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Abstract
Sex steroids play a key role in triggering sex differentiation in fish, the use of exogenous hor-

mone treatment leading to partial or complete sex reversal. This phenomenon has attracted

attention since the discovery that even low environmental doses of exogenous steroids can

adversely affect gonad morphology (ovotestis development) and induce reproductive fail-

ure. Modern genomic-based technologies have enhanced opportunities to find out mecha-

nisms of actions (MOA) and identify biomarkers related to the toxic action of a compound.

However, high throughput data interpretation relies on statistical analysis, species genomic

resources, and bioinformatics tools. The goals of this study are to improve the knowledge of

feminisation in fish, by the analysis of molecular responses in the gonads of rainbow trout

fry after chronic exposure to several doses (0.01, 0.1, 1 and 10 μg/L) of ethynylestradiol

(EE2) and to offer target genes as potential biomarkers of ovotestis development. We suc-

cessfully adapted a bioinformatics microarray analysis workflow elaborated on human data

to a toxicogenomic study using rainbow trout, a fish species lacking accurate functional

annotation and genomic resources. The workflow allowed to obtain lists of genes supposed

to be enriched in true positive differentially expressed genes (DEGs), which were subjected

to over-representation analysis methods (ORA). Several pathways and ontologies, mostly

related to cell division and metabolism, sexual reproduction and steroid production, were

found significantly enriched in our analyses. Moreover, two sets of potential ovotestis bio-

markers were selected using several criteria. The first group displayed specific potential bio-

markers belonging to pathways/ontologies highlighted in the experiment. Among them, the

early ovarian differentiation gene foxl2a was overexpressed. The second group, which was

highly sensitive but not specific, included the DEGs presenting the highest fold change and

lowest p-value of the statistical workflow output. The methodology can be generalized to

other (non-model) species and various types of microarray platforms.
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Introduction

2.1 Intersex in wild fish exposed to ethynylestradiol
The issue of increased reproductive failure and intersexuality in wild fish due to the release of
endocrine disrupting compounds (EDCs) in surface waters by sewage has attracted much
attention in the scientific community over the last 20 years. Of great concern is the ability of
very low doses (in the range of ng to μg/L) of xenoestrogenic substances (molecules that mimic
the natural estradiol) to alter gonad morphology, typically manifesting as the development of
oocytes within a functional testis (ovotestis) [1–3]. This feature has been correlated with repro-
ductive dysfunctionalities and decreased population fitness in several fish species [4,5]. The
impact of these compounds varies depending on the potency of the molecule, the synthetic
estrogen ethynylestradiol (EE2) being in vivo the most potent [6] among the different EDCs,
the duration of exposure and the species sensitivity. Many studies have reported testis-ova
development and the phenomenon has been observed in all industrialized countries [7,8], but
few studies have tackled the mechanisms underlying this phenomenon. Testis-ova and mor-
phological disruptions are effective criteria that can be used to identify exogenous estrogen
exposure [9]. However, their detection requires laborious histological analysis, with a limited
area for investigation in the gonads, which thus renders the analysis unsuitable for quantitative
evaluations. In this context, the use of marker genes expressed in correlation with testis-ova
development may provide early signature of gonad morphological disruptions and help in
facilitating the environmental monitoring of xenoestrogenic exposure. The selection of such
marker genes relies on their sensitivity and specificity to the observed alterations at the mor-
phological level. High throughput technologies and molecular biology offer reliable techniques
for the detection of these physiological perturbations. Over the past decade, microarrays have
been proven as efficient tools to determine the molecular mode of action (MOA) of environ-
mental pollutants and to identify biomarkers as indicators of exposure for ecological risk
assessments [10,11].

Since the establishement of molecular biomarkers, especially transcriptomic alterations, as
early-warning signals of contaminants exposure, is needed in environmental monitoring pro-
grams, this approach is increasingly used in ecotoxicological studies, and named « (eco)toxico-
genomic » [12]. Despite the gap between genomic knowledge regarding fish and mammals,
several studies have used microarrays on fish (including orphan species) as model organisms,
especially to monitor the impact of EDCs on gene expression patterns [11,13–16]. Microarrays
are very powerful tools that can be used to measure the expression of thousands of genes or the
whole transcriptome of an organism, in one single experiment, and the resulting expression
profile can be compared under many experimental conditions. This technique has been widely
used since the 1990’s and a considerable amount of data has been generated for an increasing
range of species.

2.2. Statistical considerations
It is not simple to process datasets from microarray analyses due to the multiple levels of analy-
sis and interpretation, from pre-treatment of the rough data to the filtering of statistically sig-
nificant hits at the gene and gene-set levels. The different methods proposed and their different
parameterisations can be combined into millions of analysis workflows that lead to different
lists of significantly detected genes. While this technology offers great potential for generating
data, several limitations should be considered during analysis of that data downstream, some
of which are common to all fields of investigation and others that are more specific to surveys
conducted on fishes.

Microarray Analysis Workflow for a Toxicogenomic Study
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First of all, as one statistical test is performed for each gene, thousands of tests are performed
on a single array, which generates a very large number of false positive and false negative
DEGs. Furthermore, the typically low numbers of replicates, given the cost of the technology,
affects variance estimations. To circumvent the statistical limitations associated with the size of
the datasets, the strictness of the threshold used to filter significant genes is increased as the
number of replicates decreases [17]. However, a stricter threshold (type I error) decreases the
power of the test (type II error), thereby increasing the rate of false negatives and limiting the
detection of DEGs to those that are most obvious. Many authors have significantly improved
the performances of such statistical analyses by solving methodological issues [18–20], and
several performance benchmarks have been implemented to rank these methods [21–23].
However, the low positive and negative predictive power still remains a major issue [23].

Second, downstream data analysis and interpretation rely heavily on the availability/quality
of knowledge resources for the genome of the species studied. In particular, the annotation of
the probes and the amount of genomic knowledge, including ontologies and pathways, deter-
mine downstream data contextualisation. Nowadays, the constant evolution of genomic
resources and the implementation of public databases have considerably improved the poten-
tial to infer and describe gene and protein networks, and shed light on their effect on patterns
observed. Though such tools have been extensively used and validated in human-related
genome-wide studies, the annotation/contextualisation of datasets regarding less studied
organisms is more questionable. As an example, the full genomes of five fish species have been
sequenced (namely zebrafish Danio rerio, stickleback Gasterosteus aculeatus, tetraodon Tetrao-
don nigroviridis, medaka Oryzias latipes and Fugu Takifugu rubripes) [24] and the sequencing
of the genome of other species is still in progress (e.g. rainbow trout Oncorhynchus mykiss).
However, genomic studies on fishes still suffer from the lack of a unified, exhaustive and vali-
dated source of knowledge compared to humans or rodents. The main bottleneck of the analy-
sis/interpretation process is the quality of current genome annotations available for fishes.
Nevertheless, we show here that existing tools can be adapted to fish, provided that their limita-
tions are taken into account.

Third, besides statistical analysis issues, the biggest challenge in microarray data analysis is
to cope with a large amount of data (several thousands of candidate genes) that often prevents
validation of the results using other techniques, thus opening the way to too many hypotheses
for further studies. Several visualisation techniques have been developed to aid in this analytical
process, such as hierarchical and k-means clustering, principal component analysis or co-
expression networks [25–27]. Among them, DAVID [28] performs a test derived from the
Fisher Exact Test, called EASE. The enrichment p-value calculation (EASE-score) adapts the
Fisher exact probability to the particularities of microarray data, with penalisation of the p-
value for categories represented by only a few genes [29]. As highlighted by the growing num-
ber of dedicated software (i.e. DAVID/EASE [28,29], GoMiner [30], FatiGO [31], GenMAPP
[32]), this approach is now currently used in microarray studies, due to its extraordinary
potential to enhance the whole dataset analysis. However, the relevancy of absolute p-values
remains questionable, as we will point out in the discussion section.

Though any of these methods alone can solve the statistic issue presented above when
applied to experiments generating large lists of DEGs, we have described workflows [33–35]
that progressively filter the output of the statistical analyses. The first goal is to focus on likely
true positives in order to find meaningful biological signatures (stringent statistical thresholds
and intersection of gene lists) and the second is to gather likely false negatives, in order to
detect ontologies or pathways potentially involved (by relaxing the statistical thresholds and
considering the union of gene lists).

