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The electronic structure and the transport properties of nitrogen-doped carbon nanotubes are investigated using
a tight-binding model and a real-space Kubo-Greenwood approach, respectively. The transport regimes of various
axial and helical doping configurations, from perfectly periodic to fully random disordered cases, are examined
through the time dependence of the diffusivity. By varying the degree of disorder, a rich set of transient regimes is
predicted going from persisting quasiballistic to momentarily localized regimes. A spectacular long-time ballistic
regime is also observed for a specific semi-random disorder doping configuration owing to symmetry effects.

DOI: 10.1103/PhysRevB.91.035428 PACS number(s): 73.63.Fg, 72.10.−d, 72.15.Rn, 73.23.−b

I. INTRODUCTION

Electronic transport in one dimensional (1D) systems is
very sensitive to the presence and type of disorder. In particular,
intrinsic defect impurities such as doping with substitutional
foreign atoms induce usually strong resonant backscattering.
Actually, whatever the strength of the disorder, all the
electronic states are localized in disordered 1D systems in the
thermodynamical limit according to the scaling theory of local-
ization [1–5]. However, a broad variety of disorder exists, from
the almost perfect ordering to the fully random disorder case.
Indeed, traditional postimplantation doping processes yield in
general to a random distribution of dopant atoms. Long-range
correlations can possibly break such a complete random
character of the disorder. Above a given threshold long-
range correlations can even change dramatically the transport
properties such as the cancellation of localization effects [6].
Besides postimplantation techniques, the recent bottom-up
chemistry approach indicates interesting routes towards the
self-assembly of precursors used as building blocks for the
fabrication of carbon nanotubes (CNTs) [7–11]. The controlled
position of substitutional atoms in precursor monomers can
possibly yield in a near future the realization of quasiordered
nitrogen-doped CNTs, as already demonstrated for graphene
nanoribbons [12,13]. Another source of semi-random disorder
can be achieved with the wrapping of DNA strands around the
CNT creating disorder with helical symmetry [14,15]. There-
fore, with such a large spectrum of disorder, it is expected that
localization phenomena emerging from quantum interferences
in the diffusion process occur at different paces with various
possible intermediate (transient) transport regimes.

In the present theoretical study, subtleties in this rich set of
transient transport regimes are analyzed by considering differ-
ent configurations of nitrogen (N) -doped CNTs, notably the
recently proposed semi-random disorder cases [16]. Transport
regimes are examined using a real-space Kubo-Greenwood
transport approach implemented within the tight-binding (TB)
framework [17–19]. This approach enables one to consider
system length at the mesoscopic scale (1 μm) and low defect
concentration (∼0.1%), further to a recent work [16].

In Sec. II, the tight-binding model and the real-space Kubo-
Greenwood approach are briefly reviewed. The following
sections discuss the electronic and transport properties of
the various configurations of nitrogen-doped armchair CNT.
First the perfect CNT, the fully random, and the periodic
N-doping configurations are considered as reference structures
(Sec. III). Then, intermediate degrees of randomness are taken
into account through a particular axial disorder in Sec. IV and
helical configurations in Sec. V. Finally, the conclusions are
drawn, summarizing the various transport regimes observed
in all these configurations of N-doped CNTs including the
spectacular ballistic regime obtained for semi-random disorder
configurations preserving a rotational symmetry.

II. COMPUTATIONAL METHODS

A. Effective tight-binding Hamiltonian

The CNT wave functions are expanded in a basis set of
localized and orthogonal atomic orbitals. In this tight-binding
framework, the Hamiltonian matrix elements are parametrized
such that the electronic band structure reproduces the ab initio
results. In the present study, a single π orbital per atomic
site is used with first nearest-neighbors interaction hopping
parameter set to −2.72 eV. The N impurity potential is
considered as a perturbation of on-site terms on the N atom and
on the C atoms up to the critical distance dcr = 7.5 Å [20–22].
The on-site parameter is taken as zero otherwise to align
the Fermi energy of the perfect CNT to zero. The minimal
distance between two consecutive N atoms (dN-N) is always
kept greater than twice dcr such that the overlap of individual
N impurity potentials is avoided. (See Refs. [16,23,24] for
details regarding the TB parametrization.)

