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bS Supporting Information

One of the recent hot topics lies in the exploration cof the
intriguing electronic and spin functionalities of polyaro-

matic hydrocarbons (PAHs) including graphenes1,2 as well as in
the establishment of rational design guidelines toward achieving
targeted functionalities.3�6 In particular, in their open-shell
singlet ground states, these PAHs have attracted a great deal of
attention not only from theoreticians but also from experimen-
talists with the view of extending the concept of “chemical
bond” � by realizing flexible chemical bonds associated with
intermediate and strong electron correlations7�12� and of devel-
oping a novel class of functional materials for applications in
electronics, photonics, and spintronics.13�17 Because the elec-
tronic structures of such unique open-shell singlet ground states
are characterized by the “diradical character”,18�23 unraveling the
relationships between their properties and the diradical character
is a key issue. Therefore, this has been achieved for physical
quantities associated with electronic excitations (excitation ener-
gies, transition moments, and dipole moments) by considering a
general two-site model using the valence configuration interaction

(VCI) scheme.24 On the basis of this analysis, we have presented a
novel structure�property relationship between the second hyper-
polarizability (γ) and the diradical character; open-shell singlet
molecules exhibit significant γ enhancement in the intermediate
diradical character region as compared to closed-shell and pure
open-shell systems with similar conjugation lengths.24,25 This
relationship has been exemplified by using ab initio molecular
orbital (MO) and density functional theory (DFT) calculations
for several open-shell singlet systems including aromatic com-
pounds including imidazole rings,26 diphenalenyl diradicaloids,27

transition-metal-involving systems,28 and nanographenes.29 The
success in the synthesis of stable PAHs involving diphenalenyl
rings8,11 has enabled the measurements of their two-photon
absorption (TPA) properties (which are typical third-order non-
linear optical effects and, at the molecular level, are described by γ).
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ABSTRACT: Switching on an external electric field (F) along the electron correlation direction
produces a giant enhancement of the second hyperpolarizability γ in a polyaromatic
diradicaloid having intermediate diradical character. This has been evidenced by carrying out
spin-unrestricted density functional theory calculations with the LC-UBLYP long-range
corrected exchange-correlation functional for the s-indaceno[1,2,3-cd;5,6,7-c0d0]diphenalene
(IDPL) diradical compound in comparison to a closed-shell analogue of similar size composed
of two pyrene moieties (PY2). For IDPL, the field-induced enhancement ratio is estimated to
reach 4 orders of magnitude for an electric field of 0.0077 a.u., whereas it is less than a factor of 2
for PY2. Moreover, an enhancement is also observed by substituting both-end phenalenyl rings
of IDPLwith donor (NH2)/acceptor (NO2) groups, but this enhancement is limited to about 2
orders of magnitude. These enhancements are associated with a reduction of the diradical
character (and therefore an improved thermal stability) as well as with the appearance of
substantial type-I contributions to γ.

SECTION: Molecular Structure, Quantum Chemistry, General Theory
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Thus, the theoretical predictions have been confirmed by the
experimental observation of the remarkable TPA cross sections
in the open-shell singlet s-indaceno[1,2,3-cd;5,6,7-c0d0]diphenalene
(IDPL) compound displaying intermediate diradical character.30

Extending the VCI scheme, a further enhancement and
control scheme of γ in these open-shell singlet systems was
subsequently proposed by considering the application of a static
pump electric field. Indeed, it results in a gigantic enhancement of
γ (∼ 2�3 orders) in symmetric diradicals having intermediate
diradical characters with respect to those of closed-shell and pure
diradical molecules in the absence of a pump field.31 However,
because this prediction has not yet been confirmed, except for
simple model diradical systems such as the H2 molecule under
dissociation and the twisted ethylene,31 we investigate, in this
Letter, the effects of applying a pump electric field on γ of
realistic PAH systems, that is, IDPL as well as a similar-size
closed-shell analogue composed of two pyrene moieties (PY2).
In addition, the donor (NH2)�acceptor (NO2) substitution
effects on the γ of these systems are examined because they cause
asymmetric electronic distributions similar to those observed in
systems under a static field.32,33

