
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

DOCTOR OF SCIENCES

Investigation of the surface lipoprotein export machinery of Bacteroidetes

Lauber, Frédéric

Award date:
2016

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 04. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/f70cd955-4e7c-4e8a-ad63-45ec4711435d


 
 
 

 
 
 

 
 

Université de Namur, Faculté des Sciences, Département de Biologie 
Unité de Recherche en Biologie des Microorganismes 

 
 
 

10th October 2016 
 
 
 

Investigation of the surface lipoprotein 
export machinery of Bacteroidetes 

 
 
 

Submitted by Frédéric Lauber 
For the degree of PhD in Science 

 
 
 
 
 
JURY 
Prof. Wilbert Bitter (VU University Amsterdam, The Netherlands) 
Prof. Jean-François Collet (UCLouvain, Belgium) 
Prof. Johan Wouters (UNamur, Belgium) 
Prof. Xavier De Bolle (UNamur, Belgium) 
Prof. Guy R. Cornelis (UNamur, Belgium) 
 
 
 
Supervisors: 
Prof. Guy R. Cornelis 
Dr. Francesco Renzi  



 2 

Foreword 
 

 

Bacteria of the phylum Bacteroidetes harbor abundant surface exposed 

multi-protein membrane complexes (Sus-like systems) involved in carbohydrate 

acquisition. These complexes are key determinants for commensalism and also 

play a role in pathogenesis. Interestingly, Sus-like systems are mainly composed 

of lipoproteins anchored to the outer membrane and facing the external milieu. 

This lipoprotein localization is uncommon in most Gram-negative bacteria while 

it is widespread in Bacteroidetes. To date however, little is known on how these 

complexes assemble and in particular on how lipoproteins reach the bacterial 

surface. 

 

The work presented in this manuscript thus aims at providing a better 

understanding of how lipoproteins are transported to the cell surface in 

Bacteroidetes as well as how they are distinguished from intracellular 

lipoproteins using our model organism Capnocytophaga canimorsus.  

 

During my master thesis, I explored the function of C. canimorsus Sus-like 

systems. In particular, I could show that one of these systems is devoted to iron 

acquisition. While this discovery was done before my PhD, the additional 

experiments required during the publication process took a substantial amount 

of my time during my PhD. Hence, although it is not directly linked to the main 

topic of my thesis but nevertheless in relation to it, we decided to include this 

manuscript in the thesis. 
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Summary 
 

 

This work focuses at exploring the mechanisms underlying lipoprotein 

surface localization in Gram-negative bacteria of the phylum Bacteroidetes using 

as model organism the dog commensal and human pathogen Capnocytophaga 

canimorsus (Cc). While unusual in most studied bacteria, this lipoprotein 

localization is crucial both for commensalism and pathogenicity of many 

Bacteroidetes. 

 

By in silico analyses of Cc surface exposed lipoproteins, we identified an 

N-terminally conserved motif (QKDDE). We show that this motif is sufficient for 

cell surface localization when introduced in an intracellular lipoprotein and thus 

represents the Cc lipoprotein export signal (LES). We further demonstrate that 

the overall negative charge of the LES is essential for protein transport. We also 

determined the minimal composition for a functional LES as well as its optimal 

positioning. Finally, an in silico analysis performed on the lipoproteins of two 

other Bacteroidetes species, namely Bacteroides fragilis and Flavobacterium 

johnsoniae, revealed that the LES is broadly distributed among the phylum. The 

derived LES of each species was tested and found to be functional in Cc, 

indicating strong conservation of the signaling and the putative lipoprotein 

transport mechanisms in Bacteroidetes. 

 

We also focused at identifying the underlying lipoprotein transport 

machinery. We first searched for LolA interaction partners, the periplasmic 

chaperone of lipoproteins, which led to the identification of several candidates. 

We found all of them to be involved to some extend in outer membrane 

biogenesis and/or to be required for growth in liquid medium. In particular, we 

could show that an Skp homolog is essential in Cc and that its depletion leads to 

early growth arrest. However, their exact function remains to be clarified. 

In parallel, we investigated highly conserved proteins unique to 

Bacteroidetes, i.e. putative candidates for the lipoprotein transport machinery. 

We found that most Bacteroidetes genomes encode more than one BamA 
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homolog. This additional copy of BamA (Ccan_17810) turned out to be essential 

in Cc and to require an N-terminal lipid anchor for its functioning. Furthermore, 

when expressed in E. coli, Ccan_17810 led to rapid growth arrest and formation 

of ghost cells. Due to the lack of efficient regulatable expression systems in Cc 

and despite our efforts to generate new ones, the precise function of this protein 

could not be determined. 

 

Finally, we also investigated the function of surface exposed lipoproteins 

in Cc. Following in silico analyses, we identified and characterized a new type of 

iron acquisition system essential for growth of Cc in human serum. This was of 

particular interest due to the broad substrate specificity of the system, targeting 

several iron carrying proteins found in humans and other mammals, as well as 

its pathogen specific distribution among Bacteroidetes. Interestingly, this system 

was found to have the classical architecture of Sus-like systems, outer membrane 

anchored complexes usually devoted to polysaccharide degradation. These 

systems being mostly composed of surface exposed lipoproteins, this study thus 

showed for the first time that Sus-like systems can target other substrates than 

carbohydrates, in this case iron, and that surface exposed lipoproteins can be 

virulence factors in the phylum Bacteroidetes. 
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The Gram-negative bacterial membrane 
 

Since 1884, bacteria have been classified into two distinct groups, Gram-

positive and Gram-negative, based on the eponymous staining procedure 

reflecting their membrane architecture1. While nowadays this method of 

classification is not as clear-cut anymore, the terms Gram-negative to refer to 

diderm-LPS bacteria and Gram-positive to refer to both monoderm as well as 

diderm-mycolate bacteria will be used here for the sake of simplicity.  

The cell envelope of Gram-positive bacteria is composed of a plasma 

membrane delimiting the cytoplasm and a thick peptidoglycan layer in which are 

inserted teichoic and lipoteichoic acids (Fig. 1)1. On the other hand, the Gram-

negative bacterial cell is composed of two compartments, the cytoplasm and the 

periplasm, delimited by an inner membrane (IM) and an outer membrane (OM) 

respectively. Residing in between these two membranes is an additional thin 

layer made of peptidoglycan (Fig. 1)1. Taken together, this architecture provides 

Gram-negative bacteria with a cell wall strong enough to resist temperature and 

pH variations and elastic enough to withstand osmotic changes. This formidable 

protective layer also shields the cell from noxious compounds, allowing it to 

survive extracellular stresses and to proliferate in changing, sometimes toxic, 

environments1.  

The most notable feature of the Gram-negative cell wall is the outer 

membrane. Unlike the IM, the OM is an asymmetric bilayer, composed of 

phospholipids on the inner leaflet and lipopolysaccharide (LPS) on its outer 

leaflet (Fig. 1)1. LPS molecules tightly interact with each other in order to form a 

dense network that is impermeable to most compounds1. While this assures 

protection of the cell, this barrier function also strongly limits its ability to 

release or uptake various molecules. The OM thus also comprises outer 

membrane proteins (OMPs) called porins, water filled channels that allow 

import of nutrients1. Additionally, Gram-negative bacteria harbor proteins 

directly exposed at the cell surface, often involved in motility, adhesion, 

virulence or nutrient acquisition. Finally, lipoproteins, anchored to either leaflet 
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Figure 1. Cell envelope structures of Gram-positive and Gram-negative bacteria  

The cell wall of Gram-positive bacteria is composed of a single lipid membrane surrounded by a 

thick layer of peptidoglycan in which are inserted teichoic and lipoteichoic acids. The cell wall of 

Gram-negative bacteria consists of two lipid membranes, the cell membrane or inner membrane 

and the outer membrane, separated by the periplasmic space in which lies a thin layer of 

peptidoglycan. The outer membrane is an asymmetric bilayer that contains phospholipids in the 

inner leaflet and lipopolysaccharide on its outer leaflet. Additionally, channel proteins such as 

porins facilitate exchange with the outside environment. Adapted from 2. 

 
 

of the membrane by their lipid anchor, participate in a multitude of functions 

including nutrient acquisition, stress sensing or cell morphology1. 

While the OM is critical for the survival of Gram-negative bacteria, 

effectively acting as a selective diffusion barrier, its biogenesis poses several 

obstacles. First, all constituents of the OM are synthesized in the cytoplasm of the 

cell. This means that they first have to cross the IM before they can be 

transported towards the OM1,3. Second, the periplasm is a hydrophilic aqueous 

environment; yet, most OM components are hydrophobic in nature, which 

implies the necessity of a specific way of transport1,4. Finally, energy sources 

such as ATP or the proton motive force (PMF) are unavailable at the level of the 

OM, thus raising the question of how insertion and/or folding of OM components 

is accomplished1,4.  

In recent years, scientists have provided detailed insights into how Gram-

negative bacteria build their complex cell wall. Although many questions have 

been answered (Fig. 2)1,4-7, some remain unsolved while at the same time new 

organisms and ways of interaction are discovered, raising that many new 

questions. Indeed, while the early days of microbiology focused on bacterial  
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Figure 2. Biogenesis of the outer membrane of E. coli 

All OM as well as periplasmic proteins are synthesized in the cytoplasm as precursors with a signal peptide at their N-terminus allowing their translocation across 

the IM by the Sec or Tat machineries. (a) Lipoproteins are transported to the OM by the Localization of lipoproteins (Lol) system. Lipoproteins are first extracted 

from the IM thanks to the LolCDE ABC transporter. They are then transferred to the periplasmic chaperone LolA that shuttles them across the periplasm before 

transferring them to the OM lipoprotein LolB. LolB finally inserts lipoproteins into the OM. (b) β-barrel proteins are inserted into the OM by a complex consisting of 

one β-barrel protein, BamA, and four lipoproteins, BamB, -C, -D and -E. Periplasmic chaperones such as SurA, Skp and DegP transport OM proteins across the 

periplasm and prevent their aggregation. (c) Similar to proteins, LPS is synthesized in the cytoplasm. LPS is therefore first flipped across the IM by the ABC 

transporter MsbA and then transported to the OM by the lipopolysaccharide transport (Lpt) system. LPS is extracted from the IM and transferred to LptC by the 

LptBFG ABC transporter. LptC then transfers LPS to the periplasmic protein LptA, which forms a bridge across the periplasm to deliver LPS to the OM complex 

formed by LptD and the lipoprotein LptE. Finally, LPS is flipped to the cell surface. The mechanism transporting phospholipids to the OM remains to be clarified. 

Adapted from 6. 
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pathogens, commensals have gained increasing interest over the last decade, 

especially in relation to human health and the benefits they provide their host8. 

Understanding OM biogenesis is thus not only crucial for the development of 

new antimicrobial compounds to fight bacterial pathogens but also to promote 

commensals that often rely on complex surface structures for their growth. 

 

Biogenesis of the outer membrane 

Taking the first hurdle - protein translocation across the inner membrane 
 

IM proteins and preproteins (defined here as periplasmic, OM and 

lipoproteins) are all synthesized as precursors in the cytoplasm of the cell. To 

reach their final destination, these proteins face the major challenge of either 

inserting into or crossing the IM, an energetically unfavorable process3,9-11. 

IM proteins and preproteins therefore mostly rely on the Sec machinery 

to achieve this translocation step, an IM protein complex composed of six 

membrane proteins (SecD, -E, -F, -G, -Y and YidC) and interacting with two 

cytoplasmic proteins (SecA and -B) in E. coli (Fig. 3)10. Before translocation 

across the IM initiates, the Sec translocase first recognizes its substrates by the 

presence of a signal peptide located at the N-terminus of the preproteins (Fig. 4) 

11-13. This signal peptide (SPI) is composed of three distinct domains: the N 

domain, containing one to three positively charged amino acids; the H domain, a 

hydrophobic core region; and the C domain, containing a signal peptidase 

cleavage site12. Integral IM proteins do not contain a signal peptide and are 

instead recognized by the Sec translocase via their hydrophobic trans-membrane 

domains13. This difference in recognition also results in separate targeting routes 

towards the Sec machinery: IM proteins depend on SRP (signal recognition 

particule) to reach the Sec translocase while most preproteins rely on the 

homotetrameric SecB protein to do so (Fig. 3a and b)3,9,14,15. Additionally, IM 

proteins are inserted into the membrane co-translationally, inducing the 

formation of a ribosome nascent chain complex, while preproteins are generally 

transported post-translationally3,9,16. Since the Sec translocase only transports 

unfolded proteins, the SecB-preprotein interaction therefore not only initiates  
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Figure 3. Protein translocation across the IM by the Sec machinery  
The Sec machinery is an IM protein complex translocating unfolded preproteins across the IM 

(CM) and is composed of the motor protein SecA (green), a channel made of SecY, -E and -G 

(orange), and the accessory proteins SecDF (pink) and YidC (red). (a) Preproteins are mainly 

targeted to the Sec translocase post-translationally following the recognition of their signal 

peptide by the SecB chaperone (blue). They are then delivered to SecA that will thread them 

across the SecYEG channel using ATP as driving force. During or following translocation across 

the SecYEG channel, the membrane-bound signal peptidase (SPase) cleaves the signal sequence 

from preproteins at the periplasmic face of the membrane. (b) Membrane proteins are co-

translationally targeted to the Sec translocase as ribosome-bound nascent chains by the SRP and 

the SRP-receptor FtsY (purple). (c) Some membrane proteins insert into the cytoplasmic 

membrane via YidC. Abbreviation: PMF, proton motive force. Adapted from 3. 

 
 

the translocation of precursors across the IM but also assures that they remain in 

an unfolded, transport compatible state17,18.  

The SecB-precursor complex is initially targeted towards the SecAYEG IM 

translocase. The precursor first interacts with the SecA homodimer19, inducing 

release of SecB upon ATP hydrolysis by SecA20-22, and the unfolded precursor is 

then threaded through the SecYEG channel (Fig. 3)9,23,24. The driving force for 

this process is provided by SecA ATP hydrolysis and by the PMF20,25-28. During or 

after the translocation step, the signal peptide is cleaved off by signal peptidase I 

(SPase I), freeing the protein from the membrane and releasing it into the 

periplasm12. 
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Figure 4. Bacterial preprotein signal peptides 

Schematic representation of bacterial signal peptides. Shown are the bacterial (Sec-type) signal 

peptide, the twin-arginine (Tat) signal peptide and the lipoprotein signal peptide. The N, H, and C 

regions as well as the peptidase recognition sequences of the respective signal peptides are 

indicated. The cleavage site is marked with a black arrow. Adapted from 29. 

 
 

While most E. coli preproteins are transported across the IM by the Sec 

machinery, a secondary route, the twin-arginine translocase (Tat) pathway, 

exists (Fig. 5)30. The Sec and Tat pathways have three main differences. First, the  

signal peptide of this subset of preproteins contains two adjacent arginines (Fig. 

4), hence the name of the system. The second, most remarkable difference is the 

fact that the Tat system is able to transport (partially) folded proteins rather 

than unfolded polypeptide chains. Finally, the PMF rather than ATP allows the 

translocation of Tat substrates31,32. 

Tat transport is accomplished by a multimeric complex made of three IM 

proteins, TatA, -B and -C. Similar to the Sec pathway, Tat transport is initiated 

when the signal peptide of the precursor is recognized by a TatBC oligomer (Fig. 

5 step 1)33,34. This triggers recruitment and oligomerization of TatA, leading to 

the formation of a membrane pore and the assembly of a complete TatABC 

translocase (Fig. 5 step 2)33,35-39. While this assembly process requires the PMF, 

the subsequent preprotein translocation seems to depend on TatA only (Fig. 5 

step 3). After completion of the transport, the signal peptide is cleaved off by 

SPase I40 and the TatABC pore disassembles (Fig. 5 step 4)35. 
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Figure 5. Protein translocation across the IM by the Tat machinery  

The Tat machinery is an IM protein complex translocating folded preproteins across the IM and is composed of three membrane spanning proteins, TatA, -B and -C. 

Transport is initiated upon recognition of the signal peptide of a substrate by the TatBC subcomplex (step 1). This triggers recruitment and oligomerization of TatA 

in a PMF dependent manner, leading to the formation of a complete Tat translocase (step 2). Transport of substrate (the passenger domain) is then believed to be 

achieved in an energy-independent way by TatA (step 3). After completion of transport, the TatABC complex disassembles and the signal peptide is cleaved by the 

SPase I (step 4). Abbreviation: PMF, proton motive force; SPaseI, signal peptidase I. Adapted from 41. 
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The periplasm – a no-man’s land for membrane proteins 
 

Following their cytoplasmic synthesis and translocation through the IM, 

preproteins do not all share the same fate. Periplasmic proteins remain soluble 

and fold either spontaneously or with the help of chaperones and/or folding 

catalysts (i.e. for disulphide bond formation)11,42,43. In contrast, OMPs and 

lipoproteins, hydrophobic in nature due to either their amino acid composition 

or their lipid anchor, cannot traverse the hydrophilic periplasm to reach the OM 

without assistance4. Additionally, while lipoproteins most likely fold similarly to 

periplasmic proteins, OMPs have to be maintained in an unfolded state till they 

reach the OM. Gram-negative bacteria therefore evolved specific targeting routes 

and transport machineries to circumvent these problems32. 

 

The journey of outer membrane proteins across the periplasm 
 

OMPs carry out a diverse number of vital functions in the OM and allow 

the cell to interact and to exchange with the outside environment. In E. coli, the 

most abundant OMPs are porins, trimeric transporters with relatively low 

specificity that allow diffusion of small compounds of up to 600 Da44. Other 

OMPs are involved in OM biogenesis5,45-47, peptidoglycan binding48,49, (active) 

transport50-52, efflux53 etc.  

While integral IM proteins are characterized by the presence of trans-

membrane α-helices, OMPs are almost exclusively composed of β-strands and 

adopt a so-called β-barrel conformation54,55. A β-barrel can be seen as a water-

filled cylinder made of an antiparallel β-sheet closed by interactions between its 

first and last β-strands. The strands are connected to each other by short linkers 

on the perisplamic side of the barrel while long extracellular loops link the 

strands on the outside, often folding into and closing the barrel pore. Since β-

barrels are integral membrane proteins, they have to insert into a lipid 

environment. This is achieved thanks to the distribution of hydrophobic residues 

throughout the β-strands, creating a hydrophobic surface on the outside of the 

barrel. On the opposite, residues facing the barrel interior are often polar, 

allowing the entry of water and other substrates54,55. 
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After their translocation through the IM, the hydrophobic domains of 

OMPs have to be protected in order to prevent misfolding or aggregation in the 

aqueous periplasm43. This is achieved by several periplasmic chaperones, the 

most prominent ones being SurA, Skp and DegP in E. coli.  

SurA (survival protein A) has been extensively characterized since its 

discovery and, at least in E. coli, seems to be the main OMP chaperone56-58. In 

brief, SurA is able to bind unfolded OMPs59-61, it accelerates the folding process of 

OMPs62-64, and its deletion activates the σE stress response (characteristic of OMP 

misfolding)63,65, leading to a decreased OMP gene transcription and resulting in 

lower OM density56. Furthermore, SurA interacts with BamA, the central 

component of the OMP assembly machinery (see following sections), 

highlighting its function as general OMP chaperone56. However, the perhaps 

most critical function of SurA in E. coli is assisting the folding of the LPS 

transporter LptD (see following sections)57. Indeed, the effect of a surA and a lptD 

mutation is similar and results in strong OM permeability and growth defects. 

Furthermore, while lptD transcription increases upon surA deletion, the total 

LptD amount in the membrane is still decreased as compared to a wild type 

strain, indicating that there is no alternative route for LptD transport57. SurA is 

therefore highly important for OM biogenesis as it is required for OMP transport 

and indirectly acts on LPS insertion into the OM. 

Skp (seventeen kilodalton protein) has a broad spectrum of substrates66-

68 and was shown to bind unfolded OMPs and to prevent aggregation of lysozyme 

in vitro66,69. In addition, its deletion causes moderate activation of the σE stress 

response and a slight decrease in OMP levels, prompting its role as OMP 

chaperone65. The chaperone function of Skp was further demonstrated by an 

elegant genetic approach that showed that a surA skp double mutant presents a 

synthetic lethal phenotype56,70. This indicates that although Skp is not essential 

in presence of SurA, they do have similar functions and overlapping sets of 

substrates. Recent work indeed demonstrates that Skp is involved in LptD 

biogenesis, although in a different way than SurA since overexpression of SurA 

did not prevent the skp deletion phenotype71. The crystal structure of Skp has 

been solved more than 10 years ago and shows that Skp forms a homotrimer 

with a shape similar to a jellyfish69. The “head” is composed of 12 β-strands 
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forming the hydrophobic core of the protein while three α-helical “tentacles” 

expand from the body. These tentacles are quite flexible and allow Skp to 

interact with substrates much bigger than itself in a one to one complex, ranging 

from 20 to 90 kDa67,69. Additionally, the Skp structure revealed a site that is 

proposed to be a LPS binding site69, which confirmed earlier observations that 

Skp interacts with LPS72,73. However, further investigation showed that this 

interaction is unspecific and is likely related to the role of Skp in the folding of 

LptD71,74. 

 DegP (also known as HtrA) is a periplasmic serine protease that also 

possesses chaperone activity75. DegP is mainly seen as a stress response protein, 

preventing unfolded or misfolded OMPs to accumulate in the periplasm and to 

form toxic aggregates75,76. Its chaperone activity however, which is independent 

of the protease activity76, remains poorly understood. Nevertheless, as for Skp, a 

double surA degP mutant presents a synthetic lethal phenotype56,70, showing that 

DegP is essential for proper folding of at least a subset of OMPs. It is therefore 

assumed that SurA and Skp/DegP work in parallel, partially overlapping 

pathways. 

 

Inserting OMPs into the membrane – the Bam machinery 
 

Following synthesis and transport across the periplasm, OMPs have to 

face one final challenge: insertion into an asymmetric lipid bilayer. While OMPs 

have been shown to fold spontaneously into membranes in vitro, the kinetic of 

the process is far too slow to faithfully reflect the in vivo condition77. This thus 

suggested the need of a folding catalyst, which was indeed discovered a few 

years later: the Bam (Beta Barrel Assembly Machinery) complex (Fig. 6)4,78. 

 The Bam complex is composed of five proteins: BamA, a β-barrel with a N-

terminal periplasmic domain and BamB, -C, -D and -E, OM anchored 

lipoproteins4,58,78. BamA homologs have been identified in all Gram-negative 

bacteria79-82 as well as bacterial-derived compartments such as mitochondria 

and chloroplasts, highlighting its pivotal role in membrane biogenesis82. This is 

further demonstrated by the fact that BamA is essential in all tested bacteria to 

date79,83. 
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Figure 6. Structure of the E. coli β-barrel assembly machinery 

Two structures of the E. coli Bam complex (BamACDE and BamABCDE) have been solved, giving 

novel insights into OM β-barrel insertion. The BamA (red) barrel is embedded in the OM while its 

N-terminal domain extends into the periplasm, forming a circular structure with lipoproteins 

BamB (green), BamC (blue), BamD (magenta) and BamE (cyan), resembling a top hat. (a–c) 

Structure of the BamACDE complex, viewed from the membrane plane (a), extracellular side (b) 

and periplasm (c). The dimensions of the complex are indicated. In this complex, the periplasmic 

side of the ring is fully closed, while the barrel is open laterally towards the membrane. (d–f) 

Structure of the BamABCDE complex, viewed from the membrane plane (d), extracellular side (e) 

and periplasm (f). In the presence of all Bam constituents, the periplasmic ring is open, enabling 

substrate entry, while the barrel is capped by extracellular loops and remains closed. Due to high 

flexibility of the protein, BamC, although present in the BamABCDE crystal, could not be mapped 

clearly. Adapted from 5. 

 
 
 The BamA C-terminus has a classical β-barrel structure while its N-

terminus is composed of five structural repeats of a so-called POTRA 

(polypeptide translocation associated) domain84-86, numbered P1 to P5 starting 

from the N-terminus84. These POTRA domains are involved both in substrate 

recruitment and functional assembly of the Bam complex. Indeed, BamA 
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interacts with all other components of the complex and essentially serves as 

docking platform to recruit both the Bam lipoproteins and the nascent OMPs. 

Although structurally similar, the POTRA domains nevertheless differ both in 

amino acid sequence and in function; not all POTRA domains are essential and 

they do not all mediate interaction with the same Bam lipoproteins58,84,87. Of 

note, some residues in the P1 POTRA domain favor interaction with SurA, 

reinforcing the core function of BamA in OMP biogenesis88. 

 All Bam lipoproteins interact with BamA, however they do not do it in the 

same way78. Prior to interaction, BamC, -D and -E form a subcomplex in order to 

bind BamA. On the other hand, BamB associates with BamA independently from 

the remaining lipoproteins. As a result, absence of the BamCDE subcomplex does 

not affect BamA-B interaction and vice versa58,84,87. Deletion of any of the Bam 

lipoproteins has at least a slight effect on β-barrel assembly80,87,89-91, but only 

BamD is essential in E. coli; depletion of BamD basically induces OMP biogenesis 

arrest90. However, mutation of bamC in combination with bamE induces strong 

OMP defects and substantial σE stress response while mutation of bamB in 

combination with bamE is lethal87. This points to the fact that while not essential, 

all Bam lipoproteins are important in vivo for correct OMP folding.  

Several structural studies have been carried out over the years, giving 

insight into single or multiple subunits of the Bam machinery84,92-100, but the 

structure of the complete BamABCDE complex has only been solved very 

recently (Fig. 6)5,45. This work revealed two main findings. First, rather than 

expanding into the periplasm, the BamA POTRA domains tightly interact with all 

Bam lipoproteins, leading to the formation of a periplasmic ring underneath the 

inner leaflet of the OM. The structure of the complete complex therefore looks 

like a hat, the BamA β-barrel inserted in the OM being the top and the POTRA 

domains and lipoproteins forming the brim (Fig. 6). 

 Second, these studies revealed that the complex exists in two different 

conformations, an inward-open and a lateral-open state. The inward-open 

conformation shows that the BamABCDE complex is open on the periplasmic 

side, supposedly allowing entry of unfolded OMPs, while the extracellular loops 

of BamA close the barrel to the extracellular milieu. On the other hand, the 

lateral-open conformation (obtained with a BamACDE complex missing BamB) 
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shows that the periplasmic access pore is completely closed due to the rotation 

of the periplasmic ring. In addition, the extracellular loops L1 to L3 are displaced, 

resulting in strands β1 to β6 of the β-barrel to move away from the barrel core, 

opening the inside of the barrel to the OM. Site-specific cross-linking confirmed 

that this lateral gate opening is vital for cell viability and is not an artifact due to 

the absence of BamB in this complex. The structure observed with the BamACDE 

complex thus represents a conformation of the Bam machinery that exists in vivo. 

The combination of the opening of the barrel towards the membrane and the 

rotation of the ring is therefore proposed to provide the driving force for OMP 

membrane insertion in the absence of an energy source such as ATP. This newly 

identified ring architecture and the two conformational states also highlight the 

important role of each subunit of the complex for optimal protein folding and 

insertion5,45. 

 

Synthesis and localization of bacterial lipoproteins 
 

Lipoproteins are found in both Gram-negative and Gram-positive bacteria 

and fulfill many different cellular functions, including membrane biogenesis and 

homeostasis90,101-106, cell division107, substrate transport108, drug efflux109, 

motility110, adhesion and implication in pathogenicity111. Lipoproteins are 

therefore essential components for the survival of bacteria and their proper 

localization is critical112,113. Lipoprotein synthesis has been mostly studied in E. 

coli and extensive knowledge about the maturation and the transport machinery 

of lipoproteins has been gained in the last three decades (Fig. 7)6. E. coli encodes 

approximately 90 lipoproteins, most of which are facing the periplasm anchored 

into the IM or OM6,114. 

Lipoproteins are synthesized in the cytoplasm as precursors called pre-

prolipoproteins (Fig. 7a). Similar to periplasmic and OM proteins, pre-

prolipoproteins have an N-terminal located signal peptide (called SPII) (Fig. 4) 

115 of around 20 amino acids that allows their recognition by and transport 

through the Sec machinery116,117. Alternatively, some lipoproteins are 

transported by the Tat system118-121. The SPII signal peptide is, as the SPI, 

composed of three distinct domains: N, H and C. The C domain additionally 
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Figure 7. Lipoprotein maturation in bacteria  

Following their translocation across the IM, lipoprotein precursors are sequentially processed by 
three enzymes in order to complete their maturation. (a) A representative lipoprotein precursor. 
The lipobox containing the conserved cysteine to which the lipid anchor will be attached is 
indicated. (b) In the first step of maturation, Lgt attaches a diacylglycerol moiety to the side chain 
of the conserved cysteine of the lipobox. The signal peptide is subsequently removed by LspA, 
leaving the lipidated cysteine as first amino acid of the mature lipoprotein. In Gram-positive 
bacteria, this completes the lipoprotein synthesis process. (c) In Gram-negative bacteria, removal 
of the signal peptide is followed by attachment of a third fatty acid to the conserved cysteine by 
Lnt, rendering a mature tri-acylated lipoprotein. (d) Summary of the lipoprotein maturation 
steps in Gram-negative bacteria. Adapted from 6.  
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contains a conserved consensus sequence, the lipobox [LVI][ASTVI]C, 

overlapping with the peptidase cleavage site and containing an invariant 

cysteine residue to which the lipid moieties are attached in the subsequent steps 

of maturation (Fig. 7)122-124.  

Following translocation across the IM, processing of pre-prolipoproteins 

into mature forms takes place on the periplasmic side of the IM6. First, 

lipoprotein diacylglyceryl transferase (Lgt) catalyzes the covalent attachment of 

a diacylglycerol moiety derived from the IM to the side chain of the conserved 

cysteine of the lipobox125,126, rendering a prolipoprotein (Fig. 7b). Addition of 

this lipid anchor serves to maintain the lipoprotein attached to membrane for 

the following steps of maturation. Lipoprotein signal peptidase (LspA) then 

cleaves off the signal peptide immediately upstream of the lipidated cysteine127-

129, leaving this amino acid as the new N-terminal residue of mature lipoproteins 

(Fig. 7b). For most Gram-positive bacteria, this step completes the lipoprotein 

synthesis process. However, in Gram-negative130-132 and some Gram-positive 

bacteria121,133,134, lipoprotein N-acyl transferase (Lnt) catalyzes the attachment of 

a third fatty acid to the cysteine, rendering a mature tri-acylated lipoprotein (Fig. 

7c).  

 While in Gram-positive bacteria mature lipoproteins remain attached to 

the cytoplasmic membrane, in Gram-negative bacteria they can be anchored 

either to the IM or the OM (Fig. 8)6. Following maturation, OM lipoproteins 

therefore have to be transported through the aqueous environment of the 

periplasm to reach the inner leaflet of the OM. Since lipoproteins are overall 

hydrophobic due to their lipid anchor and because the periplasm is a hydrophilic 

environment, this transport step requires the dedicated localization of 

lipoprotein (Lol) machinery, composed of five essential proteins, LolA, -B, -C, -D 

and -E (Fig. 8)4,6.  

The LolC, -D and -E proteins form an IM ABC transporter in a 

stoichiometry of 1:2:1 responsible for the extraction of OM lipoproteins from the 

IM (Fig. 8)135-137. LolCDE is therefore considered an atypical ABC transporter in 

the sense that rather than catalyzing substrate transport across a membrane, it 

induces the release of substrate from the membrane. LolD is a nucleotide-

binding subunit with Walker A and B motifs; LolC and -E are IM proteins having  
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Figure 8. The localization of lipoprotein (Lol) system of Gram-negative bacteria 

Unlike IM lipoproteins, lipoproteins destined to the OM have to be transported across the 

aqueous environment of the periplasm. This is achieved in several steps by the Lol system, 

composed of five proteins, LolA to -E. First, OM lipoproteins are extracted from the IM by the ABC 

transporter LolCDE. They are then transferred to the periplasmic chaperone LolA that shuttles 

them across the periplasm. Finally, LolA delivers its cargo to LolB, which then inserts the 

lipoprotein into the OM. IM lipoproteins avoid interaction with the LolCDE complex by a so-called 

lol-avoidance signal (generally Asp at position +2 in E. coli) and remain therefore attached to the 

IM. Adapted from 6. 

 
 
each four membrane spanning domains as well as one big periplasmic loop138. 

These loops contain amino acids with hydrophobic side chains predicted to form 

a hydrophobic cavity, allowing LolC and -E to interact with the lipid anchor of 

lipoproteins6. Lipoprotein release from the IM occurs in three distinct steps: i) 

the lipoprotein interacts with LolE, increasing the affinity of LolD for ATP as well 

as of LolC for LolA139; ii) ATP binds to LolD while LolC interacts with LolA; iii) 

LolD hydrolyses ATP, thereby weakening the interaction between LolE and the 
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lipoprotein, which causes the transfer of the lipoprotein to LolA (Fig. 9 step 1 to 

3)140. Although it is currently not well established how this transfer takes place, 

it is predicted to be similar to the affinity driven mouth-to-mouth model for the 

LolA-LolB lipoprotein transfer (outlined below)139. 

LolA is a periplasmic chaperone that shuttles lipoproteins from the 

periplasmic side of the IM to the periplasmic side of the OM in a one to one 

complex (Fig. 8)141,142. The structure of LolA has been solved several years ago, 

consisting of an incomplete β-barrel made of eleven antiparallel β-strands closed 

by a lid formed by three α-helices (Fig. 9b)143,144. The incomplete β-barrel and 

the lid form a closed hydrophobic cavity containing aromatic residues, allowing 

LolA to accommodate the lipid anchor of lipoproteins. In addition, the C-

terminus contains a short helix and a twelfth β-strand that together form a loop 

critical for lipoprotein localization. Indeed, this loop region prevents interaction 

of LolA with membrane lipids, therefore assuring that no retrograde transfer of 

lipoproteins from LolA to the IM is possible145. In its unloaded state, the cavity of 

LolA is closed, while interaction with LolCDE induces opening of the lid, thus 

allowing the transfer of a lipoprotein from LolCDE to LolA146. The soluble 

LolA:lipoprotein complex then crosses the periplasmic space to reach the OM 

where LolB inserts the lipoprotein into the membrane. 

LolB, an OM anchored lipoprotein (Fig. 8), is structurally very similar to 

LolA, being composed of an incomplete β-barrel closed by a lid102. However, two 

significant differences distinguish LolA and LolB. First, LolB has no additional C-

terminal loop, which allows the protein to interact with phospholipids and 

therefore to insert lipoproteins into the OM. The precise mechanism by which 

lipoproteins are inserted into the OM is yet poorly understood, but evidence that 

a conserved leucine residue at position 68 of LolB initiates membrane targeting 

has been gained147. Second, the amino acids forming the hydrophobic cavity of 

LolB (Leu and Ile) have more flexible side chains than the aromatic residues 

forming the LolA cavity. This results in a difference of affinity that allows one-

way, energy-independent transfer of lipoproteins from LolA to LolB (Fig. 9 step 

4)148,149. Moreover, cross-linking experiments showed that LolA and -B partially 

overlap during lipoprotein transfer in what is described as mouth-to-mouth 

model, thus connecting the entrances of the hydrophobic cavities (Fig. 9b)139. 
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Figure 9. Molecular details underlying the lipoprotein transport by the Lol system  

(a) OM lipoproteins are extracted from the IM by their interaction with LolE, which leads to an 

increased affinity of LolA for the LolCDE complex (step 1). After LolA binding to LolC (step 2), 

ATP hydrolysis induces opening of the LolA cavity, which can now accept the lipoprotein from 

LolE (step 3). After crossing the periplasm, LolA and LolB interact with each other in a mouth-to-

mouth manner allowing the transfer of the lipoprotein from LolA to LolB (step 4). Finally, LolB 

insert the lipoprotein into the OM. (b) Structural view of LolA-LolB interaction. Adapted from 6. 

 
 
 Whether a lipoprotein is destined to the IM or the OM is determined by 

the nature of the amino acids immediately downstream of the lipidated cysteine, 

referred to as +1 cysteine. These amino acids can prevent interaction between 

the lipoprotein and the LolCDE complex150, thereby acting as lol-avoidance 

signal. In E. coli and closely related species, this is referred to as the “+2 rule” 

because Asp at position +2 is the most common amino acid serving as lol-

avoidance signal151. Additional work showed that other amino acids at position 

+2 could serve as lol-avoidance signal, but they are much less frequent in native 

E. coli lipoproteins152,153. The impact of the +3 residue on lipoprotein localization 

has also been investigated, showing that some amino acids at this position can 

either weaken or strengthen the lol-avoidance properties of Asp153. However, 
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these rules apply only to Enterobacteriaceae154, as for example in Pseudomonas 

aeruginosa the lol-avoidance signal is determined by the nature of the +3 and +4 

residues155-157. The precise mechanism by which Asp prevents lipoproteins from 

interacting with LolCDE is still poorly understood, although the negative charge 

of its side chain as well as its potential interaction with membrane lipids seems 

to be crucial158. 

Although the enzymes involved in lipoprotein processing are well 

conserved in both Gram-positive and Gram-negative bacteria (with the exception 

of Lnt), the components of the lol machinery are completely absent from Gram-

positive bacteria and only partially conserved within Gram-negative bacteria. 

This is especially true for LolB, which is only found in β- and γ-Proteobacteria159. 

It remains therefore unknown how other bacteria outside of these phyla insert 

lipoproteins into their OM. Interestingly, the absence of a LolB-like protein might 

be linked to the fact that some species abundantly expose lipoproteins at their 

surface160,161, unlike what is observed in E. coli6 and most Proteobacteria. Surface 

transport of these lipoproteins could indeed require a protein functionally able 

to replace LolB but that would also possess additional functions.  

 

Lipopolysaccharide synthesis and transport 
 

While proteins represent the overall main component of the OM, 

lipopolysaccharide (LPS) is the main constituent of the outer leaflet of the OM 

and is responsible for the barrier function of the membrane7. Indeed, LPS forms 

a thigh network that is impermeable to most compounds thanks to the 

interaction between its negatively charged phosphate groups and divalent 

cations, bridging adjacent LPS molecules44. This ensures efficient protection of 

the bacterial cell from harmful substances, such as antibiotics. Additionally, LPS 

provides protection against complement killing and macrophages162. The 

mechanisms of LPS synthesis and transport have been elucidated thanks to 

model organisms such as the γ-Proteobacteria Escherichia coli and Salmonella 

enterica or the β-Proteobacterium Neisseria meningitidis. LPS is composed of 

three parts: lipid A, a core oligosaccharide and an O-antigen (Fig. 10)163. 
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Figure 10. Composition of a typical lipopolysaccharide (LPS) molecule 

LPS is composed of three distinct structural elements: lipid A, the core oligosaccharide and the O-

antigen. Lipid A is composed of a disaccharide backbone to which fatty acids of various lengths 

are attached. The core saccharide is divided in inner and outer core. The inner core is well 

conserved and composed of Kdo and heptose while the outer core can be more variable, 

containing in this example glucose and galactose. Finally, the O-antigen, if present, is the most 

variable part of LPS and composed of a variable numbers of sugar repeats. The lipid A and core 

structures depicted correspond to those of E. coli K-12. Kdo, 3-deoxy-D-manno-oct-2-ulosonic 

acid; Hep, heptose; Glu, glucose; Gal, galactose. Adapted from 7. 

 
 

Lipid A represents the membrane anchor of LPS. It is composed of a 

disaccharide backbone, usually made of N-acetylglucosamine, to which fatty 

acids of various lengths are attached (Fig. 10)163. Additionally, the 1 and 4’ 

positions of the disaccharide are generally phosphorylated, which, in the 

presence of divalent cations (Mg2+, Ca2+), allows tight packing and crosslinking of 

adjacent LPS molecules44,163. Although the basic architecture of lipid A is well 
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conserved, its precise composition can vary from one species to another, 

including the length, number and composition of fatty acids attached to the 

disaccharide backbone as well as its phosphorylation164. The core 

oligosaccharide of LPS is often divided into inner core (attached to lipid A) and 

outer core (attached to the O-antigen). The inner core, composed of Kdo (3-

deoxy-D-manno-oct-2-ulosonic acid) and heptose (L-glycero-D-manno-heptose), 

is relatively well conserved within a species, while the outer core is much more 

variable (Fig. 10)163. As for lipid A, phosphorylation of Kdo and heptose is 

essential for the barrier function of the OM as it allows strong lateral interactions 

between LPS molecules. The O-antigen, absent in a number of species, is the least 

conserved region of LPS and is composed of various repeats of one to six sugars 

units (Fig. 10)165.  

Lipid A linked to the core oligosaccharide (lipid A-core) and the O-antigen 

are synthesized independently from each other in the cytoplasm163. The Lipid A-

inner core is first synthesized by the Raetz pathway, followed by the attachment 

of additional glycan residues to form the complete Lipid A-core163. This moiety is 

then flipped to the periplasmic leaflet of the IM by the MsbA ABC transporter166-

170. In parallel, the O-antigen is synthesized by either of two pathways. Using 

undecaprennyl phosphate as lipid scaffold, the O-antigen repeats are generated 

on the cytoplasmic side of the IM and are then flipped across the membrane by 

Wzx. This is followed by their polymerization into complete O-antigen molecules 

on the perisplasmic side of the IM163,165. Alternatively, polymerization takes 

place in the cytoplasm and the complete O-antigen is then transported across the 

IM by the ABC-transporter composed of Wzm and Wzt163,165. Finally, WaaL 

attaches the O-antigen to the lipid A-core on the periplasmic side of the IM, 

rendering the final LPS molecule.  

As for lipoproteins, the presence of a lipid anchor in LPS prevents it to 

cross the periplasm on its own. Thus, the transport of LPS from the IM to the cell 

surface is performed by the LPS transport (Lpt) machinery, composed of 7 

proteins, LptA to G (Fig. 11)7. 
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Figure 11. The LPS transport (Lpt) machinery of Gram-negative bacteria 

Following flipping across the IM by MsbA, LPS is extracted from the membrane by the LptBFG 

ABC transporter. It is then transported in a continuous stream via a periplasmic bridge made of 

LptC, LptA and the periplasmic domain of LptD to the OM. LptD, in combination with LptE, then 

insert LPS into the outer leaflet of the OM. The entire transport process from the IM to the cell 

surface is powered by LptB-mediated ATP hydrolysis. Adapted from 7. 

 
 

LptA, belonging to the OstA family of proteins, is a periplasmic chaperone 

able to bind LPS171-173, which consists of 16 consecutive anti-parallel β-strands 

arranged into a β-jellyroll conformation174. Cross-linking experiments showed 

that it is inside this groove that LPS is binding175. In vitro data also show that 

LptA is able to oligomerize174,176,177. LptB172 is a cytoplasmic nucleotide-binding 

protein with characteristic Walker A and B motifs178,179. Due to the absence of 

trans-membrane domains anchoring it to the IM, LptB is in a 2:1:1 complex with 

LptF and -G to form a functional ABC transporter7,171,180,181. To date, no structural 

data are available for LptF and -G, but predictions suggest that the periplasmic 

domains of both proteins have a similar fold than LptA182. LptC, which interacts 

with the LptBFG transporter180, has a N-terminal transmembrane helix 

anchoring it to the IM and a periplasmic C-terminal domain183,184. Interestingly, 



Introduction 
 

 33 

this C-terminal domain is annotated as OstA-like and indeed has a similar 

structure than LptA, allowing it to bind LPS in a similar way175,184,185. Finally, 

LptD and -E form a one to one complex in the OM that transports LPS to the cell 

surface186. LptD187,188 is the largest monomeric β-barrel reported to date, 

composed of 26 anti-parallel β-strands46,47. Its periplasmic N-terminal domain 

has structural similarity to LptA and -C and contains hydrophobic residues, 

suggestive of its ability to bind the lipid moiety of LPS46,47. LptE is an OM 

lipoprotein that has a dual function for LPS transport. First, in E. coli, it was 

shown to be essential for proper folding and insertion of LptD into the OM101,189. 

Second, it serves as a plug for the LptD barrel, with up to 75% of the protein 

inside of LptD46,47,190. LptE also directly interacts with LPS191. 

Two opposing models have long been proposed for LPS transport across 

the periplasm, the first working in a similar way as the Lol system (see previous 

section), the second suggesting a periplasm-spanning multi-protein bridge. In 

recent years, thanks to the advances in structural biology, the second model of a 

trans-membrane machine has strongly been favored7. Cross-linking experiments 

showed that the periplasmic domain of LptC interacts with the N-terminal region 

of LptA192,193. Similarly, the C-terminal domain of LptA interacts with the N- 

terminus of LptD194. It was also shown that transfer of LPS from LptBFG to LptC 

and from LptC to LptA requires the hydrolysis of ATP175. Thus, LPS transport is 

proposed to occur in the following steps (Fig. 11). First, LPS interacts with the 

LptBFG transporter, inducing ATP hydrolysis by LptB and its transfer from LptFG 

to LptC. Subsequent ATP hydrolysis then powers the transfer of LPS from LptC to 

LptA and eventually to LptDE in a continuous stream. The core and O-antigen are 

proposed to enter the lumen of the LptD β-barrel, probably binding to LptE190. 

The N-terminal domain of LptD is then suggested to form an intramembrane 

hole through which the lipid moiety of LPS could be inserted into the OM (Fig. 

12)195. In parallel, the core and O-antigen trigger the opening of a lateral gate 

between the strands β1 and β26 of LptD, allowing transport to the cell surface 

(Fig. 12)46,47,195. In summary, LPS is transported from the IM to the cell surface by 

a periplasmic bridge formed by the interacting β-jellyrolls of LptF, -G, -C, -A and -

D and powered by the hydrolysis of ATP, providing a continuous stream of LPS 

(Fig. 11)7. 
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Figure 12. Molecular details underlying the insertion of LPS into the OM  

Once LPS has crossed the periplasm, it interacts with both LptD and LptE. Presumably, the LptD 

N-terminus (LptD_NT) induces the formation of an intramembrane hole that allows insertion of 

lipid A into the OM. In parallel, LptE would assist the threading of the O-antigen through the LptD 

pore (LptD). Together, these events trigger the opening of the LptD barrel between the strands 

β1 and β26, allowing the core oligosaccharide to slide to the surface of the bacteria. Adapted 

from 47. 

 

Crossing the cell wall – the many faces of bacterial secretion  
 

The OM of Gram-negative bacteria is a formidable protective layer that 

shields the cell from noxious compounds and allows it to proliferate in even 

harmful environments. However, this barrier function also strongly limits the 

cell’s ability to release molecules, such as metabolites or proteins, in the 

environment or to interact with other nearby cells. Gram-negative bacteria 

therefore have developed a multiplicity of so-called secretion systems, 

membrane-spanning nanomachines, that allow transport of proteins from the 

inside to the outside of the cell196,197. While the function, composition and overall 

structure can greatly vary among secretion systems (see below), they can be 

divided into two categories: single and double membrane spanning or one- and 

two-step secretion systems (Fig. 13)198. For our purposes, the second category 

will be used. One-step secretion systems (T1SS, T3SS, T4SS and T6SS) are 

multiprotein machines that span both the inner and outer membrane, therefore 

directly translocating proteins from the cytoplasm of the cell to the outside. Two-

step secretion systems (T5SS, T9SS, chaperone-usher pathway and curli 
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biogenesis system) on the other hand only span the OM and therefore depend on 

the Sec- and Tat-machineries to transport their substrates to the periplasm196,197. 

This category also includes the T2SS and most likely the T7SS. Except for the 

T2SS, T6SS, T7SS and the chaperone-usher pathway, all above-mentioned 

secretions systems transport unfolded proteins196,197. A short overview of the 

different secretion systems is given below. 

 

One-step secretion systems 

Type 1 secretion system (T1SS) 

 

Proteins secreted by the T1SS are involved in nutrient acquisition 

(proteases, lipases and iron scavengers)199-201, pathogenesis (haemolysins and 

leukotoxins)202 and bacterial competition (bacteriocins)203.  

The T1SS is composed of three distinct parts: an IM component (IMC), a 

membrane fusion protein (MFP) and the OM β-barrel channel TolC (Fig. 13a) 

196,204. The IMC is an IM protein that belongs to the ABC-transporter family of 

proteins. The MFP is an IM anchored periplasmic protein that forms a hexameric 

tunnel-like structure and links the IMC to the OM protein TolC. The IMC and MFP 

are responsible for substrate recognition, each IMC-MFP pair only interacting 

with one specific set of substrates, while TolC can associate with different IMC-

MFP pairs and forms the OM channel through which the substrates will be 

secreted196,204. Recent data suggests that the IMC:MFP:TolC complex adopts a 

stoichiometry of 3:6:3205, which led to the following working model (Fig. 13a): 

the IMC-MFP recognizes its substrates via their N-terminally located glycine-rich 

motif; substrate binding triggers ATP hydrolysis by the IMC leading to 

translocation of the substrate from the cytoplasm to the periplasm; IMC-MFP-

substrate interaction induces TolC recruitment; formation of a complete complex 

leads to opening of the TolC channel and release of the substrate198,203. 
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Figure 13. Structural organization of type 1, 2 and 3 secretion systems of Gram-negative bacteria  

(a) The T1SS is composed of an outer membrane TolC component, a periplasmic membrane fusion protein (MFP) and an inner membrane component (IMC) that 

supplies energy for transport. Following recognition of the substrate, ATP hydrolysis by the IMC triggers the transfer of the unfolded substrate to the MFP. TolC 

then secretes the substrate through the OM. (b) The T2SS consists of an OM complex (the secretin GspD, blue), a periplasmic pseudopilus (composed of the major 

pseudopilin subunit GspG and additional minor pseudopilin subunits), and an IM platform that is tightly associated with the cytoplasmic ATPase GspE (green). GspC 

(brown) recruits the substrate from the periplasmic space to the secretin. Thanks to the ATPase activity of GspE, the pseudopilus then pushes the substrate through 

the secretin channel, releasing the substrate. (c) The T3SS is composed of an OM secretin (blue), an IM complex and a needle (grey). The basal body interacts with a 

cytoplasmic ATPase (green) and a sorting platform (orange). The secretin extends from the OM to the periplasm, forming a series of protective rings that surround 

the needle. The sorting platform and the secretin are connected by the IM complex. Following contact with a host cell, the secretion of so called translocators is 

initiated. After insertion into the host cell membrane, the translocators form a functional pore that assists the subsequent transport of effectors into the host cell 

cytosol. Effector secretion through the T3SS is subject to temporal regulation mediated by interaction with different classes of cytoplasmic chaperones. Adapted 

from 196.  
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Type 3 secretion system (T3SS)  

 

The T3SS is one of the most complex prokaryotic nanomachines 

described to date and is found in pathogenic bacteria such as Yersinia, Shigella 

and Salmonella206. The T3SS mediates the transfer of so-called effector proteins 

into eukaryotic host cells, thereby hijacking host cellular functions in order to 

allow the bacterium to colonize and proliferate207-209. The main constituent of 

the system is syringe-like in shape (hence often referred to as injectisome or 

needle complex), composed of up to 25 different proteins and being 3.5 MDa in 

size (Fig. 13c). The system can be divided into 2 subunits: the basal body, 

composed of an IM complex, an OM complex and a periplasmic bridge; and the 

needle itself196,197,210. 

The IM complex is made of 2 oligomeric rings inserted into the 

membrane, one facing the cytoplasm and one facing the periplasm196,211. 

Additionally, a cytoplasmic sorting platform interacts with the IM complex and is 

involved in recruitment of effector proteins212,213. The OM complex, composed of 

stacked rings forming the so-called secretin, and the periplasmic bridge, termed 

the neck, are made of one protein and associate with the periplasmic ring of the 

IM base201,210,211. The needle is basically a hollow tube inserted through the IM 

and OM rings and extending into the extracellular milieu196,210,211.  

Unlike other secretion systems, the secretion of T3SS effectors is subject 

to temporal regulation213. Upon contact of the needle tip with a target cell, the IM 

complex and sorting platform will first recruit effector proteins called 

translocators209,214. Following transport across the needle, these proteins will 

form a pore in the membrane of the host cell, paving the way for other effector 

proteins that will then subdue the cellular machinery of the host. T3SS 

substrates therefore present a hierarchy in their secretion. This temporal 

regulation is thought to be dependent on cytoplasmic chaperones that associate 

wit T3SS effectors and that have different affinities towards the cytoplasmic 

sorting platform209,214,215. Effectors that need to be secreted first therefore 

interact with chaperones that have higher affinity. Finally, the entire secretion 

process is powered by several copies of a cytoplasmic ATPase. 
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Type 4 secretion system (T4SS)  

 

The T4SS has the unique ability among secretion systems to transport 

both proteins and DNA; it is thus mainly described in respect to conjugation of 

plasmid DNA into bacterial and eukaryotic cells 216-218. Since conjugation is 

extremely widespread among prokaryotes, the T4SS is the most commonly 

found secretion system known to date and can be encountered in Gram-negative, 

Gram-positive and even archaea219. 

The T4SS is composed of 12 proteins: VirB1 to VirB11 and VirD4196,220,221. 

While VirB1 is a periplasmic peptidoglycan hydrolase required for the T4SS pilus 

biogenesis222, all other proteins are integral parts of the secretion apparatus. 

Recent structural analysis allowed to determine the structure of a VirB3 to 

VirB10 comprising complex220 and, in combination with previous data, showed 

that it can be divided into 3 distinct parts (Fig. 14a): the IM complex (VirB3, 4, 6, 

8 and 10)220, the stalk (composition unknown) and the core-OM complex (VirB7, 

9 and 10)220,223. Additionally, the pilus, composed of VirB2 and 5, extends into 

the extracellular medium and establishes contact between mating cells222. 

The IM complex is divided into two cytoplasmic barrels, each composed 

of 6 subunits of VirB4, linked by an IM inserted bridge made of VirB6, 8 and 

10220. The core-OM complex is arranged into 2 stacked rings220,223. The stalk is an 

extended structure that connects the IM and OM complexes and allows 

translocation of substrates, which is powered by ATP hydrolysis196,197. Due to the 

absence of VirB11 and VirD4 in the analyzed complex, a precise mechanism of 

substrate transport is so far not proposed. However, one model suggests that the 

T4SS switches between 2 modes of functioning222. First, VirB11 would bind to 

VirB4, inducing formation of the pilus (Fig. 14a step 1). Once the pilus interacts 

with a receptor cell, VirB11 switches from VirB4 to VirD4, leading to substrate 

secretion (Fig. 14a step 2)222,224. 
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Figure 14. Structural organization of type 4 and 6 secretion systems of Gram-negative bacteria 

(a) The T4SS is composed of three ATPases (VirD4, VirB4 and VirB11) that, together with VirB3 (dark brown), VirB6 and VirB8 (light brown), form the IM complex. 

VirB7 (red), VirB9 (light green) and VirB10 (blue) form the core–OM complex, with VirB10 extending from the IM to the OM. The conjugative pilus is composed of 

VirB2 (grey) and VirB5 (purple). Supposedly, the association of VirB11 with VirB4 promotes pilus subunit assembly (step 1), whereas the association of VirB11 

with VirD4 facilitates substrate translocation (step 2). (b) The T6SS is composed of a membrane complex spanning the periplasm and a cytoplasmic tail complex, 

comprising a phage-like tube (Hcp), sheath and baseplate. The two complexes are connected in the cytoplasm through the baseplate of the tail complex. Effectors 

are recruited to the tube through interaction with the VgrG spike at the tip of the tube (step 1). An unknown extracellular signal then triggers sheath contraction, 

which leads to the ejection of the spike–tube complex across the target membrane, thereby delivering effector proteins into the cell (step 2). The ATPase ClpV 

(blue) disassembles the contracted sheath, which enables a new T6SS complex to be reassembled from the released subunits (step 3). Adapted from 196. 
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Type 6 secretion system (T6SS) 

 

The T6SS is one of the more recently described Gram-negative secretion 

systems225,226 and is involved in toxin delivery into eukaryotic227,228 but also 

prokaryotic229,230 cells, therefore having a major role in bacterial 

competition231,232. Predominantly found in Proteobacteria233, such as Vibrio, 

Pseudomonas and Francisella, a new class of T6SS has also recently been 

described in the phylogenetically distant Bacteroidetes234.  

The core complex of the T6SS is composed of 13 conserved proteins in 

combination with several accessory proteins that together define T6SS 

subclasses226,233,235,236. The T6SS machinery can be divided into 2 main 

components: a double membrane spanning complex237 and a cytoplasmic tail 

complex (Fig. 14b)237,238. The membrane complex is composed of at least 3 

proteins and is bridging the IM and the OM237,239,240. The tail complex, which 

appears to be highly similar in structure and function to the bacteriophage tail, 

can be subdivided into tail sheath, tube and baseplate238. Like the viral protein 

delivery system, the baseplate is believed to act as building platform for the tube 

and its surrounding sheath (Fig. 14b). The tube is topped by a so-called spike 

that is involved in tube polymerization as well as substrate recruitment (Fig. 14b 

step 1)238,241.  

While the exact mechanism of protein delivery, especially what signal 

triggers secretion, is not yet described, it is though to be similar to phage tail 

contraction241-243. Following interaction with a target cell, contraction of the 

sheath leads to translocation of the tube through the membrane complex and 

across the membrane of the receptor cell. T6SS substrates are delivered by 

interaction with the spike before sheath contraction (Fig. 14b step 2) 

196,231,236,237. A cytoplasmic ATPase then induces sheath disassembly and the 

resulting subunits are available for a new round of sheath construction and 

contraction (Fig. 14b step 3)196,236. 
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Two-step secretion systems 

Type 2 secretion system (T2SS)  

 

The T2SS, also referred to as general secretion system, is to date the only 

two-step secretion system known to span both the inner and outer 

membranes196,244,245. Additionally, the T2SS is one of the few machineries able to 

transport folded substrates that are first translocated to the periplasm via the 

Sec and Tat pathways196,244,245. This system in widely distributed among Gram-

negative bacteria and secretes both enzymes and toxins, among which the well 

studied Vibrio cholera toxin244,245.  

The T2SS is composed of up to 15 components that together form 4 

distinct parts (Fig. 13b): an OM complex, referred to as secretin, that constitutes 

the secretion channel246; a periplasmic pseudopilus247; an IM spanning complex 

interacting with both OM complex248 and pseudopilus; and a cytoplasmic 

ATPase196,244,245,249. While the complete structure of the T2SS has yet to be 

determined, the secretion process is believed to occur in 2 steps (Fig. 13b). First, 

the periplasmic substrates are recruited to the secretin channel located at the 

level of the OM. The substrates are then secreted by being pushed across the OM 

pore by the pseudopilus in an ATP-dependent manner196,244,245. 

 

Type 5 secretion system (T5SS)  

 

The T5SS is unique among secretion systems because it is the only one in 

which the translocation machinery and the substrate is one and the same 

protein, hence the more commonly used name autotransporter system196,250-252. 

As a result, a given autotransporter is composed of only 2 domains: a C-terminal 

translocator domain, corresponding to an OM-inserted β-barrel253,254, and a N-

terminal passenger domain, which represents the secreted protein (Fig. 15a). 

The T5SS is responsible for the secretion of various virulence factors and 

sometimes adhesins250,252. Consequently, while most passenger domains are 

cleaved off after their transport across the OM, adhesins remain attached to the 

membrane via their translocator domain250,252. 
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Figure 15. Structural organization of type 5, chaperone-usher pathway and curli biogenesis secretion systems of Gram-negative bacteria 

(a) The T5SS or autotransporter system is a single protein secretion system composed of a C-terminal translocator domain inserted into the OM as a β-barrel and a 

N-terminal passenger domain exposed to the extracellular space after translocation through the β-barrel. The unfolded autotransporter is transported to the 

periplasm by the Sec machinery, where several chaperones stabilize its unfolded structure to prevent aggregation. It is then inserted into the OM with the 

assistance of the Bam complex. The unfolded passenger domain then passes through the pore created by the translocator domain and folds on the surface of the 

cell. (b) The chaperone–usher pathway is responsible for the synthesis of a pilus made of several subunits (FimH, -G, -F and -A) and is composed of the usher 

protein FimD, containing a pore, a plug, a N-terminal domain (NTD) and two C-terminal domains (CTD1 and CTD2) and the periplasmic chaperone FimC, involved 

in targeting the pilus subunits towards the usher. Pilus biogenesis is initiated by FimC–FimH interaction with the FimD CTDs. A FimC–FimG complex is then 

recruited to the FimD NTD (step 1). This leads to interaction between FimH and FimG, triggering dissociation of the FimC–FimH complex (step 2). FimH-FimG are 

then partially translocated through the FimD pore, thereby freeing the FimD NTD that is now able to bind a new FimF-FimC complex. This cycle is then continued 

by the addition of approximately 1,000 copies of the FimA subunit to the pilus. (c) The curli biogenesis system is composed of 6 proteins, CsgA and -B being the 

curli subunits and CsgC, -E, -F and -G assembling them. CsgA and -B are transported across the OM by a pore made of CsgE and -G. CsgB is then anchored to the cell 

surface thanks to CsgF before acting itself as nucleation factor for CsgA. The role of CsgC remains unclear. Adapted from 196. 
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Similar to porins and other OM β-barrels, autotransporters are 

transported to the periplasm via the Sec machinery, interact with SurA to remain 

in an unfolded state and are ultimately delivered to the Bam complex for 

membrane insertion (Fig. 15a)255. Following completion of the β-barrel, the 

passenger domain is then threaded through the pore and in most cases released 

into the extracellular environment (Fig. 15a)256. Recently however, several data 

suggest that autotransporters might not be as autonomous as initially described 

and point out an active role of the Bam or the Tam (translocation and assembly 

module) machineries in secretion of the passenger domain257-259. The exact 

secretion mechanism thus remains to be clarified. 

 

The chaperone-usher pathway (CU) 

 

The CU pathway is responsible for the synthesis and membrane 

anchorage of surface structures called pili, often found in uropathogenic E. coli 

(UPEC)260-262. These appendages mediate cell adhesion and biofilm formation 

and are therefore important pathogenicity factors260,262.  

The CU pilus is made of two components (Fig. 15b): the pilus itself, made 

of a long cylindrical structure with a flexible tip at its end263,264, and the usher 

protein, an OM protein that polymerizes the pilus subunits260,262,265. As for other 

two-step secretion systems, the usher and the pilus subunits are secreted by the 

Sec machinery before their assembly266,267. The usher is a 24 stranded β-barrel 

occluded by a plug domain265. Additionally, one N-terminal and two C-terminal 

domains involved in pilus subunit binding are extending into the periplasm265. In 

order to remain unfolded, the pilus subunits form complexes with dedicated 

periplasmic chaperones, hence the name of the system267-269. These 1:1 

complexes then interact with the usher protein, inducing opening of the channel 

by displacing the barrel plug followed by polymerization of the pilus 

subunits196,270-274. First, a chaperone:subunit complex associates with the C-

terminal domains of the usher (Fig. 15b step 1). This is followed by a second 

complex interacting with the usher N-terminal domain, leading to dissociation of 

the first chaperone:subunit complex (Fig. 15b step 2). This pilus subunit is then 

inserted into the barrel lumen while the subunit of the second complex is 
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transferred from the N- to the C-terminal domains of the usher (Fig. 15b step 3) 

196,270-274. A new round of polymerization can thus begin. Once polymerization is 

complete, the pilus remains anchored to the OM via the usher. 

 

The curli biogenesis 

 
The curli biogenesis system, sometimes referred to as T8SS or 

extracellular nucleation-precipitation (ENP) pathway, is involved in the 

biogenesis of amyloids called curli, long proteic nanofibers essential for biofilm 

formation275,276. Curli protect bacteria from harmfull environments and promote 

host invasion in species such as E. coli and Salmonella275,276.  

Curli biogenesis is accomplished thanks to 6 proteins, CsgA, -B, -C, -E, -F 

and -G (Fig. 15c)276,277. CsgA is the major curli subunit and is secreted as a 

soluble unfolded protomer by the Sec machinery278,279. To reach the bacterial 

surface, CsgA is transported across the OM by a pore formed by CsgE and -

G280,281. CsgG is a lipoprotein possessing a transmembrane α-helix which 

assembles into oligomeres to form the OM channel281, while CsgE is a 

periplasmic protein that tighly interacts with CsgG and is required for 

recruitment of CsgA subunits282,283. Once secreted through the pore, CsgA 

interacts with CsgB and assembles into amyloid fibers (Fig. 15c)284,285. Assembly 

of CsgB itself depends on the surface exposed CsgF286. The precise function of 

CsgC is still not clear, although it is suspected to target CsgA to the OM pore196,276. 

 

Type 7 secretion system (T7SS) 

 

The T7SS has first been described in Mycobacteria287, where it is required 

for virulence of species such as M. tuberculosis. Although Mycobacteria are not 

Gram-negative bacteria per se, they do possess a diderm membrane architecture 

(Fig. 16a)288,289. Indeed, they have an additional membrane surrounding their 

plasma membrane, called mycomembrane, composed of a waxy lipid coat made 

of mycolic acids288,289 while the periplasmic space contains a peptidoglycan as 

well as arabinogalactan layer288,289. Up to 5 subclasses of T7SS are reported in 
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Figure 16. The mycobacterial cell envelope and the T7SS 

(a) Mycobacteria, belonging to the high G+C Gram-positive bacteria, have a cell envelope similar to Gram-negative bacteria. It consists of a plasma membrane 

(equivalent to the IM of Gram-negative bacteria), a periplasmic space containing peptidoglycan and arabinogalactan, and a thick, complex OM that contains a waxy 

lipid coat of mycolic acids called the mycomembrane. Glycolipids, porins as well as lipoarabinomannan are inserted into this OM. (b) The T7SS is composed of 4 

conserved core proteins (EccB, -C, -D and -E) forming an IM complex associated to the periplasmic protease MycP implicated in substrate processing. The 

cytoplasmic ATPase EccA and the chaperone EspG are presumably involved in substrate guidance and secretion. To date, only the IM component of the T7SS has 

been identified; the putative OM transporter, if any, remains unknown. Hence, the precise transport mechanism remains to be determined. Interestingly, T7SS 

substrates have been shown to form heterodimers which seems to be a prerequisite for secretion. Adapted from 2,196. 
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Mycobacteria290 and homologous systems have been identified in Gram-positive 

bacteria such as Staphylococcus aureus or Bacillus anthracis291-293.  

T7SSs are composed of 4 conserved core proteins (EccB, -C, -D and -E) 

forming an IM complex associated to the periplasmic protease MycP, which is 

essential for secretion (Fig. 16b)294-297. Additional cytoplasmic proteins such as 

EccA and EspG are thought to aid secretion, act as chaperones and assure 

substrate specificity (Fig. 16b)230,298,299. Interestingly, T7SS substrates are 

secreted as heterodimers that assume a four-helix bundle conformation, which 

seems to be a common feature to all substrate pairs300-303. To date, only the IM 

complex of the T7SS has been identified295,296 and it is therefore not clear 

whether secretion occurs in a one- or two-step mechanim. Consequently, the 

putative transporter (if any) inserted into the mycomembrane has yet to be 

identified.  

 

Type 9 secretion system (T9SS) 

 

The T9SS is the most recently described Gram-negative bacterial 

secretion system and is exclusive to the phylum Bacteroidetes304,305. This system 

is involved both in secretion and gliding motility306,307. Gliding motility is a way 

of movement that allows bacteria to rapidly crawl over surface308. Different 

types of gliding motility have been described, but they all work independently of 

flagella and require energy for translocation of the cell308. In the case of 

Bacteroidetes such as Flavobacterium johnsoniae, gliding motility requires the 

presence of 11 conserved proteins to promote cell movement, while only a 

subset (7 proteins) is required to form the secretion apparatus305. T9SS 

substrates are involved in pathogenesis of species such as Porphyromonas 

gingivalis that causes severe periodontitis309,310.  

While the complete structure of the T9SS still requires further 

investigation, a recent study provided first insights into its structural 

organization311. Gorasia et al. showed that two components of the P. gingivalis 

T9SS, PorK and PorN, form a 50 nm diameter ring-shaped complex attached to 

the periplasmic side of the OM, containing 32 to 36 subunits of each protein (Fig. 

17). The authors also demonstrated that PorL and PorM form a separate stable 
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complex anchored to the IM proposed to provide energy for substrate transport 

(Fig. 17). Additionally, substrate recognition and processing have been mostly 

elucidated. Following their secretion by the Sec machinery, T9SS substrates are 

transported across the OM after recognition of a specific signal sequence in their 

C-terminus312,313. Once they reach the bacterial cell surface, this C-terminal signal 

is cleaved off and the mature proteins may or may not be linked to a short form 

of LPS, called A-LPS, that allows their anchorage to the OM314,315. 

 
 

        

 

Fig 17. Proposed model for the structural organization of the P. gingivalis T9SS 

PorK and PorN interact to form a ring-shaped structure that is localized in the periplasm and 

tethered to the OM via the PorK lipid anchor (black line). This structure may be further stabilized 

by its association with the PG0189 outer membrane protein. It is proposed that the PorK and 

PorN rings assemble around the periplasmic extensions of a yet unknown OM secretion pore. 

PorL and PorM have transmembrane spanning domains and are proposed to power secretion of 

the T9SS substrates through transient interactions with the PorK/N complex. The topology of the 

PorL and PorM inner membrane proteins is not known. Additional components of the secretion 

system without assigned structure or interaction are not displayed. Adapted from 311. 

 
 

Surface exposed lipoproteins in bacteria  
 

As previously described, most bacterial secretion systems are involved in 

transport of soluble proteins that are either released into the environment or a 

nearby cell, polymerized at the cell surface to form complex structures or 

covalently attached to the OM. However, to date, little attention has been paid to 
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proteins that are attached to membranes prior to transport initiation, especially 

how proteins such as lipoproteins reach the bacterial surface161,316,317. While this 

lipoprotein localization is rather rare in Proteobacteria and only a few cases 

have been elucidated161,316, it is common in species belonging to the Spirochaetes 

or Bacteroidetes phylum and is a fundamental aspect of their respective 

biology161,316,317. 

 

Rather unusual … 

RcsF in E. coli 

 

RcsF is part of the Rcs phosphorelay, a signaling system composed of 6 

proteins that detects and responds to OM and cell wall damages106,318-321. RcsF is 

the sensor of the system and activates the signaling cascade by interacting with 

the IM-anchored periplasmic protein IgaA104. Recent work has shown that RcsF 

monitors BamA activity by interacting with BamA as well as OmpA, one of the 

major E. coli porins (Fig. 18)104. More precisely, Cho et al. showed that BamA 

passes RcsF over to OmpA and that OmpA exposes, at least partially, RcsF to the 

cell surface. By doing so, the Rcs phosphorelay remains inactive (Fig. 18)104. 

However, absence of OmpA or decreased activity levels of BamA (resulting from 

an encountered stress) triggers the Rcs stress response as the protein remains 

periplasmic and interacts with IgaA104. This is so far the first example where 

BamA activity is linked to lipoprotein surface localization. 
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Figure 18. Model of E. coli RcsF surface exposure 

Following maturation, RcsF is transported to the OM by the Lol system similarly to other OM 

lipoproteins in E. coli. RcsF then interacts with BamA, the central component of the Bam 

machinery, leading to the formation of a complex between RcsF and OmpA, an abundant β-barrel 

protein. This results in surface display of RcsF, thus unable to interact with its cognate partner 

IgaA. The Rcs stress response is effectively shut down. Upon stress, affecting for exemple the 

activity of BamA, the RcsF-OmpA complex cannot be assembled anymore, leading to periplasmic 

localization of RcsF. It then interacts with IgaA, inducing the Rcs stress response. Adapted from 
104. 

 

TbpB, LbpB and fHbp in Neisseria meningitidis 

 

Neisseria meningitidis presents several surface exposed lipoproteins at its 

surface, namely TbpB, LbpB and fHbp. Although their function has since long 

been elucidated (TbpB and LbpB are involved in iron acquisition in blood322-324 

while fHbp binds factor H in order to prevent killing by complement325), the 

question of how theses proteins are transported to the cell surface remained 

unsolved. Recent work has now shed light on this aspect and showed that a novel 

transporter, called Slam1 (surface lipoprotein assembly modulator), is 

responsible for their transport326. Slam1 is an OM protein with 2 TPR 

(tetratricopeptide) domains in its N-terminus and a 14-stranded β-barrel in its 
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C-terminus. The function of the TPR domains remains to be clarified as the β-

barrel domain on its own is sufficient to mediate protein transport to the 

bacterial surface. However, Slam1 is not a general lipoprotein transporter, as 

HpuA (another surface exposed lipoprotein327,328) requires the Slam1 homolog 

Slam2 for transport, indicating that each transporter has specific substrates326. 

Interestingly, Slam1 homologs were identified in other Proteobacteria and 

secretion of TbpB could be reconstituted in E. coli by expressing Slam1, 

indicating that this system, and therefore surface exposed lipoproteins, might be 

more common in this phylum than generally assumed326. 

 

NalP in Neisseria meningitidis 

 

NalP, similar to SphB1 in Bordetella pertussis329,330, is a surface exposed 

serine protease belonging to the family of autotransporters (Fig. 19 step 3c)331. It 

is thus composed of a C-terminal β-barrel domain responsible for transport and 

a N-terminal secreted domain harboring the enzymatic activity. NalP is involved 

in autocatalytic processing, leading to its own release from the cell, as well as for 

the processing of other cell surface associated proteins331,332. Interestingly, NalP 

is also a lipoprotein, therefore being anchored into the OM. While the lipidation 

is not necessary for transport, absence of lipidation does however increase NalP 

autocatalytic processing, thus decreasing the amount of NalP bound to the OM, 

which in turn decreases the processing of its other substrates333. 

 

PulA in Klebsiella oxytoca 

 

PulA, a starch debranching enzyme, is attached to the cell surface before 

being slowly released into the extracellular medium11,334,335. Interestingly, PulA 

presents the classical Lol-avoidance signal (asparate at position +2 in the mature 

protein) and should therefore remain anchored into the IM, suggesting that 

surface exposure is not achieved by the Lol-system or extension of thereof. 

Rather, it has been shown that PulA is transported via the T2SS, although how 

exactly the protein is extracted from the IM remains unclear (Fig. 19 step 2b) 
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Figure 19. Model of lipoprotein surface exposure in Klebsiella, Neisseria and Borrelia 

As explained previously, the classical lipoprotein synthesis pathway in Gram-negative bacteria involves translocation of a precursor across the IM by either Sec or 

Tat machinery (step 1), maturation of the precursor into a tri-acylated lipoprotein (step 2) and Lol-dependent transport to the OM (step 3a). In this model, E. coli 

NlpA and Lpp represent typical IM and OM lipoproteins. However, in some specific cases, lipoproteins are transported to the cell surface independently of the Lol 

system. In Klebsiella oxytoca, the PulA protein is surface localized by the T2SS. PulA is first recruited to the T2SS pseudopilus before being pushed in a piston-like 

manner through the OM pore. How the lipid anchor of PulA is accommodated during this transport is unknown (step 3b). Neisseria spp NalP is transported by the 

T5SS. The unfolded polypeptide is first escorted to the OM by periplasmic chaperones where its translocator domain is then inserted into the membrane by the 

Bam complex. The passenger domain is threaded through the pore of the translocator domain and anchored to the OM. NalP is then slowly released from the cell by 

autolytic cleavage (step 3c). Spirochaetes such as Borrelia burgdorferi abundantly expose lipoproteins at their surface, like for example OspA. While the nature of 

the OM flippase machinery and the involvement of the Lol system in this process are still unclear, it has been shown that surface lipoproteins have to remain in an 

unfolded, transport compatible state. This led to the hypothesis of the involvement of a putative “holding” chaperone. Adapted from 161. 
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11,334,336. Noteworthy, lipidation is not required for surface transport but does 

however improve its efficiency at high expression levels337. To date, only few 

other lipoproteins have been reported to be transported by the T2SS, among 

which the E. coli SslE protein338 and cytochromes in Shewanella oneidensis339. 

 

… or maybe not ? 

Lipoproteins in Borrelia burgdorferi 

 

Spirochaetes are diderm bacteria with a double membrane architecture 

reminiscent of a classical Gram-negative bacterial cell, i.e. presence of an IM, a 

periplasmic space and an OM340. However, in Borrelia burgdorferi, the causative 

agent of Lyme disease, striking differences exist, such as the presence of 

periplasmic flagella341,342, absence of phosphatidylethanolamine in the OM343, 

and perhaps most notably, absence of LPS340,344. Additionally, Borrelia 

burgdorferi abundantly expose lipoproteins at their surface that are involved in 

pathogenesis340. These proteins have therefore been investigated in detail due to 

their importance in vaccine development. In parallel, the underlying surface 

transport mechanism has been studied. 

While the OM transport machinery (if any) remains unknown, progress 

has been made in regard to the signal involved in lipoprotein surface localization 

in B. burgdorferi. First, unlike described in Proteobacteria, the +2 rule (Lol-

avoidance signal) or variations of thereof do not apply in Spirochaetes345,346. 

Second, there seems to be no specific signal responsible for surface targeting, 

hence the assumption that surface lipoproteins are transported by default across 

the OM346,347. Third, the folding state of lipoproteins is crucial for their surface 

export. Indeed, lipoproteins are transported as unfolded polypeptides, evidenced 

by the fact that prematurely folded lipoproteins are anchored to the OM but 

remain periplasmic348. On the other hand, fold destabilizing mutations allow 

surface export of otherwise periplasmic retained proteins349. This led to the 

hypothesis of a putative “holding” chaperone that would prevent folding of 

surface lipoproteins before their transport across the OM (Fig. 19 step 3d)348. 

Additionally, the fact that folded lipoproteins are attached to the OM but not 
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surface localized suggests that OM anchoring and surface transport might be two 

uncoupled steps348. Further investigation is needed in order to understand how 

Borrelia targets its lipoproteins to the cell surface as well as to identify the 

corresponding transport machinery.  

Apart from Spirochaetes, the only other phylum in which lipoproteins are 

abundantly surface exposed is Bacteroidetes. Being the main subject of this 

work, a detailed description is provided within the next section. 

 

Of Bacteroidetes, lipoproteins and dogs 

Bacteroidetes – your (sometimes) friendly neighborhood bacterium 
 

The phylum Bacteroidetes comprises a high diversity of Gram-negative 

bacterial species that have colonized all types of habitats. They can be found in 

soil350, aquatic environments351 and as commensals of mammals or insects352,353. 

Among them, Bacteroides spp. are common members of the intestinal flora 

where they play a major role in gut homeostasis354-358 while Capnocytophaga and 

Porphyromonas spp. are part of the oral flora359,360. However, this phylum also 

includes opportunistic pathogens such as Bacteroides fragilis and 

Capnocytophaga canimorsus that cause acute systemic infections in humans361-

366 or Porphyromonas gingivalis that causes severe periodontal diseases359. The 

wide distribution of these organisms is in part due to their high adaptability to 

their ecological niche, especially thanks to their vast array of glycosylhydrolases. 

Indeed, genome analysis of members of this phylum has revealed their incredibly 

diverse arsenal of enzymes allowing them to degrade nearly all types of 

carbohydrates they can encounter160,305,358,367,368. Interestingly, these enzymes 

are often surface exposed lipoproteins and are part of multi-protein OM 

complexes devoted to nutrient acquisition. These complexes, facing the outside 

environment369,370, are encoded in genetic regions named Polysaccharide 

Utilization Loci (PUL)358,368 that represent a hallmark of this phylum. 
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Polysaccharide utilization loci in Bacteroidetes 
 

PUL-encoded complexes are involved in the binding, degradation and 

internalization of a wide variety of carbohydrates368,371,372, including complex 

glycans such as starch372 and hemicellulose373,374, highly glycosylated proteins 

like mucins375,376 and even iron from sero-transferrin377. The first PUL described 

encodes the so-called Sus (Starch utilization system)372,378 from Bacteroides 

thetaiotaomicron (Fig. 20), a human gut commensal able to degrade a wide range 

of host dietary glycans 357,379,380. The Sus membrane complex371,372,381,382 is 

composed of five proteins: SusC, a TonB-dependent receptor spanning the outer 

membrane369,383; SusD, -E and -F, cell surface exposed lipoproteins involved in 

starch binding 370,383,384 and SusG, a cell surface exposed lipoprotein with α–

amylase activity385,386. Upon binding of starch, SusG hydrolyses the long 

polymeric glucose chains into smaller oligosaccharides that are then imported 

through the SusC channel into the periplasm where they are further processed 

by SusA and B (Fig. 20)372. The expression of the sus operon is under the control 

of the SusR protein, an IM spanning sensor/regulator that induces sus gene 

expression upon detection of maltose, a glucose disaccharide, in the periplasm 

(Fig. 20). Thanks to the increasing availability of genomic data, a significant 

number of PUL-encoded systems have been identified not only in B. 

thetaiotaomicron (representing as much as 18% of its genome)358,375, but in all 

major groups of Bacteroidetes, including commensals387,388, saprophytes305,367 as 

well as pathogens160. This indicates that independently of the bacterial lifestyle, 

PUL are critical for nutrient acquisition in this phylum. Furthermore, since many 

Bacteroidetes species are gut commensals, their PUL-derived ability to digest 

complex glycans into short fatty acids directly benefits their host, prompting a 

predominant role of these species in gut homeostasis and host nutrition356. PUL- 

encoded complexes therefore play a pivotal role in the physiology of both 

Bacteroidetes and host372,379. 
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Figure 20. The Sus (starch utilization system) of Bacteroides thetaiotaomicron  

Functional model of Bacteroidetes glycan foraging based on the B. thetaiotaomicron Sus complex. 

Starch is bound to the cell by the surface exposed lipoproteins SusD, -E and -F. The surface 

exposed amylase SusG then cleaves starch into smaller oligosaccharides that are subsequently 

transported across the outer membrane by the TonB-dependent receptor SusC. Oligosaccharides 

are further degraded into mono- or disaccharides by the periplasmic enzymes SusA and SusB. 

Liberated saccharides serve as signal for the transcriptional regulator SusR that activates sus 

gene expression. Monosaccharides are finally imported across the cytoplasmic membrane to be 

metabolized. The genetic organization of the sus operon is shown below. Black arrowheads 

indicate transcription orientation of each gene. Adapted from 371. 
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Capnocytophaga canimorsus – dog commensal and human pathogen 
 

C. canimorsus is a commensal of the oral flora of dogs and cats and an 

opportunistic pathogen for humans, causing septicemia as well as meningitidis 

upon transmission362,363,389. Although the incidence of the infection is rather low, 

with a total of 484 confirmed cases since 1961, the outcome can be fatal in up to 

26 % of the infections even with appropriate antibiotic treatment. Our reference 

strain C. canimorsus 5160, a strain isolated from a human fatal septicemia390, has 

13 PUL and these encode more than half of all proteins exposed at the bacterial 

surface160.  

The C. canimorsus Sus homolog is encoded by PUL12 and was shown to 

degrade starch as well as glycogen (unpublished data). Interestingly, 3 other of 

these PUL-encoded complexes play critical roles in the biology of C. canimorsus 5. 

PUL3 encodes a novel iron acquisition system (Ics) allowing the bacterium to 

fetch iron from human transferrin, thus being indispensable for growth in 

human serum and therefore representing a potential virulence factor (see 

chapter 4)377. PUL5, encoding the Gpd complex, enables the bacterium to harvest 

amino sugars from the surface of eukaryotic cells as well as from soluble serum 

glycoproteins391-393. This capacity has recently been linked to the inability of the 

bacterium to synthesize N-acetylglucosamine, a key component for 

peptidoglycan assembly, highlighting its reliance on external amino sugar 

availability376. Finally, PUL9 has been shown to encode the Muc complex, 

devoted to mucin degradation376. This complex has also been shown to be able to 

compensate for the loss of the PUL5 encoded Gpd complex if an excess amount of 

mucin is provided, indicating a high degree of adaptation of the bacterium to its 

ecological niche, the dog’s mouth, rich in mucin376. 
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Aim of the thesis 
 

Recent studies showed that surface-exposed lipoproteins, and in 

particular PUL-associated lipoproteins, are highly abundant in Bacteroidetes. 

Indeed, in human pathogens such as C. canimorsus and B. fragilis, they represent 

more than half of all surface displayed proteins160,394. To date however, little is 

known on how these lipoproteins reach the bacterial surface. As already 

mentioned, while some lipoprotein surface localization mechanisms have been 

explored in Proteobacteria, these often represent unique cases of a given 

secretion system and do not seem to operate at a larger scale as would be 

required in Bacteroidetes (see “Surface exposed lipoproteins in bacteria”). In 

addition, with the exception of the T1SS, T9SS and some occurrences of T6SS, 

none of the above-described secretion systems seem to be present in 

Bacteroidetes395,396. Similarly, homologs to the recently described Slam1 and 2 

proteins, transporting lipoproteins to the surface of N. meningitidis326, seem to be 

absent in this phylum. Finally, no protein homologous to LolB, which inserts 

lipoproteins in the OM of E. coli, could be identified in Bacteroidetes. 

Due to the high physiological importance of PUL-encoded complexes, both 

for commensalism and pathogenesis, the question of how Bacteroidetes 

massively transport lipoproteins across their outer membrane and present them 

at their surface represents an interesting and fascinating topic. In this regard, it 

is also important to note that not all lipoproteins transported to the OM of 

Bacteroidetes are necessarily surface exposed; some lipoproteins remain 

intracellular and thus face the periplasm392. This therefore raises the question of 

how surface exposed and periplasmic lipoproteins are distinguished from each 

other and thus correctly targeted to their final destinations.  

 

The work in this thesis therefore focuses on two main aspects: i) the 

characterization of the signal discriminating intracellular and extracellular 

lipoproteins, ultimately resulting in their final subcellular localization and ii) the 

identification of the machinery that transports lipoproteins across the OM to the 

bacterial surface in Bacteroidetes. This work was essentially performed in our 

model organism C. canimorsus 5.  



Introduction 
 

 58 

References 
 

1 Silhavy, T. J. et al. The bacterial cell envelope. Cold Spring Harb Perspect Biol 2, (2010). 
2 Brown, L. et al. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria 

and fungi. Nat Rev Microbiol 13, (2015). 
3 Driessen, A. J. & Nouwen, N. Protein translocation across the bacterial cytoplasmic membrane. 

Annu Rev Biochem 77, (2008). 
4 Bos, M. P. et al. Biogenesis of the gram-negative bacterial outer membrane. Annu Rev Microbiol 61, 

(2007). 
5 Gu, Y. et al. Structural basis of outer membrane protein insertion by the BAM complex. Nature 531, 

(2016). 
6 Okuda, S. & Tokuda, H. Lipoprotein sorting in bacteria. Annu Rev Microbiol 65, (2011). 
7 Putker, F. et al. Transport of lipopolysaccharide to the Gram-negative bacterial cell surface. FEMS 

Microbiol Rev 39, (2015). 
8 Gensollen, T. et al. How colonization by microbiota in early life shapes the immune system. Science 

352, (2016). 
9 Collinson, I. et al. Channel crossing: how are proteins shipped across the bacterial plasma 

membrane? Philos Trans R Soc Lond B Biol Sci 370, (2015). 
10 du Plessis, D. J. et al. The Sec translocase. Biochim Biophys Acta 1808, (2011). 
11 Pugsley, A. P. The complete general secretory pathway in gram-negative bacteria. Microbiol Rev 57, 

(1993). 
12 von Heijne, G. The signal peptide. J Membr Biol 115, (1990). 
13 Lee, H. C. & Bernstein, H. D. The targeting pathway of Escherichia coli presecretory and integral 

membrane proteins is specified by the hydrophobicity of the targeting signal. Proc Natl Acad Sci U 
S A 98, (2001). 

14 Koch, H. G. et al. In vitro studies with purified components reveal signal recognition particle (SRP) 
and SecA/SecB as constituents of two independent protein-targeting pathways of Escherichia coli. 
Mol Biol Cell 10, (1999). 

15 Xu, Z. et al. Crystal structure of the bacterial protein export chaperone secB. Nat Struct Biol 7, 
(2000). 

16 Randall, L. L. Translocation of domains of nascent periplasmic proteins across the cytoplasmic 
membrane is independent of elongation. Cell 33, (1983). 

17 Arkowitz, R. A. et al. Translocation can drive the unfolding of a preprotein domain. EMBO J 12, 
(1993). 

18 Bechtluft, P. et al. Direct observation of chaperone-induced changes in a protein folding pathway. 
Science 318, (2007). 

19 Fekkes, P. et al. Preprotein transfer to the Escherichia coli translocase requires the co-operative 
binding of SecB and the signal sequence to SecA. Mol Microbiol 29, (1998). 

20 Lill, R. et al. SecA protein hydrolyzes ATP and is an essential component of the protein 
translocation ATPase of Escherichia coli. EMBO J 8, (1989). 

21 Lill, R. et al. The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader 
and mature domains of precursor proteins. Cell 60, (1990). 

22 Fekkes, P. et al. The molecular chaperone SecB is released from the carboxy-terminus of SecA 
during initiation of precursor protein translocation. EMBO J 16, (1997). 

23 Brundage, L. et al. The purified E. coli integral membrane protein SecY/E is sufficient for 
reconstitution of SecA-dependent precursor protein translocation. Cell 62, (1990). 

24 Hizlan, D. et al. Structure of the SecY complex unlocked by a preprotein mimic. Cell Rep 1, (2012). 
25 Duong, F. & Wickner, W. Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of 

preprotein translocase holoenzyme. EMBO J 16, (1997). 
26 Driessen, A. J. Precursor protein translocation by the Escherichia coli translocase is directed by the 

protonmotive force. EMBO J 11, (1992). 
27 Schiebel, E. et al. Delta mu H+ and ATP function at different steps of the catalytic cycle of 

preprotein translocase. Cell 64, (1991). 
28 van der Wolk, J. P. et al. The catalytic cycle of the escherichia coli SecA ATPase comprises two 

distinct preprotein translocation events. EMBO J 16, (1997). 
29 Dalbey, R. E. et al. Membrane proteases in the bacterial protein secretion and quality control 

pathway. Microbiol Mol Biol Rev 76, (2012). 
30 Berks, B. C. The twin-arginine protein translocation pathway. Annu Rev Biochem 84, (2015). 
31 Mould, R. M. & Robinson, C. A proton gradient is required for the transport of two lumenal oxygen-

evolving proteins across the thylakoid membrane. J Biol Chem 266, (1991). 
32 Yahr, T. L. & Wickner, W. T. Functional reconstitution of bacterial Tat translocation in vitro. EMBO J 

20, (2001). 
33 Alami, M. et al. Differential interactions between a twin-arginine signal peptide and its translocase 

in Escherichia coli. Mol Cell 12, (2003). 



Introduction 
 

 59 

34 Cline, K. & Mori, H. Thylakoid DeltapH-dependent precursor proteins bind to a cpTatC-Hcf106 
complex before Tha4-dependent transport. J Cell Biol 154, (2001). 

35 Mori, H. & Cline, K. A twin arginine signal peptide and the pH gradient trigger reversible assembly 
of the thylakoid [Delta]pH/Tat translocase. J Cell Biol 157, (2002). 

36 Dabney-Smith, C. & Cline, K. Clustering of C-terminal stromal domains of Tha4 homo-oligomers 
during translocation by the Tat protein transport system. Mol Biol Cell 20, (2009). 

37 Dabney-Smith, C. et al. Oligomers of Tha4 organize at the thylakoid Tat translocase during protein 
transport. J Biol Chem 281, (2006). 

38 Alcock, F. et al. Live cell imaging shows reversible assembly of the TatA component of the twin-
arginine protein transport system. Proc Natl Acad Sci U S A 110, (2013). 

39 Rose, P. et al. Substrate-dependent assembly of the Tat translocase as observed in live Escherichia 
coli cells. PLoS One 8, (2013). 

40 Luke, I. et al. Proteolytic processing of Escherichia coli twin-arginine signal peptides by LepB. Arch 
Microbiol 191, (2009). 

41 Palmer, T. & Berks, B. C. The twin-arginine translocation (Tat) protein export pathway. Nat Rev 
Microbiol 10, (2012). 

42 Goemans, C. et al. Folding mechanisms of periplasmic proteins. Biochim Biophys Acta 1843, 
(2014). 

43 Merdanovic, M. et al. Protein quality control in the bacterial periplasm. Annu Rev Microbiol 65, 
(2011). 

44 Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol 
Rev 67, (2003). 

45 Han, L. et al. Structure of the BAM complex and its implications for biogenesis of outer-membrane 
proteins. Nat Struct Mol Biol 23, (2016). 

46 Dong, H. et al. Structural basis for outer membrane lipopolysaccharide insertion. Nature 511, 
(2014). 

47 Qiao, S. et al. Structural basis for lipopolysaccharide insertion in the bacterial outer membrane. 
Nature 511, (2014). 

48 Pautsch, A. & Schulz, G. E. Structure of the outer membrane protein A transmembrane domain. Nat 
Struct Biol 5, (1998). 

49 Arora, A. et al. Structure of outer membrane protein A transmembrane domain by NMR 
spectroscopy. Nat Struct Biol 8, (2001). 

50 Ferguson, A. D. et al. Siderophore-mediated iron transport: crystal structure of FhuA with bound 
lipopolysaccharide. Science 282, (1998). 

51 Locher, K. P. et al. Transmembrane signaling across the ligand-gated FhuA receptor: crystal 
structures of free and ferrichrome-bound states reveal allosteric changes. Cell 95, (1998). 

52 Schirmer, T. et al. Structural basis for sugar translocation through maltoporin channels at 3.1 A 
resolution. Science 267, (1995). 

53 Koronakis, V. et al. Crystal structure of the bacterial membrane protein TolC central to multidrug 
efflux and protein export. Nature 405, (2000). 

54 Wimley, W. C. The versatile beta-barrel membrane protein. Curr Opin Struct Biol 13, (2003). 
55 Tamm, L. K. et al. Folding and assembly of beta-barrel membrane proteins. Biochim Biophys Acta 

1666, (2004). 
56 Sklar, J. G. et al. Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in 

Escherichia coli. Genes Dev 21, (2007). 
57 Vertommen, D. et al. Characterization of the role of the Escherichia coli periplasmic chaperone 

SurA using differential proteomics. Proteomics 9, (2009). 
58 Hagan, C. L. et al. Reconstitution of outer membrane protein assembly from purified components. 

Science 328, (2010). 
59 Behrens, S. et al. The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and 

has chaperone activity. EMBO J 20, (2001). 
60 Bitto, E. & McKay, D. B. Binding of phage-display-selected peptides to the periplasmic chaperone 

protein SurA mimics binding of unfolded outer membrane proteins. FEBS Lett 568, (2004). 
61 Hennecke, G. et al. The periplasmic chaperone SurA exploits two features characteristic of integral 

outer membrane proteins for selective substrate recognition. J Biol Chem 280, (2005). 
62 Lazar, S. W. & Kolter, R. SurA assists the folding of Escherichia coli outer membrane proteins. J 

Bacteriol 178, (1996). 
63 Rouviere, P. E. & Gross, C. A. SurA, a periplasmic protein with peptidyl-prolyl isomerase activity, 

participates in the assembly of outer membrane porins. Genes Dev 10, (1996). 
64 Ureta, A. R. et al. Kinetic analysis of the assembly of the outer membrane protein LamB in 

Escherichia coli mutants each lacking a secretion or targeting factor in a different cellular 
compartment. J Bacteriol 189, (2007). 

65 Missiakas, D. et al. New components of protein folding in extracytoplasmic compartments of 
Escherichia coli SurA, FkpA and Skp/OmpH. Mol Microbiol 21, (1996). 

66 Chen, R. & Henning, U. A periplasmic protein (Skp) of Escherichia coli selectively binds a class of 
outer membrane proteins. Mol Microbiol 19, (1996). 



Introduction 
 

 60 

67 Qu, J. et al. The trimeric periplasmic chaperone Skp of Escherichia coli forms 1:1 complexes with 
outer membrane proteins via hydrophobic and electrostatic interactions. J Mol Biol 374, (2007). 

68 Jarchow, S. et al. Identification of potential substrate proteins for the periplasmic Escherichia coli 
chaperone Skp. Proteomics 8, (2008). 

69 Walton, T. A. & Sousa, M. C. Crystal structure of Skp, a prefoldin-like chaperone that protects 
soluble and membrane proteins from aggregation. Mol Cell 15, (2004). 

70 Rizzitello, A. E. et al. Genetic evidence for parallel pathways of chaperone activity in the periplasm 
of Escherichia coli. J Bacteriol 183, (2001). 

71 Schwalm, J. et al. Role for Skp in LptD assembly in Escherichia coli. J Bacteriol 195, (2013). 
72 de Cock, H. et al. Non-lamellar structure and negative charges of lipopolysaccharides required for 

efficient folding of outer membrane protein PhoE of Escherichia coli. J Biol Chem 274, (1999). 
73 Qu, J. et al. Binding regions of outer membrane protein A in complexes with the periplasmic 

chaperone Skp. A site-directed fluorescence study. Biochemistry 48, (2009). 
74 Burmann, B. M. et al. Revisiting the interaction between the chaperone Skp and lipopolysaccharide. 

Biophys J 108, (2015). 
75 Meltzer, M. et al. Structure, function and regulation of the conserved serine proteases DegP and 

DegS of Escherichia coli. Res Microbiol 160, (2009). 
76 Subrini, O. & Betton, J. M. Assemblies of DegP underlie its dual chaperone and protease function. 

FEMS Microbiol Lett 296, (2009). 
77 Kleinschmidt, J. H. Membrane protein folding on the example of outer membrane protein A of 

Escherichia coli. Cell Mol Life Sci 60, (2003). 
78 Ricci, D. P. & Silhavy, T. J. The Bam machine: a molecular cooper. Biochim Biophys Acta 1818, 

(2012). 
79 Voulhoux, R. et al. Role of a highly conserved bacterial protein in outer membrane protein 

assembly. Science 299, (2003). 
80 Wu, T. et al. Identification of a multicomponent complex required for outer membrane biogenesis 

in Escherichia coli. Cell 121, (2005). 
81 Arnold, T. et al. Omp85 from the thermophilic cyanobacterium Thermosynechococcus elongatus 

differs from proteobacterial Omp85 in structure and domain composition. J Biol Chem 285, (2010). 
82 Schleiff, E. et al. Omp85 in eukaryotic systems: one protein family with distinct functions. Biol 

Chem 392, (2011). 
83 Gentle, I. et al. The Omp85 family of proteins is essential for outer membrane biogenesis in 

mitochondria and bacteria. J Cell Biol 164, (2004). 
84 Kim, S. et al. Structure and function of an essential component of the outer membrane protein 

assembly machine. Science 317, (2007). 
85 Gentle, I. E. et al. Molecular architecture and function of the Omp85 family of proteins. Mol 

Microbiol 58, (2005). 
86 Sanchez-Pulido, L. et al. POTRA: a conserved domain in the FtsQ family and a class of beta-barrel 

outer membrane proteins. Trends Biochem Sci 28, (2003). 
87 Sklar, J. G. et al. Lipoprotein SmpA is a component of the YaeT complex that assembles outer 

membrane proteins in Escherichia coli. Proc Natl Acad Sci U S A 104, (2007). 
88 Bennion, D. et al. Dissection of beta-barrel outer membrane protein assembly pathways through 

characterizing BamA POTRA 1 mutants of Escherichia coli. Mol Microbiol 77, (2010). 
89 Charlson, E. S. et al. Differential effects of yfgL mutation on Escherichia coli outer membrane 

proteins and lipopolysaccharide. J Bacteriol 188, (2006). 
90 Malinverni, J. C. et al. YfiO stabilizes the YaeT complex and is essential for outer membrane protein 

assembly in Escherichia coli. Mol Microbiol 61, (2006). 
91 Vuong, P. et al. Analysis of YfgL and YaeT interactions through bioinformatics, mutagenesis, and 

biochemistry. J Bacteriol 190, (2008). 
92 Noinaj, N. et al. Structural insight into the biogenesis of beta-barrel membrane proteins. Nature 

501, (2013). 
93 Ni, D. et al. Structural and functional analysis of the beta-barrel domain of BamA from Escherichia 

coli. FASEB J 28, (2014). 
94 Albrecht, R. et al. Structure of BamA, an essential factor in outer membrane protein biogenesis. 

Acta Crystallogr D Biol Crystallogr 70, (2014). 
95 Noinaj, N. et al. The crystal structure of BamB suggests interactions with BamA and its role within 

the BAM complex. J Mol Biol 407, (2011). 
96 Dong, C. et al. Structure of Escherichia coli BamB and its interaction with POTRA domains of BamA. 

Acta Crystallogr D Biol Crystallogr 68, (2012). 
97 Chen, Z. et al. Structural basis for the interaction of BamB with the POTRA3-4 domains of BamA. 

Acta Crystallogr D Struct Biol 72, (2016). 
98 Sandoval, C. M. et al. Crystal structure of BamD: an essential component of the beta-Barrel 

assembly machinery of gram-negative bacteria. J Mol Biol 409, (2011). 
99 Dong, C. et al. Structure of Escherichia coli BamD and its functional implications in outer 

membrane protein assembly. Acta Crystallogr D Biol Crystallogr 68, (2012). 



Introduction 
 

 61 

100 Kim, K. H. et al. Structural characterization of Escherichia coli BamE, a lipoprotein component of 
the beta-barrel assembly machinery complex. Biochemistry 50, (2011). 

101 Chimalakonda, G. et al. Lipoprotein LptE is required for the assembly of LptD by the beta-barrel 
assembly machine in the outer membrane of Escherichia coli. Proc Natl Acad Sci U S A 108, (2011). 

102 Matsuyama, S. et al. A novel outer membrane lipoprotein, LolB (HemM), involved in the LolA 
(p20)-dependent localization of lipoproteins to the outer membrane of Escherichia coli. EMBO J 
16, (1997). 

103 Clavel, T. et al. TolB protein of Escherichia coli K-12 interacts with the outer membrane 
peptidoglycan-associated proteins Pal, Lpp and OmpA. Mol Microbiol 29, (1998). 

104 Cho, S. H. et al. Detecting envelope stress by monitoring beta-barrel assembly. Cell 159, (2014). 
105 Typas, A. et al. Regulation of peptidoglycan synthesis by outer-membrane proteins. Cell 143, 

(2010). 
106 Laubacher, M. E. & Ades, S. E. The Rcs phosphorelay is a cell envelope stress response activated by 

peptidoglycan stress and contributes to intrinsic antibiotic resistance. J Bacteriol 190, (2008). 
107 Uehara, T. et al. LytM-domain factors are required for daughter cell separation and rapid 

ampicillin-induced lysis in Escherichia coli. J Bacteriol 191, (2009). 
108 Maeda, S. & Omata, T. Substrate-binding lipoprotein of the cyanobacterium Synechococcus sp. 

strain PCC 7942 involved in the transport of nitrate and nitrite. J Biol Chem 272, (1997). 
109 Zgurskaya, H. I. & Nikaido, H. Cross-linked complex between oligomeric periplasmic lipoprotein 

AcrA and the inner-membrane-associated multidrug efflux pump AcrB from Escherichia coli. J 
Bacteriol 182, (2000). 

110 McBride, M. J. Cytophaga-flavobacterium gliding motility. J Mol Microbiol Biotechnol 7, (2004). 
111 Kovacs-Simon, A. et al. Lipoproteins of bacterial pathogens. Infect Immun 79, (2011). 
112 Paradis-Bleau, C. et al. Lipoprotein cofactors located in the outer membrane activate bacterial cell 

wall polymerases. Cell 143, (2010). 
113 Yakushi, T. et al. Lethality of the covalent linkage between mislocalized major outer membrane 

lipoprotein and the peptidoglycan of Escherichia coli. J Bacteriol 179, (1997). 
114 Miyadai, H. et al. Effects of lipoprotein overproduction on the induction of DegP (HtrA) involved in 

quality control in the Escherichia coli periplasm. J Biol Chem 279, (2004). 
115 Inouye, S. et al. Amino acid sequence for the peptide extension on the prolipoprotein of the 

Escherichia coli outer membrane. Proc Natl Acad Sci U S A 74, (1977). 
116 Sugai, M. & Wu, H. C. Export of the outer membrane lipoprotein is defective in secD, secE, and secF 

mutants of Escherichia coli. J Bacteriol 174, (1992). 
117 Watanabe, T. et al. Synthesis and export of the outer membrane lipoprotein in Escherichia coli 

mutants defective in generalized protein export. J Bacteriol 170, (1988). 
118 Hutchings, M. I. et al. Lipoprotein biogenesis in Gram-positive bacteria: knowing when to hold 'em, 

knowing when to fold 'em. Trends Microbiol 17, (2009). 
119 McDonough, J. A. et al. The twin-arginine translocation pathway of Mycobacterium smegmatis is 

functional and required for the export of mycobacterial beta-lactamases. J Bacteriol 187, (2005). 
120 Thompson, B. J. et al. Investigating lipoprotein biogenesis and function in the model Gram-positive 

bacterium Streptomyces coelicolor. Mol Microbiol 77, (2010). 
121 Widdick, D. A. et al. The twin-arginine translocation pathway is a major route of protein export in 

Streptomyces coelicolor. Proc Natl Acad Sci U S A 103, (2006). 
122 Babu, M. M. et al. A database of bacterial lipoproteins (DOLOP) with functional assignments to 

predicted lipoproteins. J Bacteriol 188, (2006). 
123 Braun, V., and H. C. Wu. in Bacterial cell wall Vol. 27    319 (Elsevier, 1993). 
124 Hayashi, S. & Wu, H. C. Lipoproteins in bacteria. J Bioenerg Biomembr 22, (1990). 
125 Hantke, K. & Braun, V. Covalent binding of lipid to protein. Diglyceride and amide-linked fatty acid 

at the N-terminal end of the murein-lipoprotein of the Escherichia coli outer membrane. Eur J 
Biochem 34, (1973). 

126 Sankaran, K. & Wu, H. C. Lipid modification of bacterial prolipoprotein. Transfer of diacylglyceryl 
moiety from phosphatidylglycerol. J Biol Chem 269, (1994). 

127 Dev, I. K. & Ray, P. H. Rapid assay and purification of a unique signal peptidase that processes the 
prolipoprotein from Escherichia coli B. J Biol Chem 259, (1984). 

128 Hussain, M. et al. Mechanism of signal peptide cleavage in the biosynthesis of the major lipoprotein 
of the Escherichia coli outer membrane. J Biol Chem 257, (1982). 

129 Tokunaga, M. et al. Post-translational modification and processing of Escherichia coli 
prolipoprotein in vitro. Proc Natl Acad Sci U S A 79, (1982). 

130 Fukuda, A. et al. Aminoacylation of the N-terminal cysteine is essential for Lol-dependent release 
of lipoproteins from membranes but does not depend on lipoprotein sorting signals. J Biol Chem 
277, (2002). 

131 Gupta, S. D. et al. Characterization of a temperature-sensitive mutant of Salmonella typhimurium 
defective in apolipoprotein N-acyltransferase. J Biol Chem 268, (1993). 

132 Gupta, S. D. & Wu, H. C. Identification and subcellular localization of apolipoprotein N-
acyltransferase in Escherichia coli. FEMS Microbiol Lett 62, (1991). 



Introduction 
 

 62 

133 Tschumi, A. et al. Identification of apolipoprotein N-acyltransferase (Lnt) in mycobacteria. J Biol 
Chem 284, (2009). 

134 Widdick, D. A. et al. Dissecting the complete lipoprotein biogenesis pathway in Streptomyces 
scabies. Mol Microbiol 80, (2011). 

135 Yakushi, T. et al. A new ABC transporter mediating the detachment of lipid-modified proteins from 
membranes. Nat Cell Biol 2, (2000). 

136 Yakushi, T. et al. LolA-dependent release of a lipid-modified protein from the inner membrane of 
Escherichia coli requires nucleoside triphosphate. J Biol Chem 273, (1998). 

137 Narita, S. et al. Disruption of lolCDE, encoding an ATP-binding cassette transporter, is lethal for 
Escherichia coli and prevents release of lipoproteins from the inner membrane. J Bacteriol 184, 
(2002). 

138 Yasuda, M. et al. Membrane topology and functional importance of the periplasmic region of ABC 
transporter LolCDE. Biosci Biotechnol Biochem 73, (2009). 

139 Okuda, S. & Tokuda, H. Model of mouth-to-mouth transfer of bacterial lipoproteins through inner 
membrane LolC, periplasmic LolA, and outer membrane LolB. Proc Natl Acad Sci U S A 106, (2009). 

140 Taniguchi, N. & Tokuda, H. Molecular events involved in a single cycle of ligand transfer from an 
ATP binding cassette transporter, LolCDE, to a molecular chaperone, LolA. J Biol Chem 283, (2008). 

141 Matsuyama, S. et al. A novel periplasmic carrier protein involved in the sorting and transport of 
Escherichia coli lipoproteins destined for the outer membrane. EMBO J 14, (1995). 

142 Tajima, T. et al. Genetic analyses of the in vivo function of LolA, a periplasmic chaperone involved 
in the outer membrane localization of Escherichia coli lipoproteins. FEBS Lett 439, (1998). 

143 Nakada, S. et al. Structural investigation of the interaction between LolA and LolB using NMR. J Biol 
Chem 284, (2009). 

144 Takeda, K. et al. Crystal structures of bacterial lipoprotein localization factors, LolA and LolB. 
EMBO J 22, (2003). 

145 Okuda, S. et al. A short helix in the C-terminal region of LolA is important for the specific 
membrane localization of lipoproteins. FEBS Lett 582, (2008). 

146 Oguchi, Y. et al. Opening and closing of the hydrophobic cavity of LolA coupled to lipoprotein 
binding and release. J Biol Chem 283, (2008). 

147 Hayashi, Y. et al. Roles of the protruding loop of factor B essential for the localization of 
lipoproteins (LolB) in the anchoring of bacterial triacylated proteins to the outer membrane. J Biol 
Chem 289, (2014). 

148 Taniguchi, N. et al. Mechanisms underlying energy-independent transfer of lipoproteins from LolA 
to LolB, which have similar unclosed {beta}-barrel structures. J Biol Chem 280, (2005). 

149 Miyamoto, A. et al. Mutant of LolA, a lipoprotein-specific molecular chaperone of Escherichia coli, 
defective in the transfer of lipoproteins to LolB. Biochem Biophys Res Commun 287, (2001). 

150 Masuda, K. et al. Elucidation of the function of lipoprotein-sorting signals that determine 
membrane localization. Proc Natl Acad Sci U S A 99, (2002). 

151 Yamaguchi, K. et al. A single amino acid determinant of the membrane localization of lipoproteins 
in E. coli. Cell 53, (1988). 

152 Gennity, J. M. & Inouye, M. The protein sequence responsible for lipoprotein membrane 
localization in Escherichia coli exhibits remarkable specificity. J Biol Chem 266, (1991). 

153 Terada, M. et al. Lipoprotein sorting signals evaluated as the LolA-dependent release of 
lipoproteins from the cytoplasmic membrane of Escherichia coli. J Biol Chem 276, (2001). 

154 Lewenza, S. et al. Direct visualization of red fluorescent lipoproteins indicates conservation of the 
membrane sorting rules in the family Enterobacteriaceae. J Bacteriol 188, (2006). 

155 Lewenza, S. et al. Novel inner membrane retention signals in Pseudomonas aeruginosa 
lipoproteins. J Bacteriol 190, (2008). 

156 Tanaka, S. Y. et al. Characterization of the Pseudomonas aeruginosa Lol system as a lipoprotein 
sorting mechanism. J Biol Chem 282, (2007). 

157 Narita, S. & Tokuda, H. Amino acids at positions 3 and 4 determine the membrane specificity of 
Pseudomonas aeruginosa lipoproteins. J Biol Chem 282, (2007). 

158 Hara, T. et al. Mechanism underlying the inner membrane retention of Escherichia coli 
lipoproteins caused by Lol avoidance signals. J Biol Chem 278, (2003). 

159 Sutcliffe, I. C. et al. A phylum level analysis reveals lipoprotein biosynthesis to be a fundamental 
property of bacteria. Protein Cell 3, (2012). 

160 Manfredi, P. et al. The genome and surface proteome of Capnocytophaga canimorsus reveal a key 
role of glycan foraging systems in host glycoproteins deglycosylation. Mol Microbiol 81, (2011). 

161 Zuckert, W. R. Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the 
periplasm and beyond. Biochim Biophys Acta 1843, (2014). 

162 Murray, G. L. et al. Altering the length of the lipopolysaccharide O antigen has an impact on the 
interaction of Salmonella enterica serovar Typhimurium with macrophages and complement. J 
Bacteriol 188, (2006). 

163 Raetz, C. R. & Whitfield, C. Lipopolysaccharide endotoxins. Annu Rev Biochem 71, (2002). 
164 Raetz, C. R. et al. Lipid A modification systems in gram-negative bacteria. Annu Rev Biochem 76, 

(2007). 



Introduction 
 

 63 

165 Kalynych, S. et al. Progress in understanding the assembly process of bacterial O-antigen. FEMS 
Microbiol Rev 38, (2014). 

166 Doerrler, W. T. et al. MsbA-dependent translocation of lipids across the inner membrane of 
Escherichia coli. J Biol Chem 279, (2004). 

167 Polissi, A. & Georgopoulos, C. Mutational analysis and properties of the msbA gene of Escherichia 
coli, coding for an essential ABC family transporter. Mol Microbiol 20, (1996). 

168 Zhou, Z. et al. Function of Escherichia coli MsbA, an essential ABC family transporter, in lipid A and 
phospholipid biosynthesis. J Biol Chem 273, (1998). 

169 Ward, A. et al. Flexibility in the ABC transporter MsbA: Alternating access with a twist. Proc Natl 
Acad Sci U S A 104, (2007). 

170 Doerrler, W. T. & Raetz, C. R. ATPase activity of the MsbA lipid flippase of Escherichia coli. J Biol 
Chem 277, (2002). 

171 Sperandeo, P. et al. Characterization of lptA and lptB, two essential genes implicated in 
lipopolysaccharide transport to the outer membrane of Escherichia coli. J Bacteriol 189, (2007). 

172 Sperandeo, P. et al. Non-essential KDO biosynthesis and new essential cell envelope biogenesis 
genes in the Escherichia coli yrbG-yhbG locus. Res Microbiol 157, (2006). 

173 Tran, A. X. et al. The LptA protein of Escherichia coli is a periplasmic lipid A-binding protein 
involved in the lipopolysaccharide export pathway. J Biol Chem 283, (2008). 

174 Suits, M. D. et al. Novel structure of the conserved gram-negative lipopolysaccharide transport 
protein A and mutagenesis analysis. J Mol Biol 380, (2008). 

175 Okuda, S. et al. Cytoplasmic ATP hydrolysis powers transport of lipopolysaccharide across the 
periplasm in E. coli. Science 338, (2012). 

176 Merten, J. A. et al. Concentration-dependent oligomerization and oligomeric arrangement of LptA. 
Protein Sci 21, (2012). 

177 Santambrogio, C. et al. LptA assembles into rod-like oligomers involving disorder-to-order 
transitions. J Am Soc Mass Spectrom 24, (2013). 

178 Sherman, D. J. et al. Decoupling catalytic activity from biological function of the ATPase that 
powers lipopolysaccharide transport. Proc Natl Acad Sci U S A 111, (2014). 

179 Wang, Z. et al. Structural and functional studies of conserved nucleotide-binding protein LptB in 
lipopolysaccharide transport. Biochem Biophys Res Commun 452, (2014). 

180 Narita, S. & Tokuda, H. Biochemical characterization of an ABC transporter LptBFGC complex 
required for the outer membrane sorting of lipopolysaccharides. FEBS Lett 583, (2009). 

181 Ruiz, N. et al. Identification of two inner-membrane proteins required for the transport of 
lipopolysaccharide to the outer membrane of Escherichia coli. Proc Natl Acad Sci U S A 105, 
(2008). 

182 Villa, R. et al. The Escherichia coli Lpt transenvelope protein complex for lipopolysaccharide 
export is assembled via conserved structurally homologous domains. J Bacteriol 195, (2013). 

183 Sperandeo, P. et al. Functional analysis of the protein machinery required for transport of 
lipopolysaccharide to the outer membrane of Escherichia coli. J Bacteriol 190, (2008). 

184 Tran, A. X. et al. Structure and functional analysis of LptC, a conserved membrane protein involved 
in the lipopolysaccharide export pathway in Escherichia coli. J Biol Chem 285, (2010). 

185 Sestito, S. E. et al. Functional characterization of E. coli LptC: interaction with LPS and a synthetic 
ligand. Chembiochem 15, (2014). 

186 Wu, T. et al. Identification of a protein complex that assembles lipopolysaccharide in the outer 
membrane of Escherichia coli. Proc Natl Acad Sci U S A 103, (2006). 

187 Bos, M. P. et al. Identification of an outer membrane protein required for the transport of 
lipopolysaccharide to the bacterial cell surface. Proc Natl Acad Sci U S A 101, (2004). 

188 Braun, M. & Silhavy, T. J. Imp/OstA is required for cell envelope biogenesis in Escherichia coli. Mol 
Microbiol 45, (2002). 

189 Ruiz, N. et al. Nonconsecutive disulfide bond formation in an essential integral outer membrane 
protein. Proc Natl Acad Sci U S A 107, (2010). 

190 Malojcic, G. et al. LptE binds to and alters the physical state of LPS to catalyze its assembly at the 
cell surface. Proc Natl Acad Sci U S A 111, (2014). 

191 Chng, S. S. et al. Characterization of the two-protein complex in Escherichia coli responsible for 
lipopolysaccharide assembly at the outer membrane. Proc Natl Acad Sci U S A 107, (2010). 

192 Bowyer, A. et al. Characterization of interactions between LPS transport proteins of the Lpt 
system. Biochem Biophys Res Commun 404, (2011). 

193 Sperandeo, P. et al. New insights into the Lpt machinery for lipopolysaccharide transport to the 
cell surface: LptA-LptC interaction and LptA stability as sensors of a properly assembled 
transenvelope complex. J Bacteriol 193, (2011). 

194 Freinkman, E. et al. Regulated assembly of the transenvelope protein complex required for 
lipopolysaccharide export. Biochemistry 51, (2012). 

195 Gu, Y. et al. Lipopolysaccharide is inserted into the outer membrane through an intramembrane 
hole, a lumen gate, and the lateral opening of LptD. Structure 23, (2015). 

196 Costa, T. R. et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. 
Nat Rev Microbiol 13, (2015). 



Introduction 
 

 64 

197 Gerlach, R. G. & Hensel, M. Protein secretion systems and adhesins: the molecular armory of Gram-
negative pathogens. Int J Med Microbiol 297, (2007). 

198 Rego, A. T. et al. Two-step and one-step secretion mechanisms in Gram-negative bacteria: 
contrasting the type IV secretion system and the chaperone-usher pathway of pilus biogenesis. 
Biochem J 425, (2010). 

199 Akatsuka, H. et al. The three genes lipB, lipC, and lipD involved in the extracellular secretion of the 
Serratia marcescens lipase which lacks an N-terminal signal peptide. J Bacteriol 177, (1995). 

200 Letoffe, S. et al. Secretion of the Serratia marcescens HasA protein by an ABC transporter. J 
Bacteriol 176, (1994). 

201 Guzzo, J. et al. The secretion genes of Pseudomonas aeruginosa alkaline protease are functionally 
related to those of Erwinia chrysanthemi proteases and Escherichia coli alpha-haemolysin. Mol 
Microbiol 5, (1991). 

202 Bleves, S. et al. Protein secretion systems in Pseudomonas aeruginosa: A wealth of pathogenic 
weapons. Int J Med Microbiol 300, (2010). 

203 Fath, M. J. et al. Purification and characterization of colicin V from Escherichia coli culture 
supernatants. Biochemistry 33, (1994). 

204 Kanonenberg, K. et al. Type I secretion systems - a story of appendices. Res Microbiol 164, (2013). 
205 Du, D. et al. Structure of the AcrAB-TolC multidrug efflux pump. Nature 509, (2014). 
206 Galan, J. E. & Wolf-Watz, H. Protein delivery into eukaryotic cells by type III secretion machines. 

Nature 444, (2006). 
207 Cornelis, G. R. The type III secretion injectisome. Nat Rev Microbiol 4, (2006). 
208 Cornelis, G. R. The type III secretion injectisome, a complex nanomachine for intracellular 'toxin' 

delivery. Biol Chem 391, (2010). 
209 Buttner, D. Protein export according to schedule: architecture, assembly, and regulation of type III 

secretion systems from plant- and animal-pathogenic bacteria. Microbiol Mol Biol Rev 76, (2012). 
210 Marlovits, T. C. et al. Structural insights into the assembly of the type III secretion needle complex. 

Science 306, (2004). 
211 Schraidt, O. & Marlovits, T. C. Three-dimensional model of Salmonella's needle complex at 

subnanometer resolution. Science 331, (2011). 
212 Akeda, Y. & Galan, J. E. Chaperone release and unfolding of substrates in type III secretion. Nature 

437, (2005). 
213 Lara-Tejero, M. et al. A sorting platform determines the order of protein secretion in bacterial type 

III systems. Science 331, (2011). 
214 Izore, T. et al. Biogenesis, regulation, and targeting of the type III secretion system. Structure 19, 

(2011). 
215 Parsot, C. et al. The various and varying roles of specific chaperones in type III secretion systems. 

Curr Opin Microbiol 6, (2003). 
216 Hao, J. et al. Direct visualization of horizontal gene transfer in cotton plants. J Hered 105, (2014). 
217 Cascales, E. & Christie, P. J. The versatile bacterial type IV secretion systems. Nat Rev Microbiol 1, 

(2003). 
218 Cascales, E. & Christie, P. J. Definition of a bacterial type IV secretion pathway for a DNA substrate. 

Science 304, (2004). 
219 Alvarez-Martinez, C. E. & Christie, P. J. Biological diversity of prokaryotic type IV secretion systems. 

Microbiol Mol Biol Rev 73, (2009). 
220 Low, H. H. et al. Structure of a type IV secretion system. Nature 508, (2014). 
221 Christie, P. J. et al. Mechanism and structure of the bacterial type IV secretion systems. Biochim 

Biophys Acta 1843, (2014). 
222 Trokter, M. et al. Recent advances in the structural and molecular biology of type IV secretion 

systems. Curr Opin Struct Biol 27, (2014). 
223 Fronzes, R. et al. Structure of a type IV secretion system core complex. Science 323, (2009). 
224 Ripoll-Rozada, J. et al. Functional interactions of VirB11 traffic ATPases with VirB4 and VirD4 

molecular motors in type IV secretion systems. J Bacteriol 195, (2013). 
225 Pukatzki, S. et al. Identification of a conserved bacterial protein secretion system in Vibrio cholerae 

using the Dictyostelium host model system. Proc Natl Acad Sci U S A 103, (2006). 
226 Filloux, A. The rise of the Type VI secretion system. F1000Prime Rep 5, (2013). 
227 Ma, A. T. et al. Translocation of a Vibrio cholerae type VI secretion effector requires bacterial 

endocytosis by host cells. Cell Host Microbe 5, (2009). 
228 Chow, J. & Mazmanian, S. K. A pathobiont of the microbiota balances host colonization and 

intestinal inflammation. Cell Host Microbe 7, (2010). 
229 Hood, R. D. et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. 

Cell Host Microbe 7, (2010). 
230 MacIntyre, D. L. et al. The Vibrio cholerae type VI secretion system displays antimicrobial 

properties. Proc Natl Acad Sci U S A 107, (2010). 
231 Ho, B. T. et al. A view to a kill: the bacterial type VI secretion system. Cell Host Microbe 15, (2014). 
232 Schwarz, S. et al. Burkholderia type VI secretion systems have distinct roles in eukaryotic and 

bacterial cell interactions. PLoS Pathog 6, (2010). 



Introduction 
 

 65 

233 Boyer, F. et al. Dissecting the bacterial type VI secretion system by a genome wide in silico 
analysis: what can be learned from available microbial genomic resources? BMC Genomics 10, 
(2009). 

234 Russell, A. B. et al. A type VI secretion-related pathway in Bacteroidetes mediates interbacterial 
antagonism. Cell Host Microbe 16, (2014). 

235 Zheng, J. & Leung, K. Y. Dissection of a type VI secretion system in Edwardsiella tarda. Mol 
Microbiol 66, (2007). 

236 Journet, L. & Cascales, E. The Type VI Secretion System in Escherichia coli and Related Species. 
EcoSal Plus 7, (2016). 

237 Zoued, A. et al. Architecture and assembly of the Type VI secretion system. Biochim Biophys Acta 
1843, (2014). 

238 Leiman, P. G. et al. Type VI secretion apparatus and phage tail-associated protein complexes share 
a common evolutionary origin. Proc Natl Acad Sci U S A 106, (2009). 

239 Ma, L. S. et al. An IcmF family protein, ImpLM, is an integral inner membrane protein interacting 
with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp 
secretion in Agrobacterium tumefaciens. J Bacteriol 191, (2009). 

240 Felisberto-Rodrigues, C. et al. Towards a structural comprehension of bacterial type VI secretion 
systems: characterization of the TssJ-TssM complex of an Escherichia coli pathovar. PLoS Pathog 7, 
(2011). 

241 Basler, M. et al. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 
483, (2012). 

242 Taylor, N. M. et al. Structure of the T4 baseplate and its function in triggering sheath contraction. 
Nature 533, (2016). 

243 Kudryashev, M. et al. Structure of the type VI secretion system contractile sheath. Cell 160, (2015). 
244 Nivaskumar, M. & Francetic, O. Type II secretion system: a magic beanstalk or a protein escalator. 

Biochim Biophys Acta 1843, (2014). 
245 Korotkov, K. V. et al. The type II secretion system: biogenesis, molecular architecture and 

mechanism. Nat Rev Microbiol 10, (2012). 
246 Reichow, S. L. et al. Structure of the cholera toxin secretion channel in its closed state. Nat Struct 

Mol Biol 17, (2010). 
247 Gray, M. D. et al. In vivo cross-linking of EpsG to EpsL suggests a role for EpsL as an ATPase-

pseudopilin coupling protein in the Type II secretion system of Vibrio cholerae. Mol Microbiol 79, 
(2011). 

248 Korotkov, K. V. et al. Structural and functional studies on the interaction of GspC and GspD in the 
type II secretion system. PLoS Pathog 7, (2011). 

249 Lu, C. et al. Hexamers of the type II secretion ATPase GspE from Vibrio cholerae with increased 
ATPase activity. Structure 21, (2013). 

250 Leo, J. C. et al. Type V secretion: mechanism(s) of autotransport through the bacterial outer 
membrane. Philos Trans R Soc Lond B Biol Sci 367, (2012). 

251 Leyton, D. L. et al. From self sufficiency to dependence: mechanisms and factors important for 
autotransporter biogenesis. Nat Rev Microbiol 10, (2012). 

252 Wells, T. J. et al. Autotransporter proteins: novel targets at the bacterial cell surface. FEMS 
Microbiol Lett 274, (2007). 

253 Oomen, C. J. et al. Structure of the translocator domain of a bacterial autotransporter. EMBO J 23, 
(2004). 

254 van den Berg, B. Crystal structure of a full-length autotransporter. J Mol Biol 396, (2010). 
255 Roman-Hernandez, G. et al. Reconstitution of bacterial autotransporter assembly using purified 

components. Elife 3, (2014). 
256 Junker, M. et al. Vectorial transport and folding of an autotransporter virulence protein during 

outer membrane secretion. Mol Microbiol 71, (2009). 
257 Pavlova, O. et al. Mechanistic link between beta barrel assembly and the initiation of 

autotransporter secretion. Proc Natl Acad Sci U S A 110, (2013). 
258 Gruss, F. et al. The structural basis of autotransporter translocation by TamA. Nat Struct Mol Biol 

20, (2013). 
259 Selkrig, J. et al. Discovery of an archetypal protein transport system in bacterial outer membranes. 

Nat Struct Mol Biol 19, (2012). 
260 Wright, K. J. et al. Development of intracellular bacterial communities of uropathogenic Escherichia 

coli depends on type 1 pili. Cell Microbiol 9, (2007). 
261 Lillington, J. et al. Biogenesis and adhesion of type 1 and P pili. Biochim Biophys Acta 1840, (2014). 
262 Waksman, G. & Fronzes, R. Molecular architecture of bacterial type IV secretion systems. Trends 

Biochem Sci 35, (2010). 
263 Mu, X. Q. & Bullitt, E. Structure and assembly of P-pili: a protruding hinge region used for assembly 

of a bacterial adhesion filament. Proc Natl Acad Sci U S A 103, (2006). 
264 Hahn, E. et al. Exploring the 3D molecular architecture of Escherichia coli type 1 pili. J Mol Biol 323, 

(2002). 



Introduction 
 

 66 

265 Phan, G. et al. Crystal structure of the FimD usher bound to its cognate FimC-FimH substrate. 
Nature 474, (2011). 

266 Hultgren, S. J. et al. Chaperone-assisted assembly and molecular architecture of adhesive pili. Annu 
Rev Microbiol 45, (1991). 

267 Vetsch, M. et al. Pilus chaperones represent a new type of protein-folding catalyst. Nature 431, 
(2004). 

268 Barnhart, M. M. et al. PapD-like chaperones provide the missing information for folding of pilin 
proteins. Proc Natl Acad Sci U S A 97, (2000). 

269 Sauer, F. G. et al. Structural basis of chaperone function and pilus biogenesis. Science 285, (1999). 
270 Busch, A. & Waksman, G. Chaperone-usher pathways: diversity and pilus assembly mechanism. 

Philos Trans R Soc Lond B Biol Sci 367, (2012). 
271 Geibel, S. & Waksman, G. The molecular dissection of the chaperone-usher pathway. Biochim 

Biophys Acta 1843, (2014). 
272 Geibel, S. et al. Structural and energetic basis of folded-protein transport by the FimD usher. 

Nature 496, (2013). 
273 Remaut, H. et al. Donor-strand exchange in chaperone-assisted pilus assembly proceeds through a 

concerted beta strand displacement mechanism. Mol Cell 22, (2006). 
274 Verger, D. et al. Molecular mechanism of P pilus termination in uropathogenic Escherichia coli. 

EMBO Rep 7, (2006). 
275 Blanco, L. P. et al. Diversity, biogenesis and function of microbial amyloids. Trends Microbiol 20, 

(2012). 
276 Evans, M. L. & Chapman, M. R. Curli biogenesis: order out of disorder. Biochim Biophys Acta 1843, 

(2014). 
277 Barnhart, M. M. & Chapman, M. R. Curli biogenesis and function. Annu Rev Microbiol 60, (2006). 
278 Hammar, M. et al. Expression of two csg operons is required for production of fibronectin- and 

congo red-binding curli polymers in Escherichia coli K-12. Mol Microbiol 18, (1995). 
279 Gibson, D. L. et al. AgfC and AgfE facilitate extracellular thin aggregative fimbriae synthesis in 

Salmonella enteritidis. Microbiology 153, (2007). 
280 Robinson, L. S. et al. Secretion of curli fibre subunits is mediated by the outer membrane-localized 

CsgG protein. Mol Microbiol 59, (2006). 
281 Goyal, P. et al. Structural and mechanistic insights into the bacterial amyloid secretion channel 

CsgG. Nature 516, (2014). 
282 Taylor, J. D. et al. Atomic resolution insights into curli fiber biogenesis. Structure 19, (2011). 
283 Nenninger, A. A. et al. CsgE is a curli secretion specificity factor that prevents amyloid fibre 

aggregation. Mol Microbiol 81, (2011). 
284 Hammar, M. et al. Nucleator-dependent intercellular assembly of adhesive curli organelles in 

Escherichia coli. Proc Natl Acad Sci U S A 93, (1996). 
285 Hammer, N. D. et al. The curli nucleator protein, CsgB, contains an amyloidogenic domain that 

directs CsgA polymerization. Proc Natl Acad Sci U S A 104, (2007). 
286 Nenninger, A. A. et al. Localized and efficient curli nucleation requires the chaperone-like amyloid 

assembly protein CsgF. Proc Natl Acad Sci U S A 106, (2009). 
287 Stanley, S. A. et al. Acute infection and macrophage subversion by Mycobacterium tuberculosis 

require a specialized secretion system. Proc Natl Acad Sci U S A 100, (2003). 
288 Hoffmann, C. et al. Disclosure of the mycobacterial outer membrane: cryo-electron tomography 

and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci U S A 105, (2008). 
289 Zuber, B. et al. Direct visualization of the outer membrane of mycobacteria and corynebacteria in 

their native state. J Bacteriol 190, (2008). 
290 Gey Van Pittius, N. C. et al. The ESAT-6 gene cluster of Mycobacterium tuberculosis and other high 

G+C Gram-positive bacteria. Genome Biol 2, (2001). 
291 Anderson, M. et al. EsaD, a secretion factor for the Ess pathway in Staphylococcus aureus. J 

Bacteriol 193, (2011). 
292 Chen, Y. H. et al. Characterization of EssB, a protein required for secretion of ESAT-6 like proteins 

in Staphylococcus aureus. BMC Microbiol 12, (2012). 
293 Garufi, G. et al. ESAT-6-like protein secretion in Bacillus anthracis. J Bacteriol 190, (2008). 
294 Ates, L. S. et al. Type VII Secretion: A Highly Versatile Secretion System. Microbiol Spectr 4, (2016). 
295 Houben, E. N. et al. Composition of the type VII secretion system membrane complex. Mol Microbiol 

86, (2012). 
296 Houben, E. N. et al. Take five - Type VII secretion systems of Mycobacteria. Biochim Biophys Acta 

1843, (2014). 
297 Solomonson, M. et al. Structure of the mycosin-1 protease from the mycobacterial ESX-1 protein 

type VII secretion system. J Biol Chem 288, (2013). 
298 Korotkova, N. et al. Structure of the Mycobacterium tuberculosis type VII secretion system 

chaperone EspG5 in complex with PE25-PPE41 dimer. Mol Microbiol 94, (2014). 
299 Ekiert, D. C. & Cox, J. S. Structure of a PE-PPE-EspG complex from Mycobacterium tuberculosis 

reveals molecular specificity of ESX protein secretion. Proc Natl Acad Sci U S A 111, (2014). 



Introduction 
 

 67 

300 Renshaw, P. S. et al. Structure and function of the complex formed by the tuberculosis virulence 
factors CFP-10 and ESAT-6. EMBO J 24, (2005). 

301 Abdallah, A. M. et al. PPE and PE_PGRS proteins of Mycobacterium marinum are transported via 
the type VII secretion system ESX-5. Mol Microbiol 73, (2009). 

302 Ilghari, D. et al. Solution structure of the Mycobacterium tuberculosis EsxG.EsxH complex: 
functional implications and comparisons with other M. tuberculosis Esx family complexes. J Biol 
Chem 286, (2011). 

303 Strong, M. et al. Toward the structural genomics of complexes: crystal structure of a PE/PPE 
protein complex from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 103, (2006). 

304 Nakayama, K. Porphyromonas gingivalis and related bacteria: from colonial pigmentation to the 
type IX secretion system and gliding motility. J Periodontal Res 50, (2015). 

305 McBride, M. J. et al. Novel features of the polysaccharide-digesting gliding bacