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Une méthode de région de confiance pour l’optimisation sans
dérivées avec des contraintes et complexité d’évaluation dans le

pire cas d’algorithmes non-monotones du type gradient pour
l’optimisation sans contraintes

par Phillipe Rodrigues Sampaio

Résumé: Ce travail est divisé en deux parties liées à deux sujets de recherche
qui ont reçus une attention croissante de la communauté d’optimisation au
cours des dernières années. La première partie est consacrée à la concep-
tion et la mise en œuvre d’une nouvelle méthode de région de confiance pour
l’optimisation sans dérivées avec des contraintes. Cette méthode est basée sur
des modèles d’interpolation et utilise une procédure d’auto-correction de la
géométrie afin de garantir que la géométrie de l’ensemble d’interpolation ne
diffère pas trop de l’idéal. Des résultats numériques de la méthode proposée
sont également présentés. La deuxième partie analyse le pire cas de la com-
plexité d’évaluation de la classe d’algorithmes non monotones du type gradient
pour des problèmes non convexes, lisses et sans contraintes. Nous montrons
que cette classe de méthodes nécessite au plus O(ε−2) évaluations de fonction
pour trouver un point avec la norme du gradient dessous d’un seuil ε > 0.

A trust-region method for constrained derivative-free optimization
and worst-case evaluation complexity of non-monotone

gradient-related algorithms for unconstrained optimization
by Phillipe Rodrigues Sampaio

Abstract: This work is divided into two parts related to two research topics
that have received increasing attention of the optimization community over the
past years. The first part is concerned with the design and implementation of
a new trust-region method for constrained derivative-free optimization. This
method is based on interpolation models and employs a self-correcting geometry
procedure in order to ensure that the geometry of the interpolation set does
not differ too much from the ideal one. Numerical results of the proposed
method are also presented. The second part analyzes the worst-case evaluation
complexity of the class of non-monotone gradient-related algorithms for smooth
nonconvex and unconstrained problems. We show that this class of methods
requires at most O(ε−2) function evaluations to find a point with the gradient
norm below a threshold ε > 0.
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Promoteur (Advisor): Prof. Ph. L. Toint





Acknowledgements

First and foremost, I am grateful to God for his close guidance throughout
my life, for giving me the strength and faith that it takes to keep moving
forward and for surprising me with so many undeserved blessings.

I am extremely grateful to my parents, Paulo César and Kátia, and my
brother, Jonathas, for their great love and unwavering support along every
step of this journey. Words are not enough to express my gratitude.

I want to thank my advisor, Philippe Toint, for his unrelenting support,
inspiration, friendship, patience and for having believed in me. I will be forever
indebted. I also thank him and his wife, Claire, for all the pleasant dinners and
enjoyable conversations that we had during these years.

I also want to express my great appreciation for the indispensable help
of the members of the jury. To Anne Lemâıtre for her wonderful assistance
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Chapter 1

Introduction

The scope of this thesis is composed of two different topics that have gained
the attention of the optimization community of late. The first part is centred on
derivative-free optimization, an important developing area with current rapid
growth that has applications in many different fields of science and engineering.
While a number of algorithms have been designed for unconstrained derivative-
free optimization problems, the range of possibilities for the constrained case
remains quite open. The second part of this work is concerned with the eval-
uation complexity analysis of algorithms for optimization. Although global
and local convergence results for several optimization methods have long been
known, the evaluation complexity of some of them has only recently been in-
vestigated. Here, we particularly address the worst-case evaluation complexity
of the class of non-monotone gradient-related algorithms for unconstrained op-
timization.

In the next sections, we briefly present our main contributions in the two
areas aforementioned and describe the organization of the thesis.

1.1 Scope and main contributions

1.1.1 Constrained derivative-free optimization

The fast-growing need for optimization methods that do not consider deriva-
tives in fields such as medicine, chemistry, engineering and many others, aroused
the optimization community’s interest to come up with new algorithms, un-
leashing the blossom of a new research field on optimization and hatching new
ideas for optimizing functions.

Most available algorithms in the domain of derivative-free optimization es-
sentially address the unconstrained case (as those proposed by Powell, 2002,
2006, 2008; Conn, Scheinberg and Toint, 1998; Scheinberg and Toint, 2010)
or the bound-constrained one (see Powell, 2009; Lewis and Torczon, 1999;
Gratton, Toint and Tröltzsch, 2011; Tröltzsch, 2011). Nevertheless, many al-
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2 Chapter 1. Introduction

gorithmic possibilities have not been considered as yet, either theoretically
or practically, for the constrained case. Among the methods developed for
problems with more general linear or nonlinear constraints, we may cite the
trust-region methods proposed by Powell (1994, 2014) and Colson (2004), and
the direct-search methods of Lewis and Torczon (2000, 2002, 2009), Audet and
Dennis (2004), Lucidi, Sciandrone and Tseng (2002) and Yu and Li (1981).

In this work, we consider a derivative-free adaptation of the trust-funnel
method presented by Gould and Toint (2010) for the solution of equality-
constrained nonlinear optimization problems. We describe the complete al-
gorithm and show its numerical results on a set of 29 small-scale equality-
constrained problems from the CUTEst collection by Gould, Orban and Toint
(2014). We then extend the original trust-funnel method to problems with both
equality and inequality constraints and where simple bounds are also consid-
ered. Finally, we exploit and incorporate techniques developed for derivative-
free optimization to obtain a final method that can also be used to solve prob-
lems with general nonlinear constraints without derivatives and we compare its
performance to other well-known algorithms on a larger set of problems.

1.1.2 Worst-case evaluation complexity

One way of measuring the complexity and performance of optimization
algorithms is investigating the number of function evaluations needed in the
worst case to reduce the norm of the gradient of the objective function below
a certain threshold ε.

The worst-case evaluation complexity of finding an approximate first-order
critical point using gradient-related non-monotone methods for smooth noncon-
vex and unconstrained problems is investigated. The analysis covers a practical
linesearch implementation of these popular methods, allowing for an unknown
number of evaluations of the objective function (and its gradient) per iteration.
It is shown that this class of methods shares the known complexity properties
of a simple steepest-descent scheme and that an approximate first-order critical
point can be computed in at most O(ε−2) function and gradient evaluations,
where ε > 0 is the user-defined accuracy threshold on the gradient norm.

1.2 Organization of the thesis

Chapter 2 gives the basic concepts in nonlinear optimization such as the
formulation of optimization problems and the characterization of solutions, in-
cluding optimality conditions. It also gives a brief overview of algorithms for
unconstrained and constrained optimization. In Chapter 3, we introduce the
reader to the field of derivative-free optimization and develop a framework that
will serve as the foundation of our algorithm. In Chapter 4, we describe our
trust-region method for constrained derivative-free optimization in detail. We
also address implementation issues of the proposed method and show some



1.3. Notation 3

numerical results from our experiments. In Chapter 5, we present our contri-
bution on worst-case evaluation complexity of first-order linesearch algorithms
for unconstrained optimization. Finally, Chapter 6 summarizes the highlights
of our work and discusses potential extensions.

1.3 Notation

Matrix: we represent matrices by upper case letters (A, B, ...).

Identity matrix: we represent the identity matrix of dimension n by In.

Diagonal matrix: given a n × n matrix A, we denote by diag(A) the
diagonal matrix of dimension n × n whose non-zero entries are equal to the
diagonal entries of A.

Vector: we represent vectors by lower case letters (a, b, x, y, ...). Given
any vector x, we denote its i-th component by [x]i.

Vector norm: unless otherwise specified, our norm ‖ · ‖ is the standard

Euclidean norm, where ‖x‖ def
=
√
xTx.

Vector products: given two vectors x ∈ IRn and y ∈ IRn, we denote their

Euclidean inner product by 〈x, y〉 def
= yTx.

Euclidian Ball: we let B(x; ∆) denote the closed Euclidian ball centred at
x, with radius ∆ > 0, i.e. B(x; ∆) = {y | ‖y − x‖ ≤ ∆}.

Cardinality: given any set A, |A| denotes the cardinality of A.

Polynomials space: we denote by Pdn the space of all polynomials of
degree at most d in IRn.

Subspace dimension: given any subspace S, we denote its dimension by
dim(S).

Positive definiteness: we use the notation M � 0 to indicate that a
matrix M is positive definite, i.e. that pTMp > 0 for all p 6= 0, and M � 0 to
indicate that a matrix M is positive semidefinite, i.e. that pTMp ≥ 0 for all
p 6= 0.

Gradient and Hessian: given a function f : IRn → IR, the gradient and
the Hessian of f at x ∈ IRn, when they exist, are denoted by∇f(x) and∇2f(x),
respectively.

Gradient and Hessian with respect to a variable: given a function
f : IRn1 × IRn2 → IR and (x, y) ∈ IRn1 × IRn2 , then ∇xf(x) and ∇xxf(x) are
the gradient and the Hessian of f with respect to the first variable x.

Jacobian: given a function f : IRn → IRm, the m × n Jacobian matrix of
f is denoted by J .

Sequences: we let {xk} denote a sequence of vectors xk ∈ IRn.
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Chapter 2

Fundamentals and
algorithms of nonlinear
optimization

The purpose of this chapter is to familiarize the reader with the basic con-
cepts of nonlinear optimization and some of the existing methods for solving
unconstrained and constrained problems.

2.1 Formulation of nonlinear optimization prob-
lems

Given a real function f , an optimization problem consists of choosing values
for the input variables from a defined domain that maximize or minimize f .
In the parlance of optimization, the function f is commonly called an objective
function, although in other fields it is also known as a loss function, a cost
function, an utility function or an energy functional. In this thesis, we consider
optimization problems as minimization problems, following the convention by
most of the modern literature in the field. However, any maximization problem
might be converted into a minimization one due to the equivalence max( f ) =
−min(−f ).

An optimization problem may fall into different categories depending on the
type of the functions and variables involved and whether there are constraints
or not on the variables of the problem. When there are no constraints, it is
called an unconstrained problem; otherwise, it is called a constrained problem.

Consider a function f : X → IR and a subset F ⊂ X . An optimization

5



6 Chapter 2. Fundamentals and algorithms of nonlinear optimization

problem may be expressed under the following general form:{
min
x

f(x)

s.t.: x ∈ F ,
(2.1.1)

where f is the objective function, F denotes the feasible set of the problem and
the points in F are called feasible points. When F = IRn, (2.1.1) is called an
unconstrained problem; otherwise, it is called a constrained problem. In the
latter case, the feasible set F may be written as

F = {x ∈ X | ci(x) = 0, i ∈ E , ci(x) ≤ 0, i ∈ I}, (2.1.2)

where E and I are two finite sets of indices, ci, i ∈ E , are the equality constraints
and ci, i ∈ I, are the inequality constraints.

2.2 Optimality conditions

A global minimizer or global solution for a optimization problem is a point
x∗ such that f(x∗) ≤ f(x) for all x ∈ F . Finding such a point might be quite
difficult in practice and sometimes unnecessary; such a task is the goal of a
sub-area called global optimization that has produced many deterministic and
stochastic methods to accomplish it. Due to practical reasons, optimizers are
often satisfied with local rather than global solutions. A local minimizer or
local solution for a optimization problem is a point x∗ such that f(x∗) ≤ f(x)
for all x ∈ N ∩F , where N is a neighborhood of x∗. In order to distinguish it
from the next definition, we call such a point a weak local minimizer . Finally,
we define a strict local minimizer as a point x∗ such that f(x∗) < f(x) for all
x ∈ N ∩ F with x 6= x∗. Notice that, in the case where F is convex and f is
convex over F , every local minimizer is also a global minimizer.

Instead of examining all the points neighboring a given point x∗ to find out
whether it is a local solution, we may use some theoretical results derived from
Taylor’s theorem to identify local minimizers when the functions are smooth.
First, we consider the unconstrained case F = IRn. The proofs of the following
theorems are readily found in most of the nonlinear programming textbooks,
such as those of Bertsekas (1999) and Nocedal and Wright (1999).

Theorem 2.2.1. (First-Order Necessary Conditions). If x∗ is a local min-
imizer and f is continuously differentiable in an open neighborhood of x∗,
then

∇f(x∗) = 0. (2.2.1)

When a point x∗ satisfies (2.2.1), it is called a first-order stationary point . In
numerical optimization, most of the algorithms are designed to find stationary
points, which might or might not be a local minimizer.
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The following theorem states necessary conditions for local optimality by
using information from second-order derivatives.

Theorem 2.2.2. (Second-Order Necessary Conditions). If x∗ is a local
minimizer and ∇2f exists and is continuous in an open neighborhood of
x∗, then

∇f(x∗) = 0 and ∇2f(x∗) � 0. (2.2.2)

We now give a sufficient condition for optimality that makes use of second-
order derivatives of the objective function.

Theorem 2.2.3. (Second-Order Suffient Conditions). Suppose that ∇2f
is continuous in an open neighborhood of x∗ and that ∇f(x∗) = 0 and
∇2f(x∗) � 0. Then x∗ is a strict local minimizer of f .

Note that the conditions in Theorem 2.2.3 are not necessary, that is, a point
x∗ may be a local minimizer without satisfying them.

As for constrained problems, we consider first the case where the feasible set
F is convex. At a local minimizer x∗, we expect that the first order variation
∇f(x∗)T d along a feasible direction d is non-negative. Due to the convexity of
F , feasible directions have the form d = x − x∗, where x ∈ F . The following
theorem is derived from that observation and also gives a sufficient condition
for attaining global minimization.

Theorem 2.2.4. (First-Order Necessary Conditions for Constrained Prob-
lems). If x∗ is a local minimizer of (2.1.1) and F is convex, then

∇f(x∗)T (x− x∗) ≥ 0, for all x ∈ F . (2.2.3)

In addition, if f is convex over F , then (2.2.3) is sufficient for x∗ to minimize
f over F .

In pursuance of establishing necessary optimality conditions for problems
with general constraints, we define the Lagrangian function for the problem
(2.1.1), where F is given by (2.1.2), as

L(x, λ, µ)
def
= f(x) +

∑
i∈E∪I

[µ]ici(x).



8 Chapter 2. Fundamentals and algorithms of nonlinear optimization

Moreover, we say that a point x is regular if the set of active constraint gra-
dients {∇ci(x), i ∈ A(x)}, where A(x) = E ∪ {i ∈ I | ci(x) = 0}, is linearly
independent.

We now are ready to state the first-order necessary conditions for optimality
in the general constrained case. Such conditions are widely known as the
Karush-Kuhn-Tucker conditions, or simply KKT conditions, and are often used
by many algorithms as their main stopping criteria.

Theorem 2.2.5. (Karush-Kuhn-Tucker Conditions). Suppose that x∗ is
a local minimizer of (2.1.1), that the functions f and ci are continuously
differentiable, and that x∗ is regular. Then there is a Lagrange multipliers
vector µ∗ such that the following conditions are satisfied at (x∗, µ∗)

∇xL(x∗, µ∗) = 0,
ci(x

∗) = 0, for all i ∈ E ,
ci(x

∗) ≤ 0, for all i ∈ I,
[µ]
∗
i ci(x

∗) = 0, for all i ∈ I,
[µ]
∗
i ≥ 0, for all i ∈ I.

(2.2.4)

When a point x∗ satisfies the KKT conditions (2.2.4), it is called a first-
order stationary point or a KKT point for the constrained problem (2.1.1).
In constrained optimization, the variables [x]i are called the primal variables,
while the variables [µ]i are called the dual variables.

The results of Theorem 2.2.5 still hold in cases other than x being regular.
There is a number of weaker conditions on the objective and constraint func-
tions called constraint qualifications that guarantee the existence of Lagrange
multipliers [µ]∗i once they hold at x∗. An introduction to the Lagrange mul-
tiplier theory, where other constraint qualifications are also presented, can be
found in Chapter 3 of the textbook by Bertsekas (1999).

2.3 Algorithms for unconstrained optimization

2.3.1 Linesearch methods

Linesearch methods are characterized by iterates of the type

xk+1 = xk + αkdk.

First, a search direction dk for the current point xk is computed; then a
steplength αk is chosen in the hope of reducing the objective function sig-
nificantly.

The directions dk are often specified in the form

dk = −B−1
k ∇f(xk).
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A direction d is said to be a descent direction for a point x if 〈∇f(x), d〉 < 0.
Requiring dk to be a descent direction guarantees that f can be reduced along
dk for a sufficiently small choice of αk, since we have

f(xk + αdk) = f(xk) + αk〈∇f(xk), dk〉+O(α2).

When Bk = In, the direction dk becomes simply the negative of the gradient
of f at xk. Such a direction, also known as the Cauchy direction, is the one
computed by the steepest descent method , originally proposed by Cauchy (1847)
for the solution of systems of equations. Although it does not require many
operations and is rather simple, its rate of convergence is only linear and it can
be quite slow in many occasions, such as in poorly scaled problems.

When the Hessian ∇2f(xk) exists and ∇2f(xk) � 0, we can define Bk =
∇2f(xk). In this case, dk = −∇2f(xk)−1∇f(xk) is a descent direction, for we
have

〈dk,∇f(xk)〉 = −〈dk,∇2f(xk)dk〉 ≤ −λk‖dk‖2,
where λk > 0 is the smallest eigenvalue of ∇2f(xk). Such a direction is the
one computed by Newton’s method. Due to the use of second-order deriva-
tives, Newton’s method can converge quadratically, which usually makes it
much faster than the steepest descent method. However, differently from the
steepest descent method (see Curry, 1944), Newton’s method is only locally
convergent , which means that the starting point x0 must be close enough to
x∗ in order to achieve convergence. This happens because the steps computed
away from the solution x∗ with ∇2f(x∗) � 0 might not even be descent direc-
tions, since the Hessian matrix∇2f(xk) may not always be positive definite. To
obtain global convergence, strategies such as modifying the Hessians ∇2f(xk)
for the computation of the directions can be used. In Figure 2.1, we show
an example where the directions computed by Newton’s method without any
globalization strategy are not always descent directions, preventing the method
to converge to the solution x∗, whereas the steepest descent method converges
to the solution successfully.

Other approaches choose Bk as an approximation of ∇2f(xk) rather than
the exact Hessian, which avoids its explicit computation at every iteration.
Such methods are called quasi-Newton methods, or secant methods, and were
first developed by the physicist Davidon in the mid 1950s at the Argonne
National Laboratory. Although his paper on this method was not accepted for
publication at that time, being published only in 1991 in the SIAM Journal
on Optimization (see Davidon, 1991), it became a turning point in numerical
optimization and gave birth to a wide range of new algorithms.

In quasi-Newton methods, the matrices Bk are updated at every iteration by
using a predefined formula that takes into account the knowledge acquired from
past iterations. This class of methods is an attractive alternative for large-scale
optimization, for instance, where the problems have large number of variables
and expensive computations are avoided as much as possible. Quasi-Newton
methods usually have superlinear rate of convergence and thus can converge
rapidly to a solution x∗, albeit no use of second-order derivatives is made.
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x0

x
∗

Newton

Steepest descent

Figure 2.1: Trajectories of the iterates from Newton’s method (red line) without
any globalization strategy and the steepest descent method (green line) in
a 2-dimensional problem. Since Newton’s directions are not always descent
directions, the method fails to converge to the solution x∗, while the steepest
descent method achieves convergence without problems.

In Figure 2.2, an example is shown with the paths followed by Newton’s
method and the steepest descent method to reach the solution x∗ from an initial
guess x0 using small step sizes. Notice that Newton’s method goes through a
shorter trajectory by exploiting curvature information of the function.

Once the search direction dk has been computed, one has to choose the
length of the step along dk. As it was mentioned above, the steplength αk is
chosen so that the reduction in f is substantial and drives the method towards
convergence. Since asking that f(xk+αkdk) < f(xk) is not enough to guarantee
convergence to a minimizer, a sufficient decrease condition is necessary for this
purpose. Among the conditions that ensure that αk will provoke considerable
reduction in f along dk, we can cite two that are commonly employed: the
Wolfe’s conditions and the Goldstein’s conditions.

Wolfe’s conditions are expressed by the following inequalities

f(xk + αkdk) ≤ f(xk) + c1αk〈∇f(xk), dk〉, (2.3.1a)

〈∇f(xk + αkdk), dk〉 ≥ c2〈∇f(xk), dk〉, (2.3.1b)

where 0 < c1 < c2 < 1. The inequality (2.3.1a) is a popular sufficient decrease
condition known as the Armijo’s condition. However, sufficient decrease condi-
tions alone are not enough to ensure a reasonable progress because very short
steps can be taken. To avoid this scenario, the curvature condition (2.3.1b) is
also demanded.

Goldstein’s conditions are quite similar to (2.3.1), differing only at the sec-
ond inequality. More formally, they are expressed by

f(xk + αkdk) ≤ f(xk) + c αk〈∇f(xk), dk〉, (2.3.2a)

f(xk + αkdk) ≥ f(xk) + (1− c)αk〈∇f(xk), dk〉, (2.3.2b)
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x0

x
∗

Newton Steepest descent

Figure 2.2: Trajectories of the iterates from Newton’s method (red line) and
the steepest descent method (green line) in a 2-dimensional optimization prob-
lem. As opposed to the latter, Newton’s method uses curvature information to
achieve convergence more rapidly.

where 0 < c < 1/2.
Another alternative is to combine a sufficient decrease condition, such as the

Armijo’s condition, with a backtracking linesearch to ensure that the function is
sufficiently reduced along the direction dk. In this case, we obtain the algorithm
described below.

Algorithm 2.3.1: Backtracking linesearch.

Step 0: Initialization. Choose ᾱ > 0, δ ∈ (0, 1) and c ∈ (0, 1).

Set α = ᾱ.

Step 1: Repeat until f(xk + αdk) ≤ f(xk) + c α〈∇f(xk), dk〉
α← δα.

Step 2: Return αk = α.

“Non-monotone” generalizations of these algorithms, where the monotonic-
ity property is abandoned, are also possible (see Grippo, Lampariello and Lu-
cidi, 1986, 1989, and Toint, 1996). In those methods, we impose that the
function value of each new iterate satisfies the Armijo’s condition with respect
to the maximum value of a prefixed number of previous iterates. The resulting
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non-monotone backtracking linesearch is stated as the Algorithm 2.3.2 in what
follows.

Algorithm 2.3.2: Non-monotone backtracking linesearch.

Step 0: Initialization. Choose M ≥ 0, ᾱ > 0, δ ∈ (0, 1) and c ∈ (0, 1).

Set α = ᾱ.

Step 1: Repeat until f(xk + αdk) ≤ max
0≤j≤M

[f(xk−j)] + c α〈∇f(xk), dk〉

α← δα.

Step 2: Return αk = α.

2.3.2 Trust-region methods

Trust-region methods are a class of iterative methods relatively new when
compared to linesearch methods; they date back to 1944, when Kenneth Lev-
enberg proposed a method for nonlinear equations F (x) = 0 (see Levenberg,
1944), where F : IRn → IRm. In Levenberg’s method, the step is calculated as

dk = −(J(xk)TJ(xk) + λkIn)−1J(xk)TF (xk), (2.3.3)

where J(xk) is the Jacobian matrix of F at xk and λk ≥ 0 is a damping pa-
rameter introduced to overcome the ill condition of J(xk), being adjusted at
each iteration. This parameter can be viewed as a means of choosing which
type of method is more appropriate for the iteration depending on the progress
on reducing ‖F (x)‖: if λ is large, the term J(xk)TJ(xk) becomes negligible
and the direction tends to the steepest descent; if λ is small, it tends to New-
ton’s direction where the second-order term is neglected, as in Gauss-Newton
methods.

Curiously, the same method was developed independently by Morrison
(1960) in the Space Technology Laboratories (STL), California, in a work where
the trajectory of a missile is estimated by nonlinear least-squares. With appli-
cation to STL programs for lunar and interplanetary flights as well as Earth
satellite tracking, his subroutine was proposed in a paper published in a seminar
on tracking programs and orbit determination sponsored by the Jet Propulsion
Laboratory of the California Institute of Technology.

The method was later reprised by the statistician Donald Marquardt in
1963 (see Marquardt, 1963), when he was working at DuPont, an American
chemical company. Marquardt realized that for large λk, when the algorithm
approaches the steepest descent method, we can still benefit from the Hessian
approximation matrix J(xk)TJ(xk) by using it to scale the gradient, thereby
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implying on larger steps when the gradient is small. Marquardt’s suggestion
for the direction dk is given by

dk = −(J(xk)TJ(xk) + λk diag(J(xk)TJ(xk))−1J(xk)TF (xk). (2.3.4)

The Levenberg-Morrison-Marquardt method has the property that, for some
scalar ∆k related to the damping parameter λk, the vector dk solves the fol-
lowing problem {

min
d

‖F (xk) + J(xk)d‖
s.t.: ‖d‖ ≤ ∆k.

(2.3.5)

Because of the constraint in (2.3.5), it can be viewed as a trust-region method.
As opposed to linesearch methods, where a direction is computed followed

by the choice of the steplength, trust-region methods first choose the maximum
step size ∆k and then compute a new step dk. The direction dk is calculated

through the use of an approximation model mk(xk + d) in Bk
def
= B(xk; ∆k);

usually, a quadratic model is employed. At each iteration, the algorithm solves
the trust-region problem {

min
d

mk(xk + d)

s.t.: ‖d‖ ≤ ∆k,
(2.3.6)

where
mk(xk + d)

def
= f(xk) + 〈∇f(xk), dk〉+ 〈d,Bkd〉,

Bk is a n × n symmetric matrix that approximates the Hessian ∇2f(xk) and
∆k > 0 is the trust region radius that defines the region where the model mk

can be “trusted”.
As in the linesearch methods, different choices of Bk produce different di-

rections dk. When Bk = In, the direction dk is the negative of the gradient
limited by the trust region radius ∆k, i.e.

dk = −∆k
∇f(xk)

‖∇f(xk)‖
.

When Bk � 0 and ‖B−1
k ∇f(xk)‖ ≤ ∆k, the solution to (2.3.6) is given by

dk = −B−1
k ∇f(xk). In this case, the Newton and quasi-Newton directions are

the same as those discussed in the previous section. In other cases, however,
the solution to the subproblem (2.3.6) is not direct and algorithms such as
the one proposed by Moré and Sorensen (1983) and the Truncated Conjugate
Gradient method can be used.

After a trial step has been calculated, the algorithm proceeds by verifying
whether it produces a sufficient decrease of f . This is made by analyzing the
ratio of the actual reduction over the predicted reduction given by

ρ =
f(xk)− f(xk + dk)

mk(xk)−mk(xk + dk)
. (2.3.7)
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If ρ approaches 1, it means that the model mk is a good approximation to f in
Bk; in this case, the iteration is called a successful iteration and the trust region
radius may be increased. On the other hand, if ρ is very small or even negative,
we conclude that mk does not approximate f properly in Bk; those iterations
are called unsuccessful iterations and have the trust region radius decreased by
some factor. If ρ is much bigger than 1, the decrease in the objective function
was larger than expected, which means that the model is a poor representation
of the design space. In this case, however, the increase in the trust region radius
is justified as one obtained more reduction than predicted.

To put the discussion above in a more formal description, we present a basic
trust-region method in what follows.

Algorithm 2.3.3: Basic trust-region method (BTR).

Step 0: Initialization. An initial point x0 and an initial trust region radius
∆0 are given as well as the constants

0 < γ1 ≤ γ2 < 1 and 0 < η1 ≤ η2 < 1.

Compute f(x0) and set k = 0.

Step 1: Model definition. Define a model mk in Bk.

Step 2: Step calculation. Compute a step dk that “sufficiently reduces the
model” mk and such that xk + dk ∈ Bk.

Step 3: Acceptance of the trial point. Compute f(xk + dk) and define
ρk as in (2.3.7). If ρ ≥ η1, then define xk+1 = xk + dk; otherwise, define
xk+1 = xk.

Step 4: Trust-region radius update. Set

∆k+1 =

 [∆k,∞) if ρk ≥ η2,
[γ2∆k,∆k] if ρk ∈ [η1, η2) ,
[γ1∆k, γ2∆k] if ρk < η1.

(2.3.8)

Increment k by 1 and go to Step 1.

For a thorough analysis of trust-region methods, the reader is refereed to
the textbook of Conn, Gould and Toint (2000).

