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Résumé. Le travail de recherche présenté dans ce mémoire se situe au carrefour de l’informatique
et de la biologie. Il consiste dans le développement d’un programme informatique capable d’extraire des
informations utiles hors de données biologiques, en utilisant une stratégie algorithmique inspirée par le
modèle biologique de l’évolution des espèces.
Le bipartitionnement de données d’expression de gènes consiste à analyser de grandes quantités de données
d’expériences de biologie mesurant le niveau d’expression de certains gènes dans certaines conditions
expérimentales (différents tissus, différents patients...), afin d’identifier des groupes de gènes qui présentent
des comportements cohérents sous certains groupes de conditions. De telles corrélations peuvent être un
indice de l’existence d’une relation biologique entre les gènes et les conditions identifiées, ce qui peut se
révéler une information particulièrement intéressante d’un point de vue biologique et médical.
Les algorithmes évolutionnaires constituent une classe générique d’algorithmes, qui ont en commun
l’utilisation de mécanismes inspirés par l’évolution darwinienne, afin de résoudre des problèmes dont
les meilleures solutions doivent être découvertes selon certains critères de qualité fixés. Les techniques
d’algorithmique évolutionnaire peuvent être particulièrement bien adaptées pour réaliser un bipartition-
nement efficace de données d’expression de gènes, et plusieurs approches évolutionnaires de bipartition-
nement ont été proposées dans la littérature.
Dans ce mémoire, nous présentons MOBPEOC, une nouvelle approche évolutionnaire de bipartitionnement
que nous avons développée, afin d’améliorer le mécanisme de bipartitionnement d’une approche évolution-
naire existante. En particulier, MOBPEOC représente un premier test grandeur nature pour une nouvelle
technique évolutionnaire à portée générale, appelée encodage probabiliste, et que nous proposons pour la
première fois dans le cadre de ce travail.
Une évaluation expérimentale de l’algorithme MOPBEOC est proposée, où la technique est mise à
l’épreuve sur de véritables données biologiques. La comparaison des résultats obtenus, par rapport à
l’approche évolutionnaire de bipartitionnement précédente, montre une forte amélioration de la qualité
des solutions découvertes.

Mots-clés. Bio-informatique, Exploration de Données, Bipartitionnement, Données d’Expression de
Gènes, Algorithmes Evolutionnaires, Optimisation Multimodale et Multi-Objectifs, Encodage Probabiliste.

Abstract. The research work presented in this thesis stands at the crossroads of computer sciences
and biology, as it consists in the development of a computer program to extract useful information from
biological data, using an algorithmic strategy inspired by the biological model of the evolution of the
species.
Biclustering of gene expression data means analyzing large amounts of biological experimental data mea-
suring the level of expression of some genes under some experimental conditions (different tissues, different
patients,...), in order to individuate groups of genes that exhibit coherent behaviors under some groups
of conditions. Such correlations may provide a hint over an existing biological relation between the indi-
viduated genes and conditions, and thus be of particular interest from a biological and medical point of
view.
Evolutionary computation is a generic class of algorithms, sharing the use of mechanisms inspired by
darwinian evolution to solve problems whose best solutions, according to some fixed quality criteria, have
to be discovered. Evolutionary computation techniques can be particularly relevant to achieve an efficient
biclustering of gene expression data, and several evolutionary biclustering approaches have been proposed
in the literature.
In this thesis, we present MOBPEOC, a new evolutionary biclustering approach that we developed to
improve the biclustering mechanism of an existing evolutionary approach. In particular, MOBPEOC
represents a first life-size test for a new general-purpose evolutionary technique that we propose for the
first time in this work, called probabilistic encoding.
An experimental evaluation of the MOBPEOC algorithm is proposed, where the technique is applied to
real biological data. The comparison of the obtained results with the previous biclustering evolutionary
approach shows a strong improvement of the quality of the discovered solutions.

Keywords. Bioinformatics, Data Mining, Biclustering, Gene Expression Data, Evolutionary Compu-
tation, Multimodal and Multi-Objective Optimization, Probabilistic Encoding.
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Introduction

Computers are machines manipulating symbols. Receiving a set of symbols as input,
and another set of symbols as program, they return, after a sequence of purely textual
rewriting operations on the input symbols, as described by the program symbols, the set of
resulting symbols as output. Most of the magic of computing holds in the fact that these
input and output symbols can represent informations about the world. The processing
speed of computers and the ubiquity of computer networks allow these informations to
be analyzed and transformed quickly in huge proportions, and shared across the world at
the speed of light.
Computer science is thus a purely abstract and formal knowledge domain that essentially
makes sense when its mechanisms are applied to informations about the world. Two very
interesting applications of computer science techniques are data mining and simulation.
Data mining takes advantage of the incredible processing speed of computers to extract
useful informations from very large amounts of data about the world. Computer sim-
ulation consists in writing computer programs that can simulate, in life-size conditions,
formal models of processes existing in the real world.

In this thesis, we combine these two applications. The object of the work presented here
is the development of a computer program that solves a data mining problem concerned
with biological data. This program uses an algorithmic strategy that simulates a formal
model of the natural process of evolution of the species.
The data mining problem treated in this work is the gene expression data biclustering
problem. In this biological problem, large amounts of experimental data measuring the
level of expression of some genes under some experimental conditions should be analyzed,
in order to individuate biclusters, i.e. groups of genes that exhibit coherent behaviors un-
der some groups of conditions. Such biclusters may indeed provide a hint over an existing
biological relation between the individuated genes and conditions. This information could
participate to a better understanding of biological systems at a molecular level, and is
thus of particular interest from a biological (like for gene profiling) and medical (like for
a better understanding of diseases) point of view.
The biclustering of gene expression data problem can be specified as an optimization
problem. Optimization covers the class of problems where the best solutions, according
to some fixed quality criteria, have to be found among a set of potential solutions. The
gene expression data biclustering problem is a very hard optimization problem, even for
a computer. Several biclusters have indeed to be found simultaneously in huge amounts
of data, optimizing several antagonist mathematical criteria enforcing the probability for
them to have a biological significance.
For solving such hard optimization problems, computer scientists have notably developed
generic solutions, inspired by the efficiency of the processes existing in the nature. Evo-
lutionary computation is one of these, grouping a large class of algorithmic optimization
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techniques, inspired by computer simulations of the biological evolution of the species, as
described by Charles Darwin and by modern genetics. Evolution can indeed be seen as an
optimization mechanism, which finds the best fitted set of traits for a species to survive
in a given environment. In this thesis, we develop a particular instance of an evolutionary
algorithm, in order to solve the gene expression data biclustering problem.

The algorithm developed in this thesis is based on two main foundations. The first is the
δ-bicluster model, a mathematical specification of the gene expression data biclustering
problem, used by the scientists Y. Cheng and G. M. Church as a basis for their algorith-
mic solution to this problem. The second is the pair of SEBI and SMOB evolutionary
algorithms, proposed by F. Divina, to solve the gene expression data biclustering problem
using evolutionary computation, according to Cheng and Church’s specification.
The main objective of this thesis was to improve the evolutionary approach used in the
SEBI and SMOB algorithms, in order to be able to individuate better solutions to the
gene expression data biclustering problem, according to Cheng and Church’s specification.
The proposed evolutionary approach should allow to deal more efficiently with the need
to find several different biclusters within the data, and with the need to combine several
antagonist criteria to evaluate the quality of the biclusters.
In particular, we were suggested by Professor Divina to incorporate in our algorithm a
new proposal of a generic evolutionary algorithm component, called probabilistic encod-
ing. The genericness of this component holds in the fact that its interest is not limited to
the gene expression data biclustering problem. On the contrary, it could be potentially
incorporated in many instances of evolutionary algorithms to improve their efficiency, for
a wide range of different problems to solve. A secondary objective of this thesis was thus
to propose a first test of the probabilistic encoding evolutionary technique on a life-size
problem.

The result of the work produced in this thesis is the MOBPEOC biclustering evolutionary
approach, for Multi-Objective Biclustering with Probabilistic Encoding and Overlapping
Control. The MOBPEOC approach was developed by coupling both a theoretical and
experimental process. In the theoretical process, we reviewed many existing techniques
presented in the literature, which, coupled with probabilistic encoding, would be liable
to improve the efficiency of our biclustering mechanism. In the experimental process, the
efficiency of the proposed techniques, coupled with probabilistic encoding, was tested,
compared and improved by applying them to real biological data, already analyzed using
the SEBI/SMOB and other biclustering algorithms.

In this report, we present the context and put forward the architecture and results of the
MOBPEOC approach. The text is divided in two main parts. The first part, involving
chapters 1 and 2, consists in a compilation of the current state-of-the-art, where we expose
the theoretical context and the existing practical work in which the MOBPEOC approach
takes place. The second part, involving chapters 3 and 4, is a detailed presentation of
the work achieved in this thesis, where we present the algorithmic structure and the
experimental evaluation of the MOBPEOC approach.
In chapter 1, we define what optimization problems are, and we show how optimization
techniques simulating models of the natural evolution of the species can be implemented.
We concentrate on the particular class of genetic algorithms, the variant of evolution-
ary algorithms implemented by the SEBI and SMOB algorithms, and also within the
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MOBPEOC approach. First, we present a framework encompassing the elemental com-
ponents of a genetic algorithm. Then, we present some more advanced components that
could allow to deal more efficiently with the complex aspects of the biclustering optimiza-
tion problem. Finally, we propose a brief evaluation of evolutionary computation as an
optimization technique.
In chapter 2, we present the gene expression data biclustering problem, and detail the
relevant existing work on this topic. First we detail the δ-bicluster model specification
of the gene expression data biclustering problem, review its algorithmic complexity, and
present the algorithmic solution presented by Cheng and Church. The results obtained
by Cheng and Church on two real biological datasets (known as the Yeast and Human
datasets) are also presented. Then we establish how the δ-bicluster model specification of
the biclustering problem can be expressed as an optimization problem, and demonstrate
why evolutionary computation is a particularly appropriate technique to solve it. After-
wards, we detail the algorithmic structure of the SEBI and SMOB genetic algorithms and
compare their results on the Yeast and Human datasets with the ones obtained by Cheng
and Church. Finally, we briefly review the other existing evolutionary approaches to the
gene expression data biclustering problem.
In chapter 3, we detail the algorithmic structure of the MOBPEOC approach. We present
the different techniques that were combined to create the MOBPEOC algorithm, and jus-
tify how they can be useful to offer a better biclustering efficiency. We notably present
the probabilistic encoding technique introduced with MOBPEOC, and make many refer-
ences to techniques presented in chapter 1. A systematic description of the MOBPEOC
algorithmic process and of the main parameters within the method is also proposed.
Finally, in chapter 4, we expose the results obtained by MOBPEOC on the Yeast and
Human biological datasets. For each dataset, the chosen parameters values are detailed
and justified. Then the obtained results are presented, commented and compared with
the ones obtained using the SEBI/SMOB and the Cheng and Church’s algorithm.
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1.1 Evolutionary computation and genetic algorithms:
an historical introduction

Neo-darwinism [Back et al., 1999, Chapter 1, 4-5] [Dréo et al., 2003, Page 69] refers to
the modern synthesis between Darwin’s evolution theory and current knowledge in the
field of genetics. By now, it is the only available scientific theory of species evolution that
has not been invalidated by observations. It explains the wide variety of species on Earth
by the observed fact that species continuously adapt themselves to their environment and
its changes. Synthetically, Darwin’s theory states that evolution in a group of individuals
from the same species occurs from competition for survival and reproduction between in-
dividuals. This involves a selection of individuals best fitted to their environment. These
individuals have statistically more chances to have offspring and to transmit those traits
that gave them a competitive advantage for survival and reproduction. Advantageous
traits tend thus to generalize across the generations, while disadvantageous ones tend to
disappear. Genetics allows to explain how traits can be transmitted to offspring through
reproduction, and how new and potentially advantageous traits can appear in the group
through genetic recombination and mutation.

The history of what is now called evolutionary computation (EC) [Back et al., 1999,
Chapter 6] [Dréo et al., 2003, Pages 69-70] is usually said to have begun during the
mid-1950s, when the first computer models of the natural process of species evolution, as
described by the neo-darwinian theory, appeared. The purpose of this work was not only
to give a better understanding of evolution and adaptation through computer simulation,
it was also to use evolution-like mechanisms as a model for programming a computer so
that it could discover the solutions best fitted to a problem.
The neo-darwinian mechanism of evolution can indeed be seen as a powerful and robust
optimization process. Evolution has been seen as continuously adapting species to an
incredible variety of environments that can sometimes be frequently changing and very
hostile. This gave birth to the huge amount of various and surprising species that can
be found almost everywhere on the Earth. It seems thus particularly interesting to use
computer simulated parts of this process to solve optimization problems in general, as
they can be found notably in science, technics and economics.

As time went by, three approaches of EC stood out: evolution strategies (ESs, I. Rechen-
berg, 1965 [Rechenberg, 1965, Beyer, 2001]), evolutionary programing (EP, L. Fogel,
1966 [Fogel et al., 1966, Fogel, 1999]) and genetic algorithms (GAs, J.H. Holland, 1967
[Holland, 1975]). Although the bases of what are now considered as the three main
branches of EC were all established by the mid-1960’s, they were developed quite in-
dependently, ignoring each other for about 25 years. During this time, the field received
little attention from the scientific and engineering communities, with only about a few
hundreds of publications in 20 years.
It is only at the end of the 1980’s than the field really started gaining popularity. In 1985,
the first International Conference on Genetic Algortithms (ICGA) was hold in Pittsburgh,
Pennsylvania. In 1989, D. Goldberg published a book titled "Genetic Algorithms in
Search, Optimization and Machine Learning" [Goldberg, 1989] in which he enlightened
in a very operational way the theory behind GAs and their applications. In the following
years, this book is said to have been an important catalyst that helped to make GAs very
popular to a more general audience of scientists and engineers. In 1991, the first Parallel
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Problem Solving from Nature (PPSN) conference was hold by the ESs community, which
lead to a first interaction between the GAs and ESs communities, and then to the creation
of a scientific journal for the field. This journal included the EP community as well, as
they organized their first conference in 1992, and its first issue was published in 1993.
The name of the journal was "Evolutionary Computation", and it became the name by
which the research field comprising the three subdomains is usually referred.
At present, evolutionary computation research and engineering in general have grown sub-
stantially, thanks to cross-fertilization between ESs, EP ang GAs, and through the large
number of various applications where they have been applied. This growth is also both a
cause and a consequence of the many events organized, and of the increasing number of
books and articles written in the field.

By now, there is not one unified theory of evolutionary computation [Back et al., 1999,
Chapter 7]. An evolutionary algorithm can be defined as an optimization algorithm
that uses a mechanism inspired by neo-darwinian evolution. Evolutionary computation
techniques constitute then a large toolbox to build evolutionary algorithms. New tools
and ways of combining them are created, and existing ones are studied and improved. As
there is no encompassing simple theory, developing an evolutionary algorithm for a given
optimization problem is more or less a trial and error adaptation process. This process
is driven by a mix of field knowledge and creativity, and verified by a theoretical and
experimental analysis.
In this thesis, we develop an evolutionary algorithm in order to solve a hard biology-related
optimization problem: biclustering of gene expression data. If many hybridizations oc-
curred, the three original approaches of evolutionary computation, evolution strategies,
evolutionary programing and genetic algorithms, are still often used as a basis to describe
the mainstream different instances of evolutionary algorithms. Our work will essentially
be based on the Goldberg’s original instantiation of genetic algorithms. First, because the
algorithm developed here pushes existing work based on genetic algorithms further, in or-
der to solve the gene expression data biclustering problem. Secondly, we will use existing
extensions of classical GAs, developed to solve particular classes of optimization prob-
lems, which encompass the biclustering of gene expression data. Finally, and maybe most
importantly, we use our particular implementation of a genetic algorithm to introduce
a new evolutionary technique that extends the traditional genetic algorithms-originated
binary encoding: probabilistic encoding.

In this chapter, we introduce the state-of-the-art conceptual elements necessary to under-
stand and evaluate the genetic algorithm implementation we developed and the proba-
bilistic encoding technique we propose. As we begin section 1.2 of this chapter, we will
present a general definition and establish a vocabulary, scope and taxonomy for optimiza-
tion problems. In the context of solving classical combinatorial optimization problems, we
will then propose, in section 1.3, an extensible framework that encompasses the classical
Golberg’s genetic algorithm structure and concepts, and its common variants. Biclus-
tering of gene expression data is a particularly complex optimization problem, as it can
be seen as a multimodal and multi-objective problem. As a consequence, we review the
intrinsic qualities of our framework and detail its commonly proposed extensions to solve
such specific classes of optimization problems. Multimodal optimization problems are
treated in section 1.4, and multi-objective optimization problems in section 1.5. We finish
this chapter with a general evaluation of evolutionary computation techniques as opti-
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mization problem solvers (section 1.6).

This chapter is notably inspired by the following books on genetic algorithms and evolu-
tionary computation: "Genetic Algorithms in Search, Optimization and Machine Learn-
ing" [Goldberg, 1989], "Evolutionary Computation 1: Basic Algorithms and Operators"
[Back et al., 1999], "Evolutionary computation 2: advanced algorithms and operators"
[Bäck et al., 2000], "Introduction to evolutionary computing" [Eiben and Smith, 2003],
and "Métaheuristiques pour l’optimisation difficile" (French) [Dréo et al., 2003]. In order
to make the text more readable, references to these books will not be repeated in the next
sections.

1.2 Optimization problems

1.2.1 Definition, vocabulary and scope

Optimization is a very common concept, which is used to describe many various problems
in many various contexts. As a starting point for this section, we propose thus a general
and formal definition for optimization.

Definition 1.1. An optimization problem is a problem that determines explicitly or
implicitly the set of potential solutions to a problem and defines one or several criteria
that can measure the quality of each particular solution. Solving the problem means to
extract solutions from the set that have the best or a sufficiently high quality in the set.

In order to solve an optimization problem with a computer, it should be possible to give
a formal definition of the set of potential solutions, and of the quality criteria, so that the
set can be explored and the quality of the solutions can be evaluated by the computer.
It should be noted that in order for such a formalization to be possible, the problem must
often be simplified, especially in the case of informal and complex problems.

When a formal definition of the set of solutions is given, it is called the search space S.
The search space can be defined in an extensional way (i.e. by listing all the solutions
in the set) or, more frequently, in an intensional way (i.e. by listing the necessary and
sufficient conditions for elements to be part of this set). In this last case, programming
a computer to explore the set, i.e. to build new solutions that fulfills the conditions, can
be a challenging task if the conditions are complex.

In the most general case, each quality criterion is modeled by a real-valued function, that
associates each element of the search space with a real number measuring its quality. Such
a function is called an objective function o : S → R.
Measuring the quality using an objective function can be done in two ways. The greater
the real number is, the better the solution is, or the other way round. Solving the
problem means thus to find solutions that respectively maximize or minimize the objective
function(s). As the problem of minimizing o : S → [−∞,+∞[ can always be transformed
in the equivalent problem of maximizing o′ : S → [−∞,+∞[, o′ = −o and vice-versa,
from now on, we will only consider maximization problems.
A real-valued function o′ : S → [−∞,+∞[ can always be transformed into a positive
real-valued one o′′ : S → [0,+∞[, such that:
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∀s, t ∈ S,
o′(s) < o′(t)⇔ o′′(s) < o′′(t)

∧ o′(s) = o′(t)⇔ o′′(s) = o′′(t)

For example, such o” could be:

o′′ : S → [0,+∞[, o′′(s) =


o′(s) + 1 if o′(s) > 0

− 1
o′(s)−1 if o′(s) < 0

We can thus, without loss of generality, work only with positive real-valued objective
functions to be maximized.
If there are several different quality criteria that have to be used simultaneously to eval-
uate a solution, there will be several objective functions corresponding respectively to
each criterion. Optimization problems with only one objective function are called single-
objective, and optimization problems with more than one objective function are called
multi-objective. Usually multi-objective optimization is treated as a separate problem,
and optimization often refers only to single-objective optimization. We will discuss multi-
objective optimization and how genetic algorithms can solve multi-objective problems in
section 1.5. For now, we will only consider optimization as single-objective optimization.
Nothing guarantees that the objective function of the problem cannot give the same mea-
sure to several different solutions. Thus there can be several different, but quality-wise
equivalent, best solutions in the set. They are called the optimal solutions or optima. If
some sufficiently good but not optimal solutions can be accepted, it typically means that
all the solutions whose quality measure is above a given threshold, or sufficiently close to
the quality measure of the best solutions (these are called sub-optimal solutions) can be
accepted. As a consequence, there can be several solutions in the set that are candidates
to solve the problem. The adopted policy to choose which of these solution(s) should be
searched for is typically a function of the context of the problem. Two extreme cases are
unimodal and multimodal problems. In unimodal problems, it is known that there is a
single solution that outperforms all the others, and it has to be found. In multimodal
problems, the problem is known to have several interesting different solutions, and the
largest possible number of different optimal, sub-optimal, and sometimes even sufficiently
good solutions should be found. We will discuss multimodal optimization and how genetic
algorithms can solve multimodal problems in section 1.4. For now we will only consider
the simple case of unimodal optimization.

Taking the introduced formalization and simplifications into account, we can now give
the common operational definition of optimization [Barichard, 2003, Page 8] that will be
used as a basis to introduce the genetic algorithms framework in the next section.

Definition 1.2 (Simple and operational optimization problem (unimodal - maximiza-
tion)).

Let S be a set of solutions to a problem, and let o : S → [0,+∞[ be an objective function
that measures the quality of these solutions,
Then find the optimal solution m ∈ S | ∀s ∈ S, o(m) > o(s)
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The search space S can be a finite, countable or uncountable set. In the two first cases,
we talk about discrete optimization, and in the last one, of continuous optimization.
Genetic algorithms are typically made for finite search spaces, but work has been done
to adapt them to general discrete (see, for example, [Beyer et al., 2002]) and continuous
problems (see, for example, [Chelouah and Siarry, 2000]). Note that the easiest way to
solve problems where the search space is equipotent to the integer or to the real numbers
set, is to render the search space finite using the finite sets of traditional binary machine
representation of integer and real numbers, or equivalent representations. In this work,
we will only consider optimization problems with a finite search space.

1.2.2 Combinatorial optimization problems and evolutionary al-
gorithms

For a finite unimodal optimization problem [Hao et al., 1999], the basic algorithmic so-
lution typically assesses exhaustively as many solutions as needed in the search space, in
order to be able to prove formally that a given solution is at least better than any other
solution in the search space. This solution is the optimum returned by the algorithm.
This is the implicit and underlying principle of "exact" methods. In hard problems, exact
methods may have to evaluate exhaustively all the solutions of the search space, or at
least an important part of them, in order to find the optimum. In this case, exact meth-
ods cannot cope with problems where the search space is too large for such an exhaustive
search to be achieved in a reasonable time.
This typically happens for problems defined by a finite number of elements to be com-
bined in the most effective way. The search space is thus the set of allowed combinations
between elements. If the problem is NP-Complete, i.e. it can be conjectured that there
is no exact algorithm capable of finding the best combination in a polynomial time of the
number of elements to combine, then for a sufficiently large number of these elements, the
number of potential combinations is huge, and the time needed by an exact algorithm to
find the best one becomes unreasonable. Such problems are called combinatorial problems
(note that some authors uses combinatorial as a synonym of discrete, and others for all
problems with a huge but finite search space).

To solve combinatorial problems, heuristic methods are typically used. These methods
do not rely anymore on a search process that formally proves that a solution is better
than any other one in the search space, but use some particular "rule of thumb" to try
to find the optimum, among the set of possible solutions. On the one hand, this involves
that they typically lose the property of always finding the optimal solution. On the other
hand, they usually can find very good solutions by exploring only a small part of the
search space.
Evolutionary algorithms are one of these heuristic methods. The "rule of thumb" used by
evolutionary computation is to be found in the parallel between the elements to be com-
bined in a combinatorial optimization problem, and the traits that combine themselves to
create an individual in neo-darwinian evolution. In applying an evolution-like process to
a population composed of a small and limited number of potential solutions of a combi-
natorial optimization problem, one hopes that advantageous elements and advantageous
combinations of elements will emerge in the population as generations pass.
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1.2.3 Examples of optimization problems

The scope of optimization problems as described in definition 1.1 is very large. Many prob-
lems in science, technics, engineering and in everyday-life can be solved as optimization
problems (see, for example, [Neumaier, 2010b]). As a result of the variety and complexity
of these problems, there is a lot of research and engineering activity to develop, improve
and use a wide panel of optimization techniques (see, for example, [Neumaier, 2010a]).
In the following lines, we present two simple examples of optimization problems, and
illustrate how they fit to the theoretical definition and taxonomy given in the previous
paragraph.

A Example #1: A continuous problem

Definition 1.3 (Box with square base problem). A parallelepiped box of height h has a
square base of side x. The box is made of plastic, which costs 5 gold per square unit.
Given that the volume of the box must be 100 volume units, find the value of x for which
the box will be the cheapest to make.

Search space definition The set of all possible side lengths, i.e. [0,+∞[.
Objective function(s)
definition(s)

The objective function must associate each possible side
length with the cost of the resulting box. The cost c can
be expressed as a unique function of x in the following way:

c : [0,+∞[→ [0,+∞[, c(x) = 5 ∗ Surface of the box
= 5 ∗ (2 ∗ x2 + 4 ∗ x ∗ h)
= 5 ∗ (2 ∗ x2 + 4 ∗ x ∗ h ∗ x

x
)

= 5 ∗ (2 ∗ x2 + 4∗(x2∗h)
x

)
= 5 ∗ (2 ∗ x2 + 4∗Volume

x
)

= 5 ∗ (2 ∗ x2 + 400
x
)

= 10 ∗ x2 + 2000
x

This is a positive real-valued function, which has, in this
case, to be minimized.

Number and nature of
quality criterion(s)

The problem is single-objective, the objective function be-
ing the cos function c.

Quality of solution(s)
searched for

It depends on the problem context. We can suppose for
example that we only want to find the or all the optimal
solutions.

Nature of search space The search space is an infinite uncountable set. This prob-
lem is a continuous problem.

B Example #2: A combinatorial problem

Definition 1.4 (Traveling salesman problem (TSP)). Given a list of cities to be visited,
find the shortest possible tour that visits each city exactly once.

Search space definition The set of all possible tours that visit each of the cities
exactly once.
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Objective function(s)
definition(s)

A positive real-valued function that associates to a tour
its total length (to be minimized).

Number and nature of
quality criterion(s)

The problem is single-objective. But other objectives
could be easily added. For example, if the tour is made
by car, the total cost, including fuel and toll, could be
minimized at the same time as the length of the tour.

Quality of solution(s)
searched for

It depends on the problem context. Nevertheless, one
could imagine that all the existing shortest and nearly
shortest tours could be interesting and should be searched
for. In that particular case, we would be facing a multi-
modal problem.

Nature of search space The search space is a finite set. This problem is a combina-
torial problem. Tours can be seen as a kind of combination
between cities, and the number of possible tours grows
exponentially as the number of cities increases (#tours
= #cities!). This problem is a well-known NP-Complete
problem [Garey and Johnson, 1990].

1.3 A framework for common genetic algorithms

In this section, we propose an extensible framework that encompasses the concepts and
structure of the classical genetic algorithm, defined by D. Goldberg in [Goldberg, 1989],
and of its common variants, and we show how this framework can be used as an heuristic
method to solve the simple optimization problem specified in definition 1.2, supposing a
finite search space, and typically considering combinatorial optimization problems.
In subsection 1.3.1, we propose the simple evolution model, inspired by the neo-darwinian
evolution model, that the genetic algorithms will typically implement. In subsection
1.3.2, we show how this model is translated into the general algorithmic procedure of
genetic algorithms. Finally, in subsection 1.3.3, we describe how this general algorithmic
procedure is typically implemented into a functional genetic algorithm.

1.3.1 Model of evolution

Evolutionary computation is inspired by the neo-darwinist model of the evolution pro-
cess to propose an evolution-like optimization procedure. As a first glance at the layout,
concepts and vocabulary genetic algorithms, we describe the simple computer model of
evolution implemented by GAs. In this model, one can find the classical vocabulary
of neo-darwinism, and a mechanism that looks like a very simplified view of the neo-
darwinist evolution model. But it should be noted that the reality of evolution is much
more complex and different of what is stated here.

Any living creature owns a set of genes. All the genes of this set are grouped in one or
more chromosomes, which are thus sets of genes. Each gene has a fixed position in its
chromosome called its locus. There is a finite number of possible variants for a same gene.
Variants are called the alleles of the gene, and each living creature owns, for each gene,
one of its possible alleles. The members of a same species share the same set of genes,
organized in a same set of chromosomes. Different individuals of the species only differ
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by the allele values of their genes. The set of alleles of an individual is called its genotype.
The genotype is in fact the "building plan" of the individual and determines thus the full
set of observable physical characteristics, called traits, of the individual. This last set is
called the phenotype. Different individuals in the species will have different phenotypes,
i.e. physical characteristics, because they have different genotypes, i.e. different sets of
alleles.

Two individuals of the same species, called parents, can reproduce to create new members
of the species (with thus the same set of genes and chromosomes), called offspring. The
genotype of an offspring takes for each gene, either the allele value of the mother or the
allele value of the father. He will thus typically inherit some traits from each of its parents.

A population is a group of living creatures of the same species who share a same environ-
ment. The members of a population are isolated from other living members of the species,
so that reproduction can only occur inside the population. Members of the population are
called individuals and individuals are in competition for reproduction and survival. Some
individuals in the population may have particular traits that make them better adapted
to this environment than the other ones. These traits will thus give them more chances
than the other individuals to reproduce, and to survive in the environment long enough
for having the opportunity to reproduce. These individuals will thus have more chances
to transmit to the next generation parts of their genotypes and thus potentially the inter-
esting traits that gave them the advantage over the other individuals. As the generations
pass, the frequency of disadvantageous alleles will decrease and the disadvantageous traits
will tend to disappear, while the frequency of advantageous alleles will increase, and the
advantageous traits will spread. This mechanism is called natural selection.

If offspring inherit traits from their parents, their genotype is nevertheless different from
those of their parents. The genotypic recombination that occurs during reproduction is one
of two sources of genotypic variety. The other one is genetic mutation. Any living creature
can sustain genetic mutations. A genetic mutation changes the allele value of a gene of
the creature that sustains it. In a population, genetic mutation can thus introduce allele
values that did not exist for a particular gene in the individuals composing the population.

These two sources of genotypic variety allow the appearance of new inexistent traits or
combinations of traits in the population, that can be advantageous, and offer new chances
of environmental adaptation to the population as the generations pass.

A typical genetic algorithm simulates this model with a computer in order to solve an
optimization problem. The idea is to apply the mechanism described above not to a
population composed of individuals from a given species, but to a small population of
potential solutions from the search space of the optimization problem. For optimization
to occur, we replace the criterion of adaptation to the environment by a criterion of
"adaptation to the problem", i.e. of quality, measured by the objective function of the
problem. The basic analogy that sustains evolutionary computation is this one: the
species is the search space, and the environment the quality criterion. We can thus hope
that, as the generations pass, these characteristics that make solutions better will emerge,
producing in that way solutions very well adapted to the problem. In the next section,
we show how GAs simulate such a process through an algorithmic procedure.
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1.3.2 Main algorithmic procedure

A The generations loop

The core mechanism of a genetic algorithm is an iterative process, called the generations
loop. This iterative process repersents the passing of time and generations in the evolution
model. The generations loop creates a sequence of populations. A population here has a
different meaning than in the evolution model:

Definition 1.5. A population is multiset of elements from the search space of the opti-
mization problem.