Microarray Analysis Workflow for a Toxicogenomic Study

PLOS ONE | DOI:10.1371/journal.pone.0128598 July 17, 2015 3 / 31



2.3. Model organism
Rainbow trout is one of the most widely used fish species in ecotoxicology and constitutes a
model organism in fish reproductive physiology. Sex determination is genetically controlled by
a male heterogamety system (XX–XY), with a main male gene Sdy recently identified by Yano
et al. [36]. Sex reversal occurs under massive exogenous hormone exposure. Moreover, in a
previous study, we have shown that juvenile male rainbow trout developed testis-ova under
chronic exposure to low doses of EE2 (10 and 100 ng/L). Measurement of the expression of key
genes in gonads indicated that markers of testis development (dmrt1 and Sox9a2) were down-
regulated by the treatment, while the estrogen-responsive vitellogenin marker was strongly up-
regulated [37]. Moreover, the rainbow trout genome is sequenced and a specific microarray is
available [38]. Thus, a whole-genome analysis was done to gain insight into these mechanisms.

The goal of this study was to provide new insights on the feminisation induced by estrogenic
substances in fish, at the transcriptomic level, through a microarray analysis of the gonad gene
expression responses after chronic exposure to several doses of the potent xenoestrogen ethy-
nylestradiol (EE2). Moreover, we aimed at offering new target genes as potential biomarkers of
the ovotestis condition, to aid in the environmental monitoring of xenoestrogenic exposure in
fish. To this end, we adapted a microarray analysis workflow that was previously validated on
human cancer data [33–35] to toxicogenomic data using the rainbow trout as the model organ-
ism. This workflow included gene ontology and pathways mapping which are useful tools to
retrieve biological meaning from large gene lists generated by microarray studies.

Material and Methods

3.1. Ethics Statement
The experiment was performed according to European and national legislation for fish welfare
and was approved by the University of Namur Ethics Committee (Agreement number LA
1900048; FUNDP consent 10/149).

3.2. Animals and hormonal treatment
The experimental method was previously described in details in Depiereux et al., [37]. Briefly,
all-male rainbow trout (Oncorhynchus mykiss) fry were exposed from the onset of first feeding
[Day 0 = D0 at 60 days post-fertilisation (dpf) to 136 dpf] to 5 nominal concentrations of 17α-
ethynylestradiol (purity� 98%, Sigma-Aldrich, Germany): 0 (solvent control), 0.01 μg/L,
0.1 μg/L, 1 μg/L and 10 μg/L, with 3 tanks per condition. The actual EE2 concentrations were
measured in each tank at 6 time points using the Quantitative Ethynylestradiol Enzyme Immu-
noassay (EIA) Kit (Marloie, Belgium) according to the manufacturer’s instructions. Mean con-
centrations of EE2 ± SD were 0.08 ± 0.06 μg/l; 1.62 ± 1.74 μg/l and 9.88 ± 5.06 μg/l. The
0.01 μg/l EE2 concentration was under the detection limit (set at 0.02 μg/l). At the end of the
exposure time, fish were anesthetized with MS-222 (140 mg/L) and sacrificed via incision of
the spine. Thereafter, gonads were collected from all fish, immediately frozen in liquid nitrogen
and stored at -80°C until RNA extraction. Gonads from 10 fish were pooled to reach enough
material for further analyses.

3.3. Histological analysis
An histological analysis was previously made to investigate gonad morphological perturbations
induced by the treatment [37]. Whole gonads investigation was done to make sure ovotestis
can be detected by the observation of at least 6 transversal section planes taken over the entire
gonad. Intersex gonads were found from the first concentration used (0.01 and 0.1μg/L), and
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complete sex reversal at the highest doses (1 and 10 μg/L). Based on the results obtained,
gonads morphologies were classified into 4 classes as follows: testicular (gonads displaying the
histological features of a differentiated yet immature testis), ovotestis (phenotype characterised
by the presence of oocytes within the testis), and ovarian-like (gonads displaying the character-
istics of an immature ovary). Several fish displayed an altered testicular morphology. These
results are summarised in Table 1 (see results section).

3.4. cDNA microarray experiment
The analysis was performed on a one-color 8x60K oligonucleotide array (Agilent Technologies:
GPL15840) designed by the INRA-LPGP microarray platform (Beaulieu Campus, Rennes,
France).

3.4.1. RNA extraction and labelled cDNA synthesis. Total RNA was extracted from the
gonads (n = 6; 2 pools of 10 pairs of gonads per tank, 3 tanks per condition) using TRIzol
reagent (Invitrogen, Life Technologies Europe B.V., Ghent, Belgium) as described previously
(Baron 2005). The total RNA concentration was determined using an ISOGEN NanoDrop
2000c spectrophotometer (Wilmington, Delaware, USA) and RNA quality was controlled on a
Bioanalyzer 2100 (Agilent). Only samples with a RIN (RNA Integrity Number)>8 were kept
for further analysis. Labeled cDNA (using Cyanine-3) was synthesised, purified, quantified and
prepared for hybridisation following the Agilent protocol [38].

3.4.2. Microarray hybridisation and raw data production. The samples were hybridised
on the microarray slides with incubation at 65°C for 17 hours in a hybridisation chamber (Agi-
lent). The slides were scanned and pre-processed (signal background corrections) using Agi-
lent’s High-Resolution C Scanner. Raw data are available in S1 Dataset.

3.4.3. Statistical analysis. The data analyses were performed using the R statistical soft-
ware version 2.15.3. available on the R-Project repository (http://cran.r-project.org) and a set
of packages available in the Bioconductor repository (http://www.bioconductor.org). Brief
descriptions of the different steps of the analyses are provided below. Detailed scripts are pre-
sented in S1 Script.

The first steps were pre-processing and normalisation procedures, in which the expression
values of the one-color microarray were first submitted to quantile-quantile normalisation
using the normalize.quantile function in the preprocessCore package. Normalised data are
available in S2 Dataset. Detailed script is available in S1 Script.a.

In a second step, an analysis of variance (ANOVA) was conducted on the normalized data.
Variations in expression levels between replicate tanks (3 tanks per condition) were performed

Table 1. Summary of the histological results obtained in a previous study [37]. The results are pre-
sented as the percentage of gonad phenotypes observed in each concentration of EE2 tested. All the control
fish displayed immature testes. Morphological disturbances were observed from the first concentration used
(0.01 μgEE2/L) and complete sex reversal was observed from the 0.1 μgEE2/L concentration. Gonads mor-
phologies were classified into 4 classes as follow: testicular (gonads displaying the histological features of a
differentiated yet immature testis), ovotestis (phenotype characterized by the presence of oocytes within the
testis), and ovarian-like (gonads displaying the characteristics of an immature ovary). Several fish displayed
an altered testicular morphology.

Phenotype EE2 concentration (μg/L)

0 0.01 0.1 1 10

Testicular 100 37 0 0 0

Ovotestis 0 48 40 0 0

Ovarian-like 0 5 30 89 100

Altered testicular 0 10 30 11 0

doi:10.1371/journal.pone.0128598.t001
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by pair-wise comparisons in R using the lmFit function in the Limma package available in Bio-
conductor (S1 Script.b.). We then performed a one-way ANOVA, with the EE2 concentration
as the criterion, using the lmFit function of the Limma package (S1 Script.c).

The third step consisted on post-hoc comparisons. A post-hoc evaluation was performed
using Scheffe’s method with the makeContrasts() and eBayes() functions provided in the
Limma package (10 contrasts comparing all experimental conditions). The results were sum-
marised using decideTests() and summary() (number of significant genes positively or nega-
tively regulated for each evaluated contrast). The Benjamini-Hochberg procedure was used to
adjust the p-values (correction for multiple tests) [39]. For each contrast, topTable() was used
to extract top-ranked genes and relevant statistics (logFC, Average Expression, t statistic, p-
value, adjusted p-value, B statistic) (S1 Script.d). More details are available in the R documenta-
tion file.

Following post-hoc comparisons, an analysis of intersections between selected contrasts was
done. The set of common DEGs (S1 Script.e) between the top table of contrasts was defined
using the intersect() function of the R package 'stat'. MAC OS 2011 (14.2.4) Excel software was
used to select genes specific to a given intersection, by deleting those that were also differen-
tially expressed in the other contrasts (see methodology for details).

The next step was devoided to the annotation of the array. There is no consensus for anno-
tation of the Agilent 60K array. Bioinformatics tools have specific requirements with regards to
gene identifiers (IDs) and traditionally need homogenous and unique identifiers. In addition,
the annotation of nucleotides sequences continues to improve and can substantially differ
within several months (regular updates). Therefore, the most recent annotation should be used
to ensure the accuracy of the analysis. Ensemble gene IDs for Danio rerio (ENSDARG) were
used to submit queries to the DAVID pathway analysis interface. The most recent gene sym-
bols were used to analyse the data with EASE. The latest release of the trout INRA-Sigenae pro-
gram (http://www.sigenae.org/, January 2013) was used to annotate the data using the UniProt
[40] and e!Ensembl [24] databases.

