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High-resolution gridded population
datasets for Latin America and the
Caribbean in 2010, 2015, and 2020
Alessandro Sorichetta1,2, Graeme M. Hornby3, Forrest R. Stevens4, Andrea E. Gaughan4,
Catherine Linard5,6 & Andrew J. Tatem1,7,8

The Latin America and the Caribbean region is one of the most urbanized regions in the world, with a total
population of around 630 million that is expected to increase by 25% by 2050. In this context, detailed and
contemporary datasets accurately describing the distribution of residential population in the region are
required for measuring the impacts of population growth, monitoring changes, supporting environmental
and health applications, and planning interventions. To support these needs, an open access archive of
high-resolution gridded population datasets was created through disaggregation of the most recent official
population count data available for 28 countries located in the region. These datasets are described here
along with the approach and methods used to create and validate them. For each country, population
distribution datasets, having a resolution of 3 arc seconds (approximately 100 m at the equator), were
produced for the population count year, as well as for 2010, 2015, and 2020. All these products are available
both through the WorldPop Project website and the WorldPop Dataverse Repository.
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Background & Summary
The Latin America and the Caribbean region has a population of around 630 million and is one of the
most urbanized regions in the world, with 80% of its population currently living in urban areas. Its
population, which increased by 1.5 times over the last 25 years, is expected to grow by another 25% and
further urbanize by 2050, with 86% living in urban areas1.

According to the Pan American Health Organization2, health and demographic indicators highlight
that, although with significant variation from country to country and to a far lower degree than Africa
and central Asia, the region is characterized by relatively high maternal and infant mortality rates, and a
lack of access to health facilities and services for a large part of its population. In addition, many endemic
infectious diseases are also present and include malaria, dengue, chikungunya, chagas, and
leishmaniasis3,4. Furthermore, low and middle income countries located in the region are highly
vulnerable to and affected by natural and man-made disasters5 and, according to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change6, the frequency and intensity of weather- and
water-related hazards are expected to rise in the upcoming decades, both globally and regionally, as a
consequence of climate change. Finally, the rapid development of the region and its ongoing urbanization
is expected to further exacerbate problems related to the rapid land-use change and deforestation in rural
areas7 and the growth of informal settlements in urban areas8.

In this context, contemporary, spatially detailed, and comparable datasets that accurately depict the
distribution of the residential human population are a fundamental prerequisite for measuring the
impacts of population growth9, monitoring changes10, supporting environmental and health
applications11,12, and planning interventions13. Nevertheless, for the majority of these countries, and
especially for those most severely and disproportionately affected by both natural disaster and infectious
disease morbidity, contemporary, spatially detailed, consistent, and open data on population distribution
are often unavailable or difficult to obtain.

For these reasons, since the mid-1990s, there has been an increasing effort to create spatially-explicit
population datasets by using a range of approaches, assumptions, and input data to disaggregate
administrative unit-based population counts to a regular grid of fixed spatial resolution14. Current global
gridded datasets depicting the distribution of human population across the Latin America and the
Caribbean region include various versions of the Gridded Population of the World (GPW)15–18, the
Global Rural-Urban Mapping Project (GRUMP)19, the Oak Ridge National Laboratory's LandScan20, and
the United Nation Environment Programme Latin American and Caribbean Population Database21.
However, these datasets present certain limitations due to their spatial resolution ranging between 30 and
150 arc seconds (approximately 1 and 5 km at the equator, respectively), the age and coarse spatial detail
of the input population count data, or the lack of details on the input data and modelling approach used
to produce them22,23.

In the framework of the WorldPop Project (www.worldpop.org), an open access archive of high-
resolution gridded population distribution datasets for the Latin America and the Caribbean region has
been created using the most recent and finest level census and official population estimate data available at
the time of writing, along with a range of ancillary geospatial datasets depicting factors known to relate to
human population presence and densities. Following the Random Forest (RF)-based dasymetric mapping
approach developed by Stevens et al.24 (Fig. 1), population count data and ancillary datasets for 28 countries
(Tables 1 and 2) were identified, collected, assembled, and exploited in order to produce gridded population
datasets with a spatial resolution of 3 arc seconds (approximately 100 m at the equator). These datasets were
produced for the population count year, as well as for 2010, 2015, and 2020 using the United Nations
Population Division (UNPD) rural and urban growth rates25; with national totals for 2010, 2015, and 2020
both remaining unadjusted and being adjusted to match UNPD estimates25.

