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Commande frontière LQ-optimale de systèmes linéaires en dimension infinie
par Jérémy Dehaye

Résumé : Nous considérons une classe de systèmes avec commande et observation
frontière pour lesquels les opérateurs non bornés induisent généralement des diffi-
cultés techniques. Un modèle étendu, n’impliquant aucun opérateur non borné à
l’exception du générateur, est décrit et analysé. Nous montrons que, sous certaines
hypothèses, le modèle est bien posé et, en particulier, que l’opérateur correspon-
dant à la dynamique est le générateur d’un C0-semigroupe. De plus, nous montrons
que le système est observable et conserve certaines propriétés du système nominal,
telles que la commandabilité, la stabilisabilité et la détectabilité. Nous présentons une
méthode pour la résolution du problème de commande LQ-optimale pour ce modèle,
dont la solution fournit un asservissement d’état stabilisant pour le système nominal.
Cette méthodologie est basée sur le problème de factorisation spectrale d’une den-
sité spectrale multidimensionnelle à valeurs opératorielles. Elle est appliquée à des
systèmes décrits par des équations aux dérivées partielles (EDP) paraboliques ou hy-
perboliques, modélisant des phénomènes de diffusion-convection-réaction ou un flux
de Poiseuille, respectivement. Cette approche semble mener à un bon compromis en-
tre l’investissement théorique requis par la modélisation et l’efficacité des méthodes
de résolution de problèmes de commande pour ce type de systèmes.

LQ-Optimal Boundary Control of Infinite-Dimensional Linear Systems
by Jérémy Dehaye

Abstract: A class of boundary control systems with boundary observation is con-
sidered, for which the unbounded operators often lead to technical difficulties. An
extended model is described and analyzed, which involves no unbounded operator
except for the dynamics generator. It is shown that, under suitable conditions, the
model is well-posed and, in particular, that the dynamics operator is the generator of a
C0-semigroup. Moreover, the model is shown to be observable and to carry controlla-
bility, stabilizability and detectability properties from the nominal system. A method
for the resolution of the LQ-optimal control problem for this model is described and
the solution provides a stabilizing feedback for the nominal system. This methodol-
ogy is based on the problem of spectral factorization of a multi-dimensional operator-
valued spectral density. It is applied to parabolic and hyperbolic partial differential
equations (PDE) systems modeling convection-diffusion-reaction phenomena and a
Poiseuille flow, respectively. This approach seems to lead to a good trade-off between
the theoretical investment required by the modeling and the efficiency of methods of
resolution of control problems for such systems.
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I think we can put our differences behind us.

For science.

You monster.

– GLaDOS

The concept of controlling a system is omnipresent in every day’s life, even at the
most basic level. Most of the technologies of this age require adapted actions, which
are often automated, in order to work as intended. Whether it be for casual, industrial
or more specialized usage, regulating, stabilizing or, in general, imposing a desired
behaviour to a physical system is often critical in view of many different objectives,
such as avoiding a chaotic evolution, maximizing productivity, minimizing waste gen-
eration... This involves a wide range of applications, including industrial processes,
chemical, mechanical, biological or biomechanical systems, regulation of common
devices such as fridges or computers, and many others.
The physical laws governing these systems are often well-known and allow for rel-
atively accurate, or at least efficient, mathematical models. However, though these
models may be powerful for predicting the behaviour of the system in the absence
of an external influence, it is often much more challenging to design efficient control
laws in view of a given objective. One of these challenges arises when one wants to
deal with systems that are by nature made to be controlled at one or several specific
and punctual locations, or, more generally, on a portion of their physical boundary. In
a mathematical formalism, these are often called boundary control systems.
Things can become even more complicated when, in addition, the measurements of
the considered physical quantities are punctual or done on the boundary as well, which
is also reflected by the mathematical model. This is often the case in practice since
many sensors or measurement devices are only able to give limited information on the
actual state of the system.

When put into this mathematical formalism, boundary control systems with boundary

observation (BCBO systems) can generally be written as three equations describing
the dynamics (including an optional distributed input), the boundary conditions and
the observation, respectively. These equations will be studied in more detail later and
are given by (1.2.1)-(1.2.3).
These systems typically feature unbounded observation and control linear operators
along with the homogeneous dynamics generator and an optional bounded distributed
control linear operator. Because of technical difficulties caused by the unbounded-
ness, it is often difficult to solve specific control problems and design control laws for
such systems. If possible, this characteristic should then better be avoided in order
to achieve an acceptable trade-off between the cost of modeling and the efficiency of
analytic and/or numerical methods of resolution of control problems.

The main goal of this work is to pose and solve a LQ-optimal control problem for such
systems by using the method of spectral factorization by symmetric extraction. This
problem and more particularly the aforementioned method of resolution for infinite-
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dimensional distributed parameter systems have been studied extensively by the Sys-
tems and Control team of the University of Namur. In addition of the interesting
benefits it may bring to the field, studying the LQ-optimal control problem and de-
veloping this methodology as well as the associated results further in the framework
of this thesis is a natural and straightforward choice. The solution of this problem
is known to be a stabilizing bounded feedback operator and the corresponding con-
trol law to be robust in the presence of perturbations. However, the proposed method
of resolution, as well as other well-known methods, typically require some relatively
strong assumptions on the system, such as the dynamics being well-posed in the sense
that the dynamics operator is the generator of a C0-semigroup, the control and obser-
vation operators being bounded or the system being at least stabilizable and detectable.

With these considerations in mind and in order to solve the LQ-optimal control prob-
lem, the first step consists of building an extended differential system involving no
unbounded operator except for the dynamics generator. For this purpose, we will con-
sider, under suitable conditions, a change of variables for the state and input of the
nominal system, as well as a Yosida-type approximation of the output which is based
on the resolvent operator of the dynamics generator (Weiss 1994).
This choice yields a well-posed extended system with similar dynamical properties
than those of the nominal one. This extended system, described by (1.2.13)-(1.2.14),
whose form is well-known in the area of linear systems and control theory, has well-
posed dynamics and bounded control and observation operators, which is crucial in
order to deal with the aforementioned technical difficulties.
Under suitable initial conditions and inputs, the (extended) state depends on the nom-
inal state, but also on the boundary input and the approximate output which will be
included in the state variables for technical reasons. Therefore, one of the novelties of
this work is the fact that the boundary input and approximate output trajectories are
given jointly by the dynamics equation, thanks to the fact that both are components
of the extended state. An important consequence of this choice of model is that the
extended input includes the derivative of the nominal boundary input with respect to
time. As is detailed in this work, this characteristic implies that any static feedback
law designed for the nominal system, including the solution of the LQ-optimal control
problem, can be interpreted as a dynamic feedback law for the nominal system.

It is shown that, under suitable conditions, the model is well-posed and, in particular,
that the dynamics operator is the generator of a C0-semigroup. Moreover, the pro-
posed extension is shown to be observable and detectable, and preserves some useful
properties of the nominal system, including (approximate) reachability and (exponen-
tial) stabilizability (when the nominal system has this property with respect to the
distributed input ud) as well as the spectral structure of the dynamics generator. A
part of the analysis is devoted to the case of analytic dynamics generators, which is of
particular interest. In fact, the relation between the extended and nominal model relies
in particular on the fact that the inputs are sufficiently regular. If analyticity of the
nominal dynamics generator is transmitted to the extended one, the relation between
both systems holds in closed-loop under feedback laws designed for the extended sys-
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tem, in addition of generating regular state, input and output trajectories, which is in
general a desirable property.
In the central part of this work, a LQ-optimal control problem is posed for the ex-
tended model, which consists of minimizing a quadratic cost functional over the space
of inputs.
This problem can be interpreted in the framework of the nominal system, with the
time derivative of the boundary input and the approximate output entering the cost
functional in addition of the standard terms involving the state and the inputs. The ex-
tended model has been designed such that this cost functional, and more particularly
the penalization associated to each state, input or output component, can be tuned with
a rather large degree of freedom in order to comply with different objectives in practi-
cal applications.
It is also shown that this problem has a unique solution and a general method of res-
olution is then developed. This method is based on the resolution of the problem of
spectral factorization of an appropriate operator-valued coercive spectral density and
the resolution of a Diophantine equation.
As previously mentioned, it is shown that the solution of the LQ-optimal control prob-
lem can be interpreted as a dynamical feedback for the nominal system. One of the
key results of this work is that this dynamical feedback designed for the extended sys-
tem exponentially stabilizes the nominal system in the sense that, in closed-loop, the
state trajectories of the nominal system converge to zero exponentially fast.

A semi-heuristic algorithm of spectral factorization by symmetric extraction of pole-
zero elementary matrix factors has been developed with an application in mind. This
application is a class of parabolic convection-diffusion-reaction systems that is typi-
cally used to model a wide range of industrial or natural processes involving phenom-
ena of dispersion, transport and reaction, such as chemical or biochemical reactors.
The algorithm is applied successfully in this case, and can readily be extended to a
wider class of infinite-dimensional MIMO differential linear systems satisfying some
spectral conditions.
The case of hyperbolic systems is treated as well, with two models describing the
evolution of a Poiseuille flow, which can be simulated by a test bench. The goal was
to implement the control laws derived from the theory with this physical test bench
in order to check the feasibility of designing and applying control laws based on this
methodology to real life systems.

It is expected that this approach will lead hopefully to a good trade-off between the
cost of modeling and the efficiency of methods of resolution of control problems for
such systems, like the LQ-optimal control problem.

The idea behind this methodology was introduced for finite-dimensional systems with
input derivative constraints, where the time derivative of the input enters the quadratic
cost functional for the resolution of a LQ-optimal control problem, see e.g. (Moore
and Anderson 1967). In the infinite-dimensional framework, this approach is moti-
vated by the fact that the unboundedness property leads to technical difficulties which
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make the modeling and analysis of such systems very hard, see e.g. (Weiss 1994),
(Tucsnak and Weiss 2009), (Staffans 2005) and references therein, and the design of
control laws as well, especially when boundary control and boundary observation are
both present in the model, see e.g. (Weiss and Weiss 1997), or when the control oper-
ator is very unbounded, see e.g. (Opmeer 2014) and references therein. A change of
variables was already considered for boundary control alone (without observation) in
(Fattorini 1968) and (Curtain and Zwart 1995, Section 3.3, pp. 121–128) in order to
deal with this problem. Concerning the boundary observation in particular, in (Weiss
1994) and (Tucsnak and Weiss 2009, Section 4.7, p. 147), the Lebesgue and Yosida
extensions were presented in the framework of well-posed linear systems.
The LQ-optimal control problem has been studied extensively for systems with bounded
control and observation operators, see e.g. (Curtain and Zwart 1995, Chapter 6, pp.
269–334), (Callier and Winkin 1992) and (Aksikas, Winkin and Dochain 2007) (and
references therein). A part of the core components of this work has been studied
and developed in (Dehaye and Winkin 2013a) and (Dehaye and Winkin 2013b), upon
which many improvements have been made in order to refine the model, methodology,
theoretical results and numerical algorithms. For example, in (Dehaye and Winkin
2013a), the well-posedness analysis of the model required the C0-semigroup gener-
ated by the dynamics operator to be analytic and the approximate output operator to
be weighted by a well-chosen parameter, which could turn out to be hard to determine
in practical situations. The assumptions have been weakened and the proofs adapted
in consequence in order to obtain a more general model. Moreover, new results con-
cerning the exponential stabilizability and detectability of the extended system have
been added. New numerical tests have been performed in order to study the impact
of noise on the closed-loop system or the impact of the parameters on the numerical
computation of the spectrum of the dynamics generator.

The manuscript is organized as follows.
Part II is dedicated to the main theoretical framework.
In Chapter 1, we introduce a class of abstract differential linear systems with un-
bounded control and observation operators. We show that they can be described by
an extended model that fits in the standard framework with well-posed dynamics and
bounded control and observation operators.
In Chapter 2, we present some results concerning the main properties of the extended
system, and in particular reachability, observability, stabilizability and detectability.
Then, we introduce additional assumptions in order to show that the outputs and trans-
fer functions of both systems are related. More precisely, it is shown that, when some
real parameter goes to infinity, the output and transfer function of the nominal system
are the limits of the output and transfer function of the extended system, respectively.
This important relationship motivates the efforts devoted to the modeling, analysis and
control of the extended system.
In Chapter 3, an infinite horizon LQ-optimal control problem is defined for the ex-
tended system and we show that it is related to a LQ-optimal control problem for the
nominal system. In that chapter, it is also shown that its solution can be interpreted as
a dynamical feedback for the nominal system.
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Part III focuses on illustrating the theoretical results presented in Part II by the numer-
ical resolution of a particular LQ-optimal control problem for two classes of infinite-
dimensional differential linear systems.
A class of convection-diffusion-reaction systems with distributed control along with
boundary control and observation is studied first in Chapter 4. The corresponding
extended model is constructed and analyzed. An algorithm of spectral factorization
by symmetric extraction that can be extended to a wider class of infinite-dimensional
MIMO systems is presented and implemented for the numerical resolution of a LQ-
optimal (pure boundary or mixed) control problem.
In Chapter 5, theoretical, numerical and experimental results are presented for two
models of hyperbolic systems which describe the behaviour of a Poiseuille flow test
bench.

Finally, in Part IV, we make some concluding remarks and give some perspectives
for future work.

Contributions

Boundary control systems have been a topic of interest in the field of systems and
control for many years. The approach presented in this thesis has its roots in the
development of models that allow boundary control systems to be considered in the
standard framework with bounded linear control operators. These developments were
pioneered in (Fattorini 1968) and considered in several other works, such as (Curtain
and Zwart 1995). However, this formalism does not take boundary observation into
account, which leads to additional difficulties when combined with boundary control,
and the question of well-posedness naturally arises in this case. The design of specific
control laws and the case of closed-loop systems in this formalism are still largely
unexplored as well.
This work brings several contributions in the field of systems and control, and in par-
ticular boundary control systems with boundary observation. Some of the core results
and methods of this thesis have been developed and established in several published
or submitted conference or journal papers.

The first developments concerning our class of boundary control systems with bound-
ary observation were presented in (Dehaye and Winkin 2013a), which was published
in the proceedings of the first IFAC Workshop on Control of Systems Modeled by Par-
tial Differential Equations (CPDE). That paper introduced the main framework and the
extended model that is used throughout this work and focused on its well-posedness.
It also showed how a given class of convections-diffusion-reaction systems can fit in
this framework.

Some of the central results involving control, and more precisely LQ-optimal control,
based on this model were presented and established in (Dehaye and Winkin 2013b),
which was published in the proceedings of the 52nd Conference on Decision and
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Control (CDC) after a review process as well. That paper showed how a LQ-optimal
control problem for the extended model can be related to a similar problem for a class
of boundary control systems with boundary observation. One of the main additions of
this work is the resolution of this problem by spectral factorization with assumptions
less restrictive than those in (Callier and Winkin 1992) and (Aksikas et al. 2007), and
the proof that its solution can be interpreted as a stabilizing dynamical feedback for the
nominal system. In that work, a general methodology for the resolution of this prob-
lem, based on the resolution of a problem of spectral factorization, was presented. A
semi-heuristic algorithm of spectral factorization by symmetric extraction for a class
of MIMO systems was developed in view of solving such a problem numerically. This
methodology was illustrated with numerical tests involving the previously mentioned
class of convection-diffusion-reaction systems.

Another article concerning this work and entitled "LQ-Optimal Boundary Control of
Infinite-Dimensional Systems with Yosida-Type Approximate Boundary Observation"
has been submitted to Automatica as a regular paper. This paper improved and ex-
tended both the theoretical and numerical results developed previously by weakening
the assumptions required for the well-posedness, establishing a stronger link between
the nominal and extended model with a comparison between the approximate and ef-
fective outputs and transfer functions, extending the results and methodology to the
case of LQ-optimal pure boundary control, and bringing additional numerical results
in order to further illustrate some robustness, stabilization or convergence properties.

This work is built on the foundations of these contributions while improving the pre-
viously established framework and results, and adding a new application to hyper-
bolic systems. In particular, this manuscript offers an overview of the differences that
can arise between pure boundary control and mixed boundary and distributed con-
trol, with a detailed methodology and corresponding theoretical results for both cases.
It also offers a more in depth analysis of some important theoretic properties of the
convection-diffusion-reaction system, like e.g. stabilizability and reachability. More-
over, several new numerical results have been added. The application to hyperbolic
systems helps demonstrating that the proposed framework and methodology cover a
wide range of infinite-dimensional differential linear systems. It also includes the re-
sults of experimental tests that were performed in the GIPSA-lab of Grenoble on a test
bench simulating a Poiseuille flow on the basis of the method presented here.

A more detailed list of the most important contributions can be found below.

• J. R. Dehaye, J. J. Winkin, Boundary control systems with Yosida type approx-

imate boundary observation, Proceedings of the first IFAC Workshop on Con-
trol of Systems Modeled by Partial Differential Equations (CPDE), paper no.
61 (Paris, France, 25-27 September 2013) (Dehaye and Winkin 2013a) (with
invited presentation)
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• J. R. Dehaye, J. J. Winkin, LQ-optimal control by spectral factorization of ex-

tended semigroup boundary control systems with approximate boundary ob-

servation, Proceedings of the 52nd IEEE Conference on Decision and Control
(CDC), pp. 1071-1076 (Florence, Italy, 10-13 December 2013) (Dehaye and
Winkin 2013b) (with invited presentation)

• J. R. Dehaye, J. J. Winkin, LQ-optimal boundary control of infinite-dimensional

systems with Yosida-type approximate boundary observation, Automatica ; pro-
visionally accepted as Regular Paper, under revision (2014)

• Participation in an international group project supervised by Professor Delio
Mugnolo (Institute of Analysis, University of Ulm, Ulm, Germany) and presen-
tation at the ISEM 2011 workshop: Further semigroup methods for control sys-

tems: controllability and observability (Blaubeuren, Germany, 5-11 June 2011)

• Presentation of a poster at the 8th Workshop on Control of Distributed Param-
eter Systems (CDPS): Boundary control systems with Yosida type approximate

boundary observation (Craiova, Romania, 1-5 July 2013)
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Part II

Boundary control systems with
boundary observation

11





Chapter 1

Modeling

1.1 Motivation

Most physical systems involved in practical applications, such as cooling or heating
systems, disinfection and purification processes, or industrial processes, including for
example beer or yogurt fermentation and many others, need to be controlled efficiently
in order to yield interesting results. Controlling such systems often requires acting on
a physical boundary. Though this may seem simpler at first glance, several problems
arise when one attempts to model these systems in a mathematical form.
A notable example, for which a particular case will be studied later in detail, is a
class of convection-diffusion-reaction systems with boundary control and observa-
tion which is notably useful for modeling chemical and biochemical reactors, see e.g.
(Dramé, Dochain and Winkin 2008), (Winkin, Dochain and Ligarius 2000), (Delattre,
Dochain and Winkin 2003). The equations governing this system are given by





∂x
∂ t
(z, t) = D ∂ 2x

∂ z2 (z, t)− v ∂x
∂ z
(z, t)+ f (x(z, t))

+χ[su−εl ,su+εr](z)ud(t)

−D ∂x
∂ z
(0, t) = v(ub(t)− x(0, t))

∂x
∂ z
(L, t) = 0

x(z,0) = x0(z)
y(t) = x(L, t)

(1.1.1)

where t ≥ 0 and z∈ [0,L] denote the time and the spatial variable, respectively, L> 0 is
the length of the spatial domain, x is the state, such that for all t ≥ 0, x(·, t) ∈ X , where
X is a Banach or Hilbert space (e.g. X = L2(0,L), with L > 0), f : D ⊂ IR → IR is in
general a nonlinear function, D and v are constants and su ∈ [0,1], εl ≥ 0 and εr ≥ 0
are parameters representing the distributed control window. The state variable x may
represent for example temperatures, concentrations of reactants or products involved
in one or more biochemical reactions. The function f corresponds to the reaction
and is based in general on a physical or chemical law depending on the framework
of the application, such as e.g. the law of mass action, the Arrhenius law or Haldane

13
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kinetics. A distributed control input ud is introduced in the second order partial dif-
ferential equation describing the dynamics, and more precisely in the spatial window
[su − εl ,su + εr] located inside the physical setup and of arbitrary width εl + εr. This
input may represent for example the action of a cooling system allowing a cooling
fluid to be in contact with the tube (or a part of the tube) of a chemical reactor via
an adapted interface. Moreover, a boundary control input ub is involved in the first
boundary condition. This kind of input may be used to represent for example the in-
troduction of a specific concentration of reactant at the inlet of the tube.
An example of biochemical system with a nonlinear reaction rate based on modified
Haldane kinetics is studied in (Dramé et al. 2008) and is presented in Chapter 4.

Another application of interest for this work is the evolution of air density, speed and
pressure in a Poiseuille flow (see e.g. (Castillo, Witrant and Dugard 2013), (Castillo,
Witrant, Prieur and Dugard 2012) and references therein), for which a test bench is
available in the GIPSA-lab in Grenoble, France. The physical setup is composed of a
horizontal tube attached to a heating column with one fan at each end of the tube. The
fans are used to regulate the air flow speed and propagate heat or humidity along the
tube. Several sensors are available in order to take temperature, hygrometry or speed
measurements.
The full mathematical model considered for this application is given by






∂ρ
∂ t
(x, t) = −u(x, t) ∂ρ

∂x
(x, t)−ρ(x, t) ∂u

∂x
(x, t)

∂u
∂ t
(x, t) = −u(x, t) ∂u

∂x
(x, t)− 1

ρ(x,t)
∂ p
∂x
(x, t)−G

∂ p
∂ t
(x, t) = −a2ρ(x, t) ∂u

∂x
(x, t)− u(x, t) ∂ p

∂x
(x, t)

−(γ − 1)ρ(x, t)(q+ u(x, t)G)

(1.1.2)

where t ≥ 0 is the time variable, x ∈ [0,1] is the space variable, ρ is the gas density,
u is the flow speed, p is the pressure in the tube, a is the speed of sound in the gas,
G represents the friction losses, q represents the heat exchanges and γ is the ratio
between the specific heat constants of the gas at constant pressure and at constant
volume.
The boundary conditions have the following structure:





ρ(0, t) = ρin(t)
Au(0, t) = K f C0(t)[p(0, t)− pin]
Au(L, t) = K f C1(t)[pout − p(L, t)]

where K f is a coefficient, ρin is the density at the inlet of the tube, C0 and C1 are the
rotation speeds of the fans and pin and pout are the pressures at the inlet and the outlet
of the tube respectively. More details about the mathematical model can be found in
e.g. (Castillo et al. 2013).
A simplified version of this model will be studied in Part III.

The main objective of this work is to pose and solve specific control problems for
a class of dynamical system with boundary and distributed control and boundary ob-
servation that can be used to model a wide range of physical or industrial processes,
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including (1.1.1) and (1.1.2).
The aim of this chapter is to present a way of modeling such systems that avoids the
aforementioned difficulties without requiring too restrictive additional assumptions,
which allows to treat practical applications.

This chapter gives the background, theoretical requirements, modeling and first re-
sults about boundary control systems with boundary observation (BCBO) systems. It
also provides a comparison between the extended and nominal systems when a real
parameter in the model goes to infinity.

1.2 Construction of the model

1.2.1 BCBO systems: definition

The starting point of this work is to consider a class of mathematical models that
feature interesting properties that will be used in the sequel. The abstract boundary
control model with boundary observation which we are interested in is described by





ẋ(t) = A x(t)+Bdud(t), x(0) = x0

Bx(t) = ub(t)

y(t) = C x(t)

(1.2.1)

(1.2.2)

(1.2.3)

where, for all t ≥ 0, x(t) ∈ X , ud(t) ∈ Ud , ub(t) ∈ Ub and y(t) ∈ Y and where X , Ud ,
Ub and Y are Hilbert spaces.
The dynamics of the system are described by (1.2.1), where A is generally called the
dynamics generator and Bd is the distributed control operator which represents the
action of a control input on a spatial domain of the physical system. Even though the
distributed control operator Bd is important and may bring interesting properties, it
is not required to perform the following analysis. Hence, throughout this section, it
can be considered as 0 when one wants to deal with pure boundary control without
affecting the main results which remain valid in this particular case.
The boundary conditions are described by (1.2.2), where B is the boundary control

operator and represents the action of a control input on a physical boundary of the
system.
Finally, the operator C in the observation equation (1.2.3) describes the measurements
of the available sensors, the quantity that we want to penalize in a cost criterion, or
both at the same time.
Keeping practical applications in mind, we assume throughout this manuscript that the
dynamics operator A : D(A ) ⊂ X → X is in general an unbounded linear operator
and Bd ∈ L (Ud ,X) is a bounded linear operator. The main difficulty comes from the
fact that B and C are assumed to be unbounded linear operators on X taking values
in Ub and Y respectively, and whose domains contain the one of the operator A , i.e.
D(A )⊂ D(B) and D(A )⊂ D(C ).
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We start by recalling the very important definition of C0-semigroup, see e.g. (Jacob
and Zwart 2012, Definition 5.1.2. p. 53).

Definition 1 Let X be a Hilbert space. (T (t))t≥0 is called a strongly continuous semi-

group (or C0-semigroup) if the following conditions hold:

1. For all t ≥ 0, T (t) ∈ L (X), i.e. T (t) is a bounded linear operator on X ;

2. T (0) = I ;

3. T (t + s) = T (t)T (s) for all t,s ≥ 0 ;

4. For all x ∈ X, we have that lim
t→0+

‖T (t)x− x‖X = 0, i.e. the mapping t 7→ T (t) is

strongly continuous at zero.

In what follows, the kernel (or null space) of any operator S is denoted by Ker S.
In order to develop our theory, we need to introduce some additional assumptions
which are not too restrictive for practical applications. This is what motivates the
following important definition on which this work is based.

Definition 2 An abstract boundary control model (1.2.1)-(1.2.3) is said to be a bound-

ary control system with boundary observation (BCBO) if the following conditions

hold:

[C1] the operator A : D(A)→ X defined by Ax = A x for all x in its domain D(A) =
D(A )∩ Ker B is the infinitesimal generator of a C0-semigroup (T (t))t≥0 of bounded

linear operators on X,

[C2] the operator B is onto, such that there exists a bounded linear operator Bb ∈
L (Ub,X) such that for all u ∈Ub, Bbu ∈ D(A ), the operator A Bb ∈ L (Ub,X) and

for all u ∈Ub, BBbu = u,

[C3] there exist constants a,b ≥ 0 such that, for all x ∈ D(A),

‖C x‖ ≤ a‖Ax‖+ b‖x‖. (1.2.4)

Condition [C3] is equivalent to the fact that C ∈ L (X1,Y ), where X1 = D(A)
equipped with the norm ‖x‖1 = ‖(β I −A)x‖ for some β in the resolvent set ρ(A) of
the operator A.

These crucial assumptions are not too restrictive in general. In fact, both the parabolic
and hyperbolic systems studied in Part III satisfy conditions [C1]-[C3], which will be
checked systematically in Chapters 4 and 5.
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1.2.2 Approximation of the output operator

The first step consists of building a bounded approximation of the observation oper-
ator C . This new operator is based on a real parameter that dictates the precision of
the approximation and can be adjusted depending on the available computational re-
sources and robustness of the numerical algorithms.
Formally, for any parameter α in ρ(A), let us define the operator Cα by

Cα : X → Y : x 7→Cα x := αC (αI −A)−1x. (1.2.5)

Observe that, by condition [C3], Cα ∈ L (X ,Y ), i.e. Cα is a bounded observation
operator from X to Y . This operator (more specifically, its limit as the parameter α
tends to infinity, whenever it exists) is useful in the analysis of the well-posedness of
infinite-dimensional systems with an unbounded observation operator, see e.g. (Weiss
1994), (Tucsnak and Weiss 2009) and references therein. It is related to a concept
known in the literature as the Yosida approximation, which plays an important role
in the proof of the Hille-Yosida theorem, see e.g. (Curtain and Zwart 1995, Theorem
2.1.12, p. 26), (Jacob and Zwart 2012, Theorem 6.1.3, p.66). The idea behind this
operator is that, for a class of abstract differential systems which covers most real-life
applications, the approximate output equation

yα(t) =Cα x(t)

will produce an approximate output that tends towards y(t) for almost every nonnega-
tive time t when α goes to infinity along the real axis. This allows for the development
of numerical algorithms where C is replaced by Cα with α large enough in order to
obtain a satisfying approximation.
This relationship between both outputs will be studied more in depth in Chapter 2,
Section 2.2.
In the sequel, the operator Cα will be interpreted as a Yosida type approximate bound-

ary observation operator.

