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Abstract

Termination criteria for the iterative solution of bound-constrained optimization
problems are examined in the light of backward error analysis. It is shown that the
problem of determining a suitable perturbation on the problem’s data corresponding
to the definition of the backward error is analytically solvable under mild assumptions.
Moreover, a link between existing termination criteria and this solution is clarified,
indicating that some standard measures of criticality may be interpreted in the sense
of backward error analysis. The backward error problem is finally considered from the
multicriteria optimization point of view and some numerical illustration is provided.

Keywords : Nonlinear optimization, bound constraints, stopping criterion, backward
error, multicriteria optimization.

1 Introduction

The definition of many bound-constrained optimization problems contains uncertainties or
errors in the associated data, for example when they arise from the discretization error
of an underlying continuous problem (Dolan, Moré and Munson [13], Averick and Moré
[3]) or because they contain data obtained by actual physical measurements (Fisher [16]).
It is then natural to seek a solution of the problem whose accuracy is of the order of
(or slightly better than) the level of those uncertainties. If iterative algorithms are used,
this translates into the sometimes difficult selection of a suitable termination rule. This
is especially problematic when solving industrial applications for which one evaluation of
the objective function can be really expensive, which happens typically once per iteration.
In general, defining a good stopping criterion corresponds to finding a reasonable balance
between robustness and oversolving: one seeks to obtain an accurate solution but also to
avoid performing many additional computations for little gain. Moreover, good stopping
criteria should have a meaning that is easy to understand for the user.

A wide range of stopping criteria for bound-constrained optimization algorithms is al-
ready available in the litterature, if one is ready to ignore the noise in the data caused by
the uncertainties and/or errors. They typically consist in requiring a certain optimality (or
criticality) measure to fall below a user-specified tolerance. The most commonly used such
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measure is the norm of the projection of the negative gradient on the feasible set (see Byrd,
Lu, Nocedal and Zhu [7], Hager and Zhang [19] and Xu and Burke [25]). Some trust-region
algorithms (Conn, Gould, Sartenaer and Toint [10], Conn, Gould and Toint [11]) use an
alternative measure which approximates the maximal linear decrease that can be achieved
in the neighbourhood of unit radius. The reduced gradient (that is the gradient where all
its components which are pointing in the direction of an already active bound are set to
zero) is also used as an optimality measure (for example in Burke ans Moré [5], Calamai
and Moré [8], Burke, Moré and Toraldo [6], Burke [4] or Dostal [14]). However, it is usu-
ally not entirely obvious how to adapt these approaches to the case where the problem is
contaminated by noise. See for instance Moré and Wild [21], for an interesting discussion
in a derivative free optimization context.

The purpose of this paper is to present a new approach for defining easily interpretable
stopping criteria which take advantage of known uncertainties in the problems’ data, with
the double objective of ensuring robustness and avoiding unnecessary computations as soon
as the solution error becomes smaller than these uncertainties. Our approach is based on
the well-known linear-algebraic concept of backward error, a concept which is widely used to
define stopping criteria in the solution of linear systems of equations, has been extensively
studied in this framework (see Rigal and Gaches [23], Cox and Higham [12], Golub and
van Loan [18], Chatelin and Frayssé [9] or Higham [20]) and has already been extended
to the solution of nonlinear equations (see Arioli, Duff and Ruiz [1]). The introduction
of a backward error estimate in the solution of bound-constrained nonlinear optimization
will provide, at each step of the algorithm, a measure of the perturbation of the original
problem necessary to define a problem instance of which the incumbent iterate is an exact
solution. This then allows a meaningful comparison of this perturbation size with the
data uncertainties and suggests an efficient termination of the solution algorithm when the
former becomes smaller than the latter.

The paper is organized as follows. In Section 2, we introduce the backward error con-
cept and apply it to our bound-constrained optimization problem. The link between the
backward error and several well-known criticality measures is studied in Section 3 and a
multicriteria analysis of the backward error problem is presented in Section 4. Finally, the
numerical behavior of some interesting criticality measures is illustrated in Section 5 and
conclusions discussed in Section 6.

2 Backward error analysis

2.1 Backward error analysis for bound-constrained optimization

We are interested in solving the minimization problem

min
F

f(x), (1)

where f(.) is a possibly nonlinear objective function and where F = {x ∈ ℜn | l ≤ x ≤ u}
is a set of bound constraints with l, u ∈ ℜn. In practice, we are looking for a first-order
critical point of (1), that is a feasible point x∗ where [∇xf(x∗)]j = 0 for all j /∈ A(x∗),
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where we denote by [v]j the j
th component of a vector v and where we define the active set

of binding constraints at x ∈ F by A(x) = A−(x) ∪ A+(x) with

A−(x) = {j ∈ {1, ..., n} | [x]j = [l]j and [∇xf(x)]j > 0},
A+(x) = {j ∈ {1, ..., n} | [x]j = [u]j and [∇xf(x)]j < 0}.

We consider iterative optimization methods which produce a sequence of iterates xk which
converge to a first-order solution x∗ of the problem to solve. Our objective is to terminate
this sequence as early as possible, especially for large-scale or otherwise expensive prob-
lems, in order to achieve a reasonable reliability of the approximate solution while avoiding
unnecessary costly iterations. An obvious way of expressing this problem is to stop the
iterations when the current iterate xk is such that

||xk − x∗|| < ǫ,

where ǫ is an acceptable tolerance on the distance between the approximate and the first-
order solution and where || · || is a norm making sense for the application considered. But,
unless very particular situations are considered such as the testing phase of an optimization
algorithm, x∗ is not known, and suitable choices for ǫ and || · || are often subjective, making
the above test impractical and the exploitation of any knowledge of the uncertainty on
the problem data difficult. Our proposal is therefore to adopt the backward error point
of view, as has been proposed for linear algebra by Givens [17] and Wilkinson [24]. The
idea is to replace the question How far from the solution is the current approximation xk?
by If there exists a minimization problem (P ) whose xk is a first-order solution, how far
from the original problem (1) is (P )? We may then consider terminating the iterative
solution algorithm as soon as this latter distance is smaller than the known error (e.g. the
discretization error). Notice that we assume the order of magnitude of the error is known
a priori. However, in the case where the error is only estimated a posteriori, we have to
solve the problem with a very demanding accuracy in order to avoid interferences with
the estimation of the error. To make this backward error approach for bound-constrained
optimization problem more formal, we consider, for any guess x̃, a perturbed version of the
original problem (1) defined by

min
F∆

f(x) + ∆f +∆gTx, (2)

with F∆ = {x ∈ ℜn | l + ∆l ≤ x ≤ u +∆u} and where the perturbations ∆f,∆g,∆l,∆u
are chosen such that x̃ is an exact first-order critical point of (2). The first-order sufficient
condition for optimality then implies that ∆f,∆g,∆l and ∆u satisfy [∇xf(x̃) + ∆g]j = 0
for all j /∈ A∆(x̃), where A∆(x) = A−

∆(x)∪A+
∆(x) is the perturbed set of binding constraints,

with

A−

∆(x) = {j ∈ {1, ..., n} | [x]j = [l]j + [∆l]j and [∇xf(x) + ∆g]j > 0},
A+

∆(x) = {j ∈ {1, ..., n} | [x]j = [u]j + [∆u]j and [∇xf(x) + ∆g]j < 0}.

