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Abstract. Turing instabilities for a two species reaction-diffusion system is studied under anisotropic dif-
fusion. More specifically, the diffusion constants which characterize the ability of the species to relocate in
space are direction sensitive. Under this working hypothesis, the conditions for the onset of the instability
are mathematically derived and numerically validated. Patterns which closely resemble those obtained in
the classical context of isotropic diffusion, develop when the usual Turing condition is violated, along one
of the two accessible directions of migration. Remarkably, the instability can also set in when the acti-
vator diffuses faster than the inhibitor, along the direction for which the usual Turing conditions are not
matched.

1 Introduction

Spatio-temporal patterns are widespread in nature: beau-
tiful spots and stripes appear on the coat of animals [1],
patterns of cracking emerge on the fracture surface of
materials [2], reacting chemicals give rise to complex
and dynamical structures as in the celebrated Belousov-
Zhabotinsky reaction [3–5], spatial games in social sci-
ences yield self-organized regular motifs [6–9]. A common
feature which is shared by the above mentioned applica-
tions is the spontaneous formation of complex structures,
which result from the non trivial interplay between noise
and deterministic dynamics. Elucidating the key mecha-
nisms that seed the process of pattern formation is there-
fore an important topic of investigation of cross disci-
plinary impact.

One of such mechanisms was identified and thoroughly
discussed in a pioneering work of Turing [10]: homoge-
neous equilibrium solutions of a multi-species reaction-
diffusion system can be destabilized upon injection of a
small inhomogeneous perturbation. This latter undergoes
an exponential amplification, in the linear regime of the
evolution. Then, nonlinearities come into play and the sys-
tem eventually reaches a patchy, spatially inhomogeneous,
equilibrium. Traveling waves and spiraling patterns can be
also generated following a Turing-like, symmetry breaking
instability.

In the classical setting, two mutually interacting
species are considered: these are the so-called activator

a e-mail: timoteo.carletti@unamur.be

and inhibitor. If the diffusion is isotropic, or in other
words not affected by the specific direction of displace-
ment, the inhibitor species should diffuse faster than the
activator, for Turing patterns to develop. Systems of three
simultaneously diffusing species [11] have also been con-
sidered in the literature and shown to display a richer
zoology of possible instabilities and pattern. In this gen-
eralized context, self-organized motifs can also develop, if
one species is solely allowed to diffuse in the embedding
medium [12]. Beyond the deterministic scenario, stochas-
tic Turing patterns have been also reported for reaction-
diffusion systems defined on a regular lattice or complex
networks [13–16].

Starting from these premises, and with reference to
the paradigmatic scenario where just two species are made
to interact, we shall here revisit the conditions that yield
the Turing instability, under the assumption of anisotropic
diffusion. More concretely, we shall derive sufficient con-
ditions for the emergence of Turing like patterns in a rect-
angular, continuous, domain subject to periodic bound-
ary conditions, assuming generic nonlinear reaction terms
and imposing anisotropic, i.e. direction sensitive, diffusion
coefficients.

As we will demonstrate in the following, patterns do
exist also if the condition for the onset of the Turing insta-
bility is uniquely satisfied along one direction. These latter
patterns resemble quite closely those that are found under
the standard assumption of isotropic diffusion, the non-
linearity being responsible for the mixing of cross modes.
In addition, patterns can also flourish when the activa-
tor diffuses faster than the inhibitor, along one specific
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direction. In this case, the system organizes along the di-
rection orthogonal to the latter, hence displaying regular,
just locally distorted, stripes.

Since the pioneering work by Turing, the physico-
chemical community largely studied the emergence of pat-
terns, both theoretically and experimentally, highlighting
different mechanisms that extend the theory beyond the
standard instability paradigm. Whilst the inspected phe-
nomena have distinct origins, similar models are often re-
covered, which require generalized schemes of diffusion,
including anisotropic effects.