When all DEGs with accurate annotation were obtained, a step of data visualisation was
performed. We used a set of bioinformatics tools for the downstream analysis of differential
expression to examine the biological context specific to the different levels of organisation
(gene expression, pathways, ontologies), guided by the significance of the sets of DEGs tested.
First, hierarchical clustering was performed using Cluster 3.0 (C clustering library 1.49) on the
DEG highlighted by the statistical gene analysis (ANOVA) (available on http://bonsai.hgc.jp/~
mdehoon/software/cluster/software.htm). The parameterisation of the hierarchical clustering
was defined (i) to use the log-level procedure, (ii) to center the genes and arrays on zero, (iii) to
cluster both genes and arrays, and (iv) to use the centroid linkage (average linkage) as the dis-
tance metric. The Java TreeView software (version 1.1.6r2) [41], available on http://jtreeview.
sourceforge.net/ was used to visualise the results. A gene list was submitted to the tools avail-
able on the DAVID web interface (Database for annotation, Visualisation and Integrated Dis-
covery)(http://david.abcc.ncifcrf.gov/home.jsp) [28,42], to identify and illustrate pathways
defined in KEGG (Kyoto Encyclopedia of Genes and Genomes) as describes previously [33].
The background population was defined based on the genes targeted by the Agilent rainbow
trout 60K array. A gene list was submitted to the EASE software (Expression Analysis System-
atic Explorer), version 2.0 available on the DAVID website [29]. EASE is standalone software
covering a wider range of gene identifiers (as compared to DAVID tools), and is able to handle
the heterogeneous Swissprot annotation (orthologs from several species). Gene symbols were
entered into EASE to proceed with the analysis of over-represented categories (the basic analy-
sis was run on a non-redundant fully annotated data table). The quality of the analysis was
illustrated in R with volcano-plots (p-value vs. fold-change).

Microarray Analysis Workflow for a Toxicogenomic Study
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The raw data and a normalised expression file are available through the accession number
GSE58519 at the GeneOmnibus public data repository (http://www.ncbi.nlm.nih.gov/geo/).

3.4.4. Validation of microarray data by real-time quantitative PCR experiment. Six
genes among the oligonucleotides spotted on the chip, known as markers of early testicular
development (sox9a2, dmrt1, cyp11b) or for their altered expression following estrogenic treat-
ment (vtg, esr1a, esr2b) were selected for further analysis by real-time PCR, in order to validate
the gene expression patterns obtained through the microarray approach. Real-time PCR analy-
ses were performed as previously described [37]. Briefly, RNA was collected, purified, quanti-
fied, and stored as described in “RNA extraction” above (section 4.3.1.). Following extraction,
samples were treated with DNAse (DNA-free kit, Ambion, Austin,USA) to avoid DNA con-
tamination, following the manufacturer’s instructions. To obtain cDNA, 4 μg of total mRNA
was reverse-transcribed using the RevertAid HMinus First Strand cDNA Synthesis Kit (Fer-
mentas, Germany) according to the manufacturer’s directives. All samples and standards were
compared with a negative reverse transcriptase control to ensure primer specificity (validation
of CT values) and check we avoid genomic DNA amplification. Moreover, each plate contained
water samples to serve as blanks. Specific validated primers were used for the 6 genes as
described in Depiereux et al [37]. All primers were purchased from Eurogentec (Seraing, Bel-
gium). Real-time PCR was performed in 20 μl (5 μl of cDNA, 2.5 μl of each primer at 500 nM,
10 μl MasterMix 2x) with SYBR Green (Applied Biosystems, Foster City, California, USA) as
an intercalating agent. Each measurement was performed in duplicate. The PCR conditions
were: 10 min at 9503B0043C, 40 cycles: 15 sec at 95°C, 1 min at 60°C. Relative quantifications
were established by the comparative CT method (also known as the 2-ΔΔCt method) [43].
Relative gene expressions were calculated as the fold change in gene expression normalised
to an endogenous reference gene (hprt1, previously validated for this experiment [37]) and
relative to the untreated control (0 μg/L EE2), following these equations: ΔΔCt = (CTTarget−
CTHousekeeping)Test−(CTTarget−CTHousekeeping)Control, and Fold change = 2-ΔΔCt. For the 6 genes
tested, the correlation between differential gene expression generated through real-time PCR
and microarray approaches was obtained by comparing mean values of 6 replicates per condi-
tions in the 4 condition tested (the 4 concentrations; 0.01; 0.1;1;10 μgEE2/L). The significance
threshold for n = 4 and p<0.01 is set to 0.72 [44].

Methodology
In this section, we describe the specific development of the microarray analysis workflow to fit
the particularities of the data collected. The workflow here, which was adapted from a work-
flow developed by our team on human Affymetrix platforms [33,34] and successfully adapted
to another study [35] upon the same platform, was designed to handle a more complex experi-
mental design (number of conditions) and the downstream annotation/pathway analysis
which required that the specificities of fish species and the availability of genomic knowledge
resources be taken into account.

Progressive filtering procedures were applied to the raw dataset obtained from a microarray
study to restrict the size of the gene lists and to enrich them in true positives and biologically
relevant DEGs (Differentially Expressed Genes). In summary, the workflow includes (i) the
analysis of pre-treated data by (ii) clustering, then by (iii) one-way ANOVA followed by
Scheffe post hoc pairwise comparisons. Thereafter, (iv) biologically relevant sets of contrasts
and gene list intersections are selected at different levels of stringency. The remaining gene
lists, which are supposed to be enriched in true positive DEGs, are (v) submitted to over-repre-
sentation analysis methods (ORA). The workflow is summarised in S1 Fig.

Microarray Analysis Workflow for a Toxicogenomic Study
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i. The raw data were pre-processed to remove biases due to technical errors and normalised to
correct individual hybridisation signals. The first steps (including background corrections)
are platform specific [45] and the Agilent technology provides accurate tools to improve the
quality of the data from the raw output [46]. We then started with the gProcessedSignal data
Agilent files. Normalisation is an important step that balances several replicates appropri-
ately to allow for meaningful biological comparisons of expression levels. Several methods
have been developed to normalise the data. We selected the quantile normalisation proce-
dure that has been used extensively by the scientific community to scale datasets generated
with one-color microarray platforms [47]. This method defines a shared distribution of
mean intensity values computed from the quantiles of array-specific distributions of inten-
sity values [48] and has been reported to ensure robust downstream statistical comparisons
between arrays [47,49].

ii. The use of visualisation methodologies that sort the DEGs by expression profile, such as
clustering methods [25] (see results), greatly helps reorder the dataset and focus on interest-
ing groups of genes, but leaves the unsolved problem of low predictive power or even
increases the risk of misinterpretation of the results. Moreover, in our analysis, the number
of DEGs was often too high to successfully use this procedure, as the clusters identified dis-
played so many genes that it was impossible to treat them manually.

iii. As described above in the introduction, statistical analysis of microarray data is a non-triv-
ial task and caution is required when performing this critical step. Most of the top-ranked
methodologies involve optimisation of the variance estimation by sharing information
across genes (i.e. the Shrinkage t [19], Windows t [50], Regularized t, Moderated t [51],
etc.). In our case, the experimental design involved more than 2 factor levels (5 concentra-
tions). To handle this design, we selected the Limma R package [51] that implements
generalised linear models using an empirical Bayes model to assess moderated t and F sta-
tistics. Limma can be used to analyse both single and dual color microarray experiments. In
addition, our previous benchmarks performed on a simulated dataset containing real data
(biological variance) illustrated the quality of the results provided by Limma, which ranked
second among 8 methodologies tested [23]. To increase the predictive power of the analy-
sis, we conducted experiments with n = 6 in each condition. However, for n = 6 and for a
fold change of -0.46 ± 3.86, approximately 80% true positives (i.e. 20% false negatives) were
found in gene lists contaminated by 50% false positives [23]. Several filters were applied
with varying stringency to focus on the more interesting genes (among the thousands of
DEGs from the statistical output). The first filter operated on all DEGs revealed by the
ANOVA was to apply Scheffe’s post hoc pairwise comparisons between the experimental
conditions.

iv. To pursue the filtering, we selected sets of genes from the intersection of top gene lists, as
reported by Pierre et al. on human cancer studies [33–35]. The principle of this approach
was to improve the accuracy of the analysis by picking differentially expressed genes from
intersections of gene lists obtained by pairwise comparisons. This strategy was applied on
the list of DEGs inferred from the tested contrasts, thus the intersecting gene list that com-
pares control and EE2-treated samples with the 0.01 μg/L and 0.1 μg/L concentrations (see
Results section). Adjustment of the stringency of thresholds and intersections produced
larger or shorter gene lists, depending on the bioinformatics tools used downstream, some
of which take advantage of larger sets to minimise the number of false negatives, while oth-
ers use smaller sets to minimise the number of false positives.
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v. The next step performed to further enrich the list of DEGs with true positives used over-
representation analysis methods (ORA). These methods identify sets that are the most sig-
nificantly observed in the top list of differentially expressed genes, compared with any other
gene-set definition. Such sets of genes are defined based on criteria of interest for annotation
and interpretation of the results (Ontology, Pathways, Transcription factor targets. . .). We
previously used DAVID [28] to analyse the representation of pathways on cancer datasets
and reported the discovery of the implication of several pathogen recognition pathways
[33,34] and the spliceosome [35] in the metastatic phenotype under hypoxia. Enrichment
analysis tools start with definition of the appropriate sets of genes (pathways, ontology,. . .),
followed by comparison of (a) the number of member genes called differentially expressed
for each gene set of interest with (b) the expected number of genes that would be detected
by chance.