Since the value of ∆f does not appear in this sufficient condition, we can set ∆f = 0 in (2)
without loss of generality, which we do from now on. We now define the backward error
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as the minimum of some product norm of the remaining perturbations ∆g,∆l,∆u. We are
then led to define

D def
= {(∆g,∆l,∆u) ∈ ℜ3n | x̃ ∈ F∆ and [∇xf(x̃) + ∆g]j = 0 for all j /∈ A∆(x̃)},

and to propose terminating the algorithm as soon as

inf
(∆g,∆l,∆u)∈D

‖ (∆g,∆l,∆u) ‖ < ǫ(ǫg, ǫl, ǫu),

where the perturbations ∆g, ∆l, ∆u are respectively measured with the norms ||.||g, ||.||l, ||.||u
and ‖.‖ is a product norm of these three norms. The thresholds ǫg, ǫl, ǫu ∈ ℜ represent the
known order of magnitude of the error on g, l and u as mesured with the corresponding
norm. Notice that D is always non-empty as it always contains (−∇xf(x̃), x̃ − l, x̃ − u).
Moreover, the infimum may actually be replaced by a minimum, because D is the union of
a finite number of direct products between closed sets ( see Mouffe [22]) and is thus itself a
closed set and the minimization can be restricted to bounded perturbations (∆g,∆l,∆u)
such that ‖(∆g,∆l,∆u)‖ ≤ ‖(−∇xf(x̃), x̃ − l, x̃ − u)‖. Thus our proposal is to terminate
the algorithm at the first iteration k such that

min
(∆g,∆l,∆u)∈D

‖ (∆g,∆l,∆u) ‖ < ǫ(ǫg, ǫl, ǫu), (3)

where min(∆g,∆l,∆u)∈D ‖ (∆g,∆l,∆u) ‖ is the backward error for x̃ = xk, xk being the
current iterate.

2.2 Solving the backward error problem

We now wish to investigate how the value of the minimum on the left-hand-side of (3) can
be computed in practice for specific choices of the product norm. We start by considering
the weighted sum measure

χws
def
= min

(∆g,∆l,∆u)∈D
(αg||∆g||g + αl||∆l||l + αu||∆u||u), (4)

and the absolute measure

χabs
def
= min

(∆g,∆l,∆u)∈D
||αg|∆g|+ αl|∆l|+ αu|∆u| ||glu, (5)

where (αg, αl, αu) > 0, where |.| denotes the componentwise absolute value, and where
||.||g, ||.||l, ||.||u and ||.||glu are monotone norms, in the sense that each of these norms
satisfies the following properties

if ∀j ∈ {1, ..., n}|[u]j | ≥ |[v]j |, then ||u|| ≥ ||v|| ∀u, v ∈ ℜn.

Notice that the product norms defined by (4) and (5) satisfy all the norm properties as long
as αg, αl and αu are positive. Notice that, in particular, all the p-norms, 1 ≤ p ≤ ∞, are
monotone norms. Moreover, the choice left for ||.||g, ||.||l and ||.||u in the definition (4) of
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χws opens the possibility of defining, for instance, ||.||g as the dual norm of ||.||l = ||.||u (on
the obvious condition that ||.||g, ||.||l, ||.||u are all monotone). Unfortunately, the energy-
norm (or A-norm) defined by ||v||2A = vTAv, where v is a vector of ℜn and A ∈ ℜn×n is a
symmetric positive definite matrix, is not a monotone norm.

This assumption of monotone norms is motivated by the fact that it allows a relatively
easy characterization of a set P ⊆ D containing the solution set of both problems (4) and (5).
Indeed we now show, in a technical theorem, that any optimal solution (∆g∗,∆l∗,∆u∗)
of (4), as well as any optimal solution of (5), belongs to a finite set P ⊆ D explicitly
described as the cartesian product between n subsets of ℜ3, each of them containing at
most two elements.

Theorem 2.1 Suppose that ||.||g, ||.||l, ||.||u and ||.||glu are monotone norms and denote
by Sws ⊆ D the set of solutions of (4) and by Sabs ⊆ D the set of solutions of (5) for some
arbitrary x̃. Let V(x) = V−(x) ∪ V+(x), where

V−(x) = {j ∈ {1, ..., n} | [x]j < [l]j and [∇xf(x)]j > 0},
V+(x) = {j ∈ {1, ..., n} | [x]j > [u]j and [∇xf(x)]j < 0},

be the set of violated constraints pointed by the negative gradient, and let

U = {j ∈ {1, ..., n} | [∇xf(x̃)]j 6= 0 and j /∈ A(x̃) and j /∈ V(x̃)}

be the set of undecided indices. In addition, denote Fj = {[x]j ∈ ℜ | [l]j ≤ [x]j ≤ [u]j}.
Then we have that Sws ⊆ P ⊆ D and Sabs ⊆ P ⊆ D, where P is the set of perturbations
(∆g,∆l,∆u) ∈ D such that, for all 1 ≤ j ≤ n,

([∆g]j ; [∆l]j ; [∆u]j) =





(a) (0 ; 0 ; 0) if [x̃]j ∈ Fj and j /∈ U ,
(b)

or
([−∇xf(x̃)]j ; 0 ; 0) if [x̃]j ∈ Fj and j ∈ U

and [∇xf(x̃)]j > 0,(c) (0 ; [x̃− l]j ; 0)

(d)
or

([−∇xf(x̃)]j ; 0 ; 0) if [x̃]j ∈ Fj and j ∈ U
and [∇xf(x̃)]j < 0,(e) (0 ; 0 ; [x̃− u]j)

(f)
or

(0 ; [x̃− l]j ; 0) if [x̃]j /∈ Fj and j /∈ U ,
(g) (0 ; 0 ; [x̃− u]j)

(h)
or

([−∇xf(x̃)]j ; 0 ; [x̃− u]j) if [x̃]j /∈ Fj and j ∈ U
and [∇xf(x̃)]j > 0,(i) (0 ; [x̃− l]j ; [x̃− u]j)

(j)
or

([−∇xf(x̃)]j ; [x̃− l]j ; 0) if [x̃]j /∈ Fj and j ∈ U
and [∇xf(x̃)]j < 0.(k) (0 ; [x̃− l]j ; [x̃− u]j)

(6)

Proof. First notice that P ⊆ D. Indeed, for all undecided indices j ∈ U such that
[x̃]j ∈ Fj , either we have [∇xf(x̃) + ∆g]j = 0 because of (6b) and (6d), or (6c) and (6e)
imply that j ∈ A∆(x̃). When [x̃]j /∈ Fj , the violated bound is perturbed in addition to
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make x̃ feasible. We now want to prove that Sws ⊆ P and Sabs ⊆ P. For this purpose, we

consider a perturbation vector ∆̂
def
= (∆̂g, ∆̂l, ∆̂u) ∈ D \ P.

In a first step, we prove that there exists at least one (∆g,∆l,∆u) ∈ P such that for
all j for which (6) does not hold, ([∆g]j ; [∆l]j ; [∆u]j) satisfies

|[̂∆g]j | ≥ | [∆g]j | and |[̂∆l]j | ≥ | [∆l]j | and | ̂[∆u]j | ≥ | [∆u]j | (a)

and either |[̂∆g]j | > | [∆g]j | or |[̂∆l]j | > | [∆l]j | or | ̂[∆u]j | > | [∆u]j | (b).
(7)

We distinguish three cases.
Suppose first that j /∈ U . If [x̃]j ∈ Fj , then equation (6a) implies that

[∆g]j = [∆l]j = [∆u]j = 0,

and thus (7) obviously holds for any other perturbation ∆̂ ∈ D \ P. Otherwise, if [x̃]j <

[l]j , the optimality condition imposes that [̂∆l]j ≤ [x̃ − l]j < 0 and thus a perturbation
satisfying (6f) also ensures (7). The same reasoning applies using (6g) when [x̃]j > [u]j .