Each iteration of the generations loop works on one population, that contains all the living
individuals at the time of this iteration. Such a population is called a generation and the
number of individuals in a generation is typically very small compared to the size of the
search space. The processing done by an iteration of the loop is to create the generation
of the next iteration, from the current one. Between two generations, new individuals
will appear, as some individuals of the current generation will reproduce, and some of the
individuals of the current generation will die and disappear. Moreover, genetic mutations
can also occur on some individuals. We can thus give a first pseudo-code description of
the general algorithmic procedure of GAs:

Populat ion currentGenerat ion , nextGenerat ion ;
while (Optimum_is_not_found ) {

nextGenerat ion = createFrom ( currentGenerat ion ) ;
currentGenerat ion = nextGenerat ion ;

}

We will describe more precisely how the "createFrom" procedure works in the next para-
graph. But first, we can notice that we are already facing two questions:

1. How the algorithm is started, i.e. how the first current generation is created?

2. How the algorithm is stopped, i.e. how do we know that the optimum is found?

For the first question, it appears that the individuals composing the first generation must
be picked in some way from the search space. Genetic algorithms are not an exhaus-
tive search optimization method: they start from a first population and try to evolve
it towards optimality across the generations. It appears thus that the initialization of
the first generation can affect the convergence speed, and potentially the final solution
returned. Usually, if one knows information about the characteristics of the optimal so-
lutions to find, one will populate the first generation with individuals that have these
characteristics. Otherwise, individuals are picked randomly out of the search space. Re-
search has been done on more sophisticated techniques for algorithm initialization (see
for example [Rahnamayan et al., 2007]).
For the second question, if the value of the objective function at optimum is known, one
could stop the algorithm as soon as an individual giving this value to the objective func-
tion is found, but this value is not always known. Moreover, the algorithm could take a
very long time to find the optimum, and as GAs are not an exact method, they typically
offer even no guarantee to find the optimum. Typically, a trial and error approach is used.
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A termination condition is first defined. For example, if no optimum has been found, the
algorithm is stopped after a fixed number of iterations of the generations loop. Then the
results and some statistics on the population evolution during the run are used to evaluate
and eventually modify the chosen number of iterations. The process is then repeated to
adjust this maximum number of iterations, which is thus the first parameter we introduce
in the algorithm. The returned final solution will be typically the best individual of the
last generation, or of the whole set of successive generations.

Taking these two answers into account, we can already refine our pseudo-code description
of the algorithmic procedure of GAs:

// −−−−−−−− Parameters −−−−−−−−
maxNumberOfGenerations = . . . ;
// −−−−−−−− Parameters −−−−−−−−

Populat ion currentGenerat ion , nextGenerat ion ;

currentGenerat ion = pickIndiv idua l sFrom ( searchSpace ) ;
numberOfGenerations = 0 ;

while (Optimum_is_not_found | | numberOfGenerations<maxNumberOfGenerations ) {
nextGenerat ion = createFrom ( currentGenerat ion ) ;
currentGenerat ion = nextGenerat ion ;
numberOfGenerations = numberOfGenerations + 1 ;

}

return currentGenerat ion . b e s t I nd i v i dua l ( ) ;

B Genetic operators, fitness and genotype

B.1 The general selection scheme. When creating the next generation from the
current one, the algorithm will mimic what happens in the evolution model we presented,
so that natural selection and genotypic variety may be able to make the population evolve
in the direction of a better adaptation to the problem. This is achieved through applying
a set of genetic operators to build the new generation from the current one.

Definition 1.6. A genetic operator is a partially random mechanism, that receives a
population as input, and produces a population as output. Elements of the input population
are called parents, and elements of the output population are called offspring. The parents
set and its content are not modified by the operator.

The defined operators, the way they proceed and the way they are combined to create
the next generation from the current one are called the general selection scheme of the
algorithm. If all evolutionary algorithms use a generations loop defining a sequence of
populations, each family of EAs (ESs, EP and GAs), and their hybrid variants, differ
by the general selection scheme used. We describe now the general selection scheme of
traditional GAs.

In a GA, three types of genetic operators are typically used: a selection operator, and
two variation operators, a reproduction operator and a mutation operator.
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The selection operator is used to select an individual from the current generation. The
individuals in the current population will have more chances to be selected if they are
better adapted to the problem than the other ones. At the beginning of an iteration of
the generations loop, the selection operator is used twice independently to get a couple of
individuals from the current generation. This couple will be reproduced or not, based on
a fixed probability rate of reproduction. If they are not reproduced, both individuals are
said to survive and will be copied to the next generation, after sustaining mutation. If they
are reproduced, two offspring are produced (a popular variant with only one produced
offspring also exists) and they will be copied to the next generation, after sustaining
mutation. A reproduction operator creates thus two offspring from two parents, and a
mutation operator one offspring from one parent.
In GAs, the number of individuals in a generation is supposed to stay constant at each
iteration of the generations loop. The process is thus repeated and individuals copied to
the next generation until the new generation contains the required number of individuals.
The algorithm switches then to the next iteration of the generations loop. Remark that
nothing prevents, in such a process, a same individual from the current generation to be
selected several times by the selection operator.
This mechanism introduces two new parameters in the algorithm: the reproduction prob-
ability rate and the number of individuals in a generation. In the following parts of this
chapter, we will often refer to the number of individuals in a generation parameter using
the notation Ngen.

The following figure illustrates the creation of a new generation during an iteration of
the generations loop. The current generation is composed of six individuals A, B, C,
D, E and F. The selection-reproduction-mutation process is used three times to create
the six individuals of the next generation CB’, BC’, FF’, FF”, A’ and E’. A red arrow
corresponds to a selection operator, a blue one to a reproduction operator, and a green
one to a mutation operator.
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Remark that in this example individual D is never selected, while individual F is selected
twice. Moreover, notice that individuals A and E are not reproduced, but copied to the
next generation directly after sustaining mutation.
We detail now the three types of operators, and go further in our description of the
structure of genetic algorithms.

B.2 Selection operator and fitness. A selection operator receives as input the cur-
rent generation and returns as output one individual in this generation. As in the evolution
model, selection will essentially work at random, but the best adapted individuals in the
generation will have statistically more chance to be selected.
The selection operator will thus have to compare, inside a generation, the individuals’
adaptation to the "environment", which is the optimization problem. The comparison will
thus be based on the objective function of the problem. If the objective function returns
the absolute quality measurement of an individual in the whole search space, which has
a meaning in the context of the problem, such a measurement may not be convenient to
compare the small number of individuals that compose the current generation, at each
iteration of the generations loop. For example, it may take a lot of time to be computed, so
that using an approximation could be sufficient for comparison. It may also discriminate
too much or not enough between the individuals in the generation, so that selection does
not work in an effective way. In some cases, one wants to add penalties or rewards to
solutions exposing a given set of traits in order to drive the search process. One can even
want to establish the adaptation value of one individual in function of the composition
of the whole population. For these kinds of reasons, a distinction must be made between
the objective function, given by the problem, and the actual function used by the GA
to measure the adaptation of individuals in one population, called the fitness function.
Depending on the problem and on the implementation choices for the selection operator,
creating a good fitness function from the objective function can be a challenging task.

B.3 Variation operators and genotype. Reproduction and mutation are the two
variation operators, and they mimic the corresponding process in the evolution model.
Reproduction receives a population of two parents et produces a population of two off-
spring whose genotype are random mixings of the parents’ genotypes. Mutation receives
one parent and produces one offspring whose genotype is a random variation of the parent
genotype.
In GAs, phenotype will be the abstract element of the search space of the optimization
problem, and genotype will be the computer data structure representation used to encode
such an element, and which the GA will manipulate. The choice of such a coding will
depend on the nature of the elements in the search space, and influence the implementation
of the variation operators and their efficiency in driving a powerful evolution process.

C Data structures

In the implementation of a GA, the elements of the search space, often called the phe-
notypic space, are described and manipulated using only two values: the fitness value,
and the genotypic representation. We can give a more formal definition of how these two
important values are calculated.
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Definition 1.7. The fitness function f of the GA associates, to each element of the
search space in a given population, a fitness value derived from the objective function,
that is used to measure the relative adaptation of the element to the problem, compared to
other elements in the population.

Definition 1.8. Let G be the set of data structures chosen to represent elements of the
search space within the GA, called the genotypic space. The genotypic encoding func-
tion of the GA is a total injective function c : S → G that associates each element in the
search space with its particular representation as a data structure.

Fitness contains all the phenotypic information about a search space element, and is the
only information the selection operator typically takes care of. Genotypic representation,
or genotype, contains all the genotypic information about a search space element and is
the only information variation operators take care of.
Typically, when the first generation is initialized, a multiset of genotypes is generated.
New genotypes are then created by variation operators at each iteration of the generations
loop. The fitness function value F of a genotype g in a generation P will only be calculated
on demand when the genotype g is used as parent of a selection operator.

D The GA algorithmic procedure

We finally give here a more detailed pseudo-code description of the general genetic algo-
rithm procedure, taking into account the information given in this section. In the next
section, we show how this algorithmic procedure can be implemented into a functional
and effective genetic algorithm.

// −−−−−−−− Parameters −−−−−−−−
maxNumberOfGenerations = . . . ;
numberOfIndividualsPerGenerat ion = . . . ;
r eproduct i onProbab i l i tyRate = . . . ;
// −−−−−−−− Parameters −−−−−−−−

Populat ion currentGenerat ion , nextGenerat ion ;

currentGenerat ion = pickIndiv idua l sFrom ( searchSpace ,
numberOfIndividualsPerGenerat ion ) ;

numberOfGenerations = 0 ;

while (Optimum_is_not_found | | numberOfGenerations<maxNumberOfGenerations ) {

for ( int i = 1 ; i <= numberOfIndividualsPerGenerat ion /2 ; i++) {

f a th e r = se l e c t i onOpe ra t o r ( currentGenerat ion ) ;
mother = se l e c t i onOpe ra t o r ( currentGenerat ion ) ;

i f ( random(0 ,1) < reproduct i onProbab i l i tyRate ) {

[ son , daughter ] = reproduct ionOperator ( fa ther , mother ) ;

son = mutationOperator ( son ) ;
daughter = mutationOperator ( daughter ) ;

nextGenerat ion . add ( son ) ;
nextGenerat ion . add ( daughter ) ;
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} else {

newFather = mutationOperator ( f a t h e r ) ;
newMother = mutationOperator ( mother ) ;

nextGenerat ion . add ( newFather ) ;
nextGenerat ion . add ( newMother ) ;

}

}

currentGenerat ion = nextGenerat ion ;
numberOfGenerations = numberOfGenerations + 1 ;

}

return currentGenerat ion . b e s t I nd i v i dua l ( ) ;

1.3.3 Implementation issues and common techniques

To arrive at a fully functional genetic algorithm from the general procedural mechanism
described in the previous paragraph, one should implement an efficient set of genetic
operators, with appropriate fitness function and genotypic encoding. To continue with
the extensible framework we are defining, we discuss (paragraphs A and B) the issues
in developing good genetic operators, fitness functions, and encoding and we present the
classical implementations used in GAs.
We have already defined three parameters of the algorithm, the maximum number of gen-
erations, the number of individuals in each generation Ngen and the rate of reproduction.
An implementation will typically add many other parameters to the algorithm. Some
typical examples being parameters to control the genetic operators, and parameters used
to build an effective fitness function from the objective function. Parameter configuration
is thus a non negligible part of GA development and we will review it in paragraph C.
From an implementation point of view, it should be remarked that the intrinsic parallelism
of the mechanisms existing in the natural evolution model has notably inspired research
on GAs, and many parallel implementations of GAs have been proposed so far (see, for
example, [Stender, 1993, Paz, 1997]). As GAs can require a lot of computing time and
memory to return interesting results on complex problem, parallel computing can be a
solution to improve the performance and scalability of GAs. Some parallel GAs are not
just parallel implementations of sequential GAs, as they promote new mechanisms of
parallel exploration of the search space.
One should also notice that genetic algorithms and evolutionary computation in general
make an intensive use of random processes. As computers are deterministic, random
processes are typically implemented using pseudo-random numbers generators, which are
standard features in modern programming languages.

A Implementing selection

A.1 Selection pressure and genetic drift. Selection operators are used to pick
an individual in the current generation to be reproduced or directly copied to the next
generation, after sustaining mutation. Selection works at random, but individuals with a
better fitness should be favored. The effects of such a dual selection mechanism on the
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dynamics of the evolution process can be qualitatively studied, typically using two main
concepts: selection pressure and genetic drift.
Selection pressure measures how much individuals are favored as they have a better fitness
in their generation. Selection pressure can be quantified through its effects. Let us consider
only the selection effect in a GA, by using identity variation operators, i.e. operators whose
offspring population is always the same as the parents population. At each generation,
the better fitness an individual has, the more chances he will have to see its "clones" to
be copied to the next generation. After a given amount of generations, clones of a same
good individual from the initial population will tend to invade the full population. One
can measure the chances the best individual of the initial population has to be the one
whose clones will totally invade the population. One can also measure the mean required
number of generations to do so. Then, the more quickly the best initial individual has
chances to invade the population, the more the selection pressure will be strong.
Genetic drift is a phenomenon due to the random nature of selection. Let us use the
GA with identity variation operators from above, but let us consider that the selection
operators now select individuals in the current generation completely at random. One
could imagine that the population would fluctuate in a total random way as generations
pass. But as selection is totally random, one individual from the initial population will, at
one moment, have more clones in the current population than any other one, getting thus
more chances to be selected and cloned in the next population. Because of this, it can be
shown that the clones of one random individual from the initial population will totally
invade the population after some generations. This phenomenon is genetic drift and is
even more powerful than the sampling of the current population made by the successive
applications of the selection operator, independently of the individual performances, can
be unfair, i.e. the variance in the number of times an individual of the current generation
is selected can be high.
All other things being equal, a too strong selection pressure can thus lead to the rapid
invasion, as generations pass, of the clones of an individual which may be of good quality
within its generation, but of bad quality at the level of the whole search space. This
is called premature convergence. On the contrary, if the selection pressure is too weak,
random evolution will dominate, and convergence will be slow as good solutions could be
eliminated by the genetic drift.
When clones of one individual invade the population as generations pass, because of
selection pressure or genetic drift, the population is said to converge. Note that the smaller
the number of individuals in each generation Ngen is, the more it increases the risk of an
unfair sampling in favor of some individuals, and the quickness of such convergence.
The key point for selection operator design is thus the control of the global selection
pressure to an efficient level so that the algorithm performs well. We review now the
classical implementation techniques in GAs for selection operator.

A.2 Proportional and tournament selection. A selection operator receives as
input the current generation, and produces as output one individual from this current
generation. Two main classes of selection mechanism can be used to implement selection
operators in common GAs : proportional and tournament selection.

A.2.1 Proportional selection

Principle Proportional selection is the original mechanism proposed by Holland and
Goldberg. It gets inspired from population genetics, where the fitness of an individ-
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ual is defined in terms of its number of offspring. The selected individual is chosen
randomly, but the chance for an individual from the current generation to be se-
lected is proportional to its absolute quality, i.e. the value it gives to the objective
function of the optimization problem.

Typical implementation(s) The typical implementation is called roulette-wheel selec-
tion. Let us imagine a casino roulette wheel, containing as much pockets as there
are elements in the current generation. The length of each pocket is proportional
to the objective function value of the element of the current generation the pocket
represents. The operator then selects one element in the current generation by
throwing the ball, and choosing the element corresponding to the pocket where the
ball stops.

More precisely, if oi is the objective function value of the #i element in the gener-
ation of Ngen individuals, a selection probability pi = oi∑Ngen

j=1 oj
is assigned at each

individual i at the beginning of the iteration of the generations loop. Probabili-
ties are then cumulated so that each individual i is assigned a subinterval of [0, 1[:
[
∑i−1

j=1 pj,
∑i

j=1 pj[. Every time the selection operator is applied, a number is ran-
domly chosen in [0,1[, and the operator returns the individual whose subinterval
contains the picked number.

For example, with a generation composed of four individuals A, B, C and D:

The operator would in this case select A.

Evaluation The selection pressure generated by such an operator varies with the vari-
ance of the objective function values of individuals in the current generation. If
these values exhibit a strong variance, best individuals will have a very large se-
lection probability compared to others, and they may be selected almost all the
time: selection pressure will be very strong. But if they have a weak variance, all
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individuals will have all almost the same probability of selection, so that selection
will work quite at random, and there will not be nearly any selection pressure more.

This problem is typically solved by not using the objective function values directly
as fitness for the individuals in the population. At each generation, fitness values
are computed by artificially scaling the objective function values, in order to adjust
the selection pressure to a given level, according to a defined policy.

Finally, as proportional selection requires selection probabilities to be calculated
and scaled again for all individuals at each generation, it is considered as expensive
in processing time compared to the tournament selection mechanism.

A.2.2 Tournament selection

Principle The selected individual from the current generation is the one who wins a
tournament between a given number of individuals picked randomly in the current
generation. The winner of the tournament is selected by taking into account the ab-
solute quality of the participants, given by the objective function of the optimization
problem.

Typical implementation(s) There are two typical ways for implementing the tourna-
ment.

In deterministic tournament, n individuals are randomly picked from the current
generation, and the individual with the largest objective function value is selected.

In binary stochastic tournament, two individuals are randomly picked from the
current generation, and the one with the largest objective function value is chosen
with a probability p > 0.5.

Evaluation Tournament selection allows to control easily the selection pressure with the
parameters n and p. In a deterministic tournament, as soon as the best individual
of the current generation is selected for tournament, he will win the tournament.
The more individuals take part to the tournament, the more the best individual
has chance to be selected for tournament. The parameter n can thus be used to
control selection pressure, if n ≈ Ngen, then the best individual will almost always
be selected by the operator, as n is decreased, selection pressure is reduced, with a
minimum value of 2 for n. A deterministic tournament with n = 2 is equivalent to
a binary stochastic tournament with p = 1. By decreasing p, one still decreases the
selection pressure, with a minimal value of p = 0.5, where the selection pressure is
zero, and the selection totally random.

Tournament selection is simple, and does only require the processing of the objec-
tive function of the individuals who take part in the tournament. Once this value
has been calculated, it can be cached, and it will not be necessary to evaluate it
again, if the individual participates to other tournaments in this generation or in
the following ones. As no mean fitness and no scaling factors must be calculated at
each generation, all the required tournaments can be lead independently from each
other, paving the way for a parallel implementation.

A.3 Other general selection schemes. The general selection scheme of classical
GAs uses a selection operator which picks one individual at a time, and is bases on a
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sequence of independent draws with this operator for each generation. Such a mechanism
can be criticized because as the draws are independent, it can happen that individuals
with worst fitnesses may be selected several times while individuals with best fitnesses are
never selected. By nature, this general selection mechanism can lead to sampling errors
and is thus prone to genetic drift. That is said to impact the performance, even if such
behavior has been seen to have a positive effect on some kinds of problems [Hancock, 1992].
Many other general selection schemes have been proposed, notably inspired by the other
branches of Evolutionary Computation. A more thorough discussion of these techniques
is out of the scope of this work.
We will just describe here one simple technique often used to extend the usual mechanism
of GAs: elitism. The principle of elitism is to always keep the best individuals of the
current generation in the next one. The main effect of elitism is to increase selection
pressure. It has been seen to improve considerably results on some problems but tends to
favor premature convergence of the algorithm on others. Elitism also allows to prevent a
previously found optimal solution to be eliminated by genetic drift and guarantees that
it appears in the last generation.

B Implementing variation operators and genotypic encoding

B.1 Exploring the search space. The reproduction operator receives two selected
genotypes from the current generation and creates two new genotypes to be copied to the
next one by randomly mixing the parents genotypes. All individuals to be copied to the
new generation sustain mutation. The mutation operator randomly modifies his parent
genotype to create an offspring genotype.
In the evolution model, reproduction and mutation are the only mechanisms through
which new traits and new combinations of traits are proposed. Survival or not of these
traits in the next generation will be a matter of chance and of the environmental advantage
they can give. The same occurs in genetic algorithms. Given a set of potential solutions
to the optimization problem chosen to populate the initial generation, reproduction and
selection operators will be the only mechanisms that will produce new potential solutions
different from the ones existing in the previous generation. Variation operators control
thus how the search space can be explored by the GA. Selection operators and the general
scheme will then drive this exploration.
For the GA to be effective, the production of new solutions should drive to the discovery
of the optimal solution of the optimization problem, or at least to a sufficiently good
one. The question is how variation operators can create new potentially better solutions
at each generation. The first behavior is to produce solutions that are variations of the
ones in the current generation. The hope here is that if one solution is good, some of its
variations will keep what made this solution good, but will also improve the other parts,
so that the result will be even better. With such a behavior, initializing the GA with a
population of already good solutions is an obvious advantage. The second behavior is to
produce solutions that are completely different from the ones in the current generation.
The idea here is that we should not put all of our eggs in the same basket: there is no
reason that some totally different solutions from the ones in the current population could
not be really better or even optimal. If the first behavior is adopted, the search made by
the GA will tend to be focalized to small regions of the search space, as only variations of
existing solutions will be investigated, with the risk that these regions do not contain the
optimum or even sufficiently good solutions. If the second behavior is adopted, the GA
will be pure random search, so that the optimum can only be found by hazard. This can
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take a possibly very long time, as, statistically, half of the population has to be tested for
the optimum to be found in that random way.
Whether variation operators are closer to one of these two behaviors will be qualified
as their disruptive power : identity variation operators are not disruptive at all, totally
random ones are completely disruptive. Variation operators in GAs try typically to mix
the two previous behaviors. Reproduction tries to randomly combine the characteristics
of two interesting individuals, in order to produce an even more interesting one. Off-
springs of a reproduction operator can be seen as variations of their parents, but also as
quite different individuals from each of the parents taken separately. Mutation modifies
an existing individual in a random way, with the hope that the new individual will be
better. Mutation is important as it can introduce new individual characteristics in the
population, where reproduction can typically only combine characteristics already present
in the population. Mutation guarantees thus that any solution of the search space can
theoretically be created by the algorithm from the solutions in the initial population, as
the generations pass.
Note that variation operators work on genotypes, i.e. on the data structures that represent
solutions. The phenotypic improvement offered by variation operators acting on genotypes
depends thus on the genotypic encoding that maps solutions to their representation. The
choice of the used representations set and of the used genotypic encoding must thus be
done carefully.

B.2 Choosing a genotypic representation and designing variation operators.
The main effort in translating an optimization problem in such a form that allows to
solve it with a GA is the choice of a genotypic representation and the design of variation
operators. Given the search space S, one should define:

• A genotypic space G.

• A total injective encoding function c : S → G.

• A set of n potentially nondeterministic reproduction operators ri:

{ri : G⊗G→ G⊗G | ∀i ∈ [1, n] , ∀s, t ∈ S, ∃u, v ∈ S, ri(c(s), c(t)) = (c(u), c(v))}

• A set of k potentially nondeterministic mutation operators mj:

{mj : G→ G | ∀j ∈ [1, k] , ∀s ∈ S, ∃t ∈ S, mj(c(s)) = c(t)}

The definitions of operators encompass the fact that some possible representations in
the genotypic space may not map any element from the search space. According to the
definitions, operators must always produce new genotypes that map elements of the search
space.
One can use several reproduction operators and several mutation operators, to combine
their different effects. When reproduction or mutation has to be applied, one of the
corresponding operators is picked. The draw of the operator to apply can be totally
random, but some operators may also be favored, and have a higher probability to be
picked. New parameters pri and pmj must then be introduced in the algorithm. pri
represents the probability to pick the #i reproduction operator, with

∑n
i=1 pri = 1. pmj

represents the probability to pick the #j mutation operator, with
∑k

j=1 pmj = 1.
The main guideline for defining a representation and a set of variation operators is that
they must be based on the underlying optimization problem. Given the structure of the
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search space and of the potential solutions it contains, data structures and operators are
build to achieve an effective exploration. Of course, many representations and associated
variation operators have already been defined and studied since evolutionary computation
has been proposed. Moreover, they have been applied to a wide range of problems. In
can thus be very interesting, while translating a problem to be solved by a GA, to review
existing solutions and assess how similar problems have been solved in the past.
In the original genetic algorithms proposed by Holland, each solution is represented by a
fixed-length bit string. If such a binary encoding can be well-suited for some kinds of prob-
lems (for example problems involving a set of boolean variables to adjust), it was proposed
by Holland as a universal encoding system for all problems. Such a choice was essentially
justified in the frame of a mathematical formalization of GAs centered on a "schemata
theorem", and proposing an explanation of efficiency of GAs known as the building-block
hypothesis. By now, this theory has been called into question [Burjorjee, 2009], and there
seems to be no evidence that a binary representation must be preferred to others, whatever
the underlying optimization problem is.
Nevertheless, the binary representation remains very popular, and is often considered as
the canonical representation of genes associated to evolutionary algorithms. It has been
successfully applied to a wide range of problems so far. Some simple classical binary
variation operators have been widely used, studied and extended. For theses reasons, and
because the probabilistic encoding we propose in this thesis is an extension of this binary
representation, we detail in what follows these common binary variation operators.

B.3 Usual binary variation operators. Three reproduction operators are typically
used in practice for a binary representation: one-point crossover, two-points crossover and
uniform crossover. These crossover operators are inspired by the evolution model. The
two binary strings received as input by the operator are considered as the chromosomes
of the father and the mother, each position in the string is the locus of a particular gene,
each gene getting two alleles represented by the binary values 0 and 1. Crossover will
produce two offspring whose allele value for a particular gene will be either the one of the
father, or the one of the mother. One can thus describe the processing made by crossover
operators as a simple procedure:

1. Every time the operator is used, create randomly a binary string, called the mask,
of the same fixed length of the bit strings used to code the chromosomes.

2. For the first offspring, the ith value of the bit string will be the ith value of the
father bit string if the ith value of the mask bit string is 1, or the one of the mother
otherwise.

3. For the second offspring, the ith value of the bit string will be the ith value of the
father bit string if the ith value of the mask bit string is 0, or the one of the mother
otherwise.

For example, for five bits-length strings:
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If the mask is a full 0 or a full 1 bit string, then offspring will be the same as parents:

In one-point crossover, both the mother and father string are "cut" in two parts, at the
same randomly chosen position, and offspring string are made by pasting the first part of
the mother string with the end part of the father string, and vice-versa. The one-point
crossover operator will thus always use masks composed of l times 0 followed by m times
1 (orm times 1 followed by l times 0), with l + m = the size of the bit string, and l,m 6= 0:

In two-points crossover, the parents string are cut in three parts, at the same two randomly
chosen positions, and the central part is switched to create the offspring string. The mask
will thus be composed of three alternating sequences of 0 and 1:

One can use more cutting points. For example, in uniform crossover, the mask is ran-
domly computed with no constraint on the number of cutting points. For each position i
in the mask string, a number p is randomly picked in [0,1[, if p <0.5, the ith value of the
mask bit string will be 0, and it will be 1 otherwise.

In the evolution model, mutations randomly change the allele value of some genes. The
mutation operator will also mimic this behavior. Every time a mutation operator is
applied, it randomly switches the bit value at some positions in the string. The number
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of switched bits in the string is fixed by a rate of mutation, which is a new parameter
of the algorithm. Two typical implementation are used: with determinist mutation, the
positions of the switched bits are picked randomly, so that the number of switched bits
is the one defined by the mutation rate, and the corresponding bits are then switched.
With bit-flip mutation all bits are considered one by one, and each bit can be mutated
with a probability equal to the mutation rate.

B.4 Memetic or hybrid genetic algorithms. More and more recent GAs imple-
mentation tend to replace random mutation of individuals at each generation by a local
optimization of individuals [Dréo et al., 2003, Page 226]. For each individual, an optimum
is searched among the region of the close variations of the considered individual. This
"local optimum" replaces then the considered individual. GAs that use such methods are
called memetic or hybrid algorithms. As memetic computation has been developed for a
few years, more complex schemas to mix local optimization with evolutionary optimization
have been proposed (see notably [Krasnogor and Gustafson, 2002]).

C Parameters configuration

We have already signaled some of the common parameters that can be found in a GA:

• The maximum number of generations.

• The constant size of the population at each generation, Ngen.

• The rate of crossover and of mutation.

• The size of tournament in deterministic tournament or the probability of victory of
the best individual in probabilistic binary tournament.

• The number of "best" individuals in the current generation that survive if elitism
is applied.

• The relative rates to apply the different operators of crossover or mutation.

Many other parameters can be introduced in the algorithm as the components described
in this framework are refined and extended, and other components are added. Parameters
allow to tune in a very extensive way how the algorithm works, and a good parameter
choice will thus be fundamental for the efficiency of the algorithm and for the quality of
the returned results.

At the beginning of the 1990’s, evolutionary algorithms were considered as a "robust"
search method, that would exhibit a similar performance on a wide range of problems. A
lot of work has been done to find a generally good parameter configuration for evolution-
ary algorithms [Eiben and Smith, 2003, Page 130]. Notably, studies have been lead to
find an effective set of parameters able to deal with some test suites of diverse optimiza-
tion problems. By now, it seems acknowledged that specific problems require a specific
parameter configuration, and that the scope of an optimal set of parameters is inevitably
narrow [Eiben and Smith, 2003, Page 130].

If we suppose that the structure of the algorithm has been fixed for a given problem,
the typical technique used to find the optimal set of parameters for the problem is called
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parameter tuning. Parameter tuning means trying to find the best parameter values for
the problem through an experimental trial and error process: the algorithm is run on
an instance of the problem with several sets of parameters, and the best one is chosen.
The best one will generally be the one for which the algorithm returns the best solution.
Typically, statistics on the evolution process are collected during the run and used to help
with parameter tuning. For example, measuring the diversity in the population along the
run could allow to detect some premature convergence problems.
Practically, parameter tuning often encounters many problems:

• As parameters are typically not independent, all combinations of parameter values
have to be tried. Parameter tuning for a given optimization problem is itself a
combinatorial optimization problem, that can be very hard to solve, if there are
many wide-range parameters to tune.

• Evolutionary algorithms make intensive use of hazard (typically through pseudo-
random numbers generators), and are thus non-deterministic algorithms. For each
given parameter set to test, one will have to perform a statistically significant num-
ber of runs (with different random seeds for the pseudo-random number generators)
with this set for the results to be compared with the other ones.

• It has been established that using a set of parameters that remains fixed during the
run is not optimal [Eiben and Smith, 2003, Page 131]. Better results could typically
be achieved if the parameter values were modified during the run to drive a better
evolution process.

As all combinations of parameters can typically not be tested in a reasonable time, pa-
rameter tuning is often a very hasardous and time-consuming process, that often returns
an acceptable but not necessarily optimal parameter set, which is fixed for the whole run.

Several approaches exist to propose solutions to these three problems. One could try to
tune not an optimal set of parameter values p, but an optimal set of parameter func-
tions p(t), which returns the parameter value at each iteration t of the generations loop.
This is nevertheless even harder than the simple tuning of parameter values. Mech-
anisms for the algorithm to automatically adapt some parameter values dynamically
along the run, based on information about the past and current generations, have also
been developed [Eiben and Smith, 2003, Page 131]. Finally, it has also been proposed
[Eiben and Smith, 2003, Page 131] to solve the parameter tuning combinatorial optimiza-
tion problem using evolutionary computation. There would be for example a GA working
on a population of identical GAs optimizing the original optimization problem, each with
a given set of parameters or parameters functions. One could also imagine one GA that
tunes itself while solving the problem.

1.4 Extending the framework for finding diverse opti-
mal/good solutions

1.4.1 Multimodal optimization and evolutionary computation

Multimodal optimization deals with the case where different optimal or sufficiently good
solutions exist for the optimization problem and have to be found.
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Many optimization techniques are local search techniques, i.e. they sequentially consider
one potential solution at a time, jumping from one solution to another in the search space,
until a solution considered as optimal is discovered or a limit of computing time is reached.
In the case of multimodal problems, such algorithms will typically be run several times,
in the hope that each run will return a different optimal of sufficiently good solution.
Mechanisms will typically have to be used to try to prevent the algorithm to find several
or every time the same solution.

Evolutionary algorithms, and genetic algorithms in particular, are population algorithms.
They work on a population of potential solutions that they try to evolve to better solu-
tions. It can thus seem natural to exploit this characteristic to find and maintain multiple
different interesting solutions across the population in one run.

By now, it seems widely accepted [Singh and Deb, 2006] that reducing the selection pres-
sure, minimizing the risk of sampling errors in applying selection, and using variation
operators that are not too disruptive is not sufficient to discover and stabilize different
good or optimal solutions in the population across the generations. The population will
typically converge around a single solution, containing only close variations of this solu-
tion. To solve multimodal problems, new algorithmic mechanisms must be introduced in
evolutionary algorithms, to promote the concurrent discovery and exploration of several
interesting diverse solutions.

The first proposals on this subject were realized by Goldberg and Richardson in 1987
[Goldberg and Richardson, 1987]. Their work was based on the adaptation of ideas orig-
inating from the biological concept of ecological niches to GAs. Several different species
can live in a sustainable way together in the same environment, if they are each in a dif-
ferent (or not too overlapping) ecological niche. An ecological niche is often described as
an hyper-volume of an n-dimension space, each dimension corresponding to the available
resources, such as available kinds of food, and living conditions, such as temperature, in
the environment.

Goldberg and Richardson’s technique was subsequently developed and tested and many
different other techniques for adapting evolutionary algorithms to multimodal optimiza-
tion have been proposed so far. They are referred to as niching methods. Niching methods
typically modify the usual selection operators and general selection schemes used in evo-
lutionary computation, so that they provide selection pressure within, but not across,
different regions of similar high performing individuals individuated in the search space.
These techniques can be used to extend the GAs framework proposed in the previous
section, so that encompassed GAs can deal with multimodal optimization.