Results

5.1. Hierarchical clustering on the whole dataset
From the statistical analysis, 29,250 probes (20,718 non-redundant) appeared as differentially
expressed (DEGs) in at least one tested condition (p< 0.05). In order to visualize these DEGs,
a hierarchical clustering of the selected genes has been performed in Fig 1. It is interesting to
note that EE2 concentration (columns) is associated with specific patterns of gene expression.
By cutting the y-axis under the second level, we outlined three clusters: (i) the first cluster
included the controls and the 0.01 μgEE2/L concentration; (ii) a second cluster grouped 4 sam-
ples of the 0.1 μgEE2/L concentration and (iii) a third contained two 0.1 μgEE2/L samples and
all replicates at the higher concentrations (1 and 10 μgEE2/L). At the gene level (rows), two
major clusters appeared with genes under or over expressed between the low (0.01, 0.1 μgEE2/
L) and high (1 and 10 μgEE2/L) concentrations. As stated above, this huge gene list required
further refinements in order to be interpreted.

5.2. Integration with disruptions observed at the morphological level
(phenotypic anchoring)
The results obtained upon the histological analysis conducted previously [37] are summarised
in Table 1. Gene expressions profiles acquired in the present study are consistent with these
morphological disturbances. Indeed, major morphological alterations were observed from the
first concentration used, with a high proportion of ovotestis gonads at the lower concentrations
used (0.01 μgEE2/L), which is consistent with the high number of DEG retrieved between this
condition and control fish (i.e. 4,726 DEG in Fig 2). Moreover, male phenotypes were also
observed at this concentration, which may have been correlated with the mix of controls and
[0.01] samples in the first cluster (Cluster 1 in Fig 1). Complete sex reversal was observed at the
two higher concentrations used, all the fish displaying “ovarian-like” phenotypes at 1 and
10 μgEE2/L, which could be related to the third group of samples (Cluster 3 in Fig 1). The sta-
tus of the 0.1 μgEE2/L dose was intermediary (fish displaying intersex and reversed gonads),
which is supported by the intermediate pattern of gene expression in the cluster 2 (Fig 1). This
approach allowed focusing our analysis on the two lower concentrations used, which were
mostly represented by intersex fish.
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Fig 1. Hierarchical classification of gene expression profiles following steroid modulation of immature gonads in rainbow trout. This two-color
matrix shows the 20,718 non-redundant differentially expressed genes in the testis of all-male rainbow trout following chronic exposure to 5 concentrations of
ethynylestradiol (EE2) after statistical filtering by an ANOVA analysis using Limma (R software). c (control), c0.01, c0.1, c1 and c10 (respectively 0, 0.01, 0.1,
1 and 10 μgEE2/L). The genes (rows) and replicate arrays (columns) were classified according to their profile similarity, represented by branch lengths of the
trees (increasing dissimilarity is shown with longer branches). Green represents under-expression, and red over-expression.

doi:10.1371/journal.pone.0128598.g001
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5.3. ANOVA and Scheffe contrasts
Fig 2 summarises the microarray analysis workflow and shows an overview of the associated
results.

First, we tested the effect of replicate tanks (3 tanks per condition) on gene expression. No
effect could be detected (S1 Script. (b)), in such a way that differential expression analysis was
performed using the one-way ANOVA assuming 6 independent samples for each condition
(5 tested concentrations). The results for the 10 contrasts, presented by the number of differen-
tially expressed genes without redundancy but before annotation, are shown in Fig 2. The cut-
off for DEG inference was set to 0.05 for the adjusted p-values (Benjamini-Hochberg). The
actual number of oligonucleotides having an accurate annotation was lower. An exhaustive list
of the DEGs (both under- and over-expressed) is provided for each contrast in S1 Table. Con-
sidering the very large number of genes by contrast group (Fig 2), we later focused the analysis
on four groups that were the most relevant with regards to the biological context, comparing
reference samples with samples treated with EE2 at different concentrations. The contrast
labels were defined as control vs. different [EE2]: (i) CT1 = Control VS [0.01 μgEE2/L]; (ii)
CT2 = Control VS [0.1 μgEE2/L]; (iii) CT3 = Control VS [1 μgEE2/L] and (iv) CT4 = Control
VS [10 μgEE2/L].

5.4. Selection of DEGs groups
As supported by the histological analysis of the gonads, we postulated that common DEGs
detected in contrasts CT1 and CT2 should have contained the DEGs specific to the ovotestis
process. The “Total intersection” group represented the set of DEGs that were common to CT1
and CT2, involving 4,160 oligonucleotides called differentially expressed (adjusted p< 0.05).
We also defined a “Stringent intersection” set, which was expected to be enriched in true
DEGs. Three arbitrary filters were applied (two prior to the statistical analysis, and a third one
downstream of the statistical analysis). The first was based on the assumption that in a given
tissue at a given time, only 50% of the transcripts are expressed. Indeed, the median signal
intensity of a microarray is a commonly accepted estimation of the background and expression
signals under this value can thus be considered as not expressed [52]. First, we only focused on
genes for which the mean signal was up to the median in at least one experimental group. Sec-
ond, to focus on transcripts with relevant regulation, we fixed a threshold of 1.5 for the fold
change between tested samples. Last, we selected highly significant genes (p-value< 0.01). The
resulting lists of DEGs built from both contrasts were called “Stringent intersection” and
included 1,208 DEGs.

“Specific intersection” focused on DEGs that were specific to the CT1-CT2 intersection,
which were expected to be specifically associated with the development of intersex features at
the morphological level. We thus discarded those DEGs that were differentially expressed in
the other contrasts (CT3 and CT4): 300 DEGs belong to this group.

Volcano plots are provided in Fig 3 for the three groups of genes defined above (total, strin-
gent and specific intersections) for each contrast to illustrate the selection applied to the data-
set. This graph shows the results sorted by p-value (Y-axis) and fold change (X-axis). In such

Fig 2. Flowchart of the workflow of the microarray analysis methodology and the associated results. The workflow includes analysis of pre-treated
data by a one-way ANOVA followed by Scheffe post hoc pairwise comparisons, selection of biologically relevant sets of contrasts and intersection of gene
lists, performed at different levels of stringency. The remaining gene lists, named “Total intersection”, “Stringent intersection” and “Specific intersection”,
supposed to be enriched in true positive differentially expressed genes (DEGs) were subjected to over-representation analysis methods (ORA), namely
pathways and ontologies research. To select potential biomarkers, we combined all approaches. We established three criteria from the “Specific intersection”
group of genes: (1) specificity, (2) membership in a pathway/ontology, (3) sensitivity (high fold change). ENSDARG annotation refers to the ensembl
database identifiers for Danio rerio genes.

doi:10.1371/journal.pone.0128598.g002
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Fig 3. Volcano plots data representation. Volcano plots representing the 3 groups of DEGs selected for
our analysis, in the two contrasts, CT1 (A-C-E) and CT2 (B-D-F). The green bars represent the log2(+/-2) fold
change and the blue bars represent a p-value threshold of 0.05. The red dots are the 4,160 genes in the
“Total intersection” group (A-B), the 1,208 genes in the “Stringent intersection” group (C-D) and the 300
genes in the “Specific intersection” group (E-F) selected at the intersection step. Letters correspond to the
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graphs, the most interesting genes are usually located in the upper left and right corners of the
plot, depicting genes with low p-values and high fold changes. The comparison between the
two contrasts helped to guide the selection of genes with interesting expression patterns at the
two EE2 concentrations tested.