Methods
Random forest-based dasymetric population mapping approach
The dasymetric disaggregation of population counts from administrative units into grid cells was
undertaken using a population density weighting layer generated by a RF algorithm. RF is a non-linear and
non-parametric ensemble learning method that generates a large collection of unpruned decision tree
models and aggregates their predictions. Each tree is independently generated by bagging (i.e., by
bootstrapping with replacement)26, and each node of each tree is split using the optimal split among a
randomly selected subset of covariates27. Outputs of all tree models are then aggregated by calculating either
their mode or average, depending on whether the decision trees are used for classification or regression.

The RF method is robust to overfitting27 and not very sensitive, in terms of affecting prediction
accuracy, to the three parameters required to be set for fitting the model28, namely (i) the number of
covariates to be randomly selected at each node, (ii) the number of observations in the terminal nodes of
each trees, and (iii) the number of trees in the forest. Furthermore, it is possible to accurately estimate the
prediction error of the RF model. This can be done by averaging all mean squared errors calculated using
the ‘out-of-bag’ (OOB) data that represent one third of the observations withheld from the bagging
iteration process for each tree in the forest27. The OOB error can be also used to evaluate the importance
of each covariate by considering how much the OOB error increases when only the OOB data for that
given covariate are permuted28,29.
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In the RF-based dasymetric population mapping approach developed by Stevens et al.24, a RF
algorithm is used to generate gridded population density estimates that are subsequently used to
dasymetrically disaggregate population counts from administrative units into grid cells. The same
approach was used to produce the WorldPop Americas datasets described in this article. Initially, a
population density response variable and a suite of covariates were calculated at the administrative unit
level, and then used to fit a RF model for predicting population density at the grid cell level (i.e., to
generate the dasymetric weighting layer) with those raster-based covariates having a spatial resolution of
100 m (Fig. 2).

To reduce processing time during the prediction phase, the multi-stage RF estimation technique
developed by Stevens et al.24 was used. This technique first fits a model using all available covariates and
the (log) population density of each administrative unit as the response. Then, a very conservative
covariate selection process is performed to reduce the number of covariates that will be used for both the
RF model fitting and prediction. To do this the ‘variable’ importance of each covariate27 is extracted and
each covariate that has a score equal to zero is removed before re-fitting the RF model. This process is
then iterated until only covariates with positive scores remain and thus results in the elimination of both
redundant covariates and covariates that could negatively impact the prediction.

As in Stevens et al.24, the RF model fitting was performed by generating 500 trees in the forest and
setting the number of observations in the terminal nodes equal to one. The fitted RF model was then used
to predict population density using only the same reduced set of covariates. For each grid cell, each
regression tree in the forest was used to predict a population density value and the average of all
predictions was assigned to it as its estimated population density value. If there were not enough
observations (i.e., not enough administrative unit population counts) to fit a RF model for a given
country, another country located in the same ecozone30 was identified and used to fit an appropriate RF
model for predicting population density at the grid cell level31.

Subsequently, in both cases, the population density weighting layer was used to dasymetrically
disaggregate the administrative unit-based population counts32 and produce two gridded population
datasets depicting the estimated number of people per grid square and per hectare for the population
count year. These datasets were then projected to 2010 (Fig. 3), 2015, and 2020 using UNPD rural and
urban growth rates25 and also adjusted to match the most recent UNPD estimates at the time of writing25.

All tasks described above were entirely performed using the WordPop-RF code (Data Citation 1)
described in the Code availability section below and publicly available through the figshare repository. In
particular, the code relies on the R statistical environment (version 2.15) and the randomForest package
(version 4.6–7) for fitting the RF model at the administrative unit level and predict at the grid cell level,
and on the Python programming language (version 2.6; www.python.org) and ArcGIS 10.1 arcpy package
for performing the Geographic Information System (GIS)-specific spatial operations required for

Extract population counts
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estimate, or projection     

Match the extracted
population counts to their

corresponding
administrative units     

Calculate population
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administrative unit level  

Process a number of
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Figure 1. Schematic overview of the Random Forest (RF)-based dasymetric mapping approach used to
produce the WorldPop Americas datasets (modified from Stevens et al.24). The preparation of the response
variable and covariates is described in the yellow and orange panels, respectively, the RF modelling steps are
outlined in in the green panels, and the disaggregation of the input population counts from administrative units
into grid cells is described in the blue panel.
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dasymetrically disaggregating the population data, projecting them to 2010, 2015 and 2020, and adjusting
them to match UNPD estimates (refer to the Supplementary File 1 for a technical description of how the
GIS-specific spatial operations are implemented).