1.2.3 Construction of the extended system

The next step consists of performing a change of variables by including the boundary
input and the approximate output in an extended state, whose central component is an
affine transformation of the nominal state x(t). This transformation yields an extended
model which is related to the BCBO system (1.2.1)-(1.2.3) and can be used as an in-
termediate tool in the resolution of specific control problems by avoiding the technical
difficulties inherent to the unboundedness of the operators B and C .
In order to build this new system, we consider, under the conditions presented in the
previous sections, the following abstract differential equations:





v̇1(t) = Av1(t)−Bbu̇b(t)+A Bbub(t)+Bdud(t)

v1(0) = v10 ,

v̇2(t) =Cα Av1(t)+CαA Bbub(t)+CαBdud(t)

v2(0) = v20 .

(1.2.6)

(1.2.7)

(1.2.8)

(1.2.9)
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The question of the well-posedness of these equations will be studied and answered
positively in Section 1.3.

Then one can define the following extended system, which is one of the pillars of
this work:






ẋe
1(t) = u1

e(t)

ẋe
2(t) = A Bbxe

1(t)+Axe
2(t)−Bbue

1(t)+Bdue
2(t)

ẋe
3(t) =CαA Bbxe

1(t)+CαAxe
2(t)+CαBdue

2(t)

ye
1(t) = ρ1xe

1(t)

ye
2(t) = ρ2Bbxe

1(t)+ρ2xe
2(t)

ye
3(t) = ρ3xe

3(t)

(1.2.10)

(1.2.11)

(1.2.12)

with the initial condition

xe(0) =




xe

01

xe
02

xe
03



 ,

which can be rewritten under the more compact form

{
ẋe(t) = Aexe(t)+Beue(t) , xe(0) =

(
xe

01
, xe

02
, xe

03

)T

ye(t) =Cexe(t)

(1.2.13)

(1.2.14)

on the extended state space X̃ e := Ub ⊕X ⊕Y , where the (extended) state is defined,
under suitable initial conditions and inputs, by

xe(t) = (ub(t) v1(t) v2(t))
T (1.2.15)

= (ub(t) x(t)−Bbub(t) yα(t))
T , (1.2.16)

the (extended) input is defined by

ue(t) = (u̇b(t) ud(t))
T ∈ Ue :=Ub ⊕Ud (1.2.17)
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and where

Ae =




0 0 0

A Bb A 0
CαA Bb Cα A 0



 , (1.2.18)

Be =




I 0
−Bb Bd

0 Cα Bd


 , Ce =




ρ1I 0 0
ρ2Bb ρ2I 0

0 0 ρ3I


 . (1.2.19)

The domain of the operator Ae is given by D(Ae) :=Ub ⊕D(A)⊕Y and ρi, i = 1,2,3,
are nonnegative weighting factors. The observation operator Ce is considered with
a view to solving an LQ-optimal feedback control problem with a quadratic cost in-
volving the (extended) output ye(t). The structure of Ce has been chosen such that the
norm of the corresponding output ye(t) can be interpreted as the sum of the weighted
norms of ub(t), x(t) and yα(t) with arbitrarily chosen weighting factors. The penal-
ization of ye in a given cost criterion can then be seen as an arbitrary penalization of
these input, state and output components independently of each other. This problem
and its resolution are studied more extensively in Chapter 3.
At this point, it should be noted that equations (1.2.13)-(1.2.19) are equivalent to
(1.2.1)-(1.2.3) with C replaced by Cα , as shown in Theorem 1.3.2 b). However, the
crucial relations (1.2.15)-(1.2.16) are not straightforward and only hold with a suitable
initial condition and sufficiently regular inputs. The result showing the relationship be-
tween the extended and nominal systems is stated and proved in Section 1.3.
Concerning the inclusion of yα in the extended state, at first glance, one may be wor-
ried that it is not recommended to differentiate y(t) (or its approximation) because
measurement noise may be amplified by the differentiation of the output in the model.
However, it is shown later that, when designing a state feedback control law, the dy-
namics of the output are only used in the computation of the feedback operator. With-
out loss of generality, the control law can then be rewritten as acting only on the
boundary input and the state of the nominal system (see (3.2.9)). The approximate
output yα is not used directly in the feedback, which is useful to avoid such problems
in practical applications.

1.3 Well-posedness

In the previous sections, BCBO systems were introduced and it was shown that they
can be extended in such a way that the control and observation operators become
bounded. However, it is still unclear at this point whether the dynamics of the ex-
tended system are well-posed.
The goal of this section is to provide a positive answer to this question by showing
that the dynamics operator Ae is the generator of a C0-semigroup of bounded linear
operators on the extended state space X e.
The first step consists of showing that the abstract differential equations (1.2.6)-(1.2.7)
and (1.2.8)-(1.2.9) are well-posed and have a unique classical solution for sufficiently
regular inputs. This result acts as a lemma for the main theorem of this section,
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which is the second step. It mainly states that the extended dynamics generate a C0-
semigroup and that, under a sufficiently regular input given by (1.2.17) and suitable
initial conditions, the relations (1.2.15)-(1.2.16) hold.
The well-posedness analysis of the extended model of a BCBO system (1.2.13)-
(1.2.19) is based on the following preliminary definitions and results.

Definition 3 For a given linear operator Γ : D(Γ) ⊂ X → X on a Banach space X,

a linear operator ∆ : D(∆) ⊂ X → X is said to be Γ-bounded if D(Γ) ⊂ D(∆) and if

there exist nonnegative constants γ and δ such that, for all x ∈ D(Γ),

‖∆x‖ ≤ γ ‖Γx‖+ δ ‖x‖ . (1.3.1)

The Γ-bound of the operator ∆ is given by

γ0 := inf{γ ≥ 0 : there exists δ ≥ 0 such that (1.3.1) holds}.

This definition can be extended to operators with values in a Banach space Y . In
view of condition (C3), the operator C is A-bounded with A-bound less than or equal
to a.

Observe that the abstract differential equation (1.2.12) should correspond to the dy-
namics of the output trajectories of equations (1.2.10)-(1.2.11) through the output op-
erator Cα . In order to take this feature into account in the description of the extended
system, let us consider the bounded linear operator C ∈ L (Ub ⊕X ,Y ) defined for all
(xe

1,x
e
2) ∈ Ub ⊕X by C (xe

1 , xe
2)

T = (Cα Bb Cα) (x
e
1 , xe

2)
T =Cα(x

e
2 +Bbxe

1). Thanks to
the fact that the graph G(C) of the operator C is a closed subspace of X̃ e, from now
on, we will use X e := G(C)⊂ X̃ e =Ub ⊕X ⊕Y as new extended (Hilbert) state space
for the extended system. This restriction is particularly useful when analyzing some
subsequent properties such as stability, reachability and stabilizability, since, as it will
be studied later, the state-output relationship yα =Cα(v+Bbub) =Cα x always holds
in X e.
The proof of the following result, and more particularly the well-posedness of (1.2.6)-
(1.2.9), is based on (Engel and Nagel 2006, Corollary 1.5, p. 119) and follows the
lines of (Dehaye and Winkin 2013a, Lemma 4, Lemma 5 and Theorem 6) with a less
restrictive operator Cα .

Lemma 1.3.1 Let the operators A , B and C define a BCBO system (1.2.1)-(1.2.3)

such that conditions (C1)-(C3) hold.

Consider the operator Cα given by (1.2.5).

Then, for any distributed input ud ∈ C1([0,τ],Ud) and for any boundary input ub ∈
C2([0,τ],Ub), where τ > 0 is any fixed final time, the abstract differential equations

(1.2.6)-(1.2.7) and (1.2.8)-(1.2.9) are well-posed, i.e. for all initial conditions v10 ∈
D(A) and v20 ∈Y , the Cauchy problems (1.2.6)-(1.2.7) and (1.2.8)-(1.2.9) have unique

classical solutions v1 ∈ C1([0,τ],X) and v2 ∈ C1([0,τ],Y ), respectively, with v1(t) ∈
D(A) and v2(t) ∈ Y for all t ∈ [0,τ].
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Proof. By (Curtain and Zwart 1995, Theorem 3.1.3, p.103) and by (Engel and Nagel
2006, Corollary 1.5, p.119) applied to the operators

Γ =

(
A 0
0 0

)
and ∆ =

(
0 0

Cα A 0

)
,

with D(Γ) = D(∆) = D(A)⊕Y , the result follows directly from condition (C1) and
from the fact that, thanks to conditions (C2) and (C3), the operator Cα A is A-bounded
and the operators Bb, A Bb, Bd , CαA Bb and Cα Bd are bounded. �

Theorem 1.3.2 [Well-posedness of the extended system]

a) The restriction of the operator Ae, given by (1.2.18), (1.2.5), to the subspace

X e = G(C), whose domain is given by D(Ae)∩G(C), is the infinitesimal generator

of a C0-semigroup (T e(t))t≥0 of bounded linear operators on X e.

b) For any distributed input ud ∈ C1([0,τ],Ud) and for any boundary input ub ∈
C2([0,τ],Ub), where τ > 0 is any fixed final time, the dynamics (1.2.13) of the ex-

tended system (1.2.13)-(1.2.19) are well-posed, i.e. the abstract differential equation

ẋe(t) = Aexe(t)+Beue(t)

with initial condition

xe(0) = xe
0 =




xe
01

xe
02

xe
03


=




ub(0)
v10

v20


 ∈ D(Ae)∩G(C)

and input given by (1.2.17), has the unique classical solution

xe(t) =




ub(t)
v1(t)
v2(t)





where v1(t) and v2(t) are the unique classical solutions of the abstract differential

equations (1.2.6)-(1.2.7) and (1.2.8)-(1.2.9), respectively.

Moreover, if x0 = v10 +Bbub(0), hence v20 = Cα x0, then the state trajectory x(t) of

the BCBO system (1.2.1)-(1.2.3) is related to the one of the extended system (1.2.13)-

(1.2.19), for all t ≥ 0, by

x(t) = v1(t)+Bbub(t) and v2(t) =Cα x(t). (1.3.2)

Proof. a) First observe that the operator Ae, with domain D(Ae) = Ub ⊕D(A)⊕Y ,
is the infinitesimal generator of a C0-semigroup (of bounded linear operators) on X̃ e.
Indeed, let us define the operator

Ae
0 =




0 0 0
0 A 0
0 0 0
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on its domain D(Ae
0) = D(Ae), and the perturbation operators

Pe
1 =




0 0 0
0 0 0
0 Cα A 0



 , Pe
2 =




0 0 0

A Bb 0 0
CαA Bb 0 0



 .

Since A is the infinitesimal generator of a C0-semigroup (T (t))t≥0 on X , the operator
Ae

0 is the infinitesimal generator of the C0-semigroup (T e
0 (t))t≥0 on X̃ e, given for all

t ≥ 0 by

T e
0 (t) =




I 0 0
0 T (t) 0
0 0 I



 .

Observe that Ran Pe
1 ⊂ D(Ae

0), where Ran Pe
1 is the range of the operator Pe

1 .
Moreover, let β ∈ ρ(Ae

0). For any xe ∈ D(Ae
0) = D(Ae),

‖(β I−Ae
0)P

e
1 xe‖ ≤ |β |‖Pe

1 xe‖+ ‖Ae
0Pe

1 xe‖
= |β |‖Pe

1 xe‖,

which implies that (β I −Ae
0)P

e
1 ∈ L (X e

1 , X̃
e) since Pe

1 is Ae
0-bounded. Hence Pe

1 ∈
L (X e

1 ), where X e
1 = D(Ae

0) = D(Ae). By (Engel and Nagel 2006, Corollary 1.5,
p.119), the operator Ae

0 + Pe
1 (with domain D(Ae)) is the infinitesimal generator of

a C0-semigroup.
Since Pe

2 ∈ L (X̃ e), the operator Ae = Ae
0 +Pe

1 +Pe
2 is the infinitesimal generator of a

C0-semigroup (T̃ e(t))t≥0 on X̃ e.
The conclusion follows by (Engel and Nagel 2006, Corollary p. 48), since X e is a
T̃ e(t)-invariant closed subspace of X̃ e. In fact, T̃ e(t) is given by

T̃ e(t) =




I 0 0
S1(t) T (t) 0
S2(t) S3(t) I




where

S1(t)ub =

∫ t

0
T (s)A Bbubds,

S2(t)ub =

∫ t

0
[S3(s)+Cα ]A Bbubds,

S3(t)v =
∫ t

0
Cα AT (s)vds

and for all xe ∈ G(C),

T̃ e(t)xe =




xe
1

S1(t)x
e
1 +T (t)xe

2
S2(t)x

e
1 + S3(t)x

e
2 + xe

3




is such that xe
1 ∈Ub, S1(t)x

e
1 +T(t)xe

2 ∈ X and

S2(t)x
e
1 + S3(t)x

e
2 + xe

3 =Cα Bbxe
1 +Cα [S1(t)x

e
1 +T (t)xe

2].
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b) First, we assume that v1(t) is a classical solution of (1.2.6)-(1.2.7) and we show that
x(t) defined by (1.3.2) is a classical solution of (1.2.1)-(1.2.3).
Since v1(t) is a classical solution of (1.2.6)-(1.2.7), v1(t) ∈ D(A) ⊂ D(A ) ⊂ D(B)
for all t ≥ 0.
Moreover, for all t ≥ 0, Bbub(t) ∈ D(A )⊂ D(B) by assumption. Hence,

Bx(t) = B[v1(t)+Bbub(t)]

= Bv1(t)+BBbub(t)

= ub(t)

by condition [C2] and since v(t) ∈ Ker B.
Furthermore, we see that

ẋ(t) = v̇1(t)+Bbu̇b(t)

= Av1(t)−Bbu̇b(t)+A Bbub(t)+Bdud(t)+Bbu̇b(t)

= Av1(t)+A Bbub(t)+Bdud(t)

= A v1(t)+A Bbub(t)+Bdud(t)

= A [v1(t)+Bbub(t)]+Bdud(t)

= A x(t)+Bdud(t)

where the first equality comes from the fact that Bb ∈ L (Ub,X).
Thus, x(t) defined by (1.3.2) is a classical solution of (1.2.1)-(1.2.3).
The other implication is proved similarly.
Now, let us consider the first two equations of (1.2.13)-(1.2.19), which define the
operators

Ãe =

(
0 0

A Bb A

)
and B̃e =

(
I 0

−Bb Bd

)

with Ãe generating a C0-semigroup on Ub ⊕X . By (Curtain and Zwart 1995, Lemma
3.2.2), the mild solution of the differential system formed by the first two equations of
(1.2.13)-(1.2.19) (i.e. by Ãe and B̃e) is given by

x̃e(t) =

(
I 0

S(t) T (t)

)(
xe

01

xe
02

)

+

∫ t

0

(
I 0

S(t − s) T (t − s)

)(
I 0

−Bb Bd

)(
u̇b(s)
ud(s)

)
ds

where

S(t)x =

∫ t

0
T (t − s)A Bbxds =

∫ t

0
T (s)A Bbxds.

This implies that

xe
1(t) = xe

01
+

∫ t

0
u̇b(s)ds = ub(0)+

∫ t

0
u̇b(s)ds = ub(t).
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Since ub ∈C2([0,τ],Ub), we have that u̇b ∈C1([0,τ],Ub), and since x̃e(0)∈ D(Ãe), by
(Curtain and Zwart 1995, Theorem 3.1.3), the differential system formed by Ãe and
B̃e has a unique classical solution that satisfies

ẋe
1(t) = u̇b(t)

and

ẋe
2(t) = A Bbxe

1(t)+Axe
2(t)−Bbu̇b(t)+Bdud(t)

= A Bbub(t)+Axe
2(t)−Bbu̇b(t)+Bdud(t),

which is (1.2.6). Since xe
02
= v10 , we have that for all t ≥ 0, xe

2(t) = v1(t), where v1(t)
is the unique classical solution of (1.2.6)-(1.2.7).
Finally, it suffices to observe that the third component xe

3(t) of the extended state is
the solution of the abstract differential equation (1.2.8)-(1.2.9) with initial condition
v20 = xe

03
=Cα x0, hence xe

3(t) = v2(t) =Cα x(t) for all t ≥ 0 since Cα ∈ L (X ,Y ). �

The proof of the main part of b) follows the lines of (Curtain and Zwart 1995, Section
3.3, pp. 121–128), where there is no distributed control in the dynamics of (1.2.1)-
(1.2.3) and the approximate output is not included in the extended state.
We conclude this chapter by reminding that the well-posedness of some specific classes
of boundary control systems, in particular port-hamiltonian systems, has been stud-
ied in detail in several existing works, see e.g. (Jacob and Zwart 2012),(Le Gorrec,
Maschke, Villegas and Zwart 2006),(Villegas 2007).

1.4 Analytic case

The previous result does not state that the extension preserves interesting properties
of the C0-semigroup generated by A. However, in the case where the C0-semigroup
(T (t))t≥0 is analytic in condition [C1], the previous results can be slightly adjusted
such that Ae is the generator of an analytic C0-semigroup. This property is of partic-
ular interest due to the fact that the state trajectories associated with an analytic C0-
semigroup are smooth, or more precisely, for all t > 0 and x ∈ X , the map t 7→ T (t)x is
infinitely many times differentiable. As shown later in Theorem 3.2.2, this character-
istic guarantees that the closed-loop extended system maintains its relationship with
the nominal system under an appropriate state feedback. This fact will be exploited in
Chapter 4 since the differential operator associated with convection-diffusion-reaction
dynamics is known to be the generator of an analytic C0-semigroup on L2(a,b).
We start by recalling the definition of an analytic C0-semigroup (see e.g. (Engel and
Nagel 2000, Definition 4.5, p. 101)). In what follows, for any δ > 0, Σδ denotes the
sector {z ∈ CI : |argz|< δ} \ {0} of the complex plane.
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Definition 4 A family of operators (T (z))z∈Σδ∪{0} ⊂L (X) is called an analytic semi-
group (of angle δ ∈ (0,π/2]) if

(i) T (0) = I and T (z1 + z2) = T (z1)T (z2) for all z1,z2 ∈ Σδ ;

(ii) The map z 7→ T (z) is analytic in Σδ ;

(iii) lim
z → 0
z ∈ Σδ ′

T (z)x = x for all x ∈ X and 0 < δ ′ < δ .

If, in addition,

(iv) ‖T (z)‖ is bounded in Σδ ′ for every 0 < δ ′ < δ ,

we call (T (z))z∈Σδ∪{0} a bounded analytic semigroup.

In order to achieve our goal, we need to use a suitable scaling of the operators Cα .
More precisely, we consider a weighted approximate output operator defined for every
x ∈ X by

C̃α x := ραCα x (1.4.1)

where ρα > 0 is a real parameter which has to be chosen sufficiently small.
The abstract differential equation (1.2.8)-(1.2.9) is replaced by

v̇2(t) = C̃α Av1(t)+ C̃αA Bbub(t)+ C̃αBdud(t)

v2(0) = v20

and (1.2.18) naturally becomes

Ae =




0 0 0
A Bb A 0

C̃αA Bb C̃α A 0


 . (1.4.2)

In order to preserve the relationship between the extended output and the approximate
output, we must also consider the corresponding scaled extended output operator de-
fined by

Ce =




ρ1I 0 0

ρ2Bb ρ2I 0
0 0 ρ3ρ−1

α I





in (1.2.19).
The main result for the analytic case is based on the following lemmas.
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Lemma 1.4.1 (Engel and Nagel 2006, Lemma 2.6, p. 127) Let (A,D(A)) be an op-

erator whose resolvent exists for all λ ∈ Σδ := {z ∈ CI : |argz| ≤ δ} such that λ 6= 0
and satisfies

‖R(λ ,A)‖ ≤ M

|λ |
for some constants δ ≥ 0 and M ≥ 1. Moreover, assume (B,D(B)) to be A-bounded

with A-bound

a0 <
1

M+ 1
.

Then there exists constants r ≥ 0 and M̃ ≥ 1 such that

Σδ ∩{z ∈ CI : |z|> r} ⊂ ρ(A+B)

and

‖R(λ ,A+B)‖≤ M̃

|λ |
for all λ ∈ Σδ ∩{z ∈ CI : |z|> r}.

Lemma 1.4.2 (Engel and Nagel 2006, Theorem 2.10, p. 130) Let the linear oper-

ator Γ : D(Γ) ⊂ X → X be the infinitesimal generator of an analytic C0-semigroup

(T (z))z∈Σδ ∪{0} on a Banach space X.

Then

a) there exists a constant c > 0 such that Γ+∆ : D(Γ) → X is the infinitesimal gen-

erator of an analytic C0-semigroup for every Γ-bounded operator ∆ having Γ-bound

γ0 < c;

b) for every Γ-bounded operator ∆, the operator Γ+ρ∆ is the infinitesimal generator

of an analytic C0-semigroup provided that the parameter ρ ∈ IR be such that |ρ | is

sufficiently small.

Sketch of the proof. a) If (T (z))z∈Σδ∪{0} is bounded, it follows from (Engel and Nagel
2000, Theorem 4.6, p. 101) that Γ is sectorial. From this, it is possible to show that,
with a suitable c, the assumptions of Lemma 1.4.1 are satisfied with δ := π/2+ δ ′,
where δ ′ ∈ (0,π/2]. By combining the conclusion of this lemma with (Engel and
Nagel 2000, Exercise 4.12(6), p. 108), one obtains that Γ+∆ generates an analytic
semigroup.
If (T (z))z∈Σδ∪{0} is not bounded, it is easy to show that any Γ-bounded operator ∆
is also Γ−wI-bounded with the same Γ-bound γ0 for any w ∈ IR. It remains to ob-
serve that Γ−wI is the generator of an analytic semigroup by (Engel and Nagel 2006,
Proposition 1.12, p. 122), which is bounded in Σδ for w sufficiently large. By apply-
ing the first step of the proof to Γ−wI, one deduces that Γ+∆−wI and hence Γ+∆
generates an analytic C0-semigroup.

b) The assertion directly follows from a). �
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Lemma 1.4.2 is the key result in the proof of the following theorem, which corre-
sponds to Theorem 1.3.2 a).

Theorem 1.4.3 The restriction of the operator Ae, given by (1.4.2), (1.4.1), where

ρα ∈ IR is such that |ρα | is sufficiently small, to the subspace X e = G(C), whose

domain is given by D(Ae)∩G(C), is the infinitesimal generator of an analytic C0-

semigroup (T e(t))t≥0 of bounded linear operators on X e.

Proof. First, observe that the operator Ae, with domain D(Ae) = Ub ⊕D(A)⊕Y , is
the infinitesimal generator of a C0-semigroup (of bounded linear operators) on X̃ e.
Indeed, let us define the operator

Ae
0 =




0 0 0
0 A 0
0 0 0





on its domain D(Ae
0) = D(Ae), and the perturbation operators

Pe
1 =




0 0 0
0 0 0
0 Cα A 0


 , P̃e

2 =




0 0 0
A Bb 0 0

C̃αA Bb 0 0


 .

Since A is the infinitesimal generator of an analytic C0-semigroup (T (t))t≥0 on X , the
operator Ae

0 is the infinitesimal generator of the analytic C0-semigroup (T e
0 (t))t≥0 on

X̃ e, given for all t ≥ 0 by

T e
0 (t) =




I 0 0
0 T (t) 0
0 0 I



 .

It follows from the fact that the operator Pe
1 is Ae

0-bounded that, by Lemma 1.4.2b),
the operator Ae

0 +ραPe
1 (with domain D(Ae)) is still the infinitesimal generator of an

analytic C0-semigroup for |ρα | sufficiently small.
Since P̃e

2 ∈ L (X̃ e), the operator Ae = Ae
0 +ρα Pe

1 + P̃e
2 is the infinitesimal generator

of an analytic C0-semigroup (T e(t))t≥0 on X̃ e by (Engel and Nagel 2006, Proposition
1.12, p. 122).
The conclusion follows by (Engel and Nagel 2006, Corollary, p. 48), since X e is a
T e(t)-invariant closed subspace of X̃ e. �

It should be noted that, when the analytic C0-semigroup (T (z))z∈Σδ∪{0} is bounded, it
is possible to choose ρα more precisely. In fact, with A satisfying

‖R(λ ,A)‖ ≤ M

|λ |

for all λ ∈ ρ(A), it suffices to choose ρα such that ρα Pe
1 has a Ae

0-bound lower than
1

M+ 1
.
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At this point, it is interesting to emphasize the fact that the well-posedness of the
extended system is not studied for itself, but for the benefits it brings, in particular
from Chapter 3 on. In fact, as can be seen in Theorem 1.3.2 b), under suitable initial
conditions and inputs, the extended system is basically a tool describing the behaviour
of the nominal system under one differential equation and one simple output equation.
This tool will be used extensively in Chapters 3, 4 and 5, where its properties, in-
cluding the well-posedness, will be crucial for the resolution of a LQ-optimal control
problem that can be interpreted in the framework of the nominal system.



Chapter 2

Analysis

2.1 Properties of the extended system

This section deals with the analysis of system theoretic properties of the extended sys-
tem, namely exact controllability and observability, (approximate) reachability and
observability, and (exponential) stabilizability and detectability.
These properties are highly desirable. Stabilizability makes the LQ-optimal control
problem solvable and reachability, in addition of allowing the state trajectories to be-
come arbitrarily close to any given state, makes the solution unique. Detectability is
useful in practical applications as well since the state variables are usually measured
via relatively limited sensors which do not provide access to the whole state. In this sit-
uation, it is generally useful to build a state observer for which the error of estimation
exponentially converges to zero. The existence of such an observer is guaranteed by
the detectability. Finally, observability allows the knowledge of the output to uniquely
determine the initial state, which can be useful in problems where this initial state is
unknown and has to be reconstituted.
The main result of this section gives sufficient conditions on the nominal system for
these properties to hold for the extended system. Basically, as one could expect, the
extended system inherits some properties of the nominal one, while systematically
adding others due to the structure of the extended output operator Ce.
We recall some important definitions here, see e.g. (Curtain and Zwart 1995, Def-
initions 4.1.3 a., p. 143, 4.1.12 a., p. 154, 4.1.17, p. 157) for the definitions of
(approximate) reachability and (approximate) observability, and (Curtain and Zwart
1995, Definition 5.2.1, p. 227) for the definitions of (exponential) stabilizability and
(exponential) detectability.
In what follows, the closure of a set E ⊂ X in the corresponding normed space X will
be denoted by E .

Definition 5 For a control system associated with an abstract Cauchy problem
{

ẋ(t) = Ax(t)+Bu(t), x(0) = x0

y(t) = Cx(t)

29
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with state space X, input space U and output space Y , and where A is the infinites-

imal generator of a C0-semigroup (T (t))t≥0 of bounded linear operators on X, the

control operator B ∈ L (U,X), and the observation operator C ∈ L (X ,Y ), let Bt ∈
L (Lp([0, t],U),X) be the controllability map defined for all t ≥ 0 and for all u(·) ∈
Lp([0, t],U) by

Bt [u(·)] :=
∫ t

0
T (t − τ)Bu(τ)dτ

and Ct : X → Lp([0, t],Y ) be the observability map defined for all t ≥ 0 and for all

x ∈ X by

Ctx(·) :=CT (·)x.

1. The system is (exactly) controllable if

⋃

t>0

Ran Bt = X .

2. The system is (approximately) reachable if

⋃

t>0

Ran Bt = X .

3. The system is (approximately) observable if

⋂

t>0

Ker Ct = {0}.

4. The system is (exponentially) stabilizable if there exists a feedback operator

K ∈ L (X ,U) such that the C0-semigroup generated by A+BK is (exponen-

tially) stable, i.e. its growth bound is less than 0.

5. The system is (exponentially) detectable if there exists an output injection oper-

ator L ∈L (Y,X) such that the C0-semigroup generated by A+LC is (exponen-

tially) stable, i.e. its growth bound is less than 0.

The analysis is based on the following auxiliary lemma. This result states that
the reachability of the pair (A,Bd) is transmitted to the first two equations of the ex-
tended system describing the dynamics of the boundary input and the transformed
state, where A is the dynamics generator defined by condition [C1] in Definition 2 and
Bd is the distributed control operator introduced in (1.2.1).