Chemical reactions occurring on substrates – solid
catalysis – can for instance instigate patterns which ap-
pear to be modulated by the curvature of the host-
ing medium [17]. Adapted curvilinear coordinates can
be introduced, thus yielding diffusion coefficients func-
tion of the space variables. In this case, the modified
Laplace operator contains first order derivatives, acting
as effective drift terms. Diffusion coefficients depending
on the state variables can be obtained when e.g. mod-
eling chemotaxis [18–22]. When linearizing the govern-
ing equations around the homogeneous equilibrium, one
deals in fact with space dependent diffusion constants,
which are however not sensitive to the specific direc-
tion of transport, at variance with the setting that we
shall inspect hereafter1. Similar considerations apply when
studying generic gradient-like mechanisms of material
transport [23,24].

Other models have been proposed which include cross
diffusion terms [18,22,25–32]. Also in this case, the effec-
tive diffusion constants, obtained upon linearization, do
not depend on the selected direction of transport.

In general Turing instability can develop once there
is a differential in the species distribution. Researchers
realized that these conditions are met for reactions oc-
curring in liquid phases, once different species have dis-
tinct advection velocities. This phenomenon is termed
differential-flow-induced chemical instability [33–35]. The
linear stability analysis results in effective diffusion coef-
ficients, depending on the mean velocity of one species
and thus reflecting the specific direction of propagation.
The imposed advection yields a first order operator which
alters the prototypical structure of a reaction-diffusion
scheme, as we shall here consider. The simplified frame-
work that we propose could prove indeed useful to model
reaction-diffusion processes in crystals [36], where the
anisotropy is dictated by the geometry of the hosting
medium.

The paper is organized as follows. In Section 2 we will
present the reference framework and then, in Section 3
derive the mathematical conditions for the generalized
anisotropic instability. Section 4 is devoted to reporting

1 The diffusive part of a generic model of state dependent
diffusion can be written as ∇ · (D(u)∇u) = D′(u)‖∇u‖2 +
D(u)Δu. Let assume u0 be the homogeneous equilibrium
and let us write u = u0 + ξ assuming ξ to be small,
hence D′(u)‖∇u‖2 + D(u)Δu ∼ D′(u0)‖∇ξ‖2 + D(u0)Δξ =
D(u0)Δξ + O(ξ2) and thus the diffusion is the same in all the
directions.

some numerical tests to validate the theoretical analysis.
Finally, we shall sum up and conclude.

2 Anisotropic diffusion of reactive species
on continuum domains

Let us consider two interacting species and denote by u
and v their respective concentrations. The species can
freely diffuse inside a rectangular domain, R = [0, Lx] ×
[0, Ly] ⊂ R+×R+, as specified by their respective diffusion
coefficients. We shall in particular assume that the dif-
fusion coefficients are anisotropic, meaning that they de-
pend on the specific direction of migration. More precisely,
D

(x)
u ≥ 0 denotes the diffusion coefficient for species u

along direction x, while D
(y)
u ≥ 0 refers to the orthogonal

direction y. Similar considerations respectively apply to
D

(x)
v ≥ 0 and D

(y)
v ≥ 0. The mutual evolution of species u

and v is thus governed by the reaction-diffusion equations:

{
u̇=f(u, v)+D

(x)
u ∂2

xu+D
(y)
u ∂2

yu

v̇=g(u, v)+D
(x)
v ∂2

xv+D
(y)
v ∂2

yv
∀(x, y) ∈ R and ∀t > 0

(1)
where f(·, ·) and g(·, ·) are nonlinear functions of the con-
centration amounts. The above equations should be com-
plemented by the initial conditions:

u(x, y, 0) = u0(x, y) and v(x, y, 0) = v0(x, y)
∀(x, y) ∈ R, (2)

for some regular functions u0 and v0, and suitable bound-
ary conditions. In the following we shall adopt the
Dirichlet periodic boundary conditions, namely{

u(x, 0, t) = u(x, Ly, t) ∀x ∈ [0, Lx] and ∀t > 0
u(0, y, t) = u(Lx, y, t) ∀y ∈ [0, Ly] and ∀t > 0,

(3)
and similarly for v.