Suppose now that j ∈ U and [∇xf(x̃)]j > 0. Because ∆̂ ∈ D, we have both x̃ ∈ F∆ and
either

[̂∆g]j = [−∇xf(x̃)]j , (8)

or
[̂∆l]j = [x̃− l]j , (9)

or
̂[∆u]j = [x̃− u]j and [̂∆g]j < [−∇xf(x̃)]j . (10)

When [x̃]j ∈ Fj , a perturbation satisfying (6b) guarantees (7) for all ∆̂ satisfying (10).
When [x̃]j /∈ Fj , j ∈ U and [∇xf(x̃)]j > 0, it follows that [x̃]j > [u]j , and therefore (6h)

ensures (7) for all ∆̂ such that (10) holds. In addition, if [x̃]j ∈ Fj , (6b) and (6c) imply (7)

for all ∆̂ such that (8) holds but [̂∆l]j 6= 0 or ̂[∆u]j 6= 0, and for all ∆̂ such that (9) holds

but [̂∆g]j 6= 0 or ̂[∆u]j 6= 0, respectively. In the case where [x̃]j /∈ Fj , we need to impose

̂[∆u]j ≥ [x̃− u]j > 0 to obtain that x̃ ∈ F∆, and therefore (7) is ensured by a perturbation
satisfying (6h) when (8) holds and satisfying (6i) when (9) holds.

Finally, a symmetric reasoning leads to (7) in the case where j ∈ U and [∇xf(x̃)]j < 0.

We therefore conclude that, for any ∆̂ ∈ D \ P, there always exists (∆g,∆l,∆u)
∈ P satisfying (7) for j such that (6) does not hold. In addition, notice that (7a) is actually
satisfied for all j = 1, ..., n, as it suffices to define

([∆g]j ; [∆l]j ; [∆u]j) = ([̂∆g]j ; [̂∆l]j ;
̂[∆u]j)

for all other j. Moreover, there necessarily exists at least one j such that (7b) holds because
we have assumed ∆̂ ∈ D \ P.

Using now the monotonicity of ||.||g, ||.||l and ||.||u, we deduce that

||∆̂g||g ≥ ||∆g||g, ||∆̂l||l ≥ ||∆l||l and ||∆̂u||u ≥ ||∆u||u. (11)
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Now, as (αg, αl, αu) ∈ ℜ3
+, we have

αg||∆̂g||g + αl||∆̂l||l + αu||∆̂u||u ≥ αg||∆g||g + αl||∆l||l + αu||∆u||u,

which leads to

min
(∆g,∆l,∆u)∈D

αg||∆g||g+αl||∆l||l+αu||∆u||u = min
(∆g,∆l,∆u)∈P

αg||∆g||g+αl||∆l||l+αu||∆u||u

and, therefore, Sws ⊆ P. In addition, using the monotonicity of ||.||glu, we obtain from (7)

||αg|∆̂g|+ αl|∆̂l|+ αu|∆̂u|||glu ≥ ||αg|∆g|+ αl|∆l|+ αu|∆u|||glu,

and therefore

min
(∆g,∆l,∆u)∈D

||αg|∆g|+ αl|∆l|+ αu|∆u|||glu = min
(∆g,∆l,∆u)∈P

||αg|∆g|+ αl|∆l|+ αu|∆u|||glu,

which is Sabs ⊆ P. 2

We have just proved that the solution of the backward error in each direction corresponds
to perturbing the feasible set F such that the current iterate becomes feasible, and either
driving the gradient to zero or perturbing the feasible set further such that the current
iterate lies on the boundary pointed by the negative gradient. The required monotonicity
of the norms is necessary as shown on the following example. Consider the nonmonotone
energy-norm ||v||A =

√
vTAv for all vectors v ∈ ℜn, where

A =

[
1 0.9
0.9 1

]

is positive definite. This norm is indeed nonmonotone since we have, for example, ||(−1; 1)||2A
= 1/5 but ||(1/2; 0)||2A = 1/4. Assume, in addition, that x̃ = (4; 3), ∇xf(x̃) = (3; 5), and
that the bound constraints are defined by l = (0; 0) and u = (5; 5). The set P defined by
Theorem 2.1 is then composed of the vectors

P =





(∆g1,∆l1,∆u1) = ( (−3;−5), (0; 0), (0; 0) ),
(∆g2,∆l2,∆u2) = ( (−3; 0), (0; 3), (0; 0) ),
(∆g3,∆l3,∆u3) = ( ( 0;−5), (4; 0), (0; 0) ),
(∆g4,∆l4,∆u4) = ( ( 0; 0), (4; 3), (0; 0) ).

If we now consider the perturbation (∆̂g, ∆̂l, ∆̂u)
def
= ( (5;−5), (4;−4), (0; 0) ), it is easy

to verify that it belongs to D \ P and also that

||∆̂g||A + ||∆̂l||A + ||∆̂u||A = 4.0249 < 6.0 = min
(∆g,∆l,∆u)∈P

||∆g||A + ||∆l||A + ||∆u||A.

Hence Sws 6⊆ P in this case.
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We observe that, if our assumption on norms is strengthened to require strict mono-
tonicity of ||.||g, ||.||l and ||.||u in the sense that

if ∃j ∈ {1, ..., n}|[u]j | > |[v]j |, then ||u|| > ||v|| ∀u, v ∈ ℜn,

then we may deduce in the proof of Theorem 2.1 not only that (11) holds, but also that at
least one of the inequalities

||∆̂g||g > ||∆g||g or ||∆̂l||l > ||∆l||l or ||∆̂u||u > ||∆u||u (12)

must hold as well. This will be used in Section 4.

3 Practical criticality measures and backward error analysis

If we wish to find an explicit solution of problems (4) and (5), the result of previous section
does help, but does not provide a complete solution in that one still has to solve the
combinatorial problem of minimizing the perturbation norm over P. We actually have to
specify the chosen norms for ||.||g, ||.||l, ||.||u and ||.||glu to obtain an explicit expression of
the solution. The three following Corollaries are simple consequences of the fact that we
determine the point p ∈ D from Theorem 2.1 with the smallest components and then use
the monotonicity of the norms involved. Consequently, we present here the results for three
different norm choices, the proof of which are given in the appendix in order to improve the
readability of the paper. We start by considering a specific case where an explicit solution
is possible, namely the case where χabs is chosen and ||.||glu = ||.||p for 1 ≤ p < ∞.

Corollary 3.1 Suppose that ||.||glu = ||.||p, 1 ≤ p < ∞. Then

χp
abs

def
= min

(∆g,∆l,∆u)∈D
||αg|∆g|+ αl|∆l|+ αu|∆u| ||p = ||Λ||p, (13)

where Λ is defined componentwise and [Λ]j is equal to





0 if [x̃]j ∈ Fj and [∇xf(x̃)]j = 0,

min{αg|[∇xf(x̃)]j |, αl|[x̃− l]j |} if [x̃]j ∈ Fj and [∇xf(x̃)]j > 0,

min{αg|[∇xf(x̃)]j |, αu|[x̃− u]j |} if [x̃]j ∈ Fj and [∇xf(x̃)]j < 0,

αu|[x̃− u]j | if [x̃]j > [u]j and [∇xf(x̃)]j ≤ 0,

min{αg|[∇xf(x̃)]j |, αl|[x̃− l]j |}+ αu|[x̃− u]j | if [x̃]j > [u]j and [∇xf(x̃)]j > 0,

αl|[x̃− l]j | if [x̃]j < [l]j and [∇xf(x̃)]j ≥ 0,

min{αg|[∇xf(x̃)]j |, αu|[x̃− u]j |}+ αl|[x̃− l]j | if [x̃]j < [l]j and [∇xf(x̃)]j < 0.