Figure 1 displays the structures of IDPL (a) and PY2 (b) as
well as of their donor (NH2)/acceptor (NO2) substituted
counterparts, DA-IDPL (c) and DA-PY2 (d), in their singlet
ground states in the absence of an electric field, which were
optimized by the (U)B3LYP/6-31G* method. The optimized
structures of IDPL and PY2 are planar (in the x�y plane) with
D2h and C2h symmetries, respectively, while those of the
donor�acceptor substituted counterparts are planar, except for
the slightly out-of-plane substituent groups (see Tables 1S�6S
and Figure 1S in Supporting Information). The amplitude of the
static pump electric field ranges from 0.0 to 0.0077 a.u. (0.0 to
0.4 V/Å), that is, similar to those used for “half-metallicity” of
graphenes.14 The field is applied along the longitudinal (x)
direction, and the field-dependent geometries are optimized in
the x�y plane (see Tables 1S�6S and Figure 1S in Supporting
Information).34 In this Letter, the occupation number (nLUNO)
of the lowest unoccupied natural orbital (LUNO) calculated
using the LC-UBLYP/6-31G* method is employed to estimate

the diradical character yF. yF takes a value ranging from 0 (closed-
shell) to 1 (pure diradical). Although the diradical character was
originally defined within the multiconfigurational self-consistent
field (MC-SCF) theory as twice the weight of the doubly excited
configuration in the singlet ground state,18,19 the fractional
occupation number of the LUNO in spin-unrestricted (U) single
determinant schemes (like UDFT) is alternatively employed
because these values reproduce the former ones well. The
definitions and physical meaning of the diradical character have
been discussed in several papers in connection with the odd
electron number and density,20�22 which are not observable but
provide an index of the chemical bond.

The dominant longitudinal electronic γ values (γxxxx) of these
systems are calculated using the LC-UBLYP/6-31G* method
with a range separating parameter of μ = 0.3335 by adopting the
finite-field approach, which consists in the fourth-order differ-
entiation of the energy with respect to the probe electric field (F0)
while the system undergoes the effects of the pump field (F)36

γðFÞ ¼ lim
F0 f 0

1

36F04
½EðF þ 3F0Þ � 12EðF þ 2F0Þ

þ 39EðF þ F0Þ � 56EðFÞ þ 39EðF � F0Þ � 12EðF� 2F0Þ
þ EðF � 3F0Þ� ð1Þ

The LC-UBLYP method has been found to semiquantitatively
reproduce the γ of several open-shell molecules calculated with
the highly correlated spin-unrestricted coupled cluster method
including single and double excitations with a perturbative
treatment of the triple excitations.37 The spatial contributions
to γ are unraveled using the γ density analysis,38 which utilizes
the plots of the third-order derivative of the electron density with
respect to the electric field; the positive and negative γ densities
represent the field-induced increase and decrease in the third-
order electron density, respectively. All calculations were per-
formed using the Gaussian 09 program package.39

IDPL and PY2 are regarded as singlet open-shell and closed-
shell systems, respectively, as seen from their diradical characters,
yF=0 = 0.717 (IDPL) versus 0.0 (PY2). Such diradical character in
IDPL is exemplified by the dominant spin polarization on the
both-end phenalenyl rings (see Figure 2S in Supporting In-
formation). The donor�acceptor substitution of these rings
reduces yF=0 from 0.717 (IDPL) to 0.629 (DA-IDPL). The same
trend is observed in IDPL when applying an external electric
field. For instance, the yF amplitude goes down to 0.293 at

Figure 1. Molecular structures (gray: carbon; blue: nitrogen; red:
oxygen; white: hydrogen) of IDPL (a), PY2 (b), DA-IDPL [(NO2)2-
IDPL-(NH2)2] (c), and DA-PY2 [(NO2)2-PY2-(NH2)2] (d) (in the
absence of an electric field) optimized by the (U)B3LYP/6-31G*
method. The middle carbon�carbon bonds of PY2 and DA-PY2 form
an angle of 60� with the longitudinal (x) axis. The diradical characters
(yF=0) in the absence of a field calculated by the LC-UBLYP/6-31G*
method are also shown.