5.5. Over-representation analysis methods (ORA)
5.5.1. Pathways. The list of Ensembl gene IDs for Danio rerio corresponding to the “Total

intersection” DEG group was entered into the DAVIDWeb tool. Of the 4,160 DEGs, 2,412
were accurately annotated with an ENSDARG ID, and DAVID recognised 2,159 of them. The
background was made up of 16,977 ensembl IDs. A total of 90 pathways containing at least 2
genes were identified from the remaining 2,159 genes (S1 Supporting Information). Among
these pathways, 11 were detected with a significant enrichment in the list of DEGs submitted,
with an EASE score below the threshold of 0.05 (Table 2). Only one pathway (the cell cycle)
could be detected when the threshold was set to adjusted p-values, after the very conservative
multiple testing Benjamini correction (see Table 2). Most of these enriched pathways involved
Metabolism, and especially that of Carbohydrates (Glycolysis, Propanoate), Lipids (Fatty
acid and Glycerolipid) and Amino acids (Valine, leucine and isoleucine degradation). Genetic
information processing was also detected from the Spliceosome or in connection with the
“Replication and Repair” processes. Of particular interest were the pathways related to cellular
processes: (i) “Cell cycle” was the most significantly enriched set of genes, with the highest
number of highlighted genes (37); and (ii) the “Oocyte meiosis pathway” was the third pathway
in terms of the number of DEGs highlighted (24). The DAVID output for these two pathways
is presented in Fig 4A and 4B). Gene enrichment is illustrated with red stars corresponding to
the DEGs retrieved in our analysis.

genes selected as potential biomarkers. a: si:dkey-162h11.2, b: Unknown, c: THEG, d: LOC100136222, e:
LOC795591, f: CU856539.4, g: thrap3, h: Unknown, I: dnaaf2, j: cyp2m1, k: Dnajc28, l: Bmp6, m: atp1a1, n:
ADAR, o: he2, p: HES5, q: Foxl2, r: Spon2, s: cdkn1b, t:SLC25A6, u: Aldh7a1, v: TPl1, w: atp1a1, x:
SLC25A4. A complete description of gene names, their fold change and PValues are given in Table 5 for
plots E-F (letters q to x) and Table 6 for plots C-D (letters a to p).

doi:10.1371/journal.pone.0128598.g003

Table 2. Results obtained for the pathways enrichment analysis approach. Significantly enriched pathways (EASE score < 0.05) retrieved by the
DAVID web tool for the “Total intersection” group in this analysis (4,160 gene IDs restricted to a set of 2,159 well annotated differentially expressed genes rec-
ognized by ENSDARG identifiers in DAVID). This group represents the common genes differentially expressed following chronic steroid modulation of imma-
ture gonads in rainbow trout at 0.01 and 0.1 μgEE2/L. They were retrieved from the intersection between two contrasts (CT1 and CT2) represented by a
majority of fish displaying intersex gonads.

Term Count P-Value Benjamini

Cell cycle 37 2.1E-4 2.8E-2

DNA replication 15 8.9E-4 5.8E-2

Spliceosome 33 1.9E-3 8.2E-2

Valine, leucine and isoleucine degradation 15 6.9E-3 0.21

Glycerolipid metabolism 12 1.2E-2 0.27

Fatty acid metabolism 12 1.2E-2 0.27

Mismatch repair 9 1.4E-2 0.27

Glycolysis/Gluconeogenesis 18 1.6E-2 0.27

Propanoate metabolism 11 2.0E-2 0.29

Oocyte meiosis 24 3.0E-2 0.37

Nucleotide excision repair 13 3.4E-2 0.37

doi:10.1371/journal.pone.0128598.t002
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5.5.2. Ontologies. An enrichment analysis was conducted on ontologies with EASE on
the Gene symbol identifiers from the “Stringent intersection” DEG group. EASE identifies bio-
logical themes (GO Terms) from large gene lists [29]. Of the 1,208 DEGs in the Stringent inter-
section, 868 could be accurately annotated, and 410 were recognised by EASE. Interestingly, 77
terms were significantly enriched (EASE score lower than 0.05). The 3 main categories of the
GO terms were not equally represented, with 65% belonging to the GO Biological Process, 23%
to the GO Cellular Component and 12% to the GOMolecular Function. As in the pathway
enrichment analysis, we hypothesized that the correction for multiple tests was too conserva-
tive and focused our attention on the p-values lower than 0.01 (highly significant genes).
Table 3 provides a summary of the results obtained. An exhaustive presentation of the relation-
ships between all genes and each category is provided in S2 Supporting Information. Genes
that belonged to the “stringent intersection” set could be summarised in four broad terms with
high significance: (i) intracellular including the more specific terms related to DNA replication
and the nucleus; (ii) reproduction, involving genes known to take part in female gonad devel-
opment; (iii) cell proliferation, with the more specific terms “morphogenesis” and “organogen-
esis”; and (iv) metabolic process which included the lipid metabolic process and more precisely
genes involved in C21-steroid hormone biosynthesis.

5.6. Real-time PCR validation
The accuracy of the microarray data was validated by means of real-time PCR on several genes
which were shown to be up or downregulated in the microarray data, namely dmrt1, sox9a2,
cyp11b, vtg, esr1a, esr2b. Q-PCR results obtained for the 6 genes tested are detailed in a previ-
ous paper [37], and summarized in S3 Supporting Information. The consistency of the results
obtained by the two independent methods was tested by comparing the fold changes obtained
by microarray analysis and real-time PCR in each condition (i.e. the four concentrations
tested). The results revealed a very high correlation between both approaches for each gene
tested, with R values much higher than the threshold set at 0.75 (for n = 4 and p<0.01)[44]
(Table 4).

5.7. Biomarkers
This study resulted in the definition of two sets of potential biomarkers, respectively associated
with different applications and scopes (see the Discussion). First, in the Specific intersection
set, 237 out of 300 DEGs had a non-redundant accurate annotation, and 36 genes (of particular
interest) belonged to at least one enriched pathway/GO term. Among the genes associated
with more than one pathway/GO term, we selected the ones that were most significant. Con-
sidering that a high fold change will be more easily detectable (more sensitive biomarkers) only
genes with (FC<-2 or FC>2) were selected from the CT1 contrast, corresponding to the lower
dose. The resulting list included 8 DEGs as potential biomarkers of morphological disruption
(Table 5). These genes are labeled with characters q to x in Fig 3 (E-F, volcano plots). The vol-
cano plots showing the results for CT1 and CT2 highlight a high similarity between both con-
trasts (in term of fold change and p-value). FOXL2 and spon2 displayed the highest magnitude
of over-expression in both contrasts (see Table 5 and Fig 3E and 3F). For additional informa-
tion, the list of 29 DEGs with FC<-2 or FC>2 that were not associated with any enriched path-
way/GO term are presented in S4 Supporting Information.

Fig 4. Examples of pathways resulting from the DAVID analysis. The Cell cycle (A) and Oocyte meiosis pathways (B)(in Danio rerio, retrieved from the
KEGG database) are presented as examples of the results obtained in the pathway overrepresentation analysis made in this study. The red stars represent
the DEGs in our results.

doi:10.1371/journal.pone.0128598.g004
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Second, Fig 3 shows several strongly differentially expressed genes, presenting both a high
fold change and a low p-value (upper right and left corners of the graph). From the “Stringent
intersection” in the CT1 contrast (the lowest concentration used) (Fig 3B), we selected 16
genes (labeled from a to p) that are listed in Table 6. The same label was used in the volcano
plot of the CT2 contrast (Fig 3C). In accordance with our definition of the “Stringent” and
“Specific” intersections, genes belonging to this selection were common to CT1 and CT2 but
also to at least one of the remaining contrasts, CT3 and/or CT4.

The expression profiles of the two sets of potential effect biomarkers defined here from the
study of the effects of EE2 at four concentrations are illustrated in Fig 5A and 5B). The two sets
of candidate biomarkers displayed different patterns of expression. The first group includes
genes with peak expression in the CT1 and CT2 contrasts, and weak or no expression in CT3

Table 3. Results obtained for the ontology enrichment analysis approach. Significantly enriched GO terms (EASE score < 0.01) retrieved by EASE soft-
ware for the “Stringent intersection” group in this analysis (1,208 gene IDs restricted to a set of 868 well annotated differentially expressed genes recognized
by Gene Symbol identifiers in DAVID). This group represents the common genes differentially expressed following chronic steroid modulation of immature
gonads in rainbow trout at 0.01 and 0.1 μgEE2/L. They were retrieved from the intersection between two contrasts (CT1 and CT2) represented by a majority
of fish displaying intersex gonads, after a more stringent filtration of the dataset.