(14)

We now extend this result to the use of the infinity norm in the definition of χabs.
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Corollary 3.2 Suppose that ||.||glu = ||.||∞, then

χ∞
abs

def
= min

(∆g,∆l,∆u)∈D
||αg|∆g|+ αl|∆l|+ αu|∆u| ||∞ = ||Λ||∞ (15)

where the components of the vector Λ are defined as in (14).

We finally show that a similar result holds for χws when ||.||g = ||.||l = ||.||u = ||.||1,
because χws = χabs with ||.||glu = ||.||1 in that specific case.

Corollary 3.3 Suppose that ||.||g = ||.||l = ||.||u = ||.||1. Then

χ1
ws

def
= min

(∆g,∆l,∆u)∈D
αg||∆g||1 + αl||∆l||1 + αu||∆u||1 = ||Λ||1, (16)

where [Λ]j is defined by (14).

The above results are particularly interesting because they allows to express a close form
termination criterion in the very frequent case where the weights in (4) and (5) are chosen

such that αl = αu
def
= αlu. This is often natural since the lower and upper bounds are

generally computed similarly. In this case, we define a vector representing an augmented
scaled projection of the negative gradient on the feasible set

Γ(αg, αlu)
def
= αlu

(∣∣∣∣ProjF(x̃)

[
x̃− αg

αlu

∇xf(x̃)

]
− x̃

∣∣∣∣+ |x̃− ProjF (x̃)|
)
, (17)

where ProjF (x) is the orthogonal projection of x onto the (convex) feasible set F and relate
this quantity to the desired backward error, and where F(x̃) represents the smallest box
containing l, u and x̃; for example, F(x̃) = F when x̃ ∈ F . It is crucial to note that this
augmented scaled projection is easily computable (given the weights) and reduces, as we
show below, to popular termination rules for specific weight’s choices.

We now verify our claim that (17) is the vector whose norm is the backward error.

Theorem 3.4 The augmented scaled projection of the negative gradient on the feasible set
Γ(αg, αlu) defined in (17), is such that

Γ(αg, αlu) = Λ, (18)

where Λ is defined by (14).

Proof. In a first step, we show that
[∣∣∣ProjF(x̃)

[
x̃− αg

αlu
∇xf(x̃)

]
− x̃

∣∣∣
]
j
=





0 if [x̃]j ∈ Fj and [∇xf(x̃)]j = 0,

1
αlu

min{αg|[∇xf(x̃)]j |, αlu|[x̃− l]j |} if [x̃]j ∈ Fj and [∇xf(x̃)]j > 0,

1
αlu

min{αg|[∇xf(x̃)]j |, αlu|[x̃− u]j |} if [x̃]j ∈ Fj and [∇xf(x̃)]j < 0,

0 if [x̃]j > [u]j and [∇xf(x̃)]j ≤ 0,

1
αlu

min{αg|[∇xf(x̃)]j |, αlu|[x̃− l]j |} if [x̃]j > [u]j and [∇xf(x̃)]j > 0,

0 if [x̃]j < [l]j and [∇xf(x̃)]j ≥ 0,

1
αlu

min{αg|[∇xf(x̃)]j |, αlu|[x̃− u]j |} if [x̃]j < [l]j and [∇xf(x̃)]j < 0.

(19)
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Assume first that [x̃]j ∈ Fj . The definitions of Γ(αg, αlu) and of the orthogonal projection
and the fact that F(x̃) = F give that

[∣∣∣∣ProjF(x̃)

[
x̃− αg

αlu

∇xf(x̃)

]
− x̃

∣∣∣∣
]

j

=





min
{

αg

αlu
|[∇xf(x̃)]j |, |[x̃− l]j |

}
if

αg

αlu
[∇xf(x̃)]j ≥ 0,

min
{

αg

αlu
|[∇xf(x̃)]j |, |[x̃− u]j |

}
if

αg

αlu
[∇xf(x̃)]j ≤ 0,

=

{
1

αlu
min{αg|[∇xf(x̃)]j |, αlu|[x̃− l]j |} if [∇xf(x̃)]j ≥ 0,

1
αlu

min{αg|[∇xf(x̃)]j |, αlu|[x̃− u]j |} if [∇xf(x̃)]j ≤ 0,

where we used the positiveness of the weigths. Because those two minima are zero when
[∇xf(x̃)]j = 0, we have proved (19) for all j such that [x̃]j ∈ Fj . Considering now the
infeasible case, we observe that, because of the weights’ positiveness, if [x̃]j > [u]j and
[∇xf(x̃)]j | ≤ 0, the left-hand side of (19) is the projection on F(x̃) of either the nul vector
(if [∇xf(x̃)]j | = 0) or a vector based at one of the bounds and pointing outwards. Therefore
this projection is identically zero. The same holds if [x̃]j < [l]j and [∇xf(x̃)]j | ≥ 0. On
another hand, if [x̃]j > [u]j but [∇xf(x̃)]j | > 0, the projection of the scaled negative
gradient on F(x̃) becomes

min

{
αg

αlu

|[∇xf(x̃)]j |, |[x̃− l]j |
}

=
1

αlu

min{αg|[∇xf(x̃)]j |, αlu|[x̃− l]j |}

and, similarly, the projection of the scaled negative gradient on F(x̃) is equal to

min

{
αg

αlu

|[∇xf(x̃)]j |, |[x̃− u]j |
}

=
1

αlu

min{αg|[∇xf(x̃)]j |, αlu|[x̃− u]j |}

when [x̃]j < [l]j but [∇xf(x̃)]j | < 0, which concludes the proof of (19). Finally notice that

[|x− ProjF (x)|]j =





0 if [x̃]j ∈ Fj ,
|[x̃− u]j | if [x̃]j > [u]j ,
|[x̃− l]j | if [x̃]j < [l]j ,

and the proof is complete. 2

Having shown that the augmented scaled projection vector is identical to the solution of the
backward error problem in the conditions specified by Corollaries 3.1-3.3, we now restate
the explicit forms taken by the associated criticality measures.

Corollary 3.5 Suppose that αl = αu = αlu, and that ‖ · ‖p, 1 ≤ p ≤ ∞, is used in (5).
Then

χabs
p = ||Γ(αg, αlu)||p . (20)

Proof. This is an immediate consequence of Corollary 3.1, Corollary 3.2 and Theorem 3.4.
2
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Corollary 3.6 Suppose that αl = αu = αlu, and that ‖ · ‖1 is used in (4). Then

χws
1 = ||Γ(αg, αlu)||1 . (21)

Proof. This is an immediate consequence of Corollary 3.3 and Theorem 3.4. 2

We now comment on formula (17). In the light of Theorem 3.4, we first see that, if x̃ is
feasible, then ||Γ(αg, αlu)|| reduces to the scaled projection of the negative gradient on the
feasible space

Γ(αg, αlu)
def
= αlu

(
ProjF

[
x̃− αg

αlu

∇xf(x̃)

]
− x̃

)
. (22)

Moreover, an immediate consequence of Corollary 3.5 and Corollary 3.6 is that, if x̃ is
feasible and αg = αlu = 1, then the optimal value for (5) is

χ = ‖Γ(1, 1)‖p = ‖ProjF [x̃−∇xf(x̃)]− x̃‖p ,

which is a quantity commonly used in actual termination rules for bound-constrained opti-
mization (see Byrd et al. [7], Hager and Zhang [19] and Xu and Burke [25]). The choice of
the measure (17) however allows acting on the weights αg and αlu. This feature is useful
for instance when the error on the gradient (ǫg) is comparatively larger than that on the
bounds (ǫlu), a situation which is not untypical, for instance in discretized contact problems
(see Dostal [14]). The formulation (17) then makes the use of a single termination accuracy
ǫ reasonable even if these errors are different, by using

αg = 1/ǫg and αlu = 1/ǫlu. (23)

If the solution process is terminated when ‖Γ(αg, αlu)‖p ≤ 0.1, for instance, this ensures
that any accepted solution of the optimization problem (1) has a backward error on the
gradient at least an order of magnitude smaller than ǫg, and is therefore negligible, the
same being true for the backward error on the bounds constraints.