Data collection
For each country listed in Table 1, population counts were extracted from the most detailed and recent
official population count data and matched to their corresponding administrative units in a GIS
environment. Both population counts and the corresponding administrative units were either publicly
available (e.g., from GeoHive33 and GADM34, respectively) or contributed by National Statistical Offices
such as the Instituto Brasileiro de Geografia e Estatística (IBGE). Table 1 also provides summary
information about the input population count data and administrative unit datasets used to produce the
WorldPop Americas datasets.

It is well known that human population density is highly correlated with environmental and physical
factors35 that can plausibly impact the spatial distribution of population and/or be related to it. These
may include continuous variables such as intensity of night-time lights36, energy productivity of plants37,
topographic elevation and slope38,39, and climatic factors40, as well as categorical variables such as land-
cover type41 and presence/absence of roads42, waterways and waterbodies43, human settlements and

ISO code Area (sqkm) Total population Year No. of units Unit name/level Average spatial
resolution

Population data source Units data source

ATG 436 81,799C 2011 8 Parish/1 2.6 Census OfficeG GADM34

ARG 2,804,771 40,117,096C 2010 526 Department/2 3.2 INDECG IGN67

BLZ 21,918 312,971C 2010 16 Subdivision/1 9.3 Statistical Institute of BelizeG Meerman68

BOL 1,069,327 10,027,262C 2012 112 Province/2 9.2 INEG GADM34

BRA 8,233,131 190,732,694C 2010 5565 Municipality/3 0.6 IBGE IBGE

CHL 756,096 16,341,929C 2012 297 Municipality/3 2.9 INE-CELADEG GADM34

COL 1,141,261 47,661,787E 2013 1115 Municipality/2 1.0 Departamento Administrativo
Nacional de EstadísticaG

GADM34

CRI 51,100 4,301,712C 2011 469 District/3 0.5 INECG GADM34

CUB 109,884 11,167,325C 2012 168 Municipality/2 2.0 ONEG GADM34

DOM 48,070 9,445,281C 2010 155 Municipality/3 1.4 ONEG GADM34

ECU 257,320 14,483,499C 2010 978 Parish/4 0.5 INECG GADM34

SLV 21,045 5,744,113C 2007 267 Municipality/2 0.5 Dirección General de Estadística y CensosG GADM34

GUF 83,534 231,167E 2010 21 Municipality/3 13.8 InseeG GADM34

GTM 108,201 15,073,375P 2012 335 Municipality/2 1.0 INEG GADM34

GUY 214,999 751,223C 2002 116 Council/2 4.0 Statistics GuyanaG GADM34

HTI 26,964 9,923,243E 2009 570 Section/4 0.3 IHSI GADM34

HND 112,457 8,045,990P 2010 298 Municipality/2 1.1 INEG GADM34

JAM 10,991 2,697,983C 2011 14 Parish/1 7.5 Statistical InstituteG GADM34

MEX 19,67,138 112,336,538C 2010 2456 Municipality/2 0.6 INEGI Valle-Jones69

NIC 120,340 6,071,045E 2012 139 Municipality/3 2.5 INIDEG GADM34

PAN 741,77 3,405,813C 2010 77 District/2 3.5 Dirección de Estadística y CensoG GADM34

PRY 406,752 3,725,789E 2002 247 Municipality/2 2.6 Dirección General de Estadística,
Encuestas y CensosG

GADM34

PER 1,294,681 30,135,875P 2012 194 Province/2 5.9 INEIG GADM34

PRI 13,790 3,725,789C 2010 78 Municipality/1 1.5 U.S. Census BureauG GADM34

SUR 163,820 541,638C 2004 62 Resort/2 6.5 Algemeen Bureau voor de StatistiekG GADM34

TTO 5127 1,328,019C 2011 14 Municipality/1 5.1 Central Statistical OfficeG GADM34