B. Kubo-Greenwood transport approach: Ballistic,
diffusive, and localized regimes

The real-space Kubo-Greenwood transport approach
[17–20,25,26], used throughout the present study, focuses on
the evaluation of the electronic diffusivity (D) from which the
transport regimes can be identified as ballistic, diffusive, or
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localized. The diffusivity is computed for each energy E as
function of the time t . D(E,t) gives an insight on the diffusion
process occurring at different time scale. At short time, or
equivalently at short propagation distances, the transport is
ballistic and D(t) increases linearly with time, the slope
being the square of the average carrier velocity (v2). At an
intermediate time scale (intermediate propagation distances),
the diffusivity usually undergoes a sublinear regime because
of the first scattering processes with defect impurities. Later,
i.e., when enough random scattering processes occurred, the
propagation reaches a (thermodynamical) steady state, also
called the diffusive regime. In this regime the diffusivity
saturates to a maximal value [D(t) → Dmax]. At (infinitely)
long time, the diffusivity either stays in the diffusive regime or
decreases to zero [D(t) → 0] if localization phenomena occur.
According to the scaling theory of localization [2,5], all states
are localized in the disordered 1D system; hence diffusivity
should always drop to zero at long time. If the system is
periodic, i.e., ordered, the diffusivity behavior at infinitely long
time is the ballistic regime, which means D(t) → ∞ with a
linear increase.

III. PERFECT CNT, PERIODICALLY, AND RANDOMLY
N-DOPED CNTS

We consider here perfect, periodically, and randomly N-
doped (10,10) CNTs as a model system for metallic CNTs.
The unit cell of an armchair (10,10) CNT is composed of
40 atoms which can be sliced along the tube axis into two
carbon layers with a tenfold rotational symmetry [top panel
in Fig. 1(a)]. In order to ensure a constant concentration of
nitrogen, we consider supercells of ncell (10,10) unit cells
with one N atom per supercell. Following the long-range
symmetry effects found in Ref. [16] we restrict ourselves
to ncell equal to a multiple of 3. Consequently, we choose
ncell = 24 inducing a concentration of chemical dopants of
∼0.1%. Since the perfect and the periodically N-doped CNTs
are both periodic structures, the Bloch theorem can be applied
and hence the band structures of these two systems can be
examined [Fig. 1(b) and Fig. 1(c), respectively]. In the random
N-doping case, only the density of states (DOS) is accessible. It
is computed using the Haydock recursion method [27] applied
to a sufficiently long disordered CNT (the system length is
Lsys = 160dsc = 945 nm). The DOS of the three systems are
depicted in Fig. 1(d). In Fig. 1(b), the band structure of the
perfect (10,10) CNT is simply folded back into the reduced
Brillouin zone (BZ) by the artificial supercell translational
symmetry. In Fig. 1(c), this band structure is perturbed by the
substitution of one N for a C atom. The periodic arrangement
of the N dopants introduces a defect band (in the energy
window [0.56,0.59] eV) because of the breaking of the
original unit cell translational symmetry of the perfect structure
(although a translational symmetry exists at the scale of the
supercell). Consequently, pseudogaps appear at �(k = 0) and
X(k = π/dsc), providing splitting effect on the band structure
of the perfect system and the loss of transmission channels
near the Fermi energy EF and around the defect energy
(Ed ) associated to the defect band [16,24]. These pseudogaps
correspond to the plateau dips appearing in the DOS indicated
by arrows in Fig. 1(d) (black curve). Moreover, when a random
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FIG. 1. (Color online) (a) Schematic representation of perfect,
periodically, and randomly N-doped armchair (10,10) CNTs. The
structure is subdivided into one-atom doped supercells. The length
of the supercell (dsc) is determined from the number of unit cells
ncell such as dsc = ncelld0, d0 being the CNT’s unit cell length. The
unit cell is composed of 40 C atoms arranged in two layers. Lsys