If the current point is feasible, the definition of (22) may also be related to a second case
of interest: the criticality measure defined by the norm of the reduced gradient gred, defined
by the projection of ∇xf(x̃) on the tangent cone of the constraints, or more precisely,

[gred]j
def
=

{
0 if j ∈ A(x̃),

[∇xf(x̃)]j otherwise.

(see Burke and Moré [5], Calamai and Moré [8], Burke et al. [6], Burke [4] or Dostal [14], for
example). It is interesting to note that in the case where αl = αu, x̃ ∈ P and ‖·‖glu = ‖·‖p,
1 ≤ p ≤ ∞, we have that

‖gred‖p = lim
αlu→∞

‖Γ(1, αlu)‖p. (24)
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Indeed, since limαlu→∞ ‖Γ(1, αlu)‖p = ‖ limαlu→∞ Γ(1, αlu)‖p, (14), (22) and x̃ ∈ F imply
that

lim
αlu→∞

Γ(1, αlu) = lim
αlu→∞





0 if [∇xf(x̃)]j = 0,
min{|[∇xf(x̃)]j |, αlu|[x̃− l]j |} if [∇xf(x̃)]j > 0,
min{|[∇xf(x̃)]j |, αlu|[x̃− u]j |} if [∇xf(x̃)]j < 0,

= lim
αlu→∞





0 if j ∈ A(x̃) or [∇xf(x̃)]j = 0,

min{|[∇xf(x̃)]j |, αlu|[x̃− l]j |} if

{
j /∈ A(x̃) and
[∇xf(x̃)]j > 0,

min{|[∇xf(x̃)]j |, αlu|[x̃− u]j |} if

{
j /∈ A(x̃) and
[∇xf(x̃)]j < 0,

because [x̃]j = [l]j when j ∈ A(x̃) and [∇xf(x̃)]j > 0 and [x̃]j = [u]j when j ∈ A(x̃) and
[∇xf(x̃)]j < 0. Finally, taking the limit as αlu goes to infinity gives that

lim
αlu→∞

Γ(1, αlu) =

{
0 if j ∈ A(x̃),
αg|[∇xf(x̃)]j | if j /∈ A(x̃),

= ‖gred‖p.

When x̃ ∈ F , we also observe that

lim
αg→∞

‖Γ(αg, 1)‖p = ||d||p, (25)

where d is a vector joining the current iterate to the corner of the feasible set designated
by the negative gradient, and whose components are defined by

[d]j =





[l − x̃]j if [∇xf(x̃)]j > 0,

[u− x̃]j if [∇xf(x̃)]j < 0,

0 if [∇xf(x̃)]j = 0.

This is an immediate result of letting αg tend to infinity in (14) with αlu = 1. Equations (24)
and (25) are an illustration of the sensitivity of backward error to the weights αg, αl, αu.
We expect that for large αg, χ will reflect the distance d from x̃ to the bounds pointed by
the negative gradient. For large αlu, χ will behave like the projection of ∇xf(x̃) on the
tangent cone to the constraints.

After having recovered two well-known criticality measures from our backward analysis
approach, we now observe that not every such criticality measure can be viewed under that
angle. For example, the measure defined by

µ
def
= | min

x̃+ d ∈ F
‖d‖∞ ≤ 1

∇xf(x̃)
Td| (26)

is often used in trust-region algorithms and can be interpreted as giving a first-order ap-
proximation of the feasible decrease which can be achieved in a ball of radius one (see Conn
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et al. [10]). The use of the infinity norm ‖ · ‖∞ in this definition is motivated by the
observation that the intersection of the feasible set with the unit ball remains a box, which
makes the computation of µ straighforward. Unfortunately, µ is in general not a backward
error in any norm, as we now show.

Lemma 3.7 The criticality measure µ is not a backward error in the sense of (3), i.e.
there does not exist a product norm ‖ · ‖tr such that, for all problems of the type (1), we
have that

µ = min
(∆g,∆l,∆u)∈D

‖(∆g,∆l,∆u)‖tr. (27)

Proof. We only need to find one problem (one specific x̃, f , F) where there is no norm
such that (27) holds. We therefore consider the minimization of a linear function subject
to some bound constraints l ≤ x ≤ u and such that its constant gradient is negative, that
is ∇xf(x̃) < 0 for all feasible iterates x̃, where the inequality is understood componentwise.

If we consider some x̃ > u− 1, in that specific case, d∗ = (u− x̃) for all k and

µ = | − ∇xf(x̃)
T (u− x̃)|.

So we suppose that there exists ‖ · ‖tr such that

µ = | − ∇xf(x̃)
T (u− x̃)| = min

y∈D
‖(∆g,∆l,∆u)‖tr = ‖(∆g∗,∆l∗,∆u∗)‖tr. (28)

We then obtain, using the Cauchy-Schwarz inequality,

1 ≥ | − ∇xf(x̃)
T (u− x̃)|

‖ − ∇xf(x̃)‖2‖u− x̃‖2
=

‖(∆g∗,∆l∗,∆u∗)‖tr
‖ − ∇xf(x̃)‖2‖u− x̃‖2

. (29)

As we consider a feasible x̃, the vectors ∆g∗,∆l∗,∆u∗ are such that

[∇xf(x̃) + ∆g∗]j = 0
or

[l +∆l∗]j = [x̃]j and [∇xf(x̃) + ∆g∗]j > 0

or
[u+∆u∗]j = [x̃]j and [∇xf(x̃) + ∆g∗]j < 0.

(30)

Consider now a sequence of iterates x̃k and assume first that [∆g∗]j = [−∇xf(x̃k)]j for all j
and for k sufficiently large, i.e. for all k ≥ k1. In that case, because all norms are equivalent
in finite dimension, there exists a constant ν such that

‖(∆g∗,∆l∗,∆u∗)‖tr ≥ ν(‖∆g∗‖2 + ‖∆l∗‖2 + ‖∆u∗‖2) ≥ ν‖∆g∗‖2 = ν‖ −∇xf(x̃k)‖2, (31)

where we used the fact that ‖(u, v, w)‖ def
= ‖u‖2 + ‖v‖2 + ‖w‖2 is a norm on ℜn ×ℜn ×ℜn,

where n is the dimension of the problem. Equation (29) therefore gives 1 ≥ ν/‖u−x̃k‖2. We
consider more specifically the sequence of iterates such that x̃k is monotonically converging
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to the upper bound u such that [u− x̃k]j = 1/k for all j and for all k (implying x̃k > u− 1
for all k). Then the last equation leads to

1 ≥ lim
k→∞

ν

‖u− x̃k‖2
= k

ν√
n
= +∞,

which is impossible. We thus conclude that our assumption is false and, because of (30),
we deduce that there exists at least one index j and at least one k ≥ k1 such that either
[∆l∗]j = [l − x̃k]j or [∆u∗]j = [u − x̃k]j . This, together with the first inequality of (31),
implies that

‖(∆g∗,∆l∗,∆u∗)‖tr ≥ ν(‖∆g∗‖2 + ‖∆l∗‖2 + ‖∆u∗‖2)
≥ νmin{‖∆l∗‖2, ‖∆u∗‖2}
≥ νmin{|[l − x̃k]j |, |[u− x̃k]j |}

and, therefore, (29) gives that

1 ≥ νmin{|[l − x̃k]j |, |[u− x̃k]j |}
‖ − ∇xf(x̃k)‖2‖u− x̃k‖2

.