Let us assume the system (1) admits a stable, spatially
homogeneous, solution u = û and v = v̂. This request
translates in:{

f(û, v̂) = 0
g(û, v̂) = 0

such that: tr(J) = fu + gv < 0 and

det(J) = fugv − fvgu > 0 (4)

where J stands for the Jacobian matrix of system (1):

J =
(

fu fv

gu gv

)
(5)

where fu denotes the derivative of f(u, v) with respect
to u, and similarly for fv, gu, gv. Here, and throughout
the remaining part of the paper, we evaluate the partial
derivatives at the equilibrium point (û, v̂). Without losing
generality, we will also assume fu > 0 and gv < 0: u is

http://www.epj.org
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thus the activator species, while v refers to the population
of inhibitors.

The celebrated Turing patterns originate from a sym-
metry breaking instability of the homogeneous equilibrium
solution. The introduction of an inhomogeneous perturba-
tion around (û, v̂) activates the diffusion terms and, under
specific conditions, makes the system to drift away from
the deputed homogeneous equilibrium, towards a patchy,
non homogeneous, asymptotically stable, solution. Math-
ematical conditions for the Turing instability to set in can
be readily derived by first linearizing equations (1) and
then Fourier transforming, both in time and space, the ob-
tained linear system. This yields the so called dispersion
relation, an equation for the growth rate λk associated to
Fourier mode k = (kx, ky). By carrying out this straight-
forward calculation, which is for instance detailed in [1],
it can be eventually proven that λk satisfies the following
quadratic equations:

λ2
k + d(kx, ky)λk + h(kx, ky) = 0 (6)

where:

d(kx, ky) = −tr(J) + k2
x(D(x)

u + D(x)
v ) + k2

y(D(y)
u + D(y)

v )
(7)

h(kx, ky) = det(J) − k2
x(fuD(x)

v + gvD
(x)
u ) − k2

y(fuD(y)
v

+ gvD
(y)
u ) + k2

xk2
y(D(x)

u D(y)
v + D(y)

u D(x)
v )

+ k4
xD(x)

u D(x)
v + k4

yD(y)
u D(y)

v . (8)

Turing patterns materialize if the real part of λk takes pos-
itive values over finite window in k, which in turn amounts
to require the presence of unstable non zero Fourier modes.
We remark however that d(kx, ky) in equation (6) is always
positive, since, by assumption, tr(J) < 0 and, in addition,
D

(x),(y)
u,v > 0. Then, as a natural consequence, the Turing

symmetry breaking instability can take place only if a
compact domain exists in (kx, ky) such that h(kx, ky) < 0.
As already mentioned, in the classical limit of isotropic
diffusion, Du ≡ D

(x)
u = D

(y)
u and Dv ≡ D

(x)
v = D

(y)
v ,

the Turing instability can take place only if the inhibitors
diffuse faster than the activators, i.e. Dv > rcDu where
rc, the critical ratio of diffusivities, is a positive coeffi-
cient larger than 1. In the following we will show that this
stringent assumption can be partially relaxed in the gen-
eralized setting where the diffusion constants are made to
depend on the direction of propagation.

3 Turing instability in presence of anisotropic
diffusion

The function h(kx, ky) is a multivariate polynomial of the
variables k2

x and k2
y. It is straightforward to check that it

is positive at the origin and for large k2
x and k2

y. We are
here interested in determining when h(kx, ky) can change
sign as function of k2

x and k2
y , so signaling the onset of

the instability. To this end, we first consider restrictions
of h(kx, ky) on kx = 0, and then on ky = 0.