In this section, we first introduce the typical formal way to measure the similarity be-
tween the individuals manipulated by a GA, as it is used as a basis by most niching
techniques. Then we present and evaluate sharing, the original niching technique pre-
sented by Goldberg and Richardson, whose ideas will be part of the GA developed in this
thesis. In addition to the references given in the first section of this chapter, a review
of most existing niching techniques can be found in the state of art made by G. Singh
in [Singh and Deb, 2006], which was used as a source of inspiration for this subsection.
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1.4.2 Measuring similarity between individuals

Niching methods try to let different solutions emerge in one run of the GA, by emphasizing
competition within, but not across different regions of similar high-performing individuals
in the search space. They should thus be able to measure how much two individuals are
phenotypically similar, so that they may be part of the same region. This is typically
done by making the search space a metric space, i.e. by defining a distance function d
between any couple of solutions in the search space:

d : S ⊗ S → [0,+∞[ such that

∀u, v ∈ S, d(u, v) = 0⇔ u = v (Identity of indiscernible solutions)

∀u, v ∈ S, d(u, v) = d(v, u) (Symmetry)

∀u, v, w ∈ S, d(u,w) 6 d(u, v) + d(v, w) (Triangle inequality)

The distance between two solutions should be as large as the solutions are different. The
choice of a convenient distance function will depend thus on the specific solved optimiza-
tion problem, and its specific potential solutions.
As GAs manipulate genotypes, the distance between the solutions represented by geno-
types G1 and G2 will then be computed through d(c−1(G1), c

−1(G2)) (where c represents
the genotypic encoding function). An alternative solution to measure the similarity be-
tween two individuals is to define the distance directly on the genotypic space G. A dis-
tance defined on the phenotypic space (i.e. the search space S) is a phenotypic distance,
and a distance defined on the genotypic space (i.e. the space of computer representations
of the solutions) is a genotypic distance.
When usual genotypic representations are used in the GA, like the fixed length binary
string representation described previously, some "default" genotypic distance function,
measuring how two representations are different, independently of the solutions they rep-
resent, exist. With fixed length binary string representation, Hamming distance can
typically be used. Hamming distance between two equal-length binary string is equal to
the number of positions at which the corresponding bits in the two strings are different.

1.4.3 Fitness sharing method for genetic algorithms

The original niching method developed by Goldberg and Richardson is the fitness sharing
(or simply sharing) method. Sharing acts on the fitness function used in the GA. With
sharing, the fitness of an individual in the current generation equals its objective function
value divided by its niche count, a quantity that is even larger than the number of other
similar individuals in the generation.
Let us consider a simplistic and idealized but enlightening example: a generation of 20
individuals, where 19 individuals are very slight phenotypic variations of a same individual
having a mean objective function value O1, while the last 20th individual is totally different
from the others and has an objective function value of O2. If a proportional selection
mechanism is used, the probability to pick one of the 19 first individuals will be:
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19 ∗
O1

19

19 ∗ O1

19
+ O2

1

(fitness is the objective function divided by the niche count,

which is 19 for the 19 first individuals, and 1 for the last one)

=
O1

O1 +O2

while the probability to pick the last 20th individual will be:

O2

1

19 ∗ O1

19
+ O2

1

=
O2

O1 +O2

Applying a proportional selection mechanism with sharing on the 20 individuals is thus
equivalent to applying the same proportional selection mechanism without sharing on
a population of two individuals, one with fitness O1 and another with fitness O2. The
number of times one of the 19 first individuals will be selected is proportional to their
shared mean fitness O1, and the number of times the last element element will be selected
is proportional to its fitness O2. In the next generation, the number of individuals of
type 1 and 2 should approximately be proportional respectively to O1 and O2, and the
population will contain 20 ∗ O1

O1+O2
individuals of the first type and 20 ∗ O2

O1+O2
individuals

of the second type. If sharing is applied on such a population, the scaled fitness value of
an individual of first type will be:

O1

20 ∗ O1

O1+O2

=
O1 +O2

20

And the scaled fitness value of an individual of second type will be:

O2

20 ∗ O2

O1+O2

=
O1 +O2

20

All the individuals have thus the same fitness value, and we have reached some kind of
fix-point. There is no more selection pressure, and if variation operators are not too
disruptive, and the population sufficiently large to reduce sampling errors and genetic
drift, the ratio of individuals of type 1 and 2 will not change in the next generations.
Suppose that the search space contains n interesting solutions, the purpose of sharing is
thus to prevent the population to converge to close variations of one of these solutions,
and to reach an equilibrium state where the population contains n "niches" each con-
taining close variations of one of the n solutions. The relative size of each of the niches
in the population will be proportional to the fitness value of the solution they represent.

35



Competition will occur between variations of a same solution to occupy the niche rep-
resenting this solution, so that the best local variation in the region represented by the
niche will be found. Different solutions will compete to be represented by a niche in the
population. Using the sharing method requires thus a sufficiently large population to put
up with a potentially large number of interesting solutions to be found, and maintained
against genetic drift.

The mechanism of sharing necessitates to compute the niche count of the individuals in
the current generation. Typically, this niche count is computed as the sum of a sharing
function value between itself and each individual in the population, including itself. This
sharing function is usually calculated as:

sh(ind1, ind2) =

{
1− (d(ind1,ind2)

σshare
)α if d(ind1, ind2) < σshare

0 otherwise

Where d(ind1, ind2) refers to a distance measure between two individuals as defined in
the previous subsection 1.4.2.
σshare is a positive real parameter called the niching radius, and should correspond to the
desired minimal distance between two individuals so that they can be considered as rep-
resenting different solutions of the problem. If the distance value between two individuals
is greater or equals to the niching radius, then the sharing function will return zero when
applied to these two individuals. Otherwise, as stated above, the sharing function should
return one, to count the number of similar individuals in the generation. But as the nich-
ing radius value depends on the problem, and cannot typically be established precisely,
a more careful approach is adopted. The smaller the distance between the individuals
compared to the niching radius is, the larger the value returned by the sharing function
will be, with a maximum value of one, when the distance is zero, i.e. when the two indi-
viduals are identical. α is a positive real parameter called the scaling factor, which allows
to tune how quickly the sharing function value will grow while the distance between the
two individuals is reduced. Usual values for α are 1 or 2. The following graph shows the
sh(d(ind1,ind2)

σshare
) for several values of α:
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Sharing is reputed to be very efficient given a sufficiently large population size, and is one
of the most often used niching technique.

The main drawback of the method is the difficulty to choose a good value for σshare. If
σshare is larger than the distance between potentially interesting different solutions of the
problem, the solutions will not be protected from competition and the algorithm probably
will not find all the interesting solutions. At the opposite, if σshare is too small, several
niches may appear for a same solution, requiring a larger population to put up with all
the interesting solutions of the problem to be found.

Note that sharing typically requires a proportional selection mechanism. As a conse-
quence, function sh must be computed Ngen times per generation, where Ngen is the
constant size of a generation, as for applying proportional selection, the total fitness of
the generation must be valued. As the sh function has a O(Ngen) complexity, sharing has
a time complexity of O(N2

gen). As sharing can require a large value of Ngen to be effective,
the method can be very time-consuming, typically if objective and distance functions are
hard to compute.

Work has been done to overcome these drawbacks. In particular, use of sharing with a
tournament selection mechanism is considered in [Oei et al., 1991] and a mechanism with
a better time complexity is then proposed.

[Oei et al., 1991] shows first that applying tournament selection on a current generation
whose fitness has been scaled by sharing is inefficient. In theory, sharing will adapt fitness
values in order to lead to a population composed of equal fitness individuals that can
be grouped in niches representing each a solution of the problem. The size of a niche is
proportional to the objective function value of the represented solution. In the example
given above, to obtain this result, we had to consider that the fitness of each individual in
the generation could be scaled perfectly to create a population of equal fitness individuals.
In practice, sharing does not work so perfectly, and scaling does not modify the fitness as
precisely and correctly as it has been stated above. With proportional selection, this is
not too problematic, as small fitness variations do not disrupt the effect of selection that
much. In tournament selection, if the best individual in the generation takes part in the
tournament, it will always win. If it does not take part to the tournament, then if the
second individual does take part in the tournament, it will win, and so on. Tournament
selection works thus in some way by ranking the population and favoring the best ranked
individuals. Small fitness variations between individuals that should have the same fitness
will thus be increased by selection, and no equilibrium will be reached.

The proposed solution is tournament selection with continuously updated sharing. At each
iteration of the generation loop, the first two individuals are selected in a normal way
through deterministic tournament without any fitness scaling, and they or their offspring
are added to the next generation. Next, every time a tournament is performed, the fitness
of each individual that takes part in the tournament is computed by dividing the objective
function value of the individual by its niche count. But this niche count is computed as
if the individual was in a population composed of itself and all the individuals already
copied to the next generation. Let us consider a binary tournament between an individual
from niche 1 with objective value O1 and individual from niche 2 with objective value
O2. Suppose there are k1 individuals in the next generation members of the same niche
than the first individual and k2 for the second individual. Then the fitness value of these
individuals will be respectively O1

k1+1
and O2

k2+1
. The selected individual will thus be:
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Individual 1 if
O1

k1 + 1
>

O2

k2 + 1

Individual 2 otherwise

If sharing is efficient, the next generation should contain at the end a proportion of ap-
proximately P1 =

O1∑
nichesOniche

individuals of niche 1, and P2 =
O2∑

nichesOniche
of individuals

of niche 2. Thus, we have:

O1

k1 + 1
>

O2

k2 + 1
⇔ P1 ∗

∑
nichesOniche

k1 + 1
>
P2 ∗

∑
nichesOniche

k2 + 1
⇔ P1

k1 + 1
>

P2

k2 + 1

If Ngen is the size of the population at each generation, we have finally :

P1

k1 + 1
>

P2

k2 + 1
⇔ P1

k1+1
Ngen

>
P2

k2+1
Ngen

⇔
k1+1
Ngen

P1

<

k2+1
Ngen

P2

And the selected individual will be:

Individual 1 if
k1+1
Ngen

P1

<

k2+1
Ngen

P2

Individual 2 otherwise

k1+1
Ngen

P1
represents what ratio of the number of individuals of niche 1 sharing requires to be

present in the next generation will already be present in the population if we add indi-

vidual 1 to the individuals already copied to the next generation.
k2+1
Ngen

P2
means the same

for niche 2. With tournament selection with continuously updated sharing, the individual
which will win the tournament will thus typically be the one whose niche has propor-
tionally fewer individuals than it is target number (proportional to the objective function
value for the niche) in the next generation. Such mechanism dynamically regulates thus
the populating of the next generation as it is created in order to enforce niching effects.

To reduce the time complexity, [Oei et al., 1991] also suggests that using a sample of
maximum size k of the individuals already copied to the next generation is sufficient to
estimate the value of the niche count.

These ideas have been tested and exposed good results notably in [Goldberg et al., 1992].

[Sareni and Krahenbuhl, 1998] signals also that mechanisms have been developed to pre-
vent sharing to use too disruptive variation schemes, and in that way promote stability of
discovered niches, as, typically, reproduction between individuals of different niches can
often produce poor quality individuals that are not members of one of the parents’s niche.
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1.5 Extending the framework for solving multi-objective
optimization problems

1.5.1 Multi-objective optimization and Pareto optimality

With multi-objective optimization, we have no longer a single objective function o, but
several objective functions oi that all have to be maximized at the same time. The
problem is different from single-objective optimization, as solutions that optimize one of
the objective functions, will not necessarily optimize the other ones. Many optimization
problems are multi-objective problems with conflicting objective functions. A typical
example are problems where cost, performance and reliability must be optimized at the
same time. In this case, a cost-wise optimal solution will typically be a less reliable and
poor-performing one.
The solution to this problem is the concept of Pareto optimality, which refers to Vilfredo
Pareto, an italian economist who invented this concept at the beginning of the twentieth
century. The main idea of Pareto optimality is that a solution can only be said better than
another one if it is not worse than the other one for all the objective functions and better
for at least one objective function. The two solutions can also be of equivalent quality
if they have the same value for all the objective functions. In the case of two solutions
where one is better on at least one objective function and the other one better on at least
one other objective function, the two solutions are indifferent. A formal definition of these
concepts is Pareto dominance:

Definition 1.9 (Pareto dominance). ∀a, b ∈ S, the search space,
a � b (a dominates b) ⇔ (∀i, oi(a) > oi(b)) ∧ (∃j, oj(a) > oj(b))

a = b (a equals b) ⇔ ∀i, oi(a) = oi(b)

a � b (a weakly dominates b) ⇔ a � b ∨ a = b⇔ ∀i, oi(a) > oi(b)

a ∼ b (a is indifferent to b) ⇔ a � b ∧ b � a

To illustrate these concepts, let us consider a search space composed of seven solutions
named A, B, C, D, E, F and G. Optimization must be achieved for three objective func-
tions: cost (to be minimized), performance (to be maximized) and reliability (to be maxi-
mized). Objective functions values for all the possible solutions are listed in the following
table:

Cost Performance Reliability
A 2 100 1078
B 13 154 2010
C 14 226 3456
D 9 226 3456
E 8 306 4059
F 26 227 4013
G 777 2200 54987

One can establish exhaustively which solutions dominate which other ones in the whole
search space. Dominance relations in the search space are synthesized in the following
table, where each row gives, for its corresponding solution, the solutions it dominates:
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dominates A B C D E F G
A
B
C
D X X
E X X X X
F
G

If one looks at the columns of the previous table, they represent, for each solution, which
other solutions dominate it. It can be remarked that solutions A, E and G are not
dominated by any other solution in the search space. These solutions are thus the best
possible solutions, as there are no solutions that are at least better for every objective
function, and strictly better for at least one objective function. These non-dominated
solutions are then said to be Pareto optimal, and they constitute the Pareto-optimal set.

Definition 1.10 (Pareto optimal set). Let S be the search space of a multi-objective
optimization problem, and oi with i=1...n, the n objective functions of this problem.
The set {a ∈ S|∀s ∈ S, s � a} of non-dominated solutions is called the Pareto optimal
set.

In multi-objective optimization, each of the n objective functions oi can be defined as a
function from S to [0,+∞[ to be maximized. The space where quality can be measured
for multi-objective optimization will thus be

∏n
i=1[0,+∞[. It is called the attribute space.

The vectors in the attribute space that correspond to the non dominated solutions of S
constitute the Pareto front of the problem.

Definition 1.11 (Pareto optimal front). Let S be the search space of a multi-objective
optimization problem, and oi with i=1...n, the n objective functions of this problem.

The set {

 o1(x)
...

on(x)

 |x ∈ {a ∈ S|∀s ∈ S, s � a}} is the Pareto optimal front.

All the solutions inside the Pareto-optimal set are, as they are not dominated by any
other solution in the search space, including the other Pareto-optimal solutions, either
Pareto equal, or Pareto indifferent to each other. Taking two non equal Pareto optimal
solutions, one will always be better than the other one on at least one objective, and vice-
versa. But they can still be in some way compared. If we look at the Pareto-optimal set
{A,E,G} of our example problem, solution A is very cheap, but is very poor-performing
and not reliable, solution G is high-performing and very reliable, but also very expensive,
and finally solution E looks like a compromise solution. According to the context of the
problem, one type of solution can eventually be preferred to another one.
Typically solving a multi-objective problem consists thus in two tasks: search and decision-
making. Search means discovering the Pareto-optimal set in the search space. Decision-
making consist in deciding which solution(s) in the Pareto-optimal set should be preferred.
This last task cannot always be formalized a-priori, and a human decision-maker, even-
tually computer-assisted, is often necessary to achieve it after the search step.
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1.5.2 Solving multi-objective problems with evolutionary compu-
tation

Classical techniques for solving multi-objective optimization problems consist in trans-
forming the multi-objective problem into a single-objective one, and using a single-objective
method to solve it. The transformation from multi to single objective is done by combin-
ing the different objective functions into one parameterized objective function, that will
be optimized. A typically used combination is a linear combination of objectives, with
parameterized linear coefficients.
Such kind of transformations can be a good way to incorporate decision making inside
the search algorithm, by combining the objective functions in a way that favors some
compromises among all solutions. For the linear combination scheme, one can adjust the
linear coefficients in order to penalize some objectives and favor solutions that perform
well on the other objectives. Such a specified preference between objectives can help
reducing the search space exploration complexity. But very often, there is not enough
information available on the problem and its solutions so that the way in which to combine
the objective functions and to value the parameters must be established experimentally,
by trial and error.
One can ask if the optima and the sufficiently good solutions of the combined objective
function do really correspond to the set of Pareto-optimal solutions. Typically, the single-
objective optimization algorithm is run several times with different parameters values,
in order to find a set of solutions that approximate the Pareto-optimal set. For some
methods, and typically the linear combination one, it can be shown that, in some cases,
some solutions in the Pareto optimal set will never be found, whatever the parameters
are.
As in pure single-objective optimization, for finite search space problems, exact methods
or heuristics, like EAs, can be applied, as a function of the problem complexity.
Some methods also exist in order to solve multi-objective problems directly in terms of
Pareto optimality, without transforming them into single-objective ones. Some researchers
have suggested that evolutionary algorithms could be the best suited heuristic for such a
pure multi-objective optimization [Zitzler, 1999, Page 13-14]. As EAs work on a popula-
tion of solutions, they are particularly well adapted to the search of a set of solutions (the
Pareto optimal one) in a single run. Moreover, the selection mechanism in evolutionary al-
gorithms can easily be defined in term of Pareto dominance, as EAs work on a population
of solutions on which domination relations can be computed. For these reasons, evolu-
tionary computation is the most frequently used heuristic for multi-objective optimization.

When evolutionary algorithms are applied to multi-objective optimization problems, we
thus have to deal with two main difficulties. First, adapted selection scheme and selection
operators must be used to guide the exploration of the search space to the discovery of
the Pareto-optimal set. Secondly, the population should not be allowed to converge to a
single region of the search space, but to become a good sampling of the Pareto-optimal
set, as well in terms of phenotypic diversity (finding different solutions), as in terms
of distribution along the Pareto-front (finding diverse compromises between objectives).
Mechanisms to solve these two difficulties can be incorporated in the framework defined
in section 1.3, so that the encompassed GAs can solve multi-objective problems.
Many multi-objective selection mechanisms and systems to maintain diversity have been
proposed and tested. We will explain in the next paragraph the Niched Pareto Genetic
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Algorithm proposed by Horn [Horn et al., 1994], which is one of the most widely spread
multi-objective GA, and the one which will be the basis for the GA developed in this
thesis. A more detailed analysis of several other existing techniques can be found in the
references given in the beginning of this chapter, and in [Zitzler, 1999], which has been
used as a first source of information for this section. The most recent approaches for
multi-objective evolutionary computation are also presented at the end of this chapter.
In [Zitzler, 1999], one can also find references for reinitialization, a mechanism used in
the algorithm developed in this thesis, for enforcing diversity by introducing at each
generation a small number of random individuals in the population.

1.5.3 The niched Pareto genetic algorithm

The idea of using an evolutionary algorithm that combines a pure Pareto domination based
selection scheme with diversity enforcing mechanisms to solve multi-objective problems
in one run, was first suggested by Goldberg in the famous book "Genetic Algorithms in
Search, Optimization and Machine Learning" [Goldberg, 1989].
Goldberg proposes to rank the individuals in the current generation using the Pareto dom-
ination information. The non dominated individuals within the population are given the
rank #1. Then they are removed from the population, and the non dominated individu-
als of the remaining population are given rank #2. The process is repeated, attributing
successively higher ranks until all the individuals have a rank. Traditional GA is then
applied, with proportional selection operators acting on a fitness based on the rank val-
ues of the individuals. Fitness sharing, potentially coupled with mechanisms preventing
disruptive variation schemes, is used to prevent premature convergence and allow to find
diverse Pareto-optimal solutions.

In fact, such an approach simply adapts classical GAs with proportional selection and
sharing to solve multi-objective problems. It transforms the selection mechanism to deal
with Pareto dominance, while sharing is used to enforce diversity. The niched Pareto
genetic algorithm adapts, in a similar way, classical GAs using tournament selection, with
continuously updated sharing, to multi-objective optimization.
The adaptation proposed in the niched Pareto algorithm modifies the binary tournament
selection operator with continuously updated sharing of the classical algorithm, which
works now in two different steps. First, two individuals are randomly picked from the
current generation to take part to the tournament, while a fixed parametric number tdom
of individuals are chosen in the same way, to create what Horn [Horn et al., 1994] calls a
comparison set. It is then checked whether there exists individuals in this set that domi-
nate the two candidate individuals that take part to the tournament. If one candidate is
dominated and the other one is not, the non dominated individual is chosen. The second
step is only applied if the two individuals are either both dominated, or both non domi-
nated, in which case the tournament leads to a tie. The niche count of both individuals is
then computed using the individuals already copied to the next generation, in the same
way as in the usual tournament with continuously updated sharing mechanism. As the
first part of the tournament lead to a tie, the two individuals can be considered to be of
equal performance, and the individual with the lowest niche count is then the chosen one.

This mechanism allows to favor the individualsà that would be best ranked in the initial
Goldberg’s scheme (i.e. the less dominated ones), without having to establish the precise
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ranking of each individual, which requires a lot of processing time. The size of the
comparison set tdom is a parameter that allows to tune the selection pressure strength: if
tdom ∼ Ngen then rank #1 non-dominated individuals will typically always be preferred if
they face a rank > 1 dominated individual, while no distinction will be made between other
rank > 1 dominated individuals. If tdom ∼ 1, then a large proportion of tournaments will
lead to a tie, even when a rank #1 non-dominated individual face a rank > 1 dominated
individual. The value of tdom will also allow to tweak the ratio of selection pressure
versus sharing pressure, as small values tdom values lead to more frequent ties, where the
individual with the lowest niche count is chosen, which increases sharing pressure.
As already stated, one wants to find diverse solutions that exhibit diverse compromises
between the objectives. Diversity should thus be maintained in the phenotypic space, but
also in the attribute space, as two very different solutions can produce similar compro-
mise between objectives, and vice-versa. Nevertheless, the sharing method is designed
considering only one space where diversity should be maintained. As Horn considers that
diversity in the attribute space is the most important, the niche count is computed using
a distance defined in this space. The individuals are then even more distant than their
associated attribute vector, measuring how they perform for each objective, are different.
[Horn et al., 1994] also proposes several untested ideas for enforcing diversity in several
different spaces in the same time.
Experimental results on three test problems [Horn et al., 1994] seem to show that for
tdom ≈ 1% of Ngen, too many dominated solutions stay in the population, preventing it to
achieve a tight distribution of the Pareto front. With tdom � 20% of Ngen, the population
quickly converges to a part of the front, typically near the middle. The recommended
value is tdom ≈ 10% of Ngen.

The Niched Pareto Genetic Algorithm (NPGA), is one of the oldest and of the most widely
spread multi-objective implementations of GAs [Dréo et al., 2003, Page 204]. Neverthe-
less, many other multi-objective evolutionary implementations have been and are still
developed and improved, in order to offer a better approximation of the Pareto optimal
front. The most cited ones are NSGA-II [Deb et al., 2000], SPEA2 [Zitzler et al., 2001]
and IBEA [Zitzler and Künzli, 2004]. These algorithms notably pay attention to use elitist
mechanisms, in order to avoid loosing solutions along the search (as the Pareto-optimal set
can be very large compared to the population size), but can also try to take advantage of
particular multi-objective niching mechanisms especially designed for enforcing diversity
in the attribute space, to allow a better integration of the decision making information
into the algorithm or to reduce the algorithmic complexity.

1.6 Evaluation of evolutionary computation for opti-
mization

1.6.1 Convergence of evolutionary algorithms

A lot of work has been done in order to analyze and model the behavior of evolutionary al-
gorithms in a theoretical way. Rather than giving a formal and quantitative explanation of
how evolutionary algorithms work, the purpose of such work is to develop predictive mod-
els able to describe a-priori how evolutionary algorithms perform on arbitrary problems.
These models could thus be used in practice to tell a-priori which set of implementation
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choices and parameters would be the most effective for a new given optimization problem,
and what quality and speed of convergence should be expected.
By now it seems that only very limited results have been obtained. Some authors even
state that no such a general encompassing explanatory and predictive theory will ever be
established for evolutionary computation. The main problem faced by theoretical analy-
sis is the huge complex nature of evolutionary algorithms mechanisms, that involve many
random processes. Comparison is made with the biological fields of population genetics
and evolutionary theory, which are battling against the barrier of complexity for more
than a hundred years.

These elements justify the approach used in this chapter: defining evolutionary compu-
tation as a toolbox, progressively building a limited framework encompassing the tools
necessary to understand and evaluate the particular algorithm developed in this thesis,
and only offering a qualitative justification of the methods described, often referring to
natural processes occurring in biological evolution.

If, at present, each particular evolutionary algorithm for a particular problem must and
can often only be evaluated on its own limited scope, it can still be established what are
the main advantages and disadvantages of EA over other optimization techniques, and on
which classes of problems they have a chance to outperform other methods.

1.6.2 Advantages and disadvantages versus other optimization
techniques

Evolutionary algorithms and genetic algorithms have been presented here essentially in
the frame of combinatorial optimization problems, and we signaled that they could be
adapted to general discrete and continuous optimization problems. We have also shown
how EAs could perform well on multimodal and multi-objective optimization problems.
The rich literature on evolutionary algorithms details a large and varied panel of suc-
cessful applications of EAs. However it turns out that they can be very poor performing
techniques on some optimization problems.
In fact, EAs are members of the class of meta-heuristics algorithms. Meta-heuristics are
heuristic methods that are not especially designed for one particular optimization problem
but for the whole class of optimization problems. Meta-heuristics are typically inspired by
other sciences like physics (simulated annealing...), ethology (ant colonies algorithms...)
and biology (evolutionary algorithm...).
[Mitchell, 1996, Section 5.1] proposes a portrait of optimization problems that could po-
tentially benefit from meta-heuristics. First, the problem must be unfeasible to solve in
an acceptable time using exact methods. On the other hand, exact methods should be
preferred as they always guarantee to find optimal solutions, while heuristic methods of-
fer no guarantee about convergence to the optimum, and can typically return a good but
sub-optimal solution. If the problem is known to be unimodal, or it is known that the
values of the objective functions vary smoothly as solutions are modified, hill climbing/-
gradient ascent algorithms will perform better than meta-heuristics. Finally, if the search
space structure is well understood, domain-specific heuristics can typically be designed
and outperform general-purpose methods. Optimization problems where finding the op-
timal solution is not required (a sufficiently good solution can be accepted), and whose
search space is large, not smooth nor unimodal, and with a structure which is not well
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understood, are typical problems that are solved using meta-heuristics. The question is
thus, when should EAs be preferred over other meta-heuristics ?

The No Free Lunch theorem (NFL) [Wolpert and Macready, 1997] is an often cited result
that states that if we average the performance of a black-box algorithm (i.e. an algorithm
using no problem specific knowledge) over all possible optimization problems, then all
these kinds of algorithms will exhibit the same performance, supposing that they are
programmed for not generating and testing more than once a same point of the search
space. An algorithm that is high-performing on one class of problems will always pay an
equivalent price with bad performances over other classes of problems. Moreover, choosing
a meta-heuristic for a particular problem is by now more an art than a science, due to
the lack of theoretical elements on convergence to defend a purely rational decision.
All meta-heuristics share the problem of difficult parameter tuning, and should all benefit
from the integration of problem-specific knowledge. For EAs, one should pay a particular
attention to develop a genotypic encoding, variation operators and a fitness function that
particularly suits the underlying optimization problem.
One potential important difference of EAs compared to other search methods is that they
are population algorithms, while many optimization systems are local search techniques
that consider one solution at a time. This difference has already been put forward as an
advantage in this chapter in the case of multimodal and multi-objective optimization.
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2.1 Introduction: automatic analysis of gene expres-
sion data

2.1.1 Measuring genes expression level using DNA microarrays

As explained in [NCBI, 2010], most of the biological cells that compose a living organism
contain the same set of identical genes. Nevertheless, only a part of these genes are
"turned on" in a cell, and it is this subset of "expressed" genes that confers particular
properties to a particular cell. Gene expression refers to the process where the "turned
on" genes in the DNA of a cell are transcribed into messenger RNA (mRNA) molecules.
These molecules are subsequently translated into proteins, responsible for fulfilling the
main functions of the cell. The gene expression mechanism controls which of the genes
are expressed, but it can also modulate the level of expression of the expressed genes.
Thanks to such a gene expression mechanism, the cell can respond in a dynamic way to
environmental stimuli and to its own changing needs.
DNA microarrays are a widely used tool for analyzing gene expression in biomedical re-
search. This technology allows to measure the level of expression of a large number of
genes (and perhaps all the genes of an organism) in a sample of cells, within a single
experiment. As detailed in a more extensive way in [NCBI, 2010], a microarray uses the
ability of a mRNA molecule to bind specifically to any copy of the gene from which it was
created. The microarray is a small and solid support onto which thousands of genes are
attached in an orderly arrangement. If one measures the relative abundance of mRNA
bound to every gene in the microarray, it measures in fact the level of expression of these
genes in the sample from which the mRNA originates.

2.1.2 Automatic analysis of gene expression data and biclustering

The same microarray experiment, i.e. involving the same set of genes, can be applied
on several samples [Berrer et al., 2003] corresponding to several relevant conditions of
measurement. For example, the different samples will correspond to different points in the
time evolution of the cells, or to different environmental conditions they may encounter.
The cells of each sample can also come from different tissues in the organism, from different
patients, etc. In that way, the expression level of a same set of genes can be measured on
different experimental conditions [Madeira and Oliveira, 2004].
The result from such an experimental analysis is a large amount of data, that typically
give the expression level of thousands of genes under dozens of conditions. Analyzing
these expression data can allow to extract significant information from a biological (like
for gene profiling) and medical (like for a better understanding of diseases) point of view
[Berrer et al., 2003]. One of the usual analysis goals is to group genes that exhibit similar
expression trends under some conditions [Yip, 2003]. Such a correlation between genes
and conditions is a hint that these genes/conditions could be in some way related in the
cellular processes. Such information can ultimately participate to the understanding of
biological systems at a molecular level [Bryan, 2005, Berrer et al., 2003].

Due to the large amount of data to analyze, which could reach millions of expression
values to process, the analysis is typically made using computer-assisted data mining
techniques, relying on statistical and/or artificial intelligence tools [Berrer et al., 2003].
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One of the first approaches used were clustering algorithms [Cheng and Church, 2000]
applied either on the genes or on the conditions of the dataset. The set of expression values
of a gene (respectively condition) under all the studied conditions (respectively genes)
is called its gene (respectively condition) expression profile. Using a defined similarity
measurement between gene expression profiles (respectively condition expression profiles),
clustering algorithms partition the set of genes (respectively conditions) into a set of
mutually exclusive groups or hierarchies of similar genes (respectively conditions).

The major drawback of this approach is that in order to be grouped together, a set of genes
should have similar expression patterns under the whole set of conditions, and the other
way round. However our understanding of the cellular processes
[Madeira and Oliveira, 2004] leads us to expect that a subset of genes can have simi-
lar expression patterns only under some conditions, and behave independently for the
other conditions, and the other way round. For example [Yip, 2003], a same set of genes
can have a similar response to a given environmental stimulus, but each gene can have
some different functions at other times. Similarly, for a set of related conditions, like a
set of samples of tumorous tissues, some genes may exhibit different expression patterns,
for example if the tumors are of different sub-types.

To address this limitation, Cheng and Church [Cheng and Church, 2000] proposed a for-
mal specification and an algorithmic method to perform what they called biclustering, i.e.
clustering of both genes and conditions simultaneously. Informally, the goal of bicluster-
ing is thus to search the data for groups of genes and conditions where the genes of the
group exhibit highly correlated expression levels only for every condition of the group.
Such a group is called a bicluster.

Many different formal specifications, taking into account many biological and computa-
tional aspects of the problem, and many numerical techniques to find biclusters in gene
expression data have been developed since then, and are still developed now. Surveys of
some of the existing specifications and techniques can be found notably in [Yip, 2003] and
[Madeira and Oliveira, 2004]. Using the formal specification of the biclustering problem
proposed by Cheng and Church, F. Divina [Divina and Aguilar-Ruiz, 2006]
[Divina and Aguilar-Ruiz, 2007] developed such a biclustering technique using genetic al-
gorithms. In this thesis we use existent evolutionary computation techniques and propose
and test a new technique to improve this GA-based biclustering technique.

In this chapter, we first detail (section 2.2) the δ-bicluster model, proposed by Cheng and
Church, which defines a formal and mathematical specification of the biological bicluster-
ing problem. We also say a few words on the biclustering algorithm proposed by Cheng
and Church, and on its experimental testing. In the context of the δ-bicluster model,
we present then the SEBI and the SMOB biclustering genetic algorithms proposed by F.
Divina (section 2.3).

