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Mapping populations at risk: improving spatial
demographic data for infectious disease
modeling and metric derivation
Andrew J Tatem1,2,3*, Susana Adamo4, Nita Bharti5, Clara R Burgert6, Marcia Castro7, Audrey Dorelien8, Gunter Fink7,
Catherine Linard9,10, Mendelsohn John11, Livia Montana7, Mark R Montgomery12,16, Andrew Nelson13,
Abdisalan M Noor14, Deepa Pindolia1,2,14, Greg Yetman4 and Deborah Balk15

Abstract

The use of Global Positioning Systems (GPS) and Geographical Information Systems (GIS) in disease surveys and
reporting is becoming increasingly routine, enabling a better understanding of spatial epidemiology and the
improvement of surveillance and control strategies. In turn, the greater availability of spatially referenced
epidemiological data is driving the rapid expansion of disease mapping and spatial modeling methods, which are
becoming increasingly detailed and sophisticated, with rigorous handling of uncertainties. This expansion has,
however, not been matched by advancements in the development of spatial datasets of human population
distribution that accompany disease maps or spatial models.
Where risks are heterogeneous across population groups or space or dependent on transmission between
individuals, spatial data on human population distributions and demographic structures are required to estimate
infectious disease risks, burdens, and dynamics. The disease impact in terms of morbidity, mortality, and speed of
spread varies substantially with demographic profiles, so that identifying the most exposed or affected populations
becomes a key aspect of planning and targeting interventions. Subnational breakdowns of population counts by
age and sex are routinely collected during national censuses and maintained in finer detail within microcensus
data. Moreover, demographic and health surveys continue to collect representative and contemporary samples
from clusters of communities in low-income countries where census data may be less detailed and not collected
regularly. Together, these freely available datasets form a rich resource for quantifying and understanding the
spatial variations in the sizes and distributions of those most at risk of disease in low income regions, yet at present,
they remain unconnected data scattered across national statistical offices and websites.
In this paper we discuss the deficiencies of existing spatial population datasets and their limitations on
epidemiological analyses. We review sources of detailed, contemporary, freely available and relevant spatial
demographic data focusing on low income regions where such data are often sparse and highlight the value of
incorporating these through a set of examples of their application in disease studies. Moreover, the importance of
acknowledging, measuring, and accounting for uncertainty in spatial demographic datasets is outlined. Finally, a
strategy for building an open-access database of spatial demographic data that is tailored to epidemiological
applications is put forward.
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Introduction
The spatial modeling and mapping of diseases is increas-
ingly being undertaken to derive health metrics, guide
intervention strategies, and advance epidemiological
understanding [1]. This has been driven by a recognition
of the spatial, temporal, and demographic heterogene-
ities in disease risk (Table 1), and has resulted in signifi-
cant recent methodological advances (for example [2,3]).
Moreover, the need for estimates of populations at risk

to guide funding allocations within the Millennium De-
velopment Goals (MDGs: www.un.org/millenniumgoals)
framework continues to drive the development of dis-
ease mapping and modeling approaches.
Given the high degrees of individual and local hetero-

geneity within geographic regions or administrative
units, effective policy design requires a detailed know-
ledge of the spatial distribution of relevant population
attributes of interest, including size, age, gender, income,

Table 1 Heterogeneities in disease risks

Heterogeneity type Background information and examples

Spatial Understanding relevant spatial heterogeneities underlies our ability to map host risk of pathogen exposure. Predictions
of disease importation or emergence are limited by our ability to distinguish disease-specific hotspots from continuous
risk surfaces. Spatial variation in risk is defined by the specific biology of each host-pathogen relationship.
Epidemiologically relevant spatial heterogeneities can be highly specific to each infection and must be correctly
identified within the proper context of the ecology and landscape of each host-pathogen relationship. Spatial
heterogeneities that impact risk profiles for exposure to a pathogen include large-scale environmental factors, such as
temperature, access to water, and rainfall abundance, which can affect host susceptibility (e.g. within the African
meningitis belt [4]), host exposure (e.g. proximity to malaria vector habitats [5]), and pathogen viability (e.g. cholera
survival in the environment [6]). Within a population, the transmission events of infections drive the spatial progression
of an outbreak after the initial exposure to the pathogen has already taken place. Transmission events are rarely
observed and risk profiles must be constructed using proxies for transmission, again highlighting characteristics specific
to each host-pathogen relationship. Risk profiles for directly transmitted diseases focus on host contacts between
infectious and susceptible individuals. Important components of these contacts are host density, susceptibility, and
mobility. Each of these factors can also be defined across spatial scales, from within household contact patterns to
settlement-level risk factors. Urban and rural residence can be thought of as a basic (yet dichotomized) spatial
heterogeneity that is closely associated with density and landscape, but typically urbanization has not been defined in
spatial terms. Similarly, transmission of vector-mediated infections is impacted by spatial heterogeneities at the
household and community level determined by host density, prevention measures, vector mobility and vector
abundance. Spatial patterns of environmentally mediated infections will also be determined by the host-pathogen
relationship.