Focusing on the restriction of h on the ky axis, i.e.
namely setting kx = 0, amounts to consider the particular
case where species u and v are solely allowed to diffuse
along the vertical direction. One can therefore equivalently
set D

(x)
u = D

(x)
v = 0 in equation (8) and thus get:

h(kx, ky) = det(J) − k2
y(fuD(y)

v + gvD(y)
u ) + k4

yD(y)
u D(y)

v .
(9)

By solving equation (9) for k2
y, one obtains two positive

solutions, 0 < k− < k+, if and only if the following condi-
tions are met:{

fuD
(y)
v + gvD

(y)
u > 0

(fuD
(y)
v + gvD

(y)
u )2 − 4D

(y)
u D

(y)
v det(J) > 0.

(10)

Let us observe that from the first relation of equation (10)
and the condition tr(J) < 0 implies D

(y)
v > D

(y)
u : for the

instability to set in and the patterns to develop, the in-
hibitor should diffuse faster than the activator in the y di-
rection.

The symmetric limiting case is recovered when
species u and v are allowed to diffuse only along the hor-
izontal direction, which in turn amounts to restrict h to
the kx axis. The analysis can be hence handled by set-
ting D

(y)
u = D

(y)
v = 0 in equation (8) and proceeding in

analogy with above. One can straightforwardly obtain the
following necessary and sufficient conditions for the exis-
tence of Turing patterns:{

fuD
(x)
v + gvD

(x)
u > 0

(fuD
(x)
v + gvD

(x)
u )2 − 4D

(x)
u D

(x)
v det(J) > 0 .

(11)

Once again, from the first relation of equation (11) and
the condition tr(J) < 0, one can immediately conclude
that patterns are possible only if D

(x)
v > D

(x)
u , namely if

the inhibitor diffuses faster than the activator along the
x direction.

These conclusions are clearly not surprising, as they
constitute an obvious adaptation of the standard Turing
framework to the present context, in the trivial limit where
one of the diffusion direction is alternatively silenced.
Starting from this observation, it is however interesting to
speculate on the possibility of turning unstable complex
mixed modes (kx, ky), via a symmetry breaking process of
the Turing type, when the simplified pathways to pattern
formation explored above are instead precluded.

To this end, we go back to function h(kx, ky) and study
its sign when moving on (kx, ky), along specific directions.
More concretely, we set kx = γky, and vary the free pa-
rameter γ to span the reference plane. Turing patterns can
then develop only if h(γky, ky) < 0, where:

h(γky, ky) = det(J) − k2
y[γ2(fuD(x)

v + gvD
(x)
u ) + (fuD(y)

v

+ gvD
(y)
u )] + k4

y[γ2(D(x)
u D(y)

v + D(y)
u D(x)

v )

+ γ4D(x)
u D(x)

v + D(y)
u D(y)

v ]

=: B1k
4
y − B2k

2
y + B3 (12)
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and the last expression defines the coefficients B1, B2

and B3. It can be readily realized that B1 and B3 are posi-
tively definite, while B2 can assume both positive and neg-
ative values. In the following, we shall impose the simul-
taneous violation of conditions (10) and (11), via crossed
negation of the corresponding inequalities, and look for
possible values of the control parameter γ that make the
system unstable.

3.1 Conditions (10)i and (11)i are not satisfied

Let us thus assume{
fuD

(y)
v + gvD

(y)
u < 0

fuD
(x)
v + gvD

(x)
u < 0

while the remaining two conditions(10)ii and (11)ii do
hold.

One can trivially realize that in this case B2 is nega-
tive, hence h(γky, ky) = B1k

4
y + |B2|k2

y + B3 > 0 for all
kx = γky and ky. No instability can thus develop which
seeds the emergence of self-organized Turing patterns.

3.2 Conditions (10)i and (11)ii are not satisfied

We now assume{
fuD

(y)
v + gvD

(y)
u < 0

(fuD
(x)
v + gvD

(x)
u )2 − 4D

(x)
u D

(x)
v det(J) < 0

while the remaining two relations (10)ii and (11)i are
verified.

