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Patterns are ubiquitous
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One possible mechanism: Turing instability
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A.M.Turing, The chemical basis of morphogenesis, Phil. Trans. R Soc London B, 237, (1952), pp.37

Hence as the perturbation grows, non-linearities enter into the game 
yielding an asymptotic, spatially inhomogeneous, steady state (stationary 
pattern) or time varying one (wave like pattern).

Dif fusion can drive an 
instability by perturbing a 
homogeneous stable (in 
absence of diffusion) fixed 
point.



www.unamur.be timoteo.carletti@unamur.be

Networks are everywhere

world flights map

social networks

proteins networks technological networks
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(complex) Networks: some definitions

A network is a set of nodes connected by links (edges)

1

2

3

4

5

e1 e2

e3e4

Ex.: 5 nodes and 4 edges (undirected)

The number of links entering (going out) from each node is 
called in-degree (out-degree)

Ex.: degree node 1 = 3 
degree nodes 2 & 4 = 2 
degree node 3 = 1 
degree node 5 = 0

A network is said to be complex if 
the degree distribution is not trivial, 
i .e. not constant ( lat t ice) nor 
Poissonian (random, Erdős-Rényi)

A network can be described by its Adjacency 
matrix

Aij =

(
1 if nodes i and j are linked

0 otherwise



www.unamur.be timoteo.carletti@unamur.be

Reactions occur at each node.  Diffusion occurs across edges.

Extension to networks

Metapopulation models 
e.g. in the framework of ecology: 
May R., Will a large complex system be 
stable? Nature, 238, pp. 413, (1972)

Patterns : sets of nodes whose asymptotic state is far from the 
homogeneous equilibrium.
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Reaction term:

Nakao H. and Mikhailov A. S.,  
Turing patterns in network-organized activator–inhibitor systems, Nature Physics, 6, pp. 544 (2010)

(
u̇i(t) = f(ui(t), vi(t))

v̇i(t) = g(ui(t), vi(t)) 8i = 1, . . . , n and t > 0.

At each node i=1,…,n, “species” u and v react through some non-linear 
functions f and g depending on the quantities available at node i-th 
(metapopulation assumption)



www.unamur.be timoteo.carletti@unamur.be

Nakao H. and Mikhailov A. S.,  
Turing patterns in network-organized activator–inhibitor systems, Nature Physics, 6, pp. 544 (2010)

Diffusion term:
Diffusive transport of species into a certain node i is given by the sum of 
incoming fluxes to node i from other connected nodes j, fluxes are proportional 
to the concentration difference between the nodes (Fick's law).

1

2

3

4

5

e1 e2

e3e4

Ex.: consider the amount of u in node 1, 
u can enter from 2, 3 and 4 
u can leave 1 to go to 2, 3 and 4

u2 + u3 + u4 � 3u1 =
X

j

A1juj � k1u1 =
X

j

(A1j � �1jkj)uj :=
X

j

L1juj

L is called Laplacian matrix of the network
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Nakao H. and Mikhailov A. S.,  
Turing patterns in network-organized activator–inhibitor systems, Nature Physics, 6, pp. 544 (2010)

(
u̇i(t) = f(ui(t), vi(t)) +Du

Pn
j=1 Lijuj(t)

v̇i(t) = g(ui(t), vi(t)) +Dv
Pn

j=1 Lijvj(t) 8i = 1, . . . , n and t > 0.

Du and Dv are the diffusion coefficients of species u and v

The model:

Observe that because the network is undirected, the matrices A and L are 
symmetric
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General strategy

1) Assume there exists a spatially homogeneous solution:  
 
 
which moreover is stable when there is no diffusion:

(ui, vi) = (û, v̂) 8i = 1, . . . , n

Du = Dv = 0
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General strategy

1) Assume there exists a spatially homogeneous solution:  
 
 
which moreover is stable when there is no diffusion:

(ui, vi) = (û, v̂) 8i = 1, . . . , n

Du = Dv = 0

2) Linearize around this solution

ui = û+ �ui

vi = v̂ + �vi

✓
˙�u
˙�v

◆
= J̃

✓
�u
�v

◆

J̃ =

✓
fuIn +DuL fvIn

guIn gvIn +DvL

◆
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General strategy

(ui, vi) = (û, v̂) 8i = 1, . . . , n

Du > 0 and Dv > 0

3) Prove that (possibly) the spatially homogeneous solution: 
 
 
turns out to be unstable once the diffusion is in action
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General strategy