Temporal Epidemiologically important temporal heterogeneities will also be specific to each infection. For emerging infections,
long-term changes in host settlements, habitat loss, and changing levels of interactions between humans and animal
species interactions can define the risk of disease emergence over time [7] (e.g. ebola, SARS, monkeypox, HIV, H1N1 and
H5N1 influenza). In other situations, seasonal and environmental factors may determine the population level risk of
pathogen exposure (e.g. malaria vector habitats, hyperendemic areas of meningitis). Short-term risk of infection, or
transmission of a pathogen within a population, is determined by the biology of the relationships between the host,
pathogen and vector. These relationships establish the host susceptibility and infectious periods, and therefore the risk
of transmission events. Population level susceptibility profiles (natural or derived) vary across temporal scales with
respect to prior exposure and preventative measures. Temporal likelihood of transmission will be determined by length
of exposure, and changes in abundance and susceptibility of the host and vector. Exposure and contact rates (density,
migration) over the course of a day (as in commuter patterns for influenza [8]) are additional examples of temporal
heterogeneities in transmission likelihood and risk across temporal scales.

Demographic and
Socioeconomic

Susceptibility and transmissibility of infectious disease vary across differing demographic and socioeconomic groups due
to differences in immunity, mobility, contact patterns and health status. Small-scale variations in socioeconomic and
demographic factors can have a large influence on the geographical variation of infections compared to environmental
factors. Age represents one of the most significant factors, with risk of morbidity and mortality of many diseases varying
substantially across age groups. These include large variations in mortality and morbidity by age for malaria [9] and for
clinical attack risk for dengue [10]. Heterogeneities in susceptibility and transmissibility also exist between the sexes, and
especially during childbearing age for women, when pregnancy increases the risks of death for both the mother and
fetus, and are important for diseases such as congenital rubella syndrome (CRS) [11]. At a population scale, differences in
vital rates such as birth rates create heterogeneities in disease risk across space and time, as evidenced by rotavirus in
the US [12]. For macro-parasite infections, such as helminths, in addition to environmental risk factors, the population at
risk often depends on socioeconomic profiles and access to key infrastructure (housing quality, adequate sanitation and
drinking water). For micro-parasite infections with human-to-human transmission, risk is again associated with individual
socioeconomic attributes, but also with community/neighborhood attributes. In other words, the concentration of
poverty or poor sanitation services increase risk, as evidenced by cholera outbreaks [13]. Finally, in addition to
information on poverty status, knowledge of nutritional status is important; malnutrition can increase (i) susceptibility to
many infectious diseases, (ii) the period of infectiousness (by reducing immune function and delaying recovery) and (iii)
disease associated mortality [14].

Disease morbidity, mortality, and speed of spread vary substantially with demographic profiles, with clear risk groups and vulnerable populations existing. These
have important implications for planning and targeting intervention strategies. The risk of pathogen infection to host populations exists at two spatial levels. First,
there is a probability of initial exposure of a population to a pathogen, which defines the population risk. Second, there is a probability of transmission of a
disease within a population, which defines the individual risk. Within these epidemic and endemic classifications, the implications for interventions vary across
disease landscapes dependent upon the host-pathogen relationships.
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nutritional status, vaccination rates, or child mortality.
From a public health perspective, detailed spatial data-
sets not only allow investigation of the relationship be-
tween policy inputs and individual-specific outcomes,
but also build detailed and realistic predictive models
and derive suites of health metrics. Disease mapping and
spatial modeling studies have become increasingly
detailed and sophisticated, with rigorous handling of un-
certainties built in, but are limited when it comes to esti-
mating populations at risk. Detailed spatial datasets on
population distributions now exist, but maps of other
demographic and socioeconomic characteristics to iden-
tify vulnerable subgroups remain lacking. To quantify
these spatial variations in population attributes, recent
high-impact studies have had to overlook subnational
demographic variations in characteristics and rely on ap-
plying simple national-scale adjustments, e.g. [5,15-17].
The availability of high-resolution population data has

increased dramatically through a series of global popula-
tion mapping efforts over the past 15 years. Initially
restricted to a few countries, location-specific population
numbers have been made available for the globe over
the past decades through the combined efforts of pro-
jects like the Gridded Population of the World (GPW)
[18], the Global Rural Urban Mapping Project (GRUMP)
[19], LandScan [20], and AfriPop [21](www.afripop.org).
All databases are in the public domain and allow indivi-
duals, companies, researchers, and policymakers to ac-
cess population data either by administrative units or by
user-specified geographic boundaries of interest. While
the generation of these comprehensive population data-
bases clearly constitutes a major achievement from a sci-
entific perspective, two main factors limit the degree to
which these databases can be used for research as well
as for policy and planning: limited time frames and lim-
ited information on population attributes of interest.
The first limitation is mostly the result of the irregular
collection of detailed population data as well as the ef-
fort required in compiling global datasets at any given
point in time. Given that most countries independently
collect full censuses only once per decade and data shar-
ing is complicated by a large set of copyright issues,
most current population databases contain population
data only on a five- or 10-year basis. When analyses war-
rant data for noncensus years, national growth rates
[22], subnational growth rates from National Statistical
Offices, or interpolation between available data points
may be applied to produce estimates for intermediate
years, as annual population fluctuations are generally
limited.
The second constraint is more critical: little is known

about characteristics of the underlying populations being
mapped in detail. From a planning or research perspec-
tive, these factors can be of critical importance, as

outlined in Table 1. Various freely available datasets exist
to facilitate mapping improvements and add significant
value to epidemiological analyses, but these remain scat-
tered across different sources and require processing to
be integrated into mapping. Here we review these
sources of more detailed, contemporary, freely available,
and relevant spatial demographic data, focusing on low-
income regions of the world where disease burden is
highest, and put forward a strategy for building an open-
access database to link the various datasets, tailored to
epidemiological applications.