is the system total length. The band structures computed from the
tight-binding Hamiltonian for (b) the perfect and (c) the one-N doped
supercell (dsc = 24d0). The defect band (in orange) is located around
the defect energy Ed ∈ [0.56,0.59] eV. (d) DOS for the perfect (blue),
the periodically N-doped (black), and the randomly N-doped (red)
CNT. The DOS of the perfect and periodically N-doped systems are
obtained directly from the diagonalization of the TB Hamiltonian,
while the DOS of the randomly N-doped system is obtained using
the Haydock recursion method (Lsys ∼ 1 μm).

distribution of the N atoms is considered, the pseudogaps
completely disappear in the corresponding DOS. However,
allowed minibands seem to be still present around Ed (small
bump in the DOS), and splitting on the van Hove singularities
is maintained at higher energies, i.e., around E ∼ ±0.9 eV.

The square modulus of the electronic wave functions of
the perfect and the periodically N-doped systems at the �
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FIG. 2. (Color online) Square modulus of the eigenfunctions of the perfect and periodically N-doped CNTs, at the � point and for different
energies. All the eigenfunctions of the perfect CNT are extended states, while eigenfunctions of the periodically N-doped CNT are either
strongly or slightly localized states around the defect energy (Ed ) but still extended states elsewhere. A ruler is given as a guide for the eyes
to ease comparison between periodic patterns observed in the perfect CNT and the reminiscent periodic patterns observed for the slightly
localized states in the N-doped CNT.

point (k = 0) are illustrated in Fig. 2 for energies from
E = 0 eV to Ed . For perfect tubes, the � point in the folded
BZ is associated with kn = ± 2nπ

24d0
(where d0 is the unit cell

length), and the degenerated bands at E = 0 eV correspond
to the Dirac points, n = n0 = 8 (i.e., kn = ± 2π

3d0
). The next

points in � are at E = 0.59 eV and E = 0.64 eV which
correspond to n = n0 − 1 and n = n0 + 1, respectively. The
two (degenerated) wave functions at E(1,2) = 0.59 eV present
a periodic annular pattern along the tube. The corresponding
period, which in Fig. 2 appears to be dsc

14 = 24d0
14 , is given

by half of λn = 2π
kn

= 24d0
n

(with n = 7 for E(1,2) = 0.59 eV)
since this is the square modulus of the wave function which
is plotted. A ruler illustrating the maxima of the square
modulus of the wave function is given in Fig. 2 as a guide
for the eyes. The next wave functions (E(1,2) = 0.64 eV)
present also a periodic annular pattern with however an
additional tenfold rotational symmetry and a longitudinal
period of dsc

18 (corresponding to λn=9/2). In the case of the
periodically N-doped system, while wave functions are almost
unaltered close to the zero energy, strongly localized resonant
states (also called quasibound states [23,28]) are observed at
energies E = 0.43, 0.59, and 0.70 eV. The latter correspond
to pseudogap band edge states, i.e., bands that largely deviate
from the original ones. However, for the bands that deviate
less from the perfect CNT, a less localized state is observed
which conserves the symmetry pattern of the original wave
function of the perfect CNT (E = 0.57 eV and E = 0.61 eV).
More precisely, for E = 0.57 eV, the wave function exhibits a
similar annular pattern with the same period described above
for the perfect CNT (λn=7/2), and, for E = 0.61 eV, the
wave function exhibits a tenfold rotational symmetry with a
longitudinal period corresponding to the pristine CNT wave
function (λn=9/2).