2.3.3 Conjugate gradient methods

The conjugate gradient (CG) method was originally developed by Hestenes
and Stiefel (1952) as an algorithm for solving systems of linear equations

Ax = b, (2.3.9)
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where A is a symmetric positive definite matrix. It can be also applied in
optimization for solving unconstrained problems where the objective function
is quadratic with its Hessian being symmetric positive definite. In other words,
it may be used to solve the problem{

min
x

f(x)
def
= 〈b, x〉+ 〈x,Ax〉

s.t.: x ∈ IRn.
(2.3.10)

Since ∇f(x) = Ax − b, requiring ∇f(x) = 0 is equivalent to solve a linear
system as in (2.3.9).

The CG method is an iterative algorithm that computes directions holding
a conjugacy property with respect the Hessian matrix. Given a set of nonzero
vectors {d0, d1, . . . , dp}, we say that these vectors are conjugate with respect
to the symmetric positive definite matrix A if

〈di, Adj〉 = 0, for all i 6= j. (2.3.11)

It can be proven that, with only n of such vectors, it is possible to find the
solution x∗ to the problem (2.3.10) in at most n steps (see Theorem 5.1 in
Nocedal and Wright, 1999, for instance). However, computing an entire set of
conjugate directions might be very expensive and thus, for large-scale problems,
it turns out to be a bad idea. The CG method provides a way of generating
these directions without keeping the entire conjugate directions set by only
using the gradient and the direction computed at the last iteration.

Let x0 be a initial guess to (2.3.10) and define the residual as

rk
def
= Axk − b.

It is reasonable to take the negative of the gradient of f at x0 as the first
direction, as the steepest descent method would do. Thus, we set

d0 = −r0 = b−Ax0.

If the user does not have any information about the solution, the zero vector
x0 = 0 can be used.

Consider now the iteration k and suppose that the directions {d0, . . . , dk−1}
are conjugate with respect to A. We shall try to find a direction dk to compute
xk+1. The negative residual −rk may be used again, but we need dk to be
conjugate to all the previous directions. By defining the direction dk as a linear
combination of the steepest descent direction −rk and the previous direction
dk−1 and imposing the conjugacy property between dk and dk−1, we can obtain
a set of conjugate directions {d0, d1, . . . , dk−1, dk} (see Theorem 5.3 in Nocedal
and Wright, 1999). In other words, the direction that we seek is expressed by

dk = −rk + βk dk−1, (2.3.12)
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where βk is a coefficient appropriately chosen to make the directions dk and
dk−1 conjugate. By pre-multiplying (2.3.12) by dTk−1A, we obtain

〈dk−1, Adk〉 = −〈dk−1, Ark〉+ βk 〈dk−1, Adk−1〉. (2.3.13)

By imposing the condition 〈dk−1, Adk〉 = 0, we have

βk =
〈dk−1, Ark〉
〈dk−1, Adk−1〉

. (2.3.14)

As it can be seen, the CG method only needs the current gradient −rk and the
previous direction dk−1 at each iteration, which can lead to enormous savings
of calculations and memory for large-scale problems.

Once the direction dk has been computed, the steplength αk is calculated
as the exact minimizer of f along xk+αdk. Since f is quadratic, the expression
for αk is easily obtained by

αk = − 〈rk, dk〉
〈dk, Adk〉

. (2.3.15)

By using (2.3.12) and the orthogonality of the gradient with respect to all
the previous directions (see Theorem 5.2 in Nocedal and Wright, 1999), i.e,

〈rk, di〉 = 0, for all i = 0, . . . , k − 1,

we may replace (2.3.15) by

αk =
〈rk, rk〉
〈dk, Adk〉

. (2.3.16)

If we also use the fact that αkAdk = dk+1 − dk, then βk+1 may be written as

βk+1 =
〈rk+1, rk+1〉
〈rk, rk〉

. (2.3.17)

The complete CG method is stated here as the Algorithm 2.3.4.

Algorithm 2.3.4: Conjugate gradient method.

Initialization. Choose an initial point x0. Set r0 = Ax0 − b, d0 = −r0 and
k = 0.
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Repeat until rk 6= 0

αk ←
〈rk, rk〉
〈dk, Adk〉

; (2.3.18a)

xk+1 ← xk + αkdk; (2.3.18b)

rk+1 ← rk + αk Adk; (2.3.18c)

βk+1 ←
〈rk+1, rk+1〉
〈rk, rk〉

; (2.3.18d)

dk+1 ← −rk+1 + βk+1dk; (2.3.18e)

k ← k + 1. (2.3.18f)

In Figure 2.3, a 2-dimensional example is shown with the paths followed by
the CG method and the steepest descent method to reach the solution x∗ from
an initial guess x0. Notice that the CG method takes only 2 iterations to find
the solution, as at most n iterations are necessary for this method to converge
for convex quadratics.

x0

x
∗

Steepest descent

CG

Figure 2.3: Trajectories of the iterates from the CG method (red line) and the
steepest descent method (green line) in a 2-dimensional optimization problem.
As expected, the CG method takes no more than 2 iterations to converge.

The rate of convergence of the method can be stated in terms of the eigen-
values of the Hessian matrix A, as it is shown in the next theorem (proof in
Theorem 5.1.6, Conn et al., 2000).
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Theorem 2.3.1. If A has ` distinct eigenvalues, the conjugate gradient
Algorithm 2.3.4 will terminate with xj = x∗ for some j ≤ `.

In addition to the eigenvalues of the matrix A, its condition number κ(A) =
‖A‖ ‖A−1‖ also plays an important role in the convergence of the method, as
the theorem below shows (proof in Theorem 5.1.7, Conn et al., 2000).

Theorem 2.3.2. The sequence {xk} of iterates generated by the Algorithm
2.3.4 satisfies the inequality

‖xk+1 − x∗‖A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k
‖x0 − x∗‖A. (2.3.19)

We will see in the next subsection that the Theorems 2.3.1 and 2.3.2 are
very useful when one aims to accelerate the convergence of CG methods.

2.3.4 Preconditioned CG methods

The rate of convergence of CG methods can be improved by means of pre-
conditioning of the Hessian matrix A. This is done by choosing an invertible
matrix R and making a change of variables as

x̄ = Rx.

The resulting preconditioned problem is given by

min
x̄

f̄(x̄)
def
= 〈b̄, x̄〉+ 〈x̄, Āx̄〉 (2.3.20)

where
H̄ = R−THR−1 and b̄ = R−T b.

The intention is to chooseR such that the eigenvalues of the matrixR−THR−1

are clustered and/or its condition number is much smaller than that of H and
ideally close to one. The motivation behind this is in the Theorems 2.3.1 and
2.3.2.

Fortunately, it is not necessary to carry out computations involving H̄ and
c̄. It is possible to derive a method where only H and c participate in the
operations and we still (implicitly) use the preconditioning matrix R. For such
purpose, we define the preconditioner M = RTR. Note that the eigenvalues of
R−THR−1 are the same of those of M−1H, which implies that we can affect
the eigenvalues of H̄ by directly working with the preconditioner M instead
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of R. After a change of variables, the preconditioned CG method can then be
described as follows.

Algorithm 2.3.5: Preconditioned CG method.

Initialization. An initial point x0 and preconditioner M . Set r0 = Ax0 − b
and let y0 = M−1r0. Set d0 = −y0 and k = 0.

Repeat until rk 6= 0

αk ←
〈rk, yk〉
〈dk, Adk〉

; (2.3.21a)

xk+1 ← xk + αkdk; (2.3.21b)

rk+1 ← rk + αk Adk; (2.3.21c)

yk+1 ←M−1rk+1; (2.3.21d)

βk+1 ←
〈rk+1, yk+1〉
〈rk, yk〉

; (2.3.21e)

dk+1 ← −yk+1 + βk+1dk; (2.3.21f)

k ← k + 1. (2.3.21g)

2.4 Algorithms for constrained optimization

We describe in this section a few existing methods for solving constrained
optimization problems that are related in some extent to the work developed in
this thesis. We note that there are many other popular methods for constrained
optimization, such as interior point and augmented Lagrangian methods, that
are not discussed here but are readily found in several nonlinear programming
textbooks.

2.4.1 Projected preconditioned CG methods

The conjugate gradient (CG) method can also be used to solve linearly
constrained problems by using preconditioning and projection. With a view to
simplify the description of the generalized method, we shall assume that A is
a m × n full-rank matrix, where m ≤ n. The linearly constrained, quadratic
optimization problem of interest is given as{

min
x

f(x)
def
= 〈c, x〉+ 〈x,Hx〉

s.t.: Ax = b.
(2.4.1)
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If the problem contains inequalities, one can use an active-set approach to
predict the indices of those constraints which will be active at the solution. In
this case, the algorithms tries to solve a equality-constrained problem of the
type (2.4.1) whose constraints are defined by the working set, a subset of the
indices of constraints which are active at the current point.

Let Z be a n × (n −m) matrix whose columns span the null space of A.
Then the columns of the matrix (AT Z) form a basis for IRn, and any vector x
such that Ax = b can be written as

x = ATxA + ZxZ , (2.4.2)

for some vectors xA ∈ IRm and xZ ∈ IRn−m. Using (2.4.2) and the fact that
AZ = 0, we have

b = Ax = AATxA +AZxZ = AATxA, (2.4.3)

from which the vector xA can be determined by

xA = (AAT )−1b. (2.4.4)

Substituting (2.4.2) into the problem (2.4.1), the latter becomes equivalent to
the reduced problem in xZ given by{

min
xZ

〈cZ , xZ〉+ 〈xZ , HZZxZ〉
s.t.: xZ ∈ IRn−m,

(2.4.5)

where
HZZ = ZTHZ, cZ = ZT (HATxA + c),

and the constant terms involving xA have been omitted. We assume here that
the matrix HZZ is positive definite. In the next section, we analyze the case
where it may be indefinite. Since (2.4.5) is an unconstrained convex quadratic
problem, we can apply the Algorithm 2.3.4 on page 16 to obtain a solution x∗Z .
Once we have x∗Z , we can retrieve the solution x∗ to the constrained problem
(2.4.1) by (2.4.2).

With the purpose of improving the rate of convergence of the method, a
preconditioning (symmetric, positive definite) matrix WZZ may be used to
cluster the eigenvalues of W−1

ZZHZZ around ` values, for some `� (n−m), and
to obtain a condition number κ(W−1

ZZHZZ) much smaller than that of HZZ .
Since WZZ should approximate HZZ , the ideal choice would be one that makes
W−1
ZZHZZ = I(n−m), which implies that

WZZ = ZTHZ. (2.4.6)

For this reason, the preconditioner WZZ is usually written in the form

WZZ = ZTGZ, (2.4.7)
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where G is any symmetric matrix such that ZTGZ is positive definite.
By a change of variables, we can avoid working in the (n−m)-dimensional

space and making operations with the null-space matrix Z. Let P be a n× n
projection matrix defined by P = Z(ZTGZ)−1ZT , where G is the precondi-
tioning matrix from (2.4.7). Suppose we are given an initial guess x satisfying
Ax = b. The projected preconditioned CG algorithm for (2.4.1) is given below.

Algorithm 2.4.1: Projected preconditioned CG method.

Initialization. Given x such that Ax = b, set r = Hx+c, g = Pr and d = −g.

Repeat until stopping criteria is satisfied

α← 〈r, g〉
〈d,Hd〉

; (2.4.8a)

x← x+ αd; (2.4.8b)

r+ ← r + αHd; (2.4.8c)

g+ ← Pr+; (2.4.8d)

β ← 〈r
+, g+〉
〈r, g〉

; (2.4.8e)

d← −g+ + βd; (2.4.8f)

g ← g+; r ← r+. (2.4.8g)

In Gould, Hribar and Nocedal (2001), the authors show that the use of pro-
jections can cause significant rounding errors and propose different approaches
using iterative refinement and a residual update strategy in order to reduce
those errors.

2.4.2 Truncated projected CG methods

It is possible to extend CG methods to constrained problems where the
objective function is not strictly convex. Consider the following trust-region
quadratic problem 

min
x

f(x)
def
= 〈c, x〉+ 〈x,Hx〉

s.t.: Ax = b,
‖x‖ ≤ ∆,

(2.4.9)

where ∆ > 0 is the trust region radius. Suppose that we apply the Projected
Preconditioned CG method to (2.4.9) regardless of whether H is positive defi-
nite or not. If it happens that the steplength αk is such that ‖xk +αkdk‖ ≥ ∆
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at iteration k, we simply stop at the boundary of the trust-region when walking
along dk, i.e. we choose another steplength σk as the positive root of

‖xk + σdk‖ = ∆, (2.4.10)

and take the point xk + σkdk as the new iterate. In cases where we encounter
〈dk, Hdk〉 ≤ 0, the method can benefit from the negative curvature by reducing
f along xk + αdk as much as possible while staying within the trust region,
which implies that the new point xk+1 will be at the trust-region boundary
along this line, just as in (2.4.10).

In a more formal description, the truncated projected CG method, also
referred to as the Steihaug-Toint Conjugate Gradient method (see Toint, 1981,
and Steihaug, 1983), is stated as follows.

Algorithm 2.4.2: Truncated projected CG method.

Initialization. Given x such that Ax = b, set r = Hx+c, g = Pr and d = −g.

Repeat until stopping criteria is satisfied

Set κcu ← 〈d,Hd〉 and α← 〈r, g〉/κcu.

If κcu ≤ 0 or ‖x+αd‖ ≥ ∆, compute σ as the positive root of ‖x+σd‖ = ∆
and set x← x+ σd. Otherwise, set x← x+ αd.

r+ ← r + αHd;

g+ ← Pr+;

β ← 〈r
+, g+〉
〈r, g〉

;

d← −g+ + βd;

g ← g+; r ← r+.

2.4.3 Projected gradient methods

Consider the constrained problem{
min
x

f(x)

s.t.: x ∈ F ,
(2.4.11)

where F is a convex set, and denote by PF [·] the projection on the set F .
Projected gradient methods or gradient projection methods are characterized
by iterates of the type
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xk+1 = xk + αk(x̄k − xk),

where
x̄k = PF [xk − βk∇f(xk)],

and αk > 0 and βk > 0 may be viewed as steplengths. Basically, the algorithm
consists on projecting a point obtained through the steepest descent method
onto the feasible set in order to obtain a feasible point x̄k that will be used to
define the new direction dk = x̄k−xk. Thus, in its most simple form, this class
of methods may be interpreted as the counterpart of steepest descent methods
in constrained optimization.

Projection onto a convex set F might be an easy task depending on the
nature of the constraint set. For example, it is straightforward when F is
expressed by simple bounds on x as in

F = {x | l ≤ x ≤ u}.

In this case, the projection is given componentwise by

[PF [x]]i =

 [l]i if [x]i < [l]i ,
[x]i if [l]i ≤ [x]i ≤ [u]i ,
[u]i if [x]i > [u]i .

(2.4.12)

In other cases, however, it may not be so direct and may even require the
solution of an optimization problem.

Similarly to the unconstrained case, the steplengths can be computed by
means of a backtracking linesearch algorithm coupled with the Armijo’s condi-
tion. The main difference is that we have now two possibilities: we can apply it
along the feasible direction dk or on the projection arc. In the former case, we
set βk = β, where β is a constant, and choose αk from a backtracking linesearch
along xk + αdk. In the latter case, we fix αk = 1 and apply the backtracking
linesearch on the projection arc

PA = {xk(β) |β > 0},

where, for all β > 0, xk(β) is defined by

xk(β) = PF [xk − β∇f(xk)].

Figure 2.4 illustrates a step of the projected gradient method and the projection
arc in an example where the feasible set is a polygon. Finally, the algorithm
stops when it encounters a point x∗ such that

x∗ = PF [x∗ − β∇f(x∗)]

for all β > 0, since this implies that x∗ is a stationary point.
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F
PA

∇f(xk)
xk

xk(βk)

xk − βk∇f(xk)

Figure 2.4: Graphical representation of the projected gradient method.

An in-depth analysis of projected gradient methods is encountered in the
Chapter 12 of Conn et al. (2000) and in the Chapter 2 of Bertsekas (1999).

2.4.4 Sequential quadratic programming methods

Sequential quadratic programming (SQP) methods are one of the most pop-
ular methods for the solution of smooth nonconvex, nonlinear optimization
problems; they were first proposed by Wilson (1963) in his Ph.D. thesis. At
each iteration, a quadratic optimization problem is solved, where a quadratic
approximation for the objective function and for the active constraints at the
current point xk are used to compute a new direction dk. Their applicability
to a broad class of nonlinear optimization problems and strong convergence
results has driven many researchers from an exhaustive theoretical study to
the development of several SQP codes, such as SNOPT (Gill, Murray and
Saunders, 2005), NPSOL (Gill, Murray, Saunders and Wright, 2001), NLPQL
(Schittkowski, 1986), KNITRO (Byrd, Nocedal and Waltz, 2006), LOQO (Van-
derbei, 1999) and IPOPT (Wächter and Biegler, 2006).

SQP methods are strongly related to Newton’s method. In fact, they can
be viewed as an application of Newton’s method to constrained optimization
problems. For the sake of simplification, we consider the following constrained
problem with only equality constraints to develop the connection between both
methods: {

min
x

f(x)

s.t.: c(x) = 0.
(2.4.13)

The Lagrangian function for the problem (2.4.13) is defined by

L(x, µ)
def
= f(x) + 〈µ, c(x)〉.

We know from Theorem (2.2.5) that the first-order necessary conditions for the
vector (x, µ) to be a primal-dual solution for (2.4.13) are

∇xL(x, µ) = 0 and c(x) = 0. (2.4.14)
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Consider one iteration of Newton’s method, starting at estimates xk and µk of
the primal and dual variables, and let dk and dµk be their corrections calculated
by solving the following system of equations(

∇2
xxL(xk, µk) JT (xk)
J(xk) 0

) (
dk
−dµk

)
=

(
∇xL(xk, µk)

c(xk)

)
, (2.4.15)

where J(xk) is the Jacobian of c at xk. Again using Theorem 2.2.5, we notice
that the equations (2.4.15) represent the KKT conditions for the primal and
dual solution (xk, µk) of the quadratic optimization problem{

min
d

〈∇xL(xk, µk), d〉+ 1
2 〈d,∇2

xxL(xk, µk)d〉
s.t.: c(xk) + J(xk)d = 0.

(2.4.16)

By writing the dual variables as µk+1 = µk + dµk , the following equations
are analogous to (2.4.15)(

∇2
xxL(xk, µk) JT (xk)
J(xk) 0

) (
dk
−µk+1

)
=

(
∇f(xk)
c(xk)

)
. (2.4.17)

Finally, the equations (2.4.17) are the first-order optimality conditions for the
primal and dual solution (xk, µk) of the problem{

min
d

〈∇f(xk), d〉+ 1
2 〈d,∇2

xxL(xk, µk)d〉
s.t.: c(xk) + J(xk)d = 0,

(2.4.18)

which is the quadratic optimization subproblem solved at each iteration in an
SQP algorithm.

Consider now a more general problem where inequalities are also present:
min
x

f(x)

s.t.: cE(x) = 0,
cI(x) ≤ 0.

(2.4.19)

One way of handling (2.4.19) consists in solving first the following quadratic
optimization subproblem

min
d

〈∇f(xk), d〉+ 1
2 〈d,∇2

xxL(xk, µk)d〉
s.t.: cE(xk) + JE(xk)d = 0,

cI(xk) + JI(xk)d ≤ 0,

(2.4.20)

and then use the active set for this subproblem as a prediction of that for
(2.4.19). Another possibility is to define the active set A a priori (based on
the inequalities that are close to be active and whose Lagrange multipliers
estimates are positive) and solve the equality-constrained subproblem{

min
d

〈∇f(xk), d〉+ 1
2 〈d,∇2

xxL(xk, µk)d〉
s.t.: cA(xk) + JA(xk)d = 0.

(2.4.21)
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Although SQP methods have good local convergence, they may not converge
if we simply take steps from the solution to (2.4.18). This may happen, for
instance, when the starting point is far away from the solution. SQP methods
may be divided into two classes of algorithms based on how they overcome this
difficulty: linesearch SQP methods and trust-region SQP methods. In the first
class, once the step dk has been computed, a linesearch is performed by means
of a merit function, a function used to ensure a balance between reducing the
objective function and reducing infeasibility, and a steplength that reduces the
value of the merit function is calculated similarly to the unconstrained case.
In trust-region SQP methods, a trust-region constraint is added to (2.4.18) for
the computation of the step. In this case, the trust-region radius is updated
at each iteration based on the ratio of the actual reduction over the predicted
reduction of a merit function.

A review of SQP methods can be found in the Chapter 15 of Conn et al.
(2000) and in the survey papers of Gould and Toint (2000) and Gill and Wong
(2012).

2.4.5 Filter methods

Filter methods were first proposed by Fletcher and Leyffer (2002) as an
alternative to penalty methods, such as the augmented Lagrangian method. In
penalty methods, the original constrained problem is replaced by a sequence
of unconstrained subproblems in which a measure of constraint violation is
added to the objective function. This measure is multiplied by a penalty pa-
rameter ρ that can be chosen adaptively. One of the difficulties encountered
in these methods is the choice of an initial value for ρ, for a bad choice can
make the unconstrained problem to be unbounded below even if the original
constrained problem has a solution. Besides, depending on the choice of the
measure of infeasibility, the unconstrained problem may be non-smooth re-
gardless of smoothness of the constraints. In contrast to penalty methods,
filter methods make no use of merit functions and thus are free from issues
related to penalties; instead, convergence is controlled by a technique based on
the concept of dominance from multiobjective optimization.

Consider a measure of infeasibility for any point x given by v(x)
def
= ‖c(x)‖.

The two goals in constrained optimization are to achieve optimality and fea-
sibility at some point x, which means that v(x) = 0 for the latter. This can
be interpreted as a multiobjective optimization problem where the objective
functions f and v are to be minimized. Notice that, if we have two vectors x
and y such that f(x) ≤ f(y) and v(x) ≤ v(y), then we may dispose of y, since
x is at least as “good” as y. This gives rise to the notion of dominance, where
a pair (f(x), v(x)) is said to dominate another pair (f(y), v(y)) if f(x) ≤ f(y)
and v(x) ≤ v(y).

A filter is a list of pairs (f(xk), v(xk)) stored by the algorithm such that no
pair dominates any other. After a trial point x+ = xk+dk has been computed,
the algorithm accepts it only if no pair in the filter dominates (f(x+), v(x+)).
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In this case, (f(x+), v(x+)) is added to the filter and a new iteration begins.
Figure 2.5 illustrates a filter with four pairs.

(fk, vk)

(fi, vi)
f(x)

v(x)

Figure 2.5: Graphical representation of the filter method. The shaded area
contain all the points dominated by the four pairs (fj , vj) in the filter, which
are indicated by a dot.

Because of the good numerical results obtained by Fletcher and Leyffer
with a Filter-SQP method, many other papers were addressed later on to the
implementation and convergence of algorithms that rely on the filter idea, such
as Fletcher, Leyffer and Toint (2002b), Fletcher, Gould, Leyffer, Toint and
Wächter (2002a), Fletcher, Leyffer, Ralph and Scholtes (2006), Biegler and
Wächter (2005) and Ulbrich, Ulbrich and Vicente (2004). In particular, Colson
(2004) and Audet and Dennis (2004) have developed filter methods where no
derivatives are used.

2.4.6 Trust-funnel methods

The trust-funnel method was firstly introduced by Gould and Toint (2010)
as an SQP algorithm for equality-constrained optimization problems whose
convergence is driven by an adaptive bound vmax

k imposed on the allowed in-
feasibility v(x) = 1

2‖c(x)‖2 at each iteration. This bound is monotonically
decreased as the algorithm progresses, assuring its global convergence whilst
seeking optimality and hence originating the name “trust funnel”. It belongs to
the class of trust-region methods and makes use of a composite-step approach
to calculate a new direction at each iteration: a normal step is firstly computed
in the hope of reducing the infeasibility measure ensuing from the constraint
functions’ values, and a tangent step is subsequently calculated with the aim
of improving optimality of the iterates with regard to the objective function.
These computations are carried out with the use of two different trust regions,
one for each step component. The main idea is to consider the objective func-
tion and the constraints as independently as possible. The method is noticeable
among others for constrained problems as a parameter-free alternative, for nei-
ther filter nor penalties are needed, freeing the user from common difficulties
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encountered when choosing the initial penalty parameter, for instance. An ex-
tension to problems with both equalities and inequalities was developed of late
by Curtis, Gould, Robinson and Toint (2014), who presented an interior-point
trust-funnel algorithm for solving large-scale problems that may be character-
ized as a barrier-SQP method.

As mentioned previously, this method employs a composite-step approach
of the type suggested by Omojokun (1989) in his doctoral thesis under the
supervision of R. H. Byrd as well as in the thesis by Andrew R. Conn in 1971
in a linesearch context (see Conn, 1976; Conn and Pietrzykowski, 1977; Conn
and Coleman, 1982). In this technique, each full SQP step is decomposed as

dk = nk + tk,

where the normal step component nk aims to improve feasibility and the tan-
gent step component tk reduces the model while not jeopardizing the infeasibil-
ity reduction we have just obtained. The trial point x+

k = xk + dk is accepted
only if the constraint violation satisfies the funnel condition

v(x+
k ) ≤ vmax

k . (2.4.22)

As feasibility is improved during the optimization process, the value of vmax
k

is reduced according to the infeasibility of the iterates. Figure 2.6 illustrates
the idea of funnel, exemplifying a path followed by the iterates while satisfying
(2.4.22). The complete description of the algorithm, including the computa-
tion of each step component and the updating strategy of the funnel, is given
together with our derivative-free adaptation presented in Chapter 4.

f

vmax
i

Figure 2.6: Graphical representation of the trust-funnel method.



Chapter 3

Introduction to
derivative-free optimization

In this chapter, we introduce the reader to the field of derivative-free op-
timization (DFO). Firstly, we give a short summary of the main classes of
existing algorithms for this area. Then, we elaborate on one of these classes in
the interest of building a framework that will be the underlying support of our
own algorithm presented in Chapter 4.

3.1 Existing methods

Within the range of DFO methods devised thus far, three main classes may
be distinguished, namely: direct-search methods, derivative estimation by finite
differences and model-based algorithms. The first class, also called zero-order
methods, is rooted on the exploration of the variable space by generating a set
of trial points at each iteration and having their function values compared to
the best solution previously obtained. Hence these methods neither require
nor attempt to approximate derivatives for the problem to be solved. The
generation of the sample set usually follows a predefined geometric pattern,
although one can also make use of directions randomly generated to explore
the neighborhood of the iterate (see Gratton, Royer, Vicente and Zhang, 2014).
In a general form, a direct-search method has two major steps, called search
and poll . In the search step, the user can use some insight or information about
the function to compute a trial point; for instance, interpolating models may be
used to obtain new directions. If the search step is unsuccessful, the poll step
evaluates the objective function at some neighbor points defined by a pattern
(or random process) and a step size parameter. If no point with lower function
value is found, the step size is reduced and a new iteration begins. Figure 3.1
gives a graphical representation of a direct-search method where the coordinate
directions define the pattern used in the poll step. Note that the search step is

29
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not encompassed by all direct-search methods and thus consists of an optional
step where one attempts to widen the search process.

x0

x1 x2

x3 = x4

x5 = x∗

Figure 3.1: Illustration of a direct-search method in which coordinate directions
are used. The level sets of the objective function are portrayed by the ellipses.
Note that, at x3, the algorithm fails at finding a descent direction in the poll
step, causing reduction of the step size. The points obtained with the new step
size are depicted by green dots and a red dot. The iterates are represented by
hollow circles, with the exception of the minimizer x5 = x∗, which is red.

The popularity of this class of methods is ascribed to its simplicity and
to the fact that it often works reasonably well in practice, besides that no
assumption of smoothness of the objective function is demanded, which makes
it applicable to a wide range of problems. Nevertheless, a relatively large
number of function evaluations is often performed. Besides that, the number
of function evaluations needed to perform the method increases rapidly as the
number of variables grows.