URY 175,016 3,286,314C 2011 19 Department/1 22.0 INEG GADM34

VEN 913,982 28,946,101C 2011 344 Municipality/2 2.8 INEG GADM34

Table 1. Summary information about population count data and administrative unit datasets used to produce
the WorldPop Americas datasets. For each country (identified by its ISO country code in the 1st column), the
Average Spatial Resolution was calculated as the square root of its surface area divided by the number of
administrative units and represents the effective resolution of the latter (i.e., the cell size of administrative units
if all units were square of equal size)14. Superscripts ‘C’, ‘E’, and ‘P’, in the 2nd column, indicate whether the
population counts were obtained from either official census, estimates, or projections, respectively. Superscript
‘G’, in the 8th column, indicates that the population counts were downloaded from GeoHive33.
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urban areas44, and protected areas45. Thus, twelve global raster and vector datasets (described below)
were identified, collected, assembled, and processed into a set of default covariates (Table 2) used for
model fitting and prediction.

The spatial variation of factors related to population distribution, such as night-light intensity and
plant energy productivity, was measured using the NOAA Suomi National Polar-orbiting Partnership
Visible Infrared Imaging Radiometer Suite (VIIRS)46,47 and the NASA TERRA/Moderate Resolution
Imaging Spectroradiometer (MODIS) Net Primary Productivity (NPP)48,49 raster dataset, respectively.
The spatial variation of climatic factors affecting population distribution was considered by including the
WorldClim Annual Mean Temperature (BIO1) and Annual Precipitation (BIO12) raster datasets

50,51. The
World Wildlife Fund (WWF) HydroSheds raster dataset52,53, based on the NASA’s Shuttle Radar
Topography Mission (SRTM) Digital Elevation Model54, was used to represent the spatial variation of
elevation and slope. The European Space Agency (ESA) ENVISAT/MERIS-based GlobCover raster
dataset55,56, and the MODIS 500-m map of global urban extent57,58 were used to identify different land-
cover types and distinguish between urban and rural areas. Finally, the World Database on Protected
Areas (WDPA)59 was used to obtain vector polygons representing protected areas, while the National

Default dataset Default derived covariate Temporal coverage Type Format Resolution Source

Suomi NPP-VIIRS 2012 Continuous Raster 15 arc seconds NOAA46

Night-lights’ intensity 2012 Continuous Raster 100 m

MODIS Net Primary Production 2014/2015 Continuous Raster 30 arc seconds NASA48

Plants’ energy productivity 2014/2015 Continuous Raster 100 m

WorldClim (BIO1) 1950–2000 Continuous Raster 30 arc seconds Hijmans et al.50

Annual Mean Temperature 1950–2000 Continuous Raster 100 m

WorldClim (BIO12) 1950–2000 Continuous Raster 30 arc seconds Hijmans et al.50.

Annual Precipitation 1950–2000 Continuous Raster 100 m

HydroSheds (3 s GRID: Void-filled DEM) 2000 Continuous Raster 3 arc seconds WWF52

Elevation 2000 Continuous Raster 100 m

Slope 2000 Continuous Raster 100 m

MERIS GlobCover 2009 Categorical Raster 10 arc seconds ESA55

Presence/absence of class # 2000/2009 Categorical (binary) Raster 100 m

Distance to class # 2000/2009 Continuous Raster 100 m

Proportion of class # 2000/2009 Continuous Raster 100 m

Presence/absence of built-up areas (BLT) 2000/2009 Categorical (binary) Raster 100 m

Distance to built-up areas (BLT) 2000/2009 Continuous Raster 100 m

Proportion of built-up area (BLT)

MODIS 500 m Global Urban Extent 2000/2001 Categorical (binary) Raster 15 arc seconds Schneider et al.57