Figure 2. Static electric field (F = 0.0�0.0077 a.u.) effect on γxxxx [a.u.]
of IDPL and PY2 calculated by the LC-UBLYP/6-31G* method.
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F = 0.0077 a.u. (see Table 7S in Supporting Information). Such
field effects on yF are predicted to be caused by the field-induced
increase of the weight of the ionic component in the ground state,
the mechanism of which has been explained in our previous
study.31 Indeed, at F = 0.0077 a.u., the amount of charge transfer
(CT) from the right- to the left-hand side (obtained from the
Mulliken net charges shown in Figure 3S in Supporting In-
formation) of IDPL is 0.427 [the x component of the ground-
state dipolemoment (μg x= 9.88 a.u.)], which is significantly larger
than that in the pyrene rings (0.270) of PY2 (μg x = 5.76 a.u.),
while the IDPL spin densities are reduced and asymmetrized (see
Figure 2S in Supporting Information). Figure 2 displays the
evolution of γ of IDPL and PY2 for the fields ranging from 0.0
to 0.0077 a.u.. It is found that (i) the γ values of both systems
increasewithF, that is,γ=1.746� 106 (IDPL) versus 1.743� 105

a.u. (PY2) at F = 0.0 a.u. and γ = 1.456 � 1010 (IDPL) versus
3.107� 105 a.u. (PY2) at F = 0.0077 a.u.; (ii) γ is larger in IDPL
than that in PY2 in the whole F region; and (iii) the enhancement
ratio, γ(IDPL)/γ(PY2), also increases with F, that is, γ(IDPL)/
γ(PY2) = 10 (F= 0.0 a.u.) versus 4.7� 104 (F= 0.0077 a.u.). Such
a giant field-induced increase of γ in IDPL relative to that in PY2 is
substantiated by the remarkable enhancement of the γ density
amplitudes (see Figure 3a�d). When F = 0, the extended positive
and negative π electron γ densities (distributed on the left- and
right-hand phenalenyls, respectively) provide the dominant posi-
tive contribution to γ of IDPL (Figure 3a), while for PY2
(Figure 3b), the γ density amplitudes are smaller, and both
positive and negative γ densities alternate in the middle region,
which significantly cancels the positive contribution toγ. Applying
an electric field in the x-direction causes a significant enhancement
of the γ density amplitudes, in particular, in IDPL, with slightly
asymmetric γ density distributions in the x-direction. This en-
hances the differences between IDPL (Figure 3c) and PY2
(Figure 3d), though the distribution topologies are the same as
those in the F= 0 case (Figure 3a and b). The siteswith dominantγ
density distributions on the phenalenyl moieties of IDPL coincide

with those having the major spin densities (see Figure 2S in
Supporting Information), which confirms that the spin-polarized
π-electrons between the left- and the right-hand phenalenyl rings
contribute to theγ enhancement in IDPL.Moreover, within the two-
site VCI model,31 the field-dependent γ values are given by a three-
state formula (the three contributing singlet states are the ground
(g), the first (k), and the second (f) excited states), but the
remarkable field-induced enhancement of γ of IDPL is predicted
to originate from the two-state type-I virtual excitation processes

γI ¼ 4
ðμkgÞ2ðΔμkkÞ2

ðEkgÞ3
ð2Þ

which involve the excitation energy (Ekg), the transition moment
(μkg), and the dipole moment difference (Δμkk) between the
ground and the second excited states.31,37 This suggests that the
pump field induces in IDPL (intermediate diradical system) a larger
decrease of Ekg and larger increases of |μkg| and |Δμkk| than those in
PY2 (closed-shell system).

The lowest-order contributions to the vibrational γ were also
calculated for IDPL and PY2 (in the limit of no external pump field)
by using the finite-field nuclear relaxation approach,40 which is based
on calculating lower-order molecular properties (here, R and β) by
considering both the electronic and nuclear field-induced relaxa-
tions. The nuclear relaxation contributions to electric field-induced
second harmonic generation [γ(�2ω;ω,ω,0)] and the dc-Kerr
effect [γ(�ω;ω,0,0)] were calculated in the infinite optical fre-
quency limit at the LC-UBLYP level. They amount to 0.06 � 106

and 0.18� 106 a.u. for IDPL, whereas they are less than 0.01� 105

and 0.80 � 105 a.u. for PY2, respectively. Thus, the vibrational
counterparts attain 3�10 and 0�46% of the static electronic γ
values for IDPL and PY2, respectively.