Before giving further details on the formal specification of biclustering proposed by Cheng
and Church, we end this introduction by reviewing first the methodological validity of
the biclustering approach. Secondly, we list some of the other contexts, different from
expression data analysis, where automatic biclustering techniques, as the one we developed
in this thesis, could be useful.
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2.1.3 Methodological validity of the biclustering approach

The scientific methodology that underlies the biclustering of gene expression data is very
simple. First, a gene expression dataset is collected using the microarray technique. Then
a mathematical and formal model defining what a bicluster is, i.e. specifying what kind of
correlation between data should be searched for in the dataset, is proposed. The dataset
is then analyzed by automatic biclustering techniques, to find biclusters as defined by the
proposed model. The discovered biclusters are then used as a hint of some relation at the
cellular level between some genes and conditions.
At least four main validity questions can be asked about this methodology: the validity
of the microarray experiments, the quality of the results returned by these experiments,
the relevance of the bicluster model and the significance of the biclusters found.

The first question to be raised is the validity of the microarray experiments, and of their
underlying theoretical biological background. Such a question is out of the scope of this
work. The effectiveness of the microarrays technique seems nevertheless widely admitted
in the biological field [Berrer et al., 2003].

The quality of the obtained expression levels data should also be discussed. Two main
issues should be considered here [Berrer et al., 2003]: missing data, and measurement
variations.
The measurement of the expression level of a particular gene for a particular condition can
fail for many reasons. In this case, we must deal with the problem of missing data. From
a pure data analysis point of view, two solutions for this problem are possible. Either the
missing datum is ignored, or it is replaced by a reasonable or plausible value.
Measurement variations occur for two typical reasons. First, imperfections in the instru-
ments, processes and materials involved in microarray experiments will typically cause
errors in the measurement of expression levels. Moreover, natural variations in the stud-
ied biological processes make measurement not entirely deterministic. The main approach
to deal with such noise in the data is replication of the experiment.
However, each condition in the data correspond to a particular microarray experiment,
where the expression level of the set of genes is measured on a particular sample. The
data is thus composed by combining the data of many distinct microarray experiments.
Inevitable measurement variations between these different experiments should be taken
into account, in order to place each experiment on a comparable scale. Some numerical
procedures known as global normalization can be designed to solve this problem. A more
throughout discussion of this topic can be found in [Berrer et al., 2003].

The relevance of the chosen bicluster model is a complex question. It should be first
verified the validity of the concept of biclustering from a biological point of view. Then,
the adequacy of the translation from this biological concept to a formal bicluster model
should be established. Finally, the ability of the model to be implemented into an effective
computer program should be taken into account.
In this work, we will use the Cheng and Church’s δ-bicluster model as a reference, which is
considered both by biologists [Berrer et al., 2003] and computer scientists
[Madeira and Oliveira, 2004].

Finally, once a bicluster has been discovered, it should be evaluated whether the correla-
tion between the expression levels of some genes under some conditions established by the
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bicluster is statistically significant. If it is, it should be verified whether this correlation
is really a witness of some underlying biological process or not.
Statistical significance is typically verified by defining some statistical correlation score and
a corresponding significance threshold score. Adequate visualization techniques are also
widely used to reveal correlation patterns. For example, the following figure is extracted
from [Cheng and Church, 2000]. Each of the four bicluster expression graphs corresponds
to a discovered bicluster in an experimental dataset. For each gene in the bicluster,
the expression level (y-axis) of the gene is reported for each condition (x-axis) in the
bicluster. Each discrete curve in the graph links the points corresponding to a same gene
of the bicluster. The visual inspection of these graphs reveals an apparent correlation
between the evolutions of the expression level of the genes for the different conditions.

Four sample bicluster expression graphs

A discussion of the biological interpretation of the statistically significant discovered bi-
clusters is out of the scope of this work.

2.1.4 Other applications of automatic biclustering techniques

The automatic biclustering methods, as the one developed in this thesis, are basically data
mining techniques, and could be useful in many applications other than the analysis of
gene expression data. [Madeira and Oliveira, 2004] lists some of the current applications
of biclustering techniques:

Recommendation systems and target marketing Biclustering techniques have be
applied to marketing data, in order to find subgroups of customers with similar pref-
erences or behaviors [Yang et al., 2002, Wang et al., 2002]
[Hofmann and Puzicha, 1999, Ungar and Foster, 1998].

Information retrieval and text mining Biclustering methods are used to identify sub-
groups of documents with similar properties for some groups of attributes, like words
or images, which can be a task of particular importance for the development of search
engines [Dhillon, 2001, Berkhin and Becher, 2002].

Dimensionality reduction in large databases Authors have taken advantage of bi-
clustering algorithms to find sub-groups of rows in a database table, that exhibit
similar trends for some of the columns of the table [Agrawal et al., 1998].

Analysis of electoral data Other researchers have applied automatic biclustering sys-
tems on electoral data to find subgroups of citizens with the same political ideas
and electoral behaviors [Hartigan, 1972].
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Others Many other data in many different domains could potentially benefit from bi-
clustering techniques. For example, [Lazzeroni and Owen, 2000] used biclustering
techniques to analyze nutritional and foreign exchange data.

These examples suggest that biclustering techniques can exhibit the same limitations and
risks as many other data mining techniques. Such techniques typically try to induce
some general behavior from a large number of individual examples. The veracity of the
induction should typically be put into question, as many interpretation errors can be
made. For example, some hidden factors could have been forgotten, or the induction
made could be influenced by some a-priori intuition or intention.

2.2 The δ-bicluster model and the Cheng and Church’s
algorithm

In [Cheng and Church, 2000], Cheng and Church propose an algorithmic method for bi-
clustering gene expression data. For such an algorithmic solution to be possible, they
present first a formal and mathematical specification of this problem, known as the δ-
bicluster model.
In this section we detail first this δ-bicluster model, using notably the details presented
in [Madeira and Oliveira, 2004] and [Yang et al., 2003]. For this purpose, we start with
an informal definition of the biclustering problem, which summarizes the details exposed
in the introduction of this chapter.

Definition 2.1 (Biclustering problem (Informal definition)). Given a set of data mea-
suring the expression level of a given set of genes under a given set of conditions, find
groups of genes and conditions, where, for each group, all the genes of the group exhibit
a similar expression trend under all the conditions of the group.

In the next paragraphs, we use a stepwise approach where each step refines and formalizes
the previous definition. Step by step, we build in that way the formal specification of
biclustering proposed by Cheng and Church.

2.2.1 The expression matrix

Gene expression data can typically be organized in an expression matrix EM . Each
row of this matrix corresponds to a gene studied in the experimental analysis. Similarly,
each column of the matrix corresponds to a studied condition. We will suppose that
the problems of missing data and of measurement variations have been solved for the
considered data. Each element EMij of the matrix is then a real number that measures
the expression level of gene i under condition j. The order in which the genes and the
conditions are situated in the matrix has no particular meaning. From now on, we will
suppose that this order has been arbitrarily fixed and we will refer to genes and conditions
using the number of their corresponding row/column.
Let us call respectively G and C the set of the genes and conditions studied in the
experimental analysis. At each group of genes S ⊆ G and group of conditions M ⊆ C
corresponds a sub-matrix (S,M) of the expression matrix EM , composed only of the rows
and columns of EM corresponding respectively to the genes in S and the columns in M .
The following figure represents a sample expression matrix EM (on the left). Each row
represents a numbered gene, and each column a numbered condition. An element in the
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matrix corresponds to the expression level of the gene of its row under the condition of its
column. An example of a sub-matrix (S,M) of EM is visible on the right of the figure.
For this particular sub-matrix, S = {G4, G8, G15, G32, G34} and M = {C3, C4, C7, C9}.
(S,M) is thus composed of the green elements of EM , at the intersection of the yellow
rows corresponding to genes in S and of the blue columns corresponding to conditions in
M .

Biclustering the expression data means finding biclusters in it. A bicluster has been
defined as a group of genes that exhibit similar expression patterns in the data under a
given set of conditions. Using the formalization introduced, a bicluster to be found is a
group of at least two genes S ⊆ G and a group of at least two conditionsM ⊆ C so that the
elements of the corresponding sub-matrix (S,M) exhibit some coherent tendency. This
allows us to propose a first formal refinement of the definition the biclustering problem.

Definition 2.2 (Biclustering problem (Refinement step #1)). Given an expression matrix
EM organizing gene expression data, find sub-matrices (S,M) of EM , with at least two
rows and two columns, whose elements exhibit some coherent tendency.

We can now remark that in order to solve algorithmically the biclustering problem, we
should be able to evaluate in a formal way the coherence of any sub-matrix of (E,M).
Such a formal measure is proposed by Cheng and Church as a coherence score, called the
mean squared residue, which we establish in the following subsection.
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2.2.2 Measuring the coherence of a sub-matrix

A Criterion of coherence

The mean squared residue of a sub-matrix basically measures how incoherent a sub-matrix
is, compared to the definition of a perfectly coherent coherent sub-matrix. Cheng and
Church consider a sub-matrix to be perfectly coherent if each row of the sub-matrix
(i.e. each considered gene expression pattern under the set of considered conditions)
can be obtained by multiplying each of the other by a constant value. Biologically, this
criterion means that, for each couple of conditions in the sub-matrix, the ratio between
the abundance of mRNA produced by a gene of the sub-matrix for the first condition
and the abundance of mRNA produced by the same gene for the second condition will be
constant for all genes in the matrix.
The following figure shows an example of such a perfectly coherent sub-matrix. One can
remark that row 1 equals 1

2
∗ row 2, 1

4
∗ row 3 and 1

3
∗ row 4. As a consequence, each

column can also be obtained by multiplying another one by a constant value: column 1
equals 1

2
∗ column 2, 2 ∗ column 3 and 2

3
∗ column 4.

Condition 13 Condition 26 Condition 69 Condition 84
Gene 1 1.0 2.0 0.5 1.5
Gene 278 2.0 4.0 1.0 3.0
Gene 666 4.0 8.0 2.0 6.0
Gene 4023 3.0 6.0 1.5 4.5

The following graph is a bicluster expression graph similar to the one described in subsec-
tion 2.1.3. It offers a visualization of the data of the perfectly coherent sub-matrix defined
in the previous figure. For each gene of the sub-matrix, it shows the discrete curve of its
expression level under each of the conditions of the sub-matrix. Visual inspection reveals
obviously the coherence of the sub-matrix.

Mathematically, one can easily see that a perfectly coherent sub-matrix (S,M) can be
described as a sub-matrix in which each element (S,M)ij equals the product between a
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typical value within the sub-matrix denoted by µ(S,M) and an adjustment value for its row
i, αi, and an adjustment value for its column j, βj :

(S,M)ij = µ(S,M) ∗ αi ∗ βj (2.1)

In the previous example, values for µ(S,M), αi and βj could be µ(S,M) = 1, α1 = 1, α2 = 2,
α3 = 4, α4 = 3, β1 = 1, β2 = 2, β3 = 0.5 and β4 = 1.5.

B The log-transformed expression matrix

Cheng an Church propose to log-transform the values in the expression matrix. They work
thus with an expression matrix EM ′ that contains the logarithm of the expression level
of the genes instead of this expression level itself, i.e. EM ′

ij = log(EMij). This practice
is widely used by biologists as a part of the normalization of microarray experiments data
[Berrer et al., 2003, Page 79].
Using equation 2.1 and the classical properties of logarithms, we can establish what be-
comes the value of an element of a perfectly coherent sub-matrix, when the EM matrix
has been log-transformed:

(S,M)′ij = log((S,M)ij) = log(µ(S,M) ∗ αi ∗ βj) = log(µ(S,M)) + log(αi) + log(βj)

In the log-transformed matrix EM ′, a perfectly coherent sub-matrix is thus a sub-matrix
in which each element (S,M)′ij equals the sum between a typical value within the sub-
matrix µ′(S,M)′ = log(µ(S,M)) and an adjustment value for its row i, α′i = log(αi) , and an
adjustment value for its column j, β′j = log(βj) :

(S,M)′ij = µ′(S,M)′ + α′i + β′j

This means that each row and thus each column of the sub-matrix can be obtained
by adding a constant value to each of the other. This can be illustrated with the log-
transformed (base 10 has been used) version of the sample sub-matrix defined above (log
values have been rounded):

Condition 13 Condition 26 Condition 69 Condition 84
Gene 1 0.0 0.30 -0.30 0.18
Gene 278 0.30 0.60 0.0 0.48
Gene 666 0.60 0.90 0.30 0.78
Gene 4023 0.48 0.78 0.18 0.66

One can remark that row 1 equals log(1
2
) + row 2, log(1

4
) + row 3 and log(1

3
) + row 4.

Similarly column 1 equals log(1
2
) + column 2, log(2) + column 3 and log(2

3
) + column 4.

The log-transformation transforms thus multiplicative changes into additive increments.
This appears obviously for the rows by visualizing the bicluster expression graph of the
log-transformed sub-matrix, where the rows appear shifted by constant offsets:

55



C Correlation between elements in a perfectly coherent sub-matrix

In a log-transformed expression matrix, it is easy to see that one can also define a perfectly
coherent sub-matrix, as a sub-matrix where any element (S,M)′ij can be calculated from
any other element (S,M)′kl by adding (S,M)′kl the offset between row i and row k, δik,
and the offset between column j and column l, δjl:

(S,M)′ij = (S,M)′kl + δik + δjl (2.2)

For example, in the sample log-transformed sub-matrix defined above, element (S,M)′32 =
0.90 equals element (S,M)′11 = 0.0 plus the offset between row 3 and row 1, δ31 =
−log(1

4
) = 0.60, and plus the offset between column 2 and column 1, δ21 = −log(1

2
) = 0.30.

Using equation 2.2 summing k over all the s rows of (S,M)′ and summing l over all the
m columns of (S,M)′, we obtain:

(s ∗m) ∗ (S,M)′ij =
s∑

k=1

m∑
l=1

((S,M)′kl + δik + δjl)

Which is equivalent to:

(S,M)′ij = (
1

s ∗m
) ∗ (

s∑
k=1

m∑
l=1

(S,M)′kl +m ∗
s∑

k=1

δik + s ∗
m∑
l=1

δjl) (2.3)

If we callMi the mean of the elements of row i of the sub-matrix, andMk the mean of
the elements of row k of the sub-matrix, we have:
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Mi −Mk = (
1

m
∗

m∑
o=1

(S,M)′io)− (
1

m
∗

m∑
o=1

(S,M)′ko)

= (
1

m
) ∗

m∑
o=1

((S,M)′io − (S,M)′ko)

= (
1

m
) ∗

m∑
o=1

δik

= (
1

m
) ∗ (m ∗ δik)

= δik (2.4)

Similarly, ifMj is the mean of the elements of column j of the sub-matrix, andMl the
mean of the elements of column l of the sub-matrix, we have:

Mj −Ml = δjl (2.5)

Finally, ifM is the mean of all the elements in the sub-matrix (S,M)′, we have:

M = (
1

s ∗m
) ∗

s∑
k=1

m∑
l=1

(S,M)′kl (2.6)

Injecting equations 2.4, 2.5 and 2.6 in 2.3, we obtain:

(S,M)′ij = M+
1

s
∗

s∑
k=1

(Mi −Mk) +
1

m
∗

m∑
l=1

(Mj −Ml)

= M+
1

s
∗ ((s ∗Mi)−

s∑
k=1

Mk) +
1

m
∗ ((m ∗Mj)−

m∑
l=1

Ml))

= Mi +Mj +M− 1

s
∗

s∑
k=1

Mk −
1

m
∗

m∑
l=1

Ml (2.7)

AsM is the mean of the whole sub-matrix,Mk is the mean of row k, andMl the mean
of column l, we have, by definition:

M =
1

s
∗

s∑
k=1

Mk =
1

m
∗

m∑
l=1

Ml (2.8)

Injecting equation 2.8 in 2.7, we obtain:

(S,M)′ij = Mi +Mj +M−M−M
= Mi +Mj −M (2.9)

Equation 2.9 is simply a rewriting of the definition of a perfectly coherent sub-matrix in
a log-transformed expression matrix, given at equation 2.2. We can thus define such a
perfectly coherent sub-matrix, using equation 2.9, as a sub-matrix whose each elements
equal the sum of the mean of its row and of its column, minus the mean of the whole
sub-matrix.

57



D The mean squared residue

The purpose of this section was to define the measure of coherence of a sub-matrix pro-
posed by Cheng an Church, the mean squared residue. The mean squared residue of a
sub-matrix measures how incoherent the sub-matrix is, compared to the definition of a
perfectly coherent coherent sub-matrix. Now that we have formally defined what a per-
fectly coherent sub-matrix is, we can measure how much a given sub-matrix is incoherent,
compared to this definition.

Let us work by means of example with a very small 2 × 2 sub-matrix (S,M)′, which is
not perfectly coherent:

(S,M)′ =
5 2
1 3

We can compute the row means, column means, and the global mean of this sub-matrix:
M1 = 3.5, M2 = 2, M1 = 3, M2 = 2.5, M = 2.75. Using equation 2.9, we can create
the only 2 × 2 sub-matrix that has the same row means and column means as (S,M)′,
and which is perfectly coherent:

(S,M)′coherent =
M1 +M1 −M M1 +M2 −M
M2 +M1 −M M2 +M2 −M

=
3.75 3.25
2.25 1.75

Comparing (S,M)′ and (S,M)′coherent allows to measure how much the values of the ele-
ments in (S,M)′ must be changed, to render (S,M)′ perfectly coherent, without affecting
the row means and column means. The difference between (S,M)′ and (S,M)′coherent
seems thus to be a relevant measure of the coherence of (S,M)′.
Cheng and Church define the residue res of an element (S,M)′ij of (S,M)′, as the differ-
ence between (S,M)′ij and the corresponding element in (S,M)′coherent, ((S,M)′coherent)ij.
((S,M)′coherent)ij can be computed from the row mean and column mean of (S,M)′ij and
from the global mean of (S,M)′:

res((S,M)′ij) = (S,M)′ij − ((S,M)′coherent)ij

= (S,M)′ij −Mi −Mj +M

Cheng and Church then measure the coherence of a sub-matrix using the mean squared
residue, i.e. the mean of the squared residue of all the elements in the sub-matrix. The
mean squared residue is indeed an effective measure of the difference between (S,M)′ and
(S,M)′coherent.

Definition 2.3. The mean squared residue (MSR) is a positive real-valued function
that associates each sub-matrix of a log-transformed expression matrix EM’ a score mea-
suring the inverse of its coherence, defined as:

MSR((S,M)′) =
1

s ∗m

s∑
i=1

m∑
j=1

(res((S,M)′ij))
2
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The MSR of a perfectly coherent sub-matrix is obviously zero. The more a sub-matrix
is incoherent, the more its MSR score will be high. Cheng and Church note also that
a sub-matrix composed of elements randomly and uniformly generated in the range [a,b]
has an expected score MSRran of (b−a)2

12
, independently of the size of the sub-matrix.

The concept of MSR score is illustrated on the figure below. Graphs representing three
different sub-matrices are shown with their corresponding MSR. The left graph corre-
sponds to a perfectly coherent sub-matrix. The middle graph corresponds to a relatively
coherent sub-matrix. The right graph corresponds to a completely incoherent sub-matrix.
MSRran which is similar for the three sub-matrices is also indicated.

E δ-biclusters

Having defined a measure of the coherence of a sub-matrix, the MSR, Cheng and Church
propose to introduce a MSR threshold δ under which a sub-matrix is considered as signif-
icantly coherent. Such a sub-matrix is then called a δ-bicluster. Taking this formalization
into account, we can refine the specification of the biclustering problem given at definition
2.2:

Definition 2.4 (Biclustering problem (Refinement step #2)). Given a log-transformed
expression matrix EM ′ organizing gene expression data, find sub-matrices (S,M)′ of EM ′,
with at least two rows and two columns, and whose mean squared residue (MSR) is lower
that a given threshold δ.

2.2.3 Size of the δ-biclusters

A δ-bicluster is thus a sub-matrix composed of a set of sufficiently correlated rows and a
set of sufficiently correlated columns. Once a δ-bicluster has been found, if one removes
a row or a column from this δ-bicluster, the resulting sub-matrix will obviously still be
composed of rows and columns that are still correlated with each other. This resulting
sub-matrix has thus chance to be also a δ-bicluster. If a biclustering algorithm returns this
new δ-bicluster instead of the first one, it would lose an important piece of information:
the fact that the removed row/column is indeed correlated with the other ones in the
bicluster.
We can define the size of a sub-matrix as the product of its number of rows and its number
of columns. An effective biclustering means thus to find δ-biclusters of maximal size. We
should then refine again our specification of the biclustering problem.
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Definition 2.5 (Biclustering problem (Refinement step #3)). Given a log-transformed
expression matrix EM ′ organizing gene expression data, find sub-matrices (S,M)′ of EM ′

of maximal size, with at least two rows and two columns, and whose mean squared residue
(MSR) is lower that a given threshold δ.

Nevertheless, Cheng and Church show that when a sub-matrix has a non-zero MSR, it is
always possible to remove a row or a column to lower this MSR. Size and MSR seem thus
to be antagonist criteria. If we choose a low value for the MSR threshold δ, it will allow
us to find very coherent δ-biclusters, but it may be at the expense of the maximality of
the discovered δ-biclusters. On the contrary, we can choose a higher MSR threshold δ, in
order to find larger δ-biclusters, but it may be at the expense of the coherence and thus
of the biological significance of the discovered δ-biclusters.

2.2.4 Avoiding flat δ-biclusters

One solution of the biclustering problem as specified at definition 2.5 is a flat or nearly
flat sub-matrix, i.e. a sub-matrix where the expression level for each gene is constant or
nearly constant for all the conditions. A graph illustrating such a sub-matrix is available in
the following figure. One can see that each row (respectively column) of the sub-matrix
can obviously be computed by adding a constant value to each of the the other rows
(respectively columns). A flat sub-matrix fits thus the definition of a perfectly coherent
sub-matrix we detailed previously. As a consequence, such a sub-matrix will have a zero
MSR and will be considered as very good δ-bicluster by the specification.

In fact, these kinds of δ-biclusters are not very interesting from a biological point of view.
[Cheng and Church, 2000] notes that "In expression data analysis [...] more interesting is
the finding of a set of genes showing strikingly similar up-regulation and down-regulation
under a set of conditions".
The variance is statistical measure of the dispersion of a set of values around their mean.
The more the values in the set are close from each other, the more the variance is low,
and the other way round. As a set of equal values has a zero variance, the variance of
the elements in a row of flat δ-bicluster will be zero. The more the genes will exhibit
strongly varying expression levels under the set of conditions in the sub-matrix, the more
the variance of the elements in their row ("row variance") will be high. A score to measure
the flatness of a δ-bicluster is thus the mean of the row variance for each of the row in
the sub matrix. This score is called the mean row variance:
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Definition 2.6. The mean row variance (MRV ) is a positive real-valued function that
associates each sub-matrix of a log-transformed expression matrix EM ′ a score measuring
its flatness, defined as:

MRV ((S,M)′) =
1

s ∗m

s∑
i=1

m∑
j=1

((S,M)′ij −Mi)
2

A sub-matrix with both a low MSR and a strong MRV has a lot of chances to show
"strikingly similar up-regulation and down-regulation [of the genes] under [the] set of
conditions", as described by Cheng and Church. We can thus refine once again the spec-
ification and finally propose the final formal specification of the biclustering problem, as
defined by Cheng and Church.

Definition 2.7 (Biclustering problem (Cheng and Church’s formal specification)).
Given a log-transformed expression matrix EM ′ organizing gene expression data, find sub-
matrices (S,M)′ of EM ′ of maximal size and sufficiently high mean row variance (MRV),
with at least two rows and two columns, and whose mean squared residue (MSR) is lower
that a given threshold δ.

In this definition, we have:

MSR((S,M)′) =
1

s ∗m

s∑
i=1

m∑
j=1

((S,M)′ij −Mi −Mj +M)2

MRV ((S,M)′) =
1

s ∗m

s∑
i=1

m∑
j=1

((S,M)′ij −Mi)
2

size((S,M)′) = s ∗m

with

• s the number of rows in the sub-matrix (S,M)′.

• m the number of columns in the sub-matrix (S,M)′.

• Mi the mean of the elements of row #i of (S,M)′.

• Mj the mean of the elements of column #j of (S,M)′.

• M the mean of all the elements of (S,M)′.

2.2.5 Algorithmic complexity

Now that we have established the formal specification of the biclustering problem proposed
by Cheng and Church, we can ask the question of its algorithmic complexity. For this para-
graph, we will temporarily leave the context of biology, and consider biclustering from a
pure computer science point of view. For a computer scientist, biclustering gene expression
data is only a particular instance of a more general optimization problem: finding a set of
sub-matrices of a given data matrix, such that each sub-matrix optimizes a set of quality
criteria, enforcing essentially a coherence requirement [Madeira and Oliveira, 2004].
The algorithmic complexity of the instance of this general problem we defined at defini-
tion 2.7 has not been formally established. Nevertheless, most instances of the general
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problem has been proved to be NP-Complete [Madeira and Oliveira, 2004]. Some of these
NP-Complete instances are very close to the instance of definition 2.7, and seem even sim-
pler. Cheng and Church note for example that "the problem of finding the largest square
δ-bicluster (s = m) is NP-hard".

From a practical point of view, these results indicate that biclustering algorithms will
typically have to work by evaluating all the possible sub-matrices. One can easily show
that an expression matrix of size b ∗ c contains (2b − b− 1) ∗ (2c − c− 1) sub-matrices of
at least two rows and two columns. For an expression matrix with thousands of genes,
and dozens of conditions, there are much more than 21000 sub-matrices to test, which is
intractable to do in a reasonable time.
For these reasons, most biclustering algorithms use heuristic methods to discover bi-
clusters [Madeira and Oliveira, 2004]. The algorithm proposed by Cheng an Church in
[Cheng and Church, 2000] is one of these.

2.2.6 The Cheng and Church’s algorithm

Greedy iterative search is a local search meta-heuristic for optimization problems. It
starts with a candidate solution picked from the search space and tries to improve it step
by step. At each step, a new candidate solution is chosen, which is an improvement of
the previous candidate solution. The principle of greedy iterative search is that this im-
provement is enforced by applying one of a fixed set of possible small modifications to the
current candidate solution that improves this candidate solution in a maximal way.

Cheng and Church propose three kinds of greedy algorithms for solving the biclustering
problem [Cheng and Church, 2000, Madeira and Oliveira, 2004]. Candidate solutions are
sub-matrices (S,M)′ of EM ′. The "single node deletion" algorithm removes at each step
the row or the column of the candidate sub-matrix that gives a maximal decrease of the
MSR. The "multiple node deletion" algorithm removes at each step all the rows and the
columns for which the sum of the residue of their elements is larger than a given threshold.
The "node addition" algorithm adds at each step rows and columns that do not increase
theMSR. This last algorithm is also able to add rows whose expression trend is a "mirror
image" of the expression trend of the rows in the candidate solution. These mirror or
inverted rows are indeed interesting from a biological point of view, but are usually not
taken into account by the problem specification as it was detailed in definition 2.7.
In order to find a maximal δ-bicluster, Cheng and Church start with the whole expression
matrix as a first candidate solution, and apply successively multiple node deletion and
single node deletion (in order to find a δ-bicluster), followed by node addition (which aims
at maximizing the size of the discovered bicluster).

Cheng and Church’s procedure is purely deterministic. This means that repeating its
execution will always return the same solution. In order to find several different maximal
δ-biclusters (i.e. representing relations between different groups of genes and conditions),
Cheng and Church repeat iteratively their procedure, where, in each iteration, the ele-
ments of EM ′ members of the sub-matrices discovered during the previous iterations are
replaced by random numbers. This makes it unlikely that these elements participate in
the subsequently discovered solutions.
Nevertheless, this replacement occurs only for the two node deletion steps of the iteration.
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As node addition is performed using the actual values of EM ′, some of the discovered
sub-matrices could in fact potentially overlap, i.e. share some of the elements of (EM)′

[Madeira and Oliveira, 2004]. This is required as, from a biological point of view, biclus-
ters can typically overlap [Bulcke, 2007]. Nevertheless, the discovery of highly overlapping
biclusters using this method is unlikely.
Finally, mean row variance is signaled as a mean of rejecting flat δ-biclusters.

Cheng and Church’s approach has been widely evaluated, criticized and improved. Two of
the main cited drawbacks of Cheng and Church’s algorithm are put forward in
[Yang et al., 2003].
First, the greedy iterative search approach is notably prone to be trapped in local optima.
If a sub-optimal solution is the best within a region of similar solutions, a greedy algorithm
that would explore this region would be attracted by this best solution. Once this solution
reached, the greedy algorithm is trapped, as any small modification of the best solution
of the region produces another solution of the region, which is, by definition, worse.
Secondly, replacing the elements of EM ′ members of the already discovered biclusters
by random numbers induces "a substantial risk that these random numbers will interfere
with the future discovery of biclusters, especially those ones that have overlap with the
discovered ones".
Nevertheless, the experimental results produced by Cheng and Church reveal that the
algorithm is able to find good quality biclusters.

2.2.7 Testing the algorithm with real data

Cheng and Church propose to test their algorithm by applying it on two real expres-
sion datasets, which have already been studied through clustering techniques. The stud-
ied datasets are the yeast Saccharomyces cerevisiae cell cycle expression data ("Yeast
dataset", 2884 genes and 17 conditions) [Cho et al., 1998] and the human B-cells expres-
sion data ("Human dataset", 4026 genes and 96 conditions) [Alizadeh et al., 2000]. Miss-
ing values (which represent 12.3% of the matrix for the human dataset) in these datasets
are replaced by random numbers. This approach is criticized, notably in [Yang et al., 2003],
as it can interfere with the discovery of biclusters. This article proposes an alternative
approach, FLOC, where the missing values are notably skipped for the computing of row
means, column means and sub-matrix means. At the same time, sub-matrices with a too
high proportion of missing values in order for their scores being statistically significant are
considered as invalid. A solution for finding several different δ-biclusters without making
the already discovered ones by random values is also proposed.
The value of δ for the Yeast dataset was determined using theMSR values of the clusters
previously found in these data using clustering techniques. A δ value of 300, close to the
lowest of these MSR values, was chosen. This value is very low compared to MSRran for
this dataset whose value is 53000. An intuitive validation of this δ threshold was proposed
by computing the MSR score of one million of randomly selected sub-matrix of a given
size. This allows tho visualize a good estimation of the probabilistic distribution of the
score value and the measure was repeated for several typical sizes. The value of δ for the
Human dataset was estimated to 1200, by comparing the range and the variance of the
expression values with the ones of the yeast dataset.
The evaluation of the discovered δ-biclusters is notably enforced by visual inspection of
bicluster expression graphs similar to the ones we presented previously in this text. Cheng

63



and Church also produce a comparison of their biclusters with the clusters discovered dur-
ing the clustering analysis’s previously applied to these data.

Some authors (for example in [Bryan, 2005]) propose to evaluate the quality of their ap-
proach by applying it on expression data where some existing biological relations between
genes and/or conditions are already known by biologists. By comparing the computa-
tionally discovered biclusters with the real relations between genes and/or conditions, one
could better evaluate the biological relevance and effectiveness of the used technique.

2.3 The SEBI/SMOB evolutionary approach for biclus-
tering of gene expression data

We will now describe the SEBI and SMOB genetic algorithms developed by F. Divina in
[Divina and Aguilar-Ruiz, 2006, Divina and Aguilar-Ruiz, 2007] for biclustering of gene
expression data. These algorithms are the basis for the genetic algorithm developed in
this thesis.

2.3.1 Biclustering of gene expression data as an optimization
problem

SEBI and SMOB are developed in the framework of the δ-bicluster model specification,
as proposed by Cheng and Church, and which we synthesized at definition 2.7. As we
already noticed, the biclustering problem, as specified by Cheng and Church, can be seen
as an optimization problem. This optimization problem consist in finding a set of sub-
matrices of a given data matrix, such that each sub-matrix optimizes a set of quality
criteria [Madeira and Oliveira, 2004], enforcing essentially a coherence requirement. As
we express the biclustering problem as an optimization problem, we can solve it using
evolutionary computation. We establish thus now formally how the Cheng and Church’s
formal specification of biclustering given at definition 2.7 can be expressed in terms of the
definition and taxonomy of optimization problems given in section 1.2:

Search space definition The set of all sub-matrices (S,M)′ of EM ′, with at least
two rows and two columns.

Objective function(s)
definition(s)

The objective functions are the mean squared residue (a
positive real valued function to be minimized), the size (a
positive integer valued function to be maximized) and the
mean row variance (a positive real valued function to be
maximized).