Presence/absence of urban areas 2000/2001 Categorical (binary) Raster 100 m

Distance to urban areas 2000/2001 Continuous Raster 100 m

Proportion of urban area 2000/2001 Continuous Raster 100 m

World Database on Protected Areas 2012 Categorical Vector — UNEP-WCMC & IUCN59

Presence/absence of protected areas 2012 Categorical (binary) Raster 100 m

Distance to protected areas 2012 Continuous Raster 100 m

Proportion of protected area 2012 Continuous Raster 100 m

VMAP0 populated places/roads/
rivers/waterbodies

1979–1999 Categorical Vector — NGA60

Presence/absence of populated places/roads/
rivers/waterbodies

Categorical (binary) Raster 100 m

Distance to populated places/roads/rivers/waterbodies Continuous Raster 100 m

Proportion of populated places/roads/rivers/waterbodies Continuous Raster 100 m

Table 2. Summary information on the twelve default datasets and the derived default covariates used for input
to the RF method. Continuous raster datasets were resampled for being used as covariates, while both
categorical raster and rasterized vector data sets were firstly resampled and then processed into ‘presence/
absence’, ‘distance to’, and ‘proportion of’ raster covariates. ‘Class #’, in the 2nd column, refers to the WorlPop
Americas classes described in Supplementary Table 1. Refer to the Data preparation sub-section below for a
more detailed description of how default covariates were processed.
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Geospatial-Intelligence Agency (NGA) Vector Map Level 0 (VMAP0) dataset60 was used to obtain
features representing populated places, roads, rivers, and waterbodies.

Where available, additional country-specific datasets were used to integrate and/or replace the default
datasets outlined above and the corresponding default covariates in the analysis. For example, for most of
the countries, the Landsat TM-based EarthSat GeoCover-LC raster dataset61,62 was combined with the
GlobCover raster dataset to refine the extent of urban areas and identify rural settlements. Similarly,
OpenStreetMap (OSM) vector datasets63 were regularly used to integrate the VMAP0 settlement dataset
and account for land-use types, building sites, and locations of points of interest that may be strongly
correlated with population presence (e.g., health clinics, schools, and police stations). Furthermore, OSM
road and river data were often deemed to be more complete than the corresponding VMAP0 data and,
thus, were used to increase the precision and accuracy of the gridded population outputs64.

For each country, all assembled vector and raster datasets, including the country specific ones, are
described in the metadata file accompanying the corresponding gridded population datasets and viewable
in any web-browser (refer to the Data Record section below for a more detailed description of the
metadata file content).

Data preparation
For each country, the vector dataset representing its administrative units, used to match to population
counts, was projected using the most appropriate country-specific projected coordinate system that
minimized linear and areal distortion. It was then buffered by 10 km, and rasterized at a spatial resolution
of 100 m. This was done in order to (i) generate a dataset representing the population density response
variable, (ii) obtain a raster dataset, representing the study area, for co-registering all raster covariates,
and (iii) produce a number of raster ‘distance to’ covariates that were unaffected by edge effects due to the
fact that the study area is artificially bounded while spatial processes are not65. The population density
response variable was obtained through dividing population counts by the area of the corresponding
administrative units, and log-transforming the results to normalize the response variable distribution.

Covariates for input to the RF method were derived as follows. First, a continuous raster dataset
representing the spatial variation of topographic slope was derived from the USGS HydroSheds dataset
(Table 2). Then, all raster datasets representing continuous variables, including the latter, were projected,
resampled to 100 m resolution, co-registered and matched to the rasterized buffered study area. For all
covariates, ‘NoData’ grid cells overlapping the rasterized buffered study area were filled with the values of
the nearest neighbours (using the Nibble tool available in ArcGIS 10.1). All vector and raster datasets
representing categorical variables were projected, rasterized to or resampled to 100 m resolution,
co-registered, matched to the rasterized buffered study area, and converted into a number of binary raster
covariates, representing presence/absence of a given feature, that were subsequently used to produce
continuous ‘distance to’ and ‘proportion of’ raster covariates (Table 2); with the latter representing,
within a 500 m buffer from each grid cell, the proportion of grid cells where the given feature is present.

A special case of a categorical raster dataset is the land-cover data. Indeed, in this case land-cover
classes must be aggregated (if needed) and recoded to match the ten WorlPop Americas classes derived

Random
Forest
model

Population density
response variable

Covariates calculated at
the administrative unit level

Covariates calculated
the at grid cell level 

Population density
weighting layer 

Model fitting at the
administrative unit level Prediction at

the grid cell level

Population density Night-time light Elevation Protected area Distance to built-up areas
Highest HighestBrightest Absence Farthest