Usages of spatial demographic data in epidemiology
Population distribution datasets constitute an essential
denominator required for many infectious disease stud-
ies. It is well known that disease transmission is spatially
focal and heterogeneous (Table 1), partially due to the
clustered nature of population distribution. The epi-
demiology of many diseases makes surveillance-based
methods (reliant upon reporting from health facilities)
for estimating populations at risk and disease burden
problematic, particularly in low-income regions [23-25],
while spatial heterogeneity in human population distri-
bution can produce significant effects on transmission
[3,26]. Cartographic and spatial modeling approaches
have proven to be effective in tackling these factors (e.g.,
[27-29]). Such approaches can help characterize large-
scale patterns of disease spread to evaluate intervention
impact [3] and produce globally consistent measures of
morbidity of known fidelity, which often represent the
only plausible method in many African countries where
surveillance data is incomplete, unreliable, and inconsist-
ent [23,30,31]. As the precision and detail of disease risk
mapping and modeling improves, spatial population
datasets that capture these patterns are therefore
required if populations at risk are to be more accurately
quantified and disease spread among populations is real-
istically modeled for prediction and prevention purposes.
Uses of gridded population count data in epidemio-
logical studies are documented in Tatem et al. [1] and
Linard and Tatem [32], and here we focus on studies
that have attempted to incorporate spatial data on popu-
lation subgroups.
Applications of gridded population datasets in epi-

demiology have involved estimating numbers of clinical
cases, modeling the spatial progression of an epidemic,
risk mapping and assessing the effects of urbanization,
and the study of diseases ranging from dengue and yel-
low fever to HIV and leprosy. The majority of spatial
modeling approaches of infectious diseases have been
based on the environmental correlates of infection, due
in part to the availability of high spatial resolution envir-
onmental data and relative paucity of spatial socioeco-
nomic and demographic data. The most widespread uses
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of gridded population datasets in an epidemiological
context have been in the study of malaria. Global spatial
demographic datasets have been used to estimate popu-
lations at risk of malaria, which forms a fundamental
metric for decision-makers at national and international
levels [30,33]. While approaches for mapping malaria
have become increasingly sophisticated (e.g., [2]), those
for mapping population distributions have not kept pace,
especially in low-income regions [1], where detailed
spatial information on population composition is rarely
available or utilized.
Previous studies that have aimed to enumerate vulner-

able population subgroups at risk for different diseases
have solely focused on utilizing simplistic national-level
adjustments. The malaria burden in children under
5 years old was recently estimated based on a Zambia-
wide survey and LandScan population data adjusted by a
national-level estimate of the proportion of under-5 chil-
dren [34]. Similarly, the numbers at risk of malaria glo-
bally in different age groups were estimated by applying
national-level adjustments to GRUMP data [5,29,35,36].
Models of disease prevalence were overlaid onto popula-
tion density maps adjusted by national-level proportions
again to quantify school-age children and young adults
at risk of schistosomiasis [17,37-40] and hookworm
[38,41-43] and the number of pregnant women infected
with hookworm in sub-Saharan Africa [44]. Specific esti-
mates of populations at risk of malaria for pregnant
women and children have also been derived from these
maps, by combining GRUMP data with national-scale
age, sex, and fertility data from the United Nations
Population Division [15,45,46]. Finally, the numbers of
children under 5 with anemia in West Africa were esti-
mated using similar techniques [16]. In all of these

examples outlined here, the problems of overlooking sub-
national variations in population through the national-
level adjustments applied are illustrated in an example in
the next section.
Spatio-temporal transmission models aim to simulate

contacts between infectious and susceptible individuals
and estimate the spatial spread of the disease. This helps
to identify areas and times at risk of disease and assists
in planning targeted interventions [47,48]. Sophisticated
spatially explicit models have been developed to study
the spatial progression of infectious diseases. Many of
such spatially explicit models have made use of gridded
population datasets as input data [3,49]. Gridded popu-
lation data have also been used to develop agent-based
simulation models at the regional level [28,50,51] and at
the global level [52,53]. Whatever the spatial approach
for modeling, population data are essential as these
models, which generally require the generation of a vir-
tual society with an appropriate distribution and com-
position of people [3]. Gridded data are preferred by
these models in that the gridding process removes the ir-
regularity associated with the native administrative units
in which these data were initially reported and thereby
makes the data more flexible for use with a variety of
other spatial units or features. In addition, global (or
continent-level) gridded population data provide valu-
able input datasets mainly because of their wide cover-
age, consistent spatial resolution, and availability in the
public domain. Notably missing as discussed above is in-
formation on population attributes. This represents a
limitation for models that can be substantially improved
through the incorporation of realistic population attri-
butes to build ‘synthetic’ populations. Previous studies
have had to rely on national-level statistics or the

Figure 1 For Tanzania in 2007: (a) P. falciparum malaria transmission classes (adapted from Hay [5], measured by P. falciparum Parasite
Rate (PfPR), (b) percentage of residents under 5 years of age by ward, (c) percentage differences in estimates of number of children
under 5 at risk of the highest transmission class by national- vs. ward-level adjustments.
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application of census-derived attributes from one coun-
try applied to multiple others (e.g., [28]).