Although the general term direct-search method was conceived in a 1961
paper by Hooke and Jeeves, pioneer research works in this field were led before
by Box and Wilson (1951), with the culminating response surface methodol-
ogy, and by Box (1957), with a less sophisticated procedure based upon the
latter called evolutionary operation. Afterwards, simplex-based direct-search
methods were introduced by Spendley, Hext and Himsworth (1962), in which
a pattern of n+ 1 points in IRn in the form of a simplex is constructed by the
algorithm. Among the methods of this class, we may cite the popular Nelder-
Mead algorithm or simplex search algorithm (see Nelder and Mead, 1965) for
unconstrained optimization without derivatives. Since it is easy to understand
and to code, the Nelder-Mead algorithm has been broadly used in many fields
of science and technology, such as chemistry and medicine. At the time of its
development, it gained popularity very quickly due to its lack of sophistication
and low storage requirements, being ideally suited for use on minicomputers,
especially in laboratories. Despite being commonly used, the Nelder-Mead algo-
rithm may not converge in some cases (see Lagarias, Reeds, Wright and Wright,
1998, and Singer and Singer, 2001). Other variants of the original methods by
Nelder and Mead (1965) and Spendley et al. (1962) furnished with convergence
theory have been proposed later by Yu (1979a, 1979b), who first introduced
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a sufficient decrease condition in direct search and was the first to use the
theory of positive bases in the convergence proof of a pattern-search method,
and by Price, Coope and Byatt (2002) and Bürmen, Puhan and Tuma (2006).
Later, Torczon (1997) introduced generalized pattern-search (GPS) methods
for unconstrained optimization where positive-basis techniques are used in the
convergence theory. Other examples of this class include the mesh adaptive
direct search methods (MADS) proposed by Audet and Dennis (2006) that
modify the poll step of GPS algorithms to have a dense set of directions in
the space of optimization variables. One of the appealing features of these
pattern-search methods in contrast to other derivative-free algorithms (such as
the Nelder-Mead algorithm) is the existence of a supporting convergence the-
ory. Other extensions for mixed variable programming (see Audet and Dennis,
2000) and problems involving constraints (Yu and Li, 1981; Lewis and Torczon,
1999, 2000, 2002, 2009; Lucidi et al., 2002; Audet and Dennis, 2004) were also
proposed.

The second class of DFO methods concerns the use of finite differences
along with quasi-Newton methods (see Chapter 2 of this thesis for a brief
overview on the latter). An inherent drawback of this approach is that a single
gradient estimation requires at least the number of variables plus one function
evaluations, which is expensive in cases where the function evaluations are
costly. Another one is when the functions are noisy, in which case gradient
estimation by finite differences is often useless.

The third class of methods was introduced by Winfield (1969, 1973) with
the minimization of quadratic interpolation models in a neighbourhood of the
current iteration where the models are assumed to be valid. Later, Powell
(1994, 1998) proposed COBYLA, a method for constrained optimization, which
supports arbitrary nonlinear inequality and equality constraints by using lin-
ear multivariate interpolation-based models for both of them in a trust-region
framework. Afterwards, Powell devised algorithms for both the unconstrained
and the bound-constrained cases using Lagrange polynomials, whose imple-
mentations are the softwares UOBYQA (2002), NEWUOA (2006, 2008) and
BOBYQA (2009).

The introduction of the criticality step and the first interpolation-based
derivative-free trust-region method with global convergence to first-order sta-
tionary points is due to Conn, Scheinberg and Toint (1997), while the analysis
of convergence for second-order stationary points were addressed by Conn,
Scheinberg and Vicente (2009a). Conn, Scheinberg and Vicente (2008a, 2008b)
analyzed the relation between the geometry of sample sets and the validity of
the model for determined interpolation, polynomial regression and underde-
termined interpolation cases. They also showed how the bounds on the error
between an interpolating polynomial and the true function can be used in the
convergence theory of derivative-free sampling methods.

Since the cost to maintain the quality of the geometry of the interpolation
set all the time is expensive, Fasano, Nocedal and Morales (2009) suggested to
ignore any geometry control and obtained good performance in practice. Later,
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Scheinberg and Toint (2010) proved that their method may lose the property
of provable global convergence to first-order stationary points and showed that
we cannot afford to have it without maintaining the quality of the geometry
of the interpolation set. They proposed then a suitable choice of interpolation
points yielding a self-correcting geometry scheme, which is the cornerstone of
our derivative-free trust-funnel method for constrained nonlinear optimization
problems.

Several other trust-region methods were also proposed, e.g. the WEDGE
algorithm by Marazzi and Nocedal (2002), the least Frobenius norm updating
algorithm by Powell (2004), the DFO algorithm of Conn et al. (1997, 1998), a
derivative-free SQP-filter algorithm by Colson (2004) for constrained problems,
and the algorithms BC-DFO of Gratton et al. (2011) and BCDFO+ of Tröltzsch
(2011) for bound-constrained problems. For a thorough survey on direct search,
interpolation models and other derivative-free methods, we refer the reader to
the paper of Lewis, Torczon and Trosset (2000) and the textbooks of Conn,
Scheinberg and Vicente (2009b) and Conn et al. (2000).

Another category of methods that were not discussed above but we would
like to mention is that of stocasthic derivative-free methods such as evolution-
ary algorithms (Bäck and Schwefel, 1993; Beyer and Schwefel, 2002; Holland,
1992), particle swarm optimization (Kennedy and Eberhart, 1995) and simu-
lated annealing (Kirkpatrick, Gelatt and Vecchi, 1983). These methods have
shown good results in the search for solutions of difficult optimization problems
(e.g. problems where the objective function is non-smooth and multi-modal)
that local deterministic DFO methods might experience complications to solve.

The algorithm developed in this work belongs to the third class of methods,
i.e. it is based on models built from multivariate polynomial interpolation of
the objective and constraint functions. Thus, the remainder of this chapter
aims at the development of a DFO trust-region framework where interpolating
models are employed that will serve as a basis for our algorithm introduced in
Chapter 4.

3.2 Multivariate polynomial interpolation

Before going further into the details of the algorithms, we first introduce
some concepts and results from multivariate polynomial interpolation theory
that we make use throughout and that can be found to a more extent in Conn
et al. (2009b). For the sake of simplicity and following the notation in that
reference, we will denote the i-th component of a vector x by xi in this section.

3.2.1 Polynomial bases

Consider Pdn, the space of polynomials of degree less than or equal to d in IRn

with its dimension denoted by q1 = q+1, and φ(x) = {φ0(x), φ1(x), . . . , φq(x)}
a basis for Pdn. Let m(x) be any polynomial of degree less than or equal do d.
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Since φ
def
= φ(x) is a basis of Pdn and m(x) ∈ Pdn, we can express m(x) as

m(x) =

q∑
j=0

αjφj(x), (3.2.1)

for some coefficients αj ∈ IR, j = 0, . . . , q.
A simple example of a basis for Pdn is the set of all monomials, called the

monomial basis or the natural basis, which can be expressed as

φ̄(x) = {1, x1, x2, . . . , xn, x
2
1/2, x1x2, . . . , x

d−1
n−1xn/(d− 1)!, xdn/d!}.

For instance, when n = 3 and d = 2, φ̄ is given by

φ̄(x) = {1, x1, x2, x3, x
2
1/2, x1x2, x

2
2/2, x1x3, x2x3, x

2
3/2}.

Since the monomials appear just like the polynomials in the Taylor expansion,
it turns out to be easy to work with, thus being commonly used as the starting
step for the construction of other bases.

Let Y = {y0, y1, . . . , yp} be a sample set and φ(x) = {φ0(x), φ1(x), . . . , φq(x)}
a basis for Pdn. Let p1 = p + 1 denote the number of sample points and as-
sume that p1 = q1 for now. The first aim of an interpolation model-based
algorithm is to find a surrogate model m for the function f with the following
interpolation conditions being satisfied

m(yi) =

p∑
j=0

αjφj(y
i) = f(yi), for all yi ∈ Y. (3.2.2)

The coefficients {αj}pj=0 are determined by solving the interpolation linear
system

M(φ,Y)αφ = f(Y), (3.2.3)

where

M(φ,Y) =


φ0(y0) φ1(y0) · · · φp(y

0)
φ0(y1) φ1(y1) · · · φp(y

1)
...

...
. . .

...
φ0(yp) φ1(yp) · · · φp(y

p)

 , f(Y) =


f(y0)
f(y1)

...
f(yp)

 .

If we consider the natural basis φ̄ with d = 2, thereby having a quadratic
model of the form

m(x) = c+ 〈g, x〉+ 1
2 〈x,Hx〉,

then the cardinality of Y must be at least
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p1 = 1 + n+ 1
2n(n+ 1) = 1

2 (n+ 1)(n+ 2)

to ensure that the quadratic interpolation model is entirely determined by the
equations (3.2.3). Even so, the last condition is not sufficient to guarantee the
existence or uniqueness of an interpolant. For instance, six points on a circle in
IR2 do not determine a two-dimensional quadratic, because any quadratic that
is a multiple of the equation of the circle can be added to the interpolant without
affecting the interpolation conditions. Therefore, some additional geometric
condition on Y is required for ensuring the existence and uniqueness of the
model. As we will see at the next subsection, it is related to the set Y and the
approximation space.

3.2.2 Poisedness

In this subsection, we give the condition that guarantees the existence and
uniqueness of an interpolation model. We start by introducing the concept of
poisedness where the sought condition relies.

Definition 3.2.1. The set Y = {y0, y1, . . . , yp} is poised for polynomial inter-
polation in IRn if the corresponding matrix M(φ,Y) is nonsingular for some
basis φ in Pdn.

If we consider the linear interpolation case (d = 1) with the natural basis
φ̄(x) = {1, x1, x2, . . . , xn}, we obtain

M(φ,Y) =


1 y0

1 · · · y0
n

1 y1
1 · · · y1

n
...

...
. . .

...
1 yn1 · · · ynn

 .

By applying one step of Gaussian elimination, we arrive at the matrix
1 y0

1 · · · y0
n

0 y1
1 − y0

1 · · · y1
n − y0

n
...

...
. . .

...
0 yn1 − y0

1 · · · ynn − y0
n

 ,

which can be expressed by blocks as(
1 (y0)T

0 L

)
,

where
L =

(
y1 − y0 · · · yn − y0

)T
.

Hence the matrix M(φ,Y) is nonsingular if and only if L is nonsingular, which
is equivalent to say that the set is {y0, y1, . . . , yn} is affinely independent.
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For the general interpolation case, the matrix M(φ,Y) is singular if and
only if there exists γ ∈ IRp1 such that γ 6= 0 and a polynomial, of degree at
most d, expressed as

m(x) =

p∑
j=0

γjφj(x),

such that m(y) = 0 for all y ∈ Y. In other words, the matrix M(φ,Y) is
singular if and only if the sample points lie on a “polynomial manifold” of
degree d or less. Finally, it can be shown that if M(φ,Y) is nonsingular for
some basis φ, then it is nonsingular for any basis of Pdn.

Using the concept of poisedness of sample sets, we have the following result.

Lemma 3.2.2. Given a function f : IRn −→ IR and a poised set Y ∈ IRn,
the interpolating polynomial m(x) exists and is unique.

Now that we have established the condition to ensure existence and unique-
ness of interpolation models, we are also interested to know how well poised
is a sample set. A first thought could be taking the condition number of the
matrix M(φ,Y) as a measure of poisedness. However, such value depends on
the choice of the basis φ and can equal any number between 1 and +∞ for a
suitable choice. Moreover, for a fixed choice of φ, the condition number de-
pends on the scaling of Y as well. The establishment of such measure must
then be reached by other means. In what follows, we show how it can be done
properly.

3.2.3 Well poisedness

The notion of well poisedness of a sample set can be described by the use
of Lagrange polynomials, as it is shown next. For that reason, we first present
the Lagrange form of the interpolating polynomial.

Definition 3.2.3. Given a set of interpolation points Y = {y0, y1, . . . , yp}, a
basis of p1 = p + 1 polynomials `j(x), j = 0, . . . , p, in Pdn is called a basis of
Lagrange polynomials if

`j(y
i) = δij =

{
1 if i = j,
0 if i 6= j.

(3.2.4)

Given a poised set Y, the interpolation polynomial in the Lagrange form
m(x) can then be expressed by a linear combination of Lagrange basis polyno-
mials as follows

m(x) =

p∑
i=0

f(yi)`i(x). (3.2.5)
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Figure 3.1 shows an example where a function is interpolated by a quadratic
model built from Lagrange polynomials using six sample points.

Using the fact that each Lagrange polynomial `j(x) is an interpolating poly-
nomial of a function that vanishes at all points in Y except at yj , where it is
equal to one, and the Lemma 3.2.2, the following result is immediate.

Lemma 3.2.4. If Y is poised, then the basis of Lagrange polynomials
exists and is uniquely defined.

It is possible to use these polynomials to derive a bound on the distance
between f and m at a point x. In Ciarlet and Raviart (1972), it is shown that,
for any x in the convex hull of Y, one has

‖Drf(x)−Drm(x)‖ ≤ 1

(d+ 1)!
νd

p∑
i=0

‖yi − x‖d+1‖Dr`i(x)‖,

where Dr denotes the r-th derivative of a function and νd is an upper bound on
Dd+1f(x), which means that this error bound requires f(x) to have a bounded
(d+ 1)st derivative. For r = 0, we have the reduced case

|f(x)−m(x)| ≤ 1

(d+ 1)!
p1νdΛ`∆

d+1, (3.2.6)

where
Λ` = max

0≤i≤p
max
x∈B(Y)

|`i(x)|,

and ∆ is the diameter of the smallest ball B(Y) containing Y. In Sauer and
Yuan (1995), an equivalent result to (3.2.6) is given using the Newton funda-
mental polynomials as basis instead of the Lagrange polynomials.

Since the values that the Lagrange polynomials can assume within the
region B(Y) have major impact on the error bound, a classical measure of
poisedness of Y in B is the upper bound on the absolute values of the Lagrange
polynomials in B(Y), as we will describe formally in the next definition.

Different yet equivalent approaches for measuring poisedness with Lagrange
polynomials exist. Assuming that the matrix M(φ,Y) is nonsingular, we can
also express the vector φ(x) uniquely in terms of the vectors φ(yi), i = 0, . . . , p,
as

p∑
i=0

λi(x)φ(yi) = φ(x) (3.2.7)

or, equivalently,

M(φ, y)Tλ(x) = φ(x), where λ(x) = (λ0(x), . . . , λp(x))
T
. (3.2.8)
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(a) The original function and the inter-
polation set

(b) The first Lagrange polynomial

(c) The second Lagrange polynomial (d) The third Lagrange polynomial

(e) The fourth Lagrange polynomial (f) The fifth Lagrange polynomial

From (3.2.7) and (3.2.8), it is clear that λ(x) is not only a vector of polynomials
in Pdn, but it is also the vector of Lagrange polynomials for Y. In our measure of
poisedness, we would also like to know how well the vectors φ(yi), i = 0, . . . , p,
span all the set φ(x) in a region of interest B. Therefore, such measure should
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(g) The sixth Lagrange polynomial (h) The final interpolating quadratic

Figure 3.1: Construction of a quadratic interpolation model using Lagrange
polynomials.

also take into account the region of interest besides the polynomial space. It
means that, if the smallest ball that contains the set Y is substantially smaller
than the region B, then Y is not supposed to be well poised in B. Besides, the
coefficients of the linear combination of the vectors φ(yi) in (3.2.7), i.e. the
values of the Lagrange polynomials at B, should not be very large when Y is
well poised for B.

For instance, consider the linear interpolation case for the sample set Y =
{(0, 0), (0, 1), (1, 0)} in the region defined by B(0; 1), the ball centred at the
origin with radius one, and the natural basis φ̄. We know that the vector of
coefficients of each Lagrange polynomial λi must satisfy the linear system

M(φ̄,Y)λi = ei, (3.2.9)

where ei denotes the i-th unit vector (i = 0, 1, 2), whose i-th component is one
and all others are zero. For λ0 = (λ0

0, λ
1
0, λ

2
0)T , the system (3.2.9) then becomes1 0 0

1 0 1
1 1 0

λ0
0

λ1
0

λ2
0

 =

1
0
0

 ,

whose solution is the vector λ0 = (1,−1,−1)T . By using the natural basis
φ̄(x) = {1, x1, x2} to express the Lagrange polynomial λ0(x), we obtain

λ0(x) =

2∑
j=0

λj0 φ̄j(x) = 1− x1 − x2. (3.2.10)

Since B(0; 1) denotes the closed Euclidian ball centred at (0, 0) with radius one,
we have from (3.2.10) that |λ0(x)| < 3 for any point x ∈ B(0; 1). As for the
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vector λ1, its components are given by λ1 = (0, 0, 1)T , thereby having

λ1(x) =

2∑
j=0

λj1 φ̄j(x) = x2. (3.2.11)

In this case, for any point x ∈ B(0; 1), we have that |λ1(x)| ≤ 1. Finally, the
solution λ2 for (3.2.9) is given by the vector λ2 = (0, 1, 0)T , from which we
obtain

λ2(x) =

2∑
j=0

λj2 φ̄j(x) = x1. (3.2.12)

This then implies that |λ2(x)| ≤ 1 for any point x ∈ B(0; 1). Thus, from
(3.2.10)-(3.2.12), we can derive the bound

‖λ(x)‖∞ < 3, for all x ∈ B(0; 1). (3.2.13)

On the other hand, by choosing another region B(0; 103) and the point x̄ =
(0,−103)T ∈ B(0; 103), but keeping the same set Y, we have

‖λ(x̄)‖∞ = |λ0(x̄)| = 1001. (3.2.14)

The bounds (3.2.13) and (3.2.14) exemplify the discussion above and indicate
that φ(Y) “spans well” the set φ(x) in B(0; 1), with moderate coefficient val-
ues for (3.2.7), but not in the region defined by B(0; 103). In other words,
the sample set Y = {(0, 0), (0, 1), (1, 0)} is well poised in B(0; 1), but not in
B(0; 103).

Finally, we present a geometric approach for the measure of poisedness of
a sample set. Consider the set Yi(x) = Y \ {yi} ∪ {x}, i = 0, . . . , p, for a given
point x. By applying Cramer’s rule to the system (3.2.8), we obtain

λi(x) =
det(M(φ,Yi(x)))

det(M(φ,Y))
. (3.2.15)

From this expression, it is clear that λ(x) is a polynomial in Pdn. In addition,
we have that

λi(y
i) =

det(M(φ,Yi(yi)))
det(M(φ,Y))

=
det(M(φ,Y))

det(M(φ,Y))
= 1 (3.2.16)

and

λi(y
j) =

det(M(φ,Yi(yj)))
det(M(φ,Y))

=
0

det(M(φ,Y))
= 0, (3.2.17)

for all j 6= i. From (3.2.16) and (3.2.16), we conclude that λ(x) is exactly the
set of Lagrange polynomials. It also follows that λ(x) does not depend on the
choice of φ as long as the polynomial space Pdn is fixed.
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The expression (3.2.15) can be interpreted as follows. Consider a set φ(Y) =
{φ(y0), . . . , φ(yp)} in IRp1 . Let vol(φ(Y)) be the volume of the simplex of
vertices in φ(Y), given by

vol(φ(Y)) =
|det(M(φ,Y))|

p1!
.

Then

|λi(x)| = vol(φ(Yi(x)))

vol(φ(Y))
. (3.2.18)

This means that the absolute value of the i-th Lagrange polynomial at a given
point x is the change in the volume of (the p1-dimensional convex hull of) φ(Y)
when yi is replaced by x.

We now are able to formally define well poisedness in terms of the Lagrange
polynomials.

Definition 3.2.5. Let Λ > 0 and a set B ∈ IRn be given. Let φ be a basis
in Pdn with φ = {φ0(x), φ1(x), . . . , φp(x)}. A poised set Y = {y0, y1, . . . , yp} is
said to be Λ-poised in B (in the interpolation sense) if and only if

1. for the basis of Lagrange polynomials associated with Y

Λ ≥ max
0≤i≤p

max
x∈B
|`i(x)|, (3.2.19)

or, equivalently,

2. for any x ∈ B there exists λ(x) ∈ IRp1 such that

p∑
i=0

λi(x)φ(yi) = φ(x) with ‖λ(x)‖∞ ≤ Λ, (3.2.20)

or, equivalently,

3. replacing any point in Y by any x ∈ B can increase the volume of the set
{φ(y0), . . . , φ(yp)} at most by a factor Λ.

Now that we have established a measure of poisedness using Lagrange poly-
nomials, we must consider the algorithmic aspects that its use entails. Unless
some procedure to estimate lower and upper bounds on the Lagrange polyno-
mials in the region of interest is used, the calculations involved imply the global
optimization of the Lagrange polynomials at each step and thus may dominate
the overall computational effort. Therefore, using the Λ-poisedness measure at
each iteration for controlling the quality of the interpolation models might turn
out to be unaffordable. The question that naturally arises is how to control
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poisedness iteratively without costly additional steps and in a way related to
Λ-poisedness.

As we already know, the condition number of the interpolation matrix
M(φ,Y) is not ideal for measuring poisedness of a given sample set Y =
{y0, y1, . . . , yp}. M(φ,Y) depends on the basis φ and on the scaling of Y,
but not on the region of interest, whereas Λ-poisedness depends on the latter,
but is independent of scaling. Although they seem quite different, it is possi-
ble to link them by fixing a basis φ = φ̄ and shifting and scaling Y. For this
purpose, we first shift Y by −y0 to center the new set at the origin:

{0, y1 − y0, . . . , yp − y0}.

Then we scale this new set by

∆ = ∆(Y) = max
1≤1≤p

‖yi − y0‖,

from which we obtain

Ŷ = {0, ŷ1, . . . , ŷp} = {0, (y1 − y0)/∆, . . . , (yp − y0)/∆} ⊂ B(0; 1).

Now let M̂
def
= M(φ̄, Ŷ), where φ̄ is the natural basis, and denote the condition

number of M̂ by κ(M̂) = ‖M̂‖ ‖M̂−1‖. To bound κ(M̂) in terms of Λ, it
is sufficient to bound ‖M̂−1‖. Likewise, to bound Λ in terms of κ(M̂), it is
sufficient to bound it in terms of ‖M̂−1‖. We then have the following unifying
result whose proof can be found in the Section 3.4 of Conn et al. (2009b).

Theorem 3.2.6. If M̂ is nonsingular and ‖M̂−1‖ ≤ Λ, then the set Ŷ is√
p1Λ-poised in the unit ball B(0; 1). Conversely, if the set Ŷ is Λ-poised

in the unit ball B(0; 1), then

‖M̂−1‖ ≤ θp1
1
2 Λ, (3.2.21)

where θ > 0 is dependent on n and d, but independent of Ŷ and Λ.

A reasonably cheap algorithmic strategy may be using the condition number
of M̂ for monitoring the error between the real function f and the current model
mk, while considering Λ-poisedness for operations on the sample set, such as
improving well poisedness of the sample set.

For improving well poisedness via Lagrange polynomials, we assume that
the given sample set Y is poised. We then want to verify whether Y is Λ-poised
or not, for some Λ > 1. The first step is to compute the maximum absolute
value of the Lagrange polynomials on a region B. If such value is below Λ, then
Y is Λ-poised. If there is an index j ∈ {0, . . . , p} such that

max
0≤i≤p

max
x∈B
|`i(x)| = |`j(x̄)| > Λ,
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where
x̄ = arg max

x∈B
|`j(x)|,

then the corresponding interpolation point yj is replaced by x̄. The complete
algorithm is given in detail below.

Algorithm 3.2.1: Improving well poisedness via Lagrange polynomi-
als.

Step 0: Initialization. An initial constant Λ > 1 and poised set Y = Y0,
with |Y| = p1. Compute the associated Lagrange polynomials `i(x),
i = 0, . . . , p, and set k = 1.

Step 1: Poisedness measurement. Estimate

Λk−1 = max
0≤i≤p

max
x∈B
|`i(x)|.

Step 2: Point exchange. If Λk−1 > Λ, then let ik ∈ {0, . . . , p} be an index
for which

max
x∈B
|`ik(x)| > Λ,

and let yik∗ ∈ B be a point that (approximately) maximizes |`ik(x)| in B.
Update Yk by

Yk+1 = Yk \ {yik} ∪ {yik∗ }.

Otherwise (Λk−1 ≤ Λ), return the Λ-poised set Yk.

Step 3: Update the Lagrange polynomials. Update all Lagrange polyno-
mial coefficients. Set k = k + 1 and go to Step 1.

The next theorem from Conn et al. (2009b) states the correctness of the
Algorithm 3.2.1.

Theorem 3.2.7. For any given Λ > 1, a closed ball B, and a fixed poly-
nomial basis φ, Algorithm 3.2.1 terminates with a Λ-poised set Y after at
most N = N(Λ, φ) iterations, where N is a constant which depends on Λ
and φ.
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3.2.4 Underdetermined interpolation models

The algorithm developed in this work employs the commonly used idea of
starting with incomplete interpolation models with linear accuracy and then
enhancing them with curvature information, thereby having an actual accuracy
at least as good as that for linear models and, hopefully, better. We thus
consider underdetermined quadratic interpolation, i.e.

n+ 1 ≤ |Y| ≤ (n+ 1)(n+ 2)/2,

with initial sample sets that are poised for linear interpolation.
We now have the following linear system to solve in order to build the

interpolation model:

M(φ,Y)αφ = f(Y), (3.2.22)

where

M(φ,Y) =


φ0(y0) φ1(y0) · · · φq(y

0)
φ0(y1) φ1(y1) · · · φq(y

1)
...

...
. . .

...
φ0(yp) φ1(yp) · · · φq(y

p)

 , f(Y) =


f(y0)
f(y1)

...
f(yp)

 , p ≤ q.

Since the linear system (3.2.22) is potentially underdetermined, the resulting
interpolating polynomials will be no longer unique, which means that there are
different ways to construct the model m(x).

One simple approach, called subbasis selection, consists in considering only
p+ 1 columns of the matrix M(φ,Y) in the linear system (3.2.22), having then
a square matrix. Basically, this means that one is choosing a subbasis φ̃ of φ
with only p + 1 elements. By removing the other q − p columns, it will cause
q − p elements of αφ to be zero. An inherent shortcoming of this approach is
that the selected p + 1 columns might be linearly dependent, which could be
taken as a lack of poisedness of the sample set and thus cause the exchange
of some of the points in the set. This may happen even if a different set of
columns could have provided well poisedness without exchanging any point.
A good advantage of this approach is that information about f , e.g. sparsity
structure of the derivatives, can be taken into account in the choice of a set of
columns over another.

Another way to build the model is to take the minimum `2-norm solution
of (3.2.22). In Conn et al. (2009b), the authors show that this approach is
more robust with respect to small perturbations of the data than choosing a
subbasis.

A third possibility stems from the fact that we want to build models for
which the norm of the Hessian is moderate, as it plays a relevant role on the
error bounds for quadratic interpolation models (see Theorem 5.4 in Conn et
al., 2009b). For that purpose, the interpolation model can be written as
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m(x) = αTLφL(x) + αTQφQ(x),

where αL and φL are related to the linear components of the natural basis
φ, while αQ and φQ, to the quadratic ones. The minimum Frobenius norm
solution αmfn is then the solution of the following optimization problem in αL
and αQ:

min 1
2‖αQ‖2

s.t.: M(φL,Y)αL +M(φQ,Y)αQ = f(Y).

Due to the choice of the basis φ and the separation α = (αL, αQ), minimizing
the norm of αQ is equivalent to minimizing the Frobenius norm of the Hessian
of m(x), thereby originating the name of the model.

Another two ways of working with interpolation models are noteworthy.
The first one is the least Frobenius norm updating approach proposed by Powell
(2004), which aims at providing a model Hessian closest, in the Frobenius norm
sense, to that one obtained through the last calculation of the model. The idea
is similar to that used in quasi-Newton methods and showed good results with
p = 2n. The second manner is by minimizing the `1-norm of the entries of
the Hessian model instead of the `2-norm in the problem above. This might
be interesting when there is a sparse structure in the Hessian matrix and that
structure is not known in advance, for fully quadratic models can be recovered
with high probabilty using much less than (n + 2)(n + 1)/2 random points in
such cases, as it has been proved in Bandeira, Scheinberg and Vicente (2012).
Since considering all the possibilities of model building is beyond our scope in
this work, the last two approaches are not included in our experiments.

We also require the following assumption, which is readily achieved, for
instance, by applying the procedures described in Conn et al. (2009b) once the
interpolant model is built with the Lagrange polynomials.

Assumption 3.2.8. Assume we are given any set Y ⊂ B(z; ∆) with n + 1 ≤
|Y| ≤ (n + 1)(n + 2)/2 and z ∈ IRn. Then we can apply a finite number of
substitutions of the points in Y, in fact, at most |Y| − 1, such that the new
resultant set is Λ-poised in B(z; ∆) for a polynomial space P, with dimension
|Y| and P1

n ⊆ P ⊆ P2
n.