Lowest LowestDarkest ClosestPresence

Figure 2. Schematic overview of the procedure used to generate population density weighting layers. For
illustrative purpose, only 4 out of the 74 covariates considered for Puerto Rico are shown here (the uninhabited
Puerto Rican islands of Mona, Monito, and Desecheo are not shown).
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from the GlobCover dataset (i.e., from class 11 to 230 in the 4th column of Supplementary Table 1). By
default, the recoded GlobCover dataset was ‘Nibbled’, to fill in any missing grid cell, and then mosaicked
with the MODIS 500 m Global Urban Extent dataset to delineate the extent of urban and non-urban
built-up areas (i.e., class 190 and 240 respectively in Supplementary Table 1). When using the GeoCover-
LC dataset, it was first recoded and mosaicked with the GlobCover dataset, to fill missing grid cell, and
with the MODIS 500 m Global Urban Extent dataset. Similarly to the other raster datasets representing
categorical variables, the processed land-cover raster dataset obtained as described above was projected,
resampled to 100 m resolution, co-registered, matched to the rasterized buffered study area, and
converted into twelve binary raster covariates including the combined built-up areas class (BLT) obtained
by combining classes 190 and 240. Binary raster covariates were subsequently used to produce continuous
‘distance to’ and ‘proportion of’ raster covariates (Table 2). Finally, average and modal values for
continuous and binary covariates, respectively, were calculated for each administrative unit and used for
fitting the RF model.
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Figure 3. Estimated people per grid cell for Latin America and the Caribbean in 2010 (excluding Guadalupe,
Martinique, Bahamas, Barbados, Saint Lucia, Curaçao, Aruba, Saint Vincent and The Grenadines, US and
British Virgin Islands, Grenada, Dominica, Cayman Islands, Saint Kitts and Nevis, Sint Maarten, Turks and
Caicos Islands, Saint Martin, Caribbean Netherlands, Anguilla, Saint Barthélemy, and Montserrat). The grid
cell resolution is 3 arc seconds (approximately 100 m at the equator) and coordinates refer to GCS WGS 1984.
For illustrative purpose, the color ranges used are country-specific.

www.nature.com/sdata/

SCIENTIFIC DATA | 2:150045 | DOI: 10.1038/sdata.2015.45 7



The preparation of the population density response variable and raster covariates was entirely
performed using the WordPop-RF code (Data Citation 1) described in the Code availability section below
and publicly available through the figshare repository. In particular, the code relies on the Python
programming language (version 2.6; www.python.org) and ArcGIS 10.1 arcpy package for performing the
GIS-specific spatial operations required for preparing both the response variable and raster covariates
(refer to the Supplementary File 1 for a technical description of how the GIS-specific spatial operations
are implemented). For each country, all derived covariates are listed in the metadata file accompanying
the corresponding gridded population datasets (refer to the Data Record section below for a more
detailed description of the metadata file contents).

Code availability
The WordPop-RF code (Data Citation 1), used to produce the WorldPop Americas datasets, as well as
the metadata and the KML files associated with them (refer to the Data Records section for a description
of the latter), is publicly available through the figshare repository. The code consists of two Python
(version 2.6; www.python.org) and four R (version 2.15.3) programming language scripts that must be
run sequentially in the following order: 1) 01.0—Configuration.py.R; 2) Metadata.R; 3) 01.1—Data
Preparation, R.r; 4) 01.2—Data Preparation, Python.py; 5) 01.3—More Complex Random Forest
Regression, Full Covariate Set and Data Preparation.r; 6) 01.4—Process Density Weights to Population
Maps.py; 7) 01.5—Generate KML.r; 8) 01.6—Generate Metadata Report.r. Each script is also internally
documented in order to both explaining its purpose (including a detailed description of the GIS-specific
spatial operations that it performs) and, when required, guiding the user through its customization.

Data Records
The high-resolution WorldPop Americas datasets described in this article referring to the 28 countries
listed in Table 1, are publicly and freely available both through the WorldPop Dataverse Repository (Data
Citation 2) and the WorldPop project website (http://www.worldpop.org.uk/data/). However, while the
WorldPop Americas datasets stored in the Dataverse Repository represent a static version of the datasets
produced at the time of writing and will be preserved stably in their published form, the datasets stored in
the project website (Supplementary Table 2) will be expanded by including additional countries located in
the region and updated as better and more recent official population count data and covariates become
available.

Both through the Dataverse Repository and the project website, the WorldPop Americas can be
download as 7-Zip archives (7-Zip.org) containing the population distribution datasets of the country it is
associated with for the population count year, as well as for 2010, 2015, and 2020, and a RF model
metadata report (Table 3).