GO ID Term EASE score (P-Value)

GO:0005622 Intracellular 6E-4

GO:0008585 Female gonad development 7E-4

GO:0006730 One-carbon compound metabolism 7E-4

GO:0007049 Cell cycle 1.3E-4

GO:0000074 Regulation of cell cycle 1.4E-4

GO:0007276 Gametogenesis 1.5E-4

GO:0006261 DNA dependent DNA replication 1.7E-4

GO:0000003 Reproduction 1.8E-4

GO:0019953 Sexual reproduction 1.8E-4

GO:0005739 Mitochondrion 2.3E-4

GO:0005829 Cytosol 2.6E-4

GO:0000278 Mitotic cell cycle 4.4E-4

GO:0048232 Male gamete generation 5.0E-4

GO:0007283 Spermatogenesis 5.0E-4

GO:0008283 Cell proliferation 5.0E-4

GO:0005634 Nucleus 5.2E-4

GO:0006700 C21-steroid hormone biosynthesis 5.2E-4

GO:0008207 C21-steroid hormone metabolism 5.2E-4

GO:0005659 Delta DNA polymerase complex 5.3E-4

GO:0030894 Replisome 5.3E-4

GO:0016817 Hydrolase activity, acting on acid anhydrides 5.4E-4

GO:0008406 Gonad development 6.3E-4

GO:0009887 Organogenesis 8.5E-4

GO:0009653 Morphogenesis 8.8E-4

GO:0015207 Adenine transporter activity 9.2E-4

GO:0005345 Purine transporter activity 9.2E-4

GO:0001541 Ovarian follicle development 9.2E-4

GO:0046881 Positive regulation of follicle-stimulating hormone secretion 9.2E-4

GO:0042698 Menstrual cycle 9.2E-4

GO:0046887 Positive regulation of hormone secretion 9.2E-4

GO:0000502 Proteasome complex (sensu Eukarya) 9.5E-4

doi:10.1371/journal.pone.0128598.t003
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and CT4, whereas the second set contains genes for which the expression level increased at
increasing EE2 concentrations.

Discussion

6.1. Biological hypothesis
Overall, this study generated an impressive number of differentially expressed genes (DEGs),
as highlighted by the hierarchical cluster (Fig 1) where nearly one half of the genes were signifi-
cantly differentially expressed in at least one condition tested. The accuracy of the microarray
data is validated by the similar pattern of expression obtained by QPCR analysis for the several
selected genes, highlighted by the high correlation between both experiments results (Table 4).
Moreover, the number of DEGs increased in a dose-dependent manner, as shown in the
table of contrasts (Fig 2), with an increase in the number of DEGs as the EE2 concentration
increased (CT1 to CT4). Thus, the expression of nearly one half of the content of the array was
significantly altered at the highest concentration used (10 μgEE2/L) versus the control group

Table 4. Correlation between differential gene expressions obtained through real-time PCR and
microarray approaches. Values were obtained frommean values of 6 replicates per conditions in the 4 con-
ditions tested (the 4 concentrations; 0.01; 0.1; 1; 10 μgEE2/L). Significance threshold for n = 4 and p<0.01 is
set to 0.72 [44].

Gene symbol Description Correlation coefficient

dmrt1 Doublesex and mab-3 related transcription factor 1 0.99

sox9a2 SRY-box containing gene 9b 0.99

Cyp11b2.1 cytochrome P450, family 11, subfamily b, polypeptide 2.1 0.98

vtg vitellogenin 0.99

esr1a Estrogen receptor α1 isoform 0.98

esr2b Estrogen receptor β2 isoform 0.98

doi:10.1371/journal.pone.0128598.t004

Table 5. Specific biomarkers. Potential “specific biomarkers” of morphological disruption (i.e. ovotestis) in juvenile male rainbow trout gonads exposed
chronically to ethynylestradiol. These genes were selected following several filters to focus on genes specifically differentially expressed in the gonads of fish
displaying intersex gonads. The “Graph symbol” column refers to the letters represented on volcano plots in Fig 3E and 3F.

Graph
symbol

Gene
symbol

Description Fold
Change
CT1

PVal
CT1

Fold
Change
CT2

PVal
CT2

Pathway GO term

q FOXL2 Forkhead box protein L2 (Homo
sapiens)

3.9 2E-5 3.6 2E-6 - Intracellular

r spon2 Spondin-2 (spon2), mRNA (Salmo
salar)

3.6 7E-4 3.7 7E-5 - Organogenesis

s cdkn1b Cyclin-dependent kinase inhibitor 1b
(p27, kip1) (cdkn1b), mRNA (Danio
rerio)

2.3 1.6E-2 1.8 4E-2 Cell
cycle

Cell cycle

t SLC25A6 ADP/ATP translocase 3 (Homo
sapiens)

-2 3.4E-2 -2.1 8.8E-3 - Intracellular

u Aldh7a1 aldehyde dehydrogenase 7 family,
member A1 (Danio rerio)

-2 2.5E-2 -2.3 2.6E-3 - Valine, leucine and
isoleucine degradation

v TPI1 triosephosphate isomerase 1 (Homo
sapiens)

-2.3 1.9E-2 -3.1 2.1E-4 - Intracellular

w atp1a1 ATPase, Na+/K+ transporting, alpha
1a.4 polypeptide (Danio rerio)

-2.3 1.4E-2 -2.4 2E-2 - Hydrolase activity

x SLC25A4 ADP/ATP translocase 1 (Homo
sapiens)

-2.3 3.7E-3 -2.8 6.6E-5 - Intracellular

doi:10.1371/journal.pone.0128598.t005
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(contrast CT4). This extraordinary effect may be related to the combination of several promot-
ing factors: the maximisation of dose, duration and potency of the chemical used [12] and the
complete reversal of genetic males into phenotypic females which can induce numerous
changes at the transcriptional level [37]. Moreover, the juvenile state in fish is known to be
more responsive to chemical treatment [53]. Considering this high number of DEGs in our
analysis, it appears that clustering will not be the most suitable method to focus on genes of
interest. Indeed, each cluster represented several thousands of genes, too many to handle man-
ually, especially since this method does not resolve the problem of contamination of the data
by false positives, which can impair the entire analysis step downstream.

Considering the second goal of this study which was to find potential biomarkers of mor-
phological disruption occurring in fish gonads following chronic exposure to xenoestrogens,
the combination of histological results obtained previously [37] with gene expression patterns
allowed focusing our analysis on the two lower concentrations used (0.01 and 0.1 μgEE2/L),
which were mostly represented by intersex fish. Due to the complete sex reversal observed at
the higher concentrations used (1 and 10 μgEE2/L), gene expression observed may simply
reflect differences between male and female phenotypes. This “phenotypic anchoring”
approach, which combines results from different levels of biological organisation, has been
proven to correlate the relationships between changes in gene expression and conventional tox-
icological endpoints [10,54]. Therefore, we hypothesized that the marker genes of the intersex
condition must be present at the lower doses, which encompass a majority of fish displaying
intersex gonads. These considerations, combined with the one concerning the statistical analy-
sis of microarray data, have led to the use of a methodology aiming to focus on biologically rel-
evant biomarkers, by choosing physiologically relevant sets of genes, and true positive enriched
gene sets through the intersection of gene lists and ORA approaches.

The strength of this methodology is that it follows a step-by-step procedure, from general
to more specific, depending on the bioinformatics tool used and using adapted lists of DEGs.
Based on previous considerations, we choose CT1 and CT2 contrast intersection for the down-
stream analyses, using more stringent filter criteria which creates two groups of genes, named
“Total intersection” and “Stringent intersection”. The use of DEGs common to these two con-
trasts focuses on a smaller group of genes representing potential genetic signatures of the inter-
sex stage. The improvement of the dataset obtained between the “Total” and “Stringent”
intersection groups of DEGs can be visualised in the Volcano plots (Fig 3AB–3CD), with a
majority of the stringent DEGs being located on the edges of both the CT1 (Fig 3C) and CT2
(Fig 3D) graphs. This illustrates that DEGs selected with the CT1-CT2 intersection are relevant
genes of the analysis (high fold changes and low p-values), and highlights a consistency of the
DEG profiles between the two contrasts.

After these filtrations, the next step to further investigate these (still large) groups of DEGs
was the use of ORA (over-representation analysis) methods. These publicly available methods
identify meaningful information in large top lists. Ontology analyses [55] and more accurate
pathway analyses are commonly used to rapidly extract biological meaning from large gene
lists.

6.2. Inference by homology
As described above, rainbow trout was selected as the most suitable biological model for several
reasons. At the time of data analysis the rainbow trout genome and complete functional anno-
tation wasn’t available, though this is still not the case concerning the last one. We thus opted
for interpretation by homology with Danio rerio for the pathway analysis, and with the accu-
rate multi-species Swissprot annotation for the ontology analysis. This represented in itself an

Microarray Analysis Workflow for a Toxicogenomic Study

PLOS ONE | DOI:10.1371/journal.pone.0128598 July 17, 2015 19 / 31



interesting challenge given the number of fishes still lacking genome sequencing and/or an
accurate annotation. Our analysis was thus hampered by the lack of complete sequencing and
annotation of the model species used.

6.3. Relevance of gene lists
Due to the limited genomic resources and annotation of the model species selected for our
study, the interpretation and over-representation analysis raised several issues.