The next lemma states the error bounds for at most fully quadratic mod-
els. As one might expect, the accuracy inherent in undetermined quadratic
interpolation models is similar to the linear interpolation ones, where the error
bounds are linear in ∆ for the first derivatives and quadratic for the function
values. The proof of the lemma can be found in Conn, Scheinberg and Zang
(2010).
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Lemma 3.2.9. Given any ∆ > 0 and Y = {y0, y1, . . . , yp} ⊂ B(y0; ∆)
Λ-poised in B(y0; ∆) with n + 1 ≤ |Y| ≤ (n + 1)(n + 2)/2, let m(x) ∈ P2

n

be an interpolating polynomial of f on Y, i.e.

m(yi) = f(yi), i = 0, . . . , p.

If f : IRn → IR is continuously differentiable in an open domain Ω contain-
ing B(y0; ∆) and ∇f is Lipschitz continuous in Ω with constant L, then for
any point y ∈ B(y0; ∆) we have

‖∇f(y)−∇m(y)‖ ≤ κeg(n,Λ, L)(‖∇2m‖+ 1)∆,

|f(y)−m(y)| ≤ κef (n,Λ, L)(‖∇2m‖+ 1)∆2,

where κeg and κef are positive constants depending only on n, Λ and L.

3.2.5 Regression nonlinear models

In cases where the functions are noisy but relatively cheap, one can sample
more local points than it would be necessary for complete interpolation. In
such cases, we have p1 > q1, and the model can be built using regression. If
the least-squares approach is used, the interpolation conditions become then

M(φ,Y)α
l.s.
= f(Y) (3.2.23)

or, equivalently,
min
α
‖M(φ,Y)α− f(Y)‖. (3.2.24)

The above solution has unique solution if the matrix M(φ,Y) has full column
rank, in which case the set Y is said to be poised for polynomial least-squares
regression in IRn.

Another approach, known as Least Absolute Deviations (LAD) regression
or robust regression, makes use of the `1 norm instead of the `2 norm in (3.2.24).
Differently from the ordinary least-squares regression where the error can be
largely increased by the squaring operation if it is bigger than 1, LAD is more
robust in that it is more resistant to outliers in the data as the errors only
have their absolute values taken rather than augmented. Although it is more
robust, LAD is known to be less stable than the least-squares regression as
LAD is more sensitive to small perturbations of the data points.

The unique model m(x) built from least-squares regression to approximate
a function f(x) on a poised set Y can be expressed under the same form as
(3.2.5). Error bounds for quadratic regression models (d = 2) are stated in the
next theorem by Conn et al. (2008b).
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Lemma 3.2.10. Given any ∆ > 0 and Y = {y0, y1, . . . , yp} ⊂ B(y0; ∆)
Λ-poised (in the regression sense) in B(y0; ∆) with p1 > (n+1)(n+2)/2, let
m(x) ∈ P2

n be a least-squares regression polynomial built from (3.2.24). If
f : IRn → IR is continuously differentiable in an open domain Ω containing
B(y0; ∆) and ∇f is Lipschitz continuous in Ω with constant L, then for
any point y ∈ B(y0; ∆) we have

‖∇f(y)−∇m(y)‖ ≤ κeg(p1, q1,Λ, L)∆2,

|f(y)−m(y)| ≤ κef (p1, q1,Λ, L)∆3,

where κeg and κef are positive constants depending only on p1, q1, Λ and
L.

3.3 Methods based on interpolation models

3.3.1 A simple DFO algorithm

Two relevant algorithmic aspects, having both practical and theoretical
implications, must be taken into consideration when building a model-based
trust-region algorithm, namely: a geometry phase whose goal is to ensure the
adequacy of the current sample set Yk and the trust region management. As it
has been proven in Scheinberg and Toint (2010), the former is deemed of fun-
damental importance to ensure global convergence. The variations suggested
to the trust region management are usually centred on unsuccessful iterations,
which may be due to a large trust region or lack of poisedness.

In the algorithm developed by Conn et al. (1997), model improvement steps
are considered at unsuccessful iterations whenever the sample set is not poised.
Such steps aim to improve the poisedness of the interpolation set by calculating
new points that might enhance the quality of geometry. As we discussed in the
last section, these steps often involve the global optimization of the Lagrange
polynomials and thus may be quite expensive. In their algorithm, the trust
region is shrunk at unsuccessful iterations only if the model is “adequate”
therein, or, in other words, the current sample set is sufficiently well poised in
that region. In order to diminish the cost of possibly unnecessary geometry
improvement steps, Fasano et al. (2009) decided to avoid any geometry control
mechanism and obtained good results in practice. Since their algorithm is a
“simple” DFO trust-region method, we present it here as the basis of our DFO
trust-region framework to be further explored.
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Algorithm 3.3.1: Simple DFO trust-region algorithm

Step 0: Initialization. An initial trust-region radius ∆0 and an initial poised
interpolation set Y0 containing the starting point x0 are given. This
interpolation set defines an (at most quadratic) interpolation model m0

around x0. Constants η ∈ (0, 1) and 0 < γ1 ≤ γ2 < 1 are also given. Set
k = 0.

Step 1: Compute a trial point. Compute x+
k that “sufficiently reduces”mk(x)

in B(xk; ∆k).

Step 2: Evaluate the objective function at the trial point. Compute f(x+
k )

and ρk from (2.3.7).

Step 3: Define the next iterate. Let yk,max = arg maxy∈Yk
‖y − xk‖.

Step 3.1: Successful iteration. If ρk ≥ η, define xk+1 = x+
k and

choose ∆k+1 ≥ ∆k. Set Yk+1 = Y \ {yk,max} ∪ {x+
k }.

Step 3.2: Unsuccessful iteration. If ρk < η, define xk+1 = xk and
choose ∆k+1 ∈ [γ1∆k, γ2∆k]. Set

Yk+1 =

{
Yk if ‖yk,max − xk‖ ≤ ‖x+

k − xk‖,
Yk \ {yk,max} ∪ {x+

k } otherwise.

Step 4: Update the model and Lagrange polynomials. If Yk+1 6= Yk, com-
pute the interpolation model mk+1 around xk+1 using Yk+1. Increment
k by one and go to Step 1.

By computing a point x+
k that sufficiently reduces mk(x) in B(xk,∆k), we

mean that it must satisfy the well-known Cauchy condition for that problem

mk(xk)−mk(x+
k ) ≥ κC‖gk‖min

[
‖gk‖

1 + ‖Hk‖
,∆k

]
, (3.3.1)

where we define gk
def
= ∇mk(xk) and Hk

def
= ∇2mk(xk), and where κC is some

constant in (0, 1).

3.3.2 Self-correcting geometry scheme

In Scheinberg and Toint (2010), the authors probed into the question of
whether it is possible to ignore geometry considerations and still have a glob-
ally convergent algorithm. Rather than suggesting a new model improvement
scheme, their main objective was to analyze the role played by the geometry
in model-based DFO methods. They gave two counter-examples where the al-
gorithm of Fasano et al. (2009) could converge to a non-stationary point and
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showed that it is impossible to have global convergence without resorting to the
upkeep of the geometry of the sample set. On the other hand, they also pro-
posed a solution to the unresolved dilemma between avoiding costly geometry
maintenance steps and having global convergence, which is based on a self-
correction mechanism for the geometry. The solution relies mainly on the idea
that unsuccessful iterations might not be as disheartening as they seem and
that one can still use the trial point x+

k to maintain the quality of geometry by
taking special cares for the final criticality step and monitoring the geometry
with the use of the Lagrange polynomials.

A slight modification on the scheme was suggested later by Tröltzsch (2011)
in regard to the trust region management. In the original approach, the trust
region radius is only reduced at unsuccessful iterations where it is impossible
to improve poisedness by replacing a suitable choice of interpolation points.
Tröltzsch then proposed to shrink the trust region at unsuccessful iterations
whenever the trust region radius is greater than a predefined constant value,
regardless of the update of the sample set. The numerical experiments con-
ducted with the modified self-correction mechanism for the unconstrained and
bound-constrained cases presented a better performance than those with the
original scheme. Therefore, we decided to incorporate such modification in
our final algorithm, hoping that similar improvements for the constrained case
could be attained.

We introduce now the modified scheme in detail.

Algorithm 3.3.2: A DFO trust-region algorithm with self-correcting
geometry scheme

Step 0: Initialization. An initial trust-region radius ∆0, an initial accuracy
threshold ε0 and an initial poised interpolation set Y0 containing the
starting point x0 are given, as well as the maximum number of interpo-
lation points pmax ≥ |Y0| in Yk at the end. Let pk denote the cardinality
of Yk. This interpolation set defines an interpolation model m0 around
x0 and associated Lagrange polynomials {`0,j}pj=0. Constants η ∈ (0, 1),
0 < γ1 ≤ γ2 < 1, α ∈ (0, 1), β > 0, ζ ≥ 1 and Λ > 1 are also given.
Choose v0 6= x0 and set k = 0 and i = 0.

Step 1: Criticality step.

Step 1.1: Define m̂i = mk.

Step 1.2: If ‖∇m̂i(xk)‖ < εi, set εi+1 = α‖∇m̂i(xk)‖ and modify Yk
as needed to make sure it is Λ-poised in B(xk; εi+1), increment i by
one and start Step 1.2 again.

Step 1.3: Set mk = m̂i, ∆k = β‖∇mk(xk)‖ and define vi = xk if a
new model has been computed.

Step 2: Compute a trial point. Compute x+
k ∈ B(xk; ∆k) such that (3.3.1)

holds.
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Step 3: Evaluate the objective function at the trial point. Compute

f(x+
k ) and ρk from (2.3.7).

Step 4: Define next iterate.

Step 4.1: Augmenting interpolation set. If pk < pmax, then define
Yk+1 = Yk∪{x+

k }. If ρk ≥ η, set xk+1 = x+
k and choose ∆k+1 ≥ ∆k.

If ρk < η, set xk+1 = xk and ∆k+1 = ∆k.

Step 4.1: Successful iteration. If pk = pmax and ρk ≥ η, set xk+1 =
x+
k , choose ∆k+1 ≥ ∆k and define Yk+1 = Yk \ {yk,r} ∪ {x+

k } for

yk,r = arg max
yk,j∈Yk

‖yk,j − x+
k ‖

2|`k,j(x+
k )|. (3.3.2)

Step 4.2: Replace a far interpolation point. If pk = pmax, ρk < η,
either xk 6= vi or ∆k ≤ εi, and the set

Fk
def
= {yk,j ∈ Yk | ‖yk,j − xk‖ > ζ∆ and `k,j(x

+
k ) 6= 0}

is non-empty, then set xk+1 = xk, ∆k+1 = ∆k and define Yk+1 =
Yk \ {yk,r} ∪ {x+

k } where r is an index for any point in Fk, for
instance, such that

yk,r = arg max
yk,j∈Fk

‖yk,j − x+
k ‖

2|`k,j(x+
k )|. (3.3.3)

Step 4.3: Replace a close interpolation point. If pk = pmax, ρk <
η, either xk 6= vi or ∆k ≤ εi, the set Fk is empty, and the set

Ck
def
= {yk,j ∈ Yk \ {xk} | ‖yk,j − xk‖ ≤ ζ∆ and |`k,j(x+

k )| > λ}

is non-empty, then set xk+1 = xk, ∆k+1 = ∆k and define Yk+1 =
Yk\{yk,r}∪{x+

k } where r is an index for any point in Ck, for instance,
such that

yk,r = arg max
yk,j∈Ck

‖yk,j − x+
k ‖

2|`k,j(x+
k )|. (3.3.4)

Step 4.4: Reduce the trust-region radius. If pk = pmax, ρk < η
and either xk = vi and ∆k > εi or Fk ∪ Ck = ∅, then set xk+1 = xk,
∆k+1 ∈ [γ1∆k, γ2∆k] and define Yk+1 = Yk.

Step 5: Update the model and Lagrange polynomials. If Yk+1 6= Yk,
compute the interpolation model mk+1 around xk+1 using Yk+1 and the
associated Lagrange polynomials {lk+1,j}pj=0. Increment k by one and go
to Step 1.

In order to present the fundamental lemma that states the self-correction
property of the original algorithm, we make use of the following assumptions.
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Assumption 3.3.1. The objective function f is continuoulsy differentiable in
an open set V containing all iterates generated by the algorithm, and its gradient
∇f is Lipschitz continuous in V with constant 1

2L.

Assumption 3.3.2. There exists a constant κH ≥ L such that 1 + ‖Hk‖ ≤ κH

for every k ≥ 0.

We now give the aforementioned result whose proof can be found in the
original paper by Scheinberg and Toint (2010).

Lemma 3.3.3. Suppose that the Assumptions 3.3.1 and 3.3.2 hold, that
pk = p = pmax, for all k, and that mk is of degree one or higher. Then, for
any constant Λ > 1, if iteration k is unsuccessful,

Fk = ∅

and

∆k ≤ min

[
1

κH

,
(1− η)κC

2κef(ζ + 1)2(pΛ + 1)

]
‖gk‖

def
= κΛ‖gk‖,

then
Ck 6= ∅.

Based on the above result, the geometry is said to be self-correcting due
to the fact that, provided the trust-region radius is sufficiently small when
compared to the model’s gradient and all the significant interpolation points
are contained in the trust region, every unsuccessful iteration must result in an
improvement of the interpolation set geometry.



Chapter 4

A derivative-free
trust-funnel method

The algorithm developed in this work, named DEFT-FUNNEL (DErivative-
Free Trust FUNNEL), is of the trust-funnel variety and employs surrogate
models built from multivariate polynomial interpolation of the objective and
constraint functions. In addition, it uses a self-correcting geometry procedure
in the same spirit of that one presented in Section 3.3.2 in order to ensure that
the geometry of the interpolation set does not differ too much from the ideal
one.

The reliance on the algorithm proposed by Gould and Toint (2010) allows
its main features to be preserved:

• independence between the objective and constraint functions by using
different models and trust regions for each one;

• a sequential quadratic programming approach to compute the step;

• the flexibility resulting from the fact that the algorithm doesn’t neces-
sarily compute both normal and tangent steps at every iteration (the
computation is done for whichever is/are likely to improve feasibility and
optimality significantly);

• the specific nature of the algorithm which uses neither merit functions
(penalty or otherwise) nor filters;

• the trust-funnel driven convergence — the gist of the algorithm and what
makes it different from other composite-step approaches —, a progres-
sively decreasing limit on the permitted infeasibility of the successive
iterates.

After having presented different DFO techniques in the previous chapter
from which our algorithm gleans, we now explain how DEFT-FUNNEL assem-
bles them all into the trust funnel framework.

51
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Given a poised set of sample points Y0 = {y0, y1, . . . , yp} with an initial
point x0 ∈ Y0, the first step of our algorithm is to replace the objective function
f(x) and the constraint functions c(x) = (c1(x), c2(x), . . . , cm(x)) by surrogate

models mf
0 (x) and mc

0(x) = (mc
01(x),mc

02(x), . . . ,mc
0m(x)) built from polyno-

mial interpolation of f and c on Y0, having therefore the following required
interpolation conditions being satisfied

mf
0 (yi) = f(yi),

mc
0(yi) = c(yi),

(4.0.1)

for all yi ∈ Y0.
At each iteration k, we have xk ∈ Yk. Depending on the optimality and

feasibility of the point xk, a new step dk is computed. As discussed in Section
2.4.6, each full step of the trust-funnel algorithm is decomposed as

dk = nk + tk,

where the normal step component nk aims to improve feasibility and the tan-
gent step component tk reduces the objective function’s model without worsen-
ing the constraint violation up to first order and abandoning the gains obtained
through the former without good reasons. This is done by requiring the tangent
step to lie in the null space of the Jacobian of the constraints and by requiring
the predicted improvement in the objective function obtained in the tangent
step to not be negligible compared to the predicted change in f resulting from
the normal step. After having computed a trial point xk + dk, the algorithm
proceeds by checking whether the iteration was successful in a sense yet to be
defined. The iterate is then updated correspondingly, while the sample set and
the trust regions are updated according to the self-correcting geometry scheme.
If Yk has been modified, the models mf

k(x) and mc
k(x) are updated to satisfy

the interpolation conditions (4.0.1) for the new set Yk+1, implying that new
function evaluations of f and c are carried out for the additional point obtained
at iteration k.

We first give a description of the method for nonlinear optimization prob-
lems with equality constraints only. Implementation issues of the proposed
method are discussed and numerical results from our experiments on a set of
29 small-scale problems are presented. Then, we extend the original derivative-
based trust-funnel method to problems with both equality and inequality con-
straints as well as simple bounds. At last, we modify DEFT-FUNNEL in order
to obtain a final method that can be used to solve problems with general non-
linear constraints where the derivatives are unavailable and we compare its
performance to well-known algorithms on a larger set of problems.
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4.1 Problems with equality constraints

We consider the equality-constrained nonlinear optimization problem{
min f(x)
s.t.: c(x) = 0,

(4.1.1)

where we assume that f : IRn → IR and c : IRn → IRm are twice continuously
differentiable, and that f is bounded below on the feasible domain.

We now show how each component is computed in our algorithm.

4.1.1 The normal step

We measure the constraint violation at any point x by

v(x)
def
= 1

2‖c(x)‖2. (4.1.2)

Analogous to the trust-funnel method for equality-constrained problems pro-
posed by Gould and Toint, we also have a funnel bound vmax

k for v such that,
for each iteration k,

vk ≤ vmax
k ,

where vk
def
= v(xk). As this bound is monotonically decreased, the algorithm is

driven towards feasibility, guaranteeing the convergence of the algorithm.
If, at iteration k, the constraint violation is significant with respect to the

measure of optimality, yet to be defined, a normal step nk is computed by
reducing the Gauss-Newton model of 1

2‖mc
k(x)‖2 within a trust region, i.e., by

solving the following trust-region linear least-squares problem{
min 1

2‖ck + Jkn‖2
s.t.: nk ∈ Nk,

(4.1.3)

where ck
def
= c(xk) = mc

k(xk), Jk
def
= J(xk) is the Jacobian of mc

k at xk and

Nk
def
= {z ∈ IRn | ‖z‖ ≤ ∆c

k}, (4.1.4)

for some radius ∆c
k > 0. An exact Gauss-Newton step is not required; rather,

the computed step nk must reduce sufficiently the model within Nk in the sense
that it satisfies the Cauchy condition for the problem (4.1.3)

δc,nk
def
= 1

2‖ck‖2 − 1
2‖ck + Jknk‖2

≥ κnC‖JTk ck‖min

[
‖JTk ck‖

1 + ‖Wk‖
,∆c

k

]
≥ 0, (4.1.5)

where Wk = JTk Jk is the symmetric Gauss-Newton approximation of the Hes-
sian of 1

2‖mc
k(x)‖2 at xk and κnC ∈ (0, 1

2 ]. In practice, DEFT-FUNNEL solves
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the problem (4.1.3) exactly by using the Moré-Sorensen algorithm (Moré and
Sorensen, 1983).

Since there is nothing assuring that the normal step is indeed “normal”, we
add the following condition requiring that it mostly lies in the space spanned
by the columns of the matrix JTk

‖nk‖ ≤ κn‖ck‖, (4.1.6)

for some κn ≥ 1. Such imposed conditions are very reasonable in practice, being
satisfied, for instance, if one applies a truncated conjugate-gradient method. If
xk is feasible, we choose a null normal step (nk = 0). When c(xk) 6= 0 and
J(xk)T ck = 0, we call xk an infeasible stationary point. If such a point is found,
the algorithm stops. This might happen when the problem is infeasible, for
instance. Note that it is also possible that the algorithm stops at an infeasible
stationary point even if the problem has a global minimum as the algorithm
only aims at finding stationary points by using local models.

4.1.2 The tangent step

Once the normal step nk has been calculated, the computation of the tan-
gent step to reduce the model mf

k is carried out while the algorithm tries not
to deteriorate the improvement on feasibility obtained through the former.

We define the quadratic model function

ψk(xk + s)
def
= fk + 〈gk, s〉+ 1

2 〈s,Gks〉, (4.1.7)

where fk
def
= f(xk) = mf

k(xk), gk
def
= ∇mf

k(xk) and Gk is a symmetric approx-

imation of the Hessian of the Lagrangian L(x, y) = mf
k(x) + 〈µ,mc

k(x)〉 given
by

Gk
def
= Hk +

m∑
i=1

[µ̂k]iCik. (4.1.8)

In the last definition, Hk is a bounded symmetric approximation of ∇2mf
k(xk),

the matrices Cki are bounded symmetric approximations of the constraints’
models Hessians ∇2mc

ki(xk) and the vector µ̂k may be viewed as a bounded
local approximation of the Lagrange multipliers, in the sense that we require
that

‖µ̂k‖ ≤ κµ, (4.1.9)

for some κµ > 0.
By using the decomposition dk = nk + tk, we have

ψk(xk + nk) = fk + 〈gk, nk〉+ 1
2 〈nk, Gknk〉 (4.1.10)
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and

ψk(xk + nk + t) = fk + 〈gk, nk + t〉+ 1
2 〈nk + t, Gk(nk + t)〉

= ψk(xk + nk) + 〈gnk , t〉+ 1
2 〈t, Gkt〉

(4.1.11)

where

gnk
def
= gk +Gknk. (4.1.12)

We thus have that (4.1.11) is a quadratic model of the function mf
k(xk+nk+t).

In the interest of assuring that it is a proper local approximation, the complete
step d = nk + t must belong to

Tk
def
= {d ∈ IRn | ‖d‖ ≤ ∆f

k}, (4.1.13)

for some radius ∆f
k . The minimization of (4.1.11) should then be restricted to

the intersection of Nk and Tk, which imposes that the tangent step tk results
in a complete step dk = nk + tk that satisfies the inclusion

dk ∈ Rk
def
= Nk ∩ Tk

def
= {d ∈ IRn | ‖d‖ ≤ ∆k}, (4.1.14)

where the radius ∆k of Rk is thus given by

∆k = min[∆c
k,∆

f
k ]. (4.1.15)

Due to (4.1.14), we first check if nk belongs to Rk before computing tk by
asking that

‖nk‖ ≤ κR∆k, (4.1.16)

for some κR ∈ (0, 1). If (4.1.16) holds, which means that there is “enough space
left” to make another step without crossing the trust region border, the tangent
step is finally computed by (approximately) solving the following problem min 〈gnk , t〉+ 1

2 〈t, Gkt〉
s.t.: Jkt = 0,

‖nk + t‖ ≤ ∆k.
(4.1.17)

In practice, we do not solve the problem (4.1.17) exactly, rather we only re-
quire a “sufficient” reduction of (4.1.11) within the hyperplane tangent to the
constraints intersected to the trust region. Note that the original proposal of
Gould and Toint also allows for “tangent” steps which do not lie exactly in the
null space of the Jacobian Jk, but we neglect this possibility here because the
computation of exactly tangent steps (i.e. satisfying Jkt = 0) is acceptable in
the context of small-scale problems.

In order to compute an approximate gradient at xk+nk, we first compute a
new local estimate of the Lagrange multipliers µk by solving the least-squares
problem

min
µ

1
2‖gnk + JTk µ‖2. (4.1.18)
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Since the number of variables of the problems considered in this work is small,
we allow (4.1.18) to be solved exactly in our experiments, although again only
an approximation could be required. The orthogonal projection of gnk onto the
null space of Jk is then denoted by

rk
def
= gnk + JTk µk, (4.1.19)

which motivates that we require the tangent step to produce a reduction in the
model ψk which is at least a fraction of that achieved by solving the modified
Cauchy point subproblem

min
τ>0

xk+nk−τrk∈Rk

ψk(xk + nk − τrk), (4.1.20)

where we have assumed that ‖rk‖ > 0. This procedure ensures (see Sec-
tion 8.1.5 of Conn et al., 2000), for some κtC1 ∈ (0, 1], the modified Cauchy
condition

δf,tk
def
= ψk(xk + nk)− ψk(xk + nk + tk)

≥ κtC1πk min

[
πk

1 + ‖Gk‖
, τk‖rk‖

]
> 0 (4.1.21)

on the decrease of the objective function model within Rk, where we have set

πk
def
=
〈gnk , rk〉
‖rk‖

≥ 0, (4.1.22)

where τk is the maximal step length along −rk from xk + nk which remains in
the trust-region Rk. If rk = 0, we simply set πk = 0. We also have that

τk‖rk‖ ≥ (1− κR)∆k

by construction and thus the modified Cauchy condition (4.1.21) may now be
rewritten as

δf,tk
def
= ψk(xk + nk)− ψk(xk + nk + tk)

≥ κtCπk min

[
πk

1 + ‖Gk‖
,∆k

]
, (4.1.23)

with κtC
def
= κtC1(1 − κR) ∈ (0, 1). As it can be seen in (4.1.23), πk may

be considered as an optimality measure in the sense that it measures how
much decrease could be obtained locally along the negative of the approximate
projected gradient rk. Figure 4.1 on the facing page depicts the components
of the final step dk = nk + tk computed by the algorithm and illustrates one of
its iterations.
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xk

nk

xk + nk

tk

xk + dk

−gk

−gk −Gknk

−rk

modified Cauchy
point on mk

c(x) = 0

ck + Jkd = 0

∆k

∆c
k

Figure 4.1: The components of the step dk with ∆k = ∆f
k .

4.1.3 Which steps to compute and retain

We now explain when the normal step nk and the tangent step tk should
be computed at iteration k given the constraint violation and the measure of
optimality described in the previous subsection.

The normal step is computed when k = 0 or the current violation is “sig-
nificant”, which is now formally defined by the conditions

‖ck‖ > ωn(πk−1) or vk > κvvv
max
k , (4.1.24)

where ωn is some bounding function of πk−1 and κvv ∈ (0, 1) is a constant. If
(4.1.24) fails, the computation of the normal step is not required and so we set
nk = 0.

When rk = 0, the computation of tangent step is not needed, and we simply
define πk = 0 and tk = 0. If πk is small compared to the current infeasibility,
i.e., for a given a monotonic bounding function ωt of ‖ck‖, the condition

πk > ωt(‖ck‖) (4.1.25)

fails, then we should worry more about feasibility than optimality. Thus, we
set tk = 0 in this case. Notice also that both conditions (4.1.25) and (4.1.24)
may fail, in which case we have that dk = nk + tk = 0, and the new vector µk
of approximate Lagrange multipliers is the only one to have been computed in
the iteration.

We also require that

ωn(t) = 0⇐⇒ t = 0 and ωt(ωn(t)) ≤ κωt, (4.1.26)
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for all t ≥ 0 and for some κω ∈ (0, 1). Examples for the functions ωn(t) and
ωt(t) might be

ωn(t)
def
= 0.01 min[1, t] and ωt(t)

def
= 0.01 min[1, t2]. (4.1.27)

The conditions (4.1.26) are important to prove the following lemma in Gould
and Toint (2010).

Lemma 4.1.1. For all k such that dk = 0 and xk is not an infeasible
stationary point,

πk ≤ κωπk−1.

It is argued in their paper that this lemma, the initial assumption that f is
bounded below on the feasible domain and the fact that the algorithm termi-
nates when an infeasible stationary point is found imply that such behavior
(dk = 0) cannot persist unless xk is optimal.

The ideal tangent step tk should not be small compared to the normal step;
besides, it should cause a good reduction in the model (4.1.11). Conversely, if
it is large and produces no considerable improvement on optimality but undoes
the gains in feasibility obtained through the normal step, it is not worth using it.
Such considerations are taken into account by verifying whether the conditions

‖tk‖ > κCS‖nk‖ (4.1.28)

and

δfk
def
= δf,tk + δf,nk ≥ κδδf,tk , (4.1.29)

where

δf,nk
def
= ψk(xk)− ψk(xk + nk), (4.1.30)

are satisfied for some κCS > 1 and for κδ ∈ (0, 1). The inequality (4.1.29)
indicates that the predicted improvement in the objective function obtained
in the tangent step is not negligible compared to the predicted change in f
resulting from the normal step. If (4.1.28) holds but (4.1.29) fails, the tangent
step is not useful as we have argued above, and we simply reset tk = 0.

