

RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Poster: Behavioral Model-Based Testing of Variability Intensive Systems

Devroey, Xavier

Publication date: 2015

Document Version Peer reviewed version

Link to publication

Citation for pulished version (HARVARD): Devroey, X 2015, 'Poster: Behavioral Módel-Based Testing of Variability Intensive Systems', Journée des Doctorants en Informatique 2015, Namur, Belgium, 26/07/14 - 26/07/14.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Behavioral Model-Based Testing of Variability Intensive Systems Xavier Devroey, Gilles Perrouin, Pierre-Yves Schobbens, Patrick Heymans • Focus on Variability-Intensive Behavioural Models (software product lines, plugin-based systems, etc.) Formal Foundations (Featured Transition Systems) suitable for Analysis and Checking Combining Model-checking and Test-case Generation techniques in VIBeS Framework Cover various Testing Activities (test-case seleciton, prioritization, mutation assessment, etc.) **Test Model Model-Based Testing Process**

- 1. Models definition (Java DSL)
- 2. Selection criteria definition

- Maximizing
 - Structural coverage (state, transition, paths, ...) [2,3] - Usage coverage (based on a usage model) [4]
 - Dissimilarity measure (based on distance def.)
 - Number of mutants killed by the tests [1]
- Minimizing
 - Number of test cases in the test set [3]
 - Number of valid configurations needed by the test set [3]
- 3. Concrete mapping definition (TBD)
- Under Test 4. Tests results analysis (TBD)

Selection Criteria Def.

Structural coverage

FeaturedTransitionSystem fts = new CPTerminalFts().getTransitionSystem();

SolverFacade solver = new Sat4JSolverFacade(dimacsFile);

TestSet set = allStatesSelection(fts, solver);

Models Def.

Featured Transition System Java DSL

public class CPTerminalFts extends FeaturedTransitionSystemDefinition { @Override protected void define() { initial("i"); from("i").action("insert_card") .to("CardIn"); from("cardIn").action("init_schema") .fexpr("dd || cr").to("App_init");

Variability Intensive system **Behavioural teSting Framework**

}}

• • •

Feature Model

Boolean Conjunctive Normal Form (CNF) in DIMACS format used as input to SAT and BDD solvers

Model Based Mutation Testing

- Goals: Quality Assessment (QA)
- Tester: QA of a set of abstract test cases
- Researcher: QA of a test case selection method
- Mutant = Test Model with injected fault(s)
- Result of the application of a mutation operator
- Act. Exchange, State Missing, Trans. Dest. Exchange, etc.
- Execution of the test cases on the mutants

Number of mutants detected Mutation score =

Dissimilarity measure maximization

 \bullet \bullet \bullet set = dissimilarLocalMaximumDistance(fts, solver, nbrTestCases, time);

• • •

set = dissimilarGlobalMaximumDistance(fts, solver, nbrTestCases, time);

Mutant Execution using Featured Mutants Model

Future Work

- Higher order and equivalent mutants detect./gen.
- Test cases generation using counter examples in ProVeLines FTS model checker
- Abstract test cases concretization

Empirical assessment on an industrial case study

Bibliography

- [1] Devroey, X., et al. (2014). A Variability Perspective of Mutation Analysis. In Vision & Challenges @ FSE'14. Hong Kong: ACM.
- [2] Devroey, X., et al. (2014). Abstract Test Case Generation for Behavioural Testing of Software Product Lines. In SPLat @ SPLC'15. Florence, Italy: ACM.
- [3] Devroey, X., et al. (2014). Coverage Criteria for Behavioural Testing of Software Product **Lines**. In *ISoLA'14*. Corfu, Greece: Springer.
- [4] Devroey, X., et al. (2014). Towards Statistical Prioritization for Software Product Lines **Testing**. In *VaMoS'14*. Nice, France: ACM.
- [5] Devroey, X., et al. (2012). A Vision for Behavioural Model-Driven Validation of Software **Product Lines**. In *ISoLA'12*. Crete, Greece: Springer.

Contact: xavier.devroey@unamur.be

https://projects.info.unamur.be/ vibes/