Lemma 2.1.1 a) If the pair (A,Bd) is (exactly) controllable, then the pair (Ãe, B̃e)
given by

Ãe =

(
0 0

A Bb A

)
, B̃e =

(
I 0

−Bb Bd

)
(2.1.1)
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is controllable.

b) If the pair (A,Bd) is (approximately) reachable, then the pair (Ãe, B̃e) given by

(2.1.1) is reachable.

Proof. a) First, observe that the operator Ãe is the infinitesimal generator of a C0-
semigroup (T̃ e(t))t≥0 of the following form:

T̃ e(t) =

(
I 0

S̃(·) T (·)

)
,

where (T (t))t≥0 is the C0-semigroup generated by A.
The goal is to show that ⋃

t>0

Ran B̃
e
t =Ub ⊕X , (2.1.2)

where the extended controllability map is given by

B̃
e
t [ũ

e(·)] =

∫ t

0
T̃ e(t − τ)B̃eũe(τ)dτ

=
∫ t

O

(
I 0

S̃(t − τ) T (t − τ)

)(
I 0

−Bb Bd

)(
ũe

1(τ)
ũe

2(τ)

)
dτ

=

∫ t

O

(
I 0

S̃(t − τ)−T(t − τ)Bb T (t − τ)Bd

)(
ũe

1(τ)
ũe

2(τ)

)
dτ.

Now, the controllability map associated with the pair (A,Bd) is given by

Bt [u(·)] =
∫ t

0
T (t − τ)Bdu(τ)dτ.

Since the pair (A,Bd) is exactly controllable, we have that
⋃

t>0

Ran Bt = X ,

from which it is easy to deduce that (2.1.2) holds.

b) Observe that the dual observability map is given for all x̃e = (xe
1 xe

2)
T ∈ Ub ⊕X

by

B̃
e
t x̃e = (B̃e)∗(T̃ e(·))∗x̃e =

(
xe

1 +(S̃(·))∗xe
2 +−B∗

b(T (·))∗xe
2

B∗
d(T (·))∗xe

2

)
.

Hence B̃e
t x̃e = 0 if and only if x̃e = 0.

The conclusion follows by a standard duality argument, see e.g. (Curtain and Zwart
1995). �

The following proposition gives sufficient conditions for the reachability and stabi-
lizability of the extended system. More precisely, these properties are transmitted
from the pair (A,Bd) of the nominal system. Moreover, it states that the extended
system is observable and detectable.
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Proposition 2.1.2 a) If the pair (A,Bd) is exactly controllable, then the extended sys-

tem (1.2.13)-(1.2.19), i.e. the pair (Ae,Be), is exactly controllable.

b) If the pair (A,Bd) is reachable, then the extended system (1.2.13)-(1.2.19), i.e. the

pair (Ae,Be), is reachable.

c) If ρi 6= 0, i= 1,2,3, then the extended system (1.2.13)-(1.2.19), i.e. the pair (Ce,Ae),
is observable.

d) If the pair (A,Bd) is stabilizable, then the extended system (1.2.13)-(1.2.19), i.e.

the pair (Ae,Be), is stabilizable.

e) If ρi 6= 0, i= 1,2,3, then the extended system (1.2.13)-(1.2.19), i.e. the pair (Ce,Ae),
is detectable.

Proof. a) For any fixed time t > 0 and any state z=(z1,z2,z3)= (z1,z2,C(z1,z2))∈X e,
it should be shown that there exists an input function ue(·) (defined on the time interval
[0, t]) such that xe(t) = z, where xe(·) is the state trajectory of the extended system
corresponding to the input ue(·) with zero initial condition.
Now, by Lemma 2.1.1 a), there exists an input function ue(·) such that (xe

1(t) xe
2(t))

T =
(z1 z2)

T .
Moreover, since xe(t) ∈ X e = G(C), we see that

xe
3(t) = C

(
xe

1(t)
xe

2(t)

)

= C

(
z1

z2

)

= z3.

b) For any fixed time t > 0 and any state z = (z1,z2,z3) = (z1,z2,C(z1,z2)) ∈ X e, it
should be shown that, for an arbitrarily fixed ε > 0, there exists an input function ue(·)
(defined on the time interval [0, t]) such that

‖xe(t)− z‖< ε, (2.1.3)

where, as in the proof of a), xe(·) is the state trajectory of the extended system corre-
sponding to the input ue(·) with zero initial condition.
Since C ∈ L (Ub ⊕X ,Y), one can define

ε̃ :=
ε√

1+ ‖C‖2
> 0.

By Lemma 2.1.1 b), there exists an input function ue(·) such that

‖(xe
1(t),x

e
2(t))− (z1,z2)‖< ε̃ .
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It follows that

‖xe
3(t)− z3‖ = ‖C(xe

1(t),x
e
2(t))−C(z1,z2)‖

≤ ‖C‖ ε̃,

whence (2.1.3) holds.

c) First observe that the C0-semigroup (T e(t))t≥0 generated by Ae has the following
form:

T e(t) =




I 0 0
S1(·) T (·) 0
S2(·) S3(·) I


 .

It follows that the observability map is given for all xe ∈ X e by

C
e

t xe =CeT e(·)xe =




ρ1xe
1

ρ2(Bbxe
1 + S1(·)xe

1 +T (·)xe
2)

ρ3(S2(·)xe
1 + S3(·)xe

2 + xe
3)


 .

Hence C e
t xe = 0 if and only if xe = 0.

d) Since (A,Bd) is stabilizable, there exists a stabilizing feedback operator Kd ∈
L (X ,Ud) such that A+BdKd is the generator of a stable C0-semigroup on X .
Hence the operator Ke ∈ L (X e,Ue) defined by

Ke =

(
−I 0 0
0 Kd 0

)

is a stabilizing feedback operator for the pair (Ae,Be).
Indeed, the operator

Ae +BeKe =




−I 0 0

(A + I)Bb A+BdKd 0
CαA Bb Cα(A+BdKd) 0





is the generator of a stable C0-semigroup on X e. For this purpose, observe that, in
closed loop, the first two equations generate a stable C0-semigroup on Ub ⊕X . Hence,
there exist M1,M2 > 0 and α1,α2 < 0 such that for all (xe

10
,xe

20
) ∈ Ub ⊕D(A) and for

all t ≥ 0,
‖xe

1(t)‖ ≤ M1eα1t‖xe
10
‖

and
‖xe

2(t)‖ ≤ M2eα2t‖xe
20
‖,

where xe
1 and xe

2 are the state trajectories corresponding to the C0-semigroup generated
by (

−I 0
(A + I)Bb A+BdKd

)
.
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Now, observe that, on X e, for all t ≥ 0,

‖xe
3(t)‖ = ‖Cα(x

e
2(t)+Bbxe

1(t))‖
≤ ‖Cα‖(M2eα2t‖xe

20
‖+ ‖Bb‖M1eα1t‖xe

10
‖).

Finally, taking the max norm ‖ · ‖∞ on the product space Ub ⊕X ⊕Y yields the in-
equality

‖(xe
1(t),x

e
2(t),x

e
3(t))‖∞ ≤ [(1+ ‖Cα‖‖Bb‖)M1 +(1+ ‖Cα‖)M2]e

αt‖(xe
10
,xe

20
,xe

30
)‖∞,

where α := max{α1,α2}.

e) Consider the operator Le := −κI ∈ L (Y e,X e), where κ ≥ 0. It is easy to see
that the operator

Ae +LeCe =




−κρ1I 0 0
(A −κρ2I)Bb A−κρ2I 0

CαA Bb Cα A −κρ3I




is the generator of a stable C0-semigroup on X e if κ is chosen large enough. �

Similar questions are studied in (Curtain and Zwart 1995, Exercise 5.25., pp. 262–
264) for a boundary control system without distributed input and with a bounded ob-
servation operator. In particular, the stabilizability of the extended system is related to
the stabilizability of the nominal system with respect to the boundary input.
The previous proposition emphasizes the crucial role of the distributed input operator
Bd in the dynamics. This result is of particular importance for the uniqueness and op-
timality of the solution of a LQ-optimal control problem, which is studied in Chapter
3. In fact, in general, the extended system without distributed input is not reachable.
However, as stated in that chapter, the distributed control operator, though important,
is not necessarily required to obtain a certain form of optimality which is still very
interesting in practice when the nominal system is reachable with respect to a suffi-
ciently smooth boundary input.
In the sequel, the extended system (1.2.13)-(1.2.19) will be considered on the state
space X e as in Theorem 1.3.2.

2.2 Comparison with the nominal system

In this section, we introduce additional assumptions such that the nominal system
(1.2.1)-(1.2.3) is a well-posed linear system, whose definition can be found in e.g.
(Weiss 1994). It will be shown later that this definition is indeed satisfied under these
additional assumptions.
Our aim is to show that the extended system becomes close in some sense to the nom-
inal one when the parameter α goes to infinity. This would ensure that the resolution
of some control problems for the extended system would provide a good estimation
of the solution for the nominal one when α is large enough.
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Under this assumption, the state trajectories are almost everywhere in the domain of
the Yosida extension, i.e. for all x0 ∈ D(A) and for almost all t ≥ 0, Cα x(t)→ C x(t)
when α →+∞ along the real axis.

First, as in (Weiss 1994), let us define the Yosida extension CΛ : D(CΛ) ⊂ X → Y

given by

CΛx0 = lim
α→+∞

Cα x0 (2.2.1)

where α ∈ IR, for all x0 in its domain

D(CΛ) = {x0 ∈ X : the limit in (2.2.1) exists}.
It should be noted that the operator CΛ is an extension of the operator CL defined by

CLx0 = lim
τ→0

C
1
τ

∫ τ

0
Tσ x0dσ (2.2.2)

on its domain
D(CL) = {x0 ∈ X : the limit in (2.2.2) exists},

which is often referred to as the Lebesgue extension of C , in the sense that D(CL) ⊂
D(CΛ) ⊂ X and for all x ∈ D(CL), CΛx =CLx, see (Weiss 1994), where it is also em-
phasized that in most cases CL and CΛ are interchangeable and one can choose the
most suitable one. In this case, the Yosida extension CΛ was chosen because of the
importance and the recurrent role of the frequency domain and the resolvent operator
of A in this theory. In fact, the computation of the resolvent operator of A (and hence
of Ae) is a crucial step in order to obtain the right coprime fraction (3.2.5)-(3.2.6) and
the spectral density (3.2.4) which are introduced in Chapter 3 and play a central role
in the resolution of the LQ-optimal control problem.
Now, we assume that

1) the operator (A −A)Bb is an admissible control operator for the semigroup T =
(Tt)t≥0 = (T (t))t≥0 (see condition [C1] in Definition 2), i.e. for some τ > 0, Ran
Φ̃τ ⊂ X , where for all ub ∈Ub,

Φ̃τ ub =

∫ τ

0
T (τ −σ)(A −A)Bbub(σ)dσ ,

2) the operator C is an admissible observation operator for T, i.e. for some τ > 0,
there exists a constant Kτ ≥ 0 such that for all x ∈ D(A),

∫ τ

0
‖C T (t)x‖2

Y dt ≤ K2
τ ‖x‖2

X .

Under these conditions, the BCBO system (1.2.1)-(1.2.3) is a well-posed linear system

whose state, input-state, state-output and input-output mappings defined in (Weiss
1994) are given by Tτ = T (τ) for all τ ≥ 0,

Φτ u =
∫ τ

0
T (τ −σ)(A −A)Bbub(σ)dσ

+

∫ τ

0
T (τ −σ)Bdud(σ)dσ
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for all τ ≥ 0 and u ∈ Ω = L2([0,+∞),U), where U :=Ub ⊕Ud,

(Ψτ x)(t) =

{
C T (t)x if t ∈ [0,τ)

0 if t ≥ τ

for all τ > 0 and x ∈ D(A), with Ψ0 = 0, and

(Fτ u)(t) =






C
∫ t

0 [T (t −σ)A −AT(t −σ)]Bbub(σ)dσ
+C

∫ t
0 T (t −σ)Bdud(σ)dσ if t ∈ [0,τ)

0 if t ≥ τ

for all τ ≥ 0 and u ∈ Ω, with F0 = 0, respectively.

Observe that both CL and CΛ defined by (2.2.2) and (2.2.1), respectively, are exten-
sions of the admissible observation operator C , which can be written as

C x = lim
t→0

1
t

∫ t

0
(Ψτ x)(σ)dσ

for all x ∈ X1.

In what follows, for any Hilbert space W , for all u,v ∈ L2([0,+∞),W ) and for all
τ ≥ 0, the τ-concatenation of u and v is defined by

(u⋄
τ

v)(t) =

{
u(t) if t ∈ [0,τ)

v(t − τ) if t ≥ τ.

The mappings introduced above satisfy the assumptions of (Weiss 1994), hence the
conditions of the definition of a well-posed linear system hold in this case. Indeed,

(i) T = (Tt)t≥0 = (T (t))t≥0 is a C0-semigroup of bounded linear operators on X .

(ii) The family Φ = (Φt )t≥0 is a family of bounded linear operators from Ω to X .
Indeed, (A −A)Bb ∈ L (Ub,X−1) since, for all ub ∈Ub,

‖(A −A)Bbub‖−1 = ‖(β I−A)−1(A −A)Bbub‖
≤

(
‖(β I−A)−1

A Bb‖+ |β |‖(β I−A)−1Bb‖+ ‖Bb‖
)
‖ub‖

where β ∈ ρ(A).
Moreover, (A −A)Bb is admissible by assumption, hence we deduce from (Tucsnak
and Weiss 2009, Proposition 4.2.2., p. 126) that for all t ≥ 0, Φt ∈ L (Ω,X).
In addition, for all u1,u2 ∈ Ω and for all τ, t ≥ 0,

Φτ+t(u1 ⋄
τ

u2) = T (t)Φτ u1 +Φtu2

= TtΦτ u1 +Φtu2
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(iii) The family Ψ = (Ψt)t≥0 is a family of bounded linear operators from X to Γ =
L2([0,+∞),Y ).
Indeed, since C ∈ L (X1,Y ) is admissible, it follows by (Tucsnak and Weiss 2009,
Proposition 4.3.2., p. 132) that for all t ≥ 0, Ψt ∈ L (X ,Γ).
Moreover, since (T (t))t≥0 satisfies the semigroup property, it is easy to check that for
all x ∈ X and for all τ, t ≥ 0,

Ψτ+tx = Ψτ x⋄
τ

ΨtT (τ)x

= Ψτ x⋄
τ

ΨtTτ x.

Finally, Ψ0 = 0.

(iv) The family F = (Ft)t≥0 is a family of bounded linear operators from Ω to Γ,
which follows from (ii) and (iii), and for all u1,u2 ∈ Ω and for all τ, t ≥ 0,

Fτ+t(u1 ⋄
τ

u2) = Fτ u1 ⋄
τ
(ΨtΦτ u1 +Ftu2).

Finally, F0 = 0.

Proposition 2.2.1 Let us assume that

(i) the transfer function of the nominal system (1.2.1)-(1.2.3) given by

Ĥ(s) =
(
CΛ(sI −A)−1(A Bb − sBb)+CΛBb CΛ(sI −A)−1Bd

)

has a strong limit along the real axis, i.e., for all u = (ub,ud) ∈Ub ⊕Ud ,

lim
s→∞
s∈IR

Ĥ(s)u ∈ Y,

which implies that the system is regular, and

(ii) for all (ub,ud) ∈Ub ⊕Ud , Bbub ∈ D(CΛ) and

lim
α→+∞

Cα Bbub = C Bbub,

lim
α→+∞

Cα(sI −A)−1Bbub = C (sI −A)−1Bbub,

lim
α→+∞

Cα(sI −A)−1Bdud = C (sI −A)−1Bdud .

Then, the following properties hold:

a) for all state trajectories x(·) of the BCBO system and for a.e. t ≥ 0, x(t) is in

the domain of the Yosida extension, i.e. yα(t) = Cα x(t) converges in Y as α goes to

+∞, and

lim
α→+∞

yα(t) = lim
α→+∞

Cα x(t) = C x(t),
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b) for all s ∈ ρ(A),

lim
α→+∞

ˆ̃Ge
α(s) = Ĝ(s),

where the input-output transfer functions Ĝ(s) and ˆ̃Ge
α of the nominal and extended

systems respectively are defined by

ŷ(s) = Ĝ(s)

(
ûb(s)
ûd(s)

)

and

ŷα(s) =
ˆ̃Ge

α(s)

(
ûb(s)
ûd(s)

)
.

Proof. Since (1.2.1)-(1.2.3) is a well-posed linear system, a) follows immediately
from (Weiss 1994, Theorem 5.8.) and (Weiss 1994, Remark 6.2.).

b) follows from (ii) and (Weiss 1994, Theorem 5.8.) since the regularity implies that
for all s∈ ρ(A) and for all (ub,ud)∈Ub⊕Ud , (sI−A)−1Bbub, (sI−A)−1A Bbub and (sI−
A)−1Bdud ∈ D(CΛ). �

Transfer functions and input-output maps have been studied for boundary control sys-
tems in factor form with an admissible observation operator in (Grabowski and Callier
2001).



Chapter 3

LQ-optimal control

3.1 Objectives

This central chapter provides results and a general method of resolution for the LQ-

optimal control problem associated with BCBO systems.
Many physical systems are naturally unstable and in general this instability is inher-
ited by the mathematical system. This characteristic is often undesirable and one may
want to design a control law that stabilizes the system around an equilibrium of in-
terest. However, it is sometimes interesting to conceive this control law such that it
optimizes a given criterion, which is generally based on the state and input trajectories
of the system and has a physical interpretation in terms of energy, for example.

More specifically, we consider the following optimization problem for the extended
system (1.2.13)-(1.2.19), which is assumed from now on to be reachable and stabiliz-
able:

min
ue

J(ue,xe
0,∞) (3.1.1)

where the quadratic cost functional is given by

J(ue,xe
0,∞) =

1
2

∫ +∞

0

[
‖ye(t)‖2 + ue(t)∗Que(t)

]
dt

=
1
2

∫ +∞

0

[
‖Cexe(t)‖2 + ue(t)∗Que(t)

]
dt (3.1.2)

where Q is a positive-definite weighting matrix operator of appropriate dimension.
This problem has been studied extensively for finite and infinite-dimensional systems
with bounded control and observation operators, see e.g. (Curtain and Zwart 1995).
However, it is still relatively unexplored for boundary control systems with boundary
observation, where these operators are unbounded. Our goal is to use the extended
model presented and analyzed in the previous chapters in order to establish a connec-
tion between the standard theory and the resolution of the LQ-optimal control problem
for BCBO systems.

39
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The rest of this chapter is divided into two sections, which correspond to the cases
where only a boundary input is present in the model (Bd = 0) or where a distributed
input is present as well (Bd 6= 0). The control design methodology is similar in both
cases, but some computations, consequences and results are adapted in order to reflect
the nature of the control inputs.

3.2 Boundary LQ-optimal control

3.2.1 Interpretation of the cost functional

Due to the nature of a wide range of physical systems, it is often hard or impossible
to control them at every spatial position. For example, heating a three-dimensional
object often consists in introducing heat in the object via its external layer, or, in other
words, its physical boundary. In many biochemical systems, not only the temperature
but also the concentration of reactants and / or substrate is regulated via the inlet of
the reactor. For these kinds of systems, we need an adapted methodology in order to
design efficient control laws.

In this section, we consider the case where no distributed input is present in the model
(Bd = 0) and we focus on LQ-optimal pure boundary control.
We consider the LQ-optimal control problem (3.1.1) with the cost functional (3.1.2),
where the input weighting coefficient operator is given by Q = ηI > 0. By using the
structure of the operator Ce given by (1.2.19) and the relation (1.3.2), the cost func-
tional (3.1.2) can be written as

J(ue,xe
0,∞,η)

=
1
2

∫ +∞

0

[
‖(ρ1ub(t) ρ2(v1(t)+Bbub(t)) ρ3v2(t))

T‖2 + u̇b(t)ηIu̇b(t)
]

dt

=
1
2

∫ +∞

0

[
ρ1‖ub(t)‖2 +ρ2‖v1(t)+Bbub(t)‖2 +ρ3‖v2(t)‖2 +η‖u̇b(t)‖2]dt

=
1
2

∫ +∞

0

[
ρ1‖ub(t)‖2 +ρ2‖x(t)‖2 +ρ3‖yα(t)‖2 +η‖u̇b(t)‖2]dt (3.2.1)

for a suitable initial condition, where the weighting parameters ρ1, ρ2, ρ3 and η are
positive and the dependence to η is written explicitly. The fact that ρ2 and η can be
chosen small should be emphasized at this point. In fact, as a consequence, with suit-
ably chosen parameters, the cost functional for the extended system can be interpreted
as a cost functional for the nominal system, with a non standard term involving the
norm of the variation rate of the boundary input ub(t) for which the corresponding
parameter η can be adjusted. When η goes to zero, this non standard term vanishes,
which can be written as

lim
η→0+

J(ue,xe
0,∞,η) = J(u,x,∞)
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whenever this limit exists, where

J(u,x,∞) =
1
2

∫ +∞

0

[
ρ1‖ub(t)‖2 +ρ2‖x(t)‖2 +ρ3‖yα(t)‖2]dt

is a standard cost functional for the nominal system (1.2.1)-(1.2.3) with a penalization
of the boundary input, the state and the approximate output. However, one has to be
careful with any practical implementation of a method of resolution for this problem
with η being very small, since the problem may become badly conditioned from a
numerical point of view. In particular, in Step 3 of the algorithm presented in Section
4.3, the research of zeros of the determinant of the spectral density becomes harder as
the parameter η becomes smaller. More precisely, in this case, the MATLAB imple-
mentation of this algorithm encounters huge numerical instabilities when η gets close
to 0.01 and is also dependent on the ratio ρ1/η . Despite these numerical difficulties,
the evolution of the behaviour of the boundary input corresponding to the solution of
(3.1.1) can be observed in Figure 4.8 (in Section 4.3), where the parameter ρ1 is fixed
and the parameter η becomes gradually smaller.

3.2.2 General methodology

The following methodology and results show how this problem can be solved when Q

is the identity operator, i.e. η = 1, by solving a problem of spectral factorization of an
appropriate spectral density, or Popov function. More precisely, we use the methodol-
ogy of (Callier and Winkin 1992) extended to possibly infinite-dimensional input and
output Hilbert spaces. The main result was reported in (Dehaye and Winkin 2013b)
for the particular case of an analytic extended C0-semigroup.

General methodology:

1. Computation and instability of the open-loop transfer function:

The resolvent operator of Ae has the form

(sI −Ae)−1 =




1
s
I 0 0

1
s
(sI −A)−1A Bb (sI −A)−1 0

1
s
Cα(sI −A)−1

A Bb
1
s
Cα A(sI −A)−1 1

s
I


 .

The transfer function of the extended system is then given by

Ĝe(s) = Ce(sI−Ae)−1Be

=




ρ1
1
s
I

ρ2E(s)
ρ3Cα E(s)




where

E(s) =
1
s

[
(sI −A)−1

A −A(sI−A)−1]Bb.
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This transfer function is unstable due to Ĝe
11(s).

2. Stabilizing feedback and closed-loop dynamics:

Since the transfer function Ĝe(s) is unstable, the next step consists of presta-
bilizing the system in order to find a right coprime fraction of Ĝe(s). For this
purpose, let us consider any stabilizing feedback

Ke =
(
k1 k2 k3

)
(3.2.2)

where k1 ∈ L (Ub), k2 ∈ L (X ,Ub) and k3 ∈ L (Y,Ub).
The corresponding stable closed-loop dynamics generator is given by

Ae +BeKe =




k1 k2 k3

A Bb −Bbk1 A−Bbk2 −Bbk3

CαA Bb Cα A 0



 .

3. Right coprime fraction:

A right coprime fraction of Ĝe(s) is then given by

N̂e(s) = Ce(sI−Ae −BeKe)−1Be,

D̂e(s) = I+Ke(sI −Ae −BeKe)−1Be.

4. Spectral factorization:

Then, one can compute the spectral density

F̂e(s) = N̂e
∗(s)N̂

e(s)+ D̂e
∗(s)D̂

e(s)

and solve the spectral factorization problem, i.e. find R̂e ∈ H∞(L (Ub)) such
that (R̂e)−1 ∈ H∞(L (Ub)) and for all ω ∈ IR,

F̂e( jω) = R̂e
∗( jω)R̂e( jω).

It is known that this problem admits a solution if the operator spectral density
F̂e(s) is (uniformly) coercive on the imaginary axis, i.e. there exists η > 0 such
that for all ω ∈ IR,

F̂e( jω) ≥ ηI,

see e.g. (Rosenblum and Rovnyak 1985).
When the input space is finite-dimensional, this solution is known to be in
Mat( ˆA−), whose definition is recalled here, together with its inverse, see e.g.
(Callier and Winkin 1992), (Callier and Winkin 1999).

Definition 6 a) Let σ ≤ 0. A complex-valued Laplace-transformable impulse

response f is said to be in A (σ) if for all t < 0, f (t) = 0 and for all t ≥ 0,

f (t) = fa(t)+ fsa(t) where
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(i) the regular functional part fa satisfies

∫ +∞

0
| fa(t)|e−σtdt < ∞,

(ii) the singular atomic part fsa :=
+∞

∑
i=0

fiδ (·− ti), where t0 = 0, ti > 0 for all

i ∈ IN and fi ∈ CI for all i ∈ IN, satisfies

+∞

∑
i=0

| fi|e−σti < ∞.

b) An impulse response f is said to be in A− if f ∈ A (σ) for some σ < 0.

The set of Laplace transforms of elements of A− is denoted by ˆA−. The set of

matrices with entries in ˆA− is denoted by Mat( ˆA−).

It is well-known that A− ⊂ H∞ := H∞(CI ). See ((Curtain and Zwart 1995), Ap-
pendix 6 and 7) for more detail.

For the existence of a spectral factor R̂e ∈ H∞(L (Ub ⊕Ud)), see (Weiss and
Weiss 1997), which is based on (Rosenblum and Rovnyak 1985, Theorem 3.7).

5. Diophantine equation:

Finally, one has to find a constant solution (U ,V ) of the diophantine equation

U D̂e(s)+V ˆN
e(s) = R̂e(s), (3.2.3)

where
ˆN

e(s) := (sI −Ae −BeKe)−1Be.

Since Ae is the generator of a C0-semigroup by Theorem 1.3.2, the pair (Ce,Ae)
is detectable by Proposition 2.1.2 and the pair (Ae,Be) is assumed to be reach-
able and stabilizable, this solution is unique and the optimal feedback can be
computed as

Ke
0 =−U

−1
V =−U

∗
V .

Remark 1 In a slightly simpler context, a Diophantine equation generally cor-

responds to a polynomial equation, typically in two or more unknowns, for

which only integer solutions are allowed. By analogy, in (3.2.3), De(s), ˆN e(s)
and R̂e(s) can be seen as known operator-valued coefficients and, instead of an

integer solution, we look for a solution (U ,V ) which is a couple of bounded

linear operators.
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6. Feedback structure:

Without loss of generality, any state feedback Ke = (k1 k2 k3) is such that k3 = 0.
This fact can be explained by the dependence of the third state component,
which corresponds to the approximate output, with respect to the first two state
components. Hence any feedback operator acting on the whole state can be
rewritten as an operator acting on the first two components only.
More precisely, since the state trajectories are such that xe(t) ∈ G(C) for all
t ≥ 0, we have that

xe
3(t) =Cα(x

e
2(t)+Bbxe

1(t)).

Hence, for all t ≥ 0,

Kexe(t) =
(
k1 + k3Cα Bb k2 + k3Cα 0

)



xe
1(t)

xe
2(t)

xe
3(t)




where Bb and Cα are bounded linear operators.

The computation of the spectral factor and the constant solution of the diophantine
equation often requires adapted numerical schemes, such as the algorithm presented
in Chapter 4.

This methodology is summarized in the following result.

Theorem 3.2.1 Consider the extended system (1.2.13)-(1.2.19) with Bd = 0. Assume

that the pair (Ae,Be) is reachable and stabilizable.

Let us consider the LQ-optimal control problem (3.1.1) with the cost functional (3.1.2)

where Q = I.