The assumption [u − x̃k]j = 1/k implies that ‖u − x̃k‖2 =
√
n/k and that there exists k2

such that for all k ≥ k2 we have |[l − x̃k]j | > |[u− x̃]j |. We obtain

1 ≥ ν|[u− x̃]j |
‖ − ∇xf(x̃)‖2‖u− x̃‖2

≥ ν√
n‖ − ∇xf(x̃)‖2

,

which is impossible for all problems where the constant gradient is chosen such that
‖ − ∇xf(x̃)‖2 < ν/

√
n. We conclude that our assumption (28) is false, and the proof

is complete. 2

4 A multicriteria analysis

Solving the backward error problem corresponds to finding the minimal distance between
the original problem and the closest problem we have already solved at iteration k. We
have so far measured this distance by means of a product norm defined on the space of the
perturbations, for instance by constructing a positive linear combination of the individual
perturbation norms, as in Section 2.2. This approach is quite natural since one often has
information about ∆g, ∆l and ∆u and some choice of norms for ‖ · ‖g, ‖ · ‖l, ‖ · ‖u may
be suggested by the underlying application. Aggregating them in a suitable positive linear
combination may therefore be reasonable. This is however not the only possibility and we
briefly explore, in this section, the use of the multicriteria optimization (MCO) (see Ehrgott
[15] for more details on this subject) problem of the form

“min ” (‖∆g‖g, ‖∆l‖l, ‖∆u‖u)
s.t. (∆g,∆l,∆u) ∈ D.

(32)
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Notice that the previous definition (4) of the backward error problem can be viewed as a
scalarization of the more general problem (32), consisting of taking a linear combination
of the three objective functions with positive weights. A solution (∆g∗,∆l∗,∆u∗) of the
general MCO problem (32) is a Pareto optimal solution, if and only if there exists no
(∆g,∆l,∆u) ∈ D such that

‖∆g‖g ≤ ‖∆g∗‖g and ‖∆l‖l ≤ ‖∆l∗‖l and ‖∆u‖u ≤ ‖∆u∗‖u
‖∆g‖g < ‖∆g∗‖g or ‖∆l‖l < ‖∆l∗‖l or ‖∆u‖u < ‖∆u∗‖u.

In that case, we say that the feasible point (∆g∗,∆l∗,∆u∗) is not dominated by any other
feasible point. The set DE of all Pareto optimal solutions is called the Pareto optimal set,
while YN represents the set of all nondominated points yn = (‖∆ge‖g, ‖∆le‖l, ‖∆ue‖u) ∈ ℜ3,
where (∆ge,∆le,∆ue) ∈ DE , and is called the nondominated set.

Theorem 2.1 in Section 2.2 has established that the solution of the backward error prob-
lem is located in the set P. Looking back at this theorem (relation (11)) and the subsequent
comment yielding (12) from the MCO point view, we conclude that all (∆g,∆l,∆u) ∈ D\P
are dominated by at least one point of P, and thus cannot be Pareto optimal for the original
MCO problem. As a consequence, we deduce that

DE ⊆ P.

Unfortunately, we cannot say which solution of P is Pareto optimal without knowing the
specific values of x̃, l, u and∇xf(x̃). In addition, notice that, because the standard definition
of the backward error is a scalarization of the MCO problem, a solution of (4) is always
also Pareto optimal, that is

Sws ⊆ DE and (‖∆g∗‖g, ‖∆l∗‖l, ‖∆u∗‖u) ∈ YN for all (∆g∗,∆l∗,∆u∗) ∈ Sws.

Nevertheless, if YN is not a convex set, we may not access all yn ∈ YN by scalarization (see
Ehrgott [15], pp 68-73, for a proof of these two properties). We illustrate this observation
on a simple example. Consider some iterate x̃ = (3; 4; 1) obtained during the minimization
of a problem with the bound constraints l = (0; 0; 0) and u = (5; 5; 5), for which the gradient
is equal to ∇xf(x̃) = (4; 3; 1). Assume that we have chosen ‖ · ‖g = ‖ · ‖l = ‖ · ‖u = ‖ · ‖∞.
In that case, P contains





(∆g1,∆l1,∆u1) = ( (−4;−3;−1), (0; 0; 0), (0; 0; 0) )
(∆g2,∆l2,∆u2) = ( (−4;−3; 0), (0; 0; 1), (0; 0; 0) )
(∆g3,∆l3,∆u3) = ( (−4; 0;−1), (0; 4; 0), (0; 0; 0) )
(∆g4,∆l4,∆u4) = ( ( 0;−3;−1), (3; 0; 0), (0; 0; 0) )
(∆g5,∆l5,∆u5) = ( (−4; 0; 0), (0; 4; 1), (0; 0; 0) )
(∆g6,∆l6,∆u6) = ( ( 0;−3; 0), (3; 0; 1), (0; 0; 0) )
(∆g7,∆l7,∆u7) = ( ( 0; 0;−1), (3; 4; 0), (0; 0; 0) )
(∆g8,∆l8,∆u8) = ( ( 0; 0; 0), (3; 4; 1), (0; 0; 0) )

and we can compute, using the definition of a Pareto optimal solution, the set

DE = {(∆g1,∆l1,∆u1), (∆g4,∆l4,∆u4), (∆g6,∆l6,∆u6), (∆g8,∆l8,∆u8)},
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Figure 1: For each (∆g,∆l,∆u) ∈ P, we represented (‖∆g‖∞, ‖∆l‖∞) by a big dot and the
elements of YN are surrounded by a square. ∆u is not represented here because ‖∆u‖∞ ∈
[0,+∞) for all perturbations in D and ‖∆u‖∞ = 0 for all perturbations in P. We see that
the Pareto front is not convex so we cannot access y2 = (3; 3; 0) by means of a scalarization.

leading to YN = {y1 = (4, 0, 0), y2 = (3, 3, 0), y3 = (0, 4, 0)}. The image of P and the Pareto
front are shown in Figure 1. In this case, the possibly interesting perturbation y2 = (3, 3, 0)
cannot be reached by any scalarization.

The interest of this multicriteria approach to the backward error is that it may lead
to terminate the algorithm even sooner than with (4), at a still acceptable approximate
solution of the optimization problem. The choice of the interesting point on the Pareto
front would be left to a “decision maker” in this approach.

5 Numerical examples

In this section, we illustrate the interest of adapting the stopping criterion of a bound-
constrained optimization algorithm according to the error bounds we may know on the
data. For this purpose, we consider the well-known minimal surface problem with obstacle

min
v∈K

∫

S2

√
1 + ‖∇xv‖22, (33)

where K =
{
v ∈ H1(S2) | v(x) = v0(x) on ∂S2

}
, S2 is the unit square {(x, y) ∈ ℜ2 | 0 ≤

x ≤ 1 and 0 ≤ y ≤ 1} and where v must satisfy the constraints

v(x) ≥ 0.7 if 1
3 ≤ x1, x2 ≤ 2

3 ,
v(x) ≥ 0 otherwise.