First, ORA results sorely depend on the annotation quality of sequences targeted by the
array. To evaluate the enrichment of a set of genes, a comparison is performed with a null
distribution (representation that can be expected by chance). The null distribution can be com-
puted from the entire genome, or from a set of genes (e.g. genes spotted in the array). Distribu-
tions built from a larger number of genes allow for a better discrimination between significant
sets (the p-values can be estimated more precisely) [28]. By default, DAVID uses the whole set
of genes present in the genome as the background. This requirement is problematic when only

Table 6. Sensitive biomarkers. Potential “sensitive biomarkers” of morphological disruption (i.e. ovotestis) in juvenile male rainbow trout gonads exposed
chronically to ethynylestradiol. These genes represent the most differentially expressed genes in term of fold change and p-value in fish displaying intersex
gonads (i.e. the two contrasts CT1 and CT2, corresponding to fish exposed to 0.01 and 0.1 μg EE2/L against the control group, respectively). The “Graph
symbol” column refers to the letters represented on volcano plots in Fig 3C and 3D.

Graph
symbol

Gene symbol Description Fold
Change CT1

PVal
CT1

Fold
Change CT2

PVal
CT2

Path-
way

GO term

a si:dkey-
162h11.2

si:dkey-162h11.2 [Source:ZFIN;Acc:
ZDB-GENE-121214-90]

10.3 8.2E-
07

47.42 9.2E-
13

- -

b Unknown - 10.3 1.1E-
04

74.42 1.5E-
10

- -

c THEG similar to Testicular haploid expressed
gene (Danio rerio)

9.8 1.3E-
03

54.09 3.6E-
08

- -

d LOC100136222 Oncorhynchus mykiss CD8 beta mRNA 9.5 1.9E-
05

86.16 2.2E-
12

- -

e LOC795591 similar to tubulin alpha 6 (Danio rerio) 8.6 4.5E-
06

15.88 1.1E-
09

- -

f CU856539.4 Uncharacterized protein (Danio rerio) 7.5 7.6E-
05

66.91 6.5E-
12

- -

g thrap3 thyroid hormone receptor associated
protein 3b (Danio rerio)

6.6 1.2E-
06

24.83 7.9E-
13

- -

h Unknown / 6.0 4.5E-
06

19.54 7.9E-
12

- -

i dnaaf2 dynein, axonemal, assembly factor 2
(Danio rerio)

6.0 2.0E-
06

36.40 7.4E-
14

- -

j cyp2m1 Oncorhynchus mykiss Cytochrome
P450 2M1

-5.8 9.4E-
08

-35.37 1.9E-
15

- -

k Dnajc28 DnaJ (Hsp40) homolog, subfamily C,
member 28 (Danio rerio)

-6.4 1.4E-
08

-23.47 4.3E-
15

- -

l Bmp6 bone morphogenetic protein 6(Danio
rerio)

-7.0 9.4E-
08

-21.95 2.4E-
13

- Morphogenesis

m atp1a1 ATPase, Na+/K+ transporting, alpha
1a.4 polypeptide (Danio rerio)

-7.1 1.4E-
08

-38.90 1.0E-
15

- Hydrolase
activity

n ADAR adenosine deaminase, RNA-specific
(Danio rerio)

-7.4 4.3E-
10

-50.37 3.3E-
18

- Nucleus

o he2 hatching enzyme 2 (Danio rerio) -14.2 8.2E-
06

-251.12 2.6E-
13

- -

p HES5 Transcription factor HES-5 (Homo
sapiens)

-25.8 1.1E-
08

-5.02 1.5E-
05

- -

doi:10.1371/journal.pone.0128598.t006
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Fig 5. Potential biomarkers expression profiles on the whole experiment. Expression profiles of potential “specific” (A) and “sensitive” (B) biomarkers for
the 4 contrasts of the experiments, expressed in log2 fold change. The control group was set to 0 (fold change = 1). A complete description of gene names is
given in Table 5 for plots A and Table 6 for plots B.

doi:10.1371/journal.pone.0128598.g005
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part of the genome has been sequenced and annotated. Consequently, a homogeneous annota-
tion must be performed by homology with a single species. The analysis of gene ontologies did
not raise concerns since GO terms are not defined in a species-specific manner [55]. The analy-
sis of pathways defined in KEGG (Kyoto Encyclopedia of Genes and Genomes) [56] was espe-
cially complicated: among fishes, only zebrafish (Danio rerio) has accurate pathways maps
(exclusively in KEGG). The annotation of the Agilent rainbow trout 60K array was redundant
and heterogeneous, such that we needed to unify the array annotation using Danio rerio ortho-
logs, to ensure that DAVID could handle the associated gene IDs. We retrieved the ensembl
gene IDs (ENSDARG) for this purpose [24]. This step constituted a significant unspecific filter
and resulted in the loss of information due to the lack of correspondences, thus limiting the
number of genes considered. To obtain more accurate results, we chose to set up the
ENSDARG annotation of the array as the background for the pathway analysis by DAVID.

Second, the results of this analysis can vary greatly depending on the list of genes entered
into the program, and especially its length. We conducted the over-representation analysis on
several lists of genes detected with increasing stringency. We assumed that the pathway enrich-
ment analysis required the larger gene list (with the lowest stringency) to have the chance of
highlighting most of the genes in the same pathway, regardless of their p-value or fold change.
The enrichment analysis of the ontologies was computed on a more specific set of DEGs
(increased stringency) to avoid contamination of the results by too general terms. Last, to iden-
tify potential biomarkers, we generated a gene list with the highest stringency, and we com-
bined the previously described approaches. For this, we established three criteria encompassing
the two previous steps to select genes of interest: (1) specificity, (2) membership in a pathway/
ontology, (3) sensitivity (high fold change) (Fig 2).

6.4. Statistical relevance
Despite the loss of information encountered during the annotation step, several interesting
enriched pathways and GO terms were found in the DAVID and EASE analyses. However,
another interesting aspect is the interpretation of EASE scores, as the multiplicity test correc-
tion (Benjamini) leads to virtually no significant output.

Indeed, care was required in interpreting the EASE scores (and the corrected p-values
derived from it), according to their biological relevance in the context studied, the broadness of
the information stored in the KEGG maps, the rate of false negatives induced by our screening
and the obvious loss of information due to the inference by homology. The p-value is a contro-
versial criterion to assess the truthfulness of a statistical result in microarray studies, especially
at higher levels of analyses (e.g. pathway enrichment procedures) [57]. Moreover, the use of
multiplicity compensation tests is also discussed, as their stringency increases with the number
of tests performed in one experiment [57]. In the case of a microarray analysis, the number of
tests computed is so large that the host of methodologies (FDR [58], FWER [59], Benjamini-
Hochberg [39], . . .) has become too conservative. Therefore, they increase the false negatives
generated, which reduces the overall information obtained. In his study, Konishi [57] attested
that methods of correction for multiple testing are not suitable for microarray data, given the
very high number of co-occurring tests. Indeed, the DAVID protocol states: “The analysis of
large gene lists is more of an exploratory, computational procedure rather than a purely statisti-
cal solution” [28]. In our results, several pathways omitted by the Benjamini correction, such as
oocyte meiosis (Table 2), seemed very interesting. To further assess the significance of the
oocyte meiosis pathway in the over-representation results, we generated the null hypothesis by
performing 500 random selections of 2,159 ENSDARGs among all the identifiers present on
the microarray and entered them into the DAVID web tool. The EASE scores and number of
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hits in the oocyte meiosis pathway were then plotted (Fig 6). The plot clearly showed a gap
between the random selections (with a maximum of 21 hits and an associated EASE score of
0.061) and the actual result (24 hits, EASE score of 0.03). More importantly, the same or better
results were never obtained with 500 random tests, which estimates the probability of obtaining
the results observed by chance at less than 0.01. The same work was done for the “cell cycle”
pathway, with similar results and an estimated p-value below 0.01 (data not shown).

This simulation (Fig 6) clearly shows that these results departed from randomness, with
even fewer random occurrences than expected by the EASE score (the probability of obtaining
the results observed by chance being inferior to 0.01) and is corroborated by the similar results
obtained for the “cell cycle” pathway (p<0.05 in DAVID with the Benjamini correction). This
over-estimation of the EASE score by DAVID was also observed in previous studies [33–35].

6.5. Pathways and ontologies associated with testis-ova in fish
Results obtained in the ORA approach must be taken with caution regarding EE2 response and
rainbow trout physiology. Indeed, pathways and ontologies retrieved in our experiment reflect
the alteration in the transcriptome of intersex fish at one time point following a long-term
exposure to low doses of EE2. Homology with Danio rerio genes was necessary since this is the
only fish species for which pathways maps are available (see above). Considering this, pathways
and GO Terms presented here are not biologically relevant of rainbow trout physiology given
that correspondences between probes-to-genes-to-pathways between rainbow trout and zebra-
fish are not attested. However, many system structures, functions and regulations tend to be

Fig 6. Null hypothesis for the Oocyte meiosis pathway. The plot represents EASE score and number of hits in the oocyte meiosis pathway for the 500
random selections from among the 2,412 gene identifiers (in blue), compared with the actual result of the analysis (red). This graph plots the number of hits
(X-axis) against the EASE score (Y-axis). The difference between the random selection scores and the actual result score supports the assumption that
oocyte meiosis is over-represented in our list of genes.

doi:10.1371/journal.pone.0128598.g006
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well conserved across all vertebrates [60]. Moreover, direct effect of EE2 cannot be ascertained
after long-term exposure to the compound, given that indirect retro-control on the hypothala-
mus–pituitary axis or other systemic responses may also be involved in the response observed.
Then, the pathways/GO terms obtained are considered as reflecting the fingerprint of the gene
expression profiles in the testis of fish exposed chronically to low doses of EE2.