Consider

a) a stabilizing feedback Ke and the spectral density given by

F̂e(s) = N̂e
∗(s)N̂

e(s)+ D̂e
∗(s)D̂

e(s), (3.2.4)

where the pair (N̂e, D̂e) defined by

N̂e(s) = Ce(sI −Ae −BeKe)−1Be (3.2.5)

D̂e(s) = I+Ke(sI −Ae−BeKe)−1Be (3.2.6)

is a right coprime fraction of the operator-valued transfer function Ĝe(s) = Ce(sI −
Ae)−1Be, and

b) the spectral factorization problem

F̂e( jω) = R̂e
∗( jω)R̂e( jω) (3.2.7)
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and the (standard) invertible stable spectral factor R̂e ∈ H∞(L (Ub ⊕Ud)) such that

(R̂e)−1 ∈ H∞(L (Ub ⊕Ud)) and R̂e(∞) = I.

Then the solution of the LQ-optimal control problem (3.1.1) is the stabilizing feed-

back control law ue = Ke
0xe with the state feedback operator

Ke
0 =

(
k01 k02 k03

)
(3.2.8)

where k01 ∈ L (Ub), k02 ∈ L (X ,Ub) and k03 ∈ L (Y,Ub) are bounded linear opera-

tors.

Without loss of generality, the solution has the following structure:

Ke
0 =

(
k01 k02 0

)
. (3.2.9)

The feedback operator Ke
0 is given by

Ke
0 =−U

−1
V =−U

∗
V (3.2.10)

where (U ,V ) is the unique constant solution of the Diophantine equation

U D̂e(s)+V ˆN
e(s) = R̂e(s) (3.2.11)

with ˆN e(s) := (sI −Ae −BeKe)−1Be.

The proof of Theorem 3.2.1 is a direct consequence of the methodology detailed above
in combination with the fact that (Ae,Be) is reachable and stabilizable by assumption
and that (Ce,Ae) is detectable by Proposition 2.1.2. It is also a direct adaptation of the
proof of (Dehaye and Winkin 2013b, Theorem 1).
This result is an extension of the results established in (Callier and Winkin 1992) and
(Aksikas et al. 2007), where the input space is assumed to be finite-dimensional and
the C0-semigroup is assumed to be stable, respectively. In this work, the theorem is
stated without these assumptions. This extension is rather straightforward by combin-
ing proofs and results from (Callier and Winkin 1992), (Aksikas et al. 2007), (Rosen-
blum and Rovnyak 1985) and (Weiss and Weiss 1997). However, the computational
methodology on which the proof is based for the extended system considered in this
work is new and specific to the structure of the system described by (1.2.13)-(1.2.19).
It provides some explicit and potentially useful computational details in steps 1,2,3
and 6 in view of a practical implementation of the proposed method of resolution of
a LQ-optimal control problem. Even more details can be found in the methodology
presented in Section 3.3 when distributed control is present in the model and the pair
(A,Bd) is stabilizable.

This theorem is stated for the normalized case, i.e. where the weighting operator
Q is the identity. However, one can define the positive-definite weighting operator
Q̃ := ηI, where η > 0, and the modified bounded control operator B̃e = BeQ̃− 1

2 such
that the input is given by ũe = Q̃

1
2 ue. Hence

ũe∗ũe = ue∗Que = η‖ue‖2,
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which allows the general case to be treated as well.

It is important to notice that in general, for infinite-dimensional systems, reachabil-
ity does not imply stabilizability (see e.g. (Curtain and Zwart 1995, Example 5.2.2, p.
228)). Similarly, by duality, observability does not guarantee that detectability holds.
In Theorem 3.2.1, stabilizability is crucial for the existence of a solution of the LQ-
optimal control problem, while reachability guarantees the uniqueness of the solution
of the Diophantine equation (3.2.11), which is not necessarily the case in general, and
hence of the optimal feedback operator. For these reasons, both these properties have
to be considered in the assumptions of this result.
However, it should be noted that, even without the reachability assumption, any con-
stant solution of (3.2.11) provides the reachable restriction of the optimal feedback
operator. In these conditions, (3.2.10) only holds on the reachable subspace, i.e. for
all xe in the reachable subspace R(Ae,Be),

Ke
0xe =−U

−1
V xe =−U

∗
V xe,

see (Callier and Winkin 1992), (Aksikas et al. 2007).

Remark 2 The reachability and the stabilizability of the pair (Ae,Be) may seem rel-

atively difficult to check in general. However, in some cases, these properties can be

established on basis of some straightforward tests on the nominal system.

For example, in (Curtain and Zwart 1995, Exercise 4.20., p. 201-204), it is stated

that, if A Bb = 0, the pair (Ae,Be) is reachable if and only if the pair (A,Bb) is. Even

though this model does not include the approximate output in the state, it can be easily

generalized to fit the BCBO system.

Stabilizability can be achieved as well in this case when the pair (A,Bb) is stabiliz-

able, without the requirement of distributed control in the model, as seen in (Curtain

and Zwart 1995, Exercise 5.25., pp. 262–264).

More generally, if 0 ∈ ρ(A) and (A,Bb) is stabilizable, stabilizability of the extended

system holds if and only if

Ker (sI (A Bb)
∗)∩Ker (0 sI−A∗)∩Ker (I −B∗

b) = {0} (3.2.12)

for all s ∈ CI +
0 .

It is well known that, under suitable assumptions, the LQ-optimal control problem
can alternatively be solved by the resolution of an operator algebraic Riccati equation,
see e.g. (Curtain and Zwart 1995, Section 6.2, pp. 292–303), (Pritchard and Sala-
mon 1987) and (Alizadeh Moghadam, Aksikas, Dubljevic and Forbes 2013). Efficient
numerical methods, including standard and modified Newton-Kleinman algorithms,
were developed and analyzed in order to solve this problem for approximate finite-
dimensional systems in practical applications, in particular for distributed parameter
systems where the dynamics are described by partial differential equation, see e.g.
(Grad and Morris 1996), (Morris and Navasca 2010) and references therein.
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3.2.3 Interpretation of the optimal feedback law

So far, it has been shown that the LQ-optimal control problem is solvable for the
extended system. However, it is still unclear at this point how its solution is useful
for the stabilization of the nominal one. The following crucial theorem shows that
the (static) optimal feedback for the extended system can be seen as a stabilizing
dynamical feedback compensator for the nominal system, with an exponential rate of
convergence, provided that the C0-semigroup (T (t))t≥0 generated by A is analytic or,
more generally, immediately differentiable, which means that the map t 7→ T (t)x is
differentiable on (0,+∞) for every x ∈ X (see e.g. (Engel and Nagel 2000, Definition
4.13, p. 109)).

Definition 7 A C0-semigroup (T (t))t≥0 on a Banach space X is called eventually
differentiable if there exists t0 ≥ 0 such that the orbit maps ξx : t 7→ T (t)x are differ-

entiable on (t0,+∞) for every x ∈ X.

The C0-semigroup is called immediately differentiable if t0 can be chosen as t0 = 0.

Theorem 3.2.2 Assume that the C0-semigroup (Tt)t≥0 = (T (t))t≥0 generated by A is

analytic.

Then, under the assumptions of Theorem 3.2.1, the optimal control law for the ex-

tended system

u̇b(t) = Ke
0




ub(t)
x(t)−Bbub(t)

yα(t)


 (3.2.13)

is given by the dynamic compensator for the nominal system described by

u̇b(t) = (k01 − k02Bb)ub(t)+ k02x(t) (3.2.14)

with ub(0) satisfying x0 −Bbub(0) ∈ D(A), whose state is the boundary input ub(t)
and with input x(t).

In addition, this dynamic compensator is (exponentially) stabilizing, i.e. in closed

loop, there exist M > 0 and α < 0 such that the state trajectory x(t) given by (1.3.2)

is such that for all t ≥ 0,

‖x(t)‖ ≤ Meαtr(x0),

where r(x0)> 0 depends on x0 = x(0) ∈ D(A ).

Moreover, this compensator is optimal with respect to the cost (3.2.1) for the nom-

inal system among all dynamic compensators of the form (3.2.14) where k01 and k02

are bounded linear operators.

Proof. First, we show that the assumptions of Theorem 1.3.2b) hold for the closed-
loop system, more specifically the fact that ub ∈C2([0,+∞),Ub). For this purpose, let
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us consider the auxiliary homogeneous differential system

˙̃x(t) = Ãx̃(t) (3.2.15)

with the initial condition

x̃(0) = x̃0 = (ub(0) , x0 −Bbub(0))
T ∈ D(Ã),

where Ã : D(Ã)⊂Ub ⊕X →Ub ⊕X is defined by

Ã =

(
k01 k02

A Bb −Bbk01 A−Bbk02

)
(3.2.16)

on its domain D(Ã) =Ub ⊕D(A).
Now, let us consider the perturbation operator

P = Ã− diag(0,A)

=

(
k01 k02

A Bb −Bbk01 −Bbk02

)
.

Since A is the generator of an analytic C0-semigroup on X , the operator diag(0,A) is
the generator of an analytic C0-semigroup on Ub ⊕X . And, since P ∈ L (Ub ⊕X), the
operator Ã = diag(0,A)+P is the generator of an analytic C0-semigroup (T̃ (t))t≥0 on
Ub ⊕X , see e.g. (Engel and Nagel 2000, Theorem 2.10, p. 176).
Hence, the classical solution of (3.2.15)-(3.2.16) satisfies

x̃(·) = T̃ (·)x̃0 ∈C∞([0,+∞),Ub ⊕X).

Observe that the second equation of (3.2.15)-(3.2.16) is equivalent to (1.2.6) under
(3.2.13) with v1 := x̃2 and ub := x̃1. Since x̃02 = x0−Bbub(0) and x̃∈C∞([0,+∞),Ub⊕
X) (hence x̃1 ∈C2([0,+∞),Ub ⊕X)), the classical solution is given for all t ≥ 0 by

x̃2(t) = x(t)−Bbub(t)

by Theorem 1.3.2b).
The first equation of (3.2.15)-(3.2.16) is then equivalent to the dynamics of (3.2.14),
which shows that (1.3.2) holds for the closed-loop system.
Now, it is well known that the solution of the LQ-optimal control problem is a stabi-
lizing feedback operator. Hence, there exist Mu,Mv > 0 and αu,αv < 0 such that, in
closed loop, for all t ≥ 0,

‖ub(t)‖ ≤ Mueαut‖ub(0)‖

and
‖v1(t)‖ ≤ Mveαvt‖v1(0)‖.

Since x(t) = v1(t)+Bbub(t) by (1.3.2), for all t ≥ 0,

‖x(t)‖ ≤ Meαtr(x0),
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where
M := 2max{‖Bb‖Mu,Mv}> 0,

α := max{αu,αv}< 0

and
r(x0) := max{‖ub(0)‖,‖v1(0)‖}.

Finally, since it has been shown that (1.3.2) holds for the closed-loop system, any dy-
namic compensator of the form (3.2.14) can be interpreted as a static feedback law of
the form (3.2.9) for the extended system. Hence (3.2.14), where k01 and k02 form the
optimal feedback operator, minimizes the cost (3.2.1). �

The assumption that the C0-semigroup generated by A is analytic, which is the case
for the application studied in Chapter 4, can be replaced by the following:

(i) the C0-semigroup (Tt)t≥0 =(T (t))t≥0 generated by A is immediately differentiable,

(ii) limsup
t→0+

t log‖AT (t)‖
log
(

1
t

) = 0,

see e.g. (Engel and Nagel 2000, Definition 4.13, p. 109), (Doytchinov, Hrusa and
Watson 1997, Theorem 1).
The first assumption is satisfied in particular when the C0-semigroup is analytic. How-
ever, the converse is not true. Some multiplication semigroups, for example, are im-
mediately differentiable but not analytic, see e.g. (Engel and Nagel 2000, Counterex-
ample 4.33, p. 123).

Theorem 3.2.2 is illustrated by the following diagrams, which show the three inter-
pretations of the closed-loop system with the LQ-optimal control law.
The first diagram represents the closed-loop extended system, which acts as an inter-
mediate computational tool and for which the LQ-optimal control law is given by the
static state feedback Ke

0 .
The second diagram illustrates the closed-loop nominal system, for which the LQ-
optimal control law becomes a dynamical state and approximate output feedback.
Finally, the third diagram shows the nominal system again with the output feedback
included in the state feedback via the bounded operator Cα .
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ẋe = Aexe +Beue Ce

Ke
0

ve xeue ye

+

Figure 3.1: Static interpretation of the LQ-optimal feedback with boundary control
for the extended system

ẋ = A x

Bx = ub
Cα

˙̃ub = (k01 − k02Bb)ũb + k02x+ k03yα

vb xub yα

+

ũb

Figure 3.2: Dynamical interpretation of the LQ-optimal state and approximate output
feedback with boundary control for the nominal system

ẋ = A x

Bx = ub
C

˙̃ub = (k01 − k02Bb)ũb +(k02 + k03Cα)x

vb xub y

+

ũb

Figure 3.3: Dynamical interpretation of the LQ-optimal state feedback with boundary
control for the nominal system
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As a consequence of this result, in closed loop, the nominal system becomes




ẋ(t) = A x(t),
Bx(t) = ub(t),
u̇b(t) = (k01 − k02Bb)ub(t)+ k02x(t),

with the initial conditions x(0) = x0 and ub(0) = Bx0, where the interconnection be-
tween both dynamics only appears in the boundary conditions as expected. It should
be observed that an additional constraint of this approach is the fact that the initial
condition for the dynamic compensator has to be compatible with the boundary con-
ditions at the time t = 0.

In general, one can expect that this dynamic feedback law is not optimal with respect
to the standard cost for the nominal system. However, it has been shown that, under
the assumptions of Theorem 3.2.2, the dynamic compensator minimizes the modified
cost (3.2.1). The question of optimality with respect to a modified performance index
has been studied in detail for finite-dimensional systems, see e.g. (Ikeda and Šiljak
1990) for nonlinear systems and (Moore and Anderson 1967) for linear systems with
input derivative constraints.

3.3 Boundary and distributed LQ-optimal control

3.3.1 Interpretation of the cost functional

Even though a wide range of physical systems only allow punctual control, many
others can be acted upon via their entire spatial domain, or at least via a distributed
actuation on a portion of this domain. Again, a basic case is a heated metal bar, but
instead of introducing heat only at one end, the whole bar (or at least a portion of the
latter) is heated at the same time, with a possibly different intensity at each point. In
the industry, this is also the case for some chemical reactors for example, where the
tube is contained in a bed filled with cooling fluid, allowing to act on the reactions via
variations of temperature along the tube.

In this section, we assume that a distributed control is present in the model (Bd 6= 0).
Similarly as in the previous section, we consider the LQ-optimal control problem
(3.1.1), where, this time, the positive-definite weighting matrix operator Q in (3.1.2)
is given by Q = diag(η1I,η2I), with η1 > 0 and η2 > 0. The cost functional (3.1.2)
can be written as

J(ue,xe
0,∞) =

1
2

∫ +∞

0

[
ρ1‖ub(t)‖2 +ρ2‖x(t)‖2 +ρ3‖yα(t)‖2

+η1‖u̇b(t)‖2 +η2‖ud(t)‖2]dt (3.3.1)

for a suitable initial condition, where ρ2 and η1 can be chosen small. The develop-
ments leading to this expression are similar to those of (3.2.1) with ue = (u̇b ud)

T

instead of ue = u̇b.
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3.3.2 General methodology

In the sequel, we present the corresponding methodology, which is applicable when
Q is the identity operator, i.e. η1 = η2 = 1 but can also be easily adapted for a more
general weighting matrix operator Q.

General methodology:

1. Computation and instability of the open-loop transfer function:

The resolvent operator of Ae has the form

(sI −Ae)−1 =




1
s
I 0 0

1
s
(sI −A)−1A Bb (sI −A)−1 0

1
s
Cα(sI −A)−1A Bb

1
s
Cα A(sI −A)−1 1

s
I


 .

The transfer function of the extended system is given by

Ĝe(s) = Ce(sI −Ae)−1Be

=




ρ1
1
s
I 0

ρ2E(s) ρ2(sI −A)−1Bd

ρ3Cα E(s) ρ3Cα (sI −A)−1Bd




where

E(s) =
1
s

[
(sI −A)−1

A −A(sI−A)−1]Bb.

This transfer function is unstable due to Ĝe
11(s).

2. Stabilizing feedback and closed-loop dynamics:

Since the transfer function Ĝe(s) is unstable, the next step consists of presta-
bilizing the system in order to find a right coprime fraction of Ĝe(s). For this
purpose, let us consider any stabilizing feedback

Ke =

(
k11 k12 k13

k21 k22 k23

)
(3.3.2)

where k11 ∈ L (Ub), k21 ∈ L (Ub,Ud), k12 ∈ L (X ,Ub), k22 ∈ L (X ,Ud), k13 ∈
L (Y,Ub) and k23 ∈ L (Y,Ud).
In particular, if the pair (A,Bd) is stabilizable, the feedback can be chosen as

Ke =

(
k1 0 0
0 k2 0

)
(3.3.3)
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where k1 ∈L (Ub) is the bounded infinitesimal generator of a stable C0-semigroup
on Ub (such an operator always exists, take e.g. k1 =−I) and k2 ∈ L (X ,Ud) is
a stabilizing feedback for the pair (A,Bd).
In this case, the corresponding stable closed-loop dynamics generator is given
by

Ae +BeKe =




k1 0 0
A Bb −Bbk1 A+Bdk2 0

CαA Bb Cα(A+Bdk2) 0


 .

3. Right coprime fraction:

With the stabilizing feedback (3.3.3), a right coprime fraction of Ĝe(s) is then
given by

N̂e(s) = Ce(sI −Ae−BeKe)−1Be

=




ρ1M(s)
ρ2[I− J(s)(sI −A )]BbM(s)

ρ3Cα [I − J(s)(sI−A )]BbM(s)


 ,

D̂e(s) = I +Ke(sI −Ae −BeKe)−1Be

=

(
I +K1M(s) 0

−K2J(s)(sI −A )BbM(s) I+K2J(s)Bd

)

where M(s) = (sI −K1)
−1 and J(s) = (sI −A−BdK2)

−1.

4. Spectral factorization:

Then, one can compute the spectral density

F̂e(s) = N̂e
∗(s)N̂

e(s)+ D̂e
∗(s)D̂

e(s)

and solve the spectral factorization problem, i.e. find R̂e ∈ H∞(L (Ub ⊕Ud))
such that (R̂e)−1 ∈ H∞(L (Ub ⊕Ud)) and for all ω ∈ IR,

F̂e( jω) = R̂e
∗( jω)R̂e( jω),

with

F̂e(s) =

(
F̂1(s) F̂2(s)
F̂2∗(s) F̂4(s)

)

and

R̂e(s) =

(
R̂1(s) R̂2(s)
R̂3(s) R̂4(s)

)
.

It is known that this problem admits a solution if the operator spectral density
F̂e(s) is (uniformly) coercive on the imaginary axis, i.e. there exists η > 0 such
that for all ω ∈ IR,

F̂e( jω) ≥ ηI.
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When the input space is finite-dimensional, this solution is known to be in
Mat( ˆA−) together with its inverse, see e.g. (Callier and Winkin 1992), (Callier
and Winkin 1999). For the existence of a spectral factor R̂e ∈ H∞(L (Ub⊕Ud)),
see (Weiss and Weiss 1997), which is based on (Rosenblum and Rovnyak 1985,
Theorem 3.7).

5. Diophantine equation:

Finally, one has to find a constant solution (U ,V ) of the diophantine equation

U D̂e(s)+V ˆN
e(s) = R̂e(s),

where
ˆN

e(s) := (sI −Ae −BeKe)−1Be.

Since Ae is the generator of a C0-semigroup by Theorem 1.3.2, the pair (Ce,Ae)
is detectable by Proposition 2.1.2 and the pair (Ae,Be) is assumed to be reach-
able and stabilizable (in particular if the pair (A,Bd) is), this solution is unique
and the optimal feedback can be computed as

Ke
0 =−U

−1
V =−U

∗
V .

6. Feedback structure:

Observe that, without loss of generality, any state feedback of the form (3.3.2)
is such that k13 = k23 = 0.
Indeed, since the state trajectories are such that xe(t) ∈ G(C) for all t ≥ 0, we
have that

xe
3(t) =Cα(x

e
2(t)+Bbxe

1(t)).

Hence, for all t ≥ 0,

Kexe(t) =

(
k11 + k13Cα Bb k12 + k13Cα 0
k21 + k23Cα Bb k22 + k23Cα 0

)


xe
1(t)

xe
2(t)

xe
3(t)




where Bb and Cα are bounded linear operators.

Theorem 3.2.1 is applicable in this case. However, due to the distributed input, the
optimal feedback operator (3.2.8) becomes

Ke
0 =

(
k011 k012 k013

k021 k022 k023

)

and, without loss of generality, has the following structure:

Ke
0 =

(
k011 k012 0
k021 k022 0

)
. (3.3.4)
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Again, the result is stated for the normalized case but one can define the positive-
definite weighting operator Q̃ := diag(η1I,η2I), where η1 > 0 and η2 > 0, and the

modified bounded control operator B̃e = BeQ̃− 1
2 such that the input is given by ũe =

Q̃
1
2 ue. Hence

ũe∗ũe = ue∗Que = η1‖ue
1‖2 +η2‖ue

2‖2.

As in the case with boundary control only, Proposition 2.1.2 can help establish reach-
ability and / or stabilizability of the extended system.

3.3.3 Interpretation of the optimal feedback law

Theorem 3.2.2 can be adapted for the case where Bd 6= 0 and is illustrated by Figure
3.4, where the black part corresponds to the distributed input and can be plugged out
when the system only features boundary control.

Theorem 3.3.1 Assume that the C0-semigroup (Tt)t≥0 = (T (t))t≥0 generated by A is

analytic.

Then, under the assumptions of Theorem 3.2.1, the optimal control law for the ex-

tended system
(

u̇b(t)
ud(t)

)
= Ke

0




ub(t)

x(t)−Bbub(t)
yα(t)



 (3.3.5)

is given by the dynamic compensator for the nominal system described by

{
u̇b(t) = (k011 − k012Bb)ub(t)+ k012x(t)
ud(t) = (k021 − k022Bb)ub(t)+ k022x(t),

(3.3.6)

with ub(0) satisfying x0 −Bbub(0) ∈ D(A), whose state is the boundary input ub(t)
and with input x(t) and output ud(t).

In addition, this dynamic compensator is (exponentially) stabilizing, i.e. in closed

loop, there exist M > 0 and α < 0 such that the state trajectory x(t) given by (1.3.2) is

such that for all t ≥ 0, ‖x(t)‖ ≤ Meαtr(x0), where r(x0) > 0 depends on x0 = x(0) ∈
D(A ).

Moreover, this compensator is optimal with respect to the cost (3.3.1) for the nominal

system among all dynamic compensators of the form (3.3.6) where the k0i j
, i, j = 1,2,

are bounded linear operators.

Proof. First, we show that the assumptions of Theorem 1.3.2b) hold for the closed-
loop system, more specifically the fact that ud ∈C1([0,+∞),Ud) and ub ∈C2([0,+∞),Ub).
For this purpose, let us consider the auxiliary homogeneous differential system

˙̃x(t) = Ãx̃(t) (3.3.7)
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with the initial condition

x̃(0) = x̃0 = (ub(0) , x0 −Bbub(0))
T ∈ D(Ã),

where Ã : D(Ã)⊂Ub ⊕X →Ub ⊕X is defined by

Ã =

(
k011 k012

A Bb −Bbk011 +Bdk021 A−Bbk012 +Bdk022

)
(3.3.8)

on its domain D(Ã) =Ub ⊕D(A). Now, let us consider the perturbation operator

P = Ã− diag(0,A)

=

(
k011 k012

A Bb −Bbk011 +Bdk021 −Bbk012 +Bdk022

)
.

Since A is the generator of an analytic C0-semigroup on X , the operator diag(0,A) is
the generator of an analytic C0-semigroup on Ub ⊕X . And, since P ∈ L (Ub ⊕X), the
operator Ã = diag(0,A)+P is the generator of an analytic C0-semigroup (T̃ (t))t≥0 on
Ub ⊕X , see e.g. (Engel and Nagel 2000, Theorem 2.10, p. 176).
Hence, the classical solution of (3.3.7)-(3.3.8) satisfies

x̃(·) = T̃ (·)x̃0 ∈C∞([0,+∞),Ub ⊕X).

Observe that the second equation of (3.3.7)-(3.3.8) is equivalent to (1.2.6) under (3.3.5)
with v1 := x̃2, ub := x̃1 and ud := k21x̃1 + k22x̃2. Since x̃02 = x0 −Bbub(0) and x̃ ∈
C∞([0,+∞),Ub ⊕X) (hence x̃1 ∈ C2([0,+∞),Ub ⊕X) and ud ∈ C1([0,+∞),Ud)), the
classical solution is given for all t ≥ 0 by

x̃2(t) = x(t)−Bbub(t)

by Theorem 1.3.2b).
The first equation of (3.3.7)-(3.3.8) is then equivalent to the dynamics of (3.3.6) and
the relation

ud := k21x̃1 + k22x̃2

is equivalent to the output equation of (3.3.6), which shows that (1.3.2) holds for the
closed-loop system.
Now, it is well known that the solution of the LQ-optimal control problem is a stabi-
lizing feedback operator. Hence, there exist Mu,Mv > 0 and αu,αv < 0 such that, in
closed loop, for all t ≥ 0,

‖ub(t)‖ ≤ Mueαut‖ub(0)‖

and
‖v1(t)‖ ≤ Mveαvt‖v1(0)‖.

Since x(t) = v1(t)+Bbub(t) by (1.3.2), for all t ≥ 0,

‖x(t)‖ ≤ Meαtr(x0),
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where
M := 2max{‖Bb‖Mu,Mv}> 0,

α := max{αu,αv}< 0

and
r(x0) := max{‖ub(0)‖,‖v1(0)‖}.

Finally, since it has been shown that (1.3.2) holds for the closed-loop system, any dy-
namic compensator of the form (3.3.6) can be interpreted as a static feedback law of
the form (3.3.4) for the extended system. Hence (3.3.6), where the ki j, i, j = 1,2, form
the optimal feedback operator, minimizes the cost (3.3.1). �

ẋ = A x +Bdud

Bx = ub
C

˙̃ub = kbũb + k12xũd = kd ũb + k22x

vd

vb

ud

ũb

+

ũd xub y

+

ũb

Figure 3.4: Dynamical interpretation of the LQ-optimal feedback with boundary and
distributed control

Even though the proof has to be slightly adjusted due to the presence of the dis-
tributed control ud , Theorem 3.3.1 can be seen as a corollary of Theorem 3.2.2, which
is only valid with pure boundary control.

When distributed control is present in the model, the boundary control ub plays the
role of the state of the dynamic compensator (3.3.6), whereas the distributed control
ud is its output and the closed-loop nominal system becomes






ẋ(t) = (A + k022)x(t)+Bd(k021 − k022Bb)ub(t),
Bx(t) = ub(t),
u̇b(t) = (k011 − k012Bb)ub(t)+ k012x(t),

where the control input ub now acts both in the boundary conditions and in the dy-
namics via a bounded operator and ud is uniquely determined by ub and x.
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Part III

Applications: parabolic and
hyperbolic systems
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Chapter 4

Parabolic system

4.1 Description and analysis

This section introduces the parabolic convection-diffusion-reaction (CDR) system as
an application, shows that it is a BCBO system and gives some of its main properties.

4.1.1 Description of the CDR system

The results of Part II are illustrated by a Sturm-Liouville system which is inspired by
the literature and may correspond to a linearization around a stable or unstable equilib-
rium. The systems on which this application is based are notably useful for modeling
chemical and biochemical reactors, see e.g. (Dramé et al. 2008) for an application
to a biochemical reactor model, or (Winkin et al. 2000), (Delattre et al. 2003) for the
analysis of distributed parameter tubular reactor models or Sturm-Liouville systems
in general and their relation with Riesz-spectral systems.