Improving estimates of children under 5 years at risk of
Plasmodium falciparum malaria
The lack of availability of subnational spatial datasets on
specific population groups that are particularly vulner-
able to P. falciparum malaria has meant that simple na-
tional-level adjustments have been applied in influential
studies to estimate the spatial distributions of, for ex-
ample, children under 5 [15] or pregnant women [45,46]
at risk. To illustrate the importance of mapping vulner-
able populations to a level of spatial detail approaching
that now used in disease mapping, here we compare
estimates of under-5 children at risk of P. falciparum
malaria in Tanzania in 2007 using transmission risk
classes (Figure 1(a))[5] overlaid onto a population distri-
bution map (www.afripop.org) adjusted to represent
children under 5 by (i) applying a single nationwide per-
centage adjustment as defined by the UN’s World Popu-
lation Prospects [22] (as undertaken in [15] – for
Tanzania, percentage under 5 is estimated to be 17.9%)
and (ii) applying per-district proportions of under-5 chil-
dren derived from ward-level census data (Figure 1(b)).
Table 2 shows the difference in estimates of under-5

children residing in each transmission class, with large
percentage differences found in each transmission class.
We do not examine the spatial patterns of differences
here, as this is beyond the scope of this analysis, but they
remain an interesting area for exploration [1]. Overall,
the adjustments from finer-scale age distributions indi-
cate that national-level estimates substantially overesti-
mate numbers at risk. Whereas Table 2 summarizes the
overestimates by transmission classes, Figure 1(c) shows
the spatial pattern of the misestimation in the highest
transmission class. It shows the percentage differences
obtained in estimates of under-5 children at risk of PfPR
> 40% transmission level (mapped in Figure 1(a)) result-
ing from use of the ward-level map of children under
5 years rather than from applying a single nationwide
adjustment. Most of these wards show differences above
25%, and several have discrepancies of greater than
100%. These malaria transmission maps and the

populations at risk estimates derived from them are in-
creasingly being used to guide planning, policy, and con-
trol. Such substantial differences in estimates of
populations at risk, achievable through the use of an
improved spatial demographic composition data, illus-
trate the urgent need to develop spatial databases of vul-
nerable populations.

Spatial demographic data to meet needs
From an epidemiological and health metrics perspective,
fundamental characteristics are age and sex. The most
commonly needed age-sex specific groups in developing
countries are: infants, children under 5, women of child-
bearing ages, and the elderly (Table 1). More specific
needs might require the population of pregnant women,
young adults, or urban children. Even though these
numbers can generally be approximated by multiplying
total population numbers by estimated national popula-
tion fractions, the large epidemiologically important het-
erogeneity in population composition generated by
migration and differential mortality and birth rates
within countries and regions, and particularly between
urban and rural residents, is likely to induce substantial
degrees of imprecision in resultant output metrics (see
previous section). The problem becomes even more se-
vere when researchers or policy makers are primarily
interested in nondemographic aspects of the population.
In many cases, the main variable of interest may be a
fraction of the population with certain health or behav-
ioral characteristics: the number of children not vacci-
nated, the number of women without access to
contraceptives, the number of children not going to
school or not receiving formal health care. Many of
these characteristics are not census-based, but rather
can be ascertained through survey data, an aspect that
we shall discuss in further detail below. Clearly it is not
feasible for global population databases to generate on-
demand maps for each of these factors on a regular
basis, nevertheless the potential to leverage current
freely available population databases appears large.
Table 3 documents the principal datasets that are readily
available without cost across multiple countries to
achieve this.
Census data form the basis of existing spatial demo-

graphic databases [19,20], and such population and hous-
ing censuses are undertaken for almost all countries in
the world, including developing countries, generally
every 10 years (the date of past and upcoming planned
censuses are available here: http://unstats.un.org/unsd/
demographic/sources/census/censusdates.htm), but these
provide only population counts. A range of other popula-
tion-attribute information is generally collected during
population censuses such as age, gender, urban/rural
residence, and migration information, and, for the

Table 2 Estimates of numbers of children under 5 at risk
of P. falciparum malaria in Tanzania using the two
differing demographic methods described in the text

Transmission
Class

U5PAR1:
UN Nationwide
adjusted

U5PAR2:
Census unit
adjustments

Percentage change
from U5PAR1 to
U5PAR2

PfPR< 5% 770547 650174 −15.62175961

PfPR= 5–40% 4315638 3383040 −21.6097365

PfPR> 40% 773992 630518 −18.5368841

U5PAR =Under-5 population at risk.
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Table 3 Sources of freely available spatial demographic data