Additionally, from the Data Availability page available on the WorldPop project website (http://www.
worldpop.org.uk/data/data_sources/) it is also possible to browse the 7-Zip archives described above,
download individual GeoTIFF datasets from them, and view the HTML files containing the RF model

Name Description (resolution) Format

ISO_ppp_v2b_YEAR.tif Estimated people per grid cell for the year the official population count data refer to (3 arc seconds) GeoTIFF

ISO_ppp_v2b_2010.tif Projected estimated people per grid cell for 2010 (3 arc seconds) GeoTIFF

ISO_ppp_v2b_2010_UNadj.tif Projected estimated people per grid cell for 2010 adjusted to match UNPD estimates (3 arc seconds) GeoTIFF

ISO_ppp_v2b_2015.tif Projected estimated people per grid cell for 2015 (3 arc seconds) GeoTIFF

ISO_ppp_v2b_2015_UNadj.tif Projected estimated people per grid cell for 2015 adjusted to match UNPD estimates (3 arc seconds) GeoTIFF

ISO_ppp_v2b_2020.tif Projected estimated people per grid cell for 2020 (3 arc seconds) GeoTIFF

ISO_ppp_v2b_2020_UNadj.tif Projected estimated people per grid cell for 2020 adjusted to match UNPD estimates (3 arc seconds) GeoTIFF

ISO_pph_v2b_YEAR.tif Estimated people per hectare for the year the official population count data refer to (3 arc seconds) GeoTIFF

ISO_pph_v2b_2010.tif Projected estimated people per hectare for 2010 GeoTIFF

ISO_pph_v2b_2010_UNadj.tif Projected estimated people per hectare for 2010 adjusted to match UNPD estimates (3 arc seconds) GeoTIFF

ISO_pph_v2b_2015.tif Projected estimated people per hectare for 2015 GeoTIFF

ISO_pph_v2b_2015_UNadj.tif Projected estimated people per hectare for 2015 adjusted to match UNPD estimates (3 arc seconds) GeoTIFF

ISO_pph_v2b_2020.tif Projected estimated people per hectare for 2020 (3 arc seconds) GeoTIFF

ISO_pph_v2b_2020_UNadj.tif Projected estimated people per hectare for 2020 adjusted to match UNPD estimates (3 arc seconds) GeoTIFF

ISO_ppp_v2b_YEAR.kmz Estimated people per grid cell for the year the official census/population counts refer to Keyhole Markup Language (Zipped)

ISO_metadata.html Metadata report for the Random Forest model HyperText Markup Language

Table 3. Name (ISO and YEAR represent the ISO country code and the population count year, respectively),
description, and format of all files contained in each 7-Zip archive associated with the 28 countries listed in
Table 1.
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metadata reports. For each country, the metadata report illustrates the datasets and the related derived
covariates used as input in the RF model, the population density response variable, the gridded
population density dataset used to dasymetrically disaggregate the population from administrative unit to
grid cell level, and basic information about the RF model that includes (i) the country on which it is

ISO code Model Unit level No. of units OOB error % of variation explained RMSE RMSE% MAE