Number and nature of
quality criterion(s)

The problem is multi-objective. One should fine sub-
matrices with a low MSR (typically below a chosen thresh-
old value δ), with a maximal size, and a mean row variance
sufficiently high. These objectives are interdependent and
notably antagonist, as the MSR of a not perfectly coherent
sub-matrix can always be reduced by removing a row or a
column, i.e. by reducing its size, and as a flat bicluster is
perfectly coherent.
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Quality of solution(s)
searched for

The problem is multimodal. We want to find several dif-
ferent sub-matrices, with a sufficiently low MSR, a max-
imal size, and a sufficiently high MRV. By different sub-
matrices, we mean sub-matrices that hint biological rela-
tions between different sets of genes and conditions. We
can qualify this difference between two sub-matrices in
terms of overlapping, i.e. the fact that the sub-matrices
share more or less elements of EM ′. If the group of
genes S1 (respectively S2) and the group of conditions M1

(respectively M2) define the sub-matrix (S1,M1) (respec-
tively (S2,M2)), then if (S1,M1) and (S2,M2) share the
element EM ′

ij of EM ′, it means that gene i of EM ′ is part
of S1 and S2, and condition j of EM ′ is part of M1 and
M2. If two maximal δ-biclusters overlap too much, they
typically represent the same relation between the same
group of genes and conditions. But some level of overlap-
ping should be allowed, as different biclusters can typically
overlap from a biological point of view.

Nature of search space The search space is a finite set. This problem is a combina-
torial problem. Sub-matrices can be seen as a combination
between some of the rows and some of the columns of EM ′,
and the number of possible sub-matrices grows exponen-
tially as the number of row and columns in EM ′ increases
(#sub-matrices = O(2number of rows+number of columns)). Many
results seem to indicate that this problem is a NP-
Complete problem.

The biclustering problem, as defined by Cheng and Church, is thus a multimodal, multi-
objective, and probably NP-Complete combinatorial optimization problem, with a poten-
tially huge search space, whose structure is potentially totally unknown a-priori. It is
thus a perfect candidate to benefit from evolutionary techniques for finding high-quality
biclusters.

In the two next paragraphs we detail each of the two genetic algorithms developed by F.
Divina to solve this optimization problem. The SEBI (Sequential Evolutionary BIclus-
tering) genetic algorithm is detailed before its multi-objective variant, the SMOB (Se-
quential Multi-Objective Biclustering) genetic algorithm. These two genetic algorithms
are described by showing how they instantiate the general framework of general genetic
algorithms we defined at section 1.3.

2.3.2 The SEBI genetic algorithm

The SEBI algorithm uses the general selection scheme for genetic algorithms we defined
at section 1.3.2. In this section, we detail the main implementation choices, i.e fitness
function, genotypic encoding and genetic operators, population initialization and stopping
condition, made in SEBI. We also detail the sequential covering technique used to find
several different δ-biclusters.
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A Fitness function and selection operator

The fitness function used in SEBI, as detailed below, is approximately a linear combination
of the three objective functions of the problem: MSR, size and MRV. SEBI transforms
thus the multi-objective biclustering problem into a single-objective problem. As the MSR
objective has to be minimized, while the size and MRV objective functions have to be
maximized, the global fitness function combines linearly the MSR with the size inverse
and the MRV inverse, and has to be minimized.

fitness((S,M)′) =
MSR((S,M)′)

δ
+ ωS ∗ (ωr ∗

δ

s
+ ωc ∗

δ

m
) +

1

MRV ((S,M)′)

with

• δ the MSR coherence threshold.

• s the number of rows in the sub-matrix (S,M)′.

• m the number of columns in the sub-matrix (S,M)′.

• ωS the size weight, ωr the row weight and ωc the column weight, three parameterized
linear coefficients to be adjusted.

The first term MSR((S,M)′)
δ

corresponds to the MSR objective function. It is divided by
the constant MSR coherence threshold δ, so that this term returns a value lower than
one for δ-biclusters, and larger than one for incoherent biclusters.
The second term ωS ∗ (ωr ∗ δs + ωc ∗ δ

m
) corresponds to the size objective function. In fact

this not the size of the sub-matrix (i.e. number of rows ∗ number of columns) that has
to be maximized directly, but its number of rows and its number of columns separately.
The second term of the fitness function can indeed be seen as the sum of the inverse of
a number of row objective function ωS ∗ ωr ∗ δ

s
with the inverse of a number of column

objective function ωS ∗ ωc ∗ δ
m
. The parameter ωS allows to tune the importance of the

size criterion for the optimization, compared to the other criteria, MSR and MRV. The
parameters ωr and ωc allow to define if the maximizing of the size should be enforced by
preferring sub-matrices with a large number of rows, or with a large number of columns.
The rationale behind this choice is that in the usual expression datasets, the number of
genes is very large compared to the number of conditions. Parameters ωr and ωc allow
thus to balance the fact that s could become very large compared to m.
Finally, the last term 1

MRV ((S,M)′)
corresponds to the MRV objective function.

The algorithm uses by default binary stochastic tournament with p=0.9, i.e. the best
individual in the tournament has nine chances over ten to be selected.

B Genotypic encoding and variation operators

SEBI uses the fixed length binary string encoding we defined at subsection 1.3.3. The
fixed length of the strings equals b + c, where b is the total number of rows in EM ′ and
c the total number of columns in EM ′. The string can be divided into two parts. The
b first bits of the string correspond to the b rows of EM ′. The c last bits of the string
correspond to the c columns of EM ′. A sub-matrix (S,M)′ will then be encoded by a
string with 0 values everywhere except for the bits corresponding to the rows and columns
of EM ′ that compose this sub-matrix.
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The following figure illustrates this kind of encoding. The sub-matrix (S,M)′ is composed
here of rows 4, 8, 15, 32 and 34, and of columns 3, 4, 7 and 9 of EM’. On can see that
in the genotypic encoding of (S,M)′ that the bits 4, 8, 15, 32 and 34 of the first part of
the string, and also the bits 3, 4, 7 and 9 of the second part of the string have a value 1,
while all the other bits have a value 0.

The algorithm applies the three classical binary crossover operators with equal probability:
one-point, two-points and uniform crossover. Three mutation operators are also applied
in the same way: classical bit-flip operator, and two problem specific operators that
respectively add one gene and one column to the sub-matrix. The default rate of crossover
used is 0.85 and the default rate of mutation is 0.2.
It should be noted that the previous operators can potentially create genotypes that do
not correspond to elements in the search space: genotypes where there is no row/column
selected or where there is only one row/column selected.

C Population initialization and stopping condition

The population is initialized with sub-matrices containing only one element of EM ′, i.e.
where only one row and one column are selected. Sub-matrices are then supposed to
be "grown" by the algorithm as the generations pass. The size of the population is 200
individuals. The algorithm is stopped after 100 iterations of the generations loop, and the
best individual of the last generation is returned if it is a δ-bicluster, otherwise nothing
is returned.
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D Sequential covering

SEBI does not use a niching method in order to find several different δ-biclusters in the
analyzed datasets. Instead, the algorithm is run several times sequentially, and the solu-
tion returned by each of the successive runs is one of the different solutions returned by
the method. In order for minimizing the overlapping between the δ-biclusters discovered
so, a "sequential covering" technique is applied.

For each run of the GA, one can compute the covering value Cov of each element of EM ′,
EM ′

ij. This covering value is the number of δ-biclusters returned by the previous runs of
the GA that contained this element EM ′

ij. Using these covering values, the penalty of
overlapping wp for each element EM ′

ij of EM ′ can be computed in the following way:

wp(EM
′
ij) =

 0 if cov(EM ′
ij) = 0∑b

y=1

∑c
z=1 e

−cov(EM′yz)

e
−cov(EM′

ij
)

if cov(EM ′
ij) > 0

with

• b the number of rows in the matrix EM ′.

• c the number of columns in the matrix EM ′.

This penalty value becomes very large if the considered element of EM ′ has a large cov-
ering value, while many other elements of EM ′ have a low or zero covering value. As
long as the matrix is not uniformly covered, the elements already covered by a discovered
δ-bicluster will have a penalty that grows exponentially with their covering value, while
the uncovered elements will have a zero penalty.

During the very first run of the GA, the algorithm is run in the way we described in the
previous paragraphs. For all the subsequent runs of the GA, the algorithm is run with a
modified fitness function, fitnessoverlapping, which increases the fitness of a sub-matrix by
the sum of the overlapping penalty of its elements:

fitnessoverlapping((S,M)′) = fitness((S,M)′) +
∑

EM ′ij∈(S,M)′

wp(EM
′
ij)

With this "sequential covering" mechanism, the sub-matrices that overlap too much with
the δ-biclusters discovered previously are strongly penalized during the current run of the
GA, compared to the other sub-matrices. The δ-bicluster discovered during one run of
the GA will thus typically have a reduced overlapping with the δ-biclusters discovered
previously.

2.3.3 The SMOB genetic algorithm

The SEBI genetic algorithm tries to solve the multi-objective biclustering problem by
using a linear combination of objectives as fitness, which basically transforms it into a
single-objective problem. The SMOB genetic algorithm is presented as an improvement of
the SEBI algorithm, which introduces some selection mechanisms based on multi-objective
optimization. Moreover, other elements of the GA structure are also different between
SEBI and SMOB. In this section, we detail these changes and improvements proposed by
SMOB.
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A Fitness function and selection operator

The fitness function used in SMOB is partially computed using the Pareto dominance
relations and attribute space and phenotypic space distances between the individuals
composing the current generation processed by the GA. As we put forward in subsection
1.3.2, the fitness function measures the quality of an individual compared to the other
individuals in the current generation of individuals processed by the GA. The fitness
function of SMOB approximately measures how much an individual (i.e. a sub-matrix
(S,M)′) dominates the other individuals in its generation, and how much it is different
from these other individuals, using both an attribute space and a genotypic space dis-
tance. The more a sub-matrix dominates and is different from the other sub-matrices in
the current generation, the more its quality is high, and the more it is favored by selection.

The fact that a sub-matrix (S,M)′ dominates more or less the other individuals in its
generation P is measured by its dominance strength score DomStr((S,M)′, P ). The dom-
ination relations between the sub-matrices in P are computed using the three objective
functions of the biclustering problem: MSR, size and MRV . The dominance strength
is the number of individuals of P that (S,M)′ dominates, increased by the number of
individuals of P dominated by (S,M)′ that have a larger MSR than (S,M)′. This last
element allows to favor the MSR objective compared to the two other objectives.
We measure how much the sub-matrix (S,M)′ is different from the other sub-matrices of
the current generation P, by using the isolation in the attribute space score
AttIsol((S,M)′, P ) and the isolation in the phenotypic space score PhenIsol((S,M)′, P ).
The isolation in the attribute space score AttIsol((S,M)′, P ) measures how much a sub-
matrix (S,M)′ represents a different compromise between the objectives of the problem
(MSR, Size and MRV ), compared to the other sub-matrices in the current generation
P . At each sub-matrix (S,M)′ can be associated a 3-dimensional vector MSR((S,M)′)

Size((S,M)′)
MRV ((S,M)′)


inside the attribute space of the problem, MSR × Size ×MRV . We can measure how
much two sub-matrices (S,M)′1 and (S,M)′2 represent the different compromises between
the objectives of the problem by computing the Euclidian distance between their corre-
sponding vectors in the attribute space:√√√√√ [MSR((S,M)′1)−MSR((S,M)′2)]

2

+ [Size((S,M)′1)− Size((S,M)′2)]
2

+ [MRV ((S,M)′1)−MRV ((S,M)′2)]
2

Given a sub-matrix (S,M)′ in the current generation, we can measure its Euclidian
distance in the attribute space with all the other sub-matrices in the generation P .
AttIsol((S,M)′, P ) is then the shortest of these measured distances. IfAttIsol((S,M)′, P )
is small, it means that there exist at least another sub-matrix in the generation P that
represents a similar compromise between objectives as (S,M)′. If AttIsol((S,M)′, P ) is
large, it means that the values (S,M)′ gives to the objective functions of the problem are
very atypic, and that at (S,M)′ corresponds to an "isolated" point in the attribute space,
within the attribute vectors associated to the sub-matrices in P .
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Similarly, the isolation in the phenotypic space score PhenIsol((S,M)′, P ) measures how
much a sub-matrix (S,M)′ represents an isolated point in the phenotypic space, i.e. in the
search space of the optimization problem, compared to the other solutions in the current
generation P . This simply means that PhenIsol((S,M)′, P ) measures how much (S,M)′

is a different solution of the optimization problem, compared to the other solutions that
compose the current generation P . PhenIsol((S,M)′, P ) is thus computed by measuring
how much the sub-matrix (S,M)′ overlaps with the other sub-matrices in P . Formally,
it is defined in [Divina and Aguilar-Ruiz, 2007] as the normalized average of individuals
covering the elements of EM ′ covered by (S,M)′.

The sub-matrices (S,M)′ having a large dominance strength with large isolation scores
in the generation P should be favored by selection. F. Divina proposes thus, by sym-
metry with the SEBI algorithm, to minimize a fitness that is the sum of the inverses of
DomStr((S,M)′, P ), AttIsol((S,M)′, P ) and PhenIsol(S,M)′, P ).
In order to penalize the sub-matrices that are not δ-biclusters, their fitness is increased
by the penalty MSR((S,M)′)−δ

δ
that measures how much their MSR is high compared to δ.

The fitness is thus:

fitness((S,M)′, P ) =

{
1

DomStr((S,M)′,P )
+ 1

AttIsol((S,M)′,P )
+ 1

PhenIsol((S,M)′,P )
if MSR((S,M)’) 6 δ

1
DomStr((S,M)′,P )

+ 1
AttIsol((S,M)′,P )

+ 1
PhenIsol((S,M)′,P )

+ MSR((S,M)′)−δ
δ

if MSR((S,M)’) > δ

The general selection scheme used by SMOB is similar to the one defined in subsection
1.3.2, but SMOB uses elitism. At each iteration of the generations loop, the individuals
that compose the Pareto optimal set of the current generation are allowed to survive in
the next generation.
The selection operator used is a deterministic tournament operator, with n = 4, i.e. where
four individuals take part to each tournament.

B Genotypic encoding and variation operators

The genotypic encoding, the variation operators and the crossover/mutation rates used
in SMOB are similar to the ones used in SEBI. However, uniform crossover is given an
higher probability of use in SMOB than one-point and two-points crossover.

C Population initialization and stopping condition

As in SEBI, the SMOB algorithm is stopped after 100 iterations of the generations loop,
but the initialization of the 200 individuals population is different. In order to create
each sub-matrix (S,M)′ that populates the very first generation of the algorithm, first
the number of rows s and the number of columns m of (S,M)′ are picked randomly. Then
(S,M)′ is created by selecting randomly the s genes and m conditions that define (S,M)′.
The first generation is thus composed of random sub-matrices of random sizes.
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D Sequential covering

The SMOB algorithm uses the same sequential covering technique as SEBI to find several
different δ-biclusters. However, the fitnessoverlapping function is defined in a different way:

fitnessoverlapping((S,M)′) = fitness((S,M)′) + (1−
size((S,M)′)−

∑
EM′

ij
∈(S,M)′ cov(EM

′
ij)

size((S,M)′)
)

Sub-matrices with high sizes that have a low level of overlapping with previously found
delta-biclusters are favored.

2.3.4 Experimental evaluation of the SEBI/SMOB algorithms

In [Divina and Aguilar-Ruiz, 2006], the SEBI algorithm is evaluated, by applying it to
the same Yeast and Human datasets used by Cheng an Church to test their approach
(i.e. where missing values have been replaced by the same random numbers), with the
same values for δ. Visual inspection of the expression graphs of the obtained results shows
interesting "strikingly similar up and down-regulation patterns".
Results are compared to the Cheng and Church’s results (CC) [Cheng and Church, 2000]
and to the results obtained in FLOC [Yang et al., 2003]. On the Yeast dataset, the CC
results and the SEBI results show similar MSR values and FLOC is better. CC does
better than SEBI on average in terms of MSR for the Human dataset, but with a much
higher standard deviation. The results of CC and FLOC are of larger size than the ones
returned by SEBI. This is due to the sequential covering policy used in SEBI. The δ-
biclusters discovered during the first runs of the algorithm are large in size but are of
bad overall quality. The interesting biclusters are discovered subsequently, but their size
is limited by the sequential covering mechanism which prevents them overlapping with
the previously discovered biclusters. In CC, the δ-biclusters discovered during the first
iterations are also of bad quality, but the following ones can overlap much more in CC
than it is allowed in SEBI. Finally, SEBI does better in terms of MRV than CC and
FLOC, which means that many of the large size biclusters found by CC and FLOC may
not be that much interesting.

In [Divina and Aguilar-Ruiz, 2007], the same evaluation procedure is applied to the SMOB
algorithm. SMOB exhibits the same trends as SEBI, while improving its results on the
three objectives, MSR, Size and MRV. Moreover, the results discovered by SMOB during
the first runs of the GA are directly interesting, in contrast with what happens with CC
and SEBI.

2.3.5 Related work: biclustering of expression data using evolu-
tionary computation

Several other authors have applied evolutionary techniques for biclustering of expression
data [Gallo et al., 2009].

Notably, a single-objective approach is presented in [Bleuler et al., 2004]. The proposed
algorithm is a memetic algorithm, which uses ad-hoc local search techniques inspired by
Cheng and Church’s algorithm. The EA also uses mechanisms to maintain diversity in
the population across the run.
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The opportunity to use evolutionary computation for biclustering, even if it requires typi-
cally more processing time than greedy methods, is justified by the potential improvement
in the quality of the discovered biclusters the searching power of EC could bring. Indeed,
"the quality of a biclustering, though, is often considered more important than the com-
putation time required to generate it" [Bleuler et al., 2004].
The single objective fitness function used is the size of the sub-matrix, as the MSR is
improved by the ad-hoc local search techniques. The algorithm is only run once and the
final generation is returned. The biclusters discovered so are nevertheless said to show a
considerable overlap.

[Mitra and Banka, 2006] takes advantage of a state-of-the-art multi-objective evolution-
ary approach, the Non-Dominated Sorting Genetic Algorithm (NSGA-II, see subsection
1.5.3). The proposed algorithm uses a memetic approach, coupling evolutionary search
with local search inspired by Cheng and Church. The objectives taken into account by
the approach are the size and the MSR of the considered-matrix. The niching method
maintains diversity in the attribute space.
The algorithm is applied on the Yeast and Human datasets and compared to the Cheng
and Church’s results. The biclusters found are δ-biclusters of larger size those from Cheng
and Church’s results.

[Gallo et al., 2009] also uses a state-of-the-art multi-objective EA (SPEA2), found to be
better than NSGA-II and IBEA for the considered problem, coupled with a Cheng and
Church-like local search in a memetic approach. The considered objectives are the num-
ber of genes, the number of conditions, the MSR and the MRV of the sub-matrix. The
local search approach allows to guide the EA towards the restricted part of the Pareto
front where MSR < δ and to speed up the convergence. The approach also proposes a
particular genotypic representation mechanism and genetic operators that allow the EA to
search for δ-biclusters containing rows with inverted expression patterns. These rows cor-
respond to the mirror rows that the Cheng and Church’s node addition algorithm allows
to search for. The local search method used in this memetic algorithm is said to improve
Cheng and Church’s algorithm by allowing to take into account the row variance of the
processed sub-matrices. The algorithm is tested using the Yeast and Human datasets and
the obtained results are reported to be better than those of [Mitra and Banka, 2006].

Memetic multi-objective EAs seem thus to constitute the actual trend in evolutionary bi-
clustering techniques. Notably, [Amant, 2010] improves the SMOB algorithm by employ-
ing a memetic approach, integrating notably a Cheng and Church-like local search method.
Nevertheless, other approaches also exist, like in [Fei and Juan, 2008] (which combines
NSGA-II with the Estimation of Distribution Algorithm), and in
[Nepomuceno et al., 2010] (which notably proposes a new quality measure for sub-matrices,
and proposes a new evolutionary meta-heuristic based on Scatter Search).
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Part III

MOBPEOC, presentation and
experimental evaluation of a new
evolutionary biclustering approach
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Chapter 3

Introducing Multi-Objective
Biclustering with Probabilistic
Encoding and Overlapping Control
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3.1 Introduction: MOBPEOC, a new evolutionary ap-
proach for biclustering of expression data

The main contribution of this thesis is to introduce a new evolutionary approach for
biclustering of gene expression data. We call it Multi-Objective Biclustering with Proba-
bilistic Encoding and Overlapping Control (MOBPEOC). This new approach is based on
the δ-bicluster model. As in the SEBI-SMOB approach, it uses a genetic algorithm that
takes into account MSR, size and MRV as objective functions. But the MOBPEOC
approach also introduces new features, that define a totally new and potentially improved
biclustering process:

• The MOBPEOC approach introduces a new evolutionary technique, called proba-
bilistic encoding. Using probabilistic encoding, the genetic algorithm of the
MOBPEOC approach can search for partial combinations of rows and columns of
EM ′, where the presence or absence of a row or column in a bicluster can be specified
with a given level of doubt. This can allow the algorithm to deal more intelligently
with the conflicting objectives that MSR, size and MRV are, and can increase the
search power of the algorithm. Moreover, an important contribution of this thesis
is to propose a first life-size test of the probabilistic encoding technique.

• The genetic algorithm of the MOBPEOC approach combines in a new way the
fitness sharing state-of-the-art multimodal evolutionary technique, with the niched
Pareto selection state-of-the-art multi-objective evolutionary technique. This allows
the GA to search for several different partial combinations of rows and columns of
EM ′ that induce low MSR with high MRV and reasonable size. This technique
also allows the GA gain some control over the level of overlapping between the
individuated different partial combinations.

• When a set of different and interesting partial combinations of rows and columns
have been individuated, the MOBPEOC approach allows to exploit these results
subsequently in an independent way, in order to find several interesting and different
precise biclusters. This research can be enforced according to any a-posteriori policy
to favor some particular compromise between MSR, size and MRV . An approach
favoring low MSR biclusters is proposed.

In this chapter, we present the MOBPEOC approach in details. In section 3.2 we discuss
the probabilistic encoding technique we introduced with MOBPEOC. Then, we detail
(section 3.3) our implementation of the niched Pareto genetic algorithm, coupled with
the fitness sharing method, which allows to control the level of overlapping between the
individuated solutions. Based on the two previous sections, section 3.4 details the gen-
eral algorithmic structure of the MOBPEOC genetic algorithm. The technique used in
MOBPEOC to exploit the partial combinations of rows and columns found in order to
individuate interesting biclusters is presented in section 3.5. Finally we conclude this
chapter with a very brief description of our technical implementation of the MOBPEOC
approach (section 3.6).
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3.2 Using a probabilistic encoding

Probabilistic encoding was proposed by F. Divina as an unpublished idea of a new evo-
lutionary technique [Divina, 2008]. In some optimization problems, it is not possible to
individuate a precise solution, due to uncertainty over the relevance of some characteris-
tics to be part of the solution or not. Probabilistic encoding is a new kind of genotypic
encoding that extends the traditional binary encoding often used in GAs, and which al-
lows to deal with such uncertainty in the problem. This new evolutionary technique has
been further developed and tested on the biclustering problem in this thesis.

3.2.1 Binary encoding and uncertainty in optimization problems

In a combinatorial optimization problem, each solution of the problem can typically be
seen as a particular combination of some of the members of a finite set of possible traits,
like features, properties or elements. In order to find the solution using an exact method,
each allowed combination of the possible traits should generally be tried.
For example, in the biclustering problem, each sub-matrix (S,M)′ is a particular combi-
nation between some of the rows and the columns of the expression matrix EM ′. The
set of possible traits that allow to define a sub-matrix is thus the set of rows or columns
of EM ′. Two different sub-matrices cannot share the same exact combination of traits.
Combinations involving less than two rows or columns are not allowed.
The traditional binary encoding presented in the framework of common GAs is one of
the potential representations that can be used to represent such solutions defined by a
particular combination of possible traits. There will be as many bits in the encoding
as possible traits in the optimization problem. And each bit in a binary genotype will
typically indicate the presence or not of its corresponding possible trait in the represented
individual.
For example, in the biclustering problem, the SEBI/SMOB evolutionary approach for the
biclustering problem uses the traditional binary encoding of GAs in that way. A binary
genotype is here a binary string where each of the bits signals the presence or not of a
given row/column of EM ′ in the represented sub-matrix.

Nevertheless, there exist some optimization problems where the complete set of traits
that compose an optimal or sufficiently good solution cannot be entirely established.
With these problems, there will always exist indeed a certain degree of uncertainty over
the relevance of some of the traits for the quality of the solution.
For example, in a multi-objective problem with highly conflicting objectives like biclus-
tering, removing a particular row or column from a sub-matrix may reduce the size and
the MRV of the bicluster (i.e. the bicluster may then not be maximal and too flat), but
reduce its MSR in the same time (i.e. the bicluster may have more chance to hint a true
biological relation between genes and conditions). It can be thus very difficult to say, us-
ing only the formal specification of the problem in terms of MSR, size and MRV , if this
row or column should be part of the solution or not. [Gallo et al., 2009] (see subsection
2.3.5) notes for example that biclustering multi-objective algorithms alone obtain poor
results, and should thus be guided towards some particular compromises between MSR,
size and MRV using a memetic approach.
With a binary encoding, the binary individuals in the population manipulated by the GA
can only represent individual solutions, where the presence or not of each of the possible
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traits must thus be strictly specified. We say that binary individuals represent exhaustive
combinations of the possible traits. In order to deal with uncertainty over some traits,
it should be possible for the GA to search also for partial combinations of traits, where
the presence or not of the possible traits in the combination can eventually be specified
with a given level of doubt. This technique would be even more relevant given that GAs
are inspired by natural evolution, which do not work on particular individuals, but on
interesting and penalizing traits and combinations of traits, which respectively propagate
or disappear as the generations pass.

3.2.2 The principle of probabilistic encoding

Probabilistic encoding generalizes the traditional binary encoding to allow the represen-
tation of such partial combinations of traits. In binary encoding, each bit indicates the
presence or not of its corresponding trait in the represented individual. In probabilistic
encoding, we replace each of these bits in the encoding by a real number in [0, 1] that
measures the probability of presence associated to the trait in the partial combination of
traits represented by the individual.
For example, in the biclustering problem, each probability in a probabilistic genotype is
thus associated to one of the genes or conditions of EM ′, and allows to specify the level
of doubt we have on this gene/condition being part of the partial combination of rows
and columns represented by the probabilistic genotype. If the probability associated to
one gene/condition is close to 1 or 0, the probability simply indicates the presence or
absence of the corresponding gene/condition, like in the binary individuals used within
SEBI/SMOB. The more the probability is close to 0.5, the more there is a doubt on the
presence or absence of the gene/condition in the partial combination of rows and columns
represented by the probabilistic individual.

If an exhaustive combination of traits represented by a binary individual defines one
solution of the search space, a partial combination of traits represented by a probabilistic
individual will define a region of solutions of the search space. The solutions that are part
of this region will all be the possible solutions of the problem that exhibit those traits
whose presence is specified with a small level of doubt in the individual and avoid those
ones whose absence is specified with a small level of doubt. The solutions of a region will
thus differ by those possible traits whose presence or not is specified with a significant
level of doubt in the combination.
The regions defined by probabilistic individuals can have various size. A combination of
traits where there is no doubt about any trait represents a region reduced to one solution.
In terms of encoding, the probabilities of a probabilistic individual encoding such a region
will be close to 0 or 1. The probabilistic individual will thus be reduced to the binary
individual representing the only solution in the region. The more the combination is
partial, i.e. the more the presence or not of many traits is specified with a high level of
doubt, the more the corresponding region is large. A probabilistic individual with all the
probability values assuming value 0.5 will represent the whole search space.
One should also note that a GA using probabilistic encoding will thus be able to handle
populations of regions of the search space, instead of populations of single solutions.
Intuitively, this could improve the exploration power of the GA, especially for problems
with huge search spaces, like the biclustering problem.
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3.2.3 Evaluating the quality of probabilistic individuals

A GA will use a probabilistic encoding in order to find one or several partial combinations
of traits that are particularly pertinent to solve the underlying optimization problem. For
example, in the biclustering problem, the discovered partial combinations should thus
exhibit high probability values for a group of interesting genes and conditions that define
a promising combination, and low probability values for those genes and conditions that
would not fit in this combination. At the same time, the genes and conditions whose
adequacy is uncertain within the combination should see their corresponding probability
be assigned a value measuring the level of doubt about the benefit or penalty they would
bring to the combination.

In order for a convergence towards such combinations to occur inside a population of
probabilistic individuals, the GA should be able to evaluate how much the partial com-
bination of traits defined by each probabilistic individual optimizes the one or several
objective functions of the optimization problem. But an objective function only allows to
measure the quality of one single solution of the problem, while a partial combination of
traits represent a region of the search space. It seems thus logical to measure the objective
function value of a partial combination of traits by measuring the mean objective function
value of the region of solutions it represents. In the biclustering problem, the meanMSR,
size and MRV of the regions defined by the manipulated probabilistic individuals should
be evaluated.
[Divina, 2008] proposes to evaluate the mean value of one objective function in such a
region by randomly generating Nsample sample solutions representative of this region. The
average of the objective function values of these Nsample solutions will represent the mean
objective function value assigned to the region.
The optimal value for Nsample must be evaluated on the basis of the size of the region to
evaluate and of the variance of the objective function over this region. A small region
with a small objective function variance will require a small Nsample, likewise a large region
with a large objective function variance will require a large Nsample.

Creating a random sample solution representative of the region to be evaluated is very
easy. A probabilistic individual associates to each possible trait #i a probability pi that
measures the level of doubt for this trait to be part of the solution it represents. We will
then make each of the possible traits part of the sample solution with a probability that
equals this probability pi.
Concretely, for one possible trait #i, we pick randomly a number nbrran in [0, 1]. The trait
#i will then be part of the sample solution if pi > nbrran. By repeating this procedure
for each of the possible traits, we define the sample solution by indicating the presence or
not of each of the possible traits in this solution, in the same way that binary encoding
represents the solutions in general.

3.2.4 Probabilistic encoding as a generic evolutionary technique

In the MOBPEOC approach, we use a GA with probabilistic encoding for biclustering
of expression data. An important contribution of this thesis is thus to propose a first
life-size test of probabilistic encoding. This technique is indeed not limited to the frame
of the biclustering problem, but can be seen as a generic evolutionary technique. It could
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be beneficial to all optimization problems that exhibit uncertainty and/or a very large
search space.
For example, [Divina, 2008] defines probabilistic encoding as an interesting technique for
all problems that necessitate a feature selection process. Feature selection (see, for exam-
ple, [Liu and Motoda, 1998]) is a typical pre-processing process in machine learning, that
allows to "individuate both features that are very important for the problem as well as
features that are not useful for the problem" [Divina, 2008]. This allows to discard the
uninteresting features from the problem, and to consider only the important features when
solving the problem. As a consequence, the performance and scalability of the problem
solving processes applied after the feature selection preprocessing is improved. Introduc-
ing probabilistic encoding would improve the feature selection process by allowing to deal
with features whose relevance cannot be certainly established.

[Divina, 2008] notes that other evolutionary approaches exist to deal with uncertainty in
optimization problems, like Estimation of Distribution Algorithms (EDAs)
[Lozano et al., 2006] and Fuzzy Genetic Algorithms (FGAs) [Paenke et al., 2006]. FGAs
do not deal with uncertainty associated to particular traits. EDAs create a probabilis-
tic model from the best individuals and use it to produce the next generation, without
using genetic operators. EDA has already been used, in combination with a state of
art multi-objective genetic algorithm, for biclustering of expression data (see subsection
2.3.5).

3.3 Using a niched Pareto genetic algorithm with an
overlapping distance

3.3.1 Motivations and principles

As we choose to use probabilistic encoding, the MOBPEOC GA will search for partial
combinations of rows and columns of EM ′ and not for particular sub-matrices. The
MOBPEOC GA must thus solve an optimization problem that is slightly different from
the one solved in the SEBI/SMOB approach. We can detail this new optimization using
the definition and taxonomy of optimization problems given in section 1.2.

Search space definition The set of all partial combinations of rows and columns of
EM ′ represented by a probabilistic individual, as defined
in the previous section.

Objective function(s)
definition(s)

The meanMSR, the mean size and the meanMRV of the
region of sub-matrices defined by the partial combination
of rows and columns. These objective functions are com-
puted using a sample set of sub-matrices representative of
the region, as explained in the previous section.

Number and nature of
quality criterion(s)

The problem is multi-objective. One should find interest-
ing partial combinations of rows and columns that induce
lowMSR values and highMRV values without penalizing
the size.
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Quality of solution(s)
searched for

As the problem is an extension of the biclustering problem,
it is a multimodal problem too. It is indeed particularly
important to be able to find several different interesting
combinations of rows and columns. At two different dis-
covered partial combinations of rows and columns will ob-
viously correspond two regions composed of sub-matrices
sharing a limited number of rows and columns, and thus
exhibiting low levels of overlapping. Such different partial
combinations will then hint biological relations between
different sets of genes and conditions, which is of particu-
lar interest for the biclustering problem.