On the other hand, instead of applying a static electric field, we
can achieve a similar situation by using donor (NH2)�acceptor
(NO2) substitution into PAHs, that is, DA-IDPL [(NO2)2-
IDPL-(NH2)2] and DA-PY2 [(NO2)2-PY2-(NH2)2] (Figure 1c
and d). Indeed, DA-IDPL and DA-PY2 exhibit CTs from the right-
to the left-hand side qualitatively similar to those of IDPL and PY2
under the applied fields, though the amounts of CT of DA-IDPL
(0.162) and DA-PY2 (0.153) are smaller than those [0.427(IDPL)
and 0.270(PY2)] at F = 0.0077 a.u. (see Figure 3S in Supporting
Information). From comparing the γ values of DA-IDPL and IDPL
with the field (see Tables 7S and 8S in Supporting Information), the
two donor�acceptor pairs cause an effect onγ comparable to a field
of approximately 0.0060�0.0065 a.u.. Indeed, γ of DA-IDPL
amounts to 8.373 � 107 a.u., in comparison to γ = 5.501 �
107�1.278 � 108 a.u. with F = 0.0060�0.0065 a.u.. On the other
hand, electric field amplitudes of 0.0077 a.u. or smaller are not
enough to reproduce the γ value of DA-PY2 (9.546 � 105 a.u.),
substantiating the fact that the relationship between D/A pairs and
that external electric field is not universal and depends on the nature
of the linker,33 in other words, in this case, from the orbital
interactions between the donor�acceptor groups and IDPL/PY2
moieties. Nevertheless, the γ value of DA-IDPL (8.373� 107 a.u.)
is about 88 times larger than that of DA-PY2 (9.546� 105 a.u.), the
ratio of which is strongly enhanced relative to the nonsubstituted
case at F = 0, γ(IDPL)/γ(PY2) = 10. This enhancement is further
exemplified by the γ density distributions shown in Figure 3e and f.
The dominant positive contribution to γ in DA-IDPL originates
from the virtual CT between both-end substituted phenalenyl rings,
the feature of which is similar to the field effect (see Figure 3a and e).
Similarly to PY2 under a static field, positive and negative

Figure 3. γxxxx density distributions and γxxxx values of IDPL (a,c) and
PY2 (b,d) at F = 0.0 and 0.0077 a.u. as well as of DA-IDPL (e) and DA-
PY2 (f) calculated by the LC-UBLYP/6-31G* method. The yellow and
blue meshes represent positive and negative densities, respectively, with
isosurfaces of (100 a.u.
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γ densities appear alternately in the middle regions of DA-PY2,
which significantly cancel the positive contribution to γ (see
Figure 3d and f).

In summary, switching on an electric field (F) along the electron
correlation direction produces a giant enhancement of γ in the
polyaromatic diradicaloid having intermediate diradical character.
Therefore, for IDPL, the enhancement with respect to the field-free
case is 4 orders of magnitude when switching on an electric field of
0.0077 a.u.. This contrasts with the weak field effect observed in
similar-size closed-shell analogues like PY2, which also corroborates
previous investigations showing that the γ enhancement in closed-
shell π-conjugated systems is typically 1 order of magnitude.32,33

Moreover, this γ enhancement ratio between open-shell and closed-
shell compounds gets larger with the field amplitude, γ(IDPL)/
γ(PY2) = 10 (F = 0.0 a.u.) versus 4.7� 104 (F = 0.0077 a.u.), while
similar effects are achieved when substituting both-end phenalenyl
rings of IDPL by donor (NH2)/acceptor (NO2) groups. In the latter
case, DA-IDPL also exhibits a γ value that is more than 2 orders of
magnitude larger than that in the reference closed-shell PY2. In
addition, the associated reduction of the diradical character in this
open-shell singlet system due to either the application of an electric
field or the substitution by donor/acceptor groups is an advantage
toward improved thermal stability. The present results therefore
provide a new direction to optimize the structure of open-shell singlet
systems exhibiting gigantic and tunable third-order NLO responses.
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