This convex problem is discretized using a finite-element basis defined using a uniform tri-
angulation of S2, with the same grid spacing, h = 1/n, along the two coordinate directions.
The basis functions are the standard P1 functions which are linear on each triangle and
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take the value 0 or 1 at each vertex. The boundary condition v0(x) is chosen as

v0(x) =





x1(1− x1), x2 = 0, 0 ≤ x1 ≤ 1,
0, x1 = 0, 0 ≤ x2 ≤ 1,
x1(1− x1), x2 = 1, 0 ≤ x1 ≤ 1,
0, x1 = 1, 0 ≤ x2 ≤ 1,

We then modify the discretized version of this problem, here considered as the original
optimization problem, by adding the following linear term : 10−2 sin(1 : n)Tx, where n
is the dimension of the discretized problem and sin(1 : n) is a vector of ℜn whose ith

component is equal to sin(i). This modified problem can be viewed as an approximation of
the original discretized problem with an error on the gradient of O(10−2). We now compare
the behavior of two different criticality measures during the application of an infinity-norm
trust-region algorithm using a projected truncated conjugate gradient algorithm as internal
solver applied on this perturbed problem with n = 3969 variables. The first measure is the
standard 1-norm of the projection of the negative gradient on the feasible set with a stopping
threshold set to ǫ = 10−15. The second measure is the scaled version (22) of the previous
measure, where the weights are chosen as in (23) with ǫg = 10−2 and ǫlu = 10−14 because
the problem has an error of O(10−2) on ∇xf(.) but the bounds are computed exactly. In
this case, as suggested after (23), the stopping tolerance ǫ is set to 10−1 in order to ensure
that the final solving error on the gradient will be insignificant in comparison with the
error known on its computation. Notice that this choice also ensures that the solving error
allowed on the bound constraints will be reduced to the order of 10−15 as in the first case.

Nb Iter Evals f Evals ∇xf(x) Evals ∇xxf(x)

‖Γ‖1 493 147 142 80

‖Γ(1/ǫg, 1/ǫlu)‖1 228 137 132 80

Table 1: Total number of iterations, function, gradient and Hessian evaluations when stop-
ping the algorithm using ‖Γ‖1 and ‖Γ(1/ǫg, 1/ǫlu)‖1.

The total number of iterations, function, gradient and Hessian evaluations at convergence
are displayed in Table 1. The number of iterations presented here corresponds to internal
iterations or conjugate gradient iterations in the bound-constrained quadratic trust-region
subproblem. The number of external trust-region iterations has not been represented be-
cause it is equal to the number of function evaluations. As expected, the scaled criticality
measure is less restrictive and we can see that stopping the algorithm as soon as the back-
ward error on the gradient is significantly smaller than its intrinsic error implies a huge
reduction of the number of conjugate gradient iterations. In addition, the use of an adapted
stopping criterion allowed to save function evaluations, which can be crucial when dealing
with real industrial problems. Notice that the proportion of internal iterations per function
evaluation changes along the algorithm because active bounds are detected progressively,
and the conjugate gradient iterations are stopped as soon as two bounds have been acti-
vated. Therefore, there are generally few internal iterations per external iteration at the
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beginning of the algorithm, but when closer to convergence most of the active bounds have
been detected by the algorithm, and it is allowed to perform many more conjugate gradi-
ent steps before finishing one external iteration. In addition, the equal number of Hessian
evaluations comes from the fact that the Hessian matrix is not computed at every iteration.
More precisely, the Hessian matrix is only computed whenever the preceding iteration is
not successful enough or when ‖gk − gk−1 −Hk−1sk−1‖2 > ǫH‖gk‖2, where ǫH has been set
to 10−3. This condition may not hold at the last iterations because the minimized function
behaves like a quadratic when approaching convergence, which explains the same number
of Hessian evaluations. Moreover, no significant improvement has been obtained on the
objective function value with the more stringent stopping criteria (the relative difference
between the two values is actually 2.662e-9). Of course the scope of illustration remains
limited, but it definitely suggests that the use of termination rule based on backward error
analysis can be beneficial.

Another interesting property of the scaled criticality measure is that the choice of the
weigths in the scaling may have a significant influence on the shape of the acceptable
solution. For the purpose of illustration, consider now the following quadratic problem

−∆u(x)/10 = f(x) in S2

u(x) = 0 on ∂S2,

where f(x) is such that the analytical solution to this problem is u(x) = 2x2(x2 − 1) +
2x1(x1 − 1). The problem is submitted to the following bound constraint

u(x) ≥ 7.5 if 4
9 ≤ x1, x2 ≤ 5

9
u(x) ≥ 5 if 1

9 ≤ x1, x2 ≤ 2
9 , or 1

9 ≤ x1 ≤ 2
9 and 7

9 ≤ x2 ≤ 8
9 ,

or 7
9 ≤ x1 ≤ 8

9 and 1
9 ≤ x2 ≤ 2

9 , or 7
9 ≤ x1, x2 ≤ 8

9
u(x) ≥ 0 otherwise,

and is discretized using a 5-point finite-difference scheme with h = 1/3969. We consider
four approximate solutions of this problem, acceptable for the scaled criticality measure
with weights chosen as in (23) and where the tolerances are arbitrarily chosen as ǫg = 10−8

and ǫlu = 10−8, ǫg = 10−8 and ǫlu = 10−2, ǫg = 10−2 and ǫlu = 10−8, and finally ǫg = 10−2

and ǫlu = 10−2. Notice that ‖Γ(1/10−8, 1/10−8)‖1 is a representative of standard stopping
criteria. Figure 2 first shows the distance between the approximate solution and the bound
constraint for all active components at the exact solution (this restriction is denoted by
the subscript a), while Figure 3 illustrates the gradient of the approximate solutions for
all inactive components at the exact solution (this restriction is denoted by the subscript
i). Table 2 contains the ℓ1-norm of the same quantities in the three situations considered,
together with the value of the corresponding criticality measure.
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‖∇xf(x̃i)‖1 ‖x̃a − la‖1 ‖Γ(1/ǫg, 1/ǫlu)‖1
ǫg = 10−8, ǫlu = 10−8 9.1601e-11 0 0.0092

ǫg = 10−8, ǫlu = 10−2 9.1586e-11 5.5315e-05 0.0645

ǫg = 10−2, ǫlu = 10−8 6.2852e-04 0 0.0629

ǫg = 10−2, ǫlu = 10−2 6.2852e-04 5.5226e-05 0.0684

Table 2: The 1-norm of the gradient of approximate solutions on all inactive components
at the exact solution, the 1-norm of the distance between the approximate solution and the
bound constraint on all active components at the exact solution and the value of the scaled
criticality measure (22) are presented with regard to different values of ǫg and ǫlu.
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Figure 2: The distance between acceptable solutions for the scaled criticality measure with
different values of ǫg and ǫlu and the bound constraint for all active components at the
exact solution.

We see on this example that the gradient and the distance to the bound constraints is
handled differently when the weights of the scaled criticality measure are changed. For
example, the flexibility left on the accuracy required on the gradient has been used in the
second and the third cases, without negatively affecting the accuracy on the distance to the
bounds when ǫlu is set to 10−8. In practice, of course, the shape of the approximate solution
obtained with a specific criticality measure will also depends on the choice of the algorithm
producing the iterates. For instance, if the algorithm is designed to identify quickly the
correct active set, it is possible that the backward error on the bound constraints remains
insignificant for all reasonable values of ǫlu when using the scaled criticality measure.
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Figure 3: The gradient of acceptable solutions for the scaled criticality measure with dif-
ferent values of ǫg and ǫlu at all inactive components at the exact solution.