In order to deal with this last multimodal aspect, the MOBPEOC GA uses the state-of-
the-art sharing method (subsection 1.4.3) that enforces the discovery of several different
interesting regions in one run. The sharing method can be easily combined with a state-
of-the-art true Pareto multi-objective selection mechanism for GAs, borrowed from the
niched Pareto genetic algorithm (subsection 1.5.3). The combination we propose allows
the MOBPEOC GA to deal with both the multimodal and multi-objective aspects of the
problem simultaneously in an elegant way, and it offers control over the level of overlap-
ping between the individuated partial combinations of rows and columns.

This niched Pareto genetic algorithm, as proposed in [Horn et al., 1994], is characterized
by a selection mechanism based on a Pareto domination evaluation of individuals, com-
bined with the sharing method, but which uses a distance measure between individuals
computed in the attribute space. The creation of niches is enforced in the attribute space
instead of in the phenotypic space, as in classical sharing, in order to promote a better
sampling of the diverse kinds of compromise between objectives that compose the Pareto
optimal front of the problem.
In the optimization problem solved here, finding a good sampling of the Pareto optimal
front is not really interesting. Most parts of the Pareto optimal front could even be unin-
teresting, as they could for example be composed of partial combinations exhibiting too
high mean MSR values to represent interesting biclusters. The goal that really matters
here is to find different interesting partial combinations involving non too overlapping sets
of rows and columns. These different combinations could then hint different biological
relations between different sets of genes and conditions. It does not really matter whether
these combinations represent the same kind of compromise between meanMSR, size and
MRV , and whether an individuated partial combination dominates another sufficiently
different individuated one.
As a consequence, the MOBPEOC GA will use exactly the same multi-objective selec-
tion procedure as the niched Pareto genetic algorithm, but the sharing distance will be
computed in the phenotypic space, as in classical sharing. The algorithm should thus be
able to establish different niches in the population, corresponding to different interesting
partial combinations of rows and columns, and to search for a Pareto-optimal instance
inside each niche independently during the run.

The sharing method requires to define a phenotypic distance able to quantify how much
two individuals represent different solutions to the problem. For the MOBPEOC problem,
such a distance will obviously have to measure to what degree the combinations of rows
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and columns represented by two probabilistic individuals are different. We detail the
distance used in MOBPEOC in the next subsection. But first, an interesting property
of MOBPEOC should be noticed: its potential ability to control the level of overlapping
between the different partial combinations of rows and columns it discovers.
Sharing enforces a multimodal optimization by promoting the creation of several niches
in the population of the GA, corresponding to different individuated solutions to the
problem. In the MOBPEOC problem, there would be one niche for each discovered
different combination of rows and columns. The creation of such niches is based on a
niching radius parameter. This niching radius controls the minimal distance threshold
that must separate two evaluated individuals for the GA to consider them as members of
different niches.
By adapting the niching radius we can thus control the level of similarity between the
different combinations of rows an columns individuated in each of the discovered niches.
Controlling the level of similarity between the different combinations of rows an columns
found means controlling the level of overlapping between the sub-matrices the regions
defined by these combinations contain, and thus between the potentially interesting bi-
clusters inside these regions. Such an overlapping control can be a breakthrough advantage
for the approach, compared to the Cheng and Church or SEBI/SMOB technique, which
offer no control and highly limit the allowed level of overlapping, in order to find different
biclusters.

3.3.2 Defining a phenotypic distance that measures overlapping

Following the definition of a distance given at subsection 1.4.2, the distance used in the
MOBPEOC GA should be zero when applied to a couple of individuals representing com-
binations involving a same set of rows and columns. The distance should also assume
an even larger value that it is applied to a couple of individuals representing combina-
tions involving highly different sets of rows and columns. Finally, this distance should
reach a maximal value when applied to a couple of individuals representing combinations
involving either totally disjoint sets of rows or totally disjoint sets of columns. Two com-
binations involving either totally disjoint sets of rows or totally disjoint sets of columns
indeed define two regions containing sub-matrices that typically do not overlap.

Let us consider two probabilistic individuals ProbIndiv1 and ProbIndiv2, composed re-
spectively of b probability values prow1 (i) and prow2 (i) with i = 1...b and c probability values
pcolumn1 (j) and pcolumn2 (j) with j = 1...c , measuring the probability for a row i or a column
j among the b rows and the c columns of EM ′ to be part of the partial combination repre-
sented by ProbIndiv1 and ProbIndiv2. We define the rows overlapping ratio Overlaprow
between ProbIndiv1 and ProbIndiv2 as the ratio between the number of rows of EM ′

that have a probability > 0.5 to be part of both the partial combinations represented
by ProbIndiv1 and ProbIndiv2, and the number of rows of EM ′ that have a probability
> 0.5 to be part of at least one of the partial combinations represented by ProbIndiv1
and ProbIndiv2:

Overlaprow(ProbIndiv1, P robIndiv2) =
card{k∈[1,b]|prow1 (k)>0.5∧prow2 (k)>0.5}
card{k∈[1,b]|prow1 (k)>0.5∨prow2 (k)>0.5}

We can similarly define the columns overlapping ratio Overlapcolumn:

Overlapcolumns(ProbIndiv1, P robIndiv2) =
card{k∈[1,c]|pcolumn

1 (k)>0.5∧pcolumn
2 (k)>0.5}

card{k∈[1,c]|pcolumn
1 (k)>0.5∨pcolumn

2 (k)>0.5}
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The rows and columns overlapping ratios are basically good estimations of respectively
the proportion of shared rows and shared columns between the two combinations of rows
and columns defined by ProbIndiv1 and ProbIndiv2. The minimum value for the ratio is
zero when the two combinations involve respectively disjoint sets of rows/columns. The
maximum value for the ratio is one when the two combinations involve respectively equal
set of rows/columns.
We define the matrix overlapping ratio Overlapmatrix as the product between the rows
overlapping ratio and the columns overlapping ratio:

Overlapmatrix(ProbIndiv1, P robIndiv2)
= Overlaprow(ProbIndiv1, P robIndiv2) ∗Overlapcolumns(ProbIndiv1, P robIndiv2)

The minimum value for the matrix overlapping ratio is zero when the two compared
combinations involve either disjoint sets of rows or disjoint sets of columns. The maximum
value for the matrix overlapping ratio is one when the two combinations involve both equal
sets of rows and columns. The MOBPEOC genetic algorithm can then use a distance,
called the overlapping distance, distoverlapping, defined as:

distoverlapping(ProbIndiv1, P robIndiv2) = 1−Overlapmatrix(ProbIndiv1, P robIndiv2)

As required, this distance will assume value zero when the two compared combinations
involve respectively totally equal sets of rows and columns. It will also assume its maximal
value one when the two compared combinations involve either totally disjoint sets of rows
or totally disjoint sets of columns. Finally, the distance will be larger as the sets of rows
and columns of the compared individuals are different.

3.4 Structure of the MOBPEOC genetic algorithm
In the two previous sections, we have established that the MOBPEOC genetic algorithm
had to solve an optimization problem that requires to find a set of different partial com-
binations of rows and columns of EM ′, with low mean MSR, high mean MRV without
penalizing the mean size. In order to solve this problem, we chose to use a probabilistic
encoding to represent the partial combinations inside the MOBPEOC GA, and proposed
to take advantage of a niched Pareto selection mechanism in this GA, coupled with an
overlapping distance.
In this section, we detail the complete algorithmic structure of the MOBPEOC GA and
show how it instantiates the general framework of common genetic algorithms we defined
at section 1.3.

3.4.1 Generations loop and general selection scheme

The main body of the MOBPEOC GA uses a classical generations loop, whose algorithmic
structure is detailed in the following figure. We detail the key processes of this generations
loop in the paragraphs below.
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Populat ion mobpeocGA ( )
{

// −−−−−−−− Parameters −−−−−−−−
maxNumberOfGenerations = . . . ;
numberOfIndividualsPerGenerat ion = . . . ;
numberOfRe in i t i a l i z a t i on s = . . . ;
maxCyc l e sOfRe in i t i a l i z a t i on = . . . ;
// −−−−−−−− Parameters −−−−−−−−

Populat ion currentGenerat ion , nextGenerat ion ;

currentGenerat ion = generatePopulat ion ( numberOfIndividualsPerGenerat ion ) ;
numberOfGenerations = 0 ;

while ( numberOfGenerations<=maxNumberOfGenerations ) {

i f ( numberOfGenerations<=maxCyc l e sOfRe in i t i a l i z a t i on ) {

nextGenerat ion = generatePopulat ion ( numberOfRe in i t i a l i z a t i on s ) ;

numberOfMiss ingIndiv iduals =
numberOfIndividualsPerGeneration−numberOfRe in i t i a l i z a t i on s ;

nextGenerat ion = nextGenerat ion
+ createBySe lect ionReproduct ionMutat ion ( currentGenerat ion ,

numberOfMiss ingIndiv iduals ) ;
} else {

nextGenerat ion = createBySe lect ionReproduct ionMutat ion
( currentGenerat ion , numberOfIndividualsPerGenerat ion ) ;

}

currentGenerat ion = nextGenerat ion ;
numberOfGenerations = numberOfGenerations + 1 ;

}

return currentGenerat ion ;

}

Each of the individuals in the very first generation of the algorithm are generated ac-
cording to the following process. A random proportion of randomly selected rows and
columns of EM ′ receive a high probability value randomly picked for each selected row/-
column between a minimal threshold thresholdrowup /thresholdcolumnup and 1.0. The remain-
ing rows and columns of EM ′ receive a low probability value picked for each selected
row/column between 0.0 and a maximal threshold thresholdrowdown/thresholdcolumndown . The
values thresholdrowup , thresholdcolumnup , thresholdrowdown and thresholdcolumndown are parameters
of the algorithm. For each individual generated, the proportion of selected rows is ran-
domly picked between a minimal and a maximal threshold, and the proportion of selected
columns is randomly picked between another minimal and a maximal threshold. This
adds eight parameters to the algorithm:
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// −−−−−−−− Parameters −−−−−−−−
thresholdUpRow = . . . ;
thresholdUpColumn = . . . ;
thresholdDownRow = . . . ;
thresholdDownColumn = . . . ;
m inPropor t i onOfSe l e c t edRowsAtIn i t i a l i za t i on = . . . ;
maxProport ionOfSe l ec tedRowsAtIn i t i a l i za t ion = . . . ;
m inPropor t ionOfSe l ec t edCo lumnsAtIn i t i a l i za t i on = . . . ;
maxProport ionOfSe l ec tedColumnsAtIn i t ia l i zat ion = . . . ;
// −−−−−−−− Parameters −−−−−−−−

The first four parameters allow to control the level of partiality of the combinations cre-
ated, i.e. the size of the regions associated to the created individuals. It should be
remembered here that an individual with many probability values close to 0.5 represents
a partial combination that exhibits a high level of partiality and defines a large region of
the search space. The last four parameters allow to control the mean size and the size
variance of the sub-matrices that compose the regions represented by the created individ-
uals.

The stopping condition of the generation loop is a simple counter, and the loop is stopped
when the maximal number of iterations is reached. As a niching method is used, several
different solutions are supposed to be maintained in the population, and the whole last
generation is thus returned by the algorithm at the end of the run.

In order to promote diversity in the population and to enforce the discovery of potential
new niches, we use the reinitialization technique (subsection 1.5.2). At each iteration of
the generation loop, a small number of new individuals, generated in the same way as the
individuals of the first generation, are introduced in the next generation. The number
of new individuals introduced in each generation is controlled by the parameter num-
berOfReinitializations. Reinitialization can be applied only during a fixed amount of the
first iterations of the generations loop, controlled by the maxCyclesOfReinitialization
parameter. This allows to avoid polluting the very last generation containing the results
of the algorithm with pure random solutions.

The createBySelectionReproductionMutation function creates and returns the individu-
als that will compose the next generation, using the general selection scheme of the
MOBPEOC GA. The detailed algorithmic structure of the createBySelectionReproduc-
tionMutation function is available in the following figure. The general selection scheme
implemented there is very similar to the one described in the common GA framework.
However, one should notice that the selection operator receives both the current gener-
ation and the provisional next generation as input. This is necessary as the selection
operator will use the continuously updated sharing mechanism of the niched Pareto GA.
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Populat ion createBySe lect ionReproduct ionMutat ion ( currentGenerat ion ,
numberOfIndividualsToCreate )

{

// −−−−−−−− Parameters −−−−−−−−
r eproduct i onProbab i l i tyRate = . . . ;
// −−−−−−−− Parameters −−−−−−−−

Populat ion nextGenerat ion ;

for ( int i=1 ; i <= numberOfIndividualsToCreate /2 ; i++ ) {

f a th e r = se l e c t i onOpe ra t o r ( currentGenerat ion , nextGenerat ion ) ;
mother = se l e c t i onOpe ra t o r ( currentGenerat ion , nextGenerat ion ) ;

i f ( random(0 ,1) < reproduct i onProbab i l i tyRate ) {

[ son , daughter ]= reproduct ionOperator ( fa ther , mother ) ;

son = mutationOperator ( son ) ;
daughter = mutationOperator ( daughter ) ;

nextGenerat ion . add ( son ) ;
nextGenerat ion . add ( daughter ) ;

} else {

newFather = mutationOperator ( f a t h e r ) ;
newMother = mutationOperator ( mother ) ;

nextGenerat ion . add ( newFather ) ;
nextGenerat ion . add ( newMother ) ;

}

}

return nextGenerat ion ;

}

In the following parts of this section, we detail the structures of the selectionOperator,
reproductionOperator and mutationOperator functions. These functions obviously imple-
ment the selection and variation strategies used in the MOBPEOC GA.

3.4.2 Niched Pareto selection operator with overlapping distance

The following figure details the algorithmic structure of the selectionOperator function.
It basically picks one individual in the current generation using the selection operator
mechanism from the niched Pareto GA, but using the overlapping distance we defined
in the previous section. We detail the key processes of this selection mechanism in the
paragraphs below.
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I nd i v i dua l s e l e c t i onOpe ra t o r ( currentGenerat ion , nextGenerat ion )
{

// −−−−−−−− Parameters −−−−−−−−
s izeOfComparisonSet = . . . ;
n ich ingRadius = . . . ;
s c a l i n gFac to r = . . . ;
// −−−−−−−− Parameters −−−−−−−−

f i r s tCand ida t e = pickRandomIndividual ( currentGenerat ion ) ;
secondCandidate = pickRandomIndividual ( currentGenerat ion ) ;

// F i r s t s t ep

meanMSR1 = computeMeanMSR( f i r s tCand ida t e ) ;
meanSize1 = computeMeanSize ( f i r s tCand ida t e ) ;
meanMRV1 = computeMeanMRV( f i r s tCand ida t e ) ;

meanMSR2 = computeMeanMSR( secondCandidate ) ;
meanSize2 = computeMeanSize ( secondCandidate ) ;
meanMRV2 = computeMeanMRV( secondCandidate ) ;

f i r s tCandidateDominated = fa l se ;
secondCandidateDominated = fa l se ;

for ( int i=1 ; i <= sizeOfComparisonSet ; i++ ) {

comparedIndiv idual = pickRandomIndividual ( currentGenerat ion ) ;

meanMSRComp = computeMeanMSR( comparedIndiv idual ) ;
meanSizeComp = computeMeanSize ( comparedIndiv idual ) ;
meanMRVComp = computeMeanMRV( comparedIndiv idual ) ;

f i r s tCandidateDominated = f irstCandidateDominated | |
(meanMSRComp<=meanMSR1 &&

meanSizeComp>=meanSize1 &&
meanMRVComp>=meanMRV1

&& ! (meanMSRComp==meanMSR1
&& meanSizeComp==meanSize1
&& meanMRVComp==meanMRV1) ) ;

secondCandidateDominated = secondCandidateDominated | |
(meanMSRComp<=meanMSR2 &&

meanSizeComp>=meanSize2 &&
meanMRVComp>=meanMRV2

&& ! (meanMSRComp==meanMSR2
&& meanSizeComp==meanSize2
&& meanMRVComp==meanMRV2) ) ;

}

i f ( ! f i r s tCandidateDominated && secondCandidateDominated )
return f i r s tCand ida t e ;

i f ( f i r stCandidateDominated && ! secondCandidateDominated )
return secondCandidate ;
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// Second s t ep

nicheCount1 = 0 ;
nicheCount2 = 0 ;

for i n d i v i dua l in nextGenerat ion {

d i s t ance1 = computeOvelappingDistance ( f i r s tCand ida t e , i n d i v i dua l ) ;
nicheCount1 = nicheCount1+sh ( d i s tance1 , nichingRadius , s c a l i ngFac t o r ) ;

d i s t ance2 = computeOvelappingDistance ( secondCandidate , i n d i v i dua l ) ;
nicheCount2 = nicheCount2+sh ( d i s tance2 , nichingRadius , s c a l i ngFac t o r ) ;

}

i f ( nicheCount1<= nicheCount2 )
return f i r s tCand ida t e ;

else
return secondCandidate ;

}

The selection mechanism picks two candidate individuals randomly in the current gener-
ation, and returns one of them using a two step tournament.

During the first step, the quality of the two individuals is evaluated using the domination
relations in the current generation. The mean MSR, size and MRV of an individual
are computed using a sample of sub-matrices from the region it represents, as detailed in
subsection 3.2.3. This adds the size of the sample sets as a new parameter of the algorithm.

// −−−−−−−− Parameters −−−−−−−−
s izeOfTheEvaluat ionSampleSets = . . . ;
// −−−−−−−− Parameters −−−−−−−−

As required by Pareto domination, one individual dominates another one if it has a better
or equivalent mean MSR, size and MRV , with at least one of these three scores that is
strictly better.

If the first step of the tournament leads to a tie, continuously updated sharing is used
to compute the niche count of both individuals in the provisional next generation. The
overlapping distance defined in the previous section is used for computing this niche count.
The one of the two candidates which has the lowest niche count is returned.

3.4.3 Variation operators for probabilistic encoding

The MOBPEOC GA uses probabilistic encoding to represent individuals. As a conse-
quence, we had to design adapted variation operators for this new kind of genotypic
encoding. These new operators have been designed and tested to enforce an effective
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exploration of the search space. They are notably inspired by the operators designed for
the classical binary representation and by the particular ones used in the SEBI/SMOB
approach.

The following figure details the algorithmic structure of the reproductionOperator func-
tion. Three crossover operators are used: uniform crossover, row mean crossover and
column mean crossover. Every time crossover must be applied, one of these three oper-
ators is chosen with a parametric relative rate of application. These three operators are
detailed in the paragraphs below.

[ Ind iv idua l , I nd i v i dua l ] reproduct ionOperator ( fa ther , mother )
{

// −−−−−−−− Parameters −−−−−−−−
rowMeanCrossoverRate = . . . ;
columnMeanCrossoverRate = . . . ;
// −−−−−−−− Parameters −−−−−−−−

randomNumber = random ( 0 , 1 ) ;

i f ( randomNumber<rowMeanCrossoverRate )
return rowMeanCrossover ( fa ther , mother ) ;

else i f ( randomNumber<rowMeanCrossoverRate + columnMeanCrossoverRate )
return columnMeanCrossover ( fa ther , mother ) ;

else
return uni formCrossover ( fa ther , mother ) ;

}

Uniform crossover for probabilistic encoding is illustrated on the following figure. It is
inspired and works exactly as the state-of-the-art uniform crossover for binary encoding.
Probability values are switched between the two parents at some random positions to
create the two offspring.

Row mean crossover (respectively column mean crossover) works exactly as uniform
crossover for probability values associated to columns (respectively rows), but for each
row (respectively column), the probability values of the offspring equal the mean of the
probability values of the two parents. This process is illustrated on the following figures.

89



Row mean crossover

Column mean crossover

Like in uniform crossover, if both parents have a high probability value for one row
(respectively column), the probability will stay high for both offspring. Similarly, if both
parents have a low probability value for one row (respectively column), then it will stay
low for both offspring. However, if one parent has a high probability value, and the other
one a low probability value for the same row (respectively column), it may be interesting
to test whether there is uncertainty over the adequacy of the the row (respectively column)
within the combination. Contrary to uniform crossover, row mean crossover (respectively
column mean crossover) allows to take this fact into account, and it will attribute a
probability value around 0.5 to the row (respectively column) for both offspring.
Row mean crossover and column mean crossover work thus as crossover operators, as the
allele values of the offspring are derived from the ones of the parents. But they work also
as mutation operators as they introduce new allele values, different from the ones of the
parents, in the population. This last aspect allows a better exploration by the GA of the
very large set of partial combinations of rows and columns.

The following figure details the algorithmic structure of the mutationOperator function,
which is inspired of the SEBI/SMOB mutation scheme, as it distinguishes mutations for
rows and for columns. Two mutation operators are indeed used: row mutation and col-
umn mutation. Mutation is applied at a given rate, and every time one chooses to apply
mutation on an individual, one of these two operators is chosen with a parametric relative
rate of application. Row mutation replace one probability value associated to a row by a
random number in [0, 1]. Column mutation replace one probability value associated to a
column by a random number in [0, 1].

I nd i v i dua l mutationOperator ( i nd i v i dua l )
{

// −−−−−−−− Parameters −−−−−−−−
mutat ionProbabi l i tyRate = . . . ;
rowMutationRate = . . . ;
// −−−−−−−− Parameters −−−−−−−−
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i f ( random(0 ,1) < mutat ionProbabi l i tyRate ) {

i f ( random(0 ,1) < rowMutationRate )
return rowMutation ( i nd i v i dua l ) ;

else
return columnMutation ( i nd i v i dua l ) ;

}

}

3.4.4 Algorithm parameters

We finally synthesize here the twenty-one parameters of the MOBPEOC genetic algo-
rithm. This list will be used as a basis to detail each of the chosen configurations of the
algorithm used to produce the experimental results exposed in the next chapter.

// Generations loop (2)
maxNumberOfGenerations = . . . ;
numberOfIndividualsPerGenerat ion = . . . ;

// Creat ion o f new i n d i v i d u a l s (8)
thresholdUpRow = . . . ;
thresholdUpColumn = . . . ;
thresholdDownRow = . . . ;
thresholdDownColumn = . . . ;
m inPropor t i onOfSe l e c t edRowsAtIn i t i a l i za t i on = . . . ;
maxProport ionOfSe l ec tedRowsAtIn i t i a l i za t ion = . . . ;
m inPropor t ionOfSe l ec t edCo lumnsAtIn i t i a l i za t i on = . . . ;
maxProport ionOfSe l ec tedColumnsAtIn i t ia l i zat ion = . . . ;

// R e i n i t i a l i z a t i o n proces s (2)
numberOfRe in i t i a l i z a t i on s = . . . ;
maxCyc l e sOfRe in i t i a l i z a t i on = . . . ;

// Se l e c t i o n opera tor (4)
s izeOfTheEvaluat ionSampleSets = . . . ;
s izeOfComparisonSet = . . . ;
n ich ingRadius = . . . ;
s c a l i n gFac to r = . . . ;

// Reproduction opera tor s (3)
r eproduct i onProbab i l i tyRate = . . . ;
rowMeanCrossoverRate = . . . ;
columnMeanCrossoverRate = . . . ;

// Mutation opera tor s (2)
mutat ionProbabi l i tyRate = . . . ;
rowMutationRate = . . . ;
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3.5 Deriving potential biclusters from the discovered
partial combinations of rows and columns

3.5.1 Exploiting the results of the genetic algorithm to solve the
biclustering problem

After a complete run, the MOBPEOC GA returns its last generation, i.e. a set of proba-
bilistic individuals. As we already stated, each of these individuals represents a potentially
different and interesting partial combination of rows and columns of EM ′. The rows and
columns that have high probability values in the individual define this interesting com-
bination, while the ones with low probability values should be penalizing if added to the
combination. Finally, the rows and columns that have average probability values are
characterized by a given level of doubt over the interest or penalty to be added to the
combination. If the probability value is significant, but smaller than 0.5, then the corre-
sponding row/column should be penalizing for the combination, but with a minimal level
of doubt. Similarly, if the probability value is larger than 0.5, but not too close to 1,
then the corresponding row/column should be interesting for the combination, but with a
minimal level of doubt. If the probability value is around 0.5, then the interest or penalty
of the corresponding row/column is totally unknown.
As we already stated, such a discovered partial combination also defines a region of sub-
matrices. These sub-matrices share those interesting rows and columns of EM ′ that
define the combination and avoid those rows and columns of EM ′ that are penalizing
for it. They differ by those rows and columns of EM ′ whose presence in the combina-
tion cannot be established undoubtedly by the GA. Among these sub-matrices, the one
sub-matrix that contains all the rows and columns that have probabilities larger than
0.5 in the probabilistic individual, and only them, will be the less doubtful interesting
compromise solution between MSR, size and MRV of the region. In what follows, we
will refer to this solution by the less doubtful solution.

Nevertheless, all these results, as interesting as they may be, do not solve the bicluster-
ing problem, by returning a set of different biclusters, defining each "a [precise] set of
genes showing strikingly similar up-regulation and down-regulation under a [precise] set
of conditions". In order to find such precise biclusters in the MOBPEOC approach, we
propose to search the region defined by each returned individual, around its less doubtful
solution, for a sub-matrix with a low MSR. As the searched bicluster must be a member
of a discovered region, and close to its less doubtful solution, it should exhibit a very good
MSR value, but stay interesting in terms of size and MRV . Moreover, the GA uses
a sharing mechanism to create a set of niches in the population, with a controlled level
overlapping between the solutions of each niche. It can thus also be hoped that biclusters
representing different solutions to the biclustering problem will be found, by searching
each of the regions associated with the individuals of the last generation.

One important advantage of the MOBPEOC approach is that the search phase of the
multi-objective biclustering problem, enforced by the GA with probabilistic encoding, is
decoupled from the decision making phase, enforced here by the local search around the
less doubtful solution for a low MSR bicluster. Several other different decision making
processes, favoring other objectives or compromises between objectives, could thus easily
be applied to the results of a single search phase. A human decision maker, like a biologist,
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could be able to test different compromises between objectives and choose the best.
In this thesis, we chose to favor biclusters with lowMSR in order to demonstrate the abil-
ity of the MOBPEOC approach to find highly coherent interesting biclusters. Moreover,
starting from these very coherent biclusters, a human decision maker could very easily
add or remove some rows or columns to check if the bicluster is maximal and to make it
so if necessary. He could be assisted by a computer program that would present him the
most interesting rows and columns to add or remove in terms of MSR and MRV . Such
an approach could be much more relevant than using an almost arbitraryMSR threshold
δ, under which all sub-matrices are considered as coherent biclusters, and above which
they are considered as non coherent ones.

In the next subsections, we detail the particular decision making phase we adopted in
MOBPEOC.

3.5.2 The MOBPEOC decision making process

In order to be able to search a discovered region around its less doubtful solution for a
low MSR bicluster, we should first decide which precise sub-matrices of EM ′ are part of
such a region defined by a probabilistic individual. In MOBPEOC, we choose that all the
rows (respectively columns) of EM ′ that have a corresponding probability smaller than
the parametric low probability prowmin (respectively pcolumnmin ) in the probabilistic individual
will not be part of the sub-matrices of the region defined by this individual. Similarly
all the rows (respectively columns) of EM ′ that have a corresponding probability larger
than prowmax (respectively pcolumnmax ) in the probabilistic individual will be part of all the sub-
matrices of the region defined by this individual. All the sub-matrices that do not contain
the first set of "forbidden" rows and columns and contain the second set of "mandatory"
rows and columns will be part of the region defined by the probabilistic individual.
If we represent each sub-matrix by the set of rows and columns of EM ′ it contains, using
the binary encoding defined in the SEBI/SMOB approach, it appears that all the sub-
matrices of a region will be represented by binary individuals where the bits assume value
0 (respectively value 1) if the corresponding probability in the probabilistic individual
has a value smaller than prowmin for a row and pcolumnmin for a column (respectively larger
than prowmax for a row and pcolumnmax for a column). At each possible combination of values
for the remaining bits will correspond a binary individual representing one of the sub-
matrices of the region, and all the sub-matrices of the region will be represented by such an
individual. This is illustrated in the following figure (where we use prowmin = pcolumnmin = 0.15
and prowmax = pcolumnmax = 0.85):
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At the probabilistic individual on the top of this figure will correspond the region con-
taining the sub-matrices defined by the binary individuals on the bottom of the figure.
The less doubtful solution of this region is tagged with a blue label.
The MOBPEOC decision making process introduces thus the four pmin and pmax values
as new parameters of the approach:
// Decis ion making proces s (4)
pMinRow = . . . ;
pMaxRow = . . . ;
pMinColumn = . . . ;
pMaxColumn = . . . ;

In the MOBPEOC decision making process, we propose to use a local search optimization
method, that will start with the less doubtful solution of the region, and will search the
solutions close to it in the region, to improve itsMSR. Practically, in the previous figure,
the local search will consider first the solution with the blue label, and try to add or
remove it a limited number of the doubtful rows or columns that differentiate the sub-
matrices in the region (i.e. the ones with orange corresponding bits in the figure), in order
to reduce the MSR.
Our experiments have shown that the size of the set of sub-matrices to search in the
decision making phase of the MOBPEOC approach could still be very large. As a con-
sequence, using an exact optimization method to enforce the search is not convenient,
and a local search optimization heuristic should be used. A notable candidate is the
greedy search approach of the Cheng and Church’s algorithm. However, this approach is
notably prone to be trapped in a local optimum. As a consequence, MOBPEOC uses the
simulated annealing local search optimization meta-heuristic, which is often presented as
an improvement of greedy search that allows to overcome the problem of local optima.
The superiority of simulated annealing over Cheng and Church’s greedy search method
for biclustering of expression data is notably suggested by experimental results obtained
in [Bryan, 2005]. In the two next subsections, we present respectively the simulated
annealing general meta-heuristic technique, and its implementation in the MOBPEOC
approach.
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3.5.3 The simulated annealing local search meta-heuristic

Simulated annealing (SA) [Kirkpatrick et al., 1983, Černý, 1985] is an optimization meta-
heuristic inspired by the physical field of statistical thermodynamics. In this subsection,
we detail the generic algorithmic structure of the basic implementation of SA for single-
objective optimization. We also present the main issues for developing an effective SA for a
particular optimization problem. Details on historical and theoretical aspects of simulated
annealing, as well as on its advanced variants can be notably found in [Dréo et al., 2003,
Chapter 1], and the many references therein.

As any local search method, simulated annealing sequentially considers one potential
solution at a time, jumping from one solution to another in the search space, until a
solution considered as optimal is discovered or a limit of computing time is reached.
The particularity of simulated annealing holds in the way the algorithm jumps from one
solution to another solution to explore the search space.
The SA algorithm is a stepwise process. At each step is associated a different value of
temperature (remember that SA is inspired from thermodynamics). The temperature of
the first step is a parameter of the algorithm, and it is reduced by a given parametric
ratio in each step of the algorithm. For example, if the initial temperature in the first
step is 10, and the decrease ratio is 0.5, then the temperature of the second step will be
5, the one of the third step will be 2.5 and so on.
When SA tries to jump from its current solution to a new one in the search space, it creates
a candidate next solution by applying a random elemental modification to the current
solution. The objective function values of both the current and the candidate solutions
are compared, and if the candidate solution is the best, SA jumps to this candidate
solution that becomes the new current solution. Otherwise, the candidate solution is not
systematically rejected. In fact, it is then accepted with a probability paccept, with

paccept = e
−|objectiveFunction(candidate)−objectiveFunction(current)|

temperature

This probability of acceptation decreases exponentially with the ratio between the ob-
jective function penalty if we switch from the current to the candidate solution and the
current temperature value in the algorithm. If the candidate solution is accepted, it
becomes the current solution, otherwise the current solution is not modified. From the
resulting current solution, a new candidate solution is computed and a new trial process
is repeated.
During the very first step of the algorithm, the temperature in the algorithm is high.
This typically induces that even the candidate solutions with a relatively bad objective
function value compared to the current solution have a significant probability paccept to
be accepted as new current solution. After a parametric number of trial processes, the
algorithm switches to next step and the temperature is reduced. As the algorithm goes
through new steps, the more the temperature is reduced and thus the more the objective
function penalty must be small for a candidate solution to have a significant probability
paccept to replace the current one. The algorithm is stopped after a step in which the
temperature has reached a parametric threshold low enough for all the candidates that
degrade the objective function to be rejected.
The algorithm can thus switch from a high temperature situation, where any random
modification of the current solution that is not too penalizing is accepted, to a low tem-
perature situation where only the modifications that improve the current solution are
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accepted. The first situation correspond to a global exploration of the search space,
which tries to explore all the parts of the search space to locate an interesting part. The
second situation corresponds to a local exploration of the interesting located part of the
search space.
Greedy search may be easily trapped by a local optimum, because it cannot switch to a
solution that is worse than the current one. As this is allowed and controlled in simulated
annealing, the algorithm is much less prone to be trapped by such local optima.