ATG RF 1 8 0.21 86 — — —

ARG RF 2 526 0.78 88 — — —

BLZ RF 1 16 0.25 79 — — —

BOL RF 2 112 0.88 65 — — —

BRA RF 3 5565 0.32 84 — — —

CHL RF 3 297 1.40 70 — — —

COL RF 2 1115 0.35 84 — — —

COL RF 1 33 1.20 75 109798.10 259.81 29361.29

COL SAW 1 33 — — 128372.29 303.76 36463.22

CRI RF 3 469 0.40 92 — — —

CRI RF 2 81 0.20 93 4837.37 52.96 3012.04

CRI SAW 2 81 — — 14463.43 158.34 7976.94

CUB RF 2 168 0.33 82 — — —

DOM RF 2 155 0.22 86 — — —

DOM RF 1 32 0.53 62 46349.33 76.06 19461.99

DOM SAW 1 32 — — 101563.30 166.67 39729.54

ECU RF 4 978 0.47 82 — — —

ECU RF 3 198 0.43 77 36713.59 248.75 7243.05

ECU SAW 3 198 — — 60295.60 408.52 12322.64

SLV RF 2 267 0.20 81 — — —

GUF RF 3 21 2.60 59 — — —

GTM RF 2 335 0.24 80 — — —

GTM RF 1 22 0.33 58 51704.90 114.13 20590.36

GTM SAW 1 22 — — 62299.18 137.52 26125.56

GUY RF 2 116 1.10 87 — — —

HTI RF 4 570 0.14 84 — — —

HTI RF 3 140 0.071 90 10794.96 62.01 5493.25

HTI SAW 3 140 — — 18677.50 107.29 8501.97

HND RF 2 298 0.20 71 — — —

JAM RF 1 14 0.21 86 — — —

MEX RF 2 2456 0.21 92 — — —

NIC RF 3 139 0.32 79 — — —

PAN RF 2 77 0.41 74 — — —

PRY RF 2 247 0.44 85 — — —

PER RF 2 194 0.58 63 — — —

PRI RF 1 78 0.16 74 — — —

SUR RF 2 62 1.40 86 — — —

TTO RF 1 14 0.21 86 — — —

URY RF 1 19 0.58 91 — — —

VEN RF 2 344 1.20 71 — — —

Table 4. Prediction accuracy of the RF model used to generate the dasymetric weighting layers and accuracy
assessment of the RF-based dasymetric mapping approach compared to the simple areal-weighting (SAW)
mapping approach. The OOB error and the percentage of variance explained are provided for all 28 countries
while the RMSE, the %RMSE, and the MAE values are provided for six countries. ‘RF’ and ‘SAW’, in the 2nd
column, indicate that, for that specific country, the population counts at the administrative unit level were
disaggregated using the RF-based dasymetric mapping approach and the simple areal-weighting approach,
respectively.
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based, (ii) its prediction error, (iii) the relative importance of each covariate, (iv) the prediction intervals
using the OOB data (refer to the Methods section for additional information about the latter features).

Technical Validation
Root mean square error (RMSE) and mean absolute error (MAE)
Six countries, located in different parts of the Latin American and the Caribbean region were selected to
assess the increased accuracy of the RF-based dasymetric mapping approach with respect to a simple
areal-weighting (SAW) approach66 (Table 4). For each selected country, population counts were
aggregated within the next coarser administrative level boundary than the finest for which they were
available (e.g., if admin level 4 population count data were available, these were aggregated to admin
level 3). The coarser, aggregated population counts were then used to produce gridded population count
datasets, with a resolution of 100 m, using both the SAW and the RF approach outlined here. Finally, the
two different population estimates produced using these approaches within each of the finest
administrative unit were calculated, and compared with observed population figure referring to the
same higher resolution unit.

Results, summarized in Table 4, show how both the RMSE, the %RMSE (RMSE expressed as a
percentage of the average population of the finest administrative unit level), and the MAE values (5th,
6th, and 7th column of Table 4, respectively) calculated using the RF-based outputs are consistently lower
than the corresponding values calculated for the SAW outputs. These statistics can be used to compare
the accuracy of the two approaches when downscaling the estimates.

Out-of-bag (OOB) error estimation
The OOB error estimate (3rd column of Table 4), as already briefly described in the Methods section, is
internally calculated during the RF model fitting and can be considered a robust and unbiased
measurement of the prediction accuracy of the model itself27.

Nevertheless, it is important to note that since the RF model is fitted at the administrative unit level
and then is used to predict at the grid cell level, the OOB error estimate should not be interpreted as the
prediction error at the grid cell level. Similarly, it does not represent the prediction error that could be
expected to be observed at the administrative unit level by summing all final grid cell values within each
administrative unit and comparing it to the observed population count referring to the same
administrative unit. However, referring to the six countries mentioned in the previous section, by
comparing the OOB error estimates calculated at the aggregate lower administrative unit level than the
highest available (3rd column of Table 4) with the corresponding RMSE and MAE values (5th and 7th
column of Table 3, respectively), it is reasonable to expect that higher accuracy of predicted values at the
administrative unit level results in a higher accuracy of the final gridded population distribution
datasets24.

Usage Notes
The WorldPop Americas datasets can be used both to support applications for planning interventions,
measuring progress, and to predict response variables intrinsically dependent on the population
distribution. However, considering that they represent modelling outputs generated using ancillary
covariate datasets in the disaggregation process, to avoid circularity, they should not be used to make
predictions or explore relationships about any of these ancillary datasets14. Thus, before using WorldPop
Americas datasets in correlation analyses against factors which are included in the process of their
construction (e.g., correlating population distribution with land-cover), ideally the population modelling
process should be re-run using the WordPop-RF code (Data Citation 1) with the covariate of interest
being removed to avoid issues relating to endogeneity.
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