The real-space Kubo-Greenwood approach is now used to
examine diffusion processes in the three systems, i.e., perfect,
periodically N-doped, and randomly N-doped CNTs. In par-
ticular, the nature of the propagating modes around the defect
energy Ed is scrutinized by following the time dependence of
the diffusivity D(t). As already mentioned, in the periodically
N-doped case, the appearance of a defect band (orange line in
top panel of Fig. 3) creates localized states which give rise to
an enhanced DOS as illustrated in Fig. 3 by the two peaks at
the energies E1

d and E2
d . The exact energy position of these two

peaks depends on the accuracy level of the technique used to
compute the DOS. In Fig. 3, the DOS computed from the band
structure using a small broadening parameter (η = 1 meV)
(dashed lines), and the DOS computed from the recursion
technique (RT) (thick lines) are compared. For a very accurate
DOS calculation from the electronic band structure (η =
1 meV), the DOS peaks are found to be well aligned with the
upper and lower bounds of the defect band (i.e., E1

d = 0.562 eV
and E2

d = 0.588 eV). However, the use of the RT yields a
lower level of accuracy and the defect energies are positioned
at E1

d = 0.565 eV and E2
d = 0.583 eV (indicated by arrows).

These two propagating modes in the perfect CNT, almost
indistinguishable in Fig. 4(a) (full and dashed blue curves), ex-
hibit a linear dependency [D(t) = v2

0 t], endorsing the ballistic
transport regime (v0 is the ballistic velocity). However, when a
randomly N-doped CNT is considered, the propagating modes
around Ed become localized and the corresponding D(t) starts
decreasing exponentially [D(t) = Dmaxe

−α(t−t0)] after a short
time (t0 = 25 fs) [Fig. 4(a), red curves]. The localization
effects for random distribution have been described by Latil
et al. [20] and discussed a few years later as an experimental
evidence of the Anderson localization phenomena at the
mesoscopic scale [29–31]. In opposition with the perfect
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FIG. 3. (Color online) Magnification of the perfect (a) and peri-
odically N-doped (b) CNT band structures around the defect band
(orange line). The band gap region in (b) is shaded in gray. (c)
The corresponding DOS computed either from the band structures
(BS) with a small broadening parameter (η = 1 meV), or from the
recursion technique (RT). Due to limited accuracy of the RT method,
the upper and lower bound energies of the defect band (E1

d and E2
d )

do not exactly coincide with the BS calculation as indicated by the
arrows.

and the randomly N-doped structures, the periodic doping
scheme presents an interesting sequence of diffusion regimes
[Fig. 4(a), black curves], especially at E = E2

d = 0.583 eV.
At short propagation times, D(t) follows the same behavior as
for random disorder, i.e., a very short ballistic regime followed
immediately by the onset of a localization regime and hence
an exponential decrease of D(t). However, this is a transient
regime since after a short while (t > 150 fs), the diffusion pro-
cess of the propagating wave packet changes drastically and at
longer times, D(t) behaves linearly [D(t) = v2

1 t] meaning that
ballisticlike propagating modes are observed. The short- and
long-time ballistic velocities, v0(E) and v1(E), respectively,
are depicted in Fig. 4(b) as a function of the energy for the
periodically N-doped structure. At short times, the propagating
modes are only slightly perturbed by the defect. In fact, the
short-time velocities v0 of both the periodically N-doped CNT
(continuous dark curve) and the perfect CNT are similar
(continuous blue curve), and agree well with the average group
velocity determined from the band structure, v(BS), of the per-
fect CNT (blue dashed curve with circle symbols). However,
at long times, the propagating modes become more sensitive to
the presence of the periodic defect. The ballisticlike velocity v1

decreases significantly (dark dotted-dashed curve) and the ratio
v1/v0 gets minimal at the defect energies E1

d and E2
d , i.e., 0.15

and 0.07, respectively. The diffusivity D(t) gives here more
information than the band structure, in the sense that before