Let us consider a convection-diffusion-reaction system with boundary control and ob-
servation of the form





∂x
∂ t
(z, t) = D ∂ 2x

∂ z2 (z, t)− v ∂x
∂ z
(z, t)− kx(z, t)+ χ[1−εu,1](z)ud(t)

−D ∂x
∂ z
(0, t) = v(ub(t)− x(0, t))

∂x
∂ z
(1, t) = 0

x(z,0) = x0(z)
y(t) = x(1, t)

(4.1.1)

where t ≥ 0 and z∈ [0,1] denote the time and the spatial variable, respectively, D, v and
k are the diffusion, convection and reaction parameters, respectively, and εu ∈ [0,1] is
a parameter which corresponds to the length of the distributed input window located
at the end of the spatial domain. The parabolic equation describing the dynamics rep-
resents the conservation of mass in the system.
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The stability of the CDR system (4.1.1) depends on the reaction parameter k. When
the reaction rate is already linear, a negative reaction parameter makes no sense from a
physical point of view, and a nonnegative reaction parameter leads to a stable system.
However, for nonlinear CDR systems, a linearization around an unstable equilibrium
profile can yield a system of the form (4.1.1) or a similar one with k < 0.
For example, in (Dramé et al. 2008), it is seen that CDR dynamics can be used to
describe the evolution of substrate in a biochemical reactor. We consider a slightly
modified system with a normalized length and where the boundary condition at 0
features the additional variable ub, which is the actual control variable. The partial
differential equations (PDE’s) describing the dynamics of the system are given by

{
∂S
∂τ (ζ ,τ) = D ∂ 2S

∂ζ 2 (ζ ,τ)− v ∂S
∂ζ

(ζ ,τ)− kµ(S,X)X(ζ ,τ)
∂X
∂τ (ζ ,τ) = −kdX(ζ ,τ)+ µ(S,X)X(ζ ,τ)

with the boundary conditions
{

−D ∂S
∂ζ

(0,τ) = v[(1− ub(τ))Sin − S(0,τ)]
∂S
∂ζ

(1, t) = 0

for all τ ≥ 0, where τ is the time variable, ζ ∈ [0,1] is the space variable, S(ζ ,τ) is
the limiting substrate concentration and X(ζ ,τ) is the living biomass and Sin and kd

are positive parameters.
The substrate inhibition law is

µ(S,X) = µ0
S

KSX + S+ 1
Ki

S2

where µ0, KS and Ki are positive parameters.
In the first boundary condition, ub can be seen as a control input used to regulate the
inlet substrate concentration Sin.
An appropriate change of variables yields the following system of PDE’s:

{
∂x1
∂ t

(z, t) = 1
Pe

∂ 2x1
∂ z2 (z, t)− ∂x1

∂ z
(z, t)− kµ̃(x1,x2)x2(z, t)

∂x2
∂ t

(z, t) = −γx2(z, t)+ µ̃(x1,x2)x2(z, t)

with the boundary conditions
{

1
Pe

∂x1
∂ z

(0, t) = x1(0, t)− ub(t)
∂x1
∂ z

(1, t) = 0

for all t ≥ 0, where Pe =
v

D
is the Peclet number and γ =

kd

v
. The modified substrate

inhibition law is

µ̃(x1,x2) = β
1− x1

KSx2 +(1− x1)+α(1− x2
1)
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where α =
Sin

Ki

and β =
µ0

v
.

In that paper, and more precisely in Proposition 4.1, it is shown that this system has
at least two non trivial equilibria if D is sufficiently large and if v is sufficiently small.
These equilibria can be computed as the solutions of a system composed of an al-
gebraic equation and an ordinary differential equation (ODE) with initial and final
conditions described by






1
Pe

x′′1 − x′1 + kµ̃(x1,x2)x2 = 0

−γx2 + µ̃(x1,x2)x2 = 0

1
Pe

x′1(0)− x1(0) = 0

x′1(1) = 0.

(4.1.2)

(4.1.3)

(4.1.4)

From the second equation, it can be seen that the non trivial solutions such that x2 6= 0
satisfy

µ̃(x1,x2) = γ

which yields the relationship

x2 =
(1− x1)(M+αkdx1)

kdKS

(4.1.5)

where M = µ0 − kd −αkd < 0.
Moreover, the corresponding modified substrate inhibition law equilibrium is

µ̃(x1,x2) = β
1− x1

KSx2 +(1− x1)+α(1− x2
1)
.

Equation (4.1.5) can then be plugged into (4.1.2)-(4.1.4), which yields a second order
nonlinear ODE in the variable x1.
It is also shown that at least one of these equilibria, around which the system can be
linearized, is unstable, which motivates the choice for a negative reaction parameter
for the CDR system considered in this chapter.

Both the cases k ≥ 0 and k < 0 are considered in Section 4.3 for numerical simulations.

4.1.2 The CDR system as a BCBO system

This dynamical system can be interpreted as an abstract boundary control model
with boundary observation described by (1.2.1)-(1.2.3). In this case, the operator
A : D(A )⊂ X = L2(0,1)→ L2(0,1) is given by

A x = D
d2x

dz2 − v
dx

dz
− kx
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on its domain D(A ), which is defined as the set of all x ∈ L2(0,1) such that x and
dx

dz

are absolutely continuous (a.c.),
d2x

dz2 ∈ L2(0,1) and
dx

dz
(1) = 0.

The distributed control operator Bd : Ud = IR → L2(0,1) is given for all ud ∈Ud and
z ∈ [0,1], by

(Bdud)(z) = χ[1−εu,1](z)ud , (4.1.6)

where χ[1−εu,1] denotes the characteristic function of the interval [1 − εu,1]. The
boundary conditions correspond to the operator B : D(B)⊃D(A )→Ub = IR, which
is given by

Bx =−D

v

dx

dz
(0)+ x(0).

Finally, the boundary observation operator C : D(C )⊃ D(A )→ Y = IR is given by

C x = x(1).

It should be noted that the parameter εu is allowed to be zero, such that Bd = 0, result-
ing in a pure boundary control model.

It can be shown that this model is a BCBO system.
Indeed, it is well-known that condition [C1] holds, i.e. the operator A : D(A)→ X =
L2(0,1) defined by Ax = A x for all x in its domain D(A) = D(A )∩ Ker B is the
infinitesimal generator of a C0-semigroup (T (t))t≥0 of bounded linear operators on
X = L2(0,1).
The operator A is given by Ax = A x for all x ∈ D(A) = D(A )∩Ker B, where

D(A) =

{
x ∈ L2(0,1) : x,

dx

dz
are a. c.,

d2x

dz2 ∈ L2(0,1),

D
dx

dz
(0)− vx(0) = 0 =

dx

dz
(1)

}
.

Moreover condition [C2] holds, i.e. the operator B is onto, such that there exists
a bounded linear operator Bb ∈ L (CI ,L2(0,1)) such that for all u ∈ Ub = CI , Bbu ∈
D(A ), the operator A Bb ∈ L (CI ,L2(0,1)) and for all u ∈Ub = CI , BBbu = u.
It can easily be checked that this condition is satisfied with the operator Bb defined as
the multiplication operator by the unit step function, i.e.

Bbu = 1(·)u,

where 1(z)≡ 1 on [0,1].
Finally, by arguments similar to those used in (Deutscher 2013), it can be shown
that the operator C is A-bounded. More precisely, it can be shown that there exists
f ∈ L2(0,1) such that, for all x ∈ D(A),

C x = x(1) = 〈 f ,(I −A)x〉. (4.1.7)
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Such a function f is given by

f =
+∞

∑
n=1

1
1−λn

ψn(1)φn,

where (φn)n∈IN is a Riesz basis of eigenvectors of the operator A, (ψn)n∈IN is a cor-
responding dual Riesz basis such that the vectors φn and ψn are bi-orthonormal, and
the real numbers λn are the eigenvalues of A. Then inequality (1.2.4) can be easily
derived from (4.1.7). Hence condition (C3) holds.
It follows that the analysis and all the results of Part II are applicable to this model.

4.1.3 Analysis

The spectral properties of the operator A will be useful in the sequel and are recalled
here. Since any Sturm-Liouville system is a Riesz-spectral system (Delattre et al.
2003), it is expected that the spectrum is real and discrete, and well-conditioned for
the proposed methodology.
In fact, it is known that the eigenvalues (λn)n≥1 of A are given for all n ≥ 1 by

λn =− s2
n + v2

4D
− k (4.1.8)

where the sn, n ≥ 1, are the solutions of the resolvent equation

tan
( s

2D

)
=

2vs

s2 − v2 , s ∈ IR, s > 0. (4.1.9)

The Riesz basis of eigenvectors is given by {φn : n ∈ IN0}, where, for all n ∈ IN0 and
for all z ∈ [0,1],

φn(z) = Kne
v

2D z

[
cos
( sn

2D
z
)
+

v

sn

sin
( sn

2D
z
)]

(4.1.10)

and the corresponding dual Riesz basis is {ψn : n ∈ IN0}, where, for all n ∈ IN0 and
for all z ∈ [0,1],

ψn(z) = Kne−
v

2D z

[
cos
( sn

2D
z
)
+

v

sn

sin
( sn

2D
z
)]

.

In order to make this analysis complete, we study the reachability and stabilizability
properties of the CDR system. First, we state the following lemma which shows that
the pair (A,Bd) is reachable for an appropriate choice of the parameter εu.

Lemma 4.1.1 Consider a CDR system with boundary control and observation de-

scribed by (4.1.1). Assume that the distributed control operator Bd is given by (4.1.6),

where the window width is

εu :=
2
j

(4.1.11)

with j ∈ IN0.

Then the pair (A,Bd) is reachable.
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Proof. It is known (see (Winkin et al. 2000)) that the operator A is self-adjoint
with respect to the equivalent inner product 〈·, ·〉ρ defined for all f ,g ∈ L2(0,1) by

〈 f ,g〉ρ =

∫ 1

0
e−

v
D z f (z)g(z)dz, (4.1.12)

and its eigenvectors (φn)n∈IN0
form an orthonormal basis of L2(0,1) equiped with this

inner product.
By (Curtain and Zwart 1995), the CDR system (4.1.1) is reachable if and only if for
all n ∈ IN0,

〈bd ,φn〉ρ 6= 0, (4.1.13)

where bd = χ[1−εu,1](·).
Since for all n ∈ IN0, φn is given by (4.1.10), two successive integrations by parts
reveal that

〈bd ,φn〉ρ =

∫ 1

0
e−

v
D zχ[1−εu,1](z)Kne

v
2D z

[
cos
( sn

2D
z
)
+

v

sn

sin
( sn

2D
z
)]

dz

= Kn

∫ 1

1−εu

e−
v

2D z

[
cos
( sn

2D
z
)
+

v

sn

sin
( sn

2D
z
)]

dz

=

[
−Kn

2D

v
e−

v
2D z

[
2cos

( sn

2D
z
)
+

v2 − s2
n

vsn

sin
( sn

2D
z
)]]1

1−εu

−Kn
s2

n

v2

∫ 1

1−εu

e−
v

2D z

[
cos
( sn

2D
z
)
+

v

sn

sin
( sn

2D
z
)]

dz.

=

[
−Kn

2D

v
e−

v
2D z

[
2cos

( sn

2D
z
)
+

v2 − s2
n

vsn

sin
( sn

2D
z
)]]1

1−εu

− s2
n

v2 〈bd ,φn〉ρ .

Hence,

〈bd,φn〉ρ = Kn

v2

v2 + s2
n

[
−2D

v
e−

v
2D z

[
2cos

( sn

2D
z

)
+

v2 − s2
n

vsn
sin
( sn

2D
z

)]]1

1−εu

,

which shows that (4.1.13) is equivalent to

[
e−

v
2D z

[
s2

n − v2

vsn

sin
( sn

2D
z
)
− 2cos

( sn

2D
z
)]]1

1−εu

6= 0.

Let us assume that there exists n ∈ IN0 such that 〈b,φn〉ρ = 0.
Since the parameters sn are the solutions of (4.1.9), it is easy to see that

e−
v

2D

[
s2

n − v2

vsn

sin
( sn

2D

)
− 2cos

( sn

2D

)]
= 0.
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By using (4.1.9) again, it follows that

〈b,φn〉ρ = 0 ⇔ e−
v

2D (1−εu)

[
s2

n − v2

vsn

sin
( sn

2D
(1− εu)

)
− 2cos

( sn

2D
(1− εu)

)]
= 0

⇔ s2
n − v2

vsn

sin
( sn

2D
(1− εu)

)
− 2cos

( sn

2D
(1− εu)

)
= 0

⇔ tan
( sn

2D
(1− εu)

)
=

2vsn

s2
n − v2

⇔ tan
( sn

2D
(1− εu)

)
= tan

( sn

2D

)
.

The last assertion holds if and only if there exists m ∈ ZZ such that

sn

2D
(1− εu)+mπ =

sn

2D
,

or equivalently
εusn = 2Dmπ ,

i.e., in view of (4.1.11), sn = Dm jπ , where m j ∈ ZZ.
It follows that

2vsn

s2
n − v2 = tan

( sn

2D

)
= tan

(
m j

π

2

)
.

The rightmost term of this equality is either zero if m j is even or undefined if m j is
odd.
In any case, this is in contradiction with the fact that sn > 0 and v > 0.

�

This result implies that the distributed control window for the CDR system, when
located at the end of the spatial domain, can be chosen arbitrarily small while main-
taining reachability.
The following result gives some sufficient conditions for the reachability and stabiliz-
ability of the extended CDR system.

Proposition 4.1.2 a) If 0 ∈ ρ(A), the extended CDR system, i.e. the pair (Ae,Be), is

stabilizable.

b) Under the assumptions of Lemma 4.1.1, the extended CDR system, i.e. the pair

(Ae,Be), is reachable.

Proof. a) Let us define b = 1(·). After two successive integrations by parts and by
using the fact that the parameters sn are the solutions of (4.1.9), we see that, for all
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n ∈ IN,

〈b,φn〉ρ =

∫ 1

0
e−

v
D z1(z)Kne

v
2D z

[
cos
( sn

2D
z

)
+

v

sn

sin
( sn

2D
z

)]
dz

= Kn

∫ 1

0
e−

v
2D z

[
cos
( sn

2D
z
)
+

v

sn

sin
( sn

2D
z
)]

dz

= Kn

v2

v2 + s2
n

[
−2D

v
e−

v
2D z

[
2cos

( sn

2D
z

)
+

v2 − s2
n

vsn

sin
( sn

2D
z

)]]1

0

= Kn
v2

v2 + s2
n

[
2D

v
e−

v
2D

[
s2

n − v2

vsn

sin
( sn

2D
z
)
− 2cos

( sn

2D
z
)]

− 2D

v
(−2)

]

= Kn
4Dv

v2 + s2
n

6= 0 (4.1.14)

where the weighted scalar product 〈·, ·〉ρ is defined by (4.1.12).
Since A is a self-adjoint Riesz-spectral operator with respect to this scalar product, we
deduce from (Curtain and Zwart 1995, Theorem 5.2.9, p. 237) that the pair (A,Bb) is
stabilizable.
Now, we compute Ker (0 sI −A∗) for s ∈ CI +

0 . We see that

(
0 sI −A∗)

(
xe

1
xe

2

)
= 0 ⇔ A∗xe

2 = sxe
2

⇔ s = λn and xe
2 = ψn (4.1.15)

for some n ∈ IN0.
If s 6= λn for all n ∈ IN0, it follows immediately that condition (3.2.12) holds.
Let us now assume that s= λn ≥ 0 for some n∈ IN0. Let us consider (xe

1 xe
2)

T ∈Ub⊕X

such that
(

xe
1

xe
2

)
∈ Ker (sI (A Bb)

∗)∩Ker (0 sI −A∗)∩Ker (I −B∗
b) .

If xe
2 = 0, it is easy to see that xe

1 = 0 as well and (3.2.12) holds. Otherwise, by (4.1.15),
we have that xe

2 = ψn.
Moreover, since for all ub ∈Ub, Bbub = 1(·) and A Bb =−kBb, we see that

(
xe

1
xe

2

)
∈ Ker (sI (A Bb)

∗)∩Ker (0 sI −A∗)∩Ker
(
I −B∗

b

)

⇔ (λnI (A Bb)
∗)

(
xe

1
ψn

)
= 0 and

(
I −B∗

b

)(xe
1

ψn

)
= 0

⇔ λnxe
1 − kB∗

bψn = 0 and xe
1 −B∗

bψn = 0

⇒ (λn − k)B∗
bψn = 0,

which implies that

B∗
bψn = 0 (4.1.16)
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since λn 6= k.
But, by (4.1.14), it is also easy to see that

B∗
bψn =

∫ 1

0
ψn(z)dz

= Kn

∫ 1

0
e−

v
2D z

[
cos
( sn

2D
z
)
+

v

sn

sin
( sn

2D
z
)]

dz

6= 0,

which is in contradiction with (4.1.16).
Hence xe

2 cannot be equal to ψn for some n ∈ IN0 and must be zero, which shows that
(3.2.12) holds in any case.
Since 0 ∈ ρ(A) by assumption and the pair (A,Bb) is stabilizable, it follows from Re-
mark 2 that the pair (Ãe, B̃e) given by (2.1.1) is stabilizable as well.
Finally, the conclusion follows by an argument similar to the one used in the proof of
Proposition 2.1.2.

b) The result follows directly from Lemma 4.1.1 and Proposition 2.1.2. �

It is interesting to notice that the proof of the stabilizability of the extended CDR sys-
tem only depends on the operator Bb. This property can be established with boundary
control only, i.e. when Bd = 0, even though the presence of a distributed input can
make the choice of a stabilizing feedback easier provided that the pair (A,Bd) is sta-
bilizable.

In view of the results stated in Part II, the LQ-optimal control problem is well-posed
and solvable for CDR systems described by (4.1.1). This problem has been studied in
e.g. (Mohammadi, Aksikas, Dubljevic and Forbes 2012).

Remark 3 This part of the work focuses on the stabilizability analysis and the design

of a stabilizing control law for the (extended) CDR system, which is useful for many

applications, such as the chemical and biochemical reactors mentioned at the begin-

ning of the chapter. However, it should be noted that the analysis of instabilities turns

out to be very important for other applications based on CDR dynamics.

A notable example is the study of Turing instabilities in diffusion-reaction processes

where homogeneous equilibrium solutions can be destabilized with small inhomoge-

neous perturbations, leading the system to reach a spatially inhomogeneous equilib-

rium.

In particular, a topic of interest is the role of diffusion-reaction dynamics in pattern

formation, including for example the processes in morphogenesis that lead to these

patterns on animal skin or coat due to pigmentation.

Typically, such processes involve at least two interconnected diffusion-reaction equa-

tions of the form {
∂x1
∂ t

= f1(x1,x2)+D1
∂ 2x1

∂ z
∂x2
∂ t

= f2(x1,x2)+D2
∂ 2x2

∂ z
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for all t ≥ 0 on an interval [0,L], or

{
∂x1
∂ t

= f1(x1,x2)+D
(z1)
1

∂ 2x1
∂ z1

+D
(z2)
1

∂ 2x1
∂ z2

∂x2
∂ t

= f2(x1,x2)+D
(z1)
2

∂ 2x2
∂ z1

+D
(z2)
2

∂ 2x2
∂ z2

on a rectangular domain [0,L1]× [0,L2], where f1 and f2 are in general nonlinear

functions and where the diffusion coefficients may be anisotropic, i.e. depend on the

specific direction of migration, in the latter case.

In that context, a potential perspective could be the design of destabilizing control

laws such that the system reaches an inhomogeneous equilibrium corresponding to a

given pattern of interest.

See e.g. (Busiello, Planchon, Asllani, Carletti and Fanelli 2015) for a recent in depth

analysis of pattern formation with interacting reactive species subject to anisotropic

diffusion.

4.2 Comparison between the extended and nominal CDR
system

In this section, we show that the results stated in section 2.2 can be applied to the CDR
system. The main result states that the transfer function and approximate output of the
extended system converge to the transfer function and output of the nominal system
respectively, for almost every non negative time. This result motivates the use of the
extended system in view of the resolution of a LQ-optimal control problem and the
replacement of y by its Yosida approximation yα in the cost functional for the CDR
system.

Proposition 4.2.1 The convection-diffusion-reaction system (4.1.1) is such that

a) for all s ∈ ρ(A),

lim
α→+∞

ˆ̃Ge
α(s) = Ĝ(s)

and

b) for a.e. t ≥ 0, yα(t) =Cα x(t) converges in CI as α goes to +∞, and

lim
α→+∞

yα(t) = lim
α→+∞

Cα x(t) = x(1, t).

Proof: The transfer function of the convection-diffusion-reaction system (4.1.1) is
given by Ĝ(s) =

(
Ĝ1(s) Ĝ2(s)

)
where

Ĝ1(s) = C (sI −A)−1(A Bb − sBb)+C Bb

=
ve

v
2D
√

ρ

g(s,1)
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and

Ĝ2(s) = C (sI −A)−1Bd

= −e
v

2D εu

s+ k

g(s,1− εu)

g(s,1)
+

1
s+ k

with ρ := ρ(s) := v2 + 4D(k+ s) and

g(s,z) = [v2 + 2D(k+ s)]sinh

(
z

√
ρ(s)

2D

)
+ v
√

ρ(s)cosh

(
z

√
ρ(s)

2D

)
.

This transfer function is strictly proper and thus admits a strong limit at +∞ along the
real axis, i.e. for all (ub,ud) ∈ CI ⊕CI ,

Ĝ(s)(ub , ud)
T = Ĝ1(s)ub + Ĝ2(s)ud → 0

as |s| →+∞.

The input-output transfer function ˆ̃Ge
α of the extended system defined by

ŷα(s) =
ˆ̃Ge

α(s)(ûb(s) , ûd(s))
T

for all s ∈ CI is given by

ˆ̃Ge
α(s) =

(
ˆ̃Ge

α1(s)
ˆ̃Ge

α2(s)
)

where
ˆ̃Ge

αi
(s) =

α

s−α
[Ĝi(α)− Ĝi(s)],

i = 1,2, by the resolvent identity, see (Jacob and Zwart 2012, Proposition 5.2.4, p.
59).
Since

lim
α→+∞

C (αI −A)−1Bb = lim
α→+∞

C (αI −A)−1Bd = 0

and

lim
α→+∞

Cα Bb = lim
α→+∞

α

k+α

[
−ve

v
2D

√
ρ(α)

g(α,1)
+ 1

]
= 1,

it is easy to see that for all s ∈ CI ,

lim
α→+∞

ˆ̃Ge
α(s) = Ĝ(s).

Now we show that the operators (A −A)Bb and C are admissible for (T (t))t≥0. Since
A is a Riesz-spectral operator, it is diagonalizable, i.e. isomorphic to a diagonal oper-
ator on l2, see (Tucsnak and Weiss 2009, Section 2.6, pp. 49–56). This isomorphism
is Q ∈ L (L2(0,1), l2), which is defined by

Qx = (〈x,ψn〉)n∈IN0
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for all x ∈ L2(0,1). Obviously, for all n ≥ 1, Qφn = en, where {en : n ∈ IN0} is the
canonical basis of l2. By this similarity transformation, the operator A can be seen as
the diagonal operator Ã : D(Ã)⊂ l2 → l2 defined by

Ãw = (λnwn)n∈IN0

for all w ∈ D(Ã), where

D(Ã) =



w ∈ l2 : ∑

n∈IN0

(1+λ 2
n )|wn|2 <+∞



 .

The operator C ∈ L (X1,CI ) can be seen as the operator C̃ ∈ L (l2
1 ,CI ) defined by

C̃ w = 〈w,c〉
= ∑

n∈IN0

cnwn

= ∑
n∈IN0

φn(1)wn

for all w ∈ l2
1 , where the sequence (cn)n∈IN0

= (φn(1))n∈IN0
∈ l2

−1.
We show that this sequence satisfies the Carleson measure criterion (see e.g. (Tucsnak
and Weiss 2009, Definition 5.3.1., p. 159)) for the sequence (λn)n∈IN0

, i.e. there exists
M > 0 such that for all h > 0 and ω ∈ IR,

∑
−λ n∈R(h,ω)

|cn|2 ≤ Mh, (4.2.1)

where
R(h,ω) = {s ∈ CI : 0 < Re s ≤ h, |Im s−ω | ≤ h}.

This can be interpreted as the fact that the sum of the |cn|2 over all eigenvalues be-
longing to any rectangle centred around the real axis in the left-half plane is bounded
by a value proportional to the height of the rectangle. Moreover, the discrete measure
on CI 0 with weights |cn|2 in the points −λ n is a Carleson measure (see e.g. (Tucsnak
and Weiss 2009, The Carleson measure theorem, p. 406)). This criterion guarantees
the admissibility of the equivalent observation operator C̃ .
Let h > 0 and ω ∈ IR. Since all the eigenvalues of A are real, we see that, if |ω | > h,
then, for all n ∈ IN0, −λ n =−λn /∈ R(h,ω) and

∑
−λ n∈R(h,ω)

|cn|2 = 0.

If |ω | ≤ h, then −λ n = −λn ∈ R(h,ω) if and only if −λn ≤ h, which is true if and
only if

s2
n ≤ 4Dh− 4Dk− v2.
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Since the sequence (sn)n∈IN0
is such that for all n ∈ IN0, sn+1 ≥ sn > 0, we can distin-

guish three cases.

1) If h <
s2

1 + v2

4D
+ k, then the condition −λ n ∈ R(h,ω) is never fulfilled, hence

∑
−λ n∈R(h,ω)

|cn|2 = 0. (4.2.2)

2) If
s2

1 + v2

4D
+ k ≤ h <

s2
2 + v2

4D
+ k, then one observes that −λ 1 =−λ1 ∈ R(h,ω) and

for all n ≥ 2, −λ n =−λn /∈ R(h,ω). Hence,

∑
−λ n∈R(h,ω)

|cn|2 = |c1|2 = |φ1(1)|2. (4.2.3)

Observe that, by (4.1.10), for all n ∈ IN0,

|φn(1)|2 =

∣∣∣∣Kne
v

2D

(
cos

sn

2D
+

v

sn
sin

sn

2D

)∣∣∣∣
2

= |Kn|2e
v
D

(
cos

sn

2D

)2
+

2v

sn

(
cos

sn

2D

)(
sin

sn

2D

)
+

v2

s2
n

(
sin

sn

2D

)2

≤ |Kn|2e
v
D

(
1+

2v

sn

+
v2

s2
n

)

≤ e
v
D sup

i∈IN0

|Ki|2
(

1+
2v

s1
+

v2

s2
1

)
(4.2.4)

since (Kn)n∈IN0
is a bounded sequence and for all n ∈ IN0, sn ≥ s1 > 0. Moreover,

h ≥ s2
1 + v2

4D
+ k >

v2

4D
+ k. (4.2.5)

From (4.2.3), (4.2.4) and (4.2.5), we deduce that

∑
−λ n∈R(h,ω)

|cn|2 ≤ m ≤ m

K
h (4.2.6)

where

m = e
v
D sup

n∈IN0

|Kn|2
(

1+
2v

s1
+

v2

s2
1

)

and

K =
v2

4D
+ k.
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3) If
s2

2 + v2

4D
+ k ≤ h, observe that, for all n ≥ 2,

sn

2Dπ
≥ 1 since 2D(n− 1)π ≤ sn ≤

2Dnπ , which implies that for all n ≥ 2,

sn

2Dπ
≤ s2

n

4D2π2 .

Now, we see that

∑
−λ n∈R(h,ω)

|cn|2 = ∑
s2
n≤4Dh−4Dk−v2

|φn(1)|2

≤ ∑
s2
n≤4Dh

|φn(1)|2

= ∑
s2
n

4D2π2 ≤ 1
Dπ2 h

|φn(1)|2

≤ ∑
sn

2Dπ ≤ 1
Dπ2 h

|φn(1)|2

= ∑
sn≤ 2

pi h

|φn(1)|2

≤ ∑
2D(n−1)π≤ 2

pi h

|φn(1)|2

= ∑
n≤ h

Dπ2 +1

|φn(1)|2

≤
⌊

h

Dπ2 + 1

⌋
m

≤ m

Dπ2 h+m

≤ m

Dπ2 h+
m

K
h

=
( m

Dπ2 +
m

K

)
h, (4.2.7)

where

⌊
h

Dπ2 + 1

⌋
is the integer part of

h

Dπ2 + 1.

Finally, combining (4.2.2), (4.2.6) and (4.2.7), one concludes that there exists M =
m

Dπ2 +
m

K
> 0, which is independant of h and ω , such that (4.2.1) holds.

Since (T (t))t≥0 is an exponentially stable C0-semigroup, it follows from (Tucsnak and
Weiss 2009, Theorem 5.3.2., p. 159) and (Tucsnak and Weiss 2009, Remark 5.3.4., p.
162) that C is an admissible observation operator for (T (t))t≥0.