Solving for the limiting condition h(γky, ky) = 0 one
gets a closed expression for k2

y. By imposing k2
y to be pos-

itive yields B2 > 0 and B2
2 − 4B1B3 > 0.

A straightforward computation gives:

B2 > 0 if γ2 > q1,

where

q1 = − fuD
(y)
v + gvD

(y)
u

fuD
(x)
v + gvD

(x)
u

> 0,

where use has been made of equation (11)i.
A somehow lengthy computation allows us to write:

B2
2 − 4B1B3 = A1γ

4 + A2γ
2 + A3 (13)

where:

A1 = Γ1 − 4 det(J)D(x)
u D(x)

v (14)

A2 = 2(fuD(x)
v + gvD

(x)
u )(fuD(y)

v + gvD
(y)
u )

−4 det(J)(D(y)
u D(x)

v + D(x)
u D(y)

v ) (15)

A3 = Γ2 − 4 det(J)D(y)
u D(y)

v (16)

and

Γ1 = (fuD(x)
v +gvD

(x)
u )2 and Γ2 = (fuD(y)

v +gvD
(y)
u )2.
(17)

Under the above assumptions Γ1 < 4 det(J)D(x)
u D

(x)
v ,

which implies A1 < 0. Similarly, as Γ2 >

4 det(J)D(y)
u D

(y)
v , A3 > 0. On the other hand, A2 < 0,

this latter quantity resulting from the sum of two negative
terms. Hence, B2

2 − 4B1B3 > 0 if 0 < γ2 < q2, where

q2 = A2+
√

A2
2−4A1A3

−2A1
> 0.

We can easily show that q1 > q2, which in turn implies
that B2 and B2

2 −4B1B3 cannot be at the same time posi-
tive, as it should happen for the instability to develop. We
can hence conclude that Turing patterns cannot develop
in this case either.

3.3 Conditions (10)ii and (11)i are not satisfied

Let us thus assume{
(fuD

(y)
v + gvD

(y)
u )2 − 4D

(y)
u D

(y)
v det(J) < 0

fuD
(x)
v + gvD

(x)
u < 0

while the remaining two condition (10)i and (11)ii are
verified.

Once again requiring h(γky, ky) < 0, necessarily imply
B2 > 0 and B2

2 − 4B1B3 > 0. The former condition is
satisfied whenever:

γ2 ∈ (0, q1)

for q1 = −(fuD
(y)
v + gvD

(y)
u )/(fuD

(x)
v + gvD

(x)
u ) > 0. The

latter condition B2
2 − 4B1B3 > 0 yields

γ4(Γ1−4 det(J)D(x)
u D(x)

v )+γ2[2(fuD(x)
v +gvD

(x)
u )(fuD(y)

v

+ gvD(y)
u ) − 4 det(J)(D(y)

u D(x)
v + D(x)

u D(x)
v ) + Γ2

− 4 det(J)D(y)
u D(y)

v := γ4A1 + γ2A2 + A3 > 0.

Here, A1 > 0 while A2 < 0 and A3 < 0. Hence,
the previous inequality is satisfied for any γ2 > q2 for
q2 = (−A2 +

√
A2

2 − 4A1A3)/(2A1) > 0. However, one
can prove that q1 < q2, which implies that B2 and
B2

2 − 4B1B3 cannot be simultaneously positive. The con-
clusion is therefore that h(γky, ky) > 0, and Turing pat-
terns cannot take place.

3.4 Conditions (10)ii and (11)ii are not satisfied

Let us thus assume{
(fuD

(y)
v + gvD

(y)
u )2 − 4D

(y)
u D

(y)
v det(J) < 0

(fuD
(x)
v + gvD

(x)
u )2 − 4D

(x)
u D

(x)
v det(J) < 0

while the remaining two assumptions (10)i and (11)i do
hold.