FIG. 4. (Color online) (a) D(t) for the three systems at E1
d =

0.565 eV and E2
d = 0.583 eV. (b) Comparison between the velocities

of the perfect and periodically N-doped CNTs computed either from
the band structures v (BS), or from the Kubo-Greenwood method,
i.e., v0 and v1 for the short-time and long-time ballistic regimes,
respectively. The shaded region corresponds to the gap found in the
band structure of the periodically N-doped CNT (see Fig. 3).

reaching the long-time ballistic regime, intermediate transport
regimes can be captured and two distinct velocities can be
calculated. From a propagation point of view, the electrons
first experience the perfect CNT on a very short length scale
(�dN-N). Then, electrons are progressively scattered by the N
atoms but, after a while (∼3–4dN-N), the periodic arrangement
of the N atoms reveals to electrons the ordered nature of
the system. Interferences occur and the electrons end up into
the supercell Bloch states. At this stage, the ballistic regime
is recovered with velocities v1 corresponding to the group
velocities as determined from the supercell band structure
[v(BS), dark dashed curve with circle symbols]. One also
notes that in the shaded region, which corresponds to the small
band gap visible in Fig. 3(b), the values of v1 are numerically
ill-defined because of a nonexactly zero value of the DOS.

IV. AXIAL SEMI-RANDOM CONFIGURATION

In comparison with the previous periodic doping scheme,
a constrained randomness of the dopant positions in the
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FIG. 5. (Color online) (a) Schematic representation of the axial
semirandom configuration. (b) DOS around Ed for the perfect (blue)
CNT, and for the periodically N-doped (black), the randomly N-doped
(red), and the axial semi-random N-doped (dN-N = 3nd0) (green)
CNTs. (c) Long-time behavior of D(t) for the four systems at
E1

d = 0.565 eV and E2
d = 0.583 eV.

axial direction is considered in this section. The distance
between two consecutive N atoms is henceforth restricted to
dN-N = 3nd0, where n takes only random integer values [16]
[Fig. 5(a)]. The corresponding DOS is presented in Fig. 5(b)
(green curve). Compared to the periodic doping configuration
(black curve), the DOS no more shows two peaks but
presents still a reminiscent peak around E = 0.57 eV. In
comparison with the cases of the periodically and randomly
N-doped configurations studied in Sec. III, the present axial
semi-random doping scheme (dN-N = 3nd0) provides peculiar
time-dependent behaviors for D(t), recorded here for longer
times [green curves in Fig. 5(c)]. Despite the presence of a
reasonable amount of randomness, D(t) increases significantly
and much faster than in the case of the periodic doping
scheme. At the defect energy E1

d = 0.565 eV, an asymptotic

diffusive regime is observed at long times, without any signs
of localization effects (which may appear at even longer time
scale). A localized transport regime is however obtained for
the propagation mode at E2

d but only beyond t0 = 500 fs.
This value of t0, establishing the onset of localization, is
considerably larger than for totally random configuration
[t0 = 25 fs, Fig. 4(a)]. It is important to emphasize that
for a rather long intermediate time scale (�2 ps), D(t) is
quantitatively higher in this axial semi-random doping scheme
than in the periodic doping scheme. However, this is only
a transient behavior since in the thermodynamic limit, the
electronic diffusion in periodic systems will always exceed the
one in semi-random systems because of the linear increase of
D(t). Such a crossover is observed at t ∼ 2600 fs for E = E2

d

in Fig. 5(c). By comparing the fully random disorder case and
the present axial semi-random doping scheme, it is obvious
that although all states should be localized in disordered 1D
systems according to scaling theory, the degree of localization
and the rate of its effects on the diffusivity can greatly fluctuate.