In the next figure, we synthesize the algorithmic structure and the four parameters of
a basic simulated annealing algorithm for a single-objective optimization problem (the
objective function should be maximized), as we have just detailed it.

// −−−−−−−− Parameters −−−−−−−−
i n i t i a lTempera tu r e = . . . ;
f ina lTemperature = . . . ;
numberOfAttempsPerTemperature = . . . ;
temperatureDecreaseRat io = . . . ;
// −−−−−−−− Parameters −−−−−−−−

temperature = in i t i a lTempera tu r e ;
cu r r en tSo lu t i on = s e l e c t I n i t i a l S o l u t i o n ( searchSpace ) ;

while ( temperature > f ina lTemperature ) {

for ( int i =1; i<= numberOfAttempsPerTemperature ; i++) {

cand idateSo lu t i on
= makeRandomElementalChange ( cu r r en tSo lu t i on ) ;

i f ( ob j e c t i v eFunct i on ( cand idateSo lu t i on )
>ob j ec t i veFunct i on ( cu r r en tSo lu t i on ) ) {

cu r r en tSo lu t i on = cand idateSo lu t i on ;
}
else i f ( random(0,1)<=
e

−(objectiveFunction(currentSolution)−objectiveFunction(candidateSolution))
temperature ) {

cu r r en tSo lu t i on = cand idateSo lu t i on ;
}

}

temperature = temperature ∗ temperatureDecreaseRat io ;

}

return cu r r en tSo lu t i on ;

As any meta-heuristic, simulated annealing can be instantiated to solve many optimization
problems. The main difficulties when instantiating SA for a particular problem consist in
defining efficient values for the parameters of the algorithm, and efficient mechanisms to
represent and make elemental modifications to the solutions in the search space. Standard
answers are commonly cited to solve these problems [Dréo et al., 2003, Pages 40-41].
First the chosen objective function should essentially measure the quality of a solution.
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Some penalties can be added to the objective function to drive the search towards some
unpenalized particular kinds of solutions, but the exploration should essentially be driven
by the set of elemental modifications allowed to be applied to the current solution.
The penalty or improvement of the objective function induced by an elemental change
in a solution should be easy to compute. Ideally, it should be possible to evaluate this
penalty or improvement as a function of the modification, i.e. without computing the
objective function of the candidate solution from scratch.
The initial temperature can be evaluated by computing the mean change in objective func-
tion induced by a number of random elemental modifications of some randomly chosen
solutions. The initial temperature is then chosen to adjust the probability of acceptation
of a candidate solution that would induce a penalty equal to this mean objective function
change. This probability of acceptation of an average penalizing candidate solution should
depend on the quality of the very first solution considered by the algorithm. According
to [Dréo et al., 2003], if this very first solution is considered to be good, the initial tem-
perature should be chosen to adjust the probability of acceptation to ≈ 0.20, otherwise,
an initial temperature adjusting a probability of acceptation of ≈ 0.50 should be chosen.
The number of attempts for each temperature step can be evaluated to 100 ∗Nparameters,
where Nparameters is the number of parameters that individuate a particular solution of the
problem. The temperature decrease ratio should assume a value around 0.90. The final
temperature can be established by running the algorithm on the optimization problem. If
after three successive steps, the current solution is almost never modified, the temperature
of the third step is chosen as final temperature.

3.5.4 The MOBPEOC simulated annealing algorithm

The MOBPEOC simulated annealing algorithm is an instance of the generic SA presented
in the previous subsection, which allows to search for a low MSR bicluster among the
sub-matrices around the less doubtful solution of a given promising region. We review
the main particularities of this instance of SA in this subsection.

The objective function of the MOBPEOC SA will simply be the MSR and the very first
current solution will be the less doubtful solution of the explored region. Given a current
solution, i.e. a sub-matrix (S,M)′ member of the explored region, the possible elemental
modifications to create a new candidate solution that must also be a member of the region
will be:

• Add to (S,M)′ one of the doubtful rows of EM ′ differentiating the solutions of the
region and that (S,M)′ does not already contain.

• Remove from (S,M)′ one of the doubtful rows of EM ′ differentiating the solutions
of the region and that (S,M)′ already contains.

• Add to (S,M)′ one of the doubtful columns of EM ′ differentiating the solutions of
the region and that (S,M)′ does not already contain.

• Remove from (S,M)′ one of the doubtful columns of EM ′ differentiating the solu-
tions of the region and that (S,M)′ already contains.

This set of possible modifications is particularly natural and allows any solution of the
region to be reached by the SA starting from the most representative solution of this
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region. During the run of the GA, it will not be necessary to compute the MSR of each
new candidate solution from scratch. One can indeed check that with the set of possible
modifications we defined, theMSR of a new candidate solution can typically be computed
by slightly modifying a part of the computations made for the current solution.
As we only want to locally explore the part of the region around the less doubtful solution,
a relatively low initial temperature should be chosen, but nevertheless sufficiently high to
prevent the algorithm from being trapped in a local optimum.
As a bicluster will typically contain much more rows than columns, adding or removing a
column to a current sub-matrix solution will usually add or remove much more elements
from the sub-matrix than adding or removing a row. The MSR of the current solution is
thus generally more modified when the candidate solution is created by modifying its set of
columns than its set of rows. As a consequence, the MOBPEOC SA uses two temperatures
that will be reduced simultaneously at each temperature step: a row temperature and a
column temperature. When a modification involves a row, the probability of acceptance
is computed using the row temperature, and when it involves a column, it is computed
using the column temperature.
The number of attempts for each temperature step will be the number of doubtful rows
and columns in the explored region. This value is small compared the one advised in the
previous subsection, as Nparameters is the number of doubtful rows and columns in the
explored region. Using such a small value allows to prevent an extension of the search to
solutions too far from the less doubtful solution of the region. The temperature decrease
ratios and the final temperatures can be adjusted as detailed in the previous subsection.

We finish this section by synthesizing the new parameters introduced by the SA in the
MOBPEOC approach:

// Temperature (4)
in it ia lRowTemperature = . . . ;
in it ia lColumnTemperature = . . . ;
f inalRowTemperature = . . . ;
f inalColumnTemperature = . . . ;

// Other parameters (2)
numberOfAttempsPerTemperature = . . . ;
temperatureDecreaseRat io = . . . ;

3.6 Code implementation

An important part of the work made in this thesis was to test the MOBPEOC approach
on real expression data. The obtained results are presented in the next chapter. For
these tests, both the MOBPEOC GA and SA have been implemented using the Java
programming language. The main goal while developing the code was not to produce
a high performance production code, but to create an experimental prototype to test
different evolutionary techniques and parameter configurations. The code should thus
be able to support frequent changes in a robust way, and to integrate many logging
mechanisms. The Java platform, with the modularity of its object-oriented paradigm,
and its existing aspect-oriented programming framework (AspectJ) allowing to weave
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logging aspects in the "business" code on demand and without modifying it, was used to
enforce efficiently such an experimental approach.
Parts of the programs, like the creation of the next generation in the GA or the search
of the different discovered regions using SA, were parallelized using a Thread Pool mech-
anism. This allowed to reduce by an important ratio the amount of time necessary to
execute the different algorithms on the bi-processor machine used for the tests. For the
creation of a next generation in the GA using the general selection scheme, some synchro-
nization mechanisms had to be added to the parallel implementation. This is due to the
fact that the continuously updated sharing mechanism supposes that the creation of the
individuals in the next generation is sequential, in order to be able to compute the niche
count of the candidate individuals in the provisional created new generation.
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4.1 Introduction: experimental methodology

In order to test the efficiency of the MOBPEOC approach on real expression data, our
Java implementation has been run over the well known Yeast and Human gene expres-
sion datasets (subsection 2.2.7). This allows us to compare the results obtained using
MOBPEOC with the ones returned by the original biclustering techniques (Cheng and
Church algorithm, FLOC), and with the SEBI/SMOB evolutionary biclustering tech-
niques, which inspired MOBPEOC. The datasets used here were the same as the log-
transformed ones used in the experiments lead with the Cheng and Church, SEBI and
SMOB algorithms (i.e. where the missing values have been replaced by the same random
numbers).
The experimental testing process involved essentially three different activities:

1. Optimization of the parameters within the overall approach. As the ar-
chitecture of the MOBPEOC approach was experimentally designed and tested, its
large number of parameters were adjusted, in order to induce the most efficient
discovery of different interesting partial combinations of rows and columns. The
parameters were adjusted to the Yeast dataset, then subsequently adapted to the
Human dataset.

The parameters of the GA were adjusted using parameter tuning. The parameter
configuration used in the SEBI/SMOB approach and the parameter values com-
monly cited in the literature were used as the starting point for this parameter
tuning process. The quality of the obtained set of parameter values seemed suffi-
cient, so that using a more advanced technique than parameter tuning to adjust the
parameters seemed unnecessary. The parameters for the decision making process
were adjusted experimentally to obtain interesting biclusters. The parameters of
the SA were adjusted according to the rules detailed in the previous chapter.

2. Collecting, statistical analysis and visualization of the results and of ex-
ecution informations. The algorithm was run over each of the two datasets.
During and after each run, many informations over the search process and the ob-
tained results were logged, aggregated through several statistical techniques, and
effectively presented through adequate visualization methods. These output data
were used both for decision-making while designing and adjusting the parameters
of the MOPBEOC approach, and for the subsequent final analysis of the biclusters
returned by MOBPEOC.

3. Interpretation of the results and of the search process, and comparison
with other techniques. For each dataset, the final results, statistics and graphs
were analyzed, interpreted and compared with the outputs of the other considered
biclustering techniques.

In this chapter, for each of the two datasets (sections 4.2 and 4.3), we present the pa-
rameter configuration established for the effective run of MOBPEOC over the dataset,
and we discuss the efficiency of the method, based on the obtained results, statistics and
graphs, and on their comparison with the outputs of the other biclustering techniques.
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4.2 Biclustering of the Yeast dataset

4.2.1 Configuration of the MOPBEOC parameters

We detail and comment here the parameter values that were used within MOBPEOC for
the biclustering of the Yeast dataset.

A Configuration of the genetic algorithm

// Generations loop (2)
maxNumberOfGenerations = 1000 ;
numberOfIndividualsPerGenerat ion = 600 ;

In SEBI/SMOB, a population of 200 individuals was used and evolved during 100 gen-
erations. Using a larger population size in the MOBPEOC GA allows to establish many
niches within the population and thus to discover many different interesting partial com-
binations of rows and columns in one run. A larger population typically requires a larger
total number of generations to converge to interesting parts of the search space, and thus
a larger computing time. The chosen values allows a good compromise between discovery
of many different partial combinations and the required computing time.

// Creat ion o f new i n d i v i d u a l s (8)
thresholdUpRow = 0.7 ;
thresholdUpColumn = 0.7 ;
thresholdDownRow = 0.3 ;
thresholdDownColumn = 0.3 ;
minPropor t i onOfSe l e c t edRowsAtIn i t i a l i za t i on = 0.001 ;
maxProport ionOfSe l ec tedRowsAtIn i t i a l i za t ion = 0.04 ;
minPropor t ionOfSe l ec t edCo lumnsAtIn i t i a l i za t i on = 0 .7 ;
maxProport ionOfSe l ec tedColumnsAtIn i t ia l i zat ion = 1 .0 ;

The threshold values chosen here allow to create probabilistic individuals representing re-
gions of reasonable size. The proportion values allow the sub-matrices in these regions to
contain a number of rows an columns of the order of the ones of the biclusters discovered
using the Cheng and Church and SEBI/SMOB approaches.

// R e i n i t i a l i z a t i o n proces s (2)
numberOfRe in i t i a l i z a t i on s = 30 ;
maxCyc l e sOfRe in i t i a l i z a t i on = 990 ;

5% of the individuals in a generation are reinitialized individuals. This low proportion
allows to enforce a better diversity and a discovery of new niches across the generations,
without disrupting the search power of the GA. The ten last generations are not con-
cerned by reinitialization in order to avoid polluting the very last generation containing
the results of the algorithm with pure random solutions.

// Se l e c t i o n opera tor (4)
s izeOfTheEvaluat ionSampleSets = 50 ;
s izeOfComparisonSet = 510 ;
n ich ingRadius = 0.85 ;
s c a l i n gFac to r = 1 ;
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The size of the sample sets was established by computing the objective function values
for a population of 200 random probabilistic individuals with different sample set sizes.
For each sample set size Nsample, the mean of each of the objective function values for the
200 individuals is reported in the following graphs:

One can see that for a sample size of 50, the objective functions values seem to stabilize
around an average value, which indicates that this size should be sufficient to estimate
these values.
We chose to use a comparison set whose size is 85% of the size of the population in the GA.
This is very large compared to the value proposed in [Horn et al., 1994]. This can typically
be explained by the fact that the context of use of the Niched Pareto technique is very
different in MOBPEOC, and our tests show that smaller values prevent the population
to converge to interesting parts of the search space.
The niching radius assumes value 0.85, which more or less means that the different partial
combinations found should present at most 15% of similarity.
The scaling factor assumes value 1, which is the typically cited value in the literature
[Dréo et al., 2003, Page 189].

// Reproduction opera tor s (2)
r eproduct i onProbab i l i tyRate = 0.85 ;
rowMeanCrossoverRate = 0.025 ;
columnMeanCrossoverRate = 0 ;

Due to the small number of columns in the Yeast dataset, no column mean crossover
operator is used. An uniform crossover coupled with a standard mutation mechanism is
indeed sufficient for a proper exploration of the set of possible combinations of columns.
Our experiments have shown that introducing a column mean crossover operator made the
variation scheme too disruptive, and prevented a proper convergence of the population.
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The global crossover rate used in MOBPEOC is the same that the one used in SMOB,
as it seemed effective and coherent with the litterature [Dréo et al., 2003, Page 110]. The
rate of row mean crossover was tuned to a value allowing an effective but not too disrup-
tive exploration of the set of possible combinations of rows.

// Mutation opera tor s (2)
mutat ionProbabi l i tyRate = 0.05 ;
rowMutationRate = 0 .6 ;

The mutation rates were tuned to allow an effective but not too disruptive exploration of
the search space. The global rate of mutation is much smaller than in SMOB and closer
to the traditional values cited in the litterature [Dréo et al., 2003, Page 90].

B Configuration of the decision-making process

// Decis ion making proces s (4)
pMinRow = 0.15 ;
pMaxRow = 0.85 ;
pMinColumn = 0.15 ;
pMaxColumn = 0.85 ;

The probability values were tuned in order for the regions defined by a probabilistic
individual to contain the best panel of solutions representative of the partial combination
represented by the individual. Concretely, these adequate probability values should allow
and were thus selected to promote a quicker and more efficient discovery of interesting
low MSR biclusters, close to the less doubtful solution of the region.

C Configuration of the simulated annealing algorithm

// Temperature (4)
in it ia lRowTemperature = 0 .08 ;
in it ia lColumnTemperature = 20 ;
finalRowTemperature = 0.015 ;
f inalColumnTemperature = 3.75 ;

// Other parameters (2)
numberOfAttempsPerTemperature = number o f doubt fu l rows

+ number o f doubt fu l columns ;
temperatureDecreaseRat io = 0 .90 ;

These values have been chosen using the rules detailed in subsection 3.5.4.

4.2.2 Quality of the discovered biclusters

In this subsection, we show and comment the expression graphs of a panel of biclusters
extracted from the 600 biclusters (one for each probabilistic individual returned by the
GA) returned by the execution of MOBPEOC over the Yeast dataset. The rows and
columns that compose the biclusters exposed here are detailed in appendix A.
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These biclusters exhibit clearly these "strikingly similar up-regulation and down-regulation"
of some genes under some conditions put forward by Cheng and Church. Logically, these
biclusters have very low MSR values (typically lower than 100) with satisfying values of
MRV . This underlines the ability of MOBPEOC to find very coherent and interesting
biclusters.
One should also notice the variety of the different patterns exhibited by these biclusters,
which clearly correspond to different solutions to the biclustering problem. The mean
overlapping between these biclusters is only 4.24 %, with many biclusters that do not
overlap. However, the overlapping level can also reach up to 77.33% between bicluster
251 and bicluster 394. These two last biclusters could represent two parts of a same max-
imal bicluster, but also two highly overlapping but different biclusters. The MOBPEOC
method is thus able to find totally disjoint biclusters as much as highly overlapping ones.
One can suppose that the weakly or non-overlapping biclusters come from probabilistic
individuals originating from different niches, while the highly overlapping ones come from
probabilistic individuals originating from the same niche. It can also be remarked that
the set of biclusters covers all the 17 conditions in the dataset. Finally, the remanence of
some regular patterns across the whole set of biclusters, especially involving conditions 6,
9, 10, 11, 13 and 16 (which are present in all the biclusters), should be noticed, and will
be discussed in the next sub-section.

4.2.3 Overlapping control efficiency

The mean overlapping between the 600 biclusters returned using the MOBPEOC approach
over the Yeast dataset is 16.10%. This value seems to agree with the choice of a niching
radius enforcing 15% of similarity between the niches established in the GA. We pushed
forward the analysis of the efficiency of the overlapping control mechanisms in MOBPEOC
by running once again the whole algorithmic process, but with a niching radius assuming
value 0, i.e. which allows 100% of similarity between the niches established in the GA.
The following graphs show the evolution of the minimal (red), mean (blue) and maximal
(green) overlapping distance doverlapping between the individuals of the GA for each of the
1000 generations. The graph on the left shows this evolution when the niching radius
assumes value 0.85, and the graph on the right when it assumes value 0.

Niching radius = 0.85 Niching radius = 0
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When the niching radius assumes value 0.85, one can see that the mean overlapping
distance between the individuals decreases during about 100 generations. We can suppose
that this phase corresponds to the discovery of a core set of niches. In a second phase,
the mean distance grows very slowly while the minimal overlapping distance continues
to decrease. We can suppose that this phase corresponds to the convergence inside each
niche towards a particularly good solution within the niche.
When the niching radius is zero, the mean and minimal overlapping distance collapse in
about 400 generations. This difference of behavior between the algorithm with a zero
niching radius and the one with a 0.85 niching radius is a clear hint of the efficiency of
the overlapping control mechanism.

We have also compared the biclusters obtained using MOPEOC respectively with a 0.85
and a 0 niching radius in the GA. The following table presents compared statistics be-
tween the two sets of returned biclusters. It details the overlapping between the biclusters
in each set, their size and the number of rows and columns they contain. Minimal, mean,
maximal and standard deviation values are detailed. The percentage of rows, columns
and elements in EM ′ these sets of biclusters cover is also presented. Below the table,
the expression graph of the typical biclusters returned by MOBPEOC with a zero nich-
ing radius are presented, to be compared with the ones detailed in the previous subsection.

Niching radius = 0.85 Niching radius = 0

Overlapping

Min 0.0% 8.17%
Mean 16.10% 60.59%
Max 100% 100%

St. Dev. 22.67% 18.63%

Size

Min 30 1284
Mean 391.34 3288.61
Max 2805 4836

St. Dev. 481.63 2178.46

# Genes

Min 5 261
Mean 43.58 389.79
Max 279 442

St. Dev. 54.00 29.52

# Conditions

Min 5 4
Mean 9.23 8.36
Max 13 12

St. Dev. 1.46 1.98

Coverage
Genes 56.83% 44.14%

Conditions 100% 88.24%
Matrix 39.39% 28.92%
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When the niching radius is set to zero, the returned biclusters become logically very
similar, showing very high levels of overlapping, and covering less elements in EM ′. They
also become much bigger, with a much larger number of rows but a smaller number of
columns, and they do not cover anymore all the columns of EM ′.

Visual inspection of their expression graphs show that these biclusters typically contain
a lot of rows exhibiting some similar patterns for a limited number of columns, involving
typically some or all the columns 6, 9, 10, 11, 13 and 16. These patterns are the ones
that appear in a recurrent way in the biclusters discovered with a niching radius assuming
value 0.85.

Comparing our results with the ones of Cheng and Church [Cheng and Church, 2000], it
appears that these biclusters found with a zero niching radius seem to be linked to the
biclusters 46, 54 and 90 discovered by Cheng and Church. These biclusters are presented
by Cheng and Church as representing shared patterns between many clusters of rows,
found using clustering algorithms.

Without niching pressure, the probabilistic GA is able to individuate, with a low level
of doubt, a very limited group of columns (6, 9, 10, 11, 13 and 16) for the ones a large
number of rows exhibit similar highly varying patterns, shared between many real biclus-
ters present in the data. When a strong niching pressure is applied, but still allowing a
limited similarity between the partial combinations of rows and columns found, biclusters
involving highly disjoint sets of rows are discovered, which share these similar and highly
varying patterns individuated by the zero niching radius GA.
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4.2.4 Performance comparison with concurrent techniques

In this subsection, we compare the results obtained using MOBPEOC on the Yeast dataset
with the ones returned by the Cheng and Church [Cheng and Church, 2000], FLOC
[Yang et al., 2003], SEBI [Divina and Aguilar-Ruiz, 2006] and SMOB
[Divina and Aguilar-Ruiz, 2007] biclustering technique (see chapter 2).
The following tables compare statistics over the results produced using these approaches.
The MSR, Size and MRV of the returned biclusters are detailed, with the number of
rows and columns they contain, and their level of covering of the rows, columns and
elements in EM ′.

MSR Size
Min Mean Max St. Dev. Min Mean Max St. Dev.

MOBPEOC 0.00 88.83 308.36 57.46 30 391.34 2805 481.63
SEBI - 205.18 - 4.49 - 209.92 - 171.39
SMOB - 206.17 - 15.82 - 453.48 - 231.76
C&C - 204.29 - 42.78 - 1576.98 - 2178.46
FLOC - 187.54 - - - 1825.78 - -

# Genes # Conditions
Min Mean Max St. Dev. Min Mean Max St. Dev.

MOBPEOC 5 43.58 279 54.00 5 9.23 13 1.46
SEBI - 13.61 - 10.38 - 15.25 - 1.37
SMOB - 27.28 - 14.88 - 15.46 - 1.88
C&C - 166.71 - 226.37 - 12.09 - 4.39
FLOC - 195 - - - 12.8 - -

MRV Coverage
Min Mean Max St. Dev. Genes Conditions Matrix

MOBPEOC 0.00 410.27 2266.08 232.86 56.83 % 100 % 39.39 %
SEBI - - - - 43.55 % 100 % 38.14 %
SMOB - - - - 47.02 % 100 % 40.39 %
C&C - - - - 97.12 % 100 % 81.14 %

The MOPBEOC results seem very good compared to the ones returned in the SEBI/S-
MOB approach, as they present very lower MSRs without really penalizing the size and
coverage of the discovered biclusters. The results returned by SEBI/SMOB seem to con-
tain more columns but less rows than the ones returned by MOBPEOC. Visual inspection
of the results returned by both approach confirm that MOBPEOC returns much more
coherent biclusters than SEBI/SMOB.
Comparing the MOBPEOC results with the Cheng and Church’s and FLOC algorithms
ones is a much more difficult task. Statistics for the Cheng and Church’s technique, ex-
tracted from [Divina and Aguilar-Ruiz, 2007], are distorted as they include huge but flat
biclusters returned by the method. Moreover, both these techniques allow to take into
account rows with inverted expression patterns inside the biclusters, which is still not a
feature of MOBPEOC. FLOC also allows to deal with missing values in the dataset with-
out replacing them by random values, which is still not possible in MOBPEOC and Cheng
and Church’s algorithm. Despite these remarks, a comparison involving the statistics over
the MSR and size seems to show that MOBPEOC allow to find much more coherent
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but much smaller biclusters. Nevertheless, this should also be nuanced, as MOBPEOC
uses a decision making process that looks for low MSR biclusters around the less doubtful
solution in an individuated region, while C&C and FLOC search for maximal δ-biclusters,
with δ = 300. AsMSR and size are antagonist criteria, using a smaller value of δ in C&C
or FLOC should typically return more coherent but smaller biclusters, while searching for
bigger biclusters in MOBPEOC should return less coherent ones.

4.3 Biclustering of the Human dataset

4.3.1 Configuration of the algorithms

We detail and comment here the parameter values that were used within MOBPEOC for
the biclustering of the Human dataset.

A Configuration of the genetic algorithm

The parameters of the GA for the Human dataset, detailed in the figure below, are derived
from the ones for the Yeast dataset.

// Generations loop (2)
maxNumberOfGenerations = 1000 ;
numberOfIndividualsPerGenerat ion = 600 ;

// Creat ion o f new i n d i v i d u a l s (8)
thresholdUpRow = 0.7 ;
thresholdUpColumn = 0.7 ;
thresholdDownRow = 0.3 ;
thresholdDownColumn = 0.3 ;
minPropor t i onOfSe l e c t edRowsAtIn i t i a l i za t i on = 0.0005 ;
maxProport ionOfSe l ec tedRowsAtIn i t i a l i za t ion = 0.02 ;
minPropor t ionOfSe l ec t edCo lumnsAtIn i t i a l i za t i on = 0.90 ;
maxProport ionOfSe l ec tedColumnsAtIn i t ia l i zat ion = 1 .0 ;

// R e i n i t i a l i z a t i o n proces s (2)
numberOfRe in i t i a l i z a t i on s = 30 ;
maxCyc l e sOfRe in i t i a l i z a t i on = 990 ;

// Se l e c t i o n opera tor (4)
s izeOfTheEvaluat ionSampleSets = 50 ;
s izeOfComparisonSet = 510 ;
n ich ingRadius = 0.85 ;
s c a l i n gFac to r = 1 ;

// Reproduction opera tor s (3)
r eproduct i onProbab i l i tyRate = 0.85 ;
rowMeanCrossoverRate = 0.04 ;
columnMeanCrossoverRate = 0.01 ;

// Mutation opera tor s (2)
mutat ionProbabi l i tyRate = 0.05 ;
rowMutationRate = 0 .6 ;
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The algorithm was first run over the Human dataset using the parameters for the Yeast as
a starting point. Then, these parameters were tuned to find different interesting partial
combinations of rows and columns. The differences between the Human and the Yeast
configurations are small, which is a hint of the stability of the method:

• The proportions values for the creation of new individuals have been adapted for
the Human dataset. The goal was to allow the sub-matrices in the regions defined
by these individuals to contain a number of rows an columns of the order of the
ones of the biclusters discovered using the Cheng and Church and SEBI/SMOB
approaches.

• Due to the larger number of rows and columns in the Human dataset, compared
to the Yeast dataset, the row mean crossover operator is applied more frequently,
while a column mean crossover operator is introduced, in order to enforce a proper
exploration of the set of possible combinations of rows and columns.

As for the Yeast dataset, we computed the objective function values for a population of
200 random probabilistic individuals with different sample set sizes. For each sample set
size Nsample, the mean of each of the objective function values for the 200 individuals is
reported in the following graphs:

A size of 50 for the sample sets, as for Yeast dataset, seems sufficient for an effective
evaluation of the probabilistic individuals.

113



B Configuration of the decision-making process

// Decis ion making proces s (4)
pMinRow = 0.15 ;
pMaxRow = 0.98 ;
pMinColumn = 0.15 ;
pMaxColumn = 0.95 ;

The probability values were tuned to promote a quick and efficient discovery of interesting
low MSR biclusters, close to the less doubtful solution of the explored region.

C Configuration of the simulated annealing algorithm

// Temperature (4)
in it ia lRowTemperature = 2 .0 ;
in it ia lColumnTemperature = 30 ;
finalRowTemperature = 0.0375 ;
f inalColumnTemperature = 0.5625 ;

// Other parameters (2)
numberOfAttempsPerTemperature = number o f doubt fu l rows

+ number o f doubt fu l columns ;
temperatureDecreaseRat io = 0 .85 ;

These values have been chosen using the rules detailed in section 3.5.4.

4.3.2 Quality of the discovered biclusters

In this subsection, we show and comment the expression graphs of a panel of biclusters ex-
tracted from the 600 biclusters returned by the execution of MOBPEOC over the Human
dataset. The rows and columns that compose the biclusters exposed here are detailed in
appendix B.
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The tendencies observed over the Yeast dataset were confirmed with the Human dataset,
which is a good hint of the stability of the method.
The biclusters discovered exhibit clearly the "strikingly similar up-regulation and down-
regulation" of some genes under some conditions put forward by Cheng and Church. They
have low MSR values (lower than 800 and even often lower than 600) and good MRV
values.
They also exhibit many different patterns, and with only 3.16% of mean overlapping,
where most biclusters simply do not overlap, they clearly represent different solutions to
the biclustering problem. The recurrence of some patterns can nevertheless be observed
in several biclusters, and the level of overlapping can reach up to 49.09 between biclusters
217 and bicluster 448. The whole set of 600 biclusters has a mean overlapping of 10.71%,
which seems to agree with the choice of a niching radius enforcing 15% of similarity
between the niches established in the GA.
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4.3.3 Performance comparison with concurrent techniques

As with the Yeast dataset, we compare here the results obtained using MOBPEOC on
the Human dataset with the ones returned by the Cheng and Church, SEBI and SMOB
biclustering techniques (no data were found for the FLOC algorithm with the Human
dataset).

MSR Size
Min Mean Max St. Dev. Min Mean Max St. Dev.

MOBPEOC 159.64 744.04 1629.42 337.21 70 1967.05 9000 2000.54
SEBI - 1028.84 - 29.19 - 615.84 - 278.35
SMOB - 1019.16 - 120.78 - 709.13 - 378.05
C&C - 850.04 - 153.91 - 4595.98 - 3353.72

# Genes # Conditions
Min Mean Max St. Dev. Min Mean Max St. Dev.

MOBPEOC 5 54.34 217 53.51 14 38.03 68 9.99
SEBI - 14.07 - 5.39 - 43.57 - 6.20
SMOB - 11.60 - 12.55 - 78.47 - 19.46
C&C - 269.22 - 204.71 - 24.5 - 20.92

MRV Coverage
Min Mean Max St. Dev. Genes Conditions Matrix

MOBPEOC 448.10 1186.33 3448.64 331.67 33.18 % 100 % 21.92 %
SEBI - - - - 38.23 % 100 % 34.07 %
SMOB - - - - 45.05 % 100 % 33.52 %
C&C - - - - 91.58 % 100 % 36.81 %

Here again, the tendencies observed over the Yeast dataset were confirmed with the Hu-
man dataset.
The results returned by MOBPEOC have a much lower meanMSR than the ones returned
by SEBI/SMOB, without impacting the size of the discovered biclusters. The biclusters
obtained using SEBI/SMOB seem to exhibit a better coverage of the expression matrix
EM ′. This tendency does not exist with the Yeast dataset. This is probably linked to the
sequential coverage technique used in SEBI/SMOB, which prevents overlapping between
the individuated biclusters and thus enforces a better coverage, coupled with the increased
size of EM ′ for the Human dataset compared to the Yeast dataset.
Comparisons between MOBPEOC and the Cheng and Church’s algorithm are difficult for
the same reasons that the ones detailed for the Yeast dataset. Here again, MOBPEOC
returns results with a lowerMSR but also a lower size than those returned by Cheng and
Church’s algorithm with δ = 1000. It should be noticed that many biclusters presented by
Cheng and Church over the Human dataset contain a lot of rows with inverted patterns.
Encompassing the search for such rows within MOBPEOC could thus improve in an
important way the results (and typically, their size) returned by MOBPEOC over the
Human dataset.
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Conclusions and future work

Biclustering is a data mining problem that consists in finding sub-matrices of a given ma-
trix that optimize several quality criteria, enforcing essentially a coherence requirement.
This problem has many interesting applications in many different domains. In the bio-
logical context of gene expression data analysis, biclustering techniques can allow to find
particular groups of genes exhibiting a similar expression pattern under a particular group
of conditions. This is of particular importance from a biological (like for gene profiling)
and medical (like for a better understanding of diseases) point of view.
The first work over this biological instance of the biclustering problem was proposed by
Cheng and Church in 2000. They defined a mathematical specification of the problem,
known as the δ-bicluster model, as well as a greedy algorithmic approach to solve it.
As biclustering of gene expression data is a hard multimodal and multi-objective combi-
natorial optimization problem, the search for interesting solutions can benefit from the
use of evolutionary computation. Evolutionary computation is a non strictly delimited
class of algorithms, sharing the use of mechanisms inspired by darwinian evolution to
solve optimization problems. Evolutionary computation was notably used by F. Divina
to solve the gene expression data biclustering problem, according to the δ-bicluster model
specification. This approach lead to the discovery of interesting biclusters by the SEBI
and SMOB genetic algorithms.

In this thesis, we developed a Multi-Objective evolutionary Biclustering genetic algorithm
with Probabilistic Encoding and Overlapping Control (MOBPEOC) to solve the gene
expression data biclustering problem. Based on the δ-bicluster model specification and
inspired by the SEBI/SMOB approach, MOBPEOC introduces new mechanisms to offer
an improved biclustering process:

• The use of a multi-objective biclustering approach is necessary, as the individuated
biclusters should be at the same time very coherent and maximal, and they should
also show high variations of the expression levels of their genes under their different
conditions. Nevertheless such a multi-objective approach is also highly problematic
for individuating particular biclusters, as these objectives are particularly antago-
nist. The adequacy of a particular gene or condition in a bicluster can thus not
always be established formally in a precise way.

MOPBEOC allows to deal with this problem in an elegant and totally new way.
The search phase of the multi-objective solving process is enforced by a GA using
probabilistic encoding, a new evolutionary technique that we propose and introduce
within MOBPEOC. This technique allows to express a given level of doubt over
the adequacy of a row or a column in the solution. Probabilistic encoding also
increases the exploration power of the GA. One can then exploit a-posteriori the
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results returned by this probabilistic GA to individuate precise biclusters according
to a chosen decision-making policy.

In this thesis, a simulated annealing local search method exploiting the results of the
GA is proposed to show the ability of the method to individuate highly coherent bi-
clusters. These individuated biclusters could potentially be used as a starting point
for a human-driven decision-making process, where a computer-assisted biologist
would add and remove rows and columns to the candidate bicluster, to establish a
biologically significant maximal one.

• Biclustering of gene expression data is a multimodal problem, as different biclusters
hinting biological relations between different sets of genes and conditions should
be individuated in the data. Such different biclusters should not share too much
elements in the expression matrix, but can nevertheless exhibit some level of over-
lapping.

In the MOBPEOC probabilistic GA, we combine in a new way two existing evo-
lutionary techniques, sharing and niched Pareto selection, in order to individuate
several different partial combinations of genes and conditions, which all optimize
simultaneously coherence, size and variance of the genes expression levels. This
technique introduces a parameter, the niching radius, that allows to specify the
level of overlapping between the different individuated combinations of rows and
conditions.

An important part of the work achieved during this thesis consisted in testing MOBPEOC
over two real gene expression datasets, typically used in the literature to test the many
proposed biclustering techniques: the Yeast dataset and the Human dataset. The obtained
results confirm the efficiency and the stability of the method.
For both datasets, biclusters showing "strikingly similar up-regulation and
down-regulation" of some genes under some conditions are discovered. These biclus-
ters have a very low mean squared residue, much lower than in the biclusters returned by
the SEBI/SMOB approach, combined with a sufficient mean row variance, and without
impacting the size of the biclusters, compared to the SEBI/SMOB results.
The results also demonstrate the ability of MOBPEOC to find different biclusters and to
control the mean level of overlapping between them. The individuated biclusters present
many different variation patterns, and can cover from totally disjoint to highly overlapping
sets of elements in the expression matrix.
These particularly interesting results are a strong hint of the efficiency of the new evo-
lutionary mechanisms developed in the MOBPEOC GA. This GA was notably a first
conclusive life-size test for the probabilistic encoding technique, which could be particu-
larly useful to deal with uncertainty in the frame of many other problems to solve using
evolutionary computation.

The comparison of the MOBPEOC results with the ones returned by classical biclustering
techniques, like Cheng and Church’s algorithm is inconclusive and reveals the limits of
the approach used in this thesis. The work presented here is indeed limited (for time
reasons) to an improvement of the evolutionary biclustering approach proposed by the
SEBI/SMOB algorithms, in the restricted frame of the δ-bicluster model.
Future work on the MOBPEOC approach should evaluate the adequacy of the δ-bicluster
model, and be based on a wider review of the original needs of biologists searching for
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biclusters in gene expression data and of the other bicluster models existing in the liter-
ature.
Moreover, the actual MOBPEOC approach can be improved in several ways:

• The approach should deal explicitly with missing data in the studied dataset, in-
stead of replacing them by random values, and should take care of the possible
measurement variations within the data, through a discussed normalization proce-
dure.

• The approach should be able to deal with biclusters containing rows whose expres-
sion trends are "mirror images" of each other. A possible idea to test would consist
in using a probabilistic encoding with negative values, a negative value for a partic-
ular row indicating the additive inverse of the probability for the mirror image of
the row to be coherent within the combination.

• The approach should use a decision making process tailored and tested for the
practical requirements of the biologists who need to analyze gene expression data.

The validation of the obtained results and of the efficiency of the method can also be
deepened.
The biological relevance of the obtained results could notably be evaluated by comparing
them with the relations between genes and conditions already acknowledged by biologists
in the Yeast and Human datasets. The method could also be applied to other existing
gene expression datasets.
The comparison of the MOBPEOC results with the ones of the other methods could also
be improved. This would require notably advanced tests using the other methods. A
comparison of the adequacy of the overlapping control mechanisms between the several
methods could also be very interesting.
The MOBPEOC approach combines several complex techniques (GA with probabilistic
encoding, sharing, niched Pareto selection, reinitialization, simulated annealing) in a to-
tally untested new way, and can be configured using a very large number of parameters.
Despite the good results it produces, the method can thus be criticized for a complexity
that prevents a trivial understanding of the dynamics of its search process. A more de-
tailed theoretical and experimental analysis of the efficiency of each of the components
of the method, and of the effect of combining them in a single algorithm, would be of
particular interest to validate and improve the efficiency of the technique.

123



124



Part V

Bibliography

125





Bibliography

[Agrawal et al., 1998] Agrawal, R., Gehrke, J., Gunopulos, D. and Raghavan, P. (1998).
Automatic subspace clustering of high dimensional data for data mining applications.
SIGMOD Rec. 27, 94–105. 49

[Alizadeh et al., 2000] Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, I. S.,
Rosenwald, A., Boldrick, J. C., Sabet, H., Tran, T., Yu, X., Powell, J. I., Yang, L.,
Marti, G. E., Moore, T., Hudson, J., Lu, L., Lewis, D. B., Tibshirani, R., Sherlock,
G., Chan, W. C., Greiner, T. C., Weisenburger, D. D., Armitage, J. O., Warnke, R.,
Levy, R., Wilson, W., Grever, M. R., Byrd, J. C., Botstein, D., Brown, P. O. and
Staudt, L. M. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene
expression profiling. Nature 403, 503–511. 61

[Amant, 2010] Amant, S. (2010). Memetic algorithm for discovering biclusters in mi-
croarray data. Master’s thesis University of Namur (FUNDP) - Computer Science
Department. 70

[Bäck et al., 2000] Bäck, T., Fogel, D. and Michalewicz, Z. (2000). Evolutionary compu-
tation 2: advanced algorithms and operators, vol. 1,. IOP Publishing Ltd. 12

[Back et al., 1999] Back, T., Fogel, D. B. and Michalewicz, Z., eds (1999). Evolutionary
Computation 1: Basic Algorithms and Operators. IOP Publishing Ltd., Bristol, UK,
UK. 10, 11, 12

[Barichard, 2003] Barichard, V. (2003). Approches hybrides pour les problèmes multiob-
jectifs. PhD thesis, Ecole Doctorale d’Angers France. 13

[Berkhin and Becher, 2002] Berkhin, P. and Becher, J. D. (2002). Learning simple re-
lations: Theory and applications. In In Second SIAM Data Mining Conference pp.
420–436, SIAM. 49

[Berrer et al., 2003] Berrer, D., Dubitzky, W. and Draghici, S. (2003). A practical ap-
proach to microarray data analysis chapter 1. .: Kluwer Academic Publishers. 46, 48,
53

[Beyer, 2001] Beyer, H.-G. (2001). The theory of Evolution Strategies, Natural Comput-
ing Series. Springer. 10

[Beyer et al., 2002] Beyer, H.-G., De Jong, K., Reeves, C. and Wegener, I., eds (2002).
Dynamics of Evolutionary Algorithms on Infinite Search Spaces (J. E. Rowe) in Theory
of Evolutionary Algorithms Dagstuhl, Germany. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany. 14

127



[Bleuler et al., 2004] Bleuler, S., Prelic, A. and Zitzler, E. (2004). An EA Framework
for Biclustering of Gene Expression Data. In Proceedings of the 2004 congress on
evolutionary computation, (IEEE, ed.), pp. 166–173, IEEE. 69, 70

[Bryan, 2005] Bryan, K. (2005). Biclustering of Expression Data Using Simulated An-
nealing. In CBMS ’05: Proceedings of the 18th IEEE Symposium on Computer-Based
Medical Systems pp. 383–388, IEEE Computer Society, Washington, DC, USA. 46, 62,
92

[Bulcke, 2007] Bulcke, T. V. D. (2007). ProBic: identification of overlapping biclusters
using Probabilistic Relational Models, applied to simulated gene expression data. http:
//videolectures.net/pmnp07_bulcke_piof/. 61

[Burjorjee, 2009] Burjorjee, K. M. (2009). Generative Fixation A Unified Explanation
for the Adaptive Capacity of Simple Recombinative Genetic Algorithms. PhD thesis,
Computer Science Department, Brandeis University. 29

[Chelouah and Siarry, 2000] Chelouah, R. and Siarry, P. (2000). A continuous Genetic
Algorithm Designed for the Global Optimization. Journal of Heuristics 6, 191–213. 14

[Cheng and Church, 2000] Cheng, Y. and Church, G. M. (2000). Biclustering of Expres-
sion Data. In Proceedings of the Eighth International Conference on Intelligent Systems
for Molecular Biology pp. 93–103, AAAI Press. 47, 49, 50, 58, 60, 69, 108, 109

[Cho et al., 1998] Cho, R. J., Campbell, M. J., Winzeler, E. A., Steinmetz, L., Conway,
A., Wodicka, L., Wolfsberg, T. G., Gabrielian, A. E., Landsman, D., Lockhart, D. J.
and Davis, R. W. (1998). A genome-wide transcriptional analysis of the mitotic cell
cycle. Mol Cell 2, 65–73. 61

[Deb et al., 2000] Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2000). A Fast Eli-
tist Multi-Objective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation 6, 182–197. 42

[Dhillon, 2001] Dhillon, I. S. (2001). Co-clustering documents and words using bipartite
spectral graph partitioning. In KDD ’01: Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining pp. 269–274, ACM,
New York, NY, USA. 49

[Divina, 2008] Divina, F. (2008). Probabilistic encoding: a novel representation for evo-
lutionary algorithms. (Unpublished). 75, 77, 78

[Divina and Aguilar-Ruiz, 2006] Divina, F. and Aguilar-Ruiz, J. S. (2006). Biclustering
of Expression Data with Evolutionary Computation. IEEE Transactions on Knowledge
and Data Engineering 18, 590–602. 47, 62, 69, 109

[Divina and Aguilar-Ruiz, 2007] Divina, F. and Aguilar-Ruiz, J. S. (2007). A Multi-
Objective Approach to Discover Biclusters in Microarray Data. In Proceedings of the
16th Genetic and Evolutionary Computation Conference (GECCO-2007) p. to appear,
ACM. 47, 62, 68, 69, 109

[Dréo et al., 2003] Dréo, J., Pétrowski, A., Siarry, P. and Taillard, E. (2003). Métaheuris-
tiques pour l’optimisation difficile. Eyrolles, Paris. 10, 12, 30, 42, 93, 94, 95, 102, 103

128

http://videolectures.net/pmnp07_bulcke_piof/
http://videolectures.net/pmnp07_bulcke_piof/


[Eiben and Smith, 2003] Eiben, A. and Smith, J. (2003). Introduction to evolutionary
computing. Springer. 12, 31, 32

[Fei and Juan, 2008] Fei, L. and Juan, L. (2008). Biclustering of Gene Expression Data
with a New Hybrid Multi-Objective Evolutionary Algorithm of NSGA-II and EDA. In
Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008. The 2nd International
Conference on pp. 1912 – 1915, IEEE. 70

[Fogel et al., 1966] Fogel, L., Owens, A. and Walsh, M. (1966). Artificial Intelligence
through Simulated Evolution. Wiley -. 10

[Fogel, 1999] Fogel, L. J. (1999). Intelligence through simulated evolution: forty years of
evolutionary programming. John Wiley and Sons, Inc., New York, NY, USA. 10

[Gallo et al., 2009] Gallo, C. A., Carballido, J. A. and Ponzoni, I. (2009). Microarray
Biclustering: A Novel Memetic Approach Based on the PISA Platform. In EvoBIO
’09: Proceedings of the 7th European Conference on Evolutionary Computation, Ma-
chine Learning and Data Mining in Bioinformatics pp. 44–55, Springer-Verlag, Berlin,
Heidelberg. 69, 70, 75

[Garey and Johnson, 1990] Garey, M. R. and Johnson, D. S. (1990). Computers and
Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,
New York, NY, USA. 16

[Goldberg, 1989] Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA. 10, 12, 16, 41

[Goldberg et al., 1992] Goldberg, D. E., Deb, K. and Horn, J. (1992). Massive Multi-
modality, Deception, and Genetic Algorithms. 38

[Goldberg and Richardson, 1987] Goldberg, D. E. and Richardson, J. (1987). Genetic
algorithms with sharing for multimodal function optimization. In Proceedings of the
Second International Conference on Genetic Algorithms on Genetic algorithms and
their application pp. 41–49, L. Erlbaum Associates Inc., Hillsdale, NJ, USA. 32

[Hancock, 1992] Hancock, P. J. B. (1992). Coding strategies for genetic algorithms and
neural nets. PhD thesis, Department of Computer Science, University of Stirling. 26

[Hao et al., 1999] Hao, J.-K., Galinier, P. and Habib, M. (1999). Metaheuristiques pour
l’optimisation combinatoire et l’affectation sous contraintes. Revue d’Intelligence Arti-
ficielle (Hermes) 13, 283–324. 14

[Hartigan, 1972] Hartigan, J. A. (1972). Direct Clustering of a Data Matrix. Journal of
the American Statistical Association 67, 123–129. 49

[Hofmann and Puzicha, 1999] Hofmann, T. and Puzicha, J. (1999). Latent Class Models
for Collaborative Filtering. In IJCAI ’99: Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence pp. 688–693, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA. 49

[Holland, 1975] Holland, J. H. (1975). Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, MI, USA. 10

129



[Horn et al., 1994] Horn, J., Nafpliotis, N. and Goldberg, D. E. (1994). A niched Pareto
genetic algorithm for multiobjective optimization. In Evolutionary Computation, 1994.
IEEE World Congress on Computational Intelligence., Proceedings of the First IEEE
Conference on pp. 82–87 vol.1, IEEE. 41, 42, 79, 102

[Kirkpatrick et al., 1983] Kirkpatrick, S., Gelatt, C. D., J. and Vecchi, M. P. (1983).
Optimization by Simulated Annealing. Science 220, 671–680. 93

[Krasnogor and Gustafson, 2002] Krasnogor, N. and Gustafson, S. (2002). Toward Truly
"Memetic" Memetic Algorithms: discussion and proofs of concept. In Advances in
Nature-Inspired Computation: The PPSN VII Workshops. vol. 16(52), PEDAL (Par-
allel, Emergent and Distributed Architectures Lab). 30

[Lazzeroni and Owen, 2000] Lazzeroni, L. and Owen, A. (2000). Plaid Models for Gene
Expression Data. Statistica Sinica 12, 61–86. 50

[Liu and Motoda, 1998] Liu, H. and Motoda, H. (1998). Feature Selection for Knowledge
Discovery and Data Mining. Kluwer Academic Publishers, Norwell, MA, USA. 78

[Lozano et al., 2006] Lozano, J. A., n. Larra, P., n. I., I. and Bengoetxea, E. (2006).
Towards a New Evolutionary Computation: Advances on Estimation of Distribution
Algorithms (Studies in Fuzziness and Soft Computing). Springer-Verlag New York,
Inc., Secaucus, NJ, USA. 78

[Madeira and Oliveira, 2004] Madeira, S. C. and Oliveira, A. L. (2004). Biclustering al-
gorithms for biological data analysis: a survey. IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics 1, 24–45. 46, 47, 48, 49, 50, 59, 60, 61, 62

[Mitchell, 1996] Mitchell, M. (1996). An introduction to genetic algorithms. MIT Press,
Cambridge, MA, USA. 43

[Mitra and Banka, 2006] Mitra, S. and Banka, H. (2006). Multi-objective evolutionary
biclustering of gene expression data. Pattern Recogn. 39, 2464–2477. 70

[NCBI, 2010] NCBI (2010). Microarrays: chipping away at the mysteries of science and
medicine. http://www.ncbi.nlm.nih.gov/About/primer/microarrays.html. 46

[Nepomuceno et al., 2010] Nepomuceno, J. A., Troncos, A. and Aguilar-Ruiz, J. S. (2010).
Evolutionary metaheuristic for biclustering based on linear correlations among genes.
In SAC ’10: Proceedings of the 2010 ACM Symposium on Applied Computing pp.
1143–1147, ACM, New York, NY, USA. 70

[Neumaier, 2010a] Neumaier, A. (2010a). Global Optimization. www.mat.univie.ac.
at/~neum/glopt.html. 15

[Neumaier, 2010b] Neumaier, A. (2010b). Examples and Case Studies in Optimization.
www.mat.univie.ac.at/~neum/glopt/applications.html. 15

[Oei et al., 1991] Oei, C., Goldberg, D. and Chang, S. (1991). Tournament Selection,
Niching, and the Preservation of Diversity. Technical Report 01011 Illinois Genetic
Algorithms Laboratory, University of Illinois Urbana-Champaign. 36, 37

130

http://www.ncbi.nlm.nih.gov/About/primer/microarrays.html
www.mat.univie.ac.at/~neum/glopt.html
www.mat.univie.ac.at/~neum/glopt.html
www.mat.univie.ac.at/~neum/glopt/applications.html


[Paenke et al., 2006] Paenke, I., Branke, J. and Jin., Y. (2006). Efficient search for robust
solutions by means of evolutionary algorithms and fitness approximation. IEEE Trans.
Evolutionary Computation 10, 405–420. 78

[Paz, 1997] Paz, C. E. (1997). A Survey of Parallel Genetic Algorithms. 23

[Rahnamayan et al., 2007] Rahnamayan, S., Tizhoosh, H. R. and Salama, M. M. A.
(2007). A novel population initialization method for accelerating evolutionary algo-
rithms. Comput. Math. Appl. 53, 1605–1614. 18

[Rechenberg, 1965] Rechenberg, I. (1965). Cybernetic solution path of an experimental
problem. Technical report Royal Air Force Establishment. 10

[Sareni and Krahenbuhl, 1998] Sareni, B. and Krahenbuhl, L. (1998). Fitness sharing
and niching methods revisited. Evolutionary Computation, IEEE Transactions on 2,
97–106. 38

[Singh and Deb, 2006] Singh, G. and Deb, Dr., K. (2006). Comparison of multi-modal
optimization algorithms based on evolutionary algorithms. In GECCO ’06: Proceedings
of the 8th annual conference on Genetic and evolutionary computation pp. 1305–1312,
ACM, New York, NY, USA. 32, 33

[Stender, 1993] Stender, J. (1993). Parallel Genetic Algorithms: Theory and Applica-
tions. IOS Press, Amsterdam, The Netherlands, The Netherlands. 23

[Ungar and Foster, 1998] Ungar, L. and Foster, D. P. (1998). A Formal Statistical Ap-
proach to Collaborative Filtering. In In CONALD’98 CMU. 49

[Černý, 1985] Černý, V. (1985). Thermodynamical approach to the traveling salesman
problem: An efficient simulation algorithm. Journal of Optimization Theory and Ap-
plications 45, 41–51. 93

[Wang et al., 2002] Wang, H., Wang, W., Yang, J. and Yu, P. S. (2002). Clustering by
pattern similarity in large data sets. In SIGMOD ’02: Proceedings of the 2002 ACM
SIGMOD international conference on Management of data pp. 394–405, ACM, New
York, NY, USA. 49

[Wolpert and Macready, 1997] Wolpert, D. H. and Macready, W. G. (1997). No free lunch
theorems for optimization. IEEE TRANSACTIONS ON EVOLUTIONARY COMPU-
TATION 1, 67–82. 44

[Yang et al., 2003] Yang, J., Wang, H., Wang, W. and Yu, P. (2003). Enhanced Biclus-
tering on Expression Data. In BIBE ’03: Proceedings of the 3rd IEEE Symposium on
BioInformatics and BioEngineering p. 321, IEEE Computer Society, Washington, DC,
USA. 50, 61, 69, 109

[Yang et al., 2002] Yang, J., Wang, W., Wang, H. and Yu, P. (2002). delta-Clusters:
Capturing Subspace Correlation in a Large Data Set. In Proc. of 18th IEEE Intern.
Conf. on Data Engineering IEEE. 49

[Yip, 2003] Yip, K. (2003). DB Seminar Series: Biclustering Methods for Microarray Data
Analysis. www.cs.wayne.edu/~shiyong/csc7710/assignments/bicluster.ppt. 46,
47

131

www.cs.wayne.edu/~shiyong/csc7710/assignments/bicluster.ppt


[Zitzler, 1999] Zitzler, E. (1999). Evolutionary Algorithms for Multiobjective Optimiza-
tion: Methods and Applications. Master’s thesis Swiss Federal Institute of Technology
Zurich. 40, 41

[Zitzler and Künzli, 2004] Zitzler, E. and Künzli, S. (2004). Indicator-based selection in
multiobjective search. In in Proc. 8th International Conference on Parallel Problem
Solving from Nature (PPSN VIII pp. 832–842, Springer. 42

[Zitzler et al., 2001] Zitzler, E., Laumanns, M. and Thiele, L. (2001). SPEA2: Improving
the Strength Pareto Evolutionary Algorithm. Technical report Computer Engineering
and Networks Laboratory - Swiss Federal Institute of Technology (ETH) Zurich. 42

132



Part VI

Appendices

133





Appendix A

Details of the biclusters presented for
the Yeast dataset

The rows and columns that compose the biclusters exposed in subsection 4.2.2 are detailed
in this appendix. The numbering of the rows and columns starts at 1.

Bicluster Genes Conditions
19 639, 678, 771, 1387, 2806 4, 6, 9, 10, 11, 12, 13, 14, 15, 16,

17
250 453, 1517, 1532, 1560, 1579, 1608,

1702, 1904, 1908, 1952, 2054, 2177
1, 4, 6, 7, 9, 10, 11, 13, 14, 15, 16,
17

251 407, 483, 564, 574, 629, 639, 741,
803, 805, 1107, 1204, 1226, 1387,
1408, 1435, 1600, 1673, 1750,
2026, 2573, 2649, 2662, 2717,
2724, 2806, 2830

1, 4, 6, 8, 9, 10, 11, 13, 15, 16, 17

385 657, 919, 949, 958, 972, 980, 1134,
2289, 2325, 2389, 2495, 2533,
2566, 2587, 2608

1, 6, 8, 9, 10, 11, 13, 14, 15, 16,
17

394 483, 564, 2662, 2724, 2814 1, 4, 5, 6, 8, 9, 10, 11, 13, 15, 16,
17

419 678, 975, 1848, 1862, 2097 1, 2, 4, 6, 8, 9, 10, 11, 13, 14, 15,
16, 17

439 611, 1147, 2325, 2365, 2587 1, 2, 4, 6, 7, 8, 9, 10, 11, 13, 14,
15, 16

453 123, 196, 295, 1649, 1750 1, 2, 4, 6, 9, 10, 11, 13, 14, 15, 16,
17

462 1560, 1608, 1625, 2109, 2455 1, 2, 6, 8, 9, 10, 11, 13, 14, 15, 16,
17

485 1137, 1538, 2042, 2144, 2427 1, 4, 6, 9, 10, 11, 13, 15, 16
497 678, 1643, 1690, 1788, 2023, 2097 1, 4, 5, 6, 9, 10, 11, 13, 15, 16, 17
526 314, 483, 1226, 1408, 2662 1, 3, 6, 8, 9, 10, 11, 13, 14, 15, 16,

17
540 92, 975, 1901, 1952, 2175 1, 3, 4, 6, 7, 9, 10, 11, 13, 14, 15,

16, 17
547 230, 472, 483, 564, 2814 1, 2, 5, 6, 7, 9, 10, 11, 13, 14, 16,

17
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553 522, 574, 600, 657, 696, 735,
766, 1193, 1204, 1860, 2325, 2365,
2389, 2533, 2587, 2608

1, 3, 4, 6, 7, 9, 10, 11, 13, 14, 15,
16, 17
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Appendix B

Details of the biclusters presented for
the Human dataset

The rows and columns that compose the biclusters exposed in subsection 4.3.2 are detailed
in this appendix. The numbering of the rows and columns starts at 1.

Bicluster Genes Conditions
36 2583, 2996, 3044, 3046, 3133 3, 4, 5, 7, 9, 10, 11, 14, 15, 18, 24,

33, 34, 36, 37, 38, 41, 42, 43, 46,
58, 59, 61, 62, 64, 65, 66, 68, 69,
71, 74, 75, 76, 77, 78, 79, 80, 86,
87, 88, 89, 90, 91, 93, 95

51 2665, 2722, 2930, 2973, 2990 2, 4, 12, 14, 17, 18, 20, 21, 23, 24,
25, 26, 28, 31, 32, 34, 35, 37, 38,
39, 40, 41, 42, 43, 45, 49, 50, 51,
53, 54, 58, 65, 69, 74, 76, 81, 83,
85, 88, 96

53 136, 1406, 1966, 2889, 3321 5, 6, 9, 10, 13, 15, 19, 26, 32, 35,
36, 41, 42, 43, 45, 46, 49, 52, 60,
62, 66, 68, 71, 72, 77, 83, 85, 96

121 1175, 2698, 3000, 3242, 3637 3, 6, 8, 9, 14, 16, 18, 19, 20, 22,
23, 24, 25, 26, 36, 37, 38, 40, 43,
48, 49, 53, 57, 59, 62, 64, 65, 66,
67, 69, 71, 72, 73, 76, 77, 78, 79,
81, 85, 87, 88, 89, 90, 91, 93

130 212, 1427, 1494, 1569, 1609, 1656,
1659, 1669, 2064, 2177, 2339,
2451, 2485, 2546, 2569, 2583,
2592, 2610, 2632, 2640, 2645,
2654, 2710, 2732, 2771, 2857,
2890, 2938, 2951, 2971, 2975,
3063, 3066, 3140, 3193, 3312,
3468, 3632

6, 7, 10, 11, 14, 16, 18, 19, 24, 37,
42, 49, 66, 68, 69, 76, 77, 78

144 2572, 2573, 2723, 2994, 3167 2, 4, 6, 9, 10, 11, 14, 17, 18, 19,
20, 21, 22, 31, 35, 38, 39, 42, 43,
45, 49, 50, 52, 54, 56, 58, 61, 65,
67, 69, 72, 74, 75, 77, 80, 84, 85,
89, 92
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196 1520, 2577, 2581, 2583, 2946,
2982, 2996, 3000, 3001, 3039,
3041, 3044, 3060, 3061, 3067,
3068, 3133, 3151, 3164, 3168,
3210, 3217, 3250, 3309, 3628,
3637, 3667, 3673, 3956

4, 5, 7, 8, 9, 10, 13, 14, 15, 18, 22,
25, 26, 28, 32, 33, 36, 37, 38, 42,
43, 44, 45, 47, 51, 67, 68, 71, 72,
75, 76, 77, 78, 79, 81, 83, 84, 85,
87, 88, 89, 90, 91, 96

217 159, 2577, 2612, 2990, 3018 1, 4, 5, 6, 7, 8, 9, 10, 14, 18, 19,
22, 23, 24, 26, 31, 33, 34, 37, 40,
41, 42, 44, 45, 46, 49, 50, 53, 58,
59, 62, 64, 65, 66, 68, 69, 72, 73,
74, 75, 76, 77, 78, 79, 80, 81, 83,
84, 85, 86, 89

237 2665, 2722, 2723, 2872, 2960 1, 2, 3, 5, 7, 10, 19, 20, 21, 24, 25,
26, 32, 38, 40, 42, 43, 45, 46, 49,
58, 60, 61, 62, 65, 68, 70, 71, 75,
76, 77, 79, 80, 81, 84, 85, 89, 90,
91, 93, 96

252 2583, 2609, 2698, 2846, 2872,
2996, 3000, 3046, 3133, 3143,
3637, 3954, 3984

3, 5, 7, 9, 10, 14, 15, 18, 19, 21,
22, 24, 27, 34, 35, 36, 37, 38, 39,
42, 43, 46, 49, 53, 59, 74, 75, 76,
77, 78, 79, 80, 87, 89, 96

292 2553, 3041, 3187, 3223, 3293 4, 5, 6, 7, 8, 9, 14, 15, 16, 22, 24,
25, 28, 33, 34, 38, 43, 45, 48, 49,
54, 60, 67, 68, 74, 75, 84, 85, 87,
90, 92

314 135, 2982, 2996, 3041, 3133 4, 6, 7, 8, 9, 11, 15, 16, 17, 18, 19,
25, 26, 28, 34, 36, 37, 38, 40, 43,
51, 52, 53, 57, 59, 65, 66, 67, 68,
74, 76, 77, 78, 80, 82, 84, 85, 87,
89, 90, 91, 92, 96

318 206, 2996, 3651, 3667, 3953 5, 7, 8, 10, 11, 16, 17, 18, 22, 26,
28, 33, 36, 37, 38, 40, 41, 43, 46,
49, 52, 68, 76, 79, 81, 85, 89, 96

331 2612, 2621, 2665, 2722, 2723 7, 13, 14, 17, 21, 22, 24, 26, 29,
30, 31, 32, 34, 37, 38, 40, 42, 43,
45, 50, 51, 53, 55, 65, 81, 85, 88,
89, 90, 93, 95

363 456, 2377, 2565, 2645, 3193 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 38,
39, 42, 43, 45, 48, 49, 50, 55, 58,
64, 65, 66, 68, 71, 74, 78, 95

412 212, 2553, 2573, 3168, 3637 3, 4, 5, 6, 10, 11, 15, 17, 18, 19,
21, 22, 24, 28, 34, 35, 38, 42, 43,
45, 50, 54, 62, 65, 66, 73, 76, 77,
90, 92, 96

436 2473, 2640, 2641, 2982, 3133 4, 5, 6, 7, 9, 10, 11, 14, 15, 20, 24,
34, 36, 39, 46, 49, 50, 51, 53, 54,
57, 58, 62, 66, 71, 72, 74, 75, 76,
77, 79, 84, 85, 88, 89, 90, 91, 93,
95
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448 2577, 2722, 2990, 3018, 3157 4, 5, 7, 8, 9, 13, 14, 18, 19, 22, 23,
25, 26, 31, 32, 33, 34, 35, 37, 40,
41, 42, 46, 48, 50, 64, 67, 68, 69,
72, 73, 83, 84

465 2573, 2648, 3041, 3193, 3250 1, 2, 4, 5, 6, 7, 8, 9, 13, 14, 15, 17,
18, 19, 22, 30, 31, 36, 37, 38, 39,
40, 42, 43, 44, 49, 50, 53, 54, 58,
60, 61, 62, 72, 73, 76, 77, 78, 79,
81, 87, 88, 90, 92, 95

480 2866, 2882, 2883, 2884, 3045 7, 8, 9, 10, 11, 14, 15, 16, 18, 19,
20, 21, 22, 24, 26, 29, 31, 34, 35,
36, 37, 38, 42, 43, 45, 46, 48, 54,
57, 58, 59, 60, 61, 65, 69, 71, 72,
75, 76, 81, 83, 88, 89, 95, 96

492 1175, 2996, 3040, 3041, 3046 4, 5, 6, 12, 15, 17, 18, 19, 22, 25,
30, 33, 35, 37, 38, 42, 43, 46, 53,
60, 61, 64, 65, 71, 72, 74, 76, 77,
78, 81, 90, 93, 96

519 134, 666, 1054, 2358, 2359 7, 8, 9, 10, 11, 14, 20, 24, 25, 31,
32, 35, 36, 37, 38, 42, 44, 45, 49,
50, 54, 60, 63, 65, 66, 69, 71, 73,
79, 80, 89

553 1175, 2448, 2971, 3231, 3250 3, 9, 10, 18, 31, 32, 33, 35, 36, 37,
42, 43, 54, 58, 62, 65, 68, 71, 73,
74, 75, 76, 77, 78, 80, 81, 83, 89,
95, 96

576 2698, 2982, 3046, 3133, 3167 3, 5, 7, 9, 10, 13, 19, 25, 32, 36,
42, 45, 46, 48, 49, 61, 63, 66, 68,
69, 71, 74, 75, 76, 77, 80, 81, 91,
92
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