4.1.4 Iterations types

After the computation of the trial point step

x+
k

def
= xk + dk,

we need to decide whether the algorithm should accept it or reject it. If nk =
tk = 0, iteration k is said to be a µ-iteration because the only computation
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performed is that of a new vector of Lagrange multiplier estimates. We call
iteration k an f -iteration if tk 6= 0, (4.1.29) holds, and

v+
k ≤ v

max
k , (4.1.31)

where v+
k

def
= v(x+

k , s
+
k ). Condition (4.1.31) ensures that the step keeps feasibil-

ity within reasonable bounds. Thus the iteration’s expected major achievement
is, in this case, a decrease in the value of the objective function f , hence its
name. If iteration k is neither a µ-iteration nor an f -iteration, then it is said
to be a c-iteration. If (4.1.29) fails, then the expected major achievement (or
failure) of iteration k is to improve feasibility, which is also the case when the
step only contains its normal component.

We now describe the conditions for the acceptation of the trial point, which
are based on the major expected achievement of the iteration.

• If iteration k is a µ-iteration, the only choice left is to restart with xk+1 =
xk using the new multipliers. We then define

∆f
k+1 = ∆f

k and ∆c
k+1 = ∆c

k (4.1.32)

and keep the current value of the maximal infeasibility vmax
k+1 = vmax

k .

• If iteration k is an f -iteration, we accept the trial point (i.e., xk+1 = x+
k )

if

ρfk
def
=

f(xk)− f(x+
k )

δfk
≥ η1, (4.1.33)

and reject it (i.e., xk+1 = xk), otherwise. The value of the maximal
infeasibility measure is left unchanged, that is, vmax

k+1 = vmax
k . Note that

δfk > 0 (because of (4.1.23) and (4.1.29)) unless xk is first-order critical,
and hence that condition (4.1.33) is well-defined.

• If iteration k is a c-iteration, we accept the trial point if the improvement
in feasibility is comparable to its predicted value

δck
def
= 1

2‖ck‖2 − 1
2‖ck + Jkdk‖2,

and the latter is itself comparable to its predicted decrease along the
normal step, that is,

nk 6= 0, δck ≥ κcnδ
c,n
k and ρck

def
=

vk − v+
k

δck
≥ η1, (4.1.34)

for some κcn ∈ (0, 1−κtg]. If (4.1.34) fails, the trial point is rejected. We
update the value of the maximal infeasibility by

vmax
k+1 =

{
max

[
κtx1v

max
k , v+

k + κtx2(vk − v+
k )
]

if (4.1.34) hold,
vmax
k otherwise,

(4.1.35)

for some κtx1 ∈ (0, 1) and κtx2 ∈ (0, 1).
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We do not describe here the updating strategy of the trust regions radii in itera-
tions of type f and c as it is embedded in the self-correcting geometry scheme;
we leave its details to the next subsection, where the complete algorithm is
given.

As we justify now, the last condition in (4.1.34) is well-defined. Firstly, we
only check the third condition after the first two conditions have been verified.
Assuming that nk 6= 0, the Cauchy condition (4.1.5) and c(xk) 6= 0 ensure that
δc,nk > 0 provided JTk ck 6= 0. Thus the third condition is well defined, unless
xk is an infeasible stationary point, in which case the algorithm is terminated.

4.1.5 The algorithm

We are now ready to state our complete algorithm, which puts the above
discussion in a more formal context.

Algorithm 4.1.1: DEFT-FUNNEL

Step 0: Initialization. An initial accuracy threshold ε0, an initial vector of
multipliers µ−1 and positive initial trust-region radii ∆f

0 and ∆c
0 are given,

as well as the constants

α ∈ (0, 1), 0 < γ1 < 1 < γ2, ζ ≥ 1, 0 < η1 < η2 < 1 and β, η3 > 0.

An initial set of interpolation points is also given, Y0, with x0 ∈ Y0 ⊂
B(x0; ∆0) and |Y0| ≥ n + 1, as well as the maximum number of inter-
polation points pmax ≥ |Y0| in Yk at the end. Let pk denote the cardi-

nality of Yk. This interpolation set defines interpolation models mf
0 and

mc
0 around x0 and associated Lagrange polynomials {`0,j}pj=0. Define

∆0 = min[∆f
0 ,∆

c
0] ≤ ∆max, and vmax

0 = max[κca, κcrv(x0)] for some con-
stants κca > 0 and κcr > 1. Define νmax

f > 0 and νmax
c > 0, the maximum

number of times that the tangential and normal trust regions sizes can
be reduced when an interpolation point is replaced at unsuccessful iter-
ations. Initialize the corresponding counters νf = νc = 0. Define k = 0
and i = 0.

Step 1: Criticality step. Define m̂f
i = mf

k , m̂c
i = mc

k, ∇ĝi = ∇gk, Ĵi = Jk
and ∇L̂i = ∇ĝi + ĴTi µk.

Step 1.1: If ‖ck‖ ≤ εi and ‖∇L̂i‖ ≤ εi, set εi+1 = max[α‖ck‖, α‖∇L̂i‖, ε]
and modify Yk as needed to ensure it is Λ-poised in B(xk, εi+1). If

Yk was modified, compute new models m̂f
i and m̂c

i , calculate ∇ĝi,
Ĵi and ∇L̂i associated to these models and increment i by one. If
‖ck‖ ≤ ε and ‖∇L̂i‖ ≤ ε, return xk; otherwise, start Step 1.1 again;
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Step 1.2: Set mf
k = m̂f

i , mc
k = m̂c

i , ∇gk = ∇ĝi, Jk = Ĵi, ∇Lk = ∇L̂i
and ∆k = βmax[‖ck‖, ‖∇Lk‖], and define vi = xk if a new model
has been computed.

Step 2: Normal step. Compute a normal step nk that sufficiently reduces
the linearized infeasibility (in the sense that (4.1.5) holds), under the
constraint that (4.1.4) and (4.1.6) also hold. This computation must be
performed if k = 0 or if (4.1.24) holds when k > 0.

If nk has not been computed, set nk = 0.

Step 3: Tangent step. If (4.1.16) holds, then

Step 3.1: select a vector µ̂k satisfying (4.1.9) and define Gk by (4.1.8);

Step 3.2: compute µk by solving (4.1.18) and rk by (4.1.19);

Step 3.3: if (4.1.25) holds, compute a tangent step tk that sufficiently
reduces the model (4.1.11) (in the sense that (4.1.23) holds) and
such that the complete step dk = nk + tk satisfies (4.1.14).

If (4.1.16) fails, set µk = µk−1. In this case, or if (4.1.25) fails, or if
(4.1.28) holds but (4.1.29) fails, set tk = 0 and dk = nk. In all cases,
define x+

k = xk + dk.

Step 4: Conclude a µ-iteration. If nk = tk = 0, then

Step 4.1: set xk+1 = xk;

Step 4.2: define ∆f
k+1 = ∆f

k and ∆c
k+1 = ∆c

k;

Step 4.3: set vmax
k+1 = vmax

k and ∆k+1 = min[∆f
k+1,∆

c
k+1].

Step 5: Conclude an f-iteration. If tk 6= 0 and (4.1.29) and (4.1.31) hold,

Step 5.1: Augment the interpolation set. If pk < pmax, then define
Yk+1 = Yk ∪ {x+

k }.

• If ρfk ≥ η1, set xk+1 = x+
k and νf = 0.

If ρfk ≥ η2, set ∆f
k+1 = min[max[γ2‖dk‖,∆f

k ],∆max]; otherwise,

set ∆f
k+1 = ∆f

k .

If v(x+
k ) < η3 vmax

k , set ∆c
k+1 = min[max[γ2‖nk‖,∆c

k],∆max];
otherwise, set ∆c

k+1 = ∆c
k.

• If ρfk < η1, set xk+1 = xk and ∆c
k+1 = ∆c

k.

If νf ≤ νmax
f , set ∆f

k+1 = γ1∆f
k and νf = νf + 1; otherwise, set

∆f
k+1 = ∆f

k .

Step 5.2: Successful iteration. If pk = pmax, ρfk ≥ η1, set xk+1 = x+
k

and define Yk+1 = Yk \ {yk,r} ∪ {x+
k } for

yk,r = arg max
yk,j∈Yk

‖yk,j − x+
k ‖

2|`k,j(x+
k )|. (4.1.36)
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Set νf = 0. If ρfk ≥ η2, set ∆f
k+1 = min[max[γ2‖dk‖,∆f

k ],∆max];

otherwise, set ∆f
k+1 = ∆f

k .

If v(x+
k ) < η3 v

max
k , then set ∆c

k+1 = min[max[γ2‖nk‖,∆c
k],∆max];

otherwise, set ∆c
k+1 = ∆c

k.

Step 5.3: Replace a far interpolation point. If pk = pmax,

ρfk < η1, either xk 6= vi or ∆k ≤ εi, and the set

Fk
def
= {yk,j ∈ Yk such that ‖yk,j − xk‖ > ζ∆ and `k,j(x

+
k ) 6= 0}

is non-empty, then define xk+1 = xk, and set ∆f
k+1 = γ1‖dk‖ if

νf ≤ νmax
f or ∆f

k+1 = ∆f
k otherwise.

Define Yk+1 = Yk \ {yk,r} ∪ {x+
k }, where

yk,r = arg max
yk,j∈Fk

‖yk,j − x+
k ‖

2|`k,j(x+
k )|. (4.1.37)

If νf ≤ νmax
f , update νf = νf + 1.

Step 5.4: Replace a close interpolation point. If pk = pmax,

ρfk < η1, either xk 6= vi or ∆k ≤ εi, the set Fk is empty, and the set

Ck
def
= {yk,j ∈ Yk such that ‖yk,j − xk‖ ≤ ζ∆ and |`k,j(x+

k )| > λ}

is non-empty, then define xk+1 = xk and set ∆f
k+1 = γ1‖dk‖ if

νf ≤ νmax
f or ∆f

k+1 = ∆f
k otherwise.

Define Yk+1 = Yk \ {yk,r} ∪ {x+
k }, where

yk,r = arg max
yk,j∈Ck

‖yk,j − x+
k ‖

2|`k,j(x+
k )|. (4.1.38)

If νf ≤ νmax
f , update νf = νf + 1.

Step 5.5: Reduce the trust-region radius. If pk = pmax, ρfk < η1

and either xk = vi and ∆f
k > εi or Fk ∪ Ck = ∅, then define xk+1 =

xk, ∆c
k+1 = ∆c

k, choose ∆f
k+1 = γ1‖dk‖ and define Yk+1 = Yk.

Step 5.6: Update the combined radius. Set

∆k+1 = min[∆f
k+1,∆

c
k+1] and vmax

k+1 = vmax
k .

Step 6: Conclude a c-iteration. If either nk 6= 0 and tk = 0, or either one
of (4.1.29) or (4.1.31) fails,

Step 6.1: Augment the interpolation set. If pk < pmax, then define
Yk+1 = Yk ∪ {x+

k }.

• If ρck ≥ η1, set xk+1 = x+
k , ∆f

k+1 = ∆f
k and νc = 0.

If ρck ≥ η2, set ∆c
k+1 = min[max[γ2‖nk‖,∆c

k],∆max]; otherwise,
set ∆c

k+1 = ∆c
k.
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• If ρck < η1, set xk+1 = xk and ∆f
k+1 = ∆f

k .
If νc ≤ νmax

c , set ∆c
k+1 = γ1‖nk‖ if ‖nk‖ 6= 0, and ∆c

k+1 = γ1∆c
k

otherwise (‖nk‖ = 0). Update νc = νc + 1.
If νc > νmax

c , set ∆c
k+1 = ∆c

k.

Step 6.2: Successful iteration. If pk = pmax and (4.1.34) holds,

set xk+1 = x+
k and define Yk+1 = Yk \ {yk,r} ∪ {x+

k } for

yk,r = arg max
yk,j∈Yk

‖yk,j − x+
k ‖

2|`k,j(x+
k )|. (4.1.39)

Set ∆f
k+1 = ∆f

k and νc = 0. Set ∆c
k+1 = min[max[γ2‖nk‖,∆c

k],∆max]
if ρck ≥ η2 or ∆c

k+1 = ∆c
k otherwise.

Step 6.3: Replace a far interpolation point. If pk = pmax,

(4.1.34) fails, either xk 6= vi or ∆k ≤ εi, and the set

Fk
def
= {yk,j ∈ Yk such that ‖yk,j − xk | > ζ∆ and `k,j(x

+
k ) 6= 0}

is non-empty, then define xk+1 = xk and set ∆f
k+1 = ∆f

k . If
νc ≤ νmax

c , then set ∆c
k+1 = γ1‖nk‖ if ‖nk‖ 6= 0, or ∆c

k+1 = γ1∆c
k

otherwise (‖nk‖ = 0). If νc > νmax
c , set ∆c

k+1 = ∆c
k.

Define Yk+1 = Yk \ {yk,r} ∪ {x+
k }, where

yk,r = arg max
yk,j∈Fk

‖yk,j − x+
k ‖

2|`k,j(x+
k )|. (4.1.40)

If νc ≤ νmax
c , update νc = νc + 1.

Step 6.4: Replace a close interpolation point. If pk = pmax,

(4.1.34) fails, either xk 6= vi or ∆k ≤ εi, the set Fk is empty, and
the set

Ck
def
= {yk,j ∈ Yk such that ‖yk,j − xk‖ ≤ ζ∆ and |`k,j(x+

k )| > λ}

is non-empty, then set xk+1 = xk and ∆f
k+1 = ∆f

k . If νc ≤ νmax
c ,

then set ∆c
k+1 = γ1‖nk‖ if ‖nk‖ 6= 0, or ∆c

k+1 = γ1∆c
k otherwise

(‖nk‖ = 0). If νc > νmax
c , set ∆c

k+1 = ∆c
k.

Define Yk+1 = Yk \ {yk,r} ∪ {x+
k }, where

yk,r = arg max
yk,j∈Ck

‖yk,j − x+
k ‖

2|`k,j(x+
k )|. (4.1.41)

If νc ≤ νmax
c , update νc = νc + 1.

Step 6.5: Reduce the trust-region radius. If pk = pmax, (4.1.34)
fails and either xk = vi and ∆c

k > εi or Fk ∪ Ck = ∅, then set

xk+1 = xk and ∆f
k+1 = ∆f

k . If ‖nk‖ 6= 0, set ∆c
k+1 = γ1‖nk‖,

otherwise set ∆c
k+1 = γ1∆c

k. Define Yk+1 = Yk.
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Step 6.6: Update the combined radius and the funnel bound.
Set ∆k+1 = min[∆f

k+1,∆
c
k+1] and update vmax

k using (4.1.35).

Step 7: Update the model and Lagrange polynomials. If Yk+1 6= Yk,
compute the interpolation models mf

k+1 and mc
k+1 around xk+1 using

Yk+1 and the associated Lagrange polynomials {lk+1,j}pj=0. Increment k
by one and go to Step 1.

4.1.6 Implementation and experiments

4.1.6.1 Building the models

The construction of the models and the management of the interpolation
set in our algorithm benefit to a great extent from the framework developed in
Tröltzsch (2011) and Gratton et al. (2011). As the details of such steps can be
readily found in those references, we give here only a brief description of the
main elements involved.

• The interpolation models mf (x) and mc
j(x) are built from the solution of

the interpolation system

M(φ̄,Y)αφ̄ = h(Y), (4.1.42)

where

M(φ̄,Y) =


φ̄0(y0) φ̄1(y0) · · · φ̄q(y

0)
φ̄0(y1) φ̄1(y1) · · · φ̄q(y

1)
...

...
. . .

...
φ̄0(yp) φ̄1(yp) · · · φ̄q(y

p)

 , h(Y) =


h(y0)
h(y1)

...
h(yp)

 , p ≤ q,

where φ̄ is the basis of monomials and h(x) is replaced by the objective
function f(x) or some constraint function cj(x). Following the discussion
in Section 3.2.3 on how to measure poisedness cheaply and efficiently, we
make use of the matrix M̂ = M(φ̄, Ŷ) when solving (4.1.42), where Ŷ is
the shifted and scaled version of Y.

If p0 = |Y0| = n + 1, a linear model rather than an underdetermined
quadratic model is built for each function. The reason is that, despite
both having error bounds that are linear in ∆ for the first derivatives, the
error bound for the latter includes also the norm of the model’s Hessian,
as it has been seen in Lemma 3.2.9, which makes it worse than the former.
Whenever

n+ 1 < pk ≤ (n+ 1)(n+ 2)/2 = pmax,

the algorithm builds underdetermined quadratic models based on the
choice of the user between the approaches described in Section 3.2.4. If
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regression models are considered instead, we set pmax = (n + 1)(n + 2),
which means that we allow the sample set to have twice the number of
sample points required for fully quadratic interpolation models. Notice
that having a number of sample points much larger than the required for
quadratic interpolation can also worsen the quality of the interpolation
models as the sample set could contain points that are too far from the
iterate, which is not ideal for models built for local approximation.

• Although the self-correcting geometry scheme guarantees (under certain
assumptions) the improvement of the quality of the geometry of the sam-
ple set at unsuccessful iterations, it does not prevent the deterioration of
the geometry along successful iterations, which may cause the interpola-
tion matrix M̂ to become ill-conditioned. This can also happens when

pk < (n+ 1)(n+ 2)/2 = pmax,

in which case every trial point is added into the interpolation set without
caring for poisedness. In this case, checking the Lagrange polynomi-
als’ values is not applicable, since there is no point to be replaced. To
overcome these difficulties, Tröltzsch proposed to monitor the condition
number κ(M̂) at each iteration and use its singular value decomposition
to replace all singular values smaller than a threshold δ whenever one has
κ(M̂) > κillcond, for some large value κillcond. She then proved that the
error bound on the gradient of the perturbed model for the linear inter-
polation case remains quite similar. In our algorithm, we also apply this
strategy for the underdetermined quadratic interpolation case, although
no equivalent theoretical result has been proven.

• The coefficients of each Lagrange polynomial λi(x) are calculated by solv-
ing the linear system

M̂λi = ei, (4.1.43)

where ei denotes the i-th unit vector (i = 0, 1, 2), whose i-th component
is one and all others are zero. The maximization of the absolute value
of λi(x) in a region B, which is part of the Algorithm 3.2.1 on page 42
for improving well-poisedness of the sample set, is made by minimizing
first λi(x) within B and then −λi(x). Each minimization uses a modi-
fied version of the Moré-Sorensen algorithm (Moré and Sorensen, 1983)
developed by Tröltzsch for problems where bound constraints are also
considered.

4.1.6.2 Solving the subproblems

The normal steps are computed with the Moré-Sorensen algorithm, while
the tangent steps are calculated with a truncated projected CG method (see
Section 2.4.2 for a brief overview). In the latter, we consider the projection
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operator P = Z(ZTGZ)−1ZT with G = In. This implies that P is the orthog-
onal projection operator onto the null space of A and thus can be rewritten as
P = In −AT (AAT )−1A. Using this formula, we can express the system of the
preconditioned residual

g+ = Pr+

by the augmented system(
In AT

A 0

)(
g+

v+

)
=

(
r+

0

)
. (4.1.44)

As pointed out by Gould et al. (2001), this augmented system approach suffers
from significant round-off errors as g+ becomes gradually small while r+ does
not. Since the magnitude of the errors generated in the solution of (4.1.44) is
dominated by v+ and v+ remains large, the error in the computation of g+

tends to be large as well. To reduce these errors, the authors proposed a pro-
jected preconditioned CG method that makes use of iterative refinement and a
residual update strategy that redefines r+ so that its norm is closer to that of
g+. Because similar errors appeared in the solution of the tangent step subprob-
lem in our numerical experiments, we decided to incorporate these strategies
into our algorithm. The reformulated truncated projected CG method used in
DEFT-FUNNEL is given below.

Algorithm 4.1.2: Reformulated truncated projected CG method.

Initialization. Given x such that Ax = b, compute r = Hx + c, r = Pr,
g = Pr, and set d = −g. Choose a tolerance θmax.

Repeat until stopping criteria is satisfied

Set κcu ← 〈d,Hd〉 and α← 〈r, g〉/κcu.

If κcu ≤ 0 or ‖x+αd‖ ≥ ∆, compute σ as the positive root of ‖x+σd‖ = ∆
and set x← x+ σd. Otherwise, set x← x+ αd.

r+ ← r + αHd; (4.1.45a)

g+ ← Pr+; (4.1.45b)

Apply iterative refinement to Pr+, if necessary,

until max
i

{
ATi g

+

‖Ai‖‖g+‖

}
< θmax; (4.1.45c)

β ← 〈r
+, g+〉
〈r, g〉

; (4.1.45d)

d← −g+ + βd; (4.1.45e)

g ← g+; r ← r+. (4.1.45f)
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In Algorithm 4.1.2, Ai denotes the i-th row of A, which means that (4.1.45c)
measures the angle between g and the rows of A. In exact arithmetic, this value
should be zero as it indicates that the CG iterates remain in the constraint
manifold Ax = b. In our experiments, we set the tolerance θmax = 10−12.
The algorithm stops when

√
〈r, g〉 ≤ 10−12 or the number of iterations exceeds

2(n −m), where n −m is the dimension of the reduced problem (2.4.5). The
iterative refinement, in turn, is done by applying the following algorithm.

Algorithm 4.1.3: Iterative refinement.

Repeat until stopping criteria is satisfied

Compute ρg = r+ − g+ −AT v+ and ρv = −Ag+,

solve

(
In AT

A 0

)(
∆g+

∆v+

)
=

(
ρg
ρv

)
,

and update g+ ← g+ + ∆g+ and v+ ← v+ + ∆v+.

Finally, we estimate the Lagrange multipliers by solving the subproblem
(4.1.18) with the standard CG algorithm described in Section 2.3.3.

4.1.6.3 Improving well-poisedness in µ-iterations

In our experiments, we noticed that null steps dk = 0 might be caused by
the poor quality of the interpolation models. For this reason, we verify the
Λ-poisedness in µ-iterations and attempt to improve it whenever we have

Λ ∆(Yk) > ε, (4.1.46)

where
∆(Yk)

def
= max

j
‖yk,j − xk‖

and ε > 0 is a threshold chosen by the user. The inequality (4.1.46) gives an es-
timate of the error bound for the models based on the Lemma 3.2.9 on page 45.
If (4.1.46) holds, we try to reduce the value at the left side by modifying the
sample set Yk. Firstly, we choose a constant ξ ∈ (0, 1) and replace all points
yk,j ∈ Yk such that

‖yk,j − xk‖ > ξ∆(Yk)

by new points yk,j∗ that (approximately) maximizes |`jk(x)| in B(xk; ξ∆(Yk)).
Then we use the Algorithm 3.2.1 on page 42 with the smaller region B to
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improve Λ-poisedness of the new sample set. The use of this strategy in this
type of iteration presented good results in our experiments. The fact that a very
small number of µ-iterations occurred during the tests may have compensated
for the additional function evaluations performed because of the change in Yk.

4.1.6.4 Code specifications

In this subsection, we do not intend to describe the code in detail as it is
composed by several functions that amount to thousand of lines; rather, we
provide some knowledge to the reader of the main components of the trust-
funnel framework.

We have implemented DEFT-FUNNEL as well as the integrated methods
for solving the subproblems using Matlab (R2013a) in a Linux environment.
The call to DEFT-FUNNEL is made through the function deft funnel, which
mainly sets the initial values for all the parameters, defines an initial interpola-
tion set and builds the associated models to replace the objective function and
the constraints. Only four arguments are required from the user: a function
handle to the objective function, a function handle to the constraint functions,
an initial starting point and a vector of estimates for the Lagrange multipliers.
A simple example of usage is given below.

1 [ x, fx, mu, norm_gradlag, norm_cx, Delta, nit, nfeval] = deft_funnel(

@objfun, @cons, x0, mu0)

The default output of the algorithm is given by:

• x: point returned by the algorithm;

• fx: value of the objective function at x;

• mu: vector of estimates of the Lagrange multipliers;

• norm gradlag: norm of the gradient of the Lagrangian function at (x,
mu);

• norm cx: norm of c at x;

• Delta: final trust region radius;

• nit: number of iterations required;

• nfeval: number of calls made to the subroutine that evaluates the ob-
jective function and the constraints.

The user may also set other constants’ values through optional input parame-
ters while calling deft funnel. For instance, it is possible to choose the initial
degree of the models (fully linear, quadratic with a diagonal Hessian or fully
quadratic), the approach to build the underdetermined quadratic models (sub-
basis selection, minimum Frobenius norm, minimum `2-norm or regression),



4.1. Problems with equality constraints 69

the parameters’ values related to the trust-funnel algorithm, the threshold ε
for declaring convergence and the verbosity level. Any optional input param-
eters can be set by the user by specifying first the parameter (for example,
the threshold for declaring convergence which is defined in our code by the
constant epsilon) followed by the value to be attributed to it (for instance,
1.0e-04) in the call to deft funnel. An example of call to the algorithm with
some optional input parameters’ values specified in the argument list is shown
below.

1 [ x, fx, mu, norm_gradlag, norm_cx, Delta, nit, nfeval ] = deft_funnel(

@objfun, @cons, x0, mu0, ’initialDegree’, ’linear’ , ’whichmodel’, ’

subbasis’, ’eta1’, 0.01, ’eta2’, 0.9, ’gamma1’, 0.5, ’gamma2’, 2.5,

’epsilon’, 1.0e-04)

After the interpolation set has been set up and the functions have been eval-
uated to build the models, deft funnel calls the function deft funnel main,
which implements the main body of the algorithm. The computation of the nor-
mal step is done through a call from deft funnel main to the function lstr,
a Matlab implementation of the Moré-Sorensen algorithm from the GALA-
HAD package (Gould, Orban and Toint, 2003b). We show below the context
where this function is called, which happens when the constraint violation is
not sufficiently small. In our experiments with equality-constrained problems,
we noticed that the algorithm yielded better results when it computed a nor-
mal step whenever the constraint violation was larger than the convergence
threshold ε. This slight modification is included in the following piece of code.

1 % check if a normal step is needed by verifying the

2 % constraint violation at the current iterate

3 if (norm_cx <= epsilon)

4 nstep = zeros(n, 1);

5 else

6 % define the trust region radius of the subproblem

7 n_max = min(Delta_c, kappa_n * norm_cx);

8 % compute a normal step

9 [ lstr_status, nstep ] = lstr(cx, J, n_max, verbosity_lstr);

10 end

11 norm_nstep = norm(nstep);

Lagrange multipliers are estimated by calling the function lscg, which im-
plements a standard CG method for solving least-squares problems, while the
tangent step is computed through the function trprojcg that implements the
truncated projected CG method. Both lscg and trprojcg functions are called
from within deft funnel main. In what follows, we show how the Lagrange
multipliers and the tangent step are calculated after the computation of the
normal step using these functions.

1 % Before attempting to compute a tangent step, check

2 % if there is enough space left in the trust region
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3 % after the computation of the normal step

4 if (norm_nstep <= kappa_b * Delta)

5 g_n = gfx + H * nstep;

6

7 % estimate the vector ’mu’ of Lagrange multipliers

8 [ lscg_status, mu ] = lscg(g_n, J, verbosity_lscg);

9

10 % define the projected gradient r_k

11 r = g_n + J.’ * mu;

12 norm_gn = norm(g_n);

13

14 % define the measure of optimality

15 if (norm_r > 0.0)

16 pi_measure = abs(g_n.’ * r)/norm(r);

17 else

18 pi_measure = 0.0;

19 end

20

21 % compare the actual value of the measure of optimality

22 % with that of infeasibility given by ’v’

23 if (pi_measure > forcing(3, v))

24

25 % consider the space left in the trust region after

26 % walking along the normal step when defining the

27 % trust region radius for the tangent step subproblem

28 Delta_within = Delta - norm_nstep;

29

30 % compute the tangent step

31 [ trprojcg_status, tstep ] = trprojcg(g_n, H, J, ...

32 Delta_within, verbosity_trprojcg);

33

34 norm_tstep = norm(tstep);

35 d = nstep + tstep;

36 else

37 norm_tstep = 0.0;

38 d = nstep;

39 end

40 else

41 norm_tstep = 0.0;

42 d = nstep;

43 end

4.1.6.5 Numerical results

We tested DEFT-FUNNEL on a set of problems from the CUTEst collec-
tion (Gould, Orban and Toint, 2003a). The first selected test set contains 29
small-scale equality-constrained optimization problems used by Colson (2004)
in his numerical tests with the software CDFO, a derivative-free adaptation of
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the Filter-SQP method. We compare here our results to those obtained with
CDFO and those obtained with the software COBYLA by Powell (1994), a
trust-region method for constrained problems that models the objective and
constraint functions by linear interpolation. The criterion for comparison be-
tween the methods is solely based on the number of calls to the single subroutine
that evaluates the objective function and the constraints at the same time at
the required points.