V. HELICAL DOPING CONFIGURATIONS

A helical doping configuration is described by a screw op-
erator S(d,θ ). This operator is defined in the polar coordinates
(d and θ ) by an axial translation d and a rotation with an angle
θ that link two successive chemical defects (see Fig. 6) [32].
For the (10,10) CNT, the position of 40 atoms in one unit
cell admits a tenfold symmetry (θ0 = 2π/10) and can then be
described by four atomic sites (A,B,C,D) [Fig. 6(a)]. For the
helical doping configurations considered in this section, d is
chosen as a multiple of 3d0 as before, and θ as a multiple of
θ0. Therefore, the screw operator S(dn = 3nd0,θm = mθ0) can
be simply noted as S(n,m), n and m being integers. Within
this screw operator notation, the doping schemes studied
in previous sections are S(8,0) (axial periodic doping), and
S(n,0) with random n (axial semi-random doping).

The cases of the ordered and disordered helical doping con-
figurations are now investigated. First, the ordered (periodic)
helical configuration is considered with the screw operator
S(8,1) [Fig. 6(b)], i.e., dN-N = 24d0 and θ = θ0. Then, angular
disorder is introduced, keeping the axial ordering, i.e., m equals
a random integer [S(8,m), Fig. 6(c)]. Finally, both axial and
angular parts are randomized but d and θ are still multiples of
3d0 and θ0, respectively [S(n,m), Fig. 6(d)]. The labeling of
all the studied doping configurations using the screw operator
notation are summarized in Table I.

The DOS of these three helical doping configurations
together with the DOS of the periodic and axial semi-random
doping configurations are depicted in Fig. 7(a). Then, D(t) is
illustrated in Fig. 7(b) for E1

d = 0.565 eV and E2
d = 0.583 eV.

The DOS of the S(8,0), S(8,1), and S(8,m) systems are
qualitatively indistinguishable and D(t) behave equivalently
for these three doping configuration schemes even when
m takes random values. Indeed, the long-time ballisticlike
permanent regime is spectacularly preserved even in the case
of angular disorder although this structure does not possess any
periodic arrangement. Furthermore, when the axial periodicity
is broken, i.e., when both n and m take random integer
values [S(n,m)], this particular rotational disorder does not
destroy the features obtained for the previous case [S(n,0)].
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FIG. 6. (Color online) (a) ABCD basis position set in the transversal direction for the (10,10) CNT. Schematic representation for (b) the
ordered helical configuration [S(8,1) according to the screw operator S(dn,θm) ≡ S(n,m) notation], (c) angular disordered helical configuration
[S(8,m)], and (d) angular and axially disordered helical configuration [S(n,m)], n and m being random integers.

The corresponding D(t) shows both diffusive and localized
transport regimes [Fig. 7(b)]. This result brings us to the
conclusion that the diffusion process is not sensitive to the
angular disorder as long as the armchair nanotube rotational
symmetry (θ0) is conserved, i.e., all the N atoms occupy
an equivalent position in the basis (A,B,C,D). These results
justify the effect of rotational symmetry as recently presented
in the electronic transport responses for armchair and chiral
nanotubes at shorter length scale [16].

From the present analysis of the diffusion coefficients,
it appears clearly that semi-random distributions of the N
dopants can yield particularly good transport properties as
compared to a random distribution. Indeed, the elastic mean
free path of electrons reaches easily several μm for a semi-
random configuration like S(n,0) close to Dirac point region
(E = 0 eV), while it hardly reaches 50 nm for a fully random
distribution. Within the defect energy window [0.54–0.61] eV,
the mean free paths are lowered and found in the range of
[10–700] nm for the semi-random configuration, while it is
constant and equal to 5 nm for the fully random case. Conse-
quently, in N-doped CNT with semi-random distribution, the
elastic scattering may not be anymore the limiting scattering
mechanism and inelastic effects should become important
depending on temperature and the applied bias voltage. At
low bias, the experimental measurements reported inelastic
mean free paths of the order of few μm [33] which correspond

rather well with predicted values for electron scattering with
acoustic phonons [33–35]. Elastic and inelastic scattering will
therefore compete around E = 0 eV; however, close to the
defect energy elastic scattering with N dopants should still be
more efficient. At high bias, electrons have enough energy to
emit optical and zone boundary phonons. The scattering with
such phonons gives a much lower inelastic mean free path
in the range [10–200] nm [33,36], and hence could become
dominant in the present semi-randomly 0.1% N-doped CNTs.