Under the present working hypothesis, the coeffi-
cient B1, B2 and B3 are positive. Thus h(γky, ky) can
take negative values, if and only if B2

2 − 4B1B3 > 0. As
previously remarked, we can rewrite

B2
2 − 4B1B3 = A1γ

4 + A2γ
2 + A3

http://www.epj.org
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Fig. 1. Possible types of instabilities. Case a: h(kx, ky) > 0 for all k2
x ≥ 0 and k2

y ≥ 0. The system cannot turn unstable.
Case b: h restricted to the kx axis takes negative values: a bounded contiguous domain in k2

x > 0 and k2
y > 0 exist, for which

h(kx, ky) > 0. Case c: h restricted to the ky axis takes negative values. Again a portion of the reference plan, adjacent to the
domain of instability in kx = 0, can be found where h(kx, ky) > 0: Case d: the system is unstable along both kx = 0 and ky = 0
directions. The instability also interests non trivial modes with both kx �= 0 and ky �= 0.

where Ai for i = 1, 2, 3 are defined as in (14). One can show
that A1 and A3 are negative while A2 can take both signs.
To satisfy the requirement B2

2 −4B1B3 > 0 the conditions
A2 > 0 and A2

2−4A1A3 > 0 should be simultaneously met.
Let us rewrite A2 as follows

A2 = 2
√

Γ1

√
Γ2 − 4 det(J)

(
D(y)

u D(x)
v + D(x)

u D(y)
v

)

where Γi have been defined in equation (17). Straightfor-
ward manipulations allow us to write:

A2 = 2
√

Γ1

√
Γ2 − 4 det(J)

×
(

D(y)
u D(y)

v

D
(x)
v

D
(y)
v

+ D(x)
u D(x)

v

D
(y)
v

D
(x)
v

)

< 2
√

Γ1

√
Γ2 −

(
Γ2

D
(x)
v

D
(y)
v

+ Γ1
D

(y)
v

D
(x)
v

)

= −
⎛
⎝
√

D
(y)
v

D
(x)
v

Γ1 −
√

D
(x)
v

D
(y)
v

Γ2

⎞
⎠

2

< 0.

Since A2 is bound to be negative, the condition for Turing
instability h(γky, ky) < 0 cannot be satisfied.

Summing up we have demonstrated that patterns can
eventually develop only if the system can undergo a sym-
metry breaking instability of the Turing type, in its re-
stricted configuration where the diffusion is solely allowed
along one spatial direction, either x or y. The result is
summarized in Figure 1, where different types of instabil-
ities are schematically depicted.

Interestingly, the instability can set in also if the in-
hibitor diffuses slower that the activator along one selected
direction, provided the opposite holds for the transport
along the orthogonal direction. In this respect, account-
ing for anisotropic diffusion enables one to partially relax
the stringent conditions that underly the formation of the
Turing motifs. In the next section, we will built on this
observation and provide a numerical demonstration of the
investigated phenomenon.

4 Numerical analysis

The aim of this section is to discuss a numerical implemen-
tation of the theory presented above. In particular, we will
show that complex patterns can emerge for a system of two
species in mutual interaction and undergoing anisotropic
diffusion, also if the conventional Turing request of hav-
ing inhibitors faster than activators is relaxed, along one
of the two orthogonal directions of movements. To per-
form the analysis we operate in the framework of the so
called Mimura-Murray model [37]. The quantities u and v
can be associated to prey and predator densities, which
interact via the nonlinear functions:

f(u, v) =
(
(a + bu − u2)/c − v

)
u and

g(u, v) = (u − (1 + dv)) v; (18)

the model possesses 6 equilibria, whose stability and pos-
itivity depend on the value of the chosen parameters. We
here focus on the fixed point (û, v̂)