Since the stopping criteria present in the three methods differ from each
other, we decided to make two types of comparison between them. In the
first one, we used the built-in convergence conditions of each algorithm and
attempted to balance them by varying their parameters’ values. In CDFO,
convergence is declared when both conditions ‖∇L(xk)‖ ≤ 10−3 and ‖c(xk)‖ ≤
10−5 are satisfied, which are also the default values in the original code. Since
we use the same threshold ε for verifying feasibility and optimality in DEFT-
FUNNEL, we decided to pick up a value in between and thus we set ε = 10−4.
However, we noticed that we obtained ‖c(xk)‖ ≤ 10−5 or even better for most
of the problems. In practice, DEFT-FUNNEL also terminates when the sample
set is well poised — i.e., the error between the models and the real functions
is sufficiently small — and either ∆k ≤ 10−7 or ‖sk‖ ≤ 10−7 occurs. The
stopping criterion used in COBYLA is based on the trust region radius ρ from
the interval [ρend, ρbeg], where ρbeg and ρend are constants predefined by the
user. The parameter ρ is decreased by a constant factor during the execution
of the algorithm and is never increased. The algorithm stops when ρ = ρend.
Therefore, ρend should have the magnitude of the required accuracy in the final
values of the variables. In our experiments, we set ρend = 10−4.

As for the second type of comparison, much for benchmark purposes, we
assume that the optimal objective function value f∗ of each problem is known
a priori and, thus, we declare convergence for a method at iteration k if and
only if one has

|f(xk)− f∗| ≤ 10−4 |f(x0)− f∗| and ‖c(xk)‖ ≤ 10−4 ‖c(x0)‖,

thereby providing a common criterion for optimality as well.
In DEFT-FUNNEL, we fixed the trust-region parameters to ∆0 = 1, η1 =

0.0001, η2 = 0.9, η3 = 0.5, γ1 = 0.5, γ2 = 2.5 and ∆max = 1010. The parameter
ζ used in the definition of the sets Fk and Ck of far points and close points,
respectively, is set to ζ = 1. For the limit number of times to reduce the trust
regions sizes when a far or close interpolation point is replaced at unsuccessful
iterations, we choose νmax

f = νmax
c = 10. We set pmax = (n + 1)(n + 2)/2

for the subbasis, minimum Frobenius norm and minimum `2-norm approaches,
and pmax = (n+1)(n+2) for the regression case. Finally, we set α = 0.1, β = 1
and ε0 = 0.01 as the initial value for the loop in the criticality step. The limit
of function evaluations imposed in our experiments was 300×n, where n is the
number of variables in the problem. Tables A.1 and A.2 in the appendix report
the number of function evaluations required by the methods to solve each one
of the problems.
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We also present performance profiles of all the methods. Such profiles were
introduced by Dolan and Moré (2002) as a manner to compare the performance
of a set of solvers S on a test P. Let ns denote the number of solvers, and np,
the number of problems. We are interested in using the number of function
evaluations as a performance measure. For each problem p and solver s, we
define

tp,s = number of function evaluations required to solve problem p by solver s.

We compare the performance on problem p by solver s with the best per-
formance by any solver on this problem; that is, we use the performance ratio

rp,s =
tp,s

min{tp,s : s ∈ S}
.

If we define

ρs(τ) =
1

np
size{p ∈ P : rp,s ≤ τ},

then ρs(τ) is an approximation to the probability for solver s ∈ S that a
performance ratio rp,s is within a factor τ ∈ IR of the best possible ratio. The
function ρs is the (cumulative) distribution function for the performance ratio.

The performance profiles for the first type of comparison are shown in Fig-
ures 4.2, 4.3 and 4.4. In the first one, the four different approaches to build the
models in DEFT-FUNNEL are compared to each other, while in the latter two
each of these approaches are individually compared to CDFO and COBYLA.
The performance profiles for the second type of comparison, in turn, are shown
in Figures 4.5 and 4.6, where each variant of DEFT-FUNNEL is individually
compared to CDFO and COBYLA as well. We remind the reader here that
COBYLA uses linear models only, which may be a disadvantage and might bias
the comparison somewhat against this approach. Besides, it is implemented in
single precision, while DEFT-FUNNEL is implemented in double precision.

As it can be seen in the performance profiles, the four variants of our method
surpassed CDFO and COBYLA in the set of problems. Among these variants,
the minimum `2-norm model variant outperformed the subbasis selection and
also, somewhat surprisingly, the minimum Frobenius norm approach. Globally,
the results obtained by DEFT-FUNNEL for equality-constrained problems are
encouraging and motivated us to extend the method to problems with general
nonlinear constraints, which is the subject of the next section.

4.2 Problems with general constraints

We now consider a trust-funnel method for the solution of the nonlinear
optimization problem 

min
x

f(x)

s.t.: ls ≤ c(x) ≤ us,
lx ≤ x ≤ ux,

(4.2.1)
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Figure 4.2: Log2-scaled performance profiles of DEFT-FUNNEL with different
approaches to build the models for the first type of comparison on a set of
problems from the CUTEst collection.

where we assume that f : IRn → IR and c : IRn → IRm are twice continuously
differentiable, and that f is bounded below on the feasible domain. The vectors
ls and us are lower and upper bounds, respectively, on the constraints’ values
c(x), while lx and ux are bounds on the x variables, with ls ∈ (IR ∪ −∞)m,
us ∈ (IR ∪∞)m, lx ∈ (IR ∪ −∞)n and ux ∈ (IR ∪∞)n.

By defining f(x, s)
def
= f(x) and c(x, s)

def
= c(x)− s, the problem above may

be rewritten as the following equality-constrained optimization problem with
simple bounds 

min
(x,s)

f(x, s)

s.t.: c(x, s) = 0,
ls ≤ s ≤ us,
lx ≤ x ≤ ux,

(4.2.2)

which is the one we will address.
We first present the method for the case where the derivatives can be used;

then we apply it to derivative-free optimization problems using the techniques
developed in the last section.

The final method described here features four main steps to solve problems
with general nonlinear constraints, namely: a subspace minimization approach
to handle the bounds on the x variables, which makes it an active-set method,
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Figure 4.3: Log2-scaled performance profiles of DEFT-FUNNEL, CDFO and
COBYLA for the first type of comparison on a set of problems from the CUTEst
collection.



4.2. Problems with general constraints 75

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ
)

Log
2
−Scaled Performance Profile on Subset of CUTEst

 

 

DEFT−FUNNEL/Min. l
2
−norm

Filter

COBYLA

(a) Min. `2-norm

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ
)

Log
2
−Scaled Performance Profile on Subset of CUTEst

 

 

DEFT−FUNNEL/Regression

Filter

COBYLA

(b) Regression

Figure 4.4: Log2-scaled performance profiles of DEFT-FUNNEL, CDFO and
COBYLA for the first type of comparison on a set of problems from the CUTEst
collection.
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Figure 4.5: Log2-scaled performance profiles of DEFT-FUNNEL, CDFO and
COBYLA for the second type of comparison on a set of problems from the
CUTEst collection.
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Figure 4.6: Log2-scaled performance profiles of DEFT-FUNNEL, CDFO and
COBYLA for the second type of comparison on a set of problems from the
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a bounded linear least-squares solver to calculate the normal step, a projected
gradient method to calculate the tangent step and the control of the permitted
infeasibility of the iterates through the funnel bound. The reason behind the
choice of exploring subspaces defined by the active bounds is dual. Besides the
fact that we aim to avoid treating the bounds on the x variables as general
inequality constraints, the reduction of the dimension of the problem after
having identified the active bounds helps to thwart a possible degeneration
of the interpolation set when the sample points become close to each other
and thus affinely dependent, which happens often as the optimal solution is
approached. The fact that the s variables play no role on the choice of the
interpolation set vindicates the construction of the subspaces based upon the
x variables only.

Our method generates a sequence of points {(xk, sk)} such that, at each
iteration k, the bound constraints below are satisfied

ls ≤ sk ≤ us, (4.2.3)

lx ≤ xk ≤ ux. (4.2.4)

By using a composite-step approach, each trial step dk
def
= (dxk, d

s
k)T is decom-

posed as

dk =

(
dxk
dsk

)
=

(
nxk
nsk

)
+

(
txk
tsk

)
= nk + tk,

where nk is the normal step and tk is the tangent step.
In the following subsections, we describe how each component is computed.

Before that, we briefly explain how the subspace minimization is employed in
our algorithm.

4.2.1 Subspace minimization

As in the method proposed by Gratton et al. (2011) for bound-constrained
optimization problems, our algorithm makes use of an active-set approach
where the minimization is restricted to subspaces defined by the active x vari-
ables.

At each iteration k, we define the subspace Sk as follows

Sk
def
= {x ∈ IRn | [x]i = [lx]i for i ∈ Lk and [x]i = [ux]i for i ∈ Uk},

where Lk
def
= {i | [xk]i − [lx]i ≤ εb} and Uk

def
= {i | [ux]i − [xk]i ≤ εb} define the

index sets of (nearly) active variables at their bounds, for some small constant
εb > 0 defined a priori. After that Sk has been defined, the minimization at
iteration k is then restricted to the new subspace Sk. Once a direction dk
for (xk, sk) has been computed, we set (xk+1, sk+1) = (xk, sk) + dk if k is a
successful iteration; otherwise, we set (xk+1, sk+1) = (xk, sk).

If a solution (x̃k, s̃k) for the subproblem defined by Sk satisfies the optimal-
ity conditions for the subproblem, we check whether it is also optimal for the
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original problem (4.1.2). If it is, the solution encountered is returned to the
user and the algorithm halts; otherwise, it proceeds in the full space by com-
puting a new direction for (x̃k, s̃k) and repeats the above process at iteration
k + 1 by defining Sk+1.

4.2.2 The normal step

For any point (x, s), we measure the constraint violation by

v(x, s)
def
= 1

2‖c(x, s)‖2. (4.2.5)

At each iteration k, the constraint violation is bounded above by the funnel
vmax
k , i.e.,

vk ≤ vmax
k ,

where vk
def
= v(xk, sk).

If the constraint violation is significant, a normal step nk can be computed
by reducing the Gauss-Newton model of v at (xk, sk) within a trust region while
care is taken to ensure that the conditions (4.2.3) and (4.2.4) are fulfilled.

As before, we add the following condition to ensure that the normal step is
truly “normal”:

‖nk‖∞ ≤ κn‖c(xk, sk)‖, (4.2.6)

for some κn ≥ 1. We then perform the calculation of nk by solving the bound-
constrained linear least-squares problem

min
n=(nx,ns)

1
2‖c(xk, sk) + J(xk, sk)n‖2

s.t.: ls ≤ sk + ns ≤ us,
lx ≤ xk + nx ≤ ux,
xk + nx ∈ Sk,
n ∈ Nk,

(4.2.7)

where J(x, s)
def
= (J(x) − Im) represents the Jacobian of c(x, s) with respect

to (x, s) and

Nk
def
= {z ∈ IRn+m | ‖z‖∞ ≤ min [ ∆c

k, κn ‖c(xk, sk)‖ ] }, (4.2.8)

for some trust-region radius ∆c
k > 0.

Rather than solving (4.2.7) exactly, it suffices to compute a step nk that
produces a reduction in the linear part of the Gauss-Newton model of v at
(xk, sk) which is at least a fraction of that achieved by the projected Cauchy
direction. The following modified Cauchy condition then results from the pro-
jection procedure:

δc,nk
def
= 1

2‖c(xk, sk)‖2 − 1
2‖c(xk, sk) + J(xk, sk)nk‖2

≥ κnCπ
v
k min

[
πvk

1 + ‖Wk‖
,∆c

k, 1

]
≥ 0, (4.2.9)
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where Wk = J(xk, sk)TJ(xk, sk) is the symmetric Gauss-Newton approxima-
tion of the Hessian of v at (xk, sk), κnC ∈ (0, 1

2 ] and

πvk
def
= −〈J(xk, sk)T c(xk, sk), bk〉

is a v-criticality measure that indicates how much decrease could be obtained
locally along the projection of the negative gradient of the Gauss-Newton model
of v at (xk, sk) onto the region delimited by the bounds. The projected Cauchy
direction bk is, in turn, given by the solution of

min
b=(bx,bs)

〈J(xk, sk)T c(xk, sk), b〉

s.t.: ls ≤ sk + bs ≤ us,
lx ≤ xk + bx ≤ ux,
xk + bx ∈ Sk,
‖b‖∞ ≤ 1.

(4.2.10)

In practice, DEFT-FUNNEL solves the problem (4.2.7) exactly by using a pro-
jected gradient method combined with an active-set approach, as it is further
discussed in Section 4.2.8.

Finally, we call (xk, sk) an infeasible stationary point if c(xk, sk) 6= 0 and
πvk = 0, in which case the algorithm terminates.

4.2.3 The tangent step

The SQP model for the function f is defined as

ψk((xk, sk) + d)
def
= fk + 〈gk, d〉+ 1

2 〈d,Bkd〉, (4.2.11)

where fk
def
= f(xk, sk), gk

def
= ∇(x,s)f(xk, sk), and Bk is the approximate Hes-

sian of the Lagrangian function

L(x, s, µ, zs, ws, zx, wx) = f(x) + 〈µ, c(x, s))〉+ 〈ws, s− us〉+ 〈zs, ls − s〉
+ 〈wx, x− ux〉+ 〈zx, lx − x〉 (4.2.12)

with respect to (x, s), given by

Bk =

(
Gk 0
0 0

)
,

where Gk is a symmetric approximation of the Hessian of the Lagrangian with
respect to x defined as

Gk
def
= Hk +

m∑
i=1

[µ̂k]iCik, (4.2.13)
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zs and ws are the Lagrange multipliers associated to the lower and upper
bounds, respectively, on the slack variables s, and zx and wx are the La-
grange multipliers associated to the lower and upper bounds on the x vari-
ables. In (4.2.13), Hk is a bounded symmetric approximation of∇2

xxf(xk, sk) =
∇2f(xk), the matrices Cik are bounded symmetric approximations of the con-
straints’ Hessians ∇2

xxcik(xk, sk) = ∇2cik(xk) and the vector µ̂k may be viewed
as a bounded local approximation of the Lagrange multipliers with respect to
the equality constraints c(x, s), in the sense that we require that

‖µ̂k‖ ≤ κµ, (4.2.14)

for some κµ > 0.
By using the decomposition dk = nk + tk, we then have that

ψk((xk, sk) + nk) = fk + 〈gk, nk〉+ 1
2 〈nk, Bknk〉 (4.2.15)

and

ψk((xk, sk) + nk + t) = fk + 〈gk, nk + t〉+ 1
2 〈nk + t, Bk (nk + t)〉

= ψk((xk, sk) + nk) + 〈gNk , t〉+ 1
2 〈t, Bkt〉,

(4.2.16)
where

gNk
def
= gk +Bk nk. (4.2.17)

To make sure that (4.2.16) approximates the function f((xk, sk)+nk+t) locally
well, we ask that the complete step d = nk + t must belong to

Tk
def
= {d ∈ IRn+m | ‖d‖∞ ≤ ∆f

k}, (4.2.18)

for some radius ∆f
k . The minimization of (4.2.16) should then be restricted to

the intersection of Nk and Tk, which imposes that the tangent step tk results
in a complete step dk = nk + tk that satisfies the inclusion

dk ∈ Rk
def
= Nk ∩ Tk

def
= {d ∈ IRn+m | ‖d‖∞ ≤ ∆k}, (4.2.19)

where the radius ∆k of Rk is thus given by

∆k = min[∆c
k,∆

f
k ]. (4.2.20)

Similarly to the computation of the normal step, we intend to remain in the
subspace Sk after walking along the tangent direction. We accomplish that by
imposing the following condition

xk + nxk + tx ∈ Sk.

Additionally, the conditions (4.2.3) and (4.2.4) must be satisfied at the final
point (xk, sk) + dk, i.e., we must have

ls ≤ sk + nsk + ts ≤ us,
lx ≤ xk + nxk + tx ≤ ux.
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Before calculating the tangent step, we verify if there is still enough space
left to move within the region Rk after the computation of the normal step nk
by checking the condition

‖nk‖∞ ≤ κR∆k, (4.2.21)

for some κR ∈ (0, 1). If (4.2.21) holds, we compute the tangent step by (ap-
proximately) solving the problem



min
t=(tx,ts)

〈gNk , t〉+ 1
2 〈t, Bkt〉

s.t.: J(xk, sk)t = 0,
ls ≤ sk + nsk + ts ≤ us,
lx ≤ xk + nxk + tx ≤ ux,
xk + nxk + tx ∈ Sk.
nk + t ∈ Rk.

(4.2.22)

Although we use a projected gradient method in our code to solve the
problem (4.2.22) exactly, which is justified by the small size of the problems
tested, it suffices to compute a step tk that produces a reduction in the model
ψk which is at least a fraction of that achieved by solving the modified Cauchy
point subproblem

min
τ>0

(xk,sk)+nk+τrk∈Rk

ψk((xk, sk) + nk + τrk), (4.2.23)

where rk is the projected Cauchy direction obtained by solving the linear op-
timization problem

min
r=(rx,rs)

〈gNk , r〉

s.t.: J(xk, sk)r = 0,
ls ≤ sk + nsk + rs ≤ us,
lx ≤ xk + nxk + rx ≤ ux,
xk + nxk + rx ∈ Sk.
‖r‖∞ ≤ 1.

(4.2.24)

We then define our f -criticality measure as

πfk
def
= −〈gNk , rk〉. (4.2.25)

By definition, πfk measures how much decrease could be obtained locally along
the projection of the negative of the approximate gradient gNk onto the null
space of J(xk, sk) intersected to the region delimited by the bounds. This
procedure ensures, for some κtC ∈ (0, 1], the modified Cauchy condition

δf,tk
def
= ψk((xk, sk) + nk)− ψk((xk, sk) + nk + tk)

≥ κtCπ
f
k min

[
πfk

1 + ‖Bk‖
,∆k, 1

]
> 0. (4.2.26)
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A new local estimate of the Lagrange multipliers (µk, z
s
k, w

s
k, z

x
k , w

x
k) are

computed by solving the following bound-constrained linear least-squares prob-
lem {

min
(µ,ẑs,ŵs,ẑx,ŵx)

1
2‖Mk(µ, ẑs, ŵs, ẑx, ŵx)‖2.

s.t.: ẑs, ŵs, ẑx, ŵx ≥ 0,
(4.2.27)

where

Mk(µ, ẑs, ŵs, ẑx, ŵx)
def
=

(
gNk
0

)
+

(
J(xk)T

−Im

)
µ+

(
0
Isw

)
ŵs

+

(
0
−Isz

)
ẑs +

(
Ixw
0

)
ŵx +

(
−Ixz

0

)
ẑx,

the matrices Isz and Isw are obtained from Im by removing the columns whose
indices are not associated to any active (lower and upper, respectively) bound
at sk+nsk, the matrices Ixz and Ixw are obtained from In by removing the columns
whose indices are not associated to any active (lower and upper, respectively)
bound at xk + nxk, and the Lagrange multipliers (ẑs, ŵs, ẑx, ŵx) are those in
(zs, ws, zx, wx) associated to active bounds at sk + nsk and xk + nxk. All the
other Lagrange multipliers are set to zero.

4.2.4 Which steps to compute and retain

The normal step is computed when k = 0 or the current violation is rela-
tively substantial, which is verified by the following conditions

‖c(xk, sk)‖ > ωn(πfk−1) or vk > κvvv
max
k . (4.2.28)

If (4.2.28) fails, the computation of a normal step is unnecessary, which allows
us to set nk = 0.

If the solution of (4.2.24) is rk = 0, then by (4.2.25) we have πfk = 0. In
this case, the computation of the tangent step is skipped, and we simply set
tk = 0. If πfk is unsubstantial compared to the current infeasibility, i.e., the
condition

πfk > ωt(‖c(xk, sk)‖) (4.2.29)

fails, we set tk = 0.
As in the case for equality-constrained problems, we verify whether the

conditions

‖tk‖ > κCS‖nk‖ (4.2.30)

and

δfk
def
= δf,tk + δf,nk ≥ κδδf,tk , (4.2.31)
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where

δf,nk
def
= ψk(xk, sk)− ψk((xk, sk) + nk), (4.2.32)

are satisfied for some κCS > 1 and for κδ ∈ (0, 1). If (4.2.30) holds but (4.2.31)
fails, the tangent step plays no major role as the predicted decrease on the
objective function’s model is not significant compared to its possible increase
due to the normal step. In this case, we merely reset tk = 0.

4.2.5 Iterations types

Once we have computed the step dk, we define the trial point as

(x+
k , s

+
k )

def
= (xk, sk) + dk. (4.2.33)

If nk = tk = 0, then iteration k is said to be a µ-iteration. If tk 6= 0, (4.2.31)
holds, and

v+
k ≤ v

max
k , (4.2.34)

where v+
k

def
= v(x+

k , s
+
k ), we call iteration k an f -iteration. If iteration k is

neither a µ-iteration nor an f -iteration, then it is called a c-iteration.
The acceptation of the trial point and the trust regions management follow

the same ideas of the previous version of the method and thus are based on the
major expected achievement of the iteration.

• If iteration k is a µ-iteration, we restart with (xk+1, sk+1) = (xk, sk) using
the new multipliers. We then define

∆f
k+1 = ∆f

k and ∆c
k+1 = ∆c

k (4.2.35)

and keep the current value of the maximal infeasibility vmax
k+1 = vmax

k .

• If iteration k is an f -iteration, we accept the trial point (i.e., (xk+1, sk+1) =
(x+
k , s

+
k )) if

ρfk
def
=

f(xk, sk)− f(x+
k , s

+
k )

δfk
≥ η1, (4.2.36)

and reject it (i.e., (xk+1, sk+1) = (xk, sk)), otherwise.

The radius of Tk is then updated by

∆f
k+1 =


min

[
max[γ2‖dk‖,∆f

k ],∆max
]

if ρfk ≥ η2,

∆f
k if ρfk ∈ [η1, η2),

γ1‖dk‖ if ρfk < η1,

(4.2.37)
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where the constants ∆max, η1, η2, γ1, and γ2 are given and satisfy the
conditions

∆max > 1, 0 < η1 ≤ η2 < 1 and 0 < γ1 < 1 < γ2.

The radius of Nk, in turn, is updated by

∆c
k+1 =


min [max[γ2‖nk‖,∆c

k],∆max] if ρfk ≥ η1 and
v+
k < η3 v

max
k ,

∆c
k if ρfk < η1,

(4.2.38)

for some constant η3 > 0.

The value of the maximal infeasibility measure is left unchanged, that
is, vmax

k+1 = vmax
k . Note that δfk > 0 (because of (4.2.26) and (4.2.31))

unless (xk, sk) is first-order critical, and hence that condition (4.2.36) is
well-defined.

• If iteration k is a c-iteration, we accept the trial point if the improvement
in feasibility is comparable to its predicted value

δck
def
= 1

2‖c(xk, sk)‖2 − 1
2‖c(xk, sk) + J(xk, sk)dk‖2,

and the latter is itself comparable to its predicted decrease along the
normal step, that is,

nk 6= 0, δck ≥ κcnδ
c,n
k and ρck

def
=

vk − v+
k

δck
≥ η1, (4.2.39)

for some κcn ∈ (0, 1− κtg]. If (4.2.39) fails, the trial point is rejected.

The radius of Nk is then updated by setting ∆c
k+1 to

min [max[γ2‖nk‖,∆c
k],∆max] if ρck ≥ η2 and δck ≥ κcnδ

c,n
k ,

∆c
k if ρck ∈ [η1, η2) and δck ≥ κcnδ

c,n
k ,

γ1‖nk‖ if ρck < η1 or δck < κcnδ
c,n
k ,

and ‖nk‖ 6= 0,
γ1∆c

k if ρck < η1 or δck < κcnδ
c,n
k ,

and ‖nk‖ = 0,

(4.2.40)

while that of Tk is left unchanged (∆f
k+1 = ∆f

k). Notice that the last case
in (4.2.40) is possible in a c-iteration due to the fact that one might have
‖dk‖ 6= 0, with ‖nk‖ = 0 and ‖tk‖ 6= 0, and the condition (4.2.34) does
not hold, which makes the iteration k of type c rather than of f .

We update the value of the maximal infeasibility by

vmax
k+1 =

{
max

[
κtx1v

max
k , v+

k + κtx2(vk − v+
k )
]

if (4.2.39) hold,
vmax
k otherwise,

(4.2.41)

for some κtx1 ∈ (0, 1) and κtx2 ∈ (0, 1).
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4.2.6 Application to derivative-free optimization

In a similar way to what we have done with the original trust-funnel method
for equality-constrained problems, we now adapt the general method to the
case where the derivatives are not available. Essentially, we modify the DEFT-
FUNNEL method as needed to make it able to handle simple bounds as well.
Although it might seem a simple additional task, the treatment of the bounds
unfurls new implications for the management of the geometry of the sample
set. As we mentioned before, there might be a possible degeneration of the
interpolation set when the sample points become close to each other and thus
affinely dependent, which happens often as the optimal solution is approached.
A possible scenario is illustrated in Figure 4.7, where the bound constraint
[x]2 ≥ 0 is active at the solution. Eventually, the sets of active bounds of the
iterates {xk} and the solution x∗ become identical, causing affine dependence
between the points sufficiently close to the solution. Since the iterates are
added into the interpolation set as the algorithm progresses, the quality of
the geometry of the sample set decays as a result of the affine dependence,
impoverishing the interpolation models.

x∗

xi
xi+1

x1

x2

Figure 4.7: Illustration of a scenario where the interpolation set becomes de-
generated as the optimal solution is approached. In this example, we consider
a 2-dimensional problem with the bound constraint [x]2 ≥ 0, which is active at
the solution x∗ and at the iterates close to it.

In an attempt to diminish the chances of degeneration, we can reduce the
dimension of the problem by working on the subspace defined by the active
bounds. As we explain next, this is done in DEFT-FUNNEL by means of
recursion.

4.2.6.1 Recursive call in subspaces

In our algorithm, we apply the recursive approach found in the derivative-
free method proposed by Gratton et al. (2011) for bound-constrained optimiza-
tion problems. Once the subspace Sk has been defined at iteration k, the algo-
rithm calls itself recursively and the dimension of the problem is then reduced
to n̂ = n−|Lk ∪ Uk|, where n denotes here the dimension of IRn. The recursive
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call considers only the n̂ indices of non-active bounds of each point involved
in the procedure, which means that now we have xk ∈ IRn̂. A new well-poised
interpolation set Zk ⊂ IRn̂ is then constructed from a suitable choice of points
in Xk ∩ Sk, where Xk is the set of all points obtained up to iteration k, as we
explain now. In order to save function evaluations in the building process of
the new interpolation set, all the points in Xk that are nearly but not in Sk
are projected onto Sk and used to build Zk with their model values instead of
their real function values. In a more formal description, we define the set of
the points that are close to (but not on) the active bounds at xk as

Ak
def
=

{
y ∈ Xk

∣∣∣∣∣ 0 ≤ | [y]i − [lx]i | ≤ εb for i ∈ Lk and
0 ≤ | [ux]i − [y]i | ≤ εb for i ∈ Uk

}
,

where, for at least one i, the strict inequality

0 < | [y]i − [lx]i |, i ∈ Lk,

or
0 < | [ux]i − [y]i |, i ∈ Uk,

must hold. We then project all the points y ∈ Ak onto Sk, obtaining new
“dummy” points ys that are added to Xk with associated values mf

k(ys) and
mc
k(ys) rather than the values of the original functions. These dummy points

are progressively replaced by other points with true function values with high
priority during the minimization in Sk.

Convergence in a subspace is only declared if the interpolation set contains
no dummy points. If a solution has been found for a subspace and there are
still dummy points in the interpolation set, evaluations of the original functions
f(x) and c(x) at such points are carried out and the interpolating models are
recomputed from the original function values. Once convergence has been
declared in a subspace Sk, the |Lk ∪ Uk| fixed components [x]i associated with
the active bounds and the component x of the approximate solution found in
Sk of dimension n̂ = n−|Lk ∪ Uk| are assembled to compose a full-dimensional
vector x∗S in IRn. The algorithm then checks whether (x∗S , s

∗
S) is optimal for

the full-dimensional problem or not. Firstly, a full-space interpolation set of
degree n+ 1 is built in an ε-neighborhood around the point x∗S . Subsequently,

the corresponding interpolating models mf
k and mc

k are recomputed and the

f -criticality measure πfk−1 is calculated anew using information of the updated
models. Finally, the criticality step in the full space is then entered.