Data (standard
survey name)/
source

Time intervals Typical spatial coverage Typical strata Relevant variables

Census

National Statistical
Offices

Typically 10 years Census enumerator area
or courser level

Urban/rural, race
or ethnic
groups (often)

Sex, age, education,
migration status, household
and dwelling characteristics

Census Microdata

https://international.
ipums.org/
international/

Typically 10 years Admin 1-3 Urban/rural Household and
dwelling characteristics,
sex, age, education,
migration status, children
ever born, children surviving

DHS (Demographic
and Health Survey)

Household, women
15–49, men
15–59, children born
in the last five years

http://www.
measuredhs.com/

Varies by country,
typically every 5 years

National, Admin
1/region, GPS coordinates
of cluster locations for
most recent surveys
(last 15 years)

Urban/rural Household and
dwelling characteristics,
sex, age, education,
maternal and child
health, fertility and full
birth history, family
planning, domestic
violence,
biomarkers, nutrition

MICS (Multi-indicator
cluster survey)

http://www.unicef.
org/statistics/
index_24302.html

UNICEF (Round 2,
1999–2001; round 3
2005–2007; round 4
is in the field
2009–present)

National, Admin 1 Urban/rural Household and
dwelling characteristics,
sex, age, education,
status, maternal and
child health, child
labor, domestic
violence, summary
birth history, anthropometry

LSMS (Living Standard
Measure Survey)

(Integrated Household
Budget Survey and
many others that
are locally adapted)

http://iresearch.
worldbank.org/lsms/
lsmssurveyFinder.htm

Irregular National, Admin 1,
some GPS coordinates

Urban/rural Household and
dwelling characteristics, sex,
age, education, migration
status,consumption,
expenditures, income,
nutrition,anthropometry,
summary birth history

MIS (Malaria
Indicator Survey)

http://www.
measuredhs.com/

http://www.
malariasurveys.org/

Varies by country,
typically every 3 years

National, Admin
1/region, GPS coordinates
of cluster locations for
some surveys (last five years)

Urban/rural Household and
dwelling characteristics,
sex, age,
education, biomarkers
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Table 3 Sources of freely available spatial demographic data (Continued)

AIS (AIDS Indicator
Survey)

http://www.
measuredhs.com/

Varies by country,
typically every 3 years

National, Admin
1/region, GPS coordinates
of cluster locations for
some surveys (last
eight years)

Urban/rural Household and
dwelling characteristics,
sex, age,
education, biomarkers

DHS (Demographic
and Health Survey)

Household, women
15–49, men 15–59,
children born in the
last five years

http://www.
measuredhs.com/

Varies by country,
typically every 5 years

National, Admin 1/region,
GPS coordinates of
cluster locations for
most recent surveys
(last 15 years)

Urban/rural Household and
dwelling characteristics, sex,
age, education, maternal
and child health, fertility and
full birth history,
family planning,
domestic violence,
biomarkers, nutrition

MICS (Multi-indicator
cluster survey)

http://www.unicef.
org/statistics/
index_24302.html

UNICEF (Round
2, 1999–2001; round
3 2005–2007; round 4
is in the field
2009-present)

National, Admin 1 Urban/rural Household and
dwelling characteristics, sex,
age, education, status,
maternal and child health,
child labor, domestic
violence, summary birth
history, anthropometry

LSMS (Living Standard
Measure Survey)

(Integrated Household
Budget Survey and
many others that are
locally adapted)

http://iresearch.
worldbank.org/lsms/
lsmssurveyFinder.htm

Irregular National, Admin 1,
some GPS coordinates

Urban/rural Household and
dwelling characteristics, sex,
age, education, migration
status, consumption,
expenditures,
income, nutrition,
anthropometry, summary
birth history

MIS (Malaria Indicator
Survey)

http://www.
measuredhs.com/

http://www.
malariasurveys.org/

Varies by
country, typically
every 3 years

National, Admin
1/region, GPS coordinates
of cluster locations for
some surveys (last five years)

Urban/rural Household and
dwelling characteristics, sex,
age, education, biomarkers

AIS (AIDS Indicator
Survey)

http://www.
measuredhs.com/

Varies by
country, typically
every 3 years

National, Admin
1/region, GPS coordinates
of cluster locations for
some surveys (last
eight years)

Urban/rural Household and
dwelling characteristics, sex,
age, education, biomarkers
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majority of countries, made available in some form on
national statistical office websites. This information sup-
plies a series of single population characteristics at what-
ever level of geographic detail is made available by the
National Statistical Office. Often, this information is
available through data tables aggregated at coarse admin-
istrative levels, however, and full-detail datasets can be

difficult to obtain. An addition to the aggregated full cen-
sus data are large samples of household-level records
derived from censuses (census microdata) that provide
age and sex structure, as well as many other compos-
itional measures, reported generally by administrative
level 1 (e.g., province) or 2 (e.g., district). These data
keep information about households intact so that