In order to show that (A −A)Bb is an admissible control operator for (T (t))t≥0, we
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show that its adjoint [(A −A)Bb]
∗ is an admissible observation operator for (T (t)∗)t≥0.

Let us consider again the operator Ã and observe that it is a self-adjoint operator.
Now we compute [(A −A)Bb]

∗ by using the identity

〈A x,ψ〉= 〈x,A∗ψ〉+ 〈Bx, [(A −A)Bb]
∗ψ〉

for all x ∈ D(A ), ψ ∈ D(A∗), see (Tucsnak and Weiss 2009, Remark 10.1.6., p. 330).
In this case, the operator A∗ : D(A∗)⊂ L2(0,1)→ L2(0,1) is given by

A∗x = D
d2x

dz2 + v
dx

dz
− kx

for all x ∈ D(A∗), where

D(A∗) =

{
x ∈ L2(0,1) : x,

dx

dz
are a. c.,

d2x

dz2 ∈ L2(0,1),

dx

dz
(0) = 0 = D

dx

dz
(1)+ vx(1)

}
.

Using integration by parts and the conditions of D(A ) and D(A∗), we obtain

〈A x,ψ〉− 〈x,A∗ψ〉 =
∫ 1

0

[
D

d2x

dz2 (z)− v
dx

dz
(z)− kx(z)

]
ψ(z)dz

−
∫ 1

0
x(z)

[
D

d2ψ

dz2 (z)+ v
dψ

dz
(z)− kψ(z)

]
dz

= D

∫ 1

0

[
d2x

dz2 (z)ψ(z)− x(z)
d2ψ

dz2 (z)

]
dz

−v

∫ 1

0

[
dx

dz
(z)ψ(z)+ x(z)

dψ

dz
(z)

]
dz

= D

[
dx

dz
(z)ψ(z)

]1

0
−D

[
x(z)

dψ

dz
(z)

]1

0
− v

∫ 1

0

dxψ

dz
(z)dz

= D
dx

dz
(1)ψ(1)+Dx(0)

dψ

dz
(0)− x(1)

[
D

dψ

dz
(1)+ vψ(1)

]

+

[
−D

dx

dz
(0)+ vx(0)

]
ψ(0)

=

[
−D

v

dx

dz
(0)+ x(0)

]
vψ(0) (4.2.8)

for all x ∈ D(A ), ψ ∈ D(A∗). But (4.2.8) should be equal to

〈Bx, [(A −A)Bb]
∗ψ〉=

[
−D

v

dx

dz
(0)+ x(0)

]
[(A −A)Bb]∗ψ .
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Hence, for all ψ ∈ D(A∗),

[(A −A)Bb]
∗ψ = vψ(0).

The corresponding observation operator on l2 is B̃ ∈ L (l2
1 ,CI ) defined by

B̃w = 〈w,b〉
= ∑

n∈IN0

bnwn

= ∑
n∈IN0

vφn(0)wn

for all w ∈ l2
1 , where the sequence (bn)n∈IN0

= (vφn(0))n∈IN0
∈ l2

−1.
By an analysis similar to the one performed previously for the operator C , one can
show that the sequence (bn)n∈IN0

satisfies the Carleson measure criterion for the se-
quence (λn)n∈IN0

with

M̃ =
m̃

Dπ2 +
m̃

K
> 0,

where
m̃ = v sup

n∈IN0

|Kn|2.

Hence (A −A)Bb is an admissible control operator for (T (t))t≥0.
The conclusion then follows from Proposition 2.2.1. �

4.3 Numerical results

4.3.1 Numerical process and algorithm

This section provides an algorithm for the resolution of the LQ-optimal control prob-
lem via spectral factorization and gives some numerical results for stable and unstable
convection-diffusion-reaction systems. The adaptability of the theory developped in
Part II is demonstrated again since a LQ-optimal control problem is posed and solved
for this class of systems with and without distributed control.
This problem is solved numerically by computing successively the eigenvalues of the
operator A, the zeros of the spectral density and the spectral factors and by solving the
diophantine equation with a residue computation.
Even though this process is described and illustrated in the context of a specific appli-
cation, it is important to notice that the associated algorithm can be used for a much
more general class of infinite-dimensional differential linear systems.

In this case, the diophantine equation (3.2.11) is equivalent to

(Ke −Ke
0)(sI −Ae −BeKe)−1Be = R̂e(s)− I (4.3.1)
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where the stabilizing feedback Ke is given by (3.3.2) or (3.2.2) depending on whether
a distributed input is present in the model or not. In the former case, if the pair (A,Bd)
is stabilizable, hence the prestabilizing feedback can be chosen as (3.3.3), the dio-
phantine equation (4.3.1) becomes




(K1 − k11)(sI −K1)
−1 + k12(sI −A)−1(sI −A )Bb(sI −K1)

−1 = R̂e
11(s)− 1

−k12(sI −A)−1Bd = R̂e
12(s)

−k21(sI −K1)
−1 + k22(sI−A)−1(sI −A )Bb(sI −K1)

−1 = R̂e
21(s)− 1

−k22(sI −A)−1Bd = R̂e
22(s).

(4.3.2)

Since for all x ∈ X and for all s ∈ ρ(A),

(sI −A)−1x =
+∞

∑
n=1

1
s−λn

〈x,ψn〉φn,

the scalar feedback component(s) k01 (or k11 and k21) and the decomposition of the
functional component(s) k02 (or k12 and k22) in the Riesz basis (φn)n∈IN0

of eigenvec-
tors of the operator A with corresponding dual Riesz basis (ψn)n∈IN0

, can be found by
computing the residues of the spectral factor at the pole K1 and at each of the selected
dominant eigenvalues λn, n = 1, ...,N − 1, where N ≥ 2, which can be computed nu-
merically with standard algorithms.
The truncated modal decomposition of the solution is then integrated with the ODE
solver ode45 in MATLAB. The numerical process is described by the following com-
putational algorithm (inspired by (Winkin, Callier, Jacob and Partington 2005),(Van-
dewalle and Dewilde 1975)) of an approximate optimal feedback by symmetric ex-
traction of elementary matrix spectral factors.
Even though this algorithm has been designed for the general case of MIMO CDR
systems, it can be easily adapted and simplified for the case of a single boundary in-
put, which is treated in Section 4.3.4.2.

ALGORITHM:

Step 1: Fix the number N ≥ 2 of elementary spectral factors that will be computed.
This number can be determined e.g. by performing an error analysis on the determi-
nant of the spectral density, see (Winkin et al. 2005), or when the H∞ norm of the
difference between two consecutive estimated spectral factors becomes sufficiently
small.

Step 2: Compute the N − 1 first real solutions of the resolvent equation (4.1.9) and
the N − 1 associated eigenvalues of A given by (4.1.8).

Step 3: Compute the N dominant zeroes of the determinant of the spectral density
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(3.2.4).

Step 4: Compute the elementary spectral factors Ŵ e
n , n = 1, ...,N, associated to the N

dominant pole-zero pairs (pn,zn) and given by

Ŵ e
n (s) = I − 1

s− pn

uv∗,

where u is in the range of the Hankel matrix H(F̂e, pn), v∗ is a linear combination of
the lines of H((F̂e)−1,zn) and

v∗u = zn − pn,

such that
(det Ŵ e

n )(zn) = 0.

The Hankel matrix of the spectral density F̂e at the pole pi is defined by

H(F̂e, pi) =




Fi1 Fi2 · · · Fili−1 Fi1i

Fi2 Fi3 · · · Fili 0
...

...
...

...
...

Fi1i
0 · · · 0 0




where the Fik are the coefficients of the Laurent series of F̂e given by

F̂e(s) =
li

∑
k=1

Fik(s− pi)
−k +Fi0 +

+∞

∑
k=1

F̃ik(s− pi)
k

such that its elements correspond to the residues of F̂e at pi.
See (Vandewalle and Dewilde 1975) for the definition in the case of rational spectral
densities.

Step 5: Compute the approximate spectral factor

R̂e
N(s) = Ŵ e

N(s)Ŵ
e
N−1(s)...Ŵ

e
1 (s) (4.3.3)

such that the sequence (det R̂e
N)N∈IN0

converges to det R̂e in ˆA−.

Step 6: Solve the Diophantine equation

UND̂e(s)+VN
ˆN

e(s) = R̂e
N(s)

by using modal decomposition with (4.3.1).

Step 7: Compute the approximate optimal feedback

Ke
0N

=

(
k011N

k012N
0

k021N
k022N

0

)
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of the form (3.3.4) given by

Ke
0N

=−U
−1

N VN =−U
∗

N VN ,

where, for i = 1,2,

k0i2N
=

N

∑
n=1

〈k̃i2N
,φn〉ψn. (4.3.4)

END

This spectral factorization algorithm is semi-heuristic and is inspired by a method
described in (Vandewalle and Dewilde 1975) for parahermitian rational spectral den-
sities. Moreover, there is currently no proof of convergence of this algorithm for
multiple input systems. However, it has been shown that, under suitable conditions,
the method of spectral factorization by symmetric extraction is convergent for the de-
terminant of the multidimensional spectral density (Winkin et al. 2005).

As mentioned before, the algorithm can be readily extended to a more general class of
differential linear systems, where the determinant of the spectral density satisfies the
assumptions described in (Winkin et al. 2005), i.e. more specifically, to the case of a
Riesz-spectral operator A with discrete spectrum σ(A) = σp(A) = {λn : n ∈ IN} ⊂ CI
consisting of simple eigenvalues such that

inf{|λn −λm| : n,m ∈ IN, n 6= m}> 0,

and

sup





+∞

∑
l = 1
l 6= n

1
|λl −λn|2

: n ∈ IN





<+∞.

In fact, only step 2 is specific to the convection-diffusion-reaction system (4.1.1).

Even though this approach shares a connection with classical modal control (which
is sometimes referred to as the direct approach), it should be noted that it is less prone
to error propagation since the modal approximation is done in closed loop, after the
prestabilization and computation of the spectral density (late lumping, or indirect ap-
proach), see e.g. (Balas 1986), (Balas 1988) and (Christofides and Daoutidis 1997).
Moreover, the transfer function of the closed-loop system with the truncated feedback
functionals (4.3.4) computed by the algorithm is given by Ge

cl = Ne(Re
N)

−1, where Re
N

is the approximate spectral factor given by (4.3.3).

4.3.2 Implementation of the algorithm

This section mentions some of the choices that were made for the practical implemen-
tation of the algorithm for the CDR system. MATLAB was selected as the program-
ming language for this purpose in view of using some of its routines and the built-in
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plotting tools.

Step 2 was implemented by using the MATLAB function fzero on the resolvent equa-
tion (4.1.9). More precisely, the equation

tan
( s

2D

)
− 2vs

s2 − v2 = 0

is solved in IR+
0 with this function. The fact that sn −2Dπ(n−1)→ 0 is used in order

to provide an appropriate starting point for each use of fzero. However, the distance
between the starting point and the corresponding 2Dπ(n−1) has to be increased care-
fully when the convection parameter itself increases, as seen in Figures 4.1 - 4.3.

For Step 3, many computations were done analytically before the implementation for
optimization purposes. In fact, the resolvent operator, transfer function and right co-
prime fraction were computed by hand. Even though these computations were long
and tedious, they were crucial in view of the limited computational power at hand.
More precisely, the main motivation for this choice is the fact that the resolvent oper-
ator is an integral operator and is involved heavily in each evaluation of the spectral
density, to which the program makes an important number of calls. Numerical in-
tegration was then prohibited at such a fundamental level in the program. Separate
functions were created on the basis of the analytical computations.
The research of zeros of the determinant of the spectral density relies on the function
fzero again. Due to the fact that the zeros quickly become close to the poles of the
considered function, the roots research problem is badly conditioned and the algo-
rithm eventually crashes if the starting point provided to the function fzero is not well
chosen. Hence, a test had to be implemented manually in order to check the shape
of the resolvent function around each pole and on which side of the pole the zero
is located. The MATLAB routine then starts close to the solution, which allows for
avoiding crashes and a faster execution of the program. Moreover, the variable s of the
determinant of the spectral density has been scaled appropriately in order to improve
the shape of the function around the poles.

For Steps 4 and 5, two methods were implemented for the computation of the residues
Fik of the spectral density F̂e and its inverse, and the corresponding Hankel matrices.
The first method computes an approximate residue by letting s go to pi in the function
(s− pi)F̂

e
n (s) until a given stopping criterion is met, where F̂e

n is the reduced spectral
density at the nth iteration.
The second method uses the limit routine on the same function. This method is more
accurate but requires more computational power and hence is much slower.
The reduced spectral density is computed at each iteration by extracting the computed
elementary spectral factors, i.e. by pre- and post-multiplying the spectral density by
(R̂e

n)
−1 and R̂e

n, respectively, where R̂e
n is the current approximate spectral factor. A

similar method is applied to the inverse spectral density.

In Steps 6 and 7, the Diophantine equation was solved under the form (4.3.2). For
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this purpose, another residue computation was implemented for each of the N poles
of the approximate spectral factor. More precisely, the residues of the approximate
spectral factor are computed in the right-hand side and the analytical form of the re-
solvent operator of A is used in the left-hand side in order to compute the truncated
decomposition of the feedback functionals in the dual Riesz-basis {ψn}n∈IN0

.

Finally, the integration of the closed-loop trajectories was implemented by computing
the matrix corresponding to the truncated modal decomposition of the state and the
feedback functionals in the first N modes of the CDR system. After the computation
of the finite-dimensional trajectories given by x(t) = eÃtx0, where Ã is the truncated
modal matrix of the system, the approximate state is reconstituted as a finite sum. This
choice was rather natural due to the fact that the method relies heavily on the spectral
structure of the dynamics generator. Moreover, it helps avoiding any dependence to a
spatial discretization scheme and discretization step.

The MATLAB program is user-friendly and easy to configure. The parameters D,
v, k, ε , ρ1, ρ2, ρ3, η1, η2, α , k1 and N, as well as the spatial discretization step, the
time discretization step and the ending time, can be specified by the user at the begin-
ning of the execution. The user can also choose whether a punctual perturbation or
a Gaussian white noise is added in the dynamics of the dynamic compensator. It is
also possible to tweak other parameters, such as the precision for the residue computa-
tions, and modify the initial condition for the trajectories directly in the code, which is
well-documented for this purpose. Once every required parameter has been specified,
the program generates the illustration of the computation of the solutions of the resol-
vent equation (4.1.9), the poles and zeros of the spectral density, the optimal feedback
coefficients, the profiles of the optimal feedback functionals and the open-loop and
closed-loop boundary and distributed input, state and output trajectories.

4.3.3 Computation of the solutions of the resolvent equation

In this short section, we show some numerical results that illustrate the numerical
computations in Step 2 of the algorithm presented in the previous section.
Figures 4.1, 4.2 and 4.3 illustrate the computation of the solutions of the resolvent
equation (4.1.9) for the CDR system (4.1.1) in Step 2 of the algorithm as the intersec-
tions between two curves with different values of the convection parameter. It should
be noted that only the real solutions of the resolvent equation are computed for the
spectrum of the operator A, even though this equation may have complex solutions as
well. In Figures 4.1-4.3, both axes thus represent the set of real numbers IR.
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Figure 4.1: Solutions of the resolvent equation with D = 1, v = 1 and k = 1
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Figure 4.2: Solutions of the resolvent equation with D = 1, v = 0.2 and k = 1
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Figure 4.3: Solutions of the resolvent equation with D = 1, v = 5 and k = 1

In general, the distance between the solutions of the resolvent equation and the
2(n−1)Dπ is converging towards 0 at a fast rate. However, this speed of convergence
is also heavily dependent on the ratio between the convection and diffusion param-
eters. In fact, the lower this ratio, the better the conditioning of the problem. This
is explained by the fact that, when this ratio is small, the system is closer to a purely
diffusive one, which is known to be very well conditioned. It is seen on figure 4.2 that,
in this case, the solutions of the resolvent equation are even closer to the 2(n− 1)Dπ
than with the normalized parameters. They can take much more time to converge
as the convection parameter grows however, as can be seen on Figure 4.3. In view
of these results, it is expected that the extreme case of a convection-reaction system
without diffusion is badly conditioned, at least for the computation of the spectrum,
which is a crucial step in the proposed method of resolution. However, such a system
cannot be seen directly as a particular case of (4.1.1) and has to be considered sepa-
rately, with the diffusion coefficient D being zero from the start.

Figure 4.4 illustrates the evolution of the distance between an arbitrary solution of
the resolvent equation (s5 in this case) and the corresponding 2(n−1)Dπ (= 8Dπ). It
is seen that this distance increases linearly with the convection parameter, which may
decrease the speed of convergence of an algorithm of research of zeros.
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Figure 4.4: Distance between s5 and 8Dπ against the convection parameter v (D = 1,
k = 1)

4.3.4 Numerical simulations: stable and unstable CDR system

This section provides numerical results that illustrate the resolution of a LQ-optimal
control problem for both stable and unstable convection-diffusion-reaction systems.
Concerning the efficiency of the algorithm of spectral factorization by symmetric ex-
traction, the convergence seems to be fast for the CDR system. In general, three
elementary spectral factors are sufficient in order to obtain an accurate solution. It
should be noted that the numerical conditioning heavily relies on the relative sizes of
the diffusion and convection parameters. If the convection parameter is larger than the
diffusion one, the model is numerically ill-conditioned and the numerical algorithm
can fail quickly, especially when finding zeroes of the determinant of the spectral den-
sity. However, a relatively large diffusion parameter makes the numerical conditioning
much better. A nearly purely diffusive system (close to the heat equation) allows the
computation of more spectral factors and / or with a higher parameter α . Moreover,
it is expected that the convergence may be noticeably slower with systems which are
less well-conditioned than (4.1.1).
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4.3.4.1 Stable case

In this section, we assume that the reaction parameter k is positive, which is the case in
most applications. In this case, the CDR system is already exponentially stable. How-
ever, the closed-loop system with the optimal feedback control law can help bring
additional robustness properties and is still useful. Sometimes, it may also help in
stabilizing the system faster at the expense of a required control input over time.

The figures illustrate the computation of the eigenvalues of the operator A and the
asymptotic behaviour of the state and input trajectories of the extended system with
the application of the optimal feedback. The last figures show the response of the
system to perturbations in the input of the dynamic compensator in order to illustrate
the robustness properties of the feedback law.

Except when stated otherwise, the parameters used in the numerical simulations are
D = 8, v = 4, k = 1, ρ1 = 2, ρ2 = 1e− 6, ρ3 = 1.5, η1 = 1, η2 = 2, ε = 0.008,
α = 3100, N = 5.
The prestabilizing feedback is given by (3.3.3) with k1 =−0.75 and k2 = 0.
Finally, the initial condition is given by ub0 = ub(0) = 0 and for all z ∈ [0,1],

v0(z) = sin

(
7π

2
z

)
+

(
35Dπ

v
− 20

)
cos(6πz)+ 20 (4.3.5)

Note that ub(0) = 0 must hold for the classical solution, since

ub(0) =−D

v
x0(0)+ x0(0)

and x0 ∈ D(A). However, the mild solution is well defined for all x0 ∈ X and for the
corresponding ub0.

The poles and zeros of F̂e are given below.

Poles Zeros
−0.75 −1.05689

−3.02392 −3.00449
−7.31085e+ 01 −7.31086e+ 01
−2.80381e+ 02 −2.80381e+ 02
−6.25819e+ 02 −6.25819e+ 02

The first pole corresponds to the prestabilizing feedback parameter k1 and the follow-
ing four poles correspond to the dominant open-loop eigenvalues. It should be noted
that the distance between the poles and zeros is converging towards 0 at a fast rate.
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The optimal feedback approximate coefficients are

k11 = −1.07453

k21 = −2.06711e− 03

〈k12,φ1〉 = −3.81796e− 02

〈k12,φ2〉 = 7.19369e− 05

〈k12,φ3〉 = −1.25698e− 06

〈k12,φ4〉 = 1.01735e− 07

〈k22,φ1〉 = −2.10749e− 03

〈k22,φ2〉 = 4.12753e− 04

〈k22,φ3〉 = −1.36144e− 04

〈k22,φ4〉 = 5.91680e− 05.

Figures 4.5 and 4.6 illustrate the numerical convergence of the optimal feedback
when α goes to infinity.

Figure 4.5: Profile of the feedback functional k012 with varying α
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Figure 4.6: Profile of the feedback functional k022 with varying α

As the parameter α increases, the distance between two successive feedback func-
tionals becomes smaller as expected.

Figures 4.7-4.9 illustrate the behaviour of the closed-loop system. In Figure 4.8, it
is seen that, as the ratio ρ1/η1 increases, the norm of the boundary input is reduced
compared to its variation rate due to the higher weight in the cost functional, which
leads to a faster stabilization at the cost of higher variations.
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Figure 4.7: Closed-loop distributed input ud(t)
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Figure 4.8: Closed-loop boundary input ub(t) with varying ratio ρ1/η1
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Figure 4.9: Closed-loop state trajectory x(t)

Figures 4.10-4.12 illustrate the behaviour of the closed-loop system with Gaussian
white noise in the dynamics of the dynamic compensator.
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Figure 4.10: Closed-loop distributed input ud(t) with Gaussian white noise
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Figure 4.11: Closed-loop boundary input ub(t) with Gaussian white noise

Figure 4.12: Closed-loop state trajectory x(t) with Gaussian white noise
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Figures 4.13-4.14 illustrate the behaviour of the closed-loop system with a punc-
tual perturbation in the dynamics of the dynamic compensator at t = 0.5 and t = 1.2.
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Figure 4.13: Closed-loop boundary input ub(t) with punctual perturbation at t = 0.5
and t = 1.2
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Figure 4.14: Closed-loop state trajectory x(t) with punctual perturbation at t = 0.5
and t = 1.2
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Some additional numerical simulations suggest that the optimal cost could be a
monotonically convergent function of the parameter α .

4.3.4.2 Unstable case

In this section, the reaction parameter k is assumed to be negative enough such that
the CDR system becomes open-loop unstable. Again, this can be done by considering
e.g. the linearization of a chemical or biochemical system with a nonlinear reaction
rate (based on e.g. Arrhenius equation, Haldane kinetics or others) around a non triv-
ial unstable equilibrium. In this case, an appropriate feedback law is required in order
to exponentially stabilize the system, which makes the resolution of the LQ-optimal
control problem even more useful.
Moreover, in order to demonstrate the adaptability of the theory developed in Part II
and of the algorithm, this problem is considered mainly with boundary control only
in this section. It is also seen that the control input trajectories obtained with a dis-
tributed control whose associated window length becomes arbitrarily small converge
numerically towards the input trajectories obtained with boundary control alone.

The following figures illustrate the asymptotic behaviour of the state and input tra-
jectories of the extended system with the application of the optimal feedback with the
following parameters: D = 8, v = 4, k = −9, ρ1 = 2, ρ2 = 1e− 6, ρ3 = 1.5, η = 1,
ε = 0, α = 3100, N = 6.
The initial condition is given by

v0(z) = sin

(
7π

2
z

)
+

7Dπ

2v
cos(6πz).

The prestabilizing feedback (whose existence is guaranteed, see Remark 4.1.2) is
given by (3.2.2) with, in this case,

k1 = 0.1 and k2 = 20〈·,ψ1〉. (4.3.6)

The stability of the corresponding closed-loop system has been checked numerically.
As in Section 4.3.4.1, the initial condition is given by (4.3.5).

The poles and zeros of F̂e are given below.

Poles Zeros
−1.60295 1.90984

−1.13281e+ 01 1.13086e+ 01
−7.82578e+ 01 −7.82579e+ 01
−3.15273e+ 02 −3.15273e+ 02
−7.10087e+ 02 −7.10087e+ 02
−1.26279e+ 03 −1.26279e+ 03

The poles correspond to the dominant closed-loop eigenvalues with the prestabilizing
feedback (3.2.2),(4.3.6). Again, the distance between the poles and zeros is converg-
ing towards 0 at a fast rate.
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The optimal feedback approximate coefficients are

k01 = 1.61244e− 01

〈k02 ,φ1〉 = 1.35439e+ 01

〈k02 ,φ2〉 = −5.13287e− 03

〈k02 ,φ3〉 = 3.44387e− 04

〈k02 ,φ4〉 = −5.90957e− 05

〈k02 ,φ5〉 = 1.55667e− 05.

Figures 4.15-4.8 illustrate the numerical convergence of the optimal feedback when α
goes to infinity as well as the behaviour of the open-loop and closed-loop systems.
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Figure 4.15: Profile of the feedback functional k02 with varying α

As observed in Section 4.3.4.1, the distance between two successive feedback
functionals becomes smaller as the parameter α increases.

Figure 4.16 illustrates the open-loop trajectories while Figures 4.17, 4.18, 4.19 and
4.20 show the behaviour of the closed-loop system.
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Figure 4.16: Open-loop state trajectory x(t)
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Figure 4.17: Closed-loop state trajectory x(t)
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Figures 4.18 and 4.19 display a comparison between the closed-loop state trajec-
tories with and without distributed control. One can clearly see the influence of the
boundary and distributed actuation, respectively.
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Figure 4.18: Closed-loop state trajectory x(t) with pure boundary control
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Figure 4.19: Closed-loop state trajectory x(t) with mixed boundary-distributed control
(ε = 0.4)
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In Figure 4.20, it is seen again that, as the ratio ρ1/η increases, the norm of the
boundary input is reduced compared to its variation rate due to the higher weight in
the cost functional.
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Figure 4.20: Closed-loop boundary input ub(t) with varying ratio ρ1/η

Finally, it should be noted that, even though Bd = 0 in these simulations, consider-
ing a nonzero but suitably scaled distributed control window can be used as a way to
obtain a good approximation of the solution while providing an easy mean to guaran-
tee reachability, and hence uniqueness of the solution, see Lemma 4.1.1. Figure 4.21
shows the comparison between the boundary input and output trajectories obtained
with Bd = 0 (bold blue line) and Bd = δ χ[1−ε,1], with δ and ε converging towards
zero.
In this simulation, as δ = ε is going towards zero, the closed-loop boundary control
trajectory under the optimal feedback law obtained with a distributed input becomes
closer to the trajectory under the optimal feedback law obtained with a boundary input
only. Moreover, as expected, pure boundary control is slightly slower to stabilize the
output than when it is helped by distributed control.
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Figure 4.21: Closed-loop boundary input ub(t) with Bd = 0 and Bd = εχ[1−ε,1] for
different values of ε
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Figure 4.22: Closed-loop output y(t) with Bd = 0 and Bd = εχ[1−ε,1] for different
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Chapter 5

Hyperbolic system

Boundary control of hyperbolic differential systems is at the heart of many practical
applications. Hyperbolic systems are heavily used in chemical engineering (tubular,
reactors, heat exchangers, ...), in the modeling of irrigation canal systems with, in par-
ticular, the very popular Saint-Venant equations, and a wide range of other processes.
They have been at the center of many studies and research topics during the past few
decades, such as the analysis of well-posedness, stability or feedback stabilization of
hyperbolic systems with boundary control, see e.g. (Witrant, D’Innocenzo, Sandou,
Santucci, Di Benedetto, Isaksson, Johansson, Niculescu, Olaru, Serra, Tennina and
Tiberi 2010), (Castillo et al. 2012), (Castillo et al. 2013), (Prieur, Winkin and Bastin
2008), (Bastin, Coron and d’Andréa Novel 2008), (Bounit 2003), (Besson, Tchousso
and Xu 2006), (Chentouf and Wang 2009) and references therein.