VI. CONCLUSION

The electronic transport regimes in N-doped carbon nan-
otube has been examined at the mesoscopic length scale
using the Kubo-Greenwood formalism and an effective tight-
binding approach. The propagating modes in the vicinity
of the resonant defect energy have been identified from the
time-dependent diffusion coefficient D(t) for various doping
configurations, including periodic, semi-random, and random
distributions. In all periodic and semi-random doping schemes,
the position of dopants is given from the screw operator
S(dn,θm) [≡S(n,m)] such as dn = 3nd0 and θm = mθ0 are the
axial and rotational translations, and where 3d0 is the Fermi
wavelength while θ0 = 2π/10 corresponds to the tenfold
rotational symmetry as defined in the (10,10) host CNT.
Besides these periodic and semi-random systems, the perfect

TABLE I. (Color online) Labeling and screw operator notation of the different N-doped CNTs.

Configuration label Screw operator Axial distribution Angular distribution

Perfect

Axial periodic S(8,0) Ordered
Axial semi-random S(n,0) Semi-random

Helical periodic S(8,1) Ordered Ordered
Helical angular semi-random S(8,m) Ordered Semi-random
Helical semi-random S(n,m) Semi-random Semi-random

Random Random Random
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FIG. 7. (Color online) (a) DOS around Ed different axial and
helical doping configurations, i.e., the ordered axial N-doped (black),
the ordered helical N-doped (red), the angular disordered helical
N-doped (blue), the disordered axial N-doped (dN-N = 3nd0) (green),
and the angular and axial disordered helical N-doped (orange) CNTs.
(b) Long-time behavior of D(t) for all these systems at E1

d = 0.565 eV
and E2

d = 0.583 eV.

CNT and the CNT with a completely random distribution of
the N atoms have been considered as reference cases.

For doping configurations with an axial periodicity [e.g.,
n = 8 in S(n,m)], ballisticlike transmission modes appear in

the permanent regime [i.e., linear increase of D(t)] but with
electronic velocities lower than in the perfect CNT and which
correspond to the average group velocity determined from
the band structure. It is interesting to note that as the tenfold
rotational symmetry is kept along the structure [i.e., m can
take random integer values], the behavior of the diffusion
coefficient D(t) is invariant. Therefore, the semi-random
S(8,m) helical doping configuration exhibits also a ballistic
regime.

For configurations with a semi-random axial distribution
[i.e., S(n,m) with n a random integer], D(t) changes dras-
tically. In these semi-random axial cases, D(t) is found to
increase rapidly at the short and intermediate time scale (closer
to the ballistic limit of the perfect CNT than the periodic
axial configurations), but then saturates (diffusive regime)
or even decreases (localization regime) at longer-time scale.
Indeed, for the first defect energy (E1

d ), the localization effects
seem to be suppressed (or at least shifted to very long time),
while quantum interferences leading to localization are well
identified for the second defect energy (E2

d ). The rapid increase
of D(t) at short-time scales suggests that for short enough
CNTs and around the defect energy, such a semi-random
axial disorder provides faster electronic diffusion and thus
higher conductivities than with a periodic axial configuration.
The study of such screw configurations of the disorder are
important to understand the implications on the transport
properties of the (quasi)periodic helical modifications such as
obtained for CNTs wrapped with DNA (DNA-CNTs). These
DNA-CNTs are used in particular for the sorting of CNTs in
size and chiralities [14,15].
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