Figure 2 Maps showing the availability of useful demographic datasets for deriving subnational estimates of population attributes.
(a) Numbers of census microdata records maintained at the International Public Use Microdata Series repository (https://international.ipums.org/
international/), (b) combined numbers of Demographic and Health Surveys (DHS), Malaria Indicator Surveys (MIS), and AIDS Indicator Surveys (AIS)
conducted for each country, (c) combined numbers of DHS, MIS, and AIS with GPS cluster coordinates available.
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combinations of variables can be made. The largest re-
pository of such data is the International Public Use Micro-
data Series (https://international.ipums.org/international/)
and the data held there are mapped in Figure 2(a).
While census aggregates and census microdata sam-

ples are typically large enough to cover small or moder-
ately sized geographic areas, they are only carried out
approximately every 10 years and are limited in content.
Survey data offer much richer content on shorter time
intervals but are limited in spatial coverage (e.g., Figure 2
(b)). In most high- and low-income countries, geo-
referenced household-based surveys are collected on a regu-
lar basis. These surveys contain detailed local population

characteristics for a finite number of locations, which
could be used to generate characteristic-prevalence sur-
faces for a given country and year. Overlaying these
characteristic surfaces with population estimates would
likely become an invaluable tool both for researchers
and policymakers.
Data on a rich variety of population attributes can be

obtained from a range of international household survey
programs, each of which is listed in Table 3. These pro-
vide subnational urban (or rural) age and sex structures,
educational compositions, employment information, and
countless other socioeconomic and health indicators at
the level of subnational regions. Large household survey

Figure 3 Design of a relational spatial demographic database. Table 4 provides details on each layer.

Table 4 Components of relational spatial demographic database based on freely available datasets

Feature Example dataset Example dataset source

National boundaries SALB www.unsalb.org

Administrative boundaries GADM www.gadm.org

DHS boundaries MEASURE DHS www.measuredhs.com

Coastlines GBWD http://dds.cr.usgs.gov/srtm/

Water bodies SWDB http://dds.cr.usgs.gov/srtm/version2_1/SWBD/

Land cover GlobCover www.ionia1.esrin.esa.int

Protected areas WDBPA www.wdpa.org

Urban extents MODIS http://www.sage.wisc.edu/people/schneider/research/data.html

Settlement locations NGA Geonames www.earth-info.nga.mil/gns/html

Elevation and slope SRTM www.srtm.csi.cgiar.org

Infrastructure gRoads www.ciesin.columbia.edu/confluence/display/roads/Global±Roads±Data
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programs such as the Multiple Indicator Cluster Surveys
(MICS) and Demographic and Health Surveys (DHS)
listed in Table 3 are reasonably well standardized and
cover many low-income countries (Figure 2(b), with
multiple rounds in each country. Additionally, in most
recent DHS data sets, the survey clusters have been geo-
coded (Figure 2(c)). In order to protect the confidential-
ity of survey respondents, cluster locations are randomly
displaced by up to 2 km in urban areas and 5 km in
rural areas. Moreover, in rural areas, the DHS cluster
locations provided can represent large and potentially
heterogeneous areas. The existing approaches using
DHS data have not taken advantage of spatial modeling
to expand the use of DHS data below the survey region
level (usually administrative level 1). The geocoded clus-
ter data from the DHS allow for data regrouping to dif-
ferent levels of representativeness while still respecting
the sample frame. While MICS now regularly collect
geocoded data, these datasets are not available to enable
mapping of the data at finer level than the survey region
level.
Each of the datasets described here and listed in

Table 3 report demographic information aggregated by
named administrative units. Rarely, however, are spatial
data on the boundaries of these units provided with the
data. For spatial analysis, therefore, GIS boundary data-
sets must be found that match the reported administra-
tive units. This is often a nontrivial task given regular
boundary changes over time, alternative names, and mis-
matches with national boundaries. The initiation of open
access repositories of standardized administrative
boundary datasets (e.g., GADM: http://www.gadm.org/),
and documented histories of changes (e.g., http://www.
statoids.com/) simplifies such operations. Moreover,
DHS also shares the geography for their surveys on
request.

Designing a spatial demographic database
The datasets described in the previous section are pres-
ently scattered across disparate sources (Table 3). To
better fulfill the needs of disease modeling and carto-
graphic-style derivations of health metrics, we propose
the construction of a spatial database. The construction
of this database would involve not only the housing of
the disparate demographic datasets in a central open ac-
cess location, but also their linkage to GIS datasets to
enable the construction of spatial datasets representing a
variety of epidemiologically relevant variables. The re-
cent development of spatially enabling tools for database
servers, such as PostGIS (http://postgis.refractions.net),
which provides support for geographic objects in object-
relational databases, provides the ideal framework for
construction of the database. The database would be
hosted on a central server and accessed through an

interactive web portal. Table 4 outlines the spatial data-
sets that would be included in a database to spatially
reference the datasets in Table 3 and provide additional
information to increase mapping capabilities. The frame-
work spatial data are open-access GIS datasets that can
be reused by multiple organizations for different pur-
poses. Figure 3 outlines how these datasets link together
in the relational spatial database. The key objectives of
this database would be to:

