 /* skipping untouched linkagetypes */
41

42 // new linkagetypes
43 linkagetype from ParcelDelivery.dack to OnlineLibrary.dack with One2one ;
44 linkagetype from ParcelDelivery.bk_use to ParcelDelivery.bk_impl with One2one;
45 }
46 }

Listing 5.25: Resulting DAD model after acknowledgment-related transformations

All transformation rules have been executed by the engine and the new Inter-
faces, Facets and LinkageTypes have been added into the DAD model.

5.6.2 Pattern Definition and Injection

As a second evolution of the online library system, we will transfer the auction
responsibility from the OnlineLibrary to the Bookstore. Instead of having the
library that leads the overall process, it will contact one of its bookstores (randomly
chosen), and that store will lead the process until one winner is found. The winner
will then contact the library to make itself known. We record these new requirements
in Listing 5.26 (only the Bookstore-related ASR are reproduced).

1 package be.iodass.onlinelibrary [ revision 1 ] ;
2

3 asrmodel onlinelibrary_cb with be.iodass.onlinelibrary.onlinelibrary {
4

5 func DecentralizedAuction assigned Bookstore {
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6 description "When the BookStore is contacted by the OnlineLibrary to determine the
7 price of a book, the BookStore shall contact all other BookStores to
8 run an auction.";
9 refines FindCheapestByAuction {

10 assessment "Transfer responsibility from library to stores.";
11 }
12 realisation be.iodass.onlinelibrary.injectcallback {
13 assessment "Must create a new interface to manage communication between stores.";
14 }
15 }
16

17 func WonAuction assigned Bookstore {
18 description "When the BookStore win the auction with the lowest price for a book,
19 the BookStore shall send its price and ID to the OnlineLibrary.";
20 refines FindCheapestByAuction {
21 assessment "Callback after auction win.";
22 }
23 realisation be.iodass.onlinelibrary.injectcallback {
24 assessment "Use callback pattern.";
25 }
26 }
27 }

Listing 5.26: ASR model excerpt for the transfer of the auction leading

In the above code snippet, the callback pattern is required to be injected to
implement the new requirements. The synchronized getPriceForBook service
from the Auction Interfacewill be replaced by the callback pattern. Previously,
this Interfacewas calling all Bookstores to collect their new offers lesser than a
currentprice. Listing 5.27 specify the callback pattern as a DAD-T set14.

1 package iodass.base.patterns;
2

3 import iodass.base.basic.constructs;
4 asrmodel iodass.base.patterns.callback;
5

6 transformationset callback concerns UseCallback {
7

8 create interface Main { async call(); }
9 create interface CallBack { async callback(); }

10

11 create componenttype Caller {
12 uses Main as main;
13 implements CallBack as cback;
14 }
15 create componenttype CallerBack {
16 implements Main as main;
17 uses CallBack as cback;
18 }
19

20 create linkagetype from Caller.main to CallerBack.main with One2one;
21 create linkagetype from CallerBack.cback to Caller.cback with One2one;
22 }

Listing 5.27: DAD-T set of the callback pattern

Now, we have to write the mapping rules from the pattern to the architectural
elements and apply the remaining transformations to fully implement the aforemen-
tioned new requirements, as illustrated in Listing 5.28. After running the transforma-

14The One2one connector has been defined in a library model, pointed as iodass.base.basic.
constructs.
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tion that creates the pattern, we have to replace both the Caller and CallerBack
pattern ComponentTypes, and override their main Facets. The pattern created
a LinkageType on these main Facets, but a LinkageType on their overridden
Facets already exist, so this creation rule will be implicitly removed. We map the
Main Interface and alter its definition to transform the concerned Service into
an asynchronous call. The concrete new Interface that will handle the callback
also created and substituted to the abstract CallBack Interface.

1 package be.iodass.onlinelibrary [ revision 1 ] ;
2 asrmodel be.iodass.onlinelibrary.onlinelibrary;
3 dadmodel be.iodass.onlinelibrary.onlinelibrary;
4 transformationset injectcallback concerns DecentralizedAuction, WonAuction {
5

6 // import pattern
7 include iodass.base.patterns.callback;
8

9 // map both ComponentTypes
10 replace Caller by OnlineLibrary merge overrides {
11 facet Caller.main by OnlineLibrary.a;
12 };
13 replace CallerBack by Bookstore merge overrides {
14 facet CallerBack.main by Bookstore.a;
15 };
16

17 // replace Main interface
18 replace Main by Auction;
19

20 // alter getPriceForBook
21 alter interface Auction {
22 rewrite Auction.getPriceForBook by async getPriceForBook(int isbn, float

currentprice);
23 }
24

25 // create concrete callback interface
26 create interface AuctionCallback {
27 sync void sendPriceForBook(in int isbn, in float bestprice);
28 }
29

30 // replace abstract callback by concrete one
31 replace CallBack by AuctionCallback;
32 }

Listing 5.28: DAD-T set to inject the callback pattern and implement the new auction

After having run the transformation engine onto the DAD architectural model,
the AuctionCallback Interface will encompass the callback service. The new
LinkageType is also correctly created and rebound to the concrete DAD element,
instead of their original abstract objects. Listing 5.29 presents the excerpt of the
impacted DAD elements.

1 package be.iodass.onlinelibrary;
2 dadmodel onlinelibrary {
3 definition {
4 /* skip unchanged data structures and interfaces */
5

6 componenttype Customer { /* unchanged */ }
7

8 // specification of the OnlineLibrary
9 componenttype OnlineLibrary {

10 implements BookSelling as bs;
11 uses BookCatalog as bc;
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12 uses Auction as a;
13 uses Delivery as d;
14 implements DeliveryAcknowledgment as dack;
15 // new callback Facet
16 implements AuctionCallback as cback ;
17 }
18 componenttype Bookstore {
19 implements BookCatalog as bc;
20 implements Auction as a;
21 uses AuctionCallback as cback;
22 }
23 componenttype ParcelDelivery { /* unchanged */ }
24

25 /* skip other untouched linktypes and interfaces */
26

27 // new interface for callback
28 interface AuctionCallback {
29 sync void sendPriceForBook ( in int isbn,
30 in float bestprice ) ;
31 }
32

33 /* skipping untouched linkage types */
34

35 // new linkage type for callback
36 linkagetype from Bookstore.cback to OnlineLibrary.cback with One2one ;
37 }
38 }

Listing 5.29: Resulting DAD model with the new auction

5.6.3 Concluding Remarks on the Examples

In both illustrations, the requirement changes have been documented within the
ASR model and are clearly identifiable through transformation rules. The precise im-
pacts on the architectural model is clearly known and reproducible, so that rollbacks
to previous model versions are always possible. Also, the usage of design patterns
is enhanced with straightforward injections requiring only a few mapping rules in
existing DAD models. Furthermore, as for the callback pattern, the link between the
call and callback services are kept as a model transformation (with an override
rule), which enhances the traceability and documentation of the model.

5.7 Wrap-Up and Conclusions over DAD-Transformations

We introduced in this Chapter 5 our had-hoc transformation language for DAD
architectural models. We first argued for a semi-structured documentation of design
patterns in order to enhance their reusability across models and domains. We
also debated about their role in system architecture maintenance, as well as their
important role in knowledge transfer activities.

Considering model transformations as first class entities of architecture model
design and evolution, we specified a concrete-syntax-based transformation lan-
guage intended to manipulate DAD models in a formal and structured way. To
this end, we introduced a set of transformation rules and formalized their seman-
tics, when necessary. We also detailed the validation rules that are executed by the

159



CHAPTER 5. HOW TO INJECT NEW CONCERNS BY MODEL TRANSFORMATIONS

transformation engine to avoid as many model violations as possible, or to support
modelers with appropriate feedback. Because patterns play a key role in architecture
design, the DAD-Transformation language offers dedicated means to specify and
inject patterns into DAD models with few coding effort. However, only the structural
part of patterns is definable in a DAD-T set, the justifications and explanations being
defined in the linked ASR model. It is then highly possible that all existing patterns
may not be automated as a set of transformation rules.

Still, the additional work required to write transformations instead of directly
editing the model is not negligible. The amount of lines of code required by the first
modification in the illustration is higher than the number of lines produced in the
resulting model. At the opposite, for pattern injections, modelers are required to
write mapping rules between the pattern elements and their targets in the existing
model and the subsequent updates are performed by the transformation engine,
such that the coding effort is lowered.

Even if this transformation-oriented mechanism is not trivial, we argue in the
current thesis that this supplementary effort is more than equally balanced by the
improvements in architectural maintenance, evolution and knowledge management,
as we will detail in the next two chapters.
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This chapter is founded on the three preceding languages and introduce a method-
ological framework for software architecture design and evolution. We first depict
an iterative and transformation-oriented design method that rely on requirement
explorations and model transformations. Second, we evaluate our proposal regarding
a general model built on common concepts from academic and industrial architecture
design methods. Finally, we introduce the tool support for the modeling languages
introduced in this dissertation, as well as the underlying tool frameworks.

6.1 Need for more Agility and Traceability in Software
Development

As we already stressed many times and especially in Chapter 1, software systems
must evolve to stick to changes in requirements made by the stakeholders. In order to
keep control over a system, architectural modifications should be recorded together
with the descriptions of their requirements and design rationale.

Iterative design methods are based on step by step development of a software
system by integrating iteratively new concerns and/or fixing bugs in preceding work
or prototypes [Gilb, 1981; Boehm, 1986; Beedle et al., 1999; Larman and Basili, 2003].
Many of these methods use a formalized document to pinpoint the objectives for the
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next iteration and evaluate the developed prototype or incomplete product regarding
these objectives. The traceability between iterations is therefore guaranteed, at the
moment both the analysts and the developers follow the iteration or release plan.

However, the traceability during an iteration is harder to ensure, because either
the tool support is lacking, not appropriate or because the perceived return on
investment is too small [Ali Babar et al., 2006; Bjørnson and Dingsøyr, 2008]. As we
detailed in Section 1.3, many tools and methods have been created to tackle that
problem, developed in the academia as well as in the industry, and a couple of them
have been evaluated on industrial projects to capture design rationale [Ali Babar
et al., 2008; Bracewell et al., 2009; van Heesch et al., 2013].

In all these tools and methods, documentation activities must be performed
aside design activities. Design decisions and implementation alternatives must be
recorded explicitly in a dedicated tool such that a significant extra work must be
performed by the designers. In the present chapter, we introduce a methodological
framework that partially reduce the needed extra effort to document and trace
explored alternatives and design decisions through model transformations.

6.2 Pick One, Document and Transform

On top of our three specific languages we depicted in the preceding chapters, we
introduce an iterative architecture design cycle, called Iodass (pIck One, Document
And tranSform Strategy). The overall idea is depicted in Figure 6.1.

Figure 6.1: Overview of Iodass transformation method framework

As starting points, architects need a first architectural representation expressed
as a Definition-Assemblage-Deployment (DAD) model and a first list of Architec-
turally Significant Requirements (ASR). Both models may be very naive and/or
incomplete. For example the DAD model may contain a single ComponentType to
which all requirements are assigned.

From these models, they iteratively make decisions in the requirement listing
that may also affect the architectural model. For each decision, they record it directly
in the ASR model with its rationale, as presented in Chapter 4. In case architectural
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changes are needed, they will also write a set of model transformations to implement
their decision into the architecture representation.

Anytime in the design process, architects are able to come back to a previously
defined architecture model to take other decisions and build alternative architecture
representations. To this end, instead of directly modifying the DAD model, the
proposed framework keeps a history of previous models. The complete decision
paths and model transformations, i.e. Realization DAD-T sets, that lead to a
particular architecture are stored into a revision-tree. This mechanism is analogous
to Source Code Management (SCM) systems, like Subversion1 or Git2. We illustrate a
fictitious Iodass revision-tree in Figure 6.2.

Figure 6.2: Overview of a fictitious Iodass revision tree

By convention, we decided to start from “revision 1” as the first (DAD,ASR) pair-
wise models. Every realization decision will generate a new revision, suffixed
with “.1”. New branches, on the other side, are numbered by adding 1 to the highest
revision number of the same level. For example, in the above revision-tree, from
“revision 1.1.1”, we backtracked to “revision 1.1” to create the new branch numbered
“1.1.2”. The edges in the above figure are also labeled with the realization se-
quence numbers and the related ASR. For example, we first built an architecture
model by implementing the ASR_1 from decision1, but finally backtracked to the
initial “revision 1” to start over by implementing first the ASR_2, and so forth.

Formally, the Iodass iteration loop can be expressed as the UML activity diagram
illustrated in Figure 6.3. Prior to a Iodass iteration, architects must have written a
first version of both a DAD and ASR models. The process is repeated until no more
requirements (ASR) must be taken into account in the architectural model. For each
iteration loop, a particular revision number is selected as the base revision under

1https://subversion.apache.org
2http://www.git-scm.com
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development. From this revision, one ASR is selected on which some decision is
made and its rationale is documented directly into the current ASR model. If needed,
i.e., a Realization decision has been made, some transformation rules must be
specified into a DAD-T set. These transformations are then performed onto the
current DAD model. The resulting DAD model is finally reviewed and evaluated,
depending on the modelers’ criteria and method.

Figure 6.3: Iodass iteration expressed as a UML activity diagram

In our design cycle, we do not fully consider evaluation or prioritization activities.
The cycle focuses on the recording of architectural design decisions only. The pro-
posed method may be combined with other methodological frameworks dedicated
to requirement engineering for prioritization or dedicated architectural evaluation
techniques. Modelers are then free to use whatever method or standard for these
two aspects. In the following section, we confront our proposal with a theoretical
evaluation grid for architecture design methods.
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6.3 Evaluation Regarding the General Model of Software
Architecture Design

From five industrial architecture design methods, Hofmeister et al. specified « a
general model of software architecture design » [Hofmeister et al., 2007]. The authors
analyzed the Attribute-Driven Design [Bass et al., 2003; Wojcik et al., 2006], Siemens’ 4
Views [Hofmeister et al., 1999], Rational Unified Process®4+1 [Kruchten, 1995; Kroll
and Kruchten, 2003], Business Architecture Process and Organization [Obbink et al.,
2000; America et al., 2004], and Architectural Separation of Concerns [Ran, 2000]
method, and identified their commonalities.

Figure 6.4 summarizes the activities and artifacts of their “ideal pattern” that we
will use to evaluate our design strategy3.

Figure 6.4: Architectural design-related activities as defined in the general model

3The original process specified in [Hofmeister et al., 2007] has been reformulated as a UML activity.
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During Architectural Analysis, Architecture concerns are evaluated and refor-
mulated into Architecturally significant requirements, using the Context, i.e., the
developmental, operational or political environment that may influence the system’s
development [IEEE, 2000]. The produced list of ASRs is either used to propose a
solution during the Architectural Synthesis and some more Architectural Evaluation
must be performed to ensure the decisions made until now are right. The Candi-
date architectural solutions are also confronted to the expected ASRs, when created
from the Synthesis activity, to produce a Validated architecture. Both candidate and
validated architectures must be accompanied by their design rationale.

This overall iterative process is influenced by the architects’ knowledge over De-
sign, Analysis and Realization. Design knowledge encompasses every structured and
unstructured knowledge regarding how to build an architecture. Analysis knowledge
concerns analytic methods depicted to evaluate an architecture regarding some
criteria. Realization knowledge focuses on project management or technological
solutions to support the development of a software architecture.

Analogously to what we identified in Section 1.1, the general model relies on an
iterative design method matching the « grow, don’t build software »’s view [Brooks,
1987]. The authors gathered in the concept of backlog the list of explicit documents
with ASRs, constraints, ideas or issues concerning the current development of the
software, as well as the ordering, relations and priority between the architectural
concerns. Backlog items are constantly moving, being added or removed from the
list such that at any time, the backlog can give an updated snapshot of the current
development. This backlog is close to the product backlog as defined in the SCRUM
method [Schwaber and Beedle, 2001].

From Figure 6.3 and 6.4, we can identify many commonalities in both devel-
opment cycles. This is no surprise since the general model has been defined as
a pattern architecture design based on industrial methods and our cycle is highly
iterative too. For all activities and outputs depicted in Figure 6.4, we detail their
counterparts in the Iodassmethod.

analysis The analysis is directly performed in the ASR model where modelers
may take decisions over requirements and record the design rationale.

synthesis The synthesis is performed through model transformations, by suc-
cessively integrating new Asr into the DAD model.

evaluation After injecting a transformation set, modelers may review the pro-
duced model and continue with this new model or backtrack to a
previous revision.

concern A concern is always addressed in terms of architecturally significant
requirements. Broader concerns or the ones that are not directly
linked to a system architecture are not taken into account in the
Iodass strategy.

context Likewise concerns, the context that has no direct impact on the ar-
chitecture is not addressed; contextual elements that have a mean-
ing for the architecture may be expressed as Asr’s Rationale, like
Constraints or Assumptions, for example.