6 Conclusion

We have applied the concept of backward error analysis on the problem of finding mean-
ingful stopping criteria for nonlinear bound-constrained optimization algorithms. We have
first shown that known criticality measures for this problem based on the projected and
reduced gradient can be viewed as backward error measures. Variants of the first of these
measures have been suggested for the case where the error on the gradient and on the
bounds are known and of different orders of magnitude. We have also indicated why a
measure constructed on the feasible linear decrease in a unit ball can not be interpreted in
this way, and have defined a multicriteria backward error that opens the way to the use
of new stopping criteria. A numerical example has finally been presented to illustrate the
potential benefits of our approach.

The authors believe that backward-error-based termination criteria have a real potential
for avoiding oversolving optimization problems, both at the nonlinear level and at the level
of the subproblem solution, where approximate formulations are typically considered. For
instance the present results already cover the solution of the ℓ∞ trust-region subproblem,
but the case of the Euclidean norm is also of interest. These ideas of course need further
analysis and more extensive numerical confirmation, but the initial results are encouraging.
Moreover, the extention of the theory to the use of possibly nonmonotone norms, such as
energy norms (see Arioli, Loghin and Wathen [2]) should be considered in the future in
order to apply backward error stopping criteria to the solution of optimization problems
resulting from the discretization of partial differential equations.
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References

[1] M. Arioli, I. S. Duff, and D. Ruiz. Stopping criteria for iterative solvers. SIAM Journal
on Matrix Analysis and Applications, 13(1):138–144, 1992.

[2] M. Arioli, D. Loghin, and A. Wathen. Stopping criteria for iterations in finite element
methods. Numerische Mathematik, 99(3):381–410, 2004.
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A Proofs of Corollaries 3.1-3.3

Proof of Corollary 3.1: The application of Theorem 2.1 and the definition of the p-norm
first give

χp
abs = min

(∆g,∆l,∆u)∈P

p

√√√√
n∑

j=1

([αg|∆g|+ αl|∆l|+ αu|∆u|]j)p.

Then, considering the positiveness of the terms and the definition of P, together with the
fact that all the components j of the elements of P are chosen independently between at
most two possibilities, we have that

χp
abs =

p

√√√√√√√√√

n∑

j=1




min
([∆g]j ; [∆l]j ; [∆u]j),
(∆g,∆l,∆u) ∈ P

(αg|[∆g]j |+ αl|[∆l]j |+ αu|[∆u]j |)




p

.

The measure χp
abs is thus equal to the p-norm of the vector Λ defined by

[Λ]j = min
([∆g]j ; [∆l]j ; [∆u]j),
(∆g,∆l,∆u) ∈ P

(αg|[∆g]j |+ αl|[∆l]j |+ αu|[∆u]j |),

the value of which will be determined in the second part of the proof. Consider first the
case where [x̃]j ∈ Fj . The definition of P yields [∆g]j = [∆l]j = [∆u]j = 0 that for all
j /∈ U . Otherwise, that is if j ∈ U , the definition of P leaves the choice between two
solutions (depending on the sign of the gradient) for the minimization corresponding to the
j-th component. The first solution is

([∆g]j ; [∆l]j ; [∆u]j) = ([−∇xf(x̃)]j ; 0 ; 0)

and [Λ]j is equal to αg|[∆g]j | = αg|[∇xf(x̃)]j | in this case. If the second solution

([∆g]j ; [∆l]j ; [∆u]j) =

{
(0 ; [x̃− l]j ; 0) if [∇xf(x̃)]j > 0,
(0 ; 0 ; [x̃− u]j) if [∇xf(x̃)]j < 0,

is preferred, then [Λ]j is equal to either αl|[∆l]j | = αl|[x̃ − l]j | if [∇xf(x̃)]j > 0, or to
αu|[∆u]j | = αu|[x̃ − u]j | if [∇xf(x̃)]j < 0. Thus [Λ]j is defined as in (14) when [x̃]j ∈ Fj .
Now consider the infeasible case. If j /∈ U , the definition of P implies that [Λ]j is equal to
either (0 ; [x̃− l]j ; 0) when [x̃]j < [l]j , or to (0 ; 0 ; [x̃− u]j) when [x̃]j > [u]j . Therefore we
have that

[Λ]j =

{
αu|[x̃− u]j | if [x̃]j > [u]j and [∇xf(x̃)]j ≤ 0,
αl|[x̃− l]j | if [x̃]j < [l]j and [∇xf(x̃)]j ≥ 0.

If j ∈ U and [∇xf(x̃)]j > 0, notice that the infeasibility automatically implies [x̃]j > [u]j . In
that case, the definition of P lets the choice between two solutions: ([−∇xf(x̃)]j ; 0 ; [x̃−u]j)
and (0 ; [x̃− l]j ; [x̃− u]j), leading to a value of the objective function equal to

[Λ]j = min{αg|[∇xf(x̃)]j |, αl|[x̃− l]j |}+ αu|[x̃− u]j |.
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Similarly, the two solutions in P when j ∈ U and [∇xf(x̃)]j < 0 correspond to a situation
where [x̃]j < [l]j , ane give that

[Λ]j = min{αg|[∇xf(x̃)]j |, αu|[x̃− u]j |}+ αl|[x̃− l]j |.

Gathering the values obtained in the different cases, we finally obtain that χp
abs = ||Λ||p,

with [Λ]j defined by (14). 2

Proof of Corollary 3.2: First notice that the definition of P implies that #P, the
cardinal of P, is a finite number since it is smaller than 2n (because we have the choice
between at most two solutions for each j = 1, ..., n). As a consequence, Theorem 2.1 implies
that

χ∞
abs = min

(∆g,∆l,∆u)∈P
||αg|∆g|+ αl|∆l|+ αu|∆u| ||∞

= min {||(∆g1,∆l1,∆u1)||∞, ..., ||(∆g#P ,∆l#P ,∆u#P)||∞}

= min

{
lim
p→∞

||(∆g1,∆l1,∆u1)||p, ..., lim
p→∞

||(∆g#P ,∆l#P ,∆u#P)||p
}

where we used the identity limp→∞ ||.||p = ||.||∞. The fact that #P is finite now allows us
to write that

χ∞
abs = lim

p→∞
min{||(∆g1,∆l1,∆u1)||p, ..., ||(∆g#P ,∆l#P ,∆u#P)||p}

= lim
p→∞

min
(∆g,∆l,∆u)∈D

||αg|∆g|+ αl|∆l|+ αu|∆u| ||p,

where we used Theorem 2.1 to derive the last equality. Finally, Corollary 3.1 then gives
that

χ∞
abs = lim

p→∞
||Λ||p = ||Λ||∞,

where Λ is defined by (14). 2

Proof of Corollary 3.3: We prove this result by showing that χ1
ws = χp

abs where
p = 1. Applying the definitions of χ1

ws and of the 1-norm, we first obtain that

χ1
ws = min

(∆g,∆l,∆u)∈D
αg||∆g||1 + αl||∆l||1 + αu||∆u||1

= min
(∆g,∆l,∆u)∈D

αg

n∑

j=1

|[∆g]j |+ αl

n∑

j=1

|[∆l]j |+ αu

n∑

j=1

|[∆u]j |

= min
(∆g,∆l,∆u)∈D

n∑

j=1

[αg|∆g|+ αl|∆l|+ αu|∆u|]j .
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Then, the positiveness of the terms and the definitions of χp
abs and of the 1-norm give that

χws = min
(∆g,∆l,∆u)∈D

n∑

j=1

|[αg|∆g|+ αl|∆l|+ αu|∆u|]j |

= min
(∆g,∆l,∆u)∈D

||αg|∆g|+ αl|∆l|+ αu|∆u| ||1

= χp
abs

with p = 1. We conclude the proof by applying Corollary 3.1. 2