5.1 Motivation: an experimental setup

The goal of this chapter is to design a controller for a Poiseuille flow model and imple-
ment this controller on an experimental setup. This system, or more precisely several
variations of the associated model, have been considered and studied in (Castillo et al.
2012) and (Castillo et al. 2013).
The experiments were made possible mainly thanks to Christophe Prieur, Emmanuel
Witrant, Felipe Castillo and Hassen Fourati, who granted access to the experimental
setup in the GIPSA-lab in Grenoble and explained its primary uses.
The test bench has been manufactured by the company Soben. As mentioned in Chap-
ter 1, it consists of a horizontal tube of one meter in which heat or moisture will be
transported by an air flow. The tube is attached to a heating column in which a re-
sistance is used in order to attain the desired heat level. The resistance has its own
dynamics, which are relatively slow, and it takes some time to reach a given heat
level. Near the heating column, at the entrance of the tube, a moisture injector can
be found, which reacts much quicker than the heating column. Two fans, than can be
controlled independently one from each other, are located at both ends of the tube and
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are used to generate the air flow. Three sensors that can measure the temperature or
moisture percentage in the air flow are placed along the tube, as well as one sensor
that is used to measure the speed of the flow. Finally, the test bench is connected to an
automaton, which is used to interact with the setup and implement control laws and /
or state estimators. An adapted software developed and provided by Soben can be in-
stalled on a connected computer in order to run or reprogram the automaton. In "user
mode", this software allows, among other things, manual control of the fans, the heat-
ing column or the humidity injector, monitoring and recording the data via the sensors
and using two types of controllers (proportional-integral-derivative (PID) and R-S-T)
that are already implemented, thanks to a graphical interface. In "programmer mode",
the existing codes can be altered and new ones can be developed by using the special-
ized language LADDER, which is heavily used for the programming of programmable
logic controllers (PLC) in the industry. Though not advised by the manufacturer, this
mode allows for example the implementation of other control methods or observers.
The latter is theoretical though since none has been implemented so far and there is
no guarantee that the automaton is powerful enough to run the integrations required
by an observer.
Figure 5.1 originates from (Castillo et al. 2013) and shows the schematic of the exper-
imental setup.

Figure 5.1: Schematic of the experimental setup
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5.2 Modeling of the Poiseuille flow

This section introduces the hyperbolic Poiseuille flow control system, and how this
system can be modeled, linearized and diagonalized.

The following table summarizes the notations for the parameters and variables that
will be used through this chapter.

Notation Interpretation Unit
x spatial position m
t time s

ρ(x, t) gas density kg/m3

u(x, t) particle speed m/s
p(x, t) pressure Pa
ρin(t) inlet gas density kg/m3

uin(t) inlet particle speed m/s
pin(t) inlet pressure Pa
pout(t) outlet pressure Pa
dQ(t) heat exchange J
C0(t) input fan rotating speed 1/s
Tin(t) heating column input temperature K

a speed of sound in the gas m/s
pa atmospheric pressure Pa
Cv specific heat constant at constant volume J/(mol·K)
Cp specific heat constant at constant pressure J/(mol·K)
R gas constant J/(mol·K)
A tube section m2

V0 heating column volume m3

xρi
spatial position of the ith temperature/hygrometry sensor m

xs spatial position of the speed sensor m

Though the spatial variable will be denoted by x throughout this chapter in order to
respect some notation conventions, it should not be confused with the BCBO state
variable x(t).

The modeling of the dynamics of the fluid inside the tube is based on one-dimensional
quasilinear hyperbolic Euler equations for a perfect gas and a constant tube cross sec-
tion. These equations are written in terms of the following primitive variables: the gas
density (denoted by ρ), which is directly related to the temperature and the hygrom-
etry of the gas, the particle speed (denoted by u, which should not be confused with
the boundary input ub) and the pressure (denoted by p). These equations represent the
conservation of mass and the balance of momentum and energy. See e.g. (Winterbone
and Pearson 2005).
It should be noted that the dynamics presented for the two models are rather general,
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but the boundary conditions are really specific to the actuators used in the test bench.

5.2.1 First model

In this section, we consider all three aforementioned variables of the Poiseuille flow
for the modeling.
By neglecting the heat exchanges and the friction in the tube, which are small for this
application, the partial differential equations governing the dynamics of the system
can be written as





∂ρ
∂ t
(x, t) = −u(x, t) ∂ρ

∂x
(x, t)−ρ(x, t) ∂u

∂x
(x, t)

∂u
∂ t
(x, t) = −u(x, t) ∂u

∂x
(x, t)− 1

ρ(x,t)
∂ p

∂x
(x, t)

∂ p
∂ t
(x, t) = −a2ρ(x, t) ∂u

∂x
(x, t)− u(x, t) ∂ p

∂x
(x, t)

where a =
√

γ p
ρ is the speed of sound in the gas, with

γ =
Cp

Cv

, (5.2.1)

Cp and Cv being the specific heat constants at constant pressure and constant volume
respectively.

The boundary conditions are




ρ(0, t) = ρin(t)
Au(0, t) = K f C0(t)[p(0, t)− pin]
Au(L, t) = K f C1(t)[pout − p(L, t)]

where A is the tube section, K f (kg/m) is a coefficient depending on the fan specifica-
tion map, pin and pout are the inlet and outlet pressures and C0 and C1 are the inlet and
outlet fan rotating speeds.
The fan specification map establishes a relationship between the fan rotating speed,
the flow rate and the pressure loss around the device. The map corresponding to the
fans installed in the test bench has been computed and is available in the GIPSA-lab
of Grenoble.
Moreover, it has been established in (Castillo et al. 2013) that the heating column has
its own dynamics, which are described by

ρ̇in(t) =−RγATin(t)u(0, t)ρ(0, t)
V0 pin(t)

ρin(t)−
R

V0Cv pin(t)
ρin(t)dQ(t)+

γAu(0, t)ρ(0, t)
V0

(5.2.2)

where R is the gas constant, V0 is the volume of the heating column, γ is given by
(5.2.1), Tin is the heating column input temperature, dQ is the heat exchange, and
ρin(t) = ρ(0, t) for all t ≥ 0.
These dynamics have been considered in (Castillo et al. 2013) and are based on the
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first law of thermodynamics and the perfect gases law. They express the variation rate
of the input density in terms of several other variables and parameters, including the
heat exchange which is the actual control input.

An initial condition is given for all x ∈ [0,1] by

(ρ(x,0) u(x,0) p(x,0))T = (ρ0(x) u0(x) p0(x))
T .

This system can be linearized around any constant equilibrium of the form (ρ∗ u∗ p∗)T

and becomes




∂ ρ̃
∂ t
(x, t) = −u∗ ∂ ρ̃

∂x
(x, t)−ρ∗ ∂ ũ

∂x
(x, t)

∂ ũ
∂ t
(x, t) = −u∗ ∂ ũ

∂x
(x, t)− 1

ρ∗
∂ p̃
∂x
(x, t)

∂ p̃

∂ t
(x, t) = −(a∗)2ρ∗ ∂ ũ

∂x
(x, t)− u∗ ∂ p̃

∂x
(x, t)

where the new variables ρ̃ = ρ −ρ∗, ũ = u−u∗ and p̃ = p− p∗ represent the distance
between the actual state variables and the corresponding equilibria.

5.2.2 Second model

In this section, the Poiseuille flow model is simplified further and reduced to two
PDE’s with appropriate boundary conditions. The variables considered for the sec-
ond model are the gas density and the speed of the flow. In fact, since the pressure is
nearly constant (see e.g. (Castillo et al. 2013),(Castillo et al. 2012)), the model can be
simplified in order to take only these two variables into account.

The dynamics of the system are described by the following partial differential equa-
tions: {

∂ρ
∂ t
(x, t) = −u(x, t) ∂ρ

∂x
(x, t)−ρ(x, t) ∂u

∂x
(x, t)

∂u
∂ t
(x, t) = −u(x, t) ∂u

∂x
(x, t).

(5.2.3)

By using Bernoulli’s equation in order to describe the pressure variation induced by
the rotation of the input fan, the boundary conditions can be modelled as

{
ρ(0, t) = ρin(t)

pa +
1
2 ρ(0, t)u(0, t)2 = KnC0(t)

2

where pa is the atmosphere pressure and Kn (kg/m) is a coefficient depending on the
fan specification map.
We add the initial condition given for all x ∈ [0,1] by

(ρ(x,0) u(x,0))T = (ρ0(x) u0(x))
T .

Now, observe that the only equilibria that are continuous with respect to space are
constant functions on the spatial domain [0,1]. These equilibria correspond to constant
density and speed profiles that can be used as objectives for tracking problems, which
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will be considered in Section 5.4. The system can be linearized around a constant
equilibrium (ρ∗ u∗)T and rewritten as

{
∂ ρ̃
∂ t
(x, t) = −u∗ ∂ ρ̃

∂x
(x, t)−ρ∗ ∂ ũ

∂x
(x, t)

∂ ũ
∂ t
(x, t) = −u∗ ∂ ũ

∂x
(x, t)

(5.2.4)

where the new variables ρ̃ = ρ −ρ∗ and ũ = u−u∗ represent the distance between the
actual state variables and the corresponding equilibria.
In order to keep the notations as simple as possible, in the sequel, when considering
the linearized system, the variables will simply be denoted by ρ and u.

Remark 4 A more complex model involves an additional constant term associated

with the friction losses in the second equation of (5.2.3). Considering this term can

lead to non-constant density and speed equilibria profiles. However, we do not con-

sider this case here since the friction in the tube is very small and can be neglected.

The boundary conditions can be simplified further and rewritten as

{
ρ(0, t) = ρin(t)
u(0, t) = uin(t)

(5.2.5)

where uin is an input depending on the fan specification map.

For technical reasons, we consider the slightly modified system

{
∂ρ
∂ t
(x, t) = −u∗ ∂ρ

∂x
(x, t)−ρ∗ ∂u

∂x
(x, t)

∂u
∂ t
(x, t) = −v∗ ∂u

∂x
(x, t)

(5.2.6)

as an approximation of (5.2.4), where v∗ is close to (but different from) u∗. The
motivation for this choice will be detailed in Section 5.3.

5.3 Description: the Poiseuille flow as a BCBO system

This section aims at showing that one of the models for the Poiseuille flow system is
well-posed and is a BCBO system (see Section 1.2).

5.3.1 BCBO formalism

As previously mentioned, in the sequel, we focus on the second model since the pres-
sure variations inside the system can be neglected, though similar developments could
be made for the first model. The system (5.2.4) with the corresponding boundary
conditions can be written as the infinite-dimensional linear system (1.2.1)-(1.2.3) with
Bd = 0 and where, for all t ≥ 0,

x(t) = (ρ(·, t) u(·, t))T ,
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ub(t) = (ρin(t) uin(t))
T

and
y(t) = (ρ(xρ1 , t) ρ(xρ2 , t) ρ(xρ3 , t) u(xs, t))

T ,

with xρ1 , xρ2 , xρ3 the spatial positions of the density sensors and xs the spatial position
of the speed sensor.

We consider the state space X = L2(0,1)⊕L2(0,1), the boundary input space Ub = IR2

and the output space Y = IR4.
The operator A : D(A )⊂ X → X is defined by

A =

(
−u∗ d

dx
−ρ∗ d

dx

0 −u∗ d
dx

)

on its domain

D(A ) = {(ρ u)T ∈ X : ρ , u are a. c.,
dρ

dx
,

du

dx
∈ L2(0,1)},

the boundary control operator B : D(B) = D(A )→ IR2 is defined by

B

(
ρ
u

)
=

(
ρ(0)
u(0)

)

for all (ρ ,u)∈D(B), and the observation operator C : D(C ) =D(A )→ IR4 is given,
for all (ρ ,u) ∈ D(C ), by

C

(
ρ
u

)
=




ρ(xρ1)
ρ(xρ2)
ρ(xρ3)
u(xs)


 .

5.3.2 BCBO conditions

Unfortunately, the operator A corresponding to this differential system is not diagonal-
izable and it seems hard to show that it is the infinitesimal generator a C0-semigroup
on X . Several attempts have been made in order to demonstrate this, but none of them
proved successful. The main tools that were used consist of the central results for the
generation of contraction C0-semigroups (Hille-Yosida, Lumer-Phillips) and the the-
ory of perturbations of generators by unbounded operators, see e.g. (Engel and Nagel
2000), (Engel and Nagel 2006).

In order to solve this problem, we consider the system (5.2.6), for which the oper-
ator ˜A : D( ˜A )→ X is defined by

˜A =

(
−u∗ d

dx
−ρ∗ d

dx

0 −v∗ d
dx

)
,
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where u∗ 6= v∗, and the dynamics generator A : D(A)⊂ X → X is given by Ax = ˜A x

for all x ∈ D(A), where

D(A) = {(ρ ,u) ∈ X : ρ ,u are a. c.,
dρ

dx
,

du

dx
∈ L2(0,1), ρ(0) = u(0) = 0}.

Let us define the invertible transformation matrix

S =

(
1 ρ∗

v∗−u∗
0 1

)
. (5.3.1)

It is well-known that the operator

S−1AS =

(
−u∗ d

dx
0

0 −v∗ d
dx

)
(5.3.2)

on its domain

D(S−1AS) = {(ρ ,u) ∈ X : S(ρ ,u) ∈ D(A)}
= D(A)

is the infinitesimal generator of a contraction C0-semigroup on X , see e.g. (Jacob and
Zwart 2012), (Curtain and Zwart 1995).
Hence A is the generator of a C0-semigroup as well, see e.g. (Jacob and Zwart 2012,
Exercise 5.4., p. 63), and condition [C1] holds.

Moreover, condition [C2] is satisfied with Bb ∈L (IR2,X) defined for all ub =(ρin uin)
T ∈

IR2 by

Bbub = Bb

(
ρin

uin

)

=

(
1(·)ρin

1(·)uin

)
.

In fact, it is easy to see that for all ub = (ρin uin)
T ∈Ub = IR2, Bbub ∈ D(A ) and

BBbub = B

(
1(·)ρin

1(·)uin

)

=

(
1(0)ρin

1(0)uin

)

=

(
ρin

uin

)

= ub.

Moreover,
A Bb = 0 ∈ L (Ub,X),
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which shows that the associated extended dynamics generator has the rather simple
structure

Ae =




0 0 0
0 A 0
0 Cα A 0


 .

It should be noted that one entry of the operator Bb can be zero if the corresponding
input variable is fixed (e.g. at some equilibrium value) and is not used as a control
variable. Moreover, as is usually the case for BCBO systems, the choice for Bb is not
unique. In fact, any function f on [0,1] satisfying f (0) = 1 and d f

dx
∈ L2(0,1) could

be used instead of the step function. However, a choice other than the simple step
functions may lead to additional difficulties, including the fact that the operator A Bb

could be different from zero.

Finally, observe that for all i ∈ {1,2,3}, there exists fi ∈ X such that

ρ(xρi
) = 〈 fi,(I −A)(ρ ,u)〉. (5.3.3)

For that purpose, observe that, if fi = ( fi1 , fi2) ∈ X is such that fi1 and fi2 are differ-
entiable functions with support on [0,xρi

], (5.3.3) can be rewritten as

∫ xρi

0

[
ρ(x)+ u∗

dρ

dx
(x)+ρ∗du

dx
(x)

]
fi1(x)dx+

∫ xρi

0

[
u(x)+ v∗

du

dx
(x)

]
fi2(x)dx= ρ(xρi

),

which becomes, after an integration by parts of the terms involving the derivatives of
ρ and u and using the conditions of D(A),

∫ xρi

0
ρ(x) fi1(x)dx+ u∗ fi1(xρi

)ρ(xρi
)− u∗

∫ xρi

0
ρ(x)

d fi1

dx
(x)dx+ρ∗ fi1(xρi

)u(xρi
)

−ρ∗
∫ xρi

0
u(x)

d fi1

dx
(x)dx+

∫ xρi

0
u(x) fi2(x)dx+ v∗ fi2(xρi

)u(xρi
)− v∗

∫ xρi

0
u(x)

d fi2

dx
(x)dx

= ρ(xρi
).

Hence, we look at a function fi ∈ X such that, for all x ∈ [0,xρi
],

{
fi1(x)− u∗

d fi1
dx

(x) = 0
u∗ fi1(xρi

) = 1

and {
fi2(x)− v∗

d fi2
dx

(x) = ρ∗ d fi1
dx

(x)

v∗ fi2(xρi
)+ ρ∗

u∗ = 0.

Using the general solution of the first homogeneous differential equation in the second
inhomogeneous one, we obtain fi = ( fi1 , fi2) where, for almost all x ∈ [0,xρi

],

fi1(x) =
1
u∗

e
x−xρi

u∗ ,
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and

fi2(x) =
ρ∗

v∗(v∗− u∗)
e

x−xρi
v∗ − ρ∗

u∗(v∗− u∗)
e

x−xρi
u∗ ,

and, for almost all x ∈ [xρi
,1],

fi1(x) = fi2(x) = 0.

Similarly, there exists f = ( f1, f2) ∈ X given, for almost all x ∈ [0,xs] by

f1(x) = 0

and

f2(x) =
1
v∗

e
x−xs

v∗ ,

and, for almost all x ∈ [xs,1],

f1(x) = f2(x) = 0,

such that
u(xs) = 〈 f ,(I −A)(ρ ,u)〉.

Then, by taking the max norm on Y , we see that, for all (ρ ,u) ∈ D(A),
∥∥∥∥C
(

ρ
u

)∥∥∥∥ = max

{∣∣∣∣
〈(

f11

f12

)
,(I −A)

(
ρ
u

)〉∣∣∣∣ ,
∣∣∣∣
〈(

f21

f22

)
,(I −A)

(
ρ
u

)〉∣∣∣∣ ,
∣∣∣∣
〈(

f31

f32

)
,(I −A)

(
ρ
u

)〉∣∣∣∣ ,
∣∣∣∣
〈(

f1

f2

)
,(I−A)

(
ρ
u

)〉∣∣∣∣
}

≤ max{‖ f1‖,‖ f2‖,‖ f3‖,‖ f‖}
(∥∥∥∥A

(
ρ
u

)∥∥∥∥+
∥∥∥∥
(

ρ
u

)∥∥∥∥
)
.

Hence, condition [C3] holds.

Concerning the dynamical properties of the extended system, it can be shown that
the spectrum of the operator A is empty and the nominal system is stable, which im-
plies that σ(Ae) = {0}. The instability of the extended system only originates from
the dynamics corresponding to the boundary inputs.
Moreover, with both boundary inputs, the nominal system is exactly controllable and
this property is transmitted to the main part of the dynamics of the extended system.
Again, as for the parabolic CDR system, this property is of particular interest since
solving the problem of spectral factorization of an appropriate spectral density and the
corresponding Diophantine equation provides the restriction of the optimal feedback
to the reachable subspace.

Similar developments can be made for the second model, which can be diagonal-
ized and expressed in the BCBO formalism as well. However, in the sequel, we focus
on the second model since, as mentioned earlier, it can be observed that the pressure
is nearly constant and can be removed from the model without losing any significant
information.
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5.4 Control

Fluid or gas transport is at the heart of many industrial applications, including for ex-
ample gas flow in pipelines or ventilation systems in deep pits and mines that regulate
air quality and temperature for workers. These processes require adapted control in or-
der to ensure proper behaviour or people’s safety. We are now interested in designing
control laws for the nominal and extended models presented in the previous sections.
These control laws will be based on the resolution of a LQ-optimal control problem
again. As previously mentioned, the tools related to this problem and its resolution
are relatively well-understood and mastered in the framework of distributed parameter
systems. The main objective here consists of regulating the temperature or hygrom-
etry of the gas transported by the air flow in the tube. In addition, by controlling the
rotating speed of one or both fans, the speed of the flow can be regulated as well. More
precisely, the goal is to track desired temperature, hygrometry or speed profiles and
measuring the effectiveness of this tracking with the sensors in the tube.
This section provides control laws derived from the nominal Poiseuille flow model or
from its BCBO model.

5.4.1 First approach: boundary control extension with bounded
observation

In this section, we consider that the fans operate at a constant speed and the only
control action is the inlet temperature which is regulated via the heating column. In
addition, we consider that the whole state is penalized in the cost functional. This
implies that the extension can be performed in order to include the boundary input in
the extended state, but the approximate output operator Cα is not required.

The first step consists of considering the diagonalized system based on the opera-
tor (5.3.2), where the change of variables is given by (5.3.1). Observe that, with only
the inlet temperature being controlled directly, the boundary control operator B is not
affected by the change of variables and is given by

B

(
ρ
u

)
= ρ(0).

Lemma 5.4.1 Consider the extended Poiseuille flow system with the bounded obser-

vation operator given by

Ce =

(
ρ1I 0

ρ2Bb ρ2S

)
.

Then the spectral density (3.2.4) associated with an appropriate right coprime fraction

of the form (3.2.5)-(3.2.6) is

F̂e(s) =
ρ2

1 +ρ2
2 − s2

k2 − s2 , (5.4.1)
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where k > 0, and the standard (i.e. such that R̂e(∞) = I) spectral factor of F̂e(s) is

given by

R̂e(s) =
s+
√

ρ2
1 +ρ2

2

s+ k
. (5.4.2)

Proof. In this case, the operator Bb is given by

Bb

(
ρin

uin

)
=

(
1(·)ρin

0

)
.

Since A Bb = 0, the extended dynamics generator is given by

Ae =

(
0 0
0 A

)
,

and the bounded control operator is

Be =

(
I

−Bb

)
.

A straightforward computation reveals that the resolvent operator of A (from which
we easily deduce the resolvent operator of Ae) has the form

[
(sI −A)−1

(
ρ
u

)]
(x) =




1
u∗

∫ x

0
e

s
u∗ (ξ−x)ρ(ξ )dξ

1
v∗

∫ x

0
e

s
v∗ (ξ−x)u(ξ )dξ




for all (ρ u)T ∈ X and all x ∈ [0,1].
Then we find, for all ub ∈Ub and all x ∈ [0,1],

[
(sI −A)−1Bbub

]
(x) =




1
u∗

[∫ x

0
e

s
u∗ (ξ−x)1(ξ )dξ

]
ub

0





=

(1
s

(
1− e−

s
u∗ x
)

ub

0

)
.

We can then compute

Ĝe(s) = Ce(sI −Ae)−1Be

=

(
ρ1

1
s
I

ρ2
( 1

s
SBb − S(sI−A)−1Bb

)
)

=




ρ1

1
s
I

ρ2
1
s
e−

s
u∗ ·

0



 .
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A right coprime fraction of Ĝe(s) is given by

N̂e(s) =




ρ1
1

s+k
I

ρ2
1

s+k
e−

s
u∗ ·

0




D̂e(s) =
s

s+ k

with k > 0, and the corresponding spectral density is

F̂e(s) = N̂e
∗(s)N̂

e(s)+ D̂e
∗(s)D̂

e(s)

= ρ1
1

k− s
ρ1

1
k+ s

+ρ2
1

k− s
ρ2

1
k+ s

∫ 1

0
e

s
u∗ xe−

s
u∗ xdx+

−s

k− s

s

k+ s

=
ρ2

1 +ρ2
2 − s2

k2 − s2 ,

which shows (5.4.1).

Finally, it can easily be seen that the spectral factor R̂e ∈ H∞(L (Ub)) given by (5.4.2)
satisfies (R̂e)−1 ∈ H∞(L (Ub)) and for all ω ∈ IR,

F̂e( jω) = R̂e
∗( jω)R̂e( jω).

�

The following results provide the solution of the LQ-optimal control problem for the
extended Poiseuille flow system. Moreover, the optimal dynamical feedback law can
easily be converted into a nonlinear static state feedback law due to the the fact that
the heating column has its own dynamics. In fact, this dynamical feedback establishes
a direct link between the inlet density and its derivative with respect to time and can be
plugged in the dynamics of the heating column given by (5.2.2) in order to establish a
static relationship.

Lemma 5.4.2 The solution of the LQ-optimal control control problem (3.1.1) with the

cost functional (3.1.2) for the extended Poiseuille flow system is given by the optimal

feedback

Ke
0 =

(
−
√

ρ2
1 +ρ2

2 0 0
)
. (5.4.3)

Proof. With the spectral factor (5.4.2), the Diophantine equation reads

U
s

s+ k
+
(
V1 V2 V3

)



1
s+k

1
s+k

(
e−

s
u∗ ·− 1(·)

)

0


=

s+
√

ρ2
1 +ρ2

2

s+ k

where U = 1 is a scalar unitary operator, V1 is a scalar operator and V2 and V3 are
operators from L2(0,1) to IR.
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This equation is equivalent to

V1 +V2

(
e−

s
u∗ ·− 1(·)

)
=
√

ρ2
1 +ρ2

2 . (5.4.4)

Since V cannot depend on s, an obvious solution to this equation is

V1 =
√

ρ2
1 +ρ2

2 , V2 = V3 = 0,

which gives the optimal feedback operator (5.4.3). �

Since only the heating column is used as an actuator in this case, the system is not
reachable and the solution of the Diophantine equation is not unique. However, the
system is reachable if at least one fan is used as an actuator as well, which guarantees
the uniqueness of the solution.

Theorem 5.4.3 The dynamical feedback law for the extended system can be inter-

preted as the non-linear static boundary state feedback for the nominal system

dQ(t) =
1
R

(√
ρ2

1 +ρ2
2V0Cv pin(t)−RCpATin(t)u(0, t)ρ(0, t)+CpApin(t)u(0, t)

)

(5.4.5)

for all t ≥ 0.

Proof. By Lemma 5.4.2 combined with 3.2.14, the optimal feedback law is given by
the dynamic compensator

ρ̇in(t) =−
√

ρ2
1 +ρ2

2 ρin(t)

for all t ≥ 0.
Hence we deduce from (5.2.2) that the corresponding heat exchange control input dQ

must be given by (5.4.5). �

In a standard testing environment, the inlet temperature Tin is the ambient temperature
and the inlet pressure pin is the atmospheric pressure, so both can be easily measured.
The speed and density at 0 can be computed with the knowledge of the current heating
column and fan inputs, or with a state observer.

Remark 5 It should be noted that, thanks to the diagonalization process, the problem

can be easily solved with the inlet air flow being controlled as well. In fact, even

though the spectral density becomes a 2× 2 matrix-valued function, it is diagonal as

well, with the diagonal entries having the same structure as (5.4.1). More precisely,

the spectral density is given by

F̂e(s) =




ρ2
1+ρ2

2−s2

k2−s2 0

0
ρ2

1+ρ2
2−s2

k2−s2
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and a spectral factor can be computed as

R̂e(s) =




s+
√

ρ2
1+ρ2

2
s+k

0

0
s+
√

ρ2
1+ρ2

2
s+k



 .

With U = I, solving the corresponding Diophantine equation amounts to solving

(5.4.4) for both inputs.

The optimal feedback operator is then given by

Ke
0 =


−

√
ρ2

1 +ρ2
2 0 0 0

0 −
√

ρ2
1 +ρ2

2 0 0


 .

Again, since this feedback operator has been designed for the extended system, it also

establishes a link between the input air speed and its derivative with respect to time.

Hence, in a practical application, a dynamical feedback law has to be implemented

for the regulation of the fan rotating speed.

Figures 5.2 - 5.5 illustrate the numerical behaviour of the closed-loop trajectories
for the linearized and the nonlinear system. In figures 5.2 and 5.4, it is seen that the
closed-loop trajectories converge to a desired constant equilibrium profile represented
by the zero function. When applied to the nonlinear system, the feedback law yields
similar results, though the state trajectories are more prone to sharp variations, which
can be explained partially by the nonlinearities themselves and partially by the sensi-
tivity of the chosen integration scheme with respect to the spatial discretization.
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Figure 5.2: Closed-loop density ρ(t) for the linearized model

Figure 5.3: Closed-loop density ρ(t) for the nonlinear model
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Figure 5.4: Closed-loop speed u(t) for the linearized model

Figure 5.5: Closed-loop speed u(t) for the nonlinear model
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5.4.2 Second approach: nominal system

In this section, we follow the general methodology of resolution of the LQ-optimal
control problem by performing formal computations on the nominal system with un-
bounded operators. More precisely, we penalize the density measured at the end of the
tube by the third temperature/hygrometry sensor (located at xρ3) and the particle speed
measured by the speed sensor (located at xs). No extension of the system is involved
here.

The transfer function, right coprime fraction and spectral density can be computed
explicitely for the second model.
In fact, taking the Laplace transform of the second equation of (5.2.6) and combining
it with the second input equation of (5.2.5) yields

û(x,s) = e−
s

v∗ xûin(s). (5.4.6)

By taking the Laplace transform of the first equation of (5.2.6) and plugging (5.4.6)
into it, we obtain the differential equation

dρ̂(x,s)

dx
+

s

u∗
ρ̂(x,s)+

ρ∗

u∗v∗
se−

s
v∗ xûin(s) = 0.

Solving this differential equation yields

ρ̂(x,s) =Ce−
s

u∗ x +
ρ∗

v∗− u∗
e−

s
v∗ xûin(s),

which, combined with the first input equation of (5.2.5), gives

ρ̂(x,s) = e−
s

u∗ xρ̂in(s)+
ρ∗

v∗− u∗

(
e−

s
v∗ x − e−

s
u∗ x
)

ûin(s).