ASR The ASR is the central point of the Iodass strategy and is expressed
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by a dedicated construct.
candidate Any transformed model is a candidate architecture until it is not yet

reviewed; every candidate is kept in the revision tree.
validated The validated architecture can be identified as the latest leaf created

in the revision tree; no specific tag is defined to highlight a given
model as validated. However, ComponentTypes may be tagged as
final, such that their definitions may not be modified by subsequent
transformations in the same revision path.

backlog Coupled to the definition of Asr, priority attributes may be added
into the model; any other methodological attribute may be expressed
either as user-defined properties, or using the dedicated Rationale
constructs.

The Iodass methodological framework addresses all activities as well as all
generic artifacts, except for the concerns and context where our method focuses
only on the architecture-related concepts. Project management-related characteris-
tics must be first encoded as user-defined properties in a dedicated DAD property
model before being used. This mechanism is flexible enough to add a wide range of
properties, but requires modelers to define them prior to design activities.

6.4 Tool Environment for IODASS Languages

In this Section, we will introduce the tool support for all Iodass languages. First, we
discuss the available alternatives that we evaluated as a basis for the envisioned tool
suite. Second, we present the underlying technological frameworks we reused to
build our tool. Finally, we detail the set of tools we developed4.

6.4.1 Preliminary decisions

When considering a transformation-oriented design method, the question of the
tool support arose quickly and multiple alternatives were evaluated. We summarize
here the main options we considered with their benefits and disadvantages.

Build everything from scratch

A first option was the possibility to build a completely new software from scratch.
But this option requires to write first a parser and a lexical analyzer, also called lexer,
for all languages in order to read a model, syntactically validate it and manipulate
it through model transformations. Writing its own parser and lexer would produce
more user-friendly error messages and would probably stick closer to the “ideal”
syntax as seen by the language creator. However, many generators exist in the
market and building everything from scratch would have needed a subsequent
development and testing time. Since we were in a research context with languages

4A user guide is available in Appendix E with a more complete description of all features as well as
some detailed implementation aspects.
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subject to syntactical and semantical changes during software development, this
option has been quickly dismissed.

Parser and lexical analyzer generators

Many lexical analyzer generators have been developed for many target programming
languages, such as Java, C, C#, JavaScript, and so forth. These generators usually
reduce the needed development time and ease the maintenance since language
evolutions are almost always limited to “update the grammar and press the generate
button”. A couple of generators are also integrated into larger development toolkits
with textual-based editors. However, depending on the grammar language, the
DSL grammar can contain some tweaks to be accepted. For example, some parser
generators may accept left recursion or not, which influence the way a grammar
is defined as well as its accepted syntactical constructions. But, again because
we were developing the tool support at the same time as the design strategy, an
automated generator was a more practical solution, even if we needed to define a
“tool-compliant” grammar. Also, because some lexer generators are well integrated
with textual editor generators in larger DSL frameworks, this option was selected.

Build upon an existing DSL definition framework

Recently, some meta-modeling and Domain Specific Modeling Language (DSML)
frameworks have appeared here and there, like JetBrains Meta Programming Sys-
tem5, MetaEdit+6, MetaDONE7 or Xtext8. Those modeling facilities have the advan-
tages to automate the generation and maintenance of DSL-based environments.
When such tools are interfaced with an Integrated Development Environment (IDE)
such as Eclipse9, Microsoft® Visual Studio10 or to a lesser extent, SimuLink11,
modelers may benefit from other compatible tools and create interfaces with them.
Because of these integration and extendability opportunities, we favored a DSML
framework integrated into an existing IDE.

Reuse existing transformation language

Model transformations play a key role in the Iodass architecture design strategy.
We widely discussed our view in Section 1.4 and Chapter 5 where we argued for a
concrete syntax-based transformation language. We evaluated the possibility to
reuse an existing transformation language as the back-end implementation for our
method. Again, many transformation languages have been implemented into IDEs,

5http://www.jetbrains.com/mps/
6http://www.metacase.com/
7http://www.metadone.be
8https://www.eclipse.org/Xtext/
9http://www.eclipse.org

10http://www.microsoftstore.com/Visual-Studio/
11http://www.mathworks.nl/products/simulink/
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such that they are often able to manipulate models expressed in a standardized com-
mon language. However, for this particular aspect, we wanted to be as independent
as possible to any existing transformation facility for the following reasons.

Since we decided to go for a concrete syntax-based transformation language,
we would have needed to write a code generator to translate DAD-T rules into that
intermediate language. Similarly to the parser-generator that somehow constraints
the syntax of a concrete language with its own grammar, the target transformation
language would have constraint the concrete syntax of the DAD-T rules, and possibly
the semantics in some scenarios too. Moreover, the replacement and deletion
policies would have been complex to handle since more transformation rules must
be created too, so possibly more debugging and code maintenance. Many transfor-
mation languages are also evolving syntacticly and semantically. Many of them are
products coming from the academia and the backward compatibility is not always
ensured. For all these reasons, we preferred to stay independent from any existing
model transformation framework.

Summary table

We summarize in Table 6.1 the main intended assets and their evaluated positive or
negative impacts as tooling solutions.

OPTION EDITION PARSER LEXER TRANSFO. UPGRADE DEV.TIME

From scratch – – – – + – –

Gen. parser/lexer – + + – + –

Existing framework + + + – + +

Exist. fk & transfo + + + + – +

Table 6.1: Summary of preliminary decisions

Regarding the above discussion, the very last choice we had to make concerned
the selected DSML framework. The Eclipse IDE somehow imposed itself for many
reasons. It provides a modeling framework completed with many extensions for
visualization or manipulation purposes. For example, graphical editors can be
created to edit custom models, or to generate code from models. It is free of charge
and the source code is under a copyleft license12. Many Eclipse extensions are also
provided under a copyleft license, which eases the development of custom tools
and enhances code reusability. Many parser generators are also available as Eclipse
plugins, built on top of the modeling framework for some of them. Besides all these
arguments, the Eclipse ecosystem relies on a very wide community of developers,
individuals, research groups or even commercial companies, which enhances the
support possibilities for developers.

12In brief, the copyleft is a special type of author’s right where the user of a software has the access to
the source code, may modify it or reuse it, at the moment he keeps the copyleft for the new product.
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6.4.2 Basis for the Iodass tool, the Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF)13 is a platform designed to manipulate
structured models expressed in the XML Metadata Interchange (XMI) format [OMG,
2013b]. EMF provides many tools to write (meta-)models, visualize them and pro-
duce Java code to manipulate custom DSL models defined using the framework.
The origin of EMF traces back in the beginning of the 2000’s and is completely inte-
grated into the Eclipse system. Many extensions exist, for model validation or model
exploration through relational queries, for example.

EMF relies on the Ecore language to specify meta-models. Ecore is an implemen-
tation of the Essential Meta Object Facility (EMOF) [OMG, 2014b], being a simplified
version of MOF, more closely related to object-oriented programming languages
concepts. The Ecore language offers sufficient facilities to express meta-classes with
their attributes, operations and relationships. From a meta-model expressed in
Ecore, EMF is able to generate simple editors and Java code.

6.4.3 Xtext, an Extensible Framework for Domain Specific Languages

On top of EMF, the Xtext framework is a tool that automates the creation of DSLs tex-
tual editors as Eclipse plugins. Typically, from an Extended Backus Naur Form [Wirth,
1977] (EBNF)-like grammar, Xtext generates an EcoreModel that represents the DSL
meta-model14. That Ecore meta-model is used to translate a given SemanticModel,
i.e. the DSL model, into an EMF-compliant representation. Together with this repre-
sentation, the abstract ParseTreeModel nodes are created to ease its manipulation
by other generated Xtext artifacts. The grammar rules are also transformed into a
dedicated GrammarModel that contains the Parser and LexerRules.

Figure 6.5: Overview of the Xtext data model (from Xtext documentation)

13http://www.eclipse.org/modeling/emf/
14Xtext can also generate a “template” grammar from an existing meta-model expressed in Ecore
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As depicted in Figure 6.5 reproduced from the Xtext documentation, the Se-
manticModel must comply to the EcoreModel DSL meta-model and is manageable
as a ParseTreeModel, which is its abstract syntax tree. This AST must respect the
GrammarModel that specifies the acceptable grammar rules.

Xtext works on so-called XtextResources that are purely text files, i.e. the DSL
textual model. As shown in Figure 6.6, a Parser, Lexer and Serializer are devoted to
manipulate this textual model. These three tools are created by the Xtext framework,
but they can be extended by DSL developers to tune some features or even they can
be totally substituted, at the moment they respect the interfaces defined in the Xtext
framework.

Figure 6.6: Overview of the Xtext framework (from Xtext documentation)

From an XtextResource, Xtext creates an EMF Resource that may be used to
generate Java code or, like in our Iodass strategy, that can be programmatically
transformed. Any Resource can be serialized as an XMI file, when transformed
into an EMF XMIResource. This way, any EMF-compliant plugin may interact with
Xtext-generated DSL editors because from a textual model that can be interpreted
by an Xtext editor, an XMIResource can be created to be manipulated by any EMF-
based Eclipse plugins. These interaction possibilities may be useful when building
graphical visualizations or editors for Xtext-based DSLs.

At current time, more than 40 projects are referred from the Xtext DSL developers
community. Some of them are even used in production environments, like the
Eclipse OCL editor15.

6.4.4 Support for Designers, the IODASS Textual Tool Suite

As proofs of concepts, we developed a set of textual editors as Eclipse plugins, built
using the Xtext framework. All three languages presented in Chapters 3, 4 and
5 were implemented as separate plugins. The DAD property formalism was also
implemented separately for independence and extendability reasons. The Xtext-
compliant meta-model has been extracted as well in its own plugin for the same
reasons. We finally came up with nine plugins, every language composed by two
plugins of the form:

15http://projects.eclipse.org/projects/modeling.mdt.ocl
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iodass.textual.xx the DSL model back-end
iodass.textual.xx.ui the textual editor

The ninth plugin contains the Ecore meta-models and the generated Java code
to manipulate the languages objects, namely iodass.model. Typically, the model
back-end contains classes and methods regarding name formatting, serialization,
model elements scoping, and so forth. The textual editors focus on customization of
the editors themselves, the possible verifications with their quickfixes, when possible,
and other Eclipse-related customizations like project wizards. The transformation
engine has been developed inside the DAD-T plugin, namely iodass.textual.
transfo. A basic Java generator has also been developed, that creates template Java
files from DADmodels.

All grammars of the Iodass languages are reproduced at the end of this disser-
tation, in Appendices A to D. In the following, we will first introduce the editors,
then we will concentrate on the transformation engine, and finally, on the basic Java
templates generator.

Textual editors

As an example, Figure 6.7 shows a screenshot of the Iodass DAD-T editor within
Eclipse.

Figure 6.7: Overview of the Iodass tool suite

On the left hand side, the Package Explorer shows the Iodass revision packages,
the iodass.base library and dedicated src and src-gen folders for the actual
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software (generated) source code. In the middle of the frame, the source code of the
current model is shown in the Editor part. On the right hand side, the Outline View
shows a summary of the model elements present in the current model. This outline
allows modelers to follow the referenced or imported model elements and navigate
across models easily, just by clicking an element from the outline.

While editing models, a series of verifications are performed on the edited model,
some of them being executed on file saving actions only to avoid greedy verifica-
tions to burden the performance of the editor. As presented in Section 3.2.7, the
LinkageTypes are verified to ensure the polarities of the connected Facets are
respected. Their compatibilities are also verified, as specified in our duck typing-like
verifications. Linkages and Plugs are checked according the rules specified in
Sections 3.3 and 3.4 as well. Many more verifications are executed regarding name
uniqueness, actual presence of mandatory attributes and so forth.

When an error is found, the dedicated Problems view from Eclipse will contain
a meaningful message with the details and the line number of the found problem.
The line concerned by the problem will be underlined in the model source code too,
as shown in Figure 6.8.

Figure 6.8: Problems view and meaningful error messages

In the above screenshot, the OnlineLibrary.a Facet has not the right polarity
and both involved Facets have incompatible types. The errors concern the same
LinkageType at line 75, which is underlined in red and displayed with a specific
marker in the margins, just as for Java source code, or whatever programming
language opened in a dedicated editor within Eclipse.
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Transformation engine

The transformation engine has been developed in an aside language to Xtext, called
Xtend16. It is a hybrid object-oriented and functional programming languages, close
to the Scala 17 and Groovy 18 languages. Xtend classes are pre-compiled into pure
Java code and its syntax is relatively close to Java, but with higher expressiveness.
Xtend accepts, for example, lambda expressions and offers a powerful polymorphic
dispatching facility to call methods depending on the object type at runtime.

The engine is callable from the contextual menu activated from a DAD-T model,
in the “IODASS” menu. When a DAD-T set is run over a DAD model, a new revision
folder is created, according to the naming conventions given earlier in Section 6.2.

The verifications explained in dedicated sections from Chapter 5 were also im-
plemented with as much as possible meaningful messages. However, as already
discussed in the aforementioned chapter, some errors may prevent a complete DAD-
T set to be executed, or in some specific cases, a resulting model may contain some
errors that must be handled manually.

Java code templates

A simple Java generator has been developed to create template Java source files
from DAD models. DataStructures and PrimitiveTypes are translated into Java
classes. Interfaces become Java interfaces containing the signatures of all their
Services. Finally, ComponentTypes are generated as abstract Java classes that
implement the implemented Interfaces.

All these Java sources are created into the src-gen folder of the current project,
following the same package structure as the DAD model. The developers are able to
fully implement the generated templates into the dedicated src folder. This separa-
tion, which is very common in MDE approaches, isolates the generated sources from
the hand written code to be able to re-generate some models without overwriting
existing code. However, depending on the structural changes applied by a modeler
into a DAD model, some features in the hand written code may be broken if some
significant changes have been applied to previously generated resources.

6.4.5 A Visual Notation for IodassModels with MagicDraw

Concurrently to the textual editor, a simple custom palette has been defined in
the MagicDraw19 modeling tool. Part of the DAD and ASR language syntaxes have
been specified as a UML profile and custom diagrams have been created in the
tool. Howewer, this graphical notation does not allow to represent all features of the
languages and no connector exists between the textual and the graphical syntaxes.

This graphical notation has been mainly defined as a visualization mean to DAD
models. Ideally, an EMF-compliant graphical notation should be developed in order

16http://www.eclipse.org/xtend/
17http://www.scala-lang.org
18http://groovy-lang.org
19http://www.nomagic.com/products/magicdraw
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to benefit from both textual and graphical representations. An early prototype in
the Eclipse’s Graphical Modeling Framework (GMF)20 has been defined, but quickly
abandoned, mainly for maintenance, customizability and complexity reasons.

Lately, some promising graphical frameworks have appeared in the Eclipse
ecosystem, like Zest21 or Graphiti22. Those tools worth exploring, but we could not
invest enough time in the graphical visualization to be able to build a complete tool
fully integrated with the textual editors.

6.5 Wrap-Up and Conclusions Over The IODASS Framework

We depicted in this chapter a novel architecture design cycle named Iodass , i.e.
the pIck One, Document And tranSform Strategy. This design method is structured
around the modeling languages we introduced in Chapters 3, 4 and 5. Its main objec-
tive is to encourage modelers to document their decisions, formally record revision
deltas between models and keep traces of explored alternatives. We compared our
method to a theoretical “ideal pattern” extracted from industrial and academic archi-
tectural design methods where, for each activity and document, we could provide a
Iodass artifact or task.

We developed a proof-of-concept tool suite where we implemented our three
languages and the model revision mechanism we introduced in the present chapter.
We summarized the evaluated alternatives as underlying tool environment and
we provided some details about its implementation. We already mentioned the
limitations of purely textual editors, which may seem less intuitive to end-users,
but that are usually more expressive and complete. As already argued in Chapter 4,
the combination of both representation would be more suitable for architecture
designers to have, on one hand a graphical big picture of the system and on the other
hand, the full details in a declarative manner.

Having this transformation-wise software architecture framework in mind, we
will now provide in Chapter 7 the details concerning the academic evaluation we
conducted over students at the University of Namur. As we will detail in the follow-
ing, the study was conceived with mainly two objectives: evaluate the approach
regarding its feasibility and regarding the expressiveness of the modeling constructs
we introduced.

20GMF is part of the Graphical Modeling Project, http://www.eclipse.org/modeling/gmp/
21http://www.eclipse.org/gef/zest/
22http://www.eclipse.org/gef/zest/
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This chapter presents the controlled experiment we conducted to evaluate the
Iodass framework on a class of students at the University of Namur. We first discuss
about the alternatives we had and the expected outputs we can expect from the chosen
evaluation strategy. Second, we detail the protocol we followed during the experiment
and present the results from a quantitative and qualitative point of view. We finally
analyze the results of the experiment and criticize the overall evaluation process, as
well as its limitations.

7.1 Evaluation Strategies and Their Outcomes

Now we have defined our architectural framework, we will evaluate its benefits and
shortcomings in an empirical manner. Theoretically, many empirical alternatives
exist. Wohlin et al. categorized them in three strategies [Wohlin et al., 2012]:

surveys introspective interviews and questionnaires
case studies empirical observations of monitored or retrospected projects

experiments laboratory experimentations under controlled conditions

In order to select the most appropriate strategy, we need first to question our-
selves on the purpose of the study, i.e. what do we want to evaluate and how can we
extract some valuable observations regarding what we want to evaluate. Second, the
level of control we want to/may have on the study itself is also important. The level
of control for a retrospective case study on a large-scale project conducted in the
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industry is completely different from the one for a controlled experiment performed
in an academic lab. Last, the cost and risks should be evaluated. For example, one
may try to lower the cost for highly exploratory studies, since they might fail more
frequently than confirmatory ones.