4.2.7 The algorithm

We now provide a formal description of our complete algorithm for solving
nonlinear optimization problems with general nonlinear constraints without
using derivatives.
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Algorithm 4.2.1: DEFT-FUNNEL(S, X , Y, (x, s), ∆f , ∆c, vmax)

Step 0: Initialization. An initial accuracy threshold ε0, an initial vector of
multipliers µ−1 and positive initial trust-region radii ∆f

0 and ∆c
0 are given,

as well as the constants

α ∈ (0, 1), 0 < γ1 < 1 < γ2, ζ ≥ 1, 0 < η1 < η2 < 1 and β, η3 > 0.

An initial set of interpolation points is also given, Y0, with x0 ∈ Y0 ⊂
B(x0; ∆0) and |Y0| ≥ n + 1, as well as the maximum number of inter-
polation points pmax ≥ |Y0| in Yk at the end. Let pk denote the cardi-

nality of Yk. This interpolation set defines interpolation models mf
0 and

mc
0 around x0 and associated Lagrange polynomials {`0,j}pj=0. Define

∆0 = min[∆f
0 ,∆

c
0] ≤ ∆max, and vmax

0 = max[κca, κcrv(x0, s0)] for some
constants κca > 0 and κcr > 1. Compute r−1 by solving (4.2.24) with

normal step n−1 = 0 and define πf−1 as in (4.2.25). Define νmax
f > 0

and νmax
c > 0, the maximum number of times that the tangential and

normal trust regions sizes can be reduced when an interpolation point is
replaced at unsuccessful iterations. Initialize the corresponding counters
νf = νc = 0. Define k = 0 and i = 0.

Step 1: Subspace minimization. Check for (nearly) active bounds at xk
and define Sk.

Step 1.1: If there is no (nearly) active bound or if Sk has already been
explored, go to Step 1.6. If all bounds are active, go to Step 1.5.

Step 1.2: Project points in Xk which lie close to the (nearly) active
bounds on Sk and associate with them suitable function values es-
timates.

Step 1.3: Build a new interpolation set Zk in Sk including the pro-
jected points, if any.

Step 1.4: Call recursively DEFT-FUNNEL(Sk, Xk, Zk, (xk, sk), ∆f
k ,

∆c
k, vmax

k ) and let (x∗S , s
∗
S) be the solution of the subspace problem

after adding the fixed components.

Step 1.5: If dim(Sk) < n (where n denotes here the dimension of IRn),
return (x∗S , s

∗
S). Otherwise, reset (xk, sk) = (x∗S , s

∗
S), construct a

new interpolation set Yk around xk, build the corresponding mod-
els mf

k and mc
k and recompute πfk−1 using information of the new

models.

Step 1.6: If Sk has already been explored, set (xk+1, sk+1) = (xk, sk),

reduce the trust regions radii ∆f
k+1 = γ1∆f

k and ∆c
k+1 = γ1∆c

k,

set ∆k+1 = min[∆f
k+1,∆

c
k+1] and build a new poised set Yk+1 in
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B(xk+1; ∆k+1). Compute models mf
k+1 and mc

k+1 and increment k
by one.

Step 2: Criticality step. Define m̂f
i = mf

k , m̂c
i = mc

k and π̂fi = πfk−1.

Step 2.1: If ‖c(xk, sk)‖ ≤ εi and π̂fi ≤ εi, set

εi+1 = max[α‖c(xk, sk)‖, απ̂fi , ε] and modify Yk as needed to ensure
it is Λ-poised in B(xk, εi+1). If Yk was modified, compute new mod-

els m̂f
i and m̂c

i , calculate r̂i and π̂fi associated to these models and

increment i by one. If ‖c(xk, sk)‖ ≤ ε and π̂fi ≤ ε, return (xk, sk);
otherwise, start Step 2.1 again.

Step 2.2: Set mf
k = m̂f

i , mc
k = m̂c

i and πfk−1 = π̂fi . Update ∆k =

βmax[‖c(xk, sk)‖, πfk−1] and define vi = xk if a new model has been
computed.

Step 3: Normal step. If c(xk, sk) 6= 0 and πvk = 0, STOP (infeasible sta-
tionary point). Otherwise, compute a normal step nk by solving the
problem (4.2.7). This computation must be performed if k = 0 or if
(4.2.28) holds when k > 0. If nk has not been computed, set nk = 0.

Step 4: Tangent step. If (4.2.21) holds, then

Step 4.1: select a vector µ̂k satisfying (4.2.14) and define Gk as in
(4.1.8) to obtain Bk;

Step 4.2: compute µk by solving (4.2.27);

Step 4.3: compute the modified Cauchy direction rk by solving (4.2.24)

and define πfk as (4.2.25);

Step 4.4: if (4.2.29) holds, compute a tangent step tk by solving (4.2.22).

If (4.2.21) fails, set µk = µk−1. In this case, or if (4.2.29) fails, or if
(4.2.30) holds but (4.2.31) fails, set tk = 0 and dk = nk. In all cases,
define (x+

k , s
+
k ) = (xk, sk) + dk.

Step 5: Conclude a µ-iteration. If nk = tk = 0, then

Step 5.1: set (xk+1, sk+1) = (xk, sk);

Step 5.2: define ∆f
k+1 = ∆f

k and ∆c
k+1 = ∆c

k;

Step 5.3: set vmax
k+1 = vmax

k , ∆k+1 = min[∆f
k+1,∆

c
k+1] and Yk+1 = Yk.

Step 6: Conclude an f-iteration. If tk 6= 0 and (4.2.31) and (4.2.34) hold,

Step 6.1: Augment the interpolation set. If pk < pmax, then define
Yk+1 = Yk ∪ {x+

k }.
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• If ρfk ≥ η1, set (xk+1, sk+1) = (x+
k , s

+
k ) and νf = 0.

If ρfk ≥ η2, set ∆f
k+1 = min[max[γ2‖dk‖,∆f

k ],∆max]; otherwise,

set ∆f
k+1 = ∆f

k .

If v(x+
k , s

+
k ) < η3 v

max
k , set ∆c

k+1 = min[max[γ2‖nk‖,∆c
k],∆max];

otherwise, set ∆c
k+1 = ∆c

k.

• If ρfk < η1, set (xk+1, sk+1) = (xk, sk) and ∆c
k+1 = ∆c

k.

If νf ≤ νmax
f , set ∆f

k+1 = γ1∆f
k and νf = νf + 1; otherwise, set

∆f
k+1 = ∆f

k .

Step 6.2: Successful iteration. If pk = pmax and ρfk ≥ η1, then

set (xk+1, sk+1) = (x+
k , s

+
k ) and define Yk+1 = Yk \{yk,r}∪{x+

k } for

yk,r = arg max
yk,j∈Yk

‖yk,j − x+
k ‖

2|`k,j(x+
k )|. (4.2.42)

Set νf = 0. If ρfk ≥ η2, set ∆f
k+1 = min[max[γ2‖dk‖,∆f

k ],∆max];

otherwise, set ∆f
k+1 = ∆f

k . If v(x+
k , s

+
k ) < η3 vmax

k , set ∆c
k+1 =

min[max[γ2‖nk‖,∆c
k],∆max]; otherwise, set ∆c

k+1 = ∆c
k.

Step 6.3: Replace a far interpolation point. If pk = pmax,

ρfk < η1, either xk 6= vi or ∆k ≤ εi, and the set

Fk
def
= {yk,j ∈ Yk such that ‖yk,j − xk‖ > ζ∆ and `k,j(x

+
k ) 6= 0}

is non-empty, then define (xk+1, sk+1) = (xk, sk), and set ∆f
k+1 =

γ1‖dk‖ if νf ≤ νmax
f or ∆f

k+1 = ∆f
k otherwise.

Define Yk+1 = Yk \ {yk,r} ∪ {x+
k }, where

yk,r = arg max
yk,j∈Fk

‖yk,j − x+
k ‖

2|`k,j(x+
k )|. (4.2.43)

If νf ≤ νmax
f , update νf = νf + 1.

Step 6.4: Replace a close interpolation point. If pk = pmax,

ρfk < η1, either xk 6= vi or ∆k ≤ εi, the set Fk is empty, and the set

Ck
def
= {yk,j ∈ Yk such that ‖yk,j − xk‖ ≤ ζ∆ and |`k,j(x+

k )| > λ}

is non-empty, then define (xk+1, sk+1) = (xk, sk) and set ∆f
k+1 =

γ1‖dk‖ if νf ≤ νmax
f or ∆f

k+1 = ∆f
k otherwise.

Define Yk+1 = Yk \ {yk,r} ∪ {x+
k }, where

yk,r = arg max
yk,j∈Ck

‖yk,j − x+
k ‖

2|`k,j(x+
k )|. (4.2.44)

If νf ≤ νmax
f , update νf = νf + 1.
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Step 6.5: Reduce the trust-region radius. If pk = pmax, ρfk < η1

and either xk = vi and ∆f
k > εi or Fk∪Ck = ∅, then set (xk+1, sk+1) =

(xk, sk), ∆c
k+1 = ∆c

k, ∆f
k+1 = γ1‖dk‖ and Yk+1 = Yk.

Step 6.6: Update the combined radius. Set

∆k+1 = min[∆f
k+1,∆

c
k+1] and vmax

k+1 = vmax
k .

Step 7: Conclude a c-iteration. If either nk 6= 0 and tk = 0, or either one
of (4.2.31) or (4.2.34) fails,

Step 7.1: Augment the interpolation set. If pk < pmax, then define
Yk+1 = Yk ∪ {x+

k }.

• If ρck ≥ η1, set (xk+1, sk+1) = (x+
k , s

+
k ), ∆f

k+1 = ∆f
k and νc = 0.

If ρck ≥ η2, set ∆c
k+1 = min[max[γ2‖nk‖,∆c

k],∆max]; otherwise,
set ∆c

k+1 = ∆c
k.

• If ρck < η1, set (xk+1, sk+1) = (xk, sk) and ∆f
k+1 = ∆f

k .
If νc ≤ νmax

c , then set ∆c
k+1 = γ1‖nk‖ if ‖nk‖ 6= 0 and ∆c

k+1 =
γ1∆c

k otherwise (‖nk‖ = 0). Update νc = νc + 1.
If νc > νmax

c , set ∆c
k+1 = ∆c

k.

Step 7.2: Successful iteration. If pk = pmax, (4.2.39) holds, then set
(xk+1, sk+1) = (x+

k , s
+
k ) and define Yk+1 = Yk \ {yk,r} ∪ {x+

k } for

yk,r = arg max
yk,j∈Yk

‖yk,j − x+
k ‖

2|`k,j(x+
k )|. (4.2.45)

Set ∆f
k+1 = ∆f

k and νc = 0. Set ∆c
k+1 = min[max[γ2‖nk‖,∆c

k],∆max]
if ρck ≥ η2 or ∆c

k+1 = ∆c
k otherwise.

Step 7.3: Replace a far interpolation point. If pk = pmax,

(4.2.39) fails, either xk 6= vi or ∆k ≤ εi, and the set

Fk
def
= {yk,j ∈ Yk such that ‖yk,j − xk | > ζ∆ and `k,j(x

+
k ) 6= 0}

is non-empty, then define (xk+1, sk+1) = (xk, sk) and set ∆f
k+1 =

∆f
k . If νc ≤ νmax

c , then set ∆c
k+1 = γ1‖nk‖ if ‖nk‖ 6= 0, or ∆c

k+1 =
γ1∆c

k otherwise (‖nk‖ = 0). If νc > νmax
c , set ∆c

k+1 = ∆c
k.

Define Yk+1 = Yk \ {yk,r} ∪ {x+
k }, where

yk,r = arg max
yk,j∈Fk

‖yk,j − x+
k ‖

2|`k,j(x+
k )|. (4.2.46)

If νc ≤ νmax
c , update νc = νc + 1.

Step 7.4: Replace a close interpolation point. If pk = pmax,

(4.2.39) fails, either xk 6= vi or ∆k ≤ εi, the set Fk is empty, and
the set

Ck
def
= {yk,j ∈ Yk such that ‖yk,j − xk‖ ≤ ζ∆ and |`k,j(x+

k )| > λ}
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is non-empty, then set (xk+1, sk+1) = (xk, sk) and ∆f
k+1 = ∆f

k . If
νc ≤ νmax

c , then set ∆c
k+1 = γ1‖nk‖ if ‖nk‖ 6= 0, or ∆c

k+1 = γ1∆c
k

otherwise (‖nk‖ = 0). If νc > νmax
c , set ∆c

k+1 = ∆c
k.

Define Yk+1 = Yk \ {yk,r} ∪ {x+
k }, where

yk,r = arg max
yk,j∈Ck

‖yk,j − x+
k ‖

2|`k,j(x+
k )|. (4.2.47)

If νc ≤ νmax
c , update νc = νc + 1.

Step 7.5: Reduce the trust-region radius. If pk = pmax,

(4.2.39) fails and either xk = vi and ∆c
k > εi or Fk ∪ Ck = ∅,

then set (xk+1, sk+1) = (xk, sk) and ∆f
k+1 = ∆f

k . If ‖nk‖ 6= 0, set
∆c
k+1 = γ1‖nk‖, otherwise set ∆c

k+1 = γ1∆c
k. Define Yk+1 = Yk.

Step 7.6: Update the combined radius and the funnel bound.
Set ∆k+1 = min[∆f

k+1,∆
c
k+1] and update vmax

k using (4.2.41).

Step 8: Update the models and the Lagrange polynomials. If Yk+1 6=
Yk, compute the interpolation models mf

k+1 and mc
k+1 around xk+1 using

Yk+1 and the associated Lagrange polynomials {lk+1,j}pj=0. Increment k
by one and go to Step 1.

4.2.8 Implementation and experiments

4.2.8.1 Solving the subproblems

For the calculation of the normal step and the approximate Lagrange mul-
tipliers, we used a Matlab code named BLLS, developed in collaboration with
Philippe Toint and Anke Tröltzsch for solving bound-constrained linear least-
squares problems. This method is intended for small-dimensional problems
and is an active-set algorithm where the unconstrained problem is solved at
each iteration in the subspace defined by the currently active bounds, which
are determined by a projected Cauchy step. Two strategies are available for
the computation of the Cauchy point: (1) a simple Armijo backtracking lin-
easearch method starting from the stepsize corresponding to the unconstrained
minimizer along the steepest descent; (2) a successive piecewise quadratic mini-
mization, where the quadratic model is successively minimized on each segment
of the projected steepest-descent path until a (first) local minimizer is found.
As for the computation of the tangent step, we used a non-monotone spectral
projected gradient method (Birgin, Mart́ınez and Raydan, 2000) to solve the
(possibly) indefinite quadratic subproblems (4.2.22).
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4.2.8.2 Code specifications

The user may specify lower and upper bounds on the variables x by setting
values to the constants lxbounds and uxbounds, respectively, in the call to
deft funnel. Lower and upper bounds on the slacks s can be defined likewise
by setting values to the constants lsbounds and usbounds, respectively. An
example of usage of the extended DEFT-FUNNEL to solve the problem HS21
from CUTEst is given below.

1 [ x, fx, mu, pi_f, norm_gradlag, norm_cxs, Delta, nit, nfeval] = ...

2 deft_funnel(@hs21obj, @hs21cons, [-1 -1] , 0, ’lsbounds’, 0, ...

3 ’usbounds’, Inf, ’lxbounds’, [2 -50], ’uxbounds’, [50 50], ...

4 ’whichmodel’, ’regression’, ’epsilon’, 1.0e-04)

The default output of the algorithm is given by:

• x: point returned by the algorithm;

• s: values of the slack variables;

• fx: value of the objective function at x;

• mu: vector of estimates of the Lagrange multipliers;

• pi f: value of the measure of optimality at (x, s);

• norm gradlag: norm of the gradient of the Lagrangian function at (x, s,
mu);

• norm cxs: norm of c at (x, s);

• Delta: final trust region radius;

• nit: number of iterations required;

• nfeval: number of calls made to the subroutine that evaluates the ob-
jective function and the constraints.

At each iteration, deft funnel main calls the function ident actv bnds,
which identifies the active bounds at the current iterate and implements the
recursive approach described in Section 4.2.6. After that a new subspace has
been defined and a new interpolation set has been built, ident actv bnds then
calls the function deft funnel main and the algorithm proceeds by working
in the reduced dimension.

The value of the measure of optimality defined by pi f is calculated by call-
ing the function computeOptimality from the functions deft funnel main

and ident actv bnds. In the latter, it is done when some bound becomes
active, which implies that the measure of optimality must be recomputed while
considering the information of the new models. We describe below the function
computeOptimality in detail.
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1 function pi_f = computeOptimality( x, s, g_n, J_s, ls, us, lx, ux )

2

3 % Compute the dual optimiality measure by solving the problem

4 %

5 % min g_n.’ * dr

6 %

7 % s.t.: J_s * dr = 0,

8 % lx - x <= dr^x <= ux - x,

9 % ls - s <= dr^s <= us - s,

10 % ||dr|| < = 1,

11 %

12 % and by defining pi_f = -<g_n,dr*>, where ’dr*’ denotes the solution.

13

14 n = length(x);

15 m = length(s);

16

17 % define the bounds for the direction ’dr’

18

19 lb(1:n+m) = -1.0;

20 ub(1:n+m) = 1.0;

21

22 dlx = lx - x;

23 dlx = dlx’;

24 dux = ux - x;

25 dux = dux’;

26 lb(1:n) = max(lb(1:n), dlx);

27 ub(1:n) = min(ub(1:n), dux);

28

29 dls = ls - s;

30 dls = dls’;

31 dus = us - s;

32 dus = dus’;

33 lb(n+1:n+m) = max(lb(n+1:n+m),dls);

34 ub(n+1:n+m) = min(ub(n+1:n+m),dus);

35

36 initPoint = zeros(n+m, 1);

37 b = zeros(m, 1);

38

39 options = optimset(’LargeScale’,’off’,’Simplex’,’on’);

40 [dr, fevallinp, exitflag, output] = linprog(g_n, ...

41 [], [], J_s, b, lb’, ub’, initPoint, options);

42

43 % compute the dual optimality measure

44

45 if (norm(dr) > 1.0e-14)

46 pi_f = -g_n.’ * dr;

47 else

48 pi_f = 0.0;
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49 end

50

51 end

As we mentioned before, the normal step and the Lagrange multipliers are
computed by the function blls, our solver for bound-constrained linear least-
squares problems. The tangent step is then calculated by calling the function
spg, which implements the non-monotone spectral projected gradient method.
The projections onto the convex feasible set are made in spg by calling the
function quadprog of Matlab.

4.2.8.3 Numerical results

We tested the extended DEFT-FUNNEL firstly on a set of 80 small-scale
constrained problems from the CUTEst collection. The problems contain at
least one equality or inequality constraint, many of them containing both types
and some containing simple bounds as well. Among the 80 problems, 63 are in
the range of the first 113 test examples from the Hock-Schittowski collection
(Hock and Schittkowski, 1980), while the remaining are nonlinearly constrained
optimization problems found in Boggs and Tolle (1989). The choice of the test
problems is mostly based on the fact that we wanted to test DEFT-FUNNEL
on a set of benchmark problems with a small number of variables and with the
three types of constraints (bounds, equalities and inequalities) being present in
the set.

We compare the results of the four variants of our method with regard to
the way of building the interpolating models — subbasis selection, mininum
Frobenius norm, minimum `2-norm and regression — to those obtained with
COBYLA. As before, the only criterion for comparison is the number of calls
to the subroutine that evaluates the objective function and the constraints at
the same time at the required points.

The threshold ε for declaring convergence in the criticality step in DEFT-
FUNNEL was set to ε = 10−4, while the stopping criterion in COBYLA was
set to ρend = 10−4. The same values for the DEFT-FUNNEL parameters used
in the experiments with equality-constrained problems in Section 4.1.6 were
kept. In the appendix, we report the number of function evaluations required
by the methods to solve the 80 problems in the Tables A.3, A.4 and A.5.

Figure 4.8 shows the performance profiles of the four variants of DEFT-
FUNNEL. Each of these variants is then compared to COBYLA individually
in Figures 4.9 and 4.10. As it can be seen, DEFT-FUNNEL has shown supe-
rior results on the set of test problems when the interpolating models are built
from subbasis selection, minimum Frobenius norm and minimum `2-norm ap-
proaches. For the regression variant, Figure 4.10b reveals that COBYLA was
faster than DEFT-FUNNEL in most of the problems, although the latter was
able to solve more problems than the former for large values of τ .

We also tested DEFT-FUNNEL on a set of 20 small-scale linearly con-
strained optimization problems from CUTEst and compared its results with
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Figure 4.8: Log2-scaled performance profiles of DEFT-FUNNEL with different
approaches to build the models on a set of 80 problems from the CUTEst
collection.

those of the software LINCOA, a newly developed trust-region method by
Powell (2014) for linearly constrained optimization without derivatives. His
software combines active-set methods with truncated conjugate gradients and
uses quadratic interpolation models for the objective function. The user is re-
quired to provide a feasible starting point, the Jacobian matrix and the vector of
constants in the right side of the constraints as inputs. Since many of CUTEst
problems provide an infeasible starting point, we chose a feasible one instead
for the sake of comparison. The stopping criterion used in LINCOA is the
same found in COBYLA, i.e., the algorithm stops when the trust region radius
ρ ∈ [ρend, ρbeg] reaches the smallest value allowed ρend. In our experiments,
we set ρend = 10−4. Regarding the parameter setting in DEFT-FUNNEL, the
same values were kept for comparison with LINCOA. Table A.6 in the appendix
show the number of function evaluations required by the methods to solve the
20 linearly constrained problems.

In Figure 4.11, performance profiles of the four variants of DEFT-FUNNEL
for the 20 linearly constrained problems are given. We compare each variant
of our method to LINCOA in Figures 4.12 and 4.13. The results reported in
Figures 4.12a and 4.12b reveal a superior performance of LINCOA over DEFT-
FUNNEL/Subbasis and DEFT-FUNNEL/Frobenius. On the other hand, Fig-
ure 4.13a shows that DEFT-FUNNEL/Min. `2-norm was faster than LIN-
COA. In Figure 4.13b, it can be seen that DEFT-FUNNEL/Regression also
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Figure 4.9: Log2-scaled performance profiles of the methods DEFT-FUNNEL
and COBYLA on a set of 80 problems from the CUTEst collection.
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Figure 4.10: Log2-scaled performance profiles of the methods DEFT-FUNNEL
and COBYLA on a set of 80 problems from the CUTEst collection.
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was slightly faster, although LINCOA presented superior performance for large
values of τ , which indicates more robustness.
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Figure 4.11: Log2-scaled performance profiles of DEFT-FUNNEL with different
approaches to build the models on a set of 20 linearly constrained problems
from the CUTEst collection.

We conclude this section by noticing that the performance profiles presented
here give clear indication that DEFT-FUNNEL provides encouraging results for
small-scale nonlinear optimization problems with general nonlinear constraints.
For the case where the user knows that the constraint functions are linear and
he is able to provide their gradients, it might be interesting to the handle those
constraints separately rather than lumping them and other general nonlinear
constraints together in c(x).
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Figure 4.12: Log2-scaled performance profiles of DEFT-FUNNEL and
COBYLA on a set of 20 linearly constrained problems from the CUTEst col-
lection.
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Figure 4.13: Log2-scaled performance profiles of DEFT-FUNNEL and
COBYLA on a set of 20 linearly constrained problems from the CUTEst col-
lection.
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Chapter 5

Worst-case evaluation
complexity

The worst-case evaluation complexity of optimization algorithms applied on
nonlinear and potentially nonconvex problems has been studied in a sequence
of recent papers, both for the unconstrained case (Nesterov, 2004; Gratton,
Sartenaer and Toint, 2008; Nesterov and Polyak, 2006; Cartis, Gould and
Toint, 2011a) and for the constrained one (Cartis, Gould and Toint, 2012a,
2014). Of particular interest here are the results of Nesterov (2004), page 29,
in which this author analyzes the worst-case behaviour of the steepest descent
method for unconstrained minimization (both for exact and approximate line-
searches) and shows that an approximate first-order stationary point, that is,
a point at which the norm of the gradient of the objective function is less than
ε > 0, must be obtained in at most O(ε−2) iterations. Nesterov’s analysis of the
steepest-descent variants therefore effectively assumes that a single objective
function value per iteration is computed, or at least that the number of such
evaluations in the course of a single iteration is bounded. His bounds thus spec-
ify iteration-complexity rather than evaluation complexity. At variance, more
typical implementations use a linesearch to compute a suitable steplength, with
the possible drawback that an unknown number of additional function evalu-
ations may be required during the course of a single iteration. The question
of the worst-case objective-function evaluation complexity of linesearch imple-
mentations of this type has not yet been considered specifically. Interestingly,
a worst-case complexity analysis is available for other first-order algorithms,
such as first-order trust-region methods (Gratton et al., 2008) and first-order
regularization algorithms (Cartis, Gould and Toint, 2011b).

In parallel, it has long been known that “gradient-related” minimization
methods share a number of their convergence properties with the steepest-
descent algorithm (see Ortega and Rheinboldt, 2000, for an early reference).
In these methods, a linesearch is performed along a direction whose angle with

103
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the negative gradient is bounded away from orthogonality. This class covers a
wide range of practical algorithms, including for instance variable-metric tech-
niques or finite-difference schemes when Hessian approximations have bounded
conditioning (see Nocedal and Wright, 1999, page 40, for instance). Despite
their close connection with steepest descent, their worst-case analysis remains
so far an open question.

Standard linesearch methods are usually defined in a way which ensures
monotonically decreasing objective-function values as the iterations proceed.
However, “non-monotone” generalizations of these algorithms, where this mono-
tonicity property is abandoned, have gained respect in practice because of their
often better performance (see Section 2.3.1 for more details on these methods).
Again, the worst-case performance of this interesting class of algorithms is so
far unexplored.

In the second part of this thesis, we bring together these three questions
(standard linesearch, gradient-related directions and non-monotonicity) and
provide an analysis which covers them all. We therefore consider non-monotone
gradient-related linesearch optimization methods and show that, as for steepest-
descent, their objective-function evaluation complexity is O(ε−2). Note that
standard monotone variants are also covered by this analysis.

5.1 The problem and the algorithm

We consider the nonlinear and possibly nonconvex smooth unconstrained
minimization problem {

min
x

f(x)

s.t.: x ∈ IRn,
(5.1.1)

for which we assume the following:

AF0 f(x) is bounded below on IRn, that is, there exists a constant(1) κlbf

such that, for all x ∈ IRn, f(x) ≥ κlbf.

AF1 f(x) is continuously differentiable on IRn.

As stated in the introduction of this chapter, we consider a class of algo-
rithm in which the search directions are “gradient-related” (see Ortega and
Rheinboldt, 2000, page 495, and Bertsekas, 1999, page 35). This terminology
means that, at iteration k, an approximate unidimensional minimization of
the objective function is performed along a direction dk whose angle with the
steepest descent is controlled by the conditions

〈gk, dk〉 ≤ −κ1‖gk‖2 and ‖dk‖ ≤ κ2‖gk‖, (5.1.2)

(1)“lbf” stands for “lower bound on the objective function”.
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where gk
def
= g(xk)

def
= ∇f(xk) and κ1 and κ2 are positive constants independent

of k.
Once the direction is fixed, it is then used in a non-monotone linesearch. We

choose here a Goldstein-Armijo variant (see Section 2.3.1), in which a stepsize
tk (yielding a new iterate xk+1 = xk+tkdk) is accepted whenever the conditions

f(xk + tkdk) ≤ max
0≤j≤M

[f(xk−j)] + α tk〈gk, dk〉, (5.1.3)

and
f(xk + tkdk) ≥ max

0≤j≤M
[f(xk−j)] + β tk〈gk, dk〉 (5.1.4)

hold, where M ≥ 0, α ∈ (0, 1) and β ∈ (α, 1) are constants independent of k,
and where, by convention, x−M = . . . x−1 = x0. Note that M = 0 corresponds
to the monotone case.

The class of algorithms of interest may now be stated formally as Algo-
rithm 5.1.1.

Algorithm 5.1.1: Gradient-related non-monotone linesearch.