Interestingly, most of the pathways and GO Terms highlighted in our analysis has been pre-
viously associated with E2 and EE2 exposure using the rodent uterotrophic assay [61–63]. This
assay rely on the sensitivity of the immature uterus to estrogens (by increased uterine weight)
and has been widely exploited as a toxicological test for measuring the estrogenic activity of
chemicals [64]. It includes pathways required for cell division (Cell cycle, DNA replication,
Spliceosome, Valine, leucine and isoleucine degradation, Nucleotide excision repair, Mismatch
repair, Glycolysis). All of these changes are consistent with the known physiological changes
that occur upon exogenous E2-treatment [65]. Similar pattern has been also found after expo-
sure to the phytoestrogen genistein and the synthetic xenoestrogen diethylstilbestrol [61]).
The Cell cycle pathway was also found overrepresented (by pathways or GO Terms) in works
studying the response of several fish species and several tissues (mainly gonads and liver) to
estrogenic compounds [66–69]. The lipid metabolism (Glycerolipid, fatty acid) was also shown
to be disrupted by EE2 in the zebrafish liver and testis [70,71]. Our results confirm that those
pathways are a relevant fingerprint of the EE2 exposure, and even expended it to juvenile fish
displaying intersex gonads. To our knowledge, the Oocyte meiosis pathway was never reported
in previous studies. This alteration is consistent with the natural male versus female differentia-
tion mechanisms considering that the over-expression of oocyte development is the earliest
sign of female gonad development in fish [53]. The non species-specific Gene Ontology enrich-
ment terms highlighted the same trends, with however more terms specifically related to
‘sexual reproduction’ (especially ‘female gonad development’, ‘gametogenesis’, ‘spermatogene-
sis’, ‘ovarian follicle development’), ‘steroid hormones production’ (‘C21-steroid hormone
biosynthesis and metabolism’), ‘organogenesis’ and ‘morphogenesis’. Several ontologies
such as the “mitotic cell cycle” and “nucleus” were also significantly enriched in juvenile andro-
gen-masculinised female rainbow trout [72]. Despite the limitations encountered described
above, the clear consistency of the results obtained in the ORA approach confirms the bioinfor-
matics workflow performances to retrieve pathways and ontologies related to the context stud-
ied. Moreover, in addition to its utility for statistical purposes in the bioinformatics workflow
(to retrieve true positives genes), these results reinforce the usefulness of this approach in
highlighting biological meaning from large gene lists obtained in microarray experiments.
Finally, these results argue in favor of the use of gene homology with Danio rerio to retrieve
pathways related to exogenous estrogenic exposure, and suggest its generalisation to other fish
species. This would greatly help for environmental risk assessment purposes.

6.6. Potential biomarkers
The final step of the analysis was to focus on potential biomarkers of morphological disruption
occurring in fish gonads following chronic exposure to xenoestrogens. This will help greatly
in environmental risk assessment procedures, by providing early-stage diagnostic tools for
population exposure and effects. Following the previously described anchoring approach
which considered that gene expression patterns in reversed fish (represented in the CT3 and
CT4 contrasts) could be related to basic male versus female phenotype differences, we selected
the DEGs specific to the intersection between CT1 and CT2 (“Specific intersection” group),
and discarded the DEGs common to the other CT3 and CT4 contrasts. This step was per-
formed to assess the specificity of the biomarkers and their use in a mixed fish population. To
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further increase the chances of true positive status, only genes belonging to a significant path-
way/GO term were kept from this gene list.

Finally, to increase their sensitivity, only genes with a high fold change (at least over +/-2) in
the lower concentration used (CT1) were selected. This resulted in a list of 8 potential specific
and sensitive biomarkers of ovotestis occurrence in juvenile rainbow trout exposed to xenoes-
trogens (Table 5). Among them, the transcription factor Foxl2a is known as an early specific
ovarian differentiation marker gene in rainbow trout [73]. The other genes encode enzymes or
proteins involved in diverse cellular processes. However, though these genes were most proba-
bly biologically relevant in the context studied, their biomarker status seemed compromised as
the size of their differential expression and p-value did not appear to be optimal. Indeed, as
illustrated in the volcano plots (Fig 3E and 3F) only Foxl2 (letter q) and Spon2 (letter r) were
located in an interesting position in the graph, whereas other genes were found at the upper
edge of interesting dials (the upper right and left corners). One way to enlarge the pool of bio-
markers retrieved by this study was to look at the genes mostly differentially expressed in the
CT1-CT2 Stringent intersection. These genes were easily detected in the volcano plots and
are presented as a second group of potential biomarkers in Table 6 and Fig 3C and 3D (letters a
to p). Their sensitivity appeared to be suitable, but they were not specific as they were also dif-
ferentially expressed for at least one of the other concentrations tested (CT3 and/or CT4).

The expression profiles at the four concentrations tested for the two groups of biomarkers
selected further validated their different status (Fig 5A and 5B). Indeed, the methodology fol-
lowed successfully retrieved genes with an expression peak in contrasts CT1 and CT2 for the
first biomarker group, whereas only genes presenting a dose-dependent response were listed in
the second group. A recent microarray analysis on Medaka testis-ova disrupted gonads after
exposure to EE2 revealed up-regulation of genes related to zona pellucida (ZP) and the oocyte
marker gene, 42Sp50 [13]. Using quantitative RT-PCR, they confirmed that the Zpc5 gene can
be used as a marker for the detection of testis–ova in male medaka. In our study, these genes
and others known to be estrogen exposure biomarkers (Vtg, CYP19a1, ZP genes) or related to
EE2 molecular modes of action (MOA) (dmrt1, Sox9a2, amh) [74,75] in the testis of several
fish species were found to be significantly differentially expressed and were retrieved in the
CT1-CT2 intersection (Total and Stringent intersection groups). However, when we looked at
their expression profiles (for example ZP and vtg genes in Fig 5B), they appeared as not specific
to the intersex condition. Therefore, genes belonging to the second group of potential biomark-
ers proposed in our study (Table 6) could potentially be specific effect biomarkers related to
testis-ova development in rainbow trout. On the other hand, their dose-response pattern of
expression could suggest that they are strong biomarkers of exposure to EE2. This could be
determined by comparing these genes expression profiles in normal and estrogen-exposed
females. It is worth noting that, as only one time point was analysed in our study, after a long
period of exposure to the potent xenoestrogen EE2, these expression patterns could also reflect
ancillary complex systemic responses to the treatment. Moreover, at the highest dose–duration
combination, the observed changes in gene expression may no longer have been related to the
mechanisms of toxicity specific to the contaminant [10]. Based on our results, the strong differ-
ential expression of these genes in terms of fold change and p-value suggests that they can be
used at least under experimental conditions in mono-sex male fish populations, and could
potentially be applied in natural conditions, with however the risk that they could also be
expressed in females.
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Conclusions and Perspectives
In conclusion, we have successfully adapted a bioinformatics workflow to a toxicogenomic
study on rainbow trout, a species that is not fully sequenced and annotated. At several steps of
the analysis, the results support an enrichment of true positives in the set of DEGs selected.
This procedure allows us to highlight several pathways significantly enriched with sets of genes
differentially expressed in juvenile fish displaying intersex gonads after a chronic exposure to
low doses of the potent xenoestrogen EE2. Most of these pathways are relevant of those previ-
ously related to estrogenic exposure, and interesting ones (e.g. the oocyte meiosis pathway) are
also newly found in our experiment. Moreover, this analysis enabled us to propose several
potential specific and/or sensitive biomarkers genes of testis-ova development in male rainbow
trout for further validation in lab and field testing. Also, the data are ready to be re-analysed as
soon as the rainbow trout genome functional annotation is available. Moreover, the use of sig-
nificant Pathways/GO terms as criteria to choose these potential marker genes reinforced the
chances of retrieving true positives in the analysis. Despite the lack of genomic information
available for this species, relevant results were obtained by the ORA approach, taking into
account inaccuracies due to the use of Danio rerio homologs for the probe annotation. This
opens up the possibility of generalisation of this methodology in other fish species to search for
the mechanisms underlying the male-to-female transdifferentiation process or on other (eco)
toxicogenomic studies. For this, experiments involving both sexes, earlier developmental
stages, lower concentrations and shorter exposure times are recommended.
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