û = 1 +
bd − 2d − c +

√
Δ

2d

and

v̂ =
bd − 2d − c +

√
Δ

2d2

where

Δ = (bd − 2d − c)2 + 4d2(a + b − 1) (19)

and assume a = 35, b = 16, c = 9 and d = 0.4 which in
turn implies (û, v̂) = (5, 10). Moreover, the Jacobian en-
tries evaluated at the fixed point reads fu = 3.33, fv = −5,
gu = 10 and gv = −4. Hence, det(J) > 0 and tr(J) < 0:
the fixed point is a stable equilibrium. We also remark
that u acts as the activator and v stands for the inhibitor
species, as fu > 0 and gv < 0. Under specific conditions,
the fixed point can be destabilized by an external, non
homogeneous, perturbation, paving the way to the sub-
sequent generation of Turing patterns, in the non linear
regime of the evolution. In Figure 2 we report a gallery
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Fig. 2. Asymptotic activator distribution: the concentration u(x, y, t) is displayed for sufficiently large t. (a) D
(y)
u = 0.01,

D
(y)
v = 0.16, D

(x)
u = 0.02, D

(x)
v = 0.32. (b) D

(y)
u = 0.01, D

(y)
v = 0.155, D

(x)
u = 0.02, D

(x)
v = 0.32. (c) D

(y)
u = 0.012, D

(y)
v = 0.01,

D
(x)
u = 0.02, D

(x)
v = 0.32. The other parameters are set to a = 35; b = 16; c = 9; d = 0.4. The filled black squares identify the

position of the maximum of the dispersion relation.

of representative patterns that can be obtained under dis-
tinct conditions.

To generate the asymptotic patterns displayed in Fig-
ure 2a, parameters are set so that both relations (10)
and (11) are satisfied, D

(x)
v > D

(x)
u rc and D

(y)
v > D

(y)
u rc,

where rc ∼ 16. Inhibitor diffuses faster than activators
in both x and y directions, although with different diffu-

sion constants. The dispersion relation (see Fig. 2b) can
be assimilated to that sketched in Figure 1d, and the cor-
responding patterns share marked similarities with those
obtained in the conventional case of isotropic transport.

In Figure 2c, conditions (10) hold, while (11) do not,
D

(x)
v > D

(x)
u rc while D

(y)
v < D

(x)
u rc, where rc ∼ 16. The

dispersion relation, Figure 2d, is also depicted and shown
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to resemble that displayed in Figure 1c. The patterns
which follow this unusual choice of the diffusion constants,
compare nicely with those emerging under the standard
paradigm, this is because D

(y)
v /D

(x)
u is smaller but close

to rc.
Finally, in Figures 2e and 2f, the activator is assigned a

diffusion coefficient D
(y)
u is larger than D

(y)
v , the homolo-

gous constant associated to the inhibitor species, and still
D

(x)
v > D

(x)
u rc. The dispersion relation falls in the cate-

gory exemplified in Figure 1c, and the corresponding pat-
terns are found to organize in regular stripes, which run
almost parallel to the direction where the instability is
present.

5 Conclusions

In this paper we elaborated on the impact of anisotropic
diffusion for the emergence of Turing patterns in reaction-
diffusion systems. We have in particular focused on sys-
tems of two interacting species confined in a rectangular,
continuum domain, endowed with periodic boundary con-
ditions. With reference to this paradigmatic case study,
we have analytically shown that a symmetry breaking in-
stability of the Turing type can occur only if patterns do
exist when diffusion is impeded along one of the two acces-
sible directions. In other words, patterns which resemble
those obtained in the conventional setting of isotropic dif-
fusion emerge, also when the standard Turing condition is
violated along one specific direction. Interestingly, the in-
stability can also occur if the activator diffuses faster than
the inhibitor, along the direction of spatial relocation for
which the usual Turing conditions are not met. Our results
complement thus the large literature devoted to patterns
formation in reaction-diffusion systems, by elaborating on
the role played by a specific class of anisotropic transport.
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