(ui, vi) = (û, v̂) 8i = 1, . . . , n

Du > 0 and Dv > 0

3) Prove that (possibly) the spatially homogeneous solution: 
 
 
turns out to be unstable once the diffusion is in action

Sketch of the proof
i) Let

ii) decompose the solution on the eigenbasis and use the ansatz

L~�↵ = ⇤↵~�↵, ↵ = 1, . . . , n ~�↵ = (�↵
1 , . . . ,�

↵
n)X

i

�↵
i �

�
i = �↵�

�ui(t) =
nX

↵=1

c↵�
↵
i e

�↵t

⇤↵  0



www.unamur.be timoteo.carletti@unamur.be

General strategy

iii)         (called relation dispersion) is solution of �↵

det


�↵ �

✓
fu +Du⇤↵ fv

gu gv +Dv⇤↵

◆�
= 0
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General strategy

iii)         (called relation dispersion) is solution of �↵

det


�↵ �

✓
fu +Du⇤↵ fv

gu gv +Dv⇤↵

◆�
= 0

iv) if there exists           such that                       then Turing patterns do emerge.⇤↵c
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Systems composed by layers of networks: Multiplexes

Social networks 
layers=different social networks 
nodes=same agent in each SN

Transportation networks 
layers=different modalities 
nodes=same spatial location
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Turing instabilities on multiplex networks

1st layer

2nd layer

(
u̇K
i = f(uK

i , vKi ) +DK
u

P⌦
j=1 L

K
iju

K
j +D12

u

�
uK+1
i � uK

i

�

v̇Ki = g(uK
i , vKi ) +DK

v

P⌦
j=1 L

K
ij v

K
j +D12

v

�
vK+1
i � vKi

�

With K=1,2 (K=3 should be read K=1)

LK
ij = AK

ij � �ijk
K
i

Laplacian matrix of 
layer K

adjacency matrix of 
layer K degree of i-th note 

in layer K

DK
u,v inter-layer diffusion coefficient

D12
u,v intra-layer diffusion coefficient

⌦The same      nodes are present in each layer
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General strategy

1) Assume there exists a spatially homogeneous solution:

(uK
i , vKi ) = (û, v̂) 8i = 1, . . . , n
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General strategy

2) Linearize around this solution

uK
j = û+ �uK

j

vKj = v̂ + �vKj

✓
˙�u
˙�v

◆
= J̃

✓
�u
�v

◆

J̃ =

✓
fuI2⌦ +Lu +D12

u I fvI2⌦
guI2⌦ gvI2⌦ +Lv +D12

v I

◆

Lu =

✓
D1

uL
1 0

0 D2
uL

2

◆
I =

��I⌦ I⌦
I⌦ �I⌦

�

Supra-Laplacian matrix Lu +D12
u I

1) Assume there exists a spatially homogeneous solution:

(uK
i , vKi ) = (û, v̂) 8i = 1, . . . , n
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General strategy

3) Study the spectrum of

J̃ =

✓
fuI2⌦ +Lu +D12

u I fvI2⌦
guI2⌦ gvI2⌦ +Lv +D12

v I

◆

to determine the existence of eigenvalues such that
<�(D12

u,v, D
K
u,v) > 0
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General strategy

3) Study the spectrum of

J̃ =

✓
fuI2⌦ +Lu +D12

u I fvI2⌦
guI2⌦ gvI2⌦ +Lv +D12

v I

◆

Very hard for generic topologies, however …

to determine the existence of eigenvalues such that
<�(D12

u,v, D
K
u,v) > 0
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Small intra-layer diffusion case

D12
v = ✏ << 1 D12

u = O(✏)

J̃ =

✓
fuI2⌦ +Lu fvI2⌦

guI2⌦ gvI2⌦ +Lv

◆
+ ✏

 
D12

u
D12

v
L1 0

0 L2

!

= J̃ 0 + ✏D0

Assume

Perturbative approach to compute the spectrum

�max(✏) = �max

0 + ✏(U0D0V0)k
max

k

max

+O(✏2)

k
max

= argmax�
k

(✏ = 0)

�max

0 = max�
k

(✏ = 0)
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Small intra-layer diffusion case: destruction of patterns
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Small intra-layer diffusion case: destruction of patterns
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Small intra-layer diffusion case: destruction of patterns
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Remarks

1) The large intra-layer diffusion - can be handled as well 

2) One can be interested in the effect of adding/removing layers
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Delayed models

Movement across links takes time, so the diffusion part should contain a 
delay term.

Also reactions can take time, so the reaction part should contain a delay term.
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Movement across links takes time, so the diffusion part should contain a 
delay term.

Also reactions can take time, so the reaction part should contain a delay term.
ẋi(t) = f(xi(t� ⌧r)) +D

X

j

Lijxj(t� ⌧d)

Observe that one single species is enough to have Turing patterns
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The relation dispersion can be analytically 
computed using the Lambert W-function
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