In a sense, a trade-off must be found between the available resources in terms
of subject people and money to inject in the study and, probably the most critical,
what exactly do we want to evaluate.

7.1.1 What Do We Want to Evaluate ?

Our transformation-centric framework is rather stringent. So, one of the most
prominent aspect to evaluate was the feasibility of the general approach. We first
had to ensure that an architecture model can effectively be created by successive
formal transformations without requiring a colossal extra work for modelers.

As a second evaluation criteria, we had to identify whether the architectural
language was sufficiently expressive to represent a software architecture. Likewise,
we had to evaluate if the modeling elements we introduced were all useful. This was
especially the case for the novel elements, mainly regarding the communication
Protocol and LinkTypes.

Last, we decided to evaluate the benefits of our transformation-centric frame-
work regarding an industrial modeling standard coupled to an iterative architecture
design method. By comparing simultaneously the deliverables produced by “soft-
ware engineers” using either one method or the other, we intended to analyze the
advantages and drawbacks of our framework. As a side effect, we wanted to improve
both our method and the modeling languages.

7.1.2 Available Resources and Their Impact on External Validity

For such a design method supported by a set of new DSLs, like for many other em-
pirical evaluation in the software engineering field, experienced practitioners would
be ideal subjects. They already have a (strong) background in design activities, they
usually know about patterns, documentation and design rationale. A probably effec-
tive evaluation strategy would be to let them play with the languages on architecture
modeling tasks in their day to day work on real world problems and then debrief
with them in focus groups. Still, such an approach would require enough contacts
in the industry with architects opened to be taught on our method and to do their
job with our tools without being sure they could actually reuse it. Also, we needed
a significant amount of participants to get sufficient feedback and being able to
somehow randomize their profiles. However, we could not find any partnership that
could provide us this level of guarantee.

As we are evolving in an academic world, a second source of “engineers” was
more easily accessible, with a rather large amount of participants. During their
two last years of Bachelor’s degree, students at the University of Namur follow con-
sequent modeling and object oriented courses that they have to practice in two
team projects during their first year of their Master’s degree. These projects require
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them to model and implement software systems that combine web technologies,
distributed communications and database management.

Höst et al. studied the differences between using professionals and students
as study subjects to assess the impacts of ten lead-time factors to projects, like the
competence, turnover, time pressure, etc [Höst et al., 2000]. In their comparative
study, they observed that the differences between both groups were minor, but taking
into account they used fourth year students that followed software engineering
courses.

In a large survey on controlled experiments in software engineering published
from 1993 and 2002, Sjøberg et al. identified that a very large proportion of those
experiments were conducted on students [Sjøberg et al., 2005]. For such experiments,
the question of the external validity, i.e. to what extent the results may be generalized
to other persons, settings, causes and effects [Campbell and Stanley, 1966; Cook and
Campbell, 1979; Shadish et al., 2001], is particularly important since the software
engineering field usually targets the world of professionals.

In the remaining of this chapter, we will detail the protocol we followed to con-
duct our empirical study. We built our research on the many advices defined in
recognized publications from Cook [Cook and Campbell, 1979], Pfleeger [Pfleeger,
1995] Carver et al. [Carver et al., 2010], and Wohlin et al. [Wohlin et al., 2012]. We
also reproduce the results we observed during the study and analyze them within
the goal/question/metric approach, as defined by Basili et al. [Basili, 1992; Basili
et al., 1994]. To complement our observations, we submitted a questionnaire-based
survey to all participants that we will discuss in this chapter too.

7.2 Protocol of the Comparative Case Study

Based on the observations we detailed in the previous section, we set up a compara-
tive case study around these four questions, the two last ones addressing the third
general goal of Section 7.1.1 :

(1) Is a transformation-centric approach feasible to build a software system from
scratch?

(2) What are the benefits of a transformation-centric approach to handle archi-
tectural evolutions?

(3) How expressive is the set of Iodass languages to represent software architec-
tural models?

(4) How expressive is the set of Iodass languages to trace architectural design
decisions and rationale?

These four questions cover a significant part of the Iodass framework. The fea-
sibility question is indeed crucial. Behind the feasibility question and by comparing
with a classic iterative design process, we will identify if a notable supplementary
work is needed to design and implement a piece of software using our method.

Software systems are meant to evolve over time and, as we have discussed
many times in this dissertation, this is a top-level concern in software engineer-
ing. The combination of design rationale and formal model transformations has
been designed with this particular issue in mind. We then had to evaluate if the
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Iodass framework offers valuable assets to that purpose. As a side effect, the ef-
fectiveness of the languages as communication means could be partially verified,
thought in a naive way inside a closed environment.

The expressiveness of the languages must be certainly evaluated. Even if we
reused many concepts coming from the state-of-the-art, we introduce a list of new
modeling elements. We have to ensure that no useless elements have been intro-
duced into the languages.

We will now detail the protocol we followed for the comparative case study. We
first present the framework under which the control group worked. We then discuss
about the profiles of the participants. Afterwards, we detail the process we followed
to avoid some randomizations effects that would have maybe lead to groups with
consequent differences in modeling competencies. We introduce the Goal-Question-
Metrics we defined for the case study. Last, we describe the case study itself with the
content of the document we gave to the participants and the expected deliverables.

7.2.1 Select the Control Group

Throughout our research, we tested the Iodass framework and languages over toy
examples to identify its lacks and improve them iteratively. At the moment we
had a stable release of the languages, we decided to confront them to a recognized
industrial standard. This choice was particularly decisive to avoid comparing apples
and oranges. We needed to select a language with the same level of expressiveness
to: smodel architectural elements that compose a software system, including the

infrastructure/deployments list relevant requirements in a semi-formal manner, with relationships be-
tween themsdraw relations between requirements and architectural elements toosadd design rationale directly on model elements

As another main criterion, the question of the tool support was also crucial. We
developed our tool suite within Eclipse, it looked primordial to identify a modeling
language available in the Eclipse ecosystem too. Different environments could have
lead to differences in the takeover of the modeling environment, even if, obviously
the concrete Eclipse plugin under which the participants had to work was different,
but, at least, parts of the tools were identical.

A last criterion was the absence of earlier knowledge in one or the other lan-
guages, again to avoid significant discrepancies in the participants’ learning curves.
This way, the study could not be biased by previous experience in one or the other
language since they were no such preceding knowledge.

For all these reasons, we chose the OMG SysML [OMG, 2012d] standard since it
answers positively to all our criteria. Its modeling facilities allow structural modeling
of a software system together with its requirements. Design rationale may be added
to model elements and relationships can be drawn between requirements and to
model elements too. Also, many SysML tools exist as Eclipse plugins.
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Last, SysML, with its ability to refine Block Definition Diagram (BDD) into Inter-
nal Block Diagram (IBD) where each blockmay be further defined into its own BDD
and refined into IBD, particularly suited to be used in an iterative design process.
Both the control group and the group under-study could use the same architectural
design method, complying with Hofmesister’s general model discussed in Section 6.3
from last chapter.

7.2.2 Participants’ Profiles

Even if all participants were students from the University of Namur between 21
and 25 years old, their level of experience was not fully equivalent. First, some of
them followed a so-called “Professional” Bachelor degree in a Higher Education
school where the curriculum focuses priorly on professional competencies, i.e.
programming and technical skills. These students, depending on the actual schools
they came from, often had a larger experience in developing software, but missed
some theoretical background, that they have to catch up during a transition year
when they come at the university. During that special academic year they have
to attend upfront the Master’s degree, they follow a list of modeling and object
orientation courses where they are taught the theoretical aspects on which we
partially rely for this case study.

All students followed a course on theoretical aspects of project management
and were taught on software development cycles, mainly recent Agile methods like
Scrum [Beedle et al., 1999; Schwaber and Beedle, 2001]. They actively practiced the
Scrum development method for a mid-scale team project that required requirement
analysis, system design, planning, coding, testing and even vendor skills. For one
of this project, the students worked full-time for two months to build a three-tier
system, involving the development of a web-based front-end, writing business
logic code with distributed communications and designing relational databases. A
simulated evolution phase was also organized after a first delivery of their software,
so they could have a first contact with maintenance-related problems. They also
had other software development individual and team projects each academic year
of their cursus.

Because we organized the case study inside a course of the Software Engineering
option in the Master’s curriculum, the participants were almost equally composed
by students from the first or the second year. Second year’s students had a 4 months
internship in research centers, internally or externally, or even in the industry, as
part of their curriculum.

7.2.3 Classification Phase

For the comparative case study, we had to divide the participants in two groups, one
that will work with our framework, one with a control method and language. Also,
to raise the amount of output data to analyze, we decided to create teams of two
students, so that we could have six individual results for both groups. Because of the
aforementioned variation in terms of experience and because the amount of partici-
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pant was not statistically significant, we decided to organize a preliminary phase
where we evaluated their modeling competencies in order to build groups of compa-
rable modeling skills. With twenty-four students, the probability to have all second
year students or all most skilled students in on or the other group was too large, such
that the results of the case study could have been biased or uninterpretable.

Preliminary in-class case study

For this classification phase, we gathered all students in a large room during a
2-hour lecture. They received a document with the description of a simplified
vehicle inspection system. They were asked to draw a UML class diagram from the
requirement analysis present in the document. Were specified in that analysis1:san informal description of the systems three UML use case diagrams with the expected functionalitiess the complete description of each use case scenario in a textual formsclear instructions on the expected level of details for the class diagram

The general purpose of the system was to automate the vehicle inspection pro-
cess with a mobile application for the inspectors, a local system for the inspection
center, and a web-based interface to make appointments for car owners. As an
example, the use case diagram of the mobile application is reproduced in Figure 7.1.

Figure 7.1: Use case diagram of the mobile application for the inspection system

An Inspector can Start a control, that can be in the list of Scheduled control
(i.e. control for which car owners have made an appointment). He may perform the
Administrative verifications and the Manual and Automated tests, all of them being
Transfered to the CenterOffice. The Automated tests also involves the TestEngine
as a secondary actor.

Similar use case diagrams were specified in the document for the functionalities
of the CenterOffice and the WebSite subsystems. The CenterOffice allows the
Inspector to Finalize the inspection and, if needed Print a new notification. Also,
a Scheduler Sends daily reports to a BackOffice. A CarOwnermay Register and

1The given document was written in French, as all students were native French speaker, in order to
avoid a possible bias in differences in English comprehension.
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Connect on the WebSite of the inspection system to Make an appointment for his
car to be verified. He may also Disconnect or Unregister from the WebSite.

All of these use cases were detailed in a textual scenario. Table 7.2 gives an
example for the Finalization of an inspection.

Name Finalize inspection
Summary The car owner finished the inspection and goes to the check-out desk.

Actor Inspector.
Precondition The system of the inspection center is working properly. The inspection

linked to the car owner at the check-out desk is completed (every results
being transmitted).

Postcondition The owner receives its inspection summary and paid the requested
amount for the inspection.

Description

Inspector CenterOffice
1. The inspector selects the
plate number linked to the car
owner at the check-out desk.

2. The center office system dis-
plays the amount to pay.
3. The center office system
prints the inspection summary.

4. The inspector confirms
the payment made by the car
owner.

5. The center office system
saves the confirmation of the
payment.
6. The center office system dis-
plays the list of vehicles cur-
rently under inspection.

Alternatives 2.b The results associated to the inspection are not all received yet.
The car owner is invited to wait until all results are effectively
received by the center office system (back to scenario point 1.).

Figure 7.2: Textual description of the Finalization use case

At the end of the document, the students were required to draw a UML class
diagram of a first-draft design. An example Client-Server class diagram was depicted
to clearly state the expected level of details. They had to draw their own diagram
individually on a A3 paper we gave to them. They also were spread all over the room
to minimize cheating possibilities. We gathered all copies at the end of the lecture
and made a ranking of their copies.

Judging and ranking phase

Inspired by a judging protocol by Jones [Jones, 1983], we asked three researchers
to classify the class diagrams produced by the students. Two of them were inter-
nal researchers from the PReCISE Research Center, and one was an external senior
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researcher from the Computer Science Laboratory of Lille (LIFL). First, they individu-
ally drew their own representation from the same document given to the students.
Second they classify the students’ copies in categories, still individually, based on
their own criteria.

After this individual classification round, we gathered all three researchers
around a table and discussed their classifications. It appears they all used simi-
lar categories, which were:

category 1 syntacticly and semantically incorrect
category 2 syntacticly correct, but semantically incorrect
category 3 syntacticly and semantically correct, but incomplete
category 4 syntacticly and semantically correct, and complete

For all copies, the three judges assigned a numerical value corresponding to 1
for diagrams belonging to the first category and 4 for the ones in the fourth category.
We then calculated the truncated arithmetic mean value for all diagrams, denoted
t am, and built three new categories based on these t am values:

low t am < 2 with 7 students
mid-range 2 ≤ t am < 3 with 11 students

high t am ≥ 3 with 6 students
In order to equalize as much as possible the design competencies between the

future groups and teams, and at the sight of the above categories, our idea was to
define four hats of students to let a bit of freedom to them to make their pair teams
for the remaining of the study. We then raised one students from the low to the
mid-range category. Three students had the same (un-truncated) arithmetic mean
(2.83 exactly), so we used their previous results in a software modeling course2 to
decide between them. The higher result was moved in the mid-range category that
still needed to be split in two.

This category was divided based on their real arithmetic mean value obtained
at the classification phase, then on the students’ results in the software modeling
course, last using their final results for their 3r d bachelor. We ended up with four
categories. We finally pseudo-randomly3 created the four hats based on these cate-
gories, i.e. half of each category was assigned to each group, such that half of the first
and second categories were grouped in one hat (called I-a), the remaining halves
in a another one (S-a), one half of the two last categories in the third hat (I-b) and
the remaining of students in the last one (S-b). Students from the S-a, resp. I-a, hats
could finally choose a teammate in the S-b, resp. I-b one.

7.2.4 Preparing the Case Study

Upfront the beginning of the case study, both groups received an introduction
to the languages they had to use. They received a 2-hours lecture where the main

2This course is part of the 3r d bachelor academic year, called Analysis and Modeling of Information
Systems where students learn about Object Oriented and UML modeling.

3We rolled two twenty-faces dices for each students, even results were assigned to I hats, odd ones to
S hats. We particularly paid attention to have a fair distribution between the I and S groups, based on the
aforementioned students’ results and classification phase, that is the reason why we define the process as
“pseudo” random.
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principles of their assigned languages were presented. These lectures were organized
separately, such that the participants had no practical knowledge over the other
languages.

During the lectures, the participants were taught with the needed constructs to
model a system, list requirements, define relations between them and add design
rationale. The presentations followed the same template, were given by the same
person, and were completed with a screencast where the installation of the plugins
were presented, with the definition of a helloworld model to illustrate the main
functionalities. The students also received a list of pointers to external references.
After these introductory in-class sessions, the participants received a dedicated
document with the case study, clear directions and timing details.

7.2.5 Case Study Description

The system the students were required to implement is the one we use in this
dissertation: the book library, summarized in Figure 3.8. Instead of formalizing the
functionalities as UML use cases, which have maybe biased the study since SysML
reuse use case diagrams, we specified all requirements in a textual form, as depicted
in Figure 7.3. Likewise the preliminary phase, this descriptive document was written
in French, to avoid possible bias since all participants were native French speakers.

Ten requirements were listed in the document, five for the OnlineLibrary
(prefixed by OL), four for the Bookstore (BS) and one for the ParcelDelivery
(PD). All these requirements were very detailed in order to let the participants to
get familiar with the modeling languages and the tools. A couple of simplification
hypotheses and general advices were also stated in the document in order to keep
the time limit of the implementation in the course’s frame.sone book is sold at a time;s the amount of available exemplars of a book must not be considered;s the effective book delivery is out of the scope;sall systems are reliable, no crash recovery scenario must be considered;sno database is needed, an XML initialization file, with a parser API and plain

Java objects were offered to the students;sno other functionality is required;sno particular graphical design effort is required for the web pages.

After this first version, a simulated evolution phase was asked to the participants,
with a new list of requirements, less detailed but still precise and unambiguous,
listed in Figure 7.4.

For both phases, the participants were required to gather their models in a report
where they detailed the iterative process they followed and documented their models.
Together with the textual reports, the model sources (eclipse projects) were also
required and the Java/JSP source code they wrote to implement the system. For the
second phase only, the participants also wrote an evaluation report where they could
criticize the languages they manipulated for the case study around the following
general topics, each of them detailed with precise questions:sexpressiveness of the modeling constructs;
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OLFunc_1 The system shall propose to the customer a catalog of books identified by
an ISBN number, a title, one or more authors and a selling price.

OLFunc_2 The system shall record a book selling to a customer identified by its name,
surname, street, number, box if existing, postal code, city and country.

OLFunc_3 When a book is sold to a customer, the system shall contact the bookstores
to determine the lowest price for that book by organizing an auction be-
tween the bookstores. During the auction, every store sends its best price
lower or equal to the current auction price. The auction ends when no more
store can lower its price. If the auction finishes in a draw, the system shall
choose randomly between the stores with the lowest price.

OLFunc_4 When a book is sold to a customer, the system shall contact the deliverer
to ask the book delivery to the customer. The system sends the book ISBN
number, the complete details of the store and the complete details of the
customer to the deliverer.

OLNFunc_1 The system shall be available to customers on the internet.
BSFunc_1 The system shall send a catalog of books identified by an ISBN number, a

title, one or more authors and a stated selling price.
BSFunc_2 The system shall permit to configure the minimal benefit margin on a book

selling, expressed as a ratio of the cost price. This ratio is global to all books.
BSFunc_3 Depending the current auction price of a book, the system shall send to

the library a new price, lower or equal to the current price, or a null value
saying that the system is not able to propose a new price that comply with
its minimal benefit margin.

BSFunc_4 The system shall record a book selling identified by its ISBN number for a
given selling price.

PDFunc_1 The system shall record the delivery of a book identified by an ISBN number
to a customer identified by its complete details.

Figure 7.3: List of requirements for the online book library (first phase)

OLNFunc_2 The system shall expose its catalog via a web service that will be used by
mobile applications.

BSFunc_5 When an auction takes place, the system shall contact the other stores in
order to determine the lowest selling price for a book sent by the library.
The system offering the lowest price shall directly contact the library to
make itself known.

PDFunc_2 When a book is delivered, the customer may withdraw his order. In case he
withdraws, the system shall return the book to the store. When the book
is returned to the store, the store shall contact the library to create a credit
note equal to the book price for the customer.

Figure 7.4: List of requirements for the second phase

sadded-value of modeling constructs as part of an Agile design method;seasiness of model evolution and maintenance;sdocumentation and its usefulness for model maintenance.
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They were also asked to express in that evaluation report any suggestion or
remark they judge useful or accurate.

7.2.6 Paper-Based Survey

To capture the feelings of the participants regarding the topics mentioned at the end
of the previous section, we decided to crosscheck their free-format remarks with a
structured paper-based survey. The survey was conducted in classroom and filled in
individually by all participants. We reproduce the list of statements in Figure 7.5

(1) The languages constructs allow to represent:
a) the expected functionalities of the system.
b) the technological and communication constraints.
c) the physical constraints related to the deployment.
d) the non-functional requirements.

(2) The modeling language coupled to an agile development method as the one used
during this laboratory offers an added value:

a) to manage the complexity of the system-to-be.
b) for the traceability of the requirements in terms of functionalities to implement.
c) for the correctness and completeness of the implementation (code) of the system.

(3) The structural constructs impacted by a modification of a requirement can be
identified quickly.

(4) The structural constructs impacted by a modification of a requirement can be
identified at a glance.

(5) The language offers the necessary constructs and mechanisms to write an accurate
documentation.

(6) The written documentation allows to efficiently comprehend the system within the
framework of a modification of the system.

(7) During the second phase:
a) a major work was necessary to re-understand the architectural concepts of the

system.
b) the modeling languages eased the structural changes linked to the new functionali-

ties to implement.

Figure 7.5: List of questions of the paper survey

Inspired by the discussion made by Krosnick and Presser over the many methods
present in the literature [Krosnick and Presser, 2010], each statement could be
evaluated on an unmarked differential scale with only fully disagree and fully agree
marks on each side. The participants could draw a line wherever they estimated it
was appropriate. We found this method particularly suitable for our case because
we wanted to compare two approaches. It lets a wide freedom to the participants
since they may put their ratings on a continuous interval and it partially avoid re-
ordering problems between questions when, for example, respondents want to show
ordering relations between closed questions. Furthermore, fix point scales may lead
to interpretation problems (what does a “somewhat agree” means, for example). An
alternative solution would have been to add more graduations, but this solution
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often leads to less spontaneous answers and increase the interpretation problems
since the semantic variation between each point becomes even shorter [Krosnick
and Presser, 2010].

7.2.7 Goal-Question-Metric Definitions

We now detail the results analysis framework we used for the case study within the
Goal-Question-Metric method [Basili, 1992; Basili et al., 1994]. We decided to discuss
the results of both the case study and survey outside a statistical framework because
we did not have a statistically significant sample since the amount of software
engineers is very large (which requires then a large sample) and we were conducting
the study over students (which limits the generalization possibilities). We preferred
to stick to objective metrics and discuss only over very large differences, instead of
reasoning over statistically-sounded values with a statistically-insignificant sample.

Based on the four general questions we stated at the beginning of this chapter, we
detail our evaluation objectives and deduct their metrics using the GQM approach
where every identified Goal is decomposed into a Purpose, a quality Issue, a process
Object and a Viewpoint. All goals are also completed with their addressed research
questions between brackets.

As a first goal, we want to evaluate the feasibility of the overall approach. We are
interested to verify whether it is effective to iteratively enrich a software architecture
through formal model transformations.

Goal 1 Evaluate the feasibility of a transformational architecture design method
to design a software system [RQ 3.1]

PIOV Evaluate / the feasibility of iteratively transform a / software archi-
tecture model / from the project manager’s viewpoint

Question 1 Is it effective to implement a software based on an architecture
model created from stepwise formal model transformations?

Metric 1 Number of top-level functionalities correctly implemented

Second, we want to evaluate the quality of the DAD and ASR models regarding
two criteria: the number of requirements for which we cannot find an architectural
element that implements them and the number of decisions that are effectively
documented by either a formal relation to other requirements/architectural objects
or by some rationale.

Goal 2 Evaluate the quality of architecture and requirement models using DAD-
ASR languages [RQ 1.1,1.2,2.2]

PIOV Evaluate / the functional completeness of a / software architec-
ture model regarding the expected model elements / from the
architect’s viewpoint

Question 2 Does the produced architecture models contain all expected com-
ponents and interfaces to fulfill the software’s requirements?

Metric 2 Number of requirements without any responsible element.
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Question 3 Are the newly introduced subrequirements correctly documented
with their rationale?

Metric 3 Number of decisions regarding subrequirements with a meaning-
ful explanation of their purposes (rationale).

Third, we want to investigate the recordings of the design process itself to under-
stand its history.

Goal 3 Evaluate the traceability of a transformational method regarding the
history of the development process (planning-evaluation) [RQ 2.1,2.2]

PIOV Evaluate / the actual implementation order of the / architecturally
significant requirements / from the architect’s viewpoints

Question 4 Does all development iterations have been backlogged for evalua-
tion and traceability purposes?

Metric 4 Number of iterations reported with corresponding implementa-
tion plans.

And fourth, we want to evaluate the feasibility of our approach in maintenance
or evolution activities.

Goal 4 Evaluate the feasibility of a transformational method in maintenance
and evolution activities of a software system [RQ 3.1]

PIOV Evaluate / the feasibility of iteratively transform an / existing soft-
ware architecture model / from the architect’s viewpoints

Question 5 Is it effective to incorporate new functionalities in a software based
on an architecture model modified by stepwise formal model trans-
formations?

Metric 5 Number of impacted functionalities correctly implemented

7.3 Results and Discussion

We now details the result we gathered from both iteration phases. We first concen-
trate on the metrics we defined. Then we discuss the questionnaire results and we
summarize the various comments received from the participants. Afterwards, we
outline our findings regarding our four goals.

7.3.1 Results of the First Phase

The study was composed by two distinct phases, as detailed in Section 7.2.5. At the
end of the first phase, we tested the functional correctness of the teams’ prototypes
and we calculated the aforementioned metrics, which are summarized in Table 7.1.

The first column gives the identification number of all teams, from S1 to S6 for
SysML, and from I1 to I6 for Iodass . The second column shows the results of the
happy scenario test. We deployed the prototypes according to a readme file the teams
joined to their source code and models. This happy scenario regrouped the three
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Table 7.1: Evaluation of the deliverables of phase 1

Team Happy scenario Impl.(M1) Req. Untr.(M2) Decis. Rat.(M3) Iter.(M4)
S1 Stopped during auction 2 19 1 17 10 4
S2 No possibility to order 0 15 2 11 2 0
S3 Fully functional 4 10 0 10 1 0
S4 Fully functional 4 10 0 11 8 3
S5 Stopped after auction 3 11 1 16 4 0
S6 No possibility to order 0 10 0 12 2 3

Q2S n/a 2.5 10.5 0.5 11.5 3 1.5
I1 Fully functional 4 23 1 15 15 1
I2 No book delivery 3 30 1 28 28 5
I3 Fully functional 4 10 10 0 0 0
I4 Stopped after auction 3 14 2 9 8 8
I5 Fully functional 4 41 3 29 29 4
I6 Compilation failure 0 27 3 24 21 5

Q2I n/a 3.5 25 2.5 19.5 18 4.5

top-level functionalities divided in four sequential steps: the ordering of a book, the
start of an auction, the end of an auction that lead to the cheapest price and the
notification of the book delivery. The maximum amount of functional steps correctly
implemented by the prototype is shown in the third column (Metric 1).

The next columns concern the quality of the models and the decision traceability.
The number of requirements listed in teams’ models is given in the fourth column
(Req) and the untraced requirements (Metric 2) is shown in the fifth column. Those
values were identified from the SysML requirement tables and ASR models. In both
types of models, we were looking for any relation linking requirements to each others
or to model constructs. However, since all requirements in ASR models must be
assigned to a model element4, we excluded those relations from the Metric 2 and
only counted the other types of relations.

The amount of described decisions from models and reports is reproduced in
the sixth column, together with the amount of identified rationale (Metric 3). We
carefully analyzed the models and design reports to extract all design decisions and
their rationale. In some cases, they were clearly identifiable, but in most cases for
S-Teams, those data had been manually extracted from free-text explanations. For
ASR models, we counted the meaningful rationale only, i.e. the rationale that gave
some substantial information on the reason why such a decision was taken.

Last, the number of design iterations, as recorded or identified in the teams’
deliverables, is shown in the last column (Metric 4). As for the previous metric, these
values were mostly manually extracted from careful analysis of the textual reports.

The median values (Q2) of each column are also calculated to compare results
between both groups. We use median values instead of arithmetic means since the
sampling is rather small and we want to concentrate on central tendencies, instead
of purely mathematic values.

On the functional side, two S-Teams delivered a fully working prototype and
one more I-Team did so. There was no possibility to start the book ordering for two
S-Teams and one I-Team. The median implemented steps in our happy scenario is

4This is a mandatory feature, as explained in Section 4.3.2, so we investigated other types of relations,
otherwise, by default all requirements would have been traced to a model construct in our counting.
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Figure 7.6: Correctly imple-
mented functionalities

Figure 7.7: Identified requirements with un-
traced links to model elements

slightly higher for I-Teams where 3.5 steps were correctly executed against 2.5 for
the S-Teams.

The amount of requirements listed by the S-Teams and I-Teams are more con-
trasted. Three S-Teams and one I-Team only listed the ten requirements present
in the description document they received. A fourth S-Team added one more sub-
requirement and the remaining two identified respectively 5 and 9 more require-
ments. Except the one team that did not refine any requirement, I-Teams created
from 4 to 31 sub-requirements or alternatives. As a median, 10.5 requirements were
identified by S-Teams and 25 for I-Teams. Regarding the untraced requirements,
our Metric 2, three S-Teams had no such requirement and the other three showed a
maximum of 2. On the other side, the median amount of untraced requirements is
higher for the I-Teams with 2.5 against 0.5 for S-Teams, even if for both groups, the
value is rather low.

Figure 7.8: Number of decisions and rationale Figure 7.9: Documentation rate

Regarding the decisions and their rationale, we observed a median of 11.5 de-
cisions for S-Teams, going from 10 to 17, for a median of 3 rationale (from 1 to
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10), which corresponds to a median documentation rate5 of 0.215. The I-Teams
recorded from 0 to 29 decisions for an median amount of 19.50. Almost all these
decisions were documented by as many relevant justifications, 0.945 as median
documentation rate.

Last, three S-Teams gave some details over the iteration design cycle they actually
followed, for four I-Teams, one of them recorded only one iteration which does not
really correspond to a so-called iterative process. The S-Teams needed 1.5 iterations,
but since only half of the teams gave some details over the iterative process, this value
does not really make sense and the typical amount of iterations may be considered
between 3 and 4, as the other S-Teams recorded. Although, the median value for the
I-Teams is a slightly higher to that range, with 4.5 iterations.

7.3.2 Results of the Final Deliverables

For the final release, we tested the teams’ prototypes in a different manner. Each
team had a 10 minutes slot to demonstrate the three new functionalities about the
web service interface, the modification of the auction mechanism and the issue
of the credit note in case of a withdrawal. We were also interested in investigating
the level of details the teams provided for the confirmation page as a feedback
to the customers. No clear demand was formulated in that sense, but we want
to evaluate if, as a side effect, our structured way of recording and decomposing
requirements has an impact on the functional completeness. The modification
of the auction mechanism induced a significant rework at the architectural level
because the responsibility needed to be transfered from the library to the stores, with
the winner calling back the library by itself. By contrast, the withdrawal and credit
note were an isolated evolution of the system, since they were a new functionality
that was added at the end of the happy scenario depicted in last section.

Since all teams correctly implemented the web service, we do not show it in the
final results reproduced in Table 7.2.

Table 7.2: Evaluation of the final prototypes and deliverables

Team Feedback Auction Credit Impl.(M5) Req. Untr.(M2) Decis. Rat.(M3) Iter.(M4)
S1 Medium Fully Incomplete 5 23 2 19 12 0
S2 None Partially Complete 3 17 1 13 2 0
S3 Medium Fully Incomplete 5 15 0 13 4 0
S4 Basic Fully Complete 5 14 0 24 7 0
S5 Basic Fully None 3 15 1 18 5 0
S6 Basic Partially Complete 4 18 1 16 4 2

Q2S n/a n/a n/a 4.5 16 1 17 4.5 0
I1 Medium Fully Complete 6 27 3 24 24 1
I2 Basic Fully Complete 5 35 1 31 31 3
I3 Medium Fully Complete 6 17 14 3 3 1
I4 Basic Fully None 3 17 3 11 11 2
I5 Basic Fully Complete 5 56 5 51 48 3
I6 Complete Fully Complete 7 38 4 34 28 7

Q2I n/a n/a n/a 5.5 31 3.5 27.5 26 2.5

5The documentation rate is calculated as #Rati onal e
#Deci si ons to express the proportion of documented

decisions.
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Almost all columns are identical to Table 7.1, except that we introduced dedicated
columns for all three aforesaid functional criteria: the user feedback, the auction
mechanism and the credit note for a withdrawal. We also only considered the
amount of correctly implemented requirements related to the evolution phase, as
defined in our Metric 5.

To calculate the Metric 5 value, we rate the feedback as follow:
None=0 no feedback at all
Basic=1 very few details, partial customer, book or price details

Medium=2 almost all details shown, but still missing one or the other
Complete=3 all details about the customer, the book and the price were given

The auction is rated in a similar way:
Partially=1 responsibility correctly transfered, but in a synchronous way

Fully=2 asynchronous auction with the callback
And the credit note:

None=0 no credit note issued
Incomplete=1 missing details in the note

Complete=1 all details with price and customer data
We reuse the Metric 4 for the last column concerning the number of iterations,

but only focus on the second phase, since we could isolate it from the reports and
models when they were specified.

Figure 7.10: Correctly imple-
mented functionalities

Figure 7.11: Identified requirements with un-
traced links to model elements

The median ratings for the functional correctness are quite close for both groups
with 4.5 for S-Teams and 5.5 for I-Teams. But we can note that the 6 I-Teams im-
plemented correctly the new auction mechanism against 4 S-Teams and 5 I-Teams
provided a complete credit note against 3 S-Teams.

The Metric 2 follows the same tendency as we identified at the end of the first
phase. Significantly more requirements have been listed by the I-Teams with a
median of 31 requirements, confirming a more systematic decomposition and alter-
native exploration under our framework. But as for the first phase, more untraced
requirements were also recorded, with a median of 3.5, compared to the only 1 for
SysML teams.
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Figure 7.12: Number of decisions and ratio-
nale

Figure 7.13: Documentation rate

The amount of design decisions and rationale also increased in both groups,
S-Teams recording from 13 to 24 decisions (mean of 16) and I-Teams from 3 to 51
Q2I =31 decisions. The median documentation rates of decisions increased to 0.285
for S-Teams (median of 4.5 rationale) and to 1 for I-Teams, with Q2I =26 rationale.

Figure 7.14: Number of iterations for
the first phase

Figure 7.15: Number of iterations for
the final phase

Last, 1 S-Team explicitly specified the iterative steps it followed for all 6 I-Teams,
but with 2 of them recording only one iteration. We could not identify any explicit or
implicit description of the design steps for the remaining 5 S-Teams. The median
amount of iteration step for I-Teams is 2.5, from 1 to 7 iterations.

7.3.3 Participants’ Remarks

In their evaluation reports, all participating teams formulated some remarks over
the languages expressiveness, their added-value as part of an Agile-oriented method,
the easiness of model evolutions and the usefulness of documentation.

194



7.3.3. Participants’ Remarks

SysML

All S-Teams highlighted the large flexibility of the SysML block construct, they often
characterized as excessive and even confusing. They particularly had difficulties
to decide when to stop the refinement of Block Definition Diagrams into concrete
Internal Block Definitions. They were also puzzled by the semantic freedom of the
block, even if they also noted it was an asset in some cases.

They also complained about the limited design decisions and rationale traceabil-
ity. This remark is partially related to a bug of the Obeo SysML plugin6 we used. Prior
to the case study, we evaluated a list of available Eclipse plugins for SysML model
editing and the tool offered by Obeo, thought a commercial one, was working cor-
rectly on our testing environment. However, as the case study started, they released
a new revision, making the prior one not available anymore, and this new version
contained a visualization bug. The requirement cross-table, where requirements are
summarized with their satisfying blocks, was partially not readable, the names of
the blocks being hidden in the table headers. All S-Teams were not affected by this
bug, or not exactly in the same way, regardless the Eclipse build or operating system
they were using. However, the possibility to add rationale annotations to SysML
model elements was perfectly working, but none of the teams actually used it.

The last collegiate remark concerns the communication definition facilities
between blocks. The majority of S-Teams explained that they did not fell comfort-
able with the communication semantics of SysML. They had difficulties to decide
whether they needed flows or interfaces. When we took a look at their models,
only one team correctly defined the communication links between blocks, the
other teams either misused some constructs or even did not provide any detail on
the communication.

IODASS

The prototype used by the participants was not preserving the comments present in
the DAD models after a transformation and all I-Teams were disappointed by this
disappearance. All participants considered in-code comments as important pieces
of documentation, but the serializer in charge to print the transformed models into
text files did not preserve code comments. The last version of the Iodass transfor-
mation engine now directly uses the serializer generated by Xtext from the language
grammar, which, among other benefits, conserves the comments in the model.

The second main remark concerned the textual notations of Iodass models.
Many of them had some troubles with the textual notation during the first phase
and draw graphical representations aside. All participants were used to graphical
notations, e.g. UML models, and the Iodass textual syntax was unsettling to them,
even if they got used to it as the case study was going. Many of them advocated
for a combined textual-graphical notations where the big picture may be browsed
graphically and the details textually.

6http://marketplace.obeonetwork.com
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Last, part of the participant noticed that they had little usage of the Deployment
constructs. They explained that the amount of deployment constraints were not
sufficient to judge of their utility or not. They advocated for a reusable library of
properties to further refine the constructs semantics, which was lacking at the time
of the study and have been added in further releases of the DAD language.

7.3.4 Questionnaire Results

The last source of feedbacks and evaluation criteria can be found in the results of the
paper survey we conducted at the end of the case study. The unmarked scale was
going from fully disagree=0 to fully agree=5. All statements but the 7(a) were written
in a positive way, so higher values are better. The 7(a) stated that “a major work was
necessary to re-understand the architectural concepts of the system”, so higher values
are worst.

Figure 7.16 gathers the results we calculated from the students questionnaires in
a bar chart graduated from 0 to 4.5.

Figure 7.16: Results of the questionnaire-based survey

From this chart, we can identify three main tendencies: the language expressive-
ness is higher for Iodass languages than SysML, especially regarding the technolog-
ical, communication (statement 1b) and deployment (statement 1c) constraints. A
slightly less significant, but still visible, improvement of the Iodass expressiveness
concerns the non-functional requirements (statement 1d).

The second tendency concerns the evolution capabilities (statements 3 to 7b)
where, even if we rely on textual models that were perceived as less intuitive by the
participants, our framework performs almost as well as SysML. However, a somewhat
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noticeable difference is present for the last question related to the easiness induced
by the modeling languages for structural changes.

As a last tendency, except for statement 4 related to the relative easiness to
identify changes in a model “at a glance”, and statement 7a that was formulated in
a negative manner, all participants’ ratings for the Iodass languages are above 2.5.
The statement 7a has been rated below 1.5, which is also an encouraging result, since
the participants estimated that no major work was needed to come back into an
existing model.

Finally, statements 2 were investigating the added value regarding the ability
to manage the complexity (2a), the traceability features (2b) and the correctness
of the produced code (2c). Except for the traceability feature where the Iodass ’
rating is a bit higher, the values expressed by both groups are very close, with a very
slight higher ratings in favor of SysML as a modeling mean in Agile development.
However, those three differences are insignificant, but we may notice that all ratings
are above 2.5, which indicate a rather satisfactory rating, except maybe about the link
to the code. Concerning this round-trip feature, those low ratings are most probably
related to the absence of code generator for both modeling tools, as expressed by a
large majority of the participants in their final evaluation reports.

7.3.5 Discussion

Our first goal was the evaluation of the feasibility of our approach to design a software
system. From the functional tests we executed at the end of the first phase, the results
were slightly better under our framework with 5 I-Teams that delivered a (partially)
functional prototype for 4 S-Teams. One more I-Team delivered a fully functional
one. If we also consider the results of the second phase too, the same tendency
can be observed with marginally better results for the Iodass teams. The ratings in
statements 2 from the survey also partially confirm this aspect, since the participants
found the modeling languages appropriate to manage the complexity of a system
and trace requirements to model artifacts. We may then conclude that

it is feasible for master students in software engineering to successfully imple-
ment a system that have been modeled with the Iodass framework under our
controlled environment.

Second, we were interested in checking if a model could fulfill the list of require-
ments with sufficient justifications for the decisions taken to build it. We looked at
the amount of sub-requirements produced and how much of them could not been
traced back into the architecture model. We identified that the I-Teams produced
more sub-requirements than the S-Teams. However, the amount of requirements
without meaningful extra traces is higher for the I-Teams. Those missing links were
mainly related to non-functional requirements that students had troubles to ei-
ther implement as a transformation or relate to an existing Interfacewith either
Implementation or Usage decision. After some analysis of the involved require-
ments and if we do not take into account the team that did not actively followed
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the Iodass iteration process, we observed that those untraced requirements were
related to implementation details (like the OLNFunc_2 regarding the replication of
an existing interface as a web service) that the students actually implemented in
their Java code but did not produce dedicated model constructs for that purpose.

But, as said earlier, an Asr is always assigned to a DAD architectural element
(equivalent to the SysML satisfy link), but those links were not counted since they
are mandatory and we wanted to estimate how many requirements finally remained
unbound to other types of more concrete decisions. The same tendency appeared
in the second phase too, with a higher number of requirements produced, but
also a higher proportion of them remaining untraced. Furthermore, some types of
relations were not implemented yet in the prototypes used by the students. The
implication, exclusion and impact were not present in the ASR language yet and
were added later on, based on the literature and the many advices and reviews we
received after the study. For all these reasons, we can only observe that

there seems to be a positive influence of our systematic recording and decom-
position of requirements, but more requirements stay unrelated to architecture
model constructs.

The other part of this second goal concentrated on the amount of decisions taken
to design a software system and the amount of justifications that sustain a model.
On the one hand, these metrics were easily counted from ASR models because
dedicated constructs exist inside the model itself. We still discarded the “dummy”
rationale that were empty, had no sense or gave no real justifications of the decisions.
On the other hand, some types of decisions had not been recorded directly inside
SysML models (no usage of the rationale annotation) and requirement tables, so
they had to be manually extracted from textual descriptions and justifications given
in the participants’ reports. From this analyze, we recorded a significant amount of
decisions like “the system is divided in three components.” or “The communication
between the components is done over CORBA.” without justifications. As advocated
many times, we do believe informal justifications are not suitable to effectively
record design rationale. But, from the results of the survey for statements 5, 6 and
7(a), and from the evaluation remarks expressed by the participants, we noticed that
more can still be done to increase model comprehension and documentation. We
already updated our tool suite to keep the comments present in the code as they
were considered as important pieces of documentation. We may then conclude that
with the significant improvement in the documentation rates we observed in the
case study,

the systematic recording of design decisions increases the amount of design
rationale, but its positive impact on model comprehension is unsure.

Our third goal focused on the history of the design process and the traceability
of system design phases. We observed significant differences between both phases
where the S-Teams either implemented all changes in the model in one iteration
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or neglected to provide this piece of information. On the other side, I-Teams mas-
sively followed the iterative process by creating distinct model versions. Since for
this fourth question, we are concerned by the traceability of the history under our
framework only, we may conclude that

in most cases, the participants follow an iterative design process and the history
of the successive changes are completely recorded.

The last goal is closely related to the first one where we wanted to evaluate the
feasibility of our framework, but here, for evolution and maintenance activities.
As for the functional correctness we noticed at the end of the first phase, the final
prototypes were slightly more accomplished. At the opposite of the first systems,
all final software were at least partially implemented, with one group on each side
having bypassed the generation of the credit note. Even if the test results for the
modified functionality, i.e. the auction process that was transfered from the library
to the stores, were better for I-Teams, the needed modifications were perceived as a
bit less intuitive by the Iodass teams, as shown by statements 4, 6 and 7(b). At the
sight of the participants’ remarks, we may believe the textual syntax played a role
in this lower ratings in the survey. However, since 5 I-Teams delivered functional
prototypes, with at least partial implementations of all requested requirements, we
may conclude for this fifth question that

it is feasible for master students in software engineering to successfully modify
an existing functionality with noticeable impact at the architectural level and
add new functionalities to an existing system specified and documented within
the Iodass framework under our controlled environment.

We also wanted to gather the participants’ opinions regarding some aspects
of our languages and especially their expressiveness. In the survey we conducted,
statements 1 were devoted to evaluate that aspect and the results are fairly satisfying,
since the gain comparing to SysML is noticeable, especially for the communication
and deployment facilities. So either if the participants expressed some reserves
regarding the textual syntax at first, they felt more comfortable with it and even rated
it as accurate to represent architectural constructs and their requirements.

7.4 Threats to Validity

In the present chapter, we reported about the comparative case study we conducted
over master students in software engineering. We also drew a set of conclusions,
based on the observations we made, the functional tests we run over their prototypes,
and the results of the survey we organized. We will now evaluate the validity of these
conclusions by following the classification of threats to validity, as identified by Cook
and Campbell [Cook and Campbell, 1979] and extended by Wohlin et al. [Wohlin
et al., 2012]. Some of the threats are not detailed in the following section, those are
the ones which were not relevant for our case study, like the Mortality for example.
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7.4.1 Conclusion Validity

The question of the conclusion validity deals with the ability to draw valid conclu-
sions from the outcomes’ observations during an experiment [Wohlin et al., 2012].

Statistical-related threats

A couple of threats to validity relies on the statistical tests applied to interpret the
outcomes of an experiment. Since the beginning of this study, we knew we could
not build a statistically significant sample and that the profile of the subjects was
not totally random. Therefore, we did not use any statistical framework, but stayed
focused on objective metrics that could be interpreted per se. We have also been
particularly careful in the conclusions we draw in Section 7.3.5.

Reliability of measures

For the count of design decisions and their rationale (Metric 3), we cannot ensure
we did not miss one or another decision during the manual analysis of the S-Teams’
reports. However, we proofread many times those documents and the differences
between both approaches is so large that we may reasonably think that even if we
missed a few decisions or rationale, the conclusions over the systematic recording of
design decisions still stand.

The missing information regarding the S-Teams iterative process for the second
phase had no influence on our conclusion. We were only interested to identify if
the I-Teams effectively followed the iterative design process. These measures are
fully reliable since they are directly available in the ASR models inside the delivered
Eclipse projects.

Random irrelevancies in experimental setting

The main part of the case study was conducted outside classroom. We then cannot
guarantee the participants did not communicate from teams to teams. However,
we do not think such a communication may have influenced the results themselves.
We obviously paid attention to the produced models and code to identify clones or
cheating, which we did not found any proof of.

Random heterogeneity of subjects

The experiment was almost conducted in a vacuum. The participants profiles were
rather similar, even if their concrete experiences were slightly different for some of
them. Partially because we had a limited amount of participant and to try to tackle a
possible randomization problem that would have lead to unbalanced groups, we
organized the preliminary round to classify the students based on their structural
design competencies. We believe this initial phase helped to this purpose, but as the
amount of participants is limited and the initial phase was also limited, we may not
ensure a completely homogeneous distribution of participants between teams and
groups.

200



7.4.2. Internal Validity

7.4.2 Internal Validity

The internal validity deals with the influence of the variables under study, such that
an effect observed during an empirical study is not actually caused by an external
factor out of control [Wohlin et al., 2012].

History

Both groups had no previous knowledge or experience with one or the other lan-
guages and had comparable experience with Agile-oriented design methods. So we
may reasonably think the history had no significant influence on the case study.

Maturation

We believe that the subjects gained in experience during the experiment, since the
study was partially organized as a pedagogical mean too. But this maturation in
knowledge should not have influenced the results. In the other way around, some
participants may have gotten bored or tired, even if we have heard no complaint
from them during or after the study.

Instrumentation

In both groups, the tools used by the participants may have influenced the study,
even if they were part of the same platform. For S-Teams, the Obeo plugin revealed
to be unstable for some visualization purposes after an update and may have lead to
a partial discouraging or tiring effect. For I-Teams, the prototype was still in early
development stage, thought in a stable release, and was maybe not as user-friendly
and eye-candy as commercial tools. The differences in modeling approaches, textual
vs graphical, has also been considered when evaluating the results of the survey
(regarding the maintenance-related statements) and we drew our conclusions ac-
cordingly.

Selection

The selection process was clearly done by convenience. As discussed in Section 7.1.2,
students are an affordable source of participants to conduct studies, at the moment
some precautions are taken and the study has a pedagogical goal too [Carver et al.,
2010]. This convenient sampling was partially balanced by the initial evaluation
phase.

Interactions with selection

For both approaches, we created multiple teams, such that possible differences in
learning curves are balanced by the number of teams in each group. We clearly
observed discrepancies between the groups of each approach, so we reasoned
on median values, instead of individual results, to concentrate on middle-range
tendencies.
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Social threats

We especially paid attention to act with both groups the same way, without giving
more attention to one or the other team. The presentations of the languages and
tool support were organized separately, but exactly the same way with the same level
of details by the same person. We cannot ensure that the teams did not discuss with
each other, but we do not believe such interactions have influenced the study. If
such an influence would have appear, the S-Teams would have probably paid more
attention to document and refine their requirements in a more systematic manner
than they actually did.

Also, as the participants were aware that Iodass was our framework since we
had to point them to technical reports with details over the modeling languages,
some students may have been too respectful with our languages, or at the opposite,
they wanted to blast our framework by over-rating SysML which is an industrial
standard. The exact repercussion of this good-looking effect is honestly complicated
to determine. We can only observe that one team actually did not followed our
framework at all, but no other conclusion may be drawn.

7.4.3 Construct Validity

Construct validity focuses on whether the experiment is adequately designed to
measure what it is meant to evaluate [Wohlin et al., 2012]. They are either related to
the design of the study itself or to social elements.

Design threats

We took some time to construct the case study and identify what we wanted to
evaluate. In our case, the metrics were fairly obvious since we wanted to evaluate the
feasibility of the approach through functional correctness of produced software and
the possible gains in documentation. Both groups received the same instructions
prior to the case study that we can summarize as “develop a documented piece of
software”. But they were not aware of the metrics themselves. However, we did not
use a very large amount of metrics, but we crosschecked our findings with the results
of the survey and the evaluation reports written by the participants.

Social threats

We gave clear instructions regarding the expected deliverables for the study, such
that even if they did not know the exact nature of the investigated metrics, they had
a clear view of what we expected from them. Also, as the experiment was also part of
their curriculum, they were required to participate seriously to the study, that was
also evaluated at some points by external researchers or professor.

As clearly stated with the students at the beginning of the study, two aspects of
their deliverables were evaluated as part of their grading in the embedding course:
the semantics correctness of their models and the functional correctness of their
prototypes. No other quality-related deliverable was taken into account in their final
results.
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7.4.4 External Validity

Last, the external validity is the ability to generalize the observed results to other
communities, places or time [Wohlin et al., 2012].

Interaction of selection

We selected students in software engineering with a few experience in software
development as study subjects. They all had a previous experience with a simulated
realistic project. From Chapter 1, we already identified that the documentation
of an architecture and a software system in general is crucial, and often lacking in
industrial projects. So there is no indication that software engineers would have
documented their models with a significantly higher proportion than the S-Teams
under the same conditions. The design reports delivered by the students were
already detailed, recording many decisions, but lacking much of the design rationale.
On the other hand, we may reasonably think that junior analyst developers may
have acted the same way as the I-Teams since their profile is relatively close.

Interaction of setting

We used industrial-level tools for our study, both being plugins of the Eclipse ecosys-
tem which is popular in the software development community7. However, the Obeo
commercial plugin was not free of bugs, even if we tested carefully prior the case
study. Our tool was an early stable prototype, but was part of the study by itself.
Except the aforesaid reserves concerning the tools, this threats should not have
influenced the results.

Even if the size of the case study was small, the produced software was larger
than a simple toy example because it involved some knowledge on design patterns
(asynchronous callback, observer or model-view-controller) to be implemented in an
effective way and the participants were required to demonstrate it was truly working.
Therefore, we believe the case under study was large enough to already observe
valuable results.

7.5 Wrap-Up and Conclusions over the Empirical Evaluation

In this chapter, we were interested in validating our transformation-centric approach
and languages in contrast to an industrial modeling language used within a com-
parable design cycle. To this purpose, we set up a comparative case study where
master students in software engineering had to design and implement an online
library system. After a preliminary evaluation phase of the participants, we made
twice six teams of two students of comparable structural modeling competencies
and those teams had to implement the library system in two phases, the second
one simulating an evolution of the first release of the system. After each phase, we

7See the Eclipse download statistics on http://www.eclipse.org. For example, on October 2014, the
only standard build of the latest version released in September 2014 has been downloaded more than
385.000 times.
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evaluated the functional completeness and correctness of the students’ prototypes
to identify if they had been able to deliver a functioning software based on models
written within our approach. We also evaluated the documentation produced by
all teams and especially the differences in the production of detailed requirements
from higher-level ones and the justifications of their design decisions. In order to
support our observations, we also analyzed the evaluation reports written by the
participants as well as the results of a survey we conducted at the end of the study.

We identified that the functional completeness and correctness of the systems
implemented by the teams using our framework were as good as the ones of the
control group, even a bit better. We also observed a higher proclivity to refine higher
order requirements into more detailed ones and a higher number of justifications
as design rationale. However, we have to consider that we were experimenting in a
closed environment with too few subjects to claim we have statistically-grounded
results. We also identified other threats to validity which we tried to avoid with a
systematic approach to define the protocol of the study, or which we had to recognize
as possible biases to our results to temper our conclusions.
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Wrap-up of Contributions

Software architecture is a key aspect of the software engineering field as it offers a big-
picture representation of a system. At this level, many constraints and requirements
must already be taken into account, but staying independent enough to a particular
technology to remain as stable as possible across evolutions. However, with subse-
quent changes that inherently arise over time, discrepancies may appear between
a system and its architectural representation. Furthermore, the documentation of
an architecture is primordial to keep control over it. Its rationale and the decisions
that lead to a particular model are valuable pieces of information to understand its
design on the long run. Thought, at some point, the technology and the deployment
infrastructure influence a specific design and must be considered to avoid rework in
case of conflicts between an abstract design and its target running instances.

At the beginning of this dissertation, after a review of existing component-based
modeling languages, architectural knowledge recording techniques and transforma-
tion approaches, we identified a set of research questions.

RQ1.1 How can we represent SA models at different levels of abstraction ?

We proposed a domain specific language to represent software architectures from
coarse-grained to fine-grained components. This Definition Assemblage Deploy-
ment language has been specified based on the many commonalities of existing
component-based approaches, but with a couple of novelties that does make it not
yet another language. Our proposal remains on a clear separation of the abstract
definition of types of architectural modeling elements, assemblage of running spec-
ifications and deployment mappings to a target infrastructure.

RQ1.2 How can we represent SA models with flexible communication facilities ?

We defined a flexible duck-typing-based composition mechanism for software com-
ponents. This mechanism relies on the separation between the specification of the
communication protocol, the type of linkage between components and the concrete
medium that interconnects targeted computation nodes. This binding enables to
substitute compatible interfaces in an extensible manner by verifying the services
signatures instead of relying on names only. Then, interfaces may be superseded
based on partial semantics, instead of rigid inheritance mechanism. A taxonomy of
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link types has also been defined to cover a wide range of connection possibilities be-
tween components, from point-to-point to broadcast-like, or even with user-defined
load balancing strategies for the delegation of interface responsibilities.

RQ1.3 How can we represent SA models with deployment constraints ?

Our proposed language lets an important place to deployment constraints in order
to specify target infrastructure in terms of nodes, gates and communication media.
A dedicated mechanism for user-defined property has also been introduced to
refine the semantics of all model elements in general, and especially deployment
ones. Those properties open the door for model verifications in order to verify
if an envisioned architecture design may be able to be deployed on an existing
infrastructure or, at the opposite, identify computation and communication needs.

RQ2.1 How can we explicitly retain the link between SA models and related
significant requirements ?

An architecture model is always bound to its requirements, each requirement being
assigned to an architectural element. We specified a dedicated modeling facility to
list architecturally-significant requirements in a semi-formal manner and attach
them to any structural constructs, i.e. not only components, but also link types,
interfaces or protocols, for example. In a sense, any element is then explicitly
assigned to requirements, such that engineers always know who is in charge of the
fulfillment of a (non-functional) requirement.

RQ2.2 How can we document the decision-making and argumentation
processes when designing SA models ?

As engineers refine requirements or evaluate alternatives, they are encouraged to
fill in the requirement listing with their decision-making process. A set of relation-
ships, identified from the literature, are available to define dependencies between
requirements themselves, such as refinements, alternatives, conflicts, implications
or impacts. Requirements may also be fulfilled by existing interfaces or require
complex structural modifications. All these decisions may be further documented
by design rationale to detail the reasons behind a decision, like its strengths, weak-
nesses, hypotheses or constraints.

RQ3.1 How can we use model transformation techniques to iteratively refine SA
models with new concerns ?

From the strong binding and integration of software architectures and architecturally-
significant requirements, we defined an architectural framework where every mod-
ification in an architecture representation is specified in terms of formal model
transformations. For many structural modifications, like moving components from
one composite to another, the existing links are automatically updated in order to
speed up the work of software architects. The complete history of model modifica-
tions is explicitly kept in memory as part of the architectural knowledge and also
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for rollback reasons or design alternative explorations. Moreover, as an iteration is
recorded as a set of transformations belonging to a design decision, its rationale may
also be explicitly documented in the requirement listing for latter references.

RQ3.2 How can we use model transformation techniques to build and document
reusable architectural patterns ?

Patterns are directly specified as model transformations to be easily instantiated
in architectural models. Furthermore, since a set of transformations is always part of
a decision, patterns are directly documented with the same requirement formalism,
as independent solutions, to recurrent problems expressed as requirements. The
requirement listing offers a semi-formal mechanism that also suits to depict the
target problem that a pattern solves, its advantages and limitations, as well as its hy-
potheses and constraints under which it is usable. But, as discussed in its dedicated
chapter, it is possible that all structural aspects of a particular pattern may not be
expressed as automatic transformations.

pIck One, Document And tranSform Strategy

All these contributions can be summarized into our Iodass framework, where ar-
chitects are able to document and trace model evolutions structurally, through
the iterative transformation process, and wisely, through the design rationale and
relationships between decisions concerning the architecturally significant require-
ments. As partially observed during the empirical study we conducted, we believe
our rigorous design process, but somewhat lightweight in its implementation, may
help architects to keep control over a software architecture on the long run.

Identified Limitations

Obviously, the present research is not free of limitations. We cross over a list of
identified shortcomings for our approach.

An integrated framework

All languages of the framework are closely integrated to each others. This holistic
approach makes it powerful, but may be seen as an obstacle for many people. Even
if some parts are optional and a built-in library is available with basic reusable
constructs, the expressiveness of the architectural language makes it a bit complex
at first sight. Many modeling elements exist, allowing to specify in a detailed way
an architecture, but this level of specification is not always required by engineers,
especially for early draft architectures.

The stringent modification process may also appear discouraging, as we ob-
served for one team during our evaluation case study. We designed the framework
this way because we believe in the systematic definition of model modifications,
even if this zealous way of doing is also a drawback for very fast changes.
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The particularly rich semantics of the transformation rules may also appear
discouraging at first glance. We defined six main operators, which may look quite
a lot. We decided to provide a semantically rigorous language to ease the work
of architects through automatic updates and enable fine-grained modifications to
models, but this would require a bit of effort at first.

Textual syntax only

Our framework currently relies on textual editors only. The syntax has been designed
as relatively verbose and declarative in purpose to be readable by non practitioners,
thought we did not explicitly evaluated the syntax itself. Even if for model merging
(textual line-by-line verifications) or completeness reasons, textual models are often
preferable, they have been seen as less intuitive during our validation phase. As
we will describe later on, a combined approach with graphical visualization and
possibly model editing too, should be investigated.

Datatype inheritance

In our architectural language, datatypes, namely GenericTypes, may not be ex-
tended. Type inheritance should be integrated in the language, in combination to
the flexible composition mechanism. This would require to modify the formaliza-
tion of the duck-typing composition accordingly, to take into considerations the
subtypes of a given datatype.

No industrial case study

The comparative case study was rather small and conducted in a controlled environ-
ment. Ideally, a larger case study should be conducted, eventually with professionals,
to identify the benefits of our approach. Such a larger experiment could be con-
ducted in a comparable manner, with a control group using either SysML or another
set of languages and tools dedicated to structural and requirement modeling with
the same assets as the ones we were interested in, as defined in the protocol.

Another possibility would be to conduct a retrospective case study over an in-
dustrial software application and compare both results. But this technique would
require to know the approximative amount of time spent to develop the existing
solution in order to also evaluate the exceeding work required to develop the same
application under our framework, if any. Thought, comparable profiles for modelers
and/or analysts than the ones that develop the industrial software should participate
in the study to avoid heterogeneity biases.

Last, more focused validations could also be conducted to evaluate the readabil-
ity, as well as the level of structural details of produced models with time-framed
focus group and external reviewers. With smaller, but more detailed and specific
requirements asking for the evaluation of many alternatives or a deep knowledge
in software architecture design, the expected benefits in rationale documentation
could be further evaluated.
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Java template generator

The developed code generator is limited to Java source code and creates relatively
limited templates with method signatures that can be extended by concrete im-
plementations. Even if this way of doing is common to separate business classes
from generated classes, as we will discuss in the next section, a round-trip code
management would be an asset. Also, for now, only components and interfaces are
generated from model elements. The generation of protocol-specific connection
facilities should be investigated in order to, for example, create proxy or middleware-
oriented classes that will be used to interconnect concrete implementation classes.

Research Perspectives

To conclude this dissertation, we highlight interesting perspectives for possible
future research.

Combined textual-graphical editors

The combination of a textual and a graphical modeling environment should be inves-
tigated. As suggested by many participants to the validation phase and the research
community, at least a visualization facility should be implemented. Since recently,
new technologies, some of them based on the EMF framework, have appeared and
offer flexible and fast-delivery environments to build highly configurable visual-
ization tools as Eclipse plugins. We particularly note the GraphViz8 open-source
initiative that allows to represent any graph-based structures either in standalone
tools or inside Eclipse. The Eclipse Graphical Editing Framework9 offers the possi-
bility to build graphical editors inside the eclipse ecosystem. This would be a more
complete, thought more complex and time-consuming, solution.

Another strategy would be to hide the textual transformation language behind
the tracing of graphical modifications performed by the modeler. We guess this
would probably require another Ph.D, but we think of a graphical environment where
formal transformations are recorded as the modeler applies modifications onto a
software architectural representation. At the end of his task, a rationalization process
would transform all traces into macro-transformations that will serve as model
deltas, just like in our framework, but completely transparent to the modeler. Still,
he would be able to write its own transformations that could be applied graphically
for instant visualization. Likewise, he would be able to inject or identify architectural
patterns, again graphically.

Viewpoint-based filters

Combined to a graphical view, a facility to define custom viewpoints could be consid-
ered. With such a visualization, one may be able to abstract part of the system based
on either some components (s)he is interested in, based on a list of requirements

8http://www.graphviz.org/
9http://www.eclipse.org/gef/
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or on specific user-defined properties. In case of large system architectures, these
additional views would be particularly valuable to help architects to concentrate
on specific parts of the system, without crawling over the overall model when their
interested in some specific features or properties.

Round-trip generation support and release management

One of the code generator’s Holy Grail is the round-trip management of model and
code. Since architecture evolutions are traced as formal model transformations, a
complete workflow could be created to re-generate code from modifications of a
particular model. The other way around, as we separated the generated code from
its concrete implementation, code observer mechanisms could be developed to
identify model violations or semantic refinements of some classes and warn the
modeling team accordingly.

The proposed history tracing is relatively simple and lack of summary or graphi-
cal visualization facilities to identify deltas between versions at a glance. One could
investigate the possibility to identify and document releases at some point of the
iteration process. In case of a round-trip support, macro-transformations between
releases could then been isolated to specify evolutions or patches that could be
applied semi-automatically to existing software.

Property analysis, behavioral specifications and verifications

The user-defined property mechanism currently allows to annotate modeling ele-
ments and decisions rationale to refine their semantics. We presented some con-
sistency checks one may perform on them when dealing with design rationale. A
valuable extension of our approach would be to add model analysis based on these
user-defined values, e.g. does the required disk space for a piece of software is pro-
vided by its deployment target or if a certain needed response time may be ensured
with the concrete communication medium.

Also, this mechanism could be extended to allow the definition of behavioral
specifications. The structured property constructs may already be used to specify
static behavioral specifications. An appropriate model verification tool could be
integrated into our tool suite to verify the presence or absence of some properties
or the definition of conflicting values of the same property, in a larger scope than
the one we defined between rationale constructs. Alternatively, relations between
correlated properties could be integrated too in order to, for example, ensure a greedy
software is deployed on a sufficiently powerful node, or a heavily demanding service
in terms of the expected throughput may effectively have access to an adequate
communication medium.

Inter-dependencies of services could also be added into the framework to rep-
resent the sequence of services activations for a specific use case. More generally,
pre/postconditions could be integrated into the structural language, also as exten-
sions of the property language, to annotate the signatures of services regarding the
expected states of their parameters, for example.
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1 grammar be.unamur.info.iodass.textual.property.Property with org.eclipse.xtext.common.
Terminals

2

3 import "platform:/resource/be.unamur.info.iodass.model/model/Property"
4 import "http://www.eclipse.org/emf/2002/Ecore" as ecore
5

6 PropertyModel :
7 ’package’ pname=FQN (’[’’revision’ revision=REVNUMBER’]’)?’;’
8 properties += Property*
9 ’dadproperties’ name=ID ’{’

10 elements += Element*
11 ’}’;
12

13 Element :
14 PropertyGroup | PropertyDeclaration | EnumDeclaration;
15

16 PropertyGroup returns PropertyGroup :
17 ’group for’ target=PropertyTarget ’{’
18 (references+=[PropertyStatement|FQN]’;’ | properties += PropertyStatement)*
19 ’}’;
20

21 PropertyType returns PropertyType:
22 BooleanType | IntegerType | DecimalType | StringType | EnumType;
23

24 PropertyDeclaration returns PropertyDeclaration:
25 ’property for’ target=PropertyTarget property=PropertyStatement;
26

27 PropertyStatement returns PropertyStatement :
28 name=ID ’{’
29 ’type’ type=PropertyType (strictly?=’strictly’)? (ordering=OrderingLiteral)?’;’
30 (’unit’ unit=STRING’;’)?
31 (’semantics’ semantics=STRING’;’)?
32 ’}’;
33

34 EnumDeclaration returns EnumDeclaration:
35 ’enum’ name=ID ’{’
36 literals+=EnumLiteral ( "," literals+=EnumLiteral)*
37 ’}’;
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38

39 EnumLiteral :
40 {EnumLiteral} name=ID;
41

42 BooleanType :
43 {BooleanType} ’boolean’ ;
44

45 IntegerType :
46 {IntegerType} ’int’ ;
47

48 DecimalType :
49 {DecimalType} ’decimal’ ;
50

51 StringType :
52 {StringType}’string’ ;
53

54 EnumType returns EnumType:
55 name=[EnumDeclaration|FQN];
56

57 //
58 // PROPERTIES
59 // must be redefined in DAD model too because DAD grammar does not inherit from property

(unable to extend twice)
60 //
61

62 Property returns Property:
63 name=[PropertyStatement|FQN] ’:’ (value=Value | evalue=[EnumLiteral|FQN])’;’;
64

65 Value returns Value:
66 {StringLiteral} value=STRING
67 | {BooleanLiteral} value=BOOLEANVALUE
68 | {IntegerLiteral} value=INT
69 | {DecimalLiteral} value=DECIMALVALUE ;
70

71 REVNUMBER :
72 INT(’.’INT)*;
73

74 DECIMALVALUE returns ecore::EBigDecimal:
75 INT’.’INT;
76

77 terminal BOOLEANVALUE returns ecore::EBoolean:
78 ’true’ | ’false’;
79

80 enum PropertyTarget returns PropertyTarget:
81 componenttype | interface | linktype | protocol | nodetype | gatetype | mediumtype |

service | model | asr
82 | one2one | one2many | many2many | simple | random | broadcast | loadbalancing;
83

84 enum OrderingLiteral returns OrderingLiteral:
85 asc | desc ;
86

87 FQN :
88 ID(’.’ID)*;
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1 grammar be.unamur.info.iodass.textual.archi.Dad with org.eclipse.xtext.common.Terminals
2

3 import "platform:/resource/be.unamur.info.iodass.model/model/Dad"
4 import "platform:/resource/be.unamur.info.iodass.model/model/Property" as property
5 import "http://www.eclipse.org/emf/2002/Ecore" as ecore
6 import "http://www.eclipse.org/xtext/common/JavaVMTypes" as jvmTypes
7

8 DADModel returns DADModel:
9 {DADModel}

10 ’package’ pname=FQN (’[’’revision’ revision=REVNUMBER’]’)? ’;’
11 imports+=Import*
12 properties+=Property*
13 ’dadmodel’ name=ID ’{’
14 (definition=Definition)?
15 (assemblage=Assemblage)?
16 (deployment=Deployment)?
17 ’}’;
18

19 Import returns property::Import:
20 {property::Import}
21 ’import’ importedNamespace=FQNWithWildCard’;’;
22

23 //
24 // 1.Definition
25 //
26

27 Definition returns Definition:
28 {Definition}
29 ’definition’ ’{’
30 constructs += ConstructType*
31 dependencies += Dependency*
32 ’}’;
33

34 ConstructType returns ConstructType:
35 GenericType | ComponentType | Protocol | LinkType | NodeType | MediumType | GateType;
36

37 Dependency returns Dependency:
38 LinkageType | LeakUsage;
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39

40 // data types
41

42 GenericType returns GenericType:
43 DataStructure | Interface | Primitive;
44

45

46 DataStructure returns DataStructure:
47 {DataStructure}
48 ’struct’ name=ID (many?=’[]’)? ’{’
49 (dataFields+=DataField)*
50 ’}’;
51

52 DataField returns DataField:
53 {DataField}
54 fieldtype=[GenericType|FQN] (many?=’[]’)? name=ID’;’;
55

56 Primitive returns Primitive:
57 ’datatype’ name=ID (’mapped-to’ javatype=[jvmTypes::JvmType|FQN])?’;’;
58

59

60 // Interfaces
61

62 Interface returns Interface:
63 {Interface}
64 ’interface’ name=ID ’{’
65 (services += Service)*
66 (’properties’ ’{’
67 properties+=Property+
68 ’}’)?
69 ’}’;
70

71 Service returns Service:
72 (SyncOperation | AsyncOperation | Event | Exception | Flow) (properties+=Property)?’;’

;
73

74 SyncOperation returns SyncOperation:
75 {SyncOperation}
76 ’sync’ resultType=[GenericType|FQN] (many?=’[]’)? name=ID’(’(arglist+=Argument (","

arglist+=Argument)*)?’)’ (’raises’ raises+=[Exception|FQN] ("," raises+=[
Exception|FQN])* )?;

77

78 AsyncOperation returns AsyncOperation:
79 {AsyncOperation}
80 ’async’ name=ID ’(’(arglist+=Argument ("," arglist+=Argument)*)?’)’;
81

82 Event returns Event:
83 {Event}
84 ’event’ name=ID ’(’(arglist+=Argument (’,’ arglist+=Argument)*)?’)’;
85

86 Exception returns Exception:
87 {Exception}
88 ’exception’ name=ID ’(’(arglist+=Argument (’,’ arglist+=Argument)*)?’)’;
89

90 Flow returns Flow:
91 {Flow}
92 ’flow’ name=ID argument=Argument;
93

94 Argument returns Argument:
95 (access=ArgumentAccess)? argType=[GenericType|FQN] (many?=’[]’)? name=ID;
96

97

98 // component types, facets, usages and linkage types
99

100 ComponentType returns ComponentType:
101 {ComponentType}
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102 (final?=’final’)? ’componenttype’ name=ID (’extends’ extends+=[ComponentType|FQN] (’,’
extends+=[ComponentType|FQN])*)? ’{’

103 (innerCompTypes += ComponentType
104 | innerReferences += [ComponentType|FQN]
105 | facets += Facet
106 | innerConfig += Dependency)*
107 ’}’;
108

109 Facet returns Facet:
110 {Facet}
111 usedType=FacetUsedType typeOfFacet=[Interface|FQN] ’as’ name=ID’;’;
112

113 LinkageType returns LinkageType:
114 {LinkageType}
115 ’linkagetype from’ fromFacet=[Facet|FQN] ’to’ toFacet=[Facet|FQN] ’with’ linkType=[

LinkType|FQN]’;’;
116

117 LeakUsage returns LeakUsage:
118 {LeakUsage}
119 ’usage from’ fromCompType=[ComponentType|FQN] ’to’ toCompType=[ComponentType|FQN]’;’;
120

121

122 // linktypes and protocol
123

124 LinkType returns LinkType:
125 ConnectorType | DelegateType;
126

127 ConnectorType returns ConnectorType:
128 {ConnectorType}
129 ’connectortype’ name=ID (’extends’ extends=[LinkType|FQN])?’{’
130 ’mode’ mode=ConnectionMode ’;’
131 properties+=Property*
132 (’accepts’ protocolList+=[Protocol|FQN] ("," protocolList+=[Protocol|FQN])*’;’ )?
133 ’}’;
134

135 DelegateType returns DelegateType:
136 {DelegateType}
137 ’delegatetype’ name=ID (’extends’ extends=[LinkType|FQN])? ’{’
138 ’mode’ mode=DelegationMode’;’
139 properties+=Property*
140 (’accepts’ protocolList+=[Protocol|FQN] ("," protocolList+=[Protocol|FQN])*’;’)?
141 ’}’;
142

143

144 Protocol returns Protocol:
145 {Protocol}
146 ’protocol’ name=ID (’extends’ extends=[Protocol|FQN])? ’{’
147 ’layer’ layer=CommunicationLayer’;’
148 properties+=Property*
149 ’}’;
150

151

152 // hardware types
153

154 NodeType returns NodeType:
155 {NodeType}
156 ’nodetype’ name=ID (’extends’ extends=[NodeType|FQN])? ’{’
157 (gates+=Gate)*
158 (properties+=Property)*
159 ’}’;
160

161 MediumType returns MediumType:
162 {MediumType}
163 ’mediumtype’ name=ID (’extends’ extends=[MediumType|FQN])? ’{’
164 (’supports’ protocolList+=[Protocol|FQN] (’,’ protocolList+=[Protocol|FQN])*’;’)?
165 properties+=Property*
166 ’}’;
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167

168 GateType returns GateType:
169 {GateType}
170 ’gatetype’ name=ID (’extends’ extends=[GateType|FQN])?’{’
171 ’supports’ protocolList+=[Protocol|FQN] (’,’ protocolList+=[Protocol|FQN])*’;’
172 properties+=Property*
173 ’}’;
174

175 Gate returns Gate:
176 {Gate}
177 typeOfGate=[GateType|FQN] (’[’ size=INT ’]’)? name=ID’;’;
178

179 //
180 // 2.Assemblage
181 //
182

183 Assemblage returns Assemblage:
184 {Assemblage}
185 ’assemblage’ ’{’
186 sois += SoI*
187 linkages+=Linkage*
188 ’}’;
189

190 SoI returns SoI:
191 {SoI}
192 ’soi’ name=ID (’[’mincard=INT maxcard=INT’]’)? ’:’ typeOfSoi=[ComponentType|FQN] (

bigbang?=’bigbang’)? ’{’
193 (exposes+=Port)*
194 (’creates’ creates+=[SoI|FQN] (’,’ creates+=[SoI|FQN])*’;’)?
195 (’destroys’ destroys+=[SoI|FQN] (’,’ destroys+=[SoI|FQN])*’;’)?
196 (properties+=Property)*
197 ’}’;
198

199 Port returns Port:
200 {Port}
201 typeOfPort=[Facet|FQN] (’[’ size=INT ’]’)? ’as’ name=ID ’on’ protocol=[Protocol|FQN]’;

’ ;
202

203

204 Linkage returns Linkage:
205 {Linkage}
206 ’linkage from’ fromPort=[Port|FQN] (’[’fromLow=INT (fromUp=INT)?’]’)? ’to’ toPort=[

Port|FQN] (’[’toLow=INT (toUp=INT)?’]’)? ’with’ linktype=[LinkType|FQN]’;’;
207

208

209 //
210 // 3.Deployment
211 //
212

213 Deployment returns Deployment:
214 {Deployment}
215 ’deployment’ ’{’
216 (nodes += Node
217 | sites+=Site
218 | plugs+=PlugCable
219 | deploys+=Deploy
220 | openings +=Open)*
221 ’}’;
222

223 Node returns Node:
224 {Node}
225 ’node’ name=ID (’[’ size=INT ’]’)? ’:’ typeOfNode=[NodeType|FQN]’;’;
226

227 Site returns Site:
228 {Site}
229 ’site’ name=ID ’{’
230 ’situation’ situation=STRING’;’
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231 (properties+=Property)*
232 ’contains’ nodes+=[Node|FQN] (’,’ nodes+=[Node|FQN])*’;’
233 ’}’;
234

235 Deploy returns Deploy:
236 {Deploy}
237 ’deploy’ soi=[SoI|FQN] (’[’soiFromId=INT (soiToId=INT)?’]’)? ’on’ node=[Node] (’[’

fromNodeId=INT (toNodeId=INT)?’]’)?’;’;
238

239 PlugCable returns PlugCable:
240 {PlugCable}
241 ’plug’ mediumType=[MediumType|FQN] ’from’ fromNode=[Node|FQN] (’[’fromNodeMinId=INT (

fromNodeMaxId=INT)?’]’)?’::’fromGate=[Gate|FQN] (’[’fromGateId=INT’]’)? ’to’
toNode=[Node|FQN] (’[’toNodeMinId=INT (toNodeMaxId=INT)?’]’)?’::’toGate=[Gate|
FQN] (’[’toGateId=INT’]’)?’;’;

242

243 Open returns Open:
244 {Open}
245 ’open’ port=[Port|FQN] (’[’fromPortId=INT (toPortId=INT)?’]’)? ’on’ onNode=[Node|FQN]

(’[’fromNodeId=INT (toNodeId=INT)?’]’)?’::’gate=[Gate|FQN] (’[’gateId=INT’]’)?’;
’;

246

247 //
248 // PROPERTIES (redundant with rule in property MM, but can’t inherit twice in xtext
249 //
250

251 Property returns property::Property:
252 name=[property::PropertyStatement|FQN] ’:’ (value=Value | evalue=[property::

EnumLiteral|FQN])’;’;
253

254 Value returns property::Value:
255 {property::StringLiteral} value=STRING
256 | {property::BooleanLiteral} value=BOOLEANVALUE
257 | {property::IntegerLiteral} value=INT
258 | {property::DecimalLiteral} value=DECIMALVALUE ;
259

260

261 //
262 // Types
263 //
264

265 terminal BOOLEANVALUE returns ecore::EBoolean:
266 ’true’ | ’false’;
267

268 DECIMALVALUE returns ecore::EBigDecimal:
269 INT’.’INT;
270

271 //
272 // Technical rules, enums and terminal
273 //
274

275 FQN :
276 ID(’.’ID)*;
277

278 FQNWithWildCard:
279 FQN ’.*’?;
280

281 REVNUMBER :
282 INT(’.’INT)*;
283

284 enum ArgumentAccess returns ArgumentAccess:
285 in=’in’ | out=’out’ | inout=’inout’;
286

287 enum FacetUsedType returns FacetUsedType:
288 implements=’implements’ | uses=’uses’;
289
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290 enum CommunicationLayer returns CommunicationLayer: /* undefined is hidden from content
assist */

291 physical=’physical’ | datalink=’datalink’ | network=’network’ | transport=’transport’
| session=’session’ | presentation=’presentation’ | application=’application’ |
samespace=’samespace’;

292

293 enum ConnectionMode returns ConnectionMode:
294 one2one | one2many | many2many;
295

296 enum DelegationMode returns DelegationMode:
297 simple | random | broadcast | loadbalancing;
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1 grammar be.unamur.info.iodass.textual.asr.Asr with be.unamur.info.iodass.textual.archi.
Dad

2

3 import "platform:/resource/be.unamur.info.iodass.model/model/Asr"
4 import "platform:/resource/be.unamur.info.iodass.model/model/Dad" as dad
5 import "http://www.eclipse.org/emf/2002/Ecore" as ecore
6

7 ASRModel returns ASRModel:
8 {ASRModel}
9 ’package’ pname=FQN (’[’’revision’ revision=REVNUMBER’]’)?’;’

10 imports+= Import*
11 properties+=Property*
12 ’asrmodel’ name=ID (’with’ importedNamespace=FQN)? ’{’
13 asr+=ASR+
14 ’}’;
15

16 ASR returns ASR:
17 {ASR}
18 (final?=’final’)? asrType=ASRType name=ID ’assigned’ isInCharge=[dad::ConstructType|

FQN] ’{’
19 ’description’ longDesc=STRING’;’
20 (’priority’ priority=INT’;’)?
21 (properties+=Property*)?
22 (decisions+=Decision)*
23 ’}’;
24

25 Decision:
26 (DDImplemOrUsage // assign to interface
27 | DDAlternative // refinement (may be an alternative)
28 | DDAssignment // reassign to other construct
29 | DDImplication // asr implies selection of other asr
30 | DDExclude // mutual exclusion between 2 asr
31 | DDImpact // negative, neutral or positive impact between requirement
32 | DDRealisation) ’{’ // transformation
33 (rationale+=Rationale)+
34 ’}’;
35

36 DDImplemOrUsage returns DDImplemOrUsage:
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37 {DDImplemOrUsage} usedType=FacetUsedType interface=[dad::Interface|FQN] ;
38

39 DDAlternative returns DDAlternative:
40 {DDAlternative} ’refines’ asr=[ASR|FQN] (’is’ altType=DDAlternativeType)?;
41

42 DDAssignment returns DDAssignment:
43 {DDAssignment} ’reassigned’ construct=[dad::ConstructType|FQN] ;
44

45 DDExclude returns DDExclude:
46 {DDExclude} ’exclude’ asr=[ASR|FQN];
47

48 DDImpact returns DDImpact:
49 {DDImpact} ’impact’ (type=ImpactType)? asr=[ASR|FQN];
50

51 DDImplication returns DDImplication:
52 {DDImplication} ’implies’ asr=[ASR|FQN];
53

54 DDRealisation returns DDRealisation:
55 {DDRealisation} ’realisation’ transformation=FQN;
56

57 Rationale returns Rationale:
58 {Rationale} type=RationaleType (property=Property)? description=STRING’;’;
59

60 /*
61 * ENUMS
62 */
63

64 enum ASRType :
65 func | nonfunc;
66

67 enum DDAlternativeType :
68 alternative | selected ;
69

70 enum RationaleType :
71 assessment | assumption | strength | weakness | constraint;
72

73 enum ImpactType :
74 neutrally | negatively | positively;
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1 grammar be.unamur.info.iodass.textual.transfo.DadT with be.unamur.info.iodass.textual.
archi.Dad

2

3 import "platform:/resource/be.unamur.info.iodass.model/model/DadT"
4 import "platform:/resource/be.unamur.info.iodass.model/model/Dad" as dad
5 import "platform:/resource/be.unamur.info.iodass.model/model/Asr" as asr
6

7 DADTModel returns DADTModel:
8 {DADTModel}
9 ’package’ pname=FQN (’[’’revision’ revision=REVNUMBER’]’)?’;’

10 imports += Import*
11 ’asrmodel’ asrmodel=FQN’;’
12 (’dadmodel’ dadmodel=FQN’;’)?
13 properties+=Property*
14 ’transformationset’ name=ID ’concerns’ asr+=[asr::ASR|FQN] (’,’ asr+=[asr::ASR|FQN])*

’{’
15 (transfo+=Transformation)+
16 ’}’;
17

18 Transformation :
19 CreateStatement | DeleteStatement | AlterStatement
20 | ReplaceConstruct | MoveConstruct | RenameConstruct
21 | IncarnateConstruct | DeployConstruct
22 | IncludeStatement;
23

24

25 IncludeStatement returns IncludeStatement:
26 ’include’ importedNamespace=FQN’;’;
27

28 //
29 // Creation
30 //
31

32 CreateStatement :
33 ’create’ (CreateConstruct | CreateLinkageType | CreateUsage);
34

35 CreateConstruct returns CreateConstruct:
36 construct=ConstructType (’parent’ parentCT=[dad::ComponentType|FQN]’;’)?;
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37

38 CreateLinkageType returns CreateLinkageType:
39 linkageType = LinkageType;
40

41 CreateUsage returns CreateUsage:
42 leakUsage=LeakUsage;
43

44

45 //
46 // deletion
47 //
48

49 DeleteStatement:
50 ’delete’ (DeleteConstruct | DeleteLinkageType | DeleteUsage | DeleteFacet | DeleteGate
51 | DeletePort | DeleteSoI | DeleteLinkage
52 | DeleteNode | DeleteDeploy | DeleteOpen | DeletePlug);
53

54 DeleteConstruct returns DeleteConstruct:
55 construct=[dad::ConstructType|FQN] ’;’;
56

57 DeleteLinkageType returns DeleteLinkageType:
58 linkageType=LinkageType;
59

60 DeleteUsage returns DeleteUsage:
61 usage=LeakUsage;
62

63 DeleteFacet returns DeleteFacet:
64 ’facet’ facet=[dad::Facet|FQN] ’;’;
65

66 DeletePort returns DeletePort:
67 ’port’ port=[dad::Port|FQN] ’;’;
68

69 DeleteGate returns DeleteGate:
70 ’gate’ gate=[dad::Gate|FQN] ’;’;
71

72 DeleteSoI returns DeleteSoI:
73 ’soi’ soi=[dad::SoI|FQN] ’;’;
74

75 DeleteLinkage returns DeleteLinkage:
76 linkage=Linkage;
77

78 DeleteNode returns DeleteNode:
79 ’node’ node=[dad::Node|FQN]’;’;
80

81 DeleteDeploy returns DeleteDeploy:
82 deploy= Deploy;
83

84 DeletePlug returns DeletePlug:
85 plug=PlugCable;
86

87 DeleteOpen returns DeleteOpen:
88 open=Open;
89

90

91 //
92 // alterations
93 //
94

95 AlterStatement returns AlterStatement:
96 ’alter’ (AlterInterface | AlterDataStructure | AlterProtocolList | AddGate | AddFacet

| AlterSoI | AlterSite);
97

98

99 // interfaces
100

101 AlterInterface returns AlterInterface:
102 ’interface’ interface=[dad::Interface|FQN] ’{’

222



Appendix D. DAD-T Xtext Grammar

103 (alterations+=InterfaceAlteration)+
104 ’}’;
105

106 InterfaceAlteration returns InterfaceAlteration:
107 CreateService | DeleteService | RewriteService;
108

109 CreateService returns CreateService:
110 ’add’ service=Service;
111

112 DeleteService returns DeleteService:
113 ’remove’ service=[dad::Service|FQN]’;’;
114

115 RewriteService returns RewriteService:
116 ’rewrite’ service=[dad::Service|FQN] ( ’by’ rewriting=Service | ’{’ alterArguments +=

AlterArgument+ ’}’);
117

118 AlterArgument returns AlterArgument:
119 CreateArgument | RewriteArgument | DeleteArgument;
120

121 CreateArgument returns CreateArgument:
122 ’add’ argument=Argument’;’;
123

124 DeleteArgument returns DeleteArgument:
125 ’remove’ argument=[dad::Argument|FQN]’;’;
126

127 RewriteArgument returns RewriteArgument:
128 ’replace’ argument=[dad::Argument|FQN] ’by’ rewriting=Argument’;’;
129

130 AlterDataStructure returns AlterDataStructure:
131 ’struct’ dataStructure=[dad::DataStructure|FQN] ’{’
132 (alterations+=DataStructureAlteration)+
133 ’}’;
134

135

136 // data structures
137

138 DataStructureAlteration returns DataStructureAlteration:
139 CreateField | RewriteField | DeleteField;
140

141 CreateField returns CreateField:
142 ’add’ dataField=DataField;
143

144 RewriteField returns RewriteField:
145 ’replace’ dataField=[dad::DataField|FQN] ’by’ rewriting=DataField;
146

147 DeleteField returns DeleteField:
148 ’remove’ dataField=[dad::DataField|FQN]’;’;
149

150

151 // protocols
152

153 AlterProtocolList returns AlterProtocolList:
154 (AlterProtocolConnectorType | AlterProtocolDelegationType | AlterProtocolGateType |

AlterProtocolMediumType)
155 (’add’ | deletion?=’delete’) protocols+=[dad::Protocol|FQN] (’,’ protocols+=[dad::

Protocol|FQN])*’;’;
156

157 AlterProtocolConnectorType returns AlterProtocolConnectorType:
158 ’connectortype’ connectortype=[dad::ConnectorType|FQN] ;
159

160 AlterProtocolDelegationType returns AlterProtocolDelegationType:
161 ’delegationtype’ delegatetype=[dad::DelegateType|FQN] ;
162

163 AlterProtocolGateType returns AlterProtocolGateType:
164 ’gatetype’ gatetype=[dad::GateType|FQN] ;
165

166 AlterProtocolMediumType returns AlterProtocolMediumType:
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167 ’mediumtype’ mediumtype=[dad::MediumType|FQN] ;
168

169 // facet, gate and port
170

171 AddFacet returns AddFacet:
172 ’componenttype’ componentType=[dad::ComponentType|FQN] ’{’
173 (facets+=Facet)+
174 ’}’;
175

176 AddGate returns AddGate:
177 ’nodetype’ nodeType=[dad::NodeType|FQN] ’{’
178 (gates+=Gate)+
179 ’}’;
180

181 AlterSoI returns AlterSoI:
182 ’soi’ soi=[dad::SoI|FQN] ’{’
183 (ports+=Port)*
184 (’card’ ’[’ mincard=INT maxcard=INT ’]’’;’)?
185 (’creates’ creates+=[dad::SoI|FQN] (’,’ creates+=[dad::SoI|FQN])*’;’)?
186 (’destroys’ destroys+=[dad::SoI|FQN] (’,’ destroys+=[dad::SoI|FQN])*’;’)?
187 (’bigbang’ bigbang=BOOLEANVALUE’;’)?
188 ’}’;
189

190 AlterSite returns AlterSite:
191 ’site’ site=[dad::Site|FQN] ’{’
192 (’rename’ newname=ID’;’)?
193 (’situation’ newsituation=STRING ’;’)?
194 (’add’ addnodes+=[dad::Node|FQN] (’,’ addnodes+=[dad::Node|FQN])*’;’)?
195 (’remove’ remnodes+=[dad::Node|FQN] (’,’ remnodes+=[dad::Node|FQN])*’;’)?
196 ’}’;
197

198

199 //
200 // replacement, renaming and move
201 //
202

203 ReplaceConstruct returns ReplaceConstruct:
204 ’replace’ oldConstruct=[dad::ConstructType|FQN] ’by’ newConstruct=[dad::ConstructType|

FQN] (merge?=’merge’)? (keepOldName?=’keepname’)? (’overrides’ ’{’ ovRules+=
OverrideRule* ’}’)?’;’;

205

206 OverrideRule :
207 (OverrideComponentType | OverrideFacet | OverridePort) (keepOldName?=’keepname’)?’;’;
208

209 OverrideComponentType returns OverrideComponentType:
210 old=[dad::ComponentType|FQN] ’by’ repl=[dad::ComponentType|FQN] (merge?=’merge’)? ;
211

212 OverrideFacet returns OverrideFacet:
213 ’facet’ old=[dad::Facet|FQN] ’by’ repl=[dad::Facet|FQN];
214

215 OverridePort returns OverridePort:
216 ’port’ old=[dad::Port|FQN] ’by’ repl=[dad::Port|FQN];
217

218 //
219 // move
220 //
221

222 MoveConstruct returns MoveConstruct:
223 ’move’ target=[dad::ConstructType|FQN] ’to’ (newparent=[dad::ComponentType|FQN] | ’

root’)’;’;
224

225 //
226 // rename
227 //
228

229 RenameConstruct returns RenameConstruct:
230 ’rename’ construct=[dad::ConstructType|FQN] ’as’ newname=ID’;’;
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231

232 //
233 // assemblage and deployment
234 //
235

236 IncarnateConstruct :
237 assemblage=Assemblage;
238

239 DeployConstruct :
240 deployment=Deployment;
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E.1 Preamble

The Iodass plugin has been developed mainly as a proof-of-concept tool in order
to test the feasibility of our transformation-centric framework. The majority of the
exposed concepts regarding the domain specific languages and the design strategy
have been implemented. We also tried to make it somewhat user friendly with file
and project wizards, enhanced outline view, meaningful messages and a built-in
sample.

We particularly paid attention to develop this plugin following some best prac-
tices, like documented and commented code, self explanatory naming conventions,
separation of concerns between the different languages, and so forth.

Aside the language grammars reproduced in Appendix A to D, this guide is meant
to help users to have an overview of the tool’s architecture and how it places itself in
the Eclipse ecosystem. We also describe the installation procedure from an Eclipse
update site we set up. Afterwards, we present the built-in example dedicated to
introduce the Iodass concepts in a simplified manner. We finally present the main
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features of the tool with the various creation wizards, the transformation engine and
the Java generator.

E.2 Xtext-Based Architectural Overview

As introduced in Chapter 6, the Iodass plugin relies on the Eclipse Modeling Frame-
work1, which is a basis for model-based development in the Eclipse platform. On top
of EMF, many modeling tools have been created, like Papyrus2 for UML diagrams,
ATL transformations3, Acceleo4 textual (code) generator or Xtext5 DSL development.

We found Xtext particularly suitable to our purpose, especially because this
initiative is now well supported by the Itemis AG6 company and a wide community
of users. Since Xtext is itself a framework, we had to stick to its architecture, as
shown in Figures 6.5 and 6.6. An Xtext 2 project is always divided at least in two
distinct Eclipse projects, one for the language itself and one for the user interface.
The language project follows this structure:

src the source folder where the DSL developers put its own code
src-gen the generated Java classes from the language grammar

xtend-gen the generated Java classes from Xtend classes

In short, from an initial MyGrammar.xtext file, aside all generated classes to
manipulate the grammar itself, the framework generates a set of folders and Java
skeletons in the src folder, following this structure for the first project:

formatting for pretty-printing purposes
generator any code generator classes

naming handles how the names of model elements must be created
scoping manages the scope of a model elements (model imports)

serializer customizes how models must be serialized
validation custom model semantic validations

The UI project src folder is composed by the following packages:

contentassist assists users when they write models
labeling customizes the popup labels
outline customizes the outline view

quickfix applies quick-fixes to syntactical/semantical errors
wizard specifies dedicated creation wizards

Four dedicated Xtext projects have been created, one per language, all following
the same structures as described above. Furthermore, special handlers have been
developed in committed handler packages to add the possibility to generate Java
code templates from DAD models and run DAD-T transformation sets when clicking
on the right model. Also, the transformation engine has been also placed into its
own package, in the DAD-T language project.

1http://eclipse.org/emf/
2http://www.eclipse.org/modeling/mdt/papyrus/
3http://www.eclipse.org/atl
4http://www.eclipse.org/acceleo
5http://www.eclipse.org/Xtext
6http://www.itemis.com/
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Finally, the language "Xtext-compliant" meta-models have been defined in a
separated plugin, where the generated EMF code is also present.

E.3 Install Instructions

We created an Eclipse update site to ease the installation of the Iodass plugin at
https://fabgilson.bitbucket.org/. We briefly summarize the installation procedure
here. Thanks to the dependency resolver of Eclipse, one can start from any Eclipse
distribution, but the Java and DSL developers and Modeling tools are the most
appropriate with all needed dependencies already installed.

First, inside Eclipse, open the Help menu and select the Install new software
option. A similar window as Figure E.1 will show up.

Figure E.1: Install new software window

After clicking the Add button on the top right of the window, fill in the afore-
mentioned address for the Iodass update site with a label, like Iodass editors in the
example, and click the OK button. The available plugin will be displayed and you
can install it by ticking the checkbox right next to the plugin name and clicking the
Next button, as shown in Figure E.2.

You will be presented with the user agreement that describes the license of the
Iodass plugin. The plugin is distributed under the Eclipse Public License v1.07. You
may accept, click the Finish button and the plugin will be installed.

Last, you will have to restart Eclipse to make the changes effective and you will
be able to create you first Iodass project.

7https://www.eclipse.org/legal/epl-v10.html
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Figure E.2: Install Iodass editors

E.4 Create a New IODASS Project

In order to create a new Iodass project, we developed a creation wizard to ease the
configuration and dependency setups. From the File menu, select the New, Project...
options and search for the Iodass entry in the list of project types8. Figure E.3
depicts the Iodass entry in the project list.

Figure E.3: New Iodass project wizard

After having filled in a name for your project, like IodassTutorial in our case, click
the Finish button and the project will be shown in your package explorer. You should
now be presented a similar window as depicted in Figure E.4.

8This can also be done from a right click in the Package Explorer
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Figure E.4: New Iodass project

A new project always contains a set of built-in models with reusable constructs,
properties and patterns in the iodass.base package. Also, a helloworld example is
also provided to have a quick introduction to some types of constructs and to the
transformation and generation engines. We will introduce both engines after having
reviewed the content of the helloworld sample

E.5 Built-in Helloworld Example

A small client-server example is shipped with the plugin. It can be found in the
revision1.be.iodass.example package. The DAD model is reproduced in the
following code listing E.1.

1 package be.iodass.example [ revision 1 ] ;
2

3 dadmodel clientserver {
4 definition {
5 componenttype Client {}
6 componenttype Server {}
7

8 protocol TCP { layer transport; }
9

10 connectortype One2One {
11 mode one2one;
12 accepts TCP;
13 }
14

15 gatetype Ethernet { supports TCP; }
16
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17 nodetype Computer { Ethernet eth; }
18

19 mediumtype RJ45 { supports TCP; }
20 }
21

22 assemblage {
23 soi client : Client {}
24 soi server : Server {}
25 }
26

27 deployment {
28 node computer [2] : Computer;
29 plug RJ45 from computer[0]::eth to computer[1]::eth;
30 deploy client on computer[0];
31 deploy server on computer[1];
32 }
33 }

Listing E.1: DADmodel of the Client-Server built-in sample

A dummy requirement is also expressed in the bound ASR model and this only
requirement is implemented by the example transformation set, also part of the
helloworld sample. We first give the details of the requirement in Listing E.2.

1 package be.iodass.example [ revision 1 ] ;
2

3 asrmodel clientserver with be.iodass.example.clientserver {
4 // sample requirement definition
5 func SayHello assigned Server {
6 description "Say hello World!";
7 realisation be.iodass.example.myfirsttransformation {
8 assessment "functionality is trivial, an interface should make the trick.";
9 }

10 }
11 }

Listing E.2: AST listing of the Client-Server built-in sample

The DAD architectural model is enriched through model transformations, de-
tailed in Listing E.3

1 package be.iodass.example [ revision 1 ] ;
2

3 asrmodel be.iodass.example.clientserver; // asr model where the requirement is defined
4 dadmodel be.iodass.example.clientserver; // linked dad model (to be transformed)
5

6 transformationset myfirsttransformation concerns SayHello {
7

8 // create interface
9 create interface Hello {

10 sync void hello();
11 }
12

13 // create facets on each part
14 alter componenttype Client{
15 uses Hello as hello;
16 }
17

18 alter componenttype Server {
19 implements Hello as hello;
20 }
21

22 // create ports for facets
23 alter soi client {
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24 Client.hello as hello on TCP;
25 }
26

27 alter soi server {
28 Server.hello as hello on TCP;
29 }
30

31 create linkagetype from Client.hello to Server.hello with One2One;
32

33 // connect client to server
34 assemblage {
35 linkage from client.hello to server.hello with One2One;
36 }
37

38 // open ports on client and server on ethernet gate
39 deployment {
40 open client.hello on computer[0]::eth;
41 open server.hello on computer[1]::eth;
42 }
43 }

Listing E.3: DAD-T set of the Client-Server built-in sample

Thought all these model samples are relatively trivial, they already illustrate a
significant part of the available Iodass constructs. By right-clicking on the DAD-T
file, we may select the IODASS menu and Execute DAD transformation set, as shown
in Figure E.5.

Figure E.5: Execute DAD-T set
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E.6 Generate a New Iteration

After running the transformation, a new folder will be created with the updated DAD
model together with a copy of the ASR model, as shown in Figure E.6.

Figure E.6: New folder and model created from the execution of the DAD-T set

The revision1.1 folder duplicates the package hierarchy of the revision1 and
we can continue refining our model iteratively, or backtrack to a previous version.

The iodass.base features are not duplicated unnecessarily and stay available
from any revision number.

E.7 Generate Java Templates

We also have the possibility to generate Java template code from DAD models by
right-clicking a DAD file, selecting the IODASS menu and click the Generate Java
code from DAD model option, as illustrated in Figure E.7.

As a result, a set of Java resources are produced in the src-gen folder. Figure E.8
shows the content of the generated Server class and Hello interface. The generation
timestamp and the revision number are also present in the header of the generated
files to keep a link between the actual model they belong to.

A package referencing the iodass.base elements is also produced, but at cur-
rent development time, it is empty. A similar package structure to the DAD model
one is created, with all generated elements under the clientserver package.
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Figure E.7: Generate Java code from a DAD model

Figure E.8: Generated Java sources
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Java developers may extend the generated class in the src folder to keep sepa-
rated the generated and hand-written code.

E.8 Missing Features for Property Verifications

Regarding user properties, and specifically concerning their usages as Rationale,
the various verifications of compatibility is not implemented as detailed in Sec-
tion 4.4. At current development stage, all properties are considered as string values,
even if they may be defined according to their declared types.

E.9 Concluding Remarks and Possible Enhancements

In this Appendix, we gave a user-centered overview of the Iodass plugin. We de-
scribed the overall architecture within the Xtext framework and we detailed the
installation procedure. We also described the various helps and built-in features of
the plugin with many screenshots.

However, the plugin could be further extended with some features. First, even if
we paid many attention to user feedbacks, in some cases a transformation may fail
with few details on the reasons why the transformation actually flopped.

Second, the built-in library should be extended. A couple of basic construct
types and properties are already specified, but some more effort could be put in that
area, especially for architectural patterns.

Third, a wide range of syntactic and semantic validations are also performed, e.g.
regarding the validity of LinkageTypes, name consistencies, etc. However, only a
few quickfixes have been developed to auto-magically fix some recurrent errors.

Last, no detailed popup descriptions and documentation is actually available to
help users to easily reference to their created constructs when editing a model.
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