By taking the Laplace transform of the output equation

y(t) =

(
ρ(xρ3)
u(xs)

)
,

we can then compute the transfer function, which is given by

Ĝ(s) =

(
ρ1e−

xρ3
u∗ s ρ1

ρ∗
v∗−u∗

(
e−

xρ3
v∗ s − e−

xρ3
u∗ s
)

0 ρ2e−
xs
v∗ s

)
.

Since this transfer function is stable, the spectral density is given by

F̂(s) = I + Ĝ∗(s)Ĝ(s) =



1+ρ2
1 ρ2

1
ρ∗

u∗−v∗

(
e
(u∗−v∗)xρ3

u∗v∗ s − 1

)

ρ2
1

ρ∗
u∗−v∗

(
e−

(u∗−v∗)xρ3
u∗v∗ s − 1

)
1+ρ2

1
(ρ∗)2

(u∗−v∗)2

(
2− e−

(u∗−v∗)xρ3
u∗v∗ s − e

(u∗−v∗)xρ3
u∗v∗ s

)
+ρ2

2


 .



5.4. CONTROL 117

One can easily check that a spectral factor R̂ satisfying R̂ ∈ H∞(L (IR2)), R̂−1 ∈
H∞(L (IR2)) and for all ω ∈ IR,

F̂( jω) = R̂∗( jω)R̂( jω)

is given by

R̂(s)=




√
1+ρ2

1e−
xρ3
u∗ s ρ2

1√
1+ρ2

1

ρ∗
v∗−u∗

(
e−

xρ3
v∗ s − e−

xρ3
u∗ s
)

0
√

1+ρ2
2 e−

(u∗+v∗)xρ3
2u∗v∗ s + ρ1√

1+ρ2
1

ρ∗
v∗−u∗

(
e−

xρ3
v∗ s − e−

xρ3
u∗ s
)


 .

The Diophantine equation then reads

(
U11 U12

U21 U22

)
+

(
V11 V12

V21 V22

)(
e−

s
u∗ · ρ∗

v∗−u∗

(
e−

s
v∗ ·− e−

s
u∗ ·
)

0 e−
s

v∗ ·

)

=




√
1+ρ2

1 e−
xρ3
u∗ s ρ2

1√
1+ρ2

1

ρ∗
v∗−u∗

(
e−

xρ3
v∗ s − e−

xρ3
u∗ s
)

0
√

1+ρ2
2e−

(u∗+v∗)xρ3
2u∗v∗ s + ρ1√

1+ρ2
1

ρ∗
v∗−u∗

(
e−

xρ3
v∗ s − e−

xρ3
u∗ s
)


 .

This time, since we are working with the nominal system with unbounded operators,
we are looking for an unbounded solution of the Diophantine equation. Such a solu-
tion is given by the unitary operator

U =

(√
2

2

√
2

2√
2

2 −
√

2
2

)

and the unbounded operator V described by

V11 f =
√

1+ρ2
1 f (xρ3)−

√
2

2
f (0)

V12 f = − 1√
1+ρ2

1

ρ∗

v∗− u∗

[
f (xρ3)− f

(
v∗

u∗
xρ3

)]
−

√
2

2
f (0)

V21 f = −
√

2
2

f (0)

V22 f =
√

1+ρ2
2 f

(
u∗+ v∗

2u∗
xρ3

)
+

ρ1√
1+ρ2

1

ρ∗

v∗− u∗

[
f (xρ3)− f

(
v∗

u∗
xρ3

)]

+

√
2

2
f (0).

Even though the corresponding feedback seems rather complicated at first glance, it
can be approximated by a much simpler operator. Indeed, the speed equilibria u∗ and
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v∗ are supposed to be close and were only considered as different for technical reasons.
By letting v∗ go to u∗, the operators V12 and V22 can be approximated as

V12 f ≈−
√

2
2

f (0).

and

V22 f ≈
√

1+ρ2
2 f (xρ3)+

√
2

2
f (0).

The feedback operator can then be approximated as

K0

(
ρ
u

)
= −U

∗
V

(
ρ
u

)

≈



−
√

2
2

√
1+ρ2

1ρ(xρ3)−
√

2
2

√
1+ρ2

2 u(xρ3)+ρ(0)

−
√

2
2

√
1+ρ2

1 ρ(xρ3)−
√

2
2

√
1+ρ2

2u(xρ3)+ u(0)



 .

Finally, we obtain the following effective feedback law:

(
ρin(t)
uin(t)

)
=


−

√
2

2

√
1+ρ2

1 [ρ(xρ3 , t)−ρ∗]−
√

2
2

√
1+ρ2

2 [u(xρ3 , t)− u∗]+ρ(0, t)

−
√

2
2

√
1+ρ2

1 [ρ(xρ3 , t)−ρ∗]−
√

2
2

√
1+ρ2

2 [u(xρ3 , t)− u∗]+ u(0, t)


 .

Even though these relations make sense from a purely mathematical point of view,
they are not realistic for a practical implementation. Indeed, both ρin(t) and uin(t)
are cancelled in these equations due to the boundary conditions (5.2.5), forcing the
outlet density and speed to go to the corresponding equilibria immediately, which is
physically impossible. However, around the equilibrium, the inlet density and speed
can be estimated by ρ∗ and u∗, respectively, yielding a physically realistic control law
at the expense of a slightly suboptimal behaviour during the rise time (and the peak
time when applicable).
Finally, the proportional output feedback law given by

(
ρin(t)
uin(t)

)
=


−

√
2

2

√
1+ρ2

1 [ρ(xρ3 , t)−ρ∗]−
√

2
2

√
1+ρ2

2 [u(xρ3 , t)− u∗]+ρ∗

−
√

2
2

√
1+ρ2

1 [ρ(xρ3 , t)−ρ∗]−
√

2
2

√
1+ρ2

2 [u(xρ3 , t)− u∗]+ u∗




(5.4.7)

can be implemented and the behaviour of the closed-loop system can be observed by
using the available sensors.
This feedback law can be interpreted as the fact that the input hygrometry and particle
speed (and thus the inlet fan speed) must be proportional to the distance between
the outlet hygrometry and speed and the chosen equilibria, where the proportionality
coefficients depend on the weighting parameters in the cost functional.
The corresponding controller has been implemented on the test bench and yielded the
results presented in Section 5.5. These results illustrate the stabilization properties of
the obtained static feedback for the nominal system.
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5.5 Experimental results

This section shows some of the experimental results obtained with the experimental
setup of the GIPSA-LAB in Grenoble.

Several difficulties were encountered while working with this setup. First, due to
the heat melting some plastic parts in the heating column, it was heavily discouraged
to use it as an actuator. This technical problem combined with the very slow dynamics
of the heating column motivated the choice of moisture control instead. Moreover,
though relatively close to the C programming language, the LADDER language re-
quired some learning before being used to reprogram the provided tools. In addition,
the graphical interface is not intended to be modified easily in order to incorporate
additional control methods or other tools. Doing so would have required learning the
Visual Basic language from scratch. A compromise then had to be found, which in-
volved the reprogramming of the existing PID and R-S-T methods and altering their
input variables in order to use the fans as actuators, since this is not allowed by the
provided tools.

Despite these technical hurdles, the feedback law computed in the previous section
proved effective when implemented on the test bench. It allowed the tracking of a
desired hygrometry profile while using both the rotation speed of the first fan and the
moisture injector as actuators.

The experiments were performed by using the following methodology, with which
they can easily be reproduced. Note that it is highly recommended to make a backup
copy of the original program implemented in the automaton before overwriting it.

1. Activate the power supply of the test bench and the automaton by turning the
general switch on the side of the test bench to ON.

2. Start up the system by pressing the green switch on the front of the test bench.

3. Boot up the computer connected to the automaton.

4. Launch the CX-programmer software in programmer mode and select the file
"FlowControl.cxp". Then replace the contents of the PID functional block
called "BlocFunction_Controleur_PID" by the new code for the control law
given by (5.4.7). Note that the equilibrium u∗, as well as the weighting pa-
rameters ρ1 and ρ2, have to be modified in the code if necessary.

5. Successively click on the buttons called "Travail Online" and "Transférer vers
API" in the task bar in order to transfer the modified program to the automaton.

6. Launch the Flow control test bench software and choose "PID" in the box called
"Type of control".
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7. Configure the equilibrium ρ∗ by entering the desired value in the box called
"Setpoint", click on "Validation" and then on "Run / Stop".

Between each test, it is recommended to click on the button called "Cooling demand",
which activates both fans at their fastest rotating speed in order to eliminate any resid-
ual artificial humidity in the tube.

The experiments were realized in standard environmental conditions (temperature
around 25 C◦ with slight variations during the experimental process, humidity around
26.3% and no external perturbations around the test bench).
Three experiments were performed with different values of the tracked hygrometry
and speed profiles, denoted by ρ∗ and u∗, respectively, as well as different values of
the weighting parameters ρ1 and ρ2 penalizing the hygrometry and speed components
of the state, respectively.
The following figures illustrate the convergence of the hygrometry of the Poiseuille
flow towards the selected equilibria profiles, represented by horizontal red lines, with
normalized weight parameters for the inputs in the cost functional, as well as the be-
haviour of the gas velocity measured by the speed sensor and of the corresponding
inputs. The results are systematically illustrated first on a time interval of 30 seconds,
which is the fastest time in which a steady state was attained in the fourth experiment,
in order to allow a direct comparison between the results. Longer time intervals are
also presented here for the slower three first experiments.
Due to the physical limitations of the process (including limitations of the mist injec-
tor), it is difficult to reach hygrometry values above around 31%.
For each experiment, the parameters, limitations and environmental conditions are
summarized in a table before the corresponding figures. The fan rotating speed is ex-
pressed in revolutions per minute (RPM).

First experiment:

Parameter Value
ρ∗ 29%
u∗ 0.65 m/s
ρ1 3
ρ2 0.1
η 1

Limiting fan rotating speed 900 RPM
Full experimental time 130 s

Approximate external temperature 25 C◦

External hygrometry 26.3%
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Figure 5.6: Evolution of the hygrometry measured by the third sensor towards the
tracked profile of 29% in closed loop with ρ1 = 3 and ρ2 = 0.1
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Figure 5.7: Evolution of the gas velocity measured by the speed sensor in closed loop
with a tracked profile of 0.65 m/s, ρ1 = 3 and ρ2 = 0.1
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Figure 5.8: Evolution of the hygrometry measured by the third sensor towards the
tracked profile of 29% in closed loop with ρ1 = 3 and ρ2 = 0.1
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Figure 5.9: Evolution of the gas velocity measured by the speed sensor in closed loop
with a tracked profile of 0.65 m/s, ρ1 = 3 and ρ2 = 0.1
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Figure 5.10: Evolution of the moisture injection in closed loop with a tracked profile
of 29%, ρ1 = 3 and ρ2 = 0.1
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Figure 5.11: Evolution of the fan speed in closed loop with a tracked profile of 0.65
m/s, ρ1 = 3 and ρ2 = 0.1
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As seen in Figures 5.6 and 5.7, 30 seconds are not enough in order to reach the
tracked hygrometry and speed equilibria. This conclusion holds for the second and
third experiments as well. Figures 5.8 and 5.9, however, show that these profiles, and
in particular the hygrometry one, can be approached with a steady behaviour in about
115 seconds. One can see on Figures 5.10 and 5.11 that the moisture injector is rel-
atively steady after 30 seconds, while the inlet fan operates at 50% of its maximal
rotating speed most of the time.
At first glance, Figure 5.8 seems to exhibit two interesting characteristics: a non-
minimum phase behaviour and a static error. However, both could be explained by
measurement errors due to the temperature / hygrometry sensors which, according to
the manufacturer Soben, may be subject to errors of up to 2 C◦ or 1% of relative hu-
midity (even though errors of such amplitude should only occur in rare circumstances
under fast and high variations in the temperature of hygrometry profile). The absence
of integral action in the implemented controller may also explain the static error. Fi-
nally, the non-minimum phase behaviour happens in some situations where it has a
simple physical explanation. Such a situation arises when there is some residual mois-
ture which has not been properly cleared by the air flow in the tube between two tests.
Activation of the inlet fan before the moisture injector then results in a brief drop in
measured hygrometry before the injected moisture flows through the tube again. This
behaviour was observed several times during the experimental process and it may have
been the case in particular at this point in the experiment.

Second experiment:

Parameter Value
ρ∗ 29%
u∗ 0.65 m/s
ρ1 10
ρ2 0.1
η 1

Limiting fan rotating speed 900 RPM
Full experimental time 110 s

Approximate external temperature 25 C◦

External hygrometry 26.3%
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Figure 5.12: Evolution of the hygrometry measured by the third sensor towards the
tracked profile of 29% in closed loop with ρ1 = 10 and ρ2 = 0.1
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Figure 5.13: Evolution of the gas velocity measured by the speed sensor in closed
loop with a tracked profile of 0.65 m/s, ρ1 = 10 and ρ2 = 0.1
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Figure 5.14: Evolution of the hygrometry measured by the third sensor towards the
tracked profile of 29% in closed loop with ρ1 = 10 and ρ2 = 0.1
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Figure 5.15: Evolution of the gas velocity measured by the speed sensor in closed
loop with a tracked profile of 0.65 m/s, ρ1 = 10 and ρ2 = 0.1
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Figure 5.16: Evolution of the moisture injection in closed loop with a tracked profile
of 29%, ρ1 = 10 and ρ2 = 0.1
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Figure 5.17: Evolution of the fan speed in closed loop with a tracked profile of 0.65
m/s, ρ1 = 10 and ρ2 = 0.1
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The second experiment was performed with parameters and operational conditions
similar to those for the first one, except for the first weighting parameter ρ1, which is
higher. This difference results in oscillations of much higher amplitude around the
tracked hygrometry profile, as seen in Figure 5.14, and a hygrometry trajectory which
is still not stabilized at the end of the experimental time. Figure 5.15 shows that the
particle speed is also much more oscillating than in the first experiment, even though
the steady behaviour is nearly attained after 110 seconds. These important variations
can be observed in Figures 5.16 and 5.17 for the moisture injector and the fan rotating
speed as well.

Third experiment:

Parameter Value
ρ∗ 29%
u∗ 0.2 m/s
ρ1 1
ρ2 0.1
η 1

Limiting fan rotating speed 900 RPM
Full experimental time 115 s

Approximate external temperature 25 C◦

External hygrometry 26.3%
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Figure 5.18: Evolution of the hygrometry measured by the third sensor towards the
tracked profile of 29% in closed loop with ρ1 = 1 and ρ2 = 0.1
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Figure 5.19: Evolution of the gas velocity measured by the speed sensor in closed
loop with a tracked profile of 0.2 m/s, ρ1 = 1 and ρ2 = 0.1
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Figure 5.20: Evolution of the hygrometry measured by the third sensor towards the
tracked profile of 29% in closed loop with ρ1 = 1 and ρ2 = 0.1
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Figure 5.21: Evolution of the gas velocity measured by the speed sensor in closed
loop with a tracked profile of 0.2 m/s, ρ1 = 1 and ρ2 = 0.1
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Figure 5.22: Evolution of the moisture injection in closed loop with a tracked profile
of 29%, ρ1 = 1 and ρ2 = 0.1

Time (s)
0 20 40 60 80 100 120

F
an

 r
ot

at
in

g 
sp

ee
d 

(%
)

0

5

10

15

20

25

30

35

40

45

50

Figure 5.23: Evolution of the fan speed in closed loop with a tracked profile of 0.2
m/s, ρ1 = 1 and ρ2 = 0.1
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In the third experiment, both the weighting parameter ρ1 and the tracked speed
profile u∗ have been lowered with respect to the first two tests. As a consequence of
the smaller weighting parameter, the amplitude of the oscillations shown in Figure
5.20 is reduced as well. However, the settling time is not lower than in the second ex-
periment. This can be explained by the different tracked speed profile of only 0.2 m/s,
which drastically reduces the air flow in the tube and slows the whole process down.
Despite the limitation of the rotating speed to 50% of its maximal value, the inlet fan
is almost never saturated, as seen in Figure 5.23. For an efficient transportation of the
moisture in the tube, it seems that the fan should at least operate around 800− 900
RPM, which is not a restrictive requirement but is almost never met here nevertheless.
Note that, around the 80 s mark, the particle speed temporarily drops to zero (the speed
sensor does not go below 0.05 m/s). This is due to another limitation of the test bench.
Indeed, as can be seen in Figure 5.23, the required fan rotating speed drops below
10%, which effectively causes the fan to shut down completely until that threshold is
met again.

Fourth experiment:

Parameter Value
ρ∗ 31%
u∗ 0.9 m/s
ρ1 10
ρ2 0.5
η 1

Limiting fan rotating speed 1800 RPM
Full experimental time 30 s

Approximate external temperature 25 C◦

External hygrometry 26.3%
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Figure 5.24: Evolution of the hygrometry measured by the third sensor towards the
tracked profile of 31% in closed loop with ρ1 = 10 and ρ2 = 0.5
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Figure 5.25: Evolution of the gas velocity measured by the speed sensor in closed
loop with a tracked profile of 0.9 m/s, ρ1 = 10 and ρ2 = 0.5
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Figure 5.26: Evolution of the moisture injection in closed loop with a tracked profile
of 31%, ρ1 = 10 and ρ2 = 0.5
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Figure 5.27: Evolution of the fan speed in closed loop with a tracked profile of 0.9
m/s, ρ1 = 10 and ρ2 = 0.5
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The fourth experiment is the only one in which both tracked equilibria were reached
with a steady behaviour in less than 30 seconds. This result can be explained by sev-
eral factors. First, the weighting parameters ρ1 and ρ2 were higher than in the previous
experiments, resulting in a faster convergence at the cost of much steeper input trajec-
tories. This can be observed in Figures 5.26 and 5.27 which show that both the fan and
the moisture injector are quickly saturated. Second, the tracked speed profile of 0.9
m/s is the highest possible value allowed by the fans when they reach their maximal
rotating speed, which was required in order to reach the hygrometry profile of 31%
but allows the whole convergence process to be faster. Third, this hygrometry profile
is the highest that could be reached during the whole experimental process and does
not seem to allow for overshoots, as observed in Figure 5.24, which makes the process
faster as well.

A brief comparison between the experiments can be made at this point.
As can be seen on figures 5.8, 5.14 and 5.20, for a given tracked value, the overshoot
and the settling time are heavily dependent on the choice of the weighting parameters
and of the tracked speed equilibrium, and can be much higher if the output is not pe-
nalized enough in the cost functional. Figure 5.24 shows that even a higher tracked
profile can be approached in less time and without any overshoot at the cost of a higher
penalization, which has consequences on the inputs of the system.
It can also be observed that the behaviour of the particle speed in Figures 5.9, 5.15
and 5.25 is steadier than in Figure 5.21 due to the better choice of the tracked speed
profile and the weighting parameters. Indeed, a desired speed of 0.2 m/s is too low
for an efficient transportation of the mist in the tube and makes the whole process
much slower and less effective. The value reached by the speed in Figure 5.25 is the
maximal speed allowed by the fans.Concerning the evolution of the fan rotating speed
shown in Figures 5.11, 5.17 and 5.23, because of physical restrictions, the fan was
manually limited to 50% of its maximal rotation speed when tracking a hygrometry
profile of 29% in the first three experiments. In fact, in these conditions, the quantity
of injected mist is too low and the moisture is mostly carried out of the system by the
higher air flow. However, in the fourth experiment, the fan was allowed to reach its
maximal speed of 1800 RPM in order to allow a (relatively quick) stabilization of the
hygrometry around the higher desired profile of 31%.

Even though the impact of the tracked profiles and parameters seems to be important
through these experiments, it should be noted that the amplitude of the oscillations
and the length of the settling time can also be explained partially by the limitations of
the physical inputs of the test bench. These limitations include the RPM range of the
installed fans, the fact that the fans completely shut down when the required voltage
input goes below a fixed threshold and the fact that the moisture injection process in
the tube is limited in speed and intensity itself.
As previously mentioned, using the heating column for temperature regulation instead
would make the control process even more difficult since the dynamics of the column
are much slower than those of the moisture injector, while the acceptable temperature
range for safe operating conditions is also relatively limited.
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Whatever you do in this life,

it’s not legendary,

unless your friends are there to see it.

– Barney Stinson

Conclusion

In this work, a class of infinite-dimensional linear differential systems, featuring in
general both boundary and distributed control along with boundary observation, was
introduced. The main goal consisted of posing and solving a LQ-optimal control prob-
lem for this class of systems, with practical applications in mind.
In order to tackle the difficulties inherent to the unboundedness of the involved op-
erators, a specific change of variables was performed and an extended mathematical
model was presented. Under suitable initial conditions and sufficiently regular inputs,
this model was shown to be related to the nominal one. More precisely, the boundary
input and a Yosida-type approximation of the output based on the resolvent operator
were introduced in the extended state, while the time derivative of the former acts as
the extended input.
It has been shown that this model is well-posed. More precisely, under our initial
assumptions, the operator associated to the extended dynamics is the infinitesimal
generator of a C0-semigroup of bounded linear operators on the extended state space.
An interesting related characteristic of this extended system is that it preserves the
analyticity when the nominal system has this property. This fact is especially useful
when one needs regularity of the state, input and / or (approximate) output trajectories.
Moreover, the model was built such that it preserves many other interesting properties
of the nominal system, such as the spectral structure, while adding some crucial ones.
In particular, we have seen that the extended system is reachable and detectable, and
that reachability and stabilizability with respect to the distributed input are transmitted
from the nominal system. Other criteria for testing reachability or stabilizability for a
pure boundary control system were also presented.
We also had an interesting insight on the comparison between the extended and nomi-
nal systems, and more precisely between the approximate and effective outputs as the
parameter α goes to infinity. Under suitable assumptions that are satisfied for most
practical applications, the extended model was validated further thanks to the fact that
the Yosida-type approximate output and the extended transfer function converge in
some sense to their respective nominal counterpart when the parameter α goes to in-
finity.

After introducing and studying the general framework, we have successfully described
a general methodology of resolution of a LQ-optimal control problem for the extended
model of a BCBO system. This approach is based on the computation of a right co-
prime fraction of the transfer function, the resolution of a problem of spectral fac-
torization of an associated operator-valued spectral density along the imaginary axis
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and the resolution of a Diophantine equation. An important advantage of the method
is that it deals with both pure boundary control and mixed boundary and distributed
control. We have seen that in both cases, under suitable assumptions, the problem is
solvable and its (unique) solution can be interpreted as a dynamical feedback law for
the nominal system. This control law is stabilizing, i.e. the state, input and output
trajectories of the closed-loop nominal system converge to zero exponentially fast. It
is also optimal with respect to a given cost functional for the extended system, which
can be interpreted as a cost functional for the nominal system involving non-standard
terms corresponding to a penalization of the variation rate of the boundary input and
the approximate output. We emphasized the fact that the associated weighting param-
eters can be tuned depending on the situation and the current objectives.

In the second part of this work, a numerical algorithm of spectral factorization by
symmetric extraction was developed and summarized. Two classes of mathematical
models of boundary control systems with boundary observation, that can be used in
a relatively wide range of applications or processes, have been considered in order to
illustrate the theoretical results and the general methodology of the first part, as well
as the algorithm.
The first application is a class of convection-diffusion-reaction systems that is typi-
cally used for the modeling of chemical or biochemical reactors, for example, or may
correspond to the linearization of such a system around an unstable equilibrium. It
shows how a LQ-optimal control problem can be solved numerically for a class of
parabolic systems with a spectrum composed of simple eigenvalues. In order to bring
as much diversity in the results as possible, this part covers both the stable and unsta-
ble cases, and the problem is solved successively with mixed boundary and distributed
control and then with pure boundary control.

Perspectives

Further investigations could include the convergence of the method of spectral factor-
ization by symmetric extraction for a class of MIMO distributed parameter systems
including parabolic systems such as convection-diffusion-reaction systems, extending
to the multi-input case the one studied in (Winkin et al. 2005). This would provide a
guarantee that the solution generated by the semi-heuristic algorithm will converge to
the spectral factor. We hope that this analysis could provide an estimate of the rate of
convergence.
Moreover, in view of the promising numerical results obtained in the application (see
e.g. Figures 4.5, 4.6 and 4.15), it is expected that, possibly under additional condi-
tions, the closed-loop stable transfer function (ûb, ûd) 7→ ŷα (which depends on α)
will converge to a certain closed-loop transfer function corresponding to the nominal
system with respect to an appropriate norm as α tends to +∞. This conjecture could
also be studied in detail and proved, potentially resulting in a proof of convergence of
the optimal feedback for the extended system towards the solution of an appropriate
LQ-optimal control problem for the nominal system as α tends to +∞ and η1 tends to
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0, see (1.2.5) and (3.3.1). This question is an interesting topic for future research. The
continuity of the spectral factorization with respect to a parameter could also play an
important role here, see (Jacob, Winkin and Zwart 1999).
Moreover, since one of the advantages of the proposed methodology is the fact that this
is an indirect approach (late lumping), it would be interesting to compare the numer-
ical results obtained in Chapter 4 with a priori discretization methods, such as finite
differences and the resolution of the finite-dimensional LQ-optimal control problem
by the resolution of the Riccati equation.
Finally, though the results obtained with the test bench simulating the Poiseuille flow
were promising, there is still much room for improvement. Other types of control laws
could be tested. More precisely, we could consider the more complicated design of a
LQ-optimal control law for the full extended BCBO system. Similar computations as
for the previous cases reveal that, in this case, the spectral density is given by

F̂e(s) =
1

k2 − s2

[
ρ2

1 +ρ2
2

α2

α2 − s2

(
e−

γ
u∗ α − e−

γ
u∗ s
)(

e−
γ

u∗ α − e
γ

u∗ s
)
− s2

]

where γ ∈ [0,1] is the spatial position of the penalized density in the cost functional.
Unfortunately, this spectral density is not rational anymore and finding an analytic
spectral factor turns out to be much more difficult than in the previous cases. Clearly,
the spectral density becomes rational as α goes to infinity, and more precisely becomes
the same density as for the extreme cases with an unbounded punctual observation and
a bounded weighted identity. If the spectral factorization is continuous with respect to
the parameter α , this could indicate that the resolution of the Diophantine equation for
the rational spectral density actually provides the optimal feedback for the LQ-optimal
control problem with an unbounded observation operator. This is still an open question
and is beyond the scope of this work. A state observer could also be implemented in
order to make state feedback laws more efficient.

- DARY!
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Nomenclature

List of notations

t The time variable
z The space variable (CDR system)
x The space variable (Poiseuille flow system)
ẋ(t) The derivative of x with respect to t

xT The transpose of the vector x

X ⊕Y The direct sum between X and Y

E The closure of the set E

D(A) The domain of the operator A

Ker A The kernel (or null space) of the operator A

Ran A The range of the operator A

ρ(A) The resolvent set of the operator A : D(A)⊂ X → X ,
i.e. the set of all complex values λ such that
(λ I −A)−1 is a bounded linear operator on X

R(λ ,A) The resolvent operator of A, given by (λ I−A)−1,
with λ ∈ ρ(A)

L (X ,Y ) The vector space of all bounded linear operators
from X to Y

L (X) The vector space of all bounded linear operators
from X to Y

(T (t))t≥0 C0-semigroup of bounded linear operators
A∗ The topological adjoint of the operator A

F̂∗ The parahermitian adjoint of the operator valued
function F̂ , i.e. F̂∗(s) = F̂(−s)∗

〈x,y〉 The scalar product between x and y

H∞(L (H )) The usual Hardy space of L (H )-valued functions
that are holomorphic and bounded on the open right
half-plane, where H is a Hilbert space

Lp(a,b) The usual Lebesgue space of complex-valued
p-integrable functions defined on [a,b]

Lp([0, t],W ) The usual Lebesgue space of p-integrable
functions defined on [0, t] and with values in W

Lp([0,+∞),W ) The usual Lebesgue space of p-integrable
functions defined on [0,+∞) and with values in W
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List of abbreviations

a.c. absolutely continuous

BCBO boundary control and boundary observation

CDR convection-diffusion-reaction

LQ linear quadratic

MIMO multiple-input and multiple-output

ODE ordinary differential equation

PDE partial differential equation

PID proportional-integral-derivative

RPM revolutions per minute
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