Step 0: Initialization. An initial point x0 is given, as well as an accuracy
level ε > 0. The constants tini, M , α and β are also given, satisfying
tini > 0, M ≥ 0 and 0 < α < β < 1. Compute f(x0), g0 and set k = 0.

Step 1: Test for termination. If ‖gk‖ ≤ ε, terminate.

Step 2: Select a search direction. Choose dk such that (5.1.2) holds.

Step 3: Linesearch: test initial stepsize.

1. Set tk = tini > 0, tlow = 0 and compute f(xk + tkdk).

2. If (5.1.3) fails, go to Step 4.

3. If (5.1.4) fails, go to Step 5.

4. Else go to Step 7.

Step 4: Linesearch: backtracking.

1. While (5.1.3) fails, set tup ←− tk, tk ←− 1
2 tk and compute f(xk+tkdk).

2. If (5.1.4) holds, go to Step 7, or set tlow ←− tk and go to Step 6
otherwise.

Step 5: Linesearch: look ahead.

1. While (5.1.4) fails, set tlow ←− tk, tk ←− 2tk and compute f(xk +
tkdk).

2. If (5.1.3) holds, go to Step 7, or set tup ←− tk and go to Step 6
otherwise.
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Step 6: Linesearch: bisect inside bracket.

1. Set tk ←− 1
2 (tlow + tup) and compute f(xk + tkdk).

2. If (5.1.3) fails, set tup ←− tk and return to Step 6.

3. If (5.1.4) fails, set tlow ←− tk and return to Step 6.

Step 7: Compute the new iterate and gradient. Set xk+1 = xk + tkdk
and compute gk+1 = g(xk+1). Increment k by one and return to Step 1.

Note that the successive phases of the Goldstein-Armijo technique are ap-
parent in the algorithm’s description: a bracket containing the desired step is
first identified by backtracking (Step 4) or look-ahead (Step 5), and the final
step is then computed by bisection (Step 6).

5.2 Worst-case analysis

We now analyze the worst-case behaviour of Algorithm 5.1.1. A first step
in this analysis is to specify our assumptions.

AF2 Assume that g(x) is Lipschitz continuous on IRn, that is there exists
a constant Lg > 0 such that, for all x, y ∈ IRn,

‖g(x)− g(y)‖ ≤ Lg‖x− y‖.

The first simple but crucial property that can be deduced from these as-
sumptions is that the stepsize is bounded below by a constant inversely pro-
portional to the Lipschitz constant Lg.

Lemma 5.2.1. Suppose that AF0–AF2 hold. Then any value of t > 0
such that (5.1.4) holds for tk = t also satisfies the inequality

t ≥ 2(1− β)κ1

Lgκ2
2

. (5.2.1)

Proof. We successively use the mean value theorem, the Cauchy-Schwarz
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inequality and AF2 to obtain that

f(xk + tdk) = f(xk) + t〈gk, dk〉+

∫ 1

0

〈g(xk + τtdk)− gk, tdk〉dτ

≤ f(xk) + t〈gk, dk〉+ t‖dk‖
∫ 1

0

‖g(xk + τtdk)− gk‖dτ

≤ f(xk) + t〈gk, dk〉+ 1
2 t

2Lg‖dk‖2

≤ max
0≤j≤M

[f(xk−j)] + t〈gk, dk〉+
1

2
t2Lg‖dk‖2.

(5.2.2)
Combining this relation with (5.1.4) and (5.1.2), we have that

t ≥ 2〈gk, dk〉(β − 1)

Lg‖dk‖2
≥ 2(1− β)κ1‖gk‖2

Lg‖gk‖2κ2
2

=
2(1− β)κ1

Lgκ2
2

. (5.2.3)

2

We now prove that there is a finite and non-empty interval of acceptable
stepsizes.

Lemma 5.2.2. Suppose that AF0-AF1 hold and that gk 6= 0. Then there
exists an interval [tβk , t

α
k ] such that

0 < tβk < tαk < +∞ (5.2.4)

and (5.1.3)-(5.1.4) hold for every value of tk ∈ [tβk , t
α
k ].

Proof. Observe first that the slope of f(xk + tdk) is steeper than that
of the straight lines f(xk) +αt〈gk, dk〉 and f(xk) + βt〈gk, dk〉, (t ≥ 0), since
α < 1 and β < 1. Thus, for all t > 0 sufficiently small,

f(xk + tdk) < f(xk) + αt〈gk, dk〉 ≤ max
0≤j≤M

f(xk−j) + αt〈gk, dk〉 (5.2.5)

and

f(xk + tdk) < f(xk) + βt〈gk, dk〉 ≤ max
0≤j≤M

f(xk−j) + βt〈gk, dk〉. (5.2.6)

It follows from (5.2.5) that (5.1.3) holds for all tk sufficiently small. Fur-
thermore, (5.1.3) does not hold in the limit as tk = t→∞ since

f(xk) + αt〈gk, dk〉 ≤ f(xk)− αtκ1‖gk‖2 → −∞

(because of (5.1.2)), while f(xk + tdk) ≥ κlbf for all t due to AF0. Thus
there exists a value 0 < tαk <∞ such that

f(xk + tαkdk) = max
0≤j≤M

f(xk−j) + αtαk 〈gk, dk〉. (5.2.7)
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For simplicity, let us choose the smallest tαk that satisfies (5.2.7) so that (5.2.5)
holds for all t ∈ (0, tαk ). Since α < β < 1, we note that

max
0≤j≤M

f(xk−j) + βt〈gk, dk〉 < max
0≤j≤M

f(xk−j) + αt〈gk, dk〉 for all t > 0.

Letting t = tαk in this inequality and using (5.2.7), we deduce that (5.1.4)
must continue to hold for 0 < tk = t < tαk sufficiently close to tαk . However,
(5.2.6) implies that (5.1.4) must fail for sufficiently small t > 0, and using

again AF1, we conclude that there exists 0 < tβk < tαk such that

f(xk + tβkdk) = max
0≤j≤M

f(xk−j) + βtβk〈gk, dk〉, (5.2.8)

and (5.1.4) holds for all tk ∈ [tβk , t
α
k ]. (Clearly, tβk must be distinct from

tαk <∞ due to (5.2.7), (5.2.8) and α < β.) This conclude the proof since
(5.1.3) holds for tk in the same interval due to (5.2.5) and the definition of
tαk . 2

Having proved the existence of an interval of acceptable stepsizes, we now
verify that the measure of this interval is bounded below by some positive
constant.

Lemma 5.2.3. Suppose that AF0-AF2 hold, and define tαk and tβk to be any
solutions of (5.2.7) and (5.2.8), respectively, such that (5.1.3) and (5.1.4)

hold for each t ∈ [tβk , t
α
k ]. Then the interval [tβk , t

α
k ] has a strictly positive

measure in the sense that there exists a constant κint > 0 only depending
on α, β, κ1, κ2 and Lg such that

tαk − t
β
k ≥ κint. (5.2.9)

Proof. Assume first that f(xk + tαkdk) ≤ f(xk + tβkdk). Then (5.2.7)

and (5.2.8) imply that αtαk > βtβk , and so, using also Lemma 5.2.1,

tαk − t
β
k ≥

β − α
α

tβk ≥
2(β − α)(1− β)κ1

αLgκ2
2

. (5.2.10)

Suppose now that f(xk + tαkdk) > f(xk + tβkdk). Applying the mean value

theorem to f(x+ td) on [tβk , t
α
k ] yields that

f(xk + tαkdk)− f(xk + tβkdk) = (tαk − t
β
k)〈g(xk + tξdk), dk〉

≤ (tαk − t
β
k)‖g(xk + tξdk)‖ ‖dk‖

≤ (tαk − t
β
k)κ2‖g(xk + tξdk)‖ ‖gk‖,
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where tξ ∈ (tβk , t
α
k ) and where the first inequality follows from the Cauchy-

Schwarz inequality and the second from (5.1.2). Furthermore, the Lipschitz
continuity of g (AF2), (5.1.2) and the bound tξ < tαk give that

‖g(xk + tξdk)‖ ≤ ‖g(xk + tξdk)− gk‖+ ‖gk‖
≤ Lgtξ‖dk‖+ ‖gk‖
≤ Lgtξκ2‖gk‖+ ‖gk‖
≤ (Lgt

α
kκ2 + 1)‖gk‖.

Thus

f(xk + tαkdk)− f(xk + tβkdk) ≤ κ2(tαk − t
β
k)(Lgt

α
kκ2 + 1)‖gk‖2. (5.2.11)

The definition of tαk and tβk in Lemma 5.2.2 then gives that (5.2.7) and (5.2.8)
both hold, and so

f(xk + tαkdk)− f(xk + tβkdk) = αtαk 〈gk, dk〉 − βt
β
k〈gk, dk〉

= (αtαk − βt
β
k)〈gk, dk〉

≥ (βtβk − αtαk )κ1‖gk‖2,
(5.2.12)

where we have again used the Cauchy-Schwartz inequality and (5.1.2) to
deduce the last inequality. From (5.2.11), we now deduce that

(βtβk − αt
α
k )κ1 ≤ κ2(tαk − t

β
k)(Lgt

α
kκ2 + 1). (5.2.13)

This inequality is equivalent to

κ2
2Lg(t

α
k )2 + (κ2 + ακ1 − κ2

2Lgt
β
k)tαk − (κ2 + βκ1)tβk ≥ 0, (5.2.14)

and so, since tαk > 0, we deduce that

tαk ≥
κ2

2Lgt
β
k − κ2 − ακ1 +

√
(κ2 + ακ1 − κ2

2Lgt
β
k)2 + 4(κ2 + βκ1)κ2

2Lgt
β
k

2κ2
2Lg

,

(5.2.15)
and therefore that

2κ2
2Lg(t

α
k − t

β
k) ≥ −(κ2 + ακ1 + κ2

2Lgt
β
k) + S(tβk)

=
−(κ2 + ακ1 + κ2

2Lgt
β
k)2 + S(tβk)2

κ2 + ακ1 + κ2
2Lgt

β
k + S(tβk)

=
4(β − α)κ1κ

2
2Lgt

β
k

κ2 + ακ1 + κ2
2Lgt

β
k + S(tβk)

, (5.2.16)

where S(tβk)
def
=
√

(κ2 + ακ1 − κ2
2Lgt

β
k)2 + 4(κ2 + βκ1)κ2

2Lgt
β
k . As a conse-

quence, we obtain that

(tαk − t
β
k)

2(β − α)κ1
≥

tβk
κ2 + ακ1 + κ2

2Lgt
β
k + S(tβk)

def
= E(tβk). (5.2.17)
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Differentiating E(tβk) with respect to tβk then gives that

E′(tβk) =
κ2 + ακ1 + κ2

2Lgt
β
k + S(tβk)[

κ2 + ακ1 + κ2
2Lgt

β
k + S(tβk)

]2

−
tβk

[
κ2

2Lg +
−(κ2 + ακ1 − κ2

2Lgt
β
k)κ2

2Lg + 2(κ2 + βκ1)κ2
2Lg

S(tβk)

]
[
κ2 + ακ1 + κ2

2Lgt
β
k + S(tβk)

]2
=

(κ2 + ακ1)S(tβk) + (κ2 + ακ1 − κ2
2Lgt

β
k)2[

κ2 + ακ1 + κ2
2Lgt

β
k + S(tβk)

]2
S(tβk)

+
(κ2 + ακ1 − κ2

2Lgt
β
k)κ2

2Lgt
β
k + 2(κ2 + βκ1)κ2

2Lgt
β
k[

κ2 + ακ1 + κ2
2Lgt

β
k + S(tβk)

]2
S(tβk)

=
(κ2 + ακ1)[S(tβk) + κ2 + ακ1 − κ2

2Lgt
β
k ] + 2(κ2 + βκ1)κ2

2Lgt
β
k[

κ2 + ακ1 + κ2
2Lgt

β
k + S(tβk)

]2
S(tβk)

.

(5.2.18)

It then follows that
E′(tβk) > 0 for all tβk > 0

since

S(tβk) + κ2 + ακ1 − κ2
2Lgt

β
k > |κ2 + ακ1 − κ2

2Lgt
β
k |+ κ2 + ακ1 − κ2

2Lgt
β
k ≥ 0

and each constant and variable in E′(tβk) is positive. Thus E(tβk) is increasing

as a function of tβk , and we obtain, because of Lemma 5.2.1 and the fact

that (5.1.4) holds at tβk by construction, that

E(tβk) ≥ E
(

2(1− β)κ1

Lgκ2
2

)
,

and we finally deduce from (5.2.17) that

tαk − t
β
k ≥ 2(β − α)κ1E

(
2(1− β)κ1

Lgκ2
2

)
.

Combining this with (5.2.10), we deduce that (5.2.9) holds with

κint

def
= 2(β − α)κ1 min

[
(1− β)

αLgκ2
2

, E

(
2(1− β)κ1

Lgκ2
2

)]
,

where this lower bound only depends on α, β, κ1, κ2 and Lg, as desired. 2
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We now turn to estimating the worst-case evaluation complexity of Algo-
rithm 5.1.1 for the task of finding an ε-first-order stationary point. The follow-
ing theorem completes the second part of this thesis with the final contribution
of this work.

Theorem 5.2.4. Suppose that AF0-AF2 hold. Then, for any ε ∈ (0, 1),
Algorithm 5.1.1 needs at most⌈

f(x0)− κlbf

κdecrε2

⌉
function evaluations to produce an iterate xk such that ‖gk‖ ≤ ε, where
κlbf is defined in AF0 and where

κdecr

def
= ακ1 min

[
2(1− β)κ1

Lgκ2
2 max[n1, n2]

,
tini

2(n2 + 1)

]
with

n1
def
=

∣∣∣∣log2

(
(1− β)κ1

tiniLgκ2
2

)∣∣∣∣ and n2
def
=

∣∣∣∣log2

(
κint

tini

)∣∣∣∣ .
Proof. The proof proceeds by first establishing the minimum achieved
decrease in the objective function between iterate xk+1 and its “predecessor”
xτ(k+1), where

τ(k + 1) = k − arg max
0≤j≤M

f(xk−j) (5.2.19)

when using Algorithm 5.1.1.

• Assume first that both (5.1.3) and (5.1.4) hold for tk = tini (in Step 3).
Then we obtain a decrease

f(xτ(k+1))− f(xk+1) ≥ −α tini〈gk, dk〉 ≥ α tiniκ1‖gk‖2, (5.2.20)

because of (5.1.3) and (5.1.2), and this decrease is obtained for a single
additional function evaluation.

• Assume now that (5.1.3) fails at Step 3.2, and Step 4 is therefore en-
tered. Assume furthermore that j3 ≥ 1 backtracking steps are per-
formed in Step 4.1. The j3 is the smallest non-negative integer such
that (5.1.3) holds for tk = tini2

−j3 , which means that j3 is the largest
integer for which this inequality is violated for t = tini2

−j3+1. Because
α < β, we deduce that (5.1.4) must hold for this value of tk. Using
now Lemma 5.2.1, we obtain that

t = 2−j3+1tini ≥
2(1− β)κ1

Lgκ2
2

,
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which in turn implies that

j3 ≤
∣∣∣∣log2

(
(1− β)κ1

tiniLgκ2
2

)∣∣∣∣ def
= n1. (5.2.21)

Step 4 therefore requires at most n1 function evaluations. If the line-
search is terminated in Step 4.2 (i.e., branching occurs to Step 7), we
obtain a decrease

f(xτ(k+1))− f(xk+1) ≥ −α tk〈gk, dk〉

≥ α 2(1− β)κ1

Lgκ2
2

κ1‖gk‖2, (5.2.22)

where we used (5.1.3), (5.1.4), (5.1.2) and Lemma 5.2.1 successively.

• If the linesearch is not terminated in Step 4, Step 6 must be entered,
with a bracket [tlow, tup] where

tlow = 2−j3tini =
1

2
tup.

Thus

tup − tlow =
1

2
2−j3+1tini = 2−j3tini.

We know from Lemma 5.2.3 that the length of the admissible interval is
at least equal to κint > 0, where this constant only depends on α, β and
Lg. Thus the number j4 ≥ 1 of bisection (and function evaluations)
within Step 6 is bounded above by the smallest integer such that

2−j4(tup − tlow) = 2−j42−j3tini ≥ κint,

which then yields that the total number of function evaluations in Step
4 and 6 is bounded by

j3 + j4 ≤
∣∣∣∣log2

(
κint

tini

)∣∣∣∣ def
= n2.

If we now compute the decrease obtained, we deduce, again from
(5.1.3), (5.1.4) and Lemma 5.2.1, that (5.2.22) also holds in this case.

• Assume now that (5.1.4) fails in Step 3.3, and thus that Step 5 is
entered. Assume furthermore that j2 ≥ 1 doubling of tk (and j2 func-
tion evaluations) occur in Step 5.1 (we know that j2 is finite because
of (5.2.4)). If the lineasearch is terminated in Step 5.2 (i.e., branch-
ing to Step 7 occurs), we obtain that the function decrease obtained is
bounded below by

f(xτ(k+1))− f(xk+1) ≥ −αtk〈gk, dk〉 ≥ α2j2tiniκ1‖gk‖2.
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• The final case is when Step 6 is entered after Step 5, in which case the
initial bracket for Step 6 is given by [tlow, tup] where

tlow = 2j2−1tini =
1

2
tup.

Thus

tup − tlow =
1

2
2j2tini = 2j2−1tini.

Just as in the case where Step 6 is entered after Step 4, we now deduce
that the number j4 of bisections and function evaluations needed to
reduce this bracket to the minimum possible value κint is limited by
the inequality

2−j42j2−1tini = 2−j4(tup − tlow) ≥ κint,

yielding a maximum number of bisection (and function evaluation) in
Step 6 bounded by

j4 ≤ j2 − 1 +

∣∣∣∣log2

(
κint

tini

)∣∣∣∣ = j2 − 1 + n2 ≤ j2(n2 + 1).

In this final case, since tk ≥ tlow = 2j2−1tini and (5.1.3) holds at tk, the
function decrease is bounded below by

f(xτ(k+1))− f(xk+1) ≥ −αtk〈gk, dk〉 ≥ α2j2−1tiniκ1‖gk‖2.

Gathering all cases together, we see that the function decrease per function
evaluation is given, in the worst case, by

min

[
tini

1
,

2(1− β)κ1

Lgκ2
2n1

,
2(1− β)κ1

Lgκ2
2n2

,
2j2tini

j2
,

2j2−1tini
2j2(n2 + 1)

]
ακ1‖gk‖2, (5.2.23)

where, by construction, n1 and n2 only depend on α, β, κ1, κ2, Lg and tini.
Noting that, for j2 ≥ 1,

2j2

j2
≥ 2 and

2j2−1

2j2
≥ 1

2

we define

κdecr

def
= ακ1 min

[
2(1− β)κ1

Lgκ2
2 max[n1, n2]

,
tini

2(n2 + 1)

]
.

Since κdecr‖gk‖2 is the function decrease per function evaluation in the worst
case, we conclude that a decrease from f(xτ(k+1)) to f(xk+1) requires at
most ⌈

f(xτ(k+1))− f(xk+1)

κdecr‖gk‖2

⌉
≤
⌈
f(xτ(k+1))− f(xk+1)

κdecrε2

⌉
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function evaluations as long as the algorithm does not terminate (i.e., as
long as ‖gk‖ ≥ ε). Tracing back the predecessors of iterate xk+1 up to x0

and denoting the composition of j instances of the predecessor operator τ(·)
by τ j(·), we also deduce that at most⌈

f(xτj+1(k+1))− f(xτj(k+1))

κdecrε2

⌉
function evaluations are needed to obtain a reduction from f(xτj+1(k+1)) to
f(xτj(k+1)), for all j = 0, . . . , pk, for pk such that xτpk (k+1) = x0 and where,

by convention, τ0(k + 1)
def
= k + 1. Using the definition of τ(·) in (5.2.19),

we conclude that a reduction from f(x0) to f(xk+1) requires at most⌈∑pk
j=0[f(xτj+1(k+1))− f(xτj(k+1))])

κdecrε2

⌉
=

⌈
f(x0)− f(xk+1)

κdecrε2

⌉
function evaluations. Since f(x0)−f(xk+1) ≤ f(x0)−κlbf by AF0, we obtain
that the total number of function evaluations in Algorithm 5.1.1 is bounded
above by ⌈

f(x0)− κlbf

κdecrε2

⌉
.

2

As it can be seen in the above result, the constant κdecr is proportional to κ1

and inversely proportional to κ2, which are positive constants used in (5.1.2) to
define gradient-related search directions. In an attempt to obtain an intuitive
view of this relation, assume that the directions dk are defined as

dk = −Dk∇f(xk),

whereDk is a positive definite symmetric matrix whose eigenvalues are bounded
above and bounded away from zero, i.e.

κ1‖z‖2 ≤ 〈z,Dkz〉 ≤ κ2‖z‖2, ∀z ∈ IRn, k = 0, 1, . . . (5.2.24)

Then we have that

|〈∇f(xk), dk〉| = |〈∇f(xk), Dk∇f(xk)〉| ≥ κ1‖∇f(xk)‖2

and
‖dk‖2 = |〈∇f(xk), (Dk)2∇f(xk)〉| ≤ κ2

2‖∇f(xk)‖2.

Because of the bounded eigenvalues condition, the directions {dk} defined as
above are gradient-related. Returning now to the role of the constants κ1 and
κ2 in the complexity result, it can be seen that, in this particular case, the
ideal is to choose matrices Dk with eigenvalues that have bounds that are as
large as possible and as small as possible at the same time. Therefore, we may
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conclude that the constants κ1 and κ2 given by a particular method to obtain
the direction d have no major influence in the complexity of the method. On
the other hand, one can see that the evaluation complexity decreases as the
initial step size tini increases. Regarding the parameters α and β, it can be seen
that large values for α are ideal, while small values for β contribute to decrease
the overall complexity. Concerning the Lipschitz constant Lg, it is difficult
to conclude something about its ideal value. In the first fraction of κdecr, we
see that the smaller is the limit in how fast the gradient of f can change, the
larger κdecr will be. Nevertheless, the inverse may occur when one considers
the value of Lg in the definition of n1, where large values for Lg may be better.
Note also that if Lg is too large, the fraction in n1 approaches zero, which
makes n1 increase. Finally, it is clear that the number of function evaluations
needed to find an ε first-order critical point also depends on the choice of the
starting point x0; the smaller its function value is, the less function evaluations
are needed in the worst case. Besides, the starting point x0 also influences
the Lipschitz constant as, in practice, it suffices that the property of Lipschitz
continuity hold on the level set L(x0) = {x ∈ IRn | f(x) ≤ f(x0)}.
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Chapter 6

Conclusions and further
research perspectives

The research work described in this thesis is concerned with the design
and implementation of a new trust-region algorithm for constrained derivative-
free optimization and the worst-case evaluation complexity analysis of non-
monotone gradient-related algorithms for unconstrained optimization.

In Chapter 2, we have presented the fundamental principles of nonlinear
optimization as well as some of the algorithms used to solve unconstrained and
constrained problems. Chapters 3 and 4 have been concerned with the area
of derivative-free optimization, which is the research topic of our first main
contribution. In particular, Chapter 3 has introduced the important class of
derivative-free trust-region methods based on polynomial interpolation models
after an introduction of the basic concepts of multivariate polynomial inter-
polation. In Chapter 4, we have proposed our method for solving constrained
nonlinear optimization problems without derivatives, discussing some imple-
mentation issues and showing numerical results from our experiments. Finally,
Chapter 5 has established worst-case evaluation complexity bounds for the
solution of unconstrained problems using non-monotone gradient-related algo-
rithms.

In the next two sections, we review the development of our work on both
research topics and draw some final conclusions on each one of them.

6.1 Constrained derivative-free optimization

Firstly, we have proposed a new derivative-free algorithm for equality-
constrained optimization problems based on the trust-funnel approach of Gould
and Toint (2010). The devised algorithm, named DEFT-FUNNEL, makes use
of neither the derivatives of the objective function nor the derivatives of the
constraints. It also considers both the objective and constraints as black-box

117
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functions. It employs an ensemble of underlying techniques such as multivari-
ate polynomial interpolation for the construction of surrogate models and a
self-correcting geometry mechanism for the maintenance of the interpolation
set. We have tested the proposed method on a set of 29 small-scale equality-
constrained problems from the CUTEst collection and presented encouraging
results. Four described variants of the new method differing by their choice of
construction of the models surpassed two other trust-region methods, CDFO
(Colson, 2004) and COBYLA (Powell, 1994). Among these variants, the min-
imum `2-norm model variant outperformed the subbasis selection and also,
somewhat surprisingly, the minimum Frobenius norm approach. We then have
extended the original derivative-based trust-funnel method to problems with
both equality and inequality constraints and where simple bounds are also
considered. When simple bounds are given, the algorithm makes use of an
active-set approach to perform minimization on the subspaces defined by the
active bounds. Finally, we modified DEFT-FUNNEL in order to obtain a final
method that can be used to solve problems with general nonlinear constraints
where the derivatives are unavailable. For the case where bound constraints
are present, we have shown how the algorithm reduces the dimension of the
problem by using recursion within a subspace minimization approach in order
to avoid a potential degeneration of the interpolation set when the solution is
approached. Numerical experiments on a set of 80 small-scale nonlinear opti-
mization problems with general nonlinear constraints and on a set of 20 small-
scale linearly constrained optimization problems were performed and showed
that our method compares favorably to competing algorithms, namely: CDFO,
COBYLA, and LINCOA (Powell, 2014). Finally, we note that the methods pro-
posed in this thesis are the subject of two papers by Sampaio and Toint (2015a,
2015b).

For future research, we plan to consider the possibility of having two differ-
ent interpolations sets for the objective function and the constraints and ana-
lyze the performance of DEFT-FUNNEL for the cases where the constraints are
linear, while the objective function is of higher degree. Another interesting sub-
ject of research would concern the subspace minimization approach described
in Section 4.2.6 for handling the bounds. The idea of reducing the dimension
of the problem to thwart the degeneration of the interpolation set may also be
applied to more general constraints as well. In case where the constraints are
linear, it is easy to see that all the interpolation points will eventually be fea-
sible iterates generated by the algorithm. This implies that the interpolation
points will become affinely dependent, and, therefore, the quality of the geom-
etry of the interpolation set will deteriorate. A similar approach to avoid this
situation can be applied by working in the subspace defined by the nullspace of
the Jacobian matrix. For the case of nonlinear constraints, the same idea can
be used with an additional care to ensure that the iterates in the tangent space
of the constraints do not deviate too much from the feasible set. Particularly
for this case, the subspace minimization approach might yield better results
as the iterates get closer to the solution. We also intend to include the least
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Frobenius norm and the minimum `1-norm updating approaches for building
the models into DEFT-FUNNEL as they can be advantageous in many situa-
tions. Finally, convergence results for both derivative-based and -free versions
of the algorithm are also of interest and are left as a development line for future
work.

6.2 Worst-case evaluation complexity

We have shown that gradient-related methods using a non-monotone (and
monotone) linesearch will find an ε-approximate first-order critical point of
a smooth function with Lipschitz gradient in O(ε−2) function and gradient
evaluations at most. Their worst-case behaviour is therefore, up to a factor,
equivalent to that of a simple monotone pure steepest-descent algorithm, albeit
their practical performance is often superior (see Toint, 1996). Moreover, it
results from Cartis, Gould and Toint (2010) that this bound is sharp. We also
note that the results on worst-case evaluation complexity demonstrated here
are published in the paper by Cartis, Sampaio and Toint (2015).

In the same line of investigation, Cartis, Gould and Toint (2012b) show
that the same complexity order is obtained for the steepest-descent method
with exact linesearch and that it is sharp. One may expect that this result
can be extended to the gradient-related algorithms analyzed in the present
note, although the construction of an example illustrating the sharpness of the
complexity bound is likely to be challenging without monotonicity.
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Appendix A

Detailed numerical results

We report here the number of function evaluations required by DEFT-
FUNNEL and other derivative-free methods to converge on a set of problems
from the CUTEST collection. The first two tables concern the tests with the
first version of our method on a set of equality-constrained problems, while the
remaining are related to problems with general nonlinear constraints. For the
latter group, we denote by mB, mEQ and mIQ the number of constraints in the
problem of the type bound, equality and inequality, respectively. The limit of
function evaluations imposed in our experiments was 500 × n, where n is the
number of variables in the problem. We indicate by “NaN” (standing for not a
number) the problems where no convergence to a solution was achieved within
this limit.
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