1. Provide disaggregated spatially-referenced data on
population sizes and characteristics such as age, sex,
urban/rural location, and education

2. Facilitate data sharing between differing platforms
and demographic mapping projects

3. Provide a high degree of transparency,
documentation, and flexibility with respect to data
sources and the treatment of uncertainty

The database is designed to encourage data sharing,
built in a manner that can be replicated across different
nodes, with standardized, agreed-upon representations.
For example, whilst the GRUMP and AfriPop project
outputs take different forms and use differing modeling
techniques, each is built upon standard representations
(national boundaries, coastlines, administrative units)
and aim to use the most detailed and contemporary
population data available. A standardized database
framework would encourage sharing of new and
improved datasets between projects, benefitting a range
of user groups. By building in differing levels of access
control, new datasets can be reviewed and processed be-
fore release to a wider user community, and also data-
sets that remain copyrighted can be controlled in their
accessibility.
Documentation of all aspects of the data and database

structure are key to ensuring ease of use, integration
with epidemiological applications, and accessibility to a
wide user community. This will focus around database
version control, the development of a data dictionary,
with full documentation of the datasets archived within
it, and metadata accompanying the GIS-related data-
sets. The distinction between spatial metadata and a
data dictionary must be made: they are much different
and both are necessary. A data dictionary is needed to
understand the shortened name and values of particular
variables, for example, whereas the metadata speak to
the spatial lineage and quality of the data. Some institu-
tional or database history is sometimes warranted, for
example, when data collection for a given variable has
changed. Ensuring that this documentation is oriented
toward the user through full explanation of assumptions
made and quality issues with the data provided will be
important. Moreover, the construction of a library of
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tools and techniques for analyzing and using the data
within the database using a forum and other mechan-
isms, such as a code repository, will facilitate ease of
use. Finally, the provision of quantitative measures of
data quality and uncertainty will be of great importance.
This could range from basic information of the timeli-
ness, resolution, spatial uncertainty, and standard errors
of datasets that enable informed interpretation of result-
ing mapped products to the more rigorous handling
and measurement of uncertainties (see next section).

New methods, data, and future challenges
We have so far outlined datasets and a basic framework
for compiling them to meet immediate disease modeling
and health metric demographic needs. Several opportun-
ities and possibilities exist however with which to
supplement and improve the scope and accuracy of
resources available. Here we outline these briefly,
along with future challenges likely to be faced in
implementation.

Urban populations
The health divide between urban and rural populations
has been well documented [54], as have the increasing
levels of urbanization around the world [55]. While
much has been done in the past 10 years to refine popu-
lation data that delineates urban areas [19,56,57], much
less is known about populations within cities even within
relatively coarse divisions (city center, suburban, peri-
urban) or by slum dwellers and others (much also
remains to be learned about population distribution
within rural areas). Africa, in particular, will undergo
rapid urbanization in the coming decades [55], yet the
data record to understand the demographic variation and
health conditions in these cities, let alone changes in dis-
ease transmission that may result from urban change, is
largely absent. If it is important to understand what is
happening within urban areas, even the currently available
cluster-level data of the DHS program (Figure 2(c)) is in-
adequate. While the DHS program and some other sur-
veys have focused on collecting larger urban samples,
there remains a need for large samples of urban popula-
tions to permit city-specific analyses. Additionally, the def-
inition of urban is not standard across the DHS countries.
There is reason to believe that even greater heterogeneity
of health and socioeconomic characteristics exist within
urban areas.
As with the demographic datasets discussed already,

there are a variety of disparate spatial datasets on urban
populations that could be brought together to get a bet-
ter perspective. City population counts for cities with
populations of 100,000 and above are produced by the
UN Population Division World Urbanization Prospects
[55]. Alternative sources of city and settlement

population sizes include the City Population website
(www.citypopulation.de), while different projects are fo-
cused on mapping city extents, which these counts could
be matched to (e.g., [19,58], www.afripop.org). There still
exist significant gaps, however, such as time-series of
urban spatial extents, which would facilitate the develop-
ment of ways to forecast changes in urban extents. Also,
information on properly defined neighborhoods within
cities is important, such as within-household and
within-neighborhood population density, but so are
other contexts (e.g., schools).

Subnational spatial and temporal projections
Most low-income countries do not produce population
projections, or forecasts, at a subnational level. Even the
United Nations Population Division’s urban population
projections [55] do not produce city-level population
projections. Yet the demographic inputs for generating
subnational estimates and projections are increasingly
becoming available. Subnational projections are now
being undertaken at least for very large countries (for
example, India and China) and for small and large cities
in the developing world [59]. For the latter, the forecast-
ing method departs from the traditional cohort-compo-
nent method and instead uses longitudinal data on cities
and subnational estimates of demographic rates (urban
fertility, mortality, and migration) derived from survey
and census microdata in an econometric model of city
growth [60]. These new approaches depend on harnes-
sing old data in a spatial framework. The spatial frame-
work allows disparate units to be linked in new ways,
yielding new estimates and projections. Because these
methods are largely probabilistic and derived from mod-
eling exercises, the uncertainty associated with these
estimates should also be characterized.

Quantifying uncertainty
The variety of ages, spatial resolutions, and sample sizes
of input demographic data translates to great variations
in accuracies and uncertainties of any output gridded
demographic data products, and this is rarely acknowl-
edged [1]. The most basic level of quantification and
communication of this uncertainty to users involves the
provision of information on input datasets and methods
used in construction, such as is undertaken for GPW,
GRUMP [19], and AfriPop [21] (www.afripop.org).
Ideally, a more rigorous quantification of the uncertainty
inherent in output gridded demographic datasets should
be undertaken. The rigorous handling and propagation
of uncertainty through a mapping process is now regu-
larly undertaken in disease risk mapping within a Bayes-
ian framework (e.g., [2,16,17]), resulting in full posterior
prediction distributions for each grid cell, providing
flexibility in the derivation of differing uncertainty
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metrics and enabling the production of accompanying
uncertainty maps. Undertaking an equivalent approach
for deriving accompanying uncertainty maps for demo-
graphic datasets would require consideration of the in-
put datasets and output requirements. For instance, this
could take the form of estimating the uncertainty in
gridded population distribution mapping from census
data summarized by administrative unit. Here, two of
the major sources of uncertainty are the age of the cen-
sus data in relation to the output prediction year and the
size of the administrative units relative to the population
sizes within them and output grid cell size. While uncer-
tainty in temporal projection of census data is relatively
well studied, the spatial aspect remains unexplored. For
example, gridding a 50,000 km2 administrative unit con-
taining 1 million children under age 5 to 30 arc second
resolution results in greater uncertainty about the popu-
lation size and composition residing in each grid square
than does the same resolution gridding of a 1,000 km2

administrative unit containing 10,000 children under age
5. Based on simulating all possible permutations of grid
square composition, bound by the limits imposed by the
original administrative unit size and vulnerable popula-
tion totals, per-grid square measures of spatial uncer-
tainty in composition that relate directly to the gridding
methodology could be derived. Secondly, the availability
of the DHS cluster locations opens up the possibility of
estimating surfaces of variables with associated uncer-
tainty, and this is discussed below.

Gridding household survey data
The availability of the GPS coordinates of DHS clusters
(Figure 2(c)) has prompted several studies to utilize
geostatistical approaches to derive continuous estimated
surfaces of variables of interest. However, survey data
are generally collected to be nationally representative
and, as such, their sampling frames may not lend them-
selves to finely resolved geographic grids. The DHS pro-
gram has been a leader in collecting and providing
geocoded information of the survey clusters in addition
to their standard data files in which data can be tabu-
lated by first-order subnational regions as well as urban/
rural classification. Early examples have demonstrated
the value of such approaches for deriving continuous
maps of variables of interest from geolocated DHS clus-
ter data. For example, Gemperli et al. [61] investigated
spatial patterns of malaria endemicity as well as socio-
economic risk factors on infant mortality in Mali using a
Bayesian hierarchical geostatistical model. Meanwhile,
Soares and Clements [16] used a similar approach for
anemia mapping. However, these approaches did not
take account of the DHS sampling design or the random
spatial displacement that cluster data undergo, and over-
coming these issues should be a priority for future

applications [62]. Apart from utilizing the cluster loca-
tion, the subnational regions supply information that
can be used with more finely resolved grids. One
approach that uses spatial coverage of census aggregates
combined with the attribute breadth in survey data is
that of the Poverty Mapping efforts [63]. But this is not
necessarily the only approach to consider.

Migration and mobility mapping
Very little is known about migration and mobility within
countries, which may occur seasonally and periodically
as well as permanently, except through case studies and
qualitative place-specific analyses. Disease modeling and
health metric derivation, as well as demographic ana-
lyses, increasingly require information on migration and
mobility [64-66]. These data are the weak link of the
demographic record – even the stock estimates of sub-
national migration have been largely ignored. Disease
modelers often want to know about daily movements ra-
ther than decadal ones, but the decadal moves may be
important to evaluate for changes to place-specific vul-
nerability of residents. Decadal moves should be exam-
ined more closely with existing survey and census
microdata; characterizing more frequent moves will re-
quire data collection methods that depart from the
standard demographic tool kit. Use of new data, such as
spatial locations derived from GPS tracking devices [67]
and cell phone usage [68] may show promise. However,
to be useful, methods for using these data in combin-
ation with more standard demographic data will be
necessary.

Conclusions
Growing trends in research and funding for disease
mapping and spatial modeling to derive health metrics
and guide strategies are increasing needs for spatial
demographic data of similar scope and quality for use in
estimating sizes and characteristics of populations at
risk. However, existing spatial demographic databases
are often based on coarse resolution and outdated input
and lack any consideration of population attribute map-
ping. These drawbacks are likely contributing to sub-
stantial uncertainties in disease modeling and health
metric outputs [1]. Here we have shown that datasets to
rectify this exist but remain scattered across multiple re-
positories and websites, requiring collation into a central
open-access database to become more widely used and
build on the strengths of each data type, overcoming
temporal, spatial, and attribute limitations. We have put
forward a basic database design here to achieve this and
lay the foundations for undertaking detailed mapping of
population attributes for providing spatial demographic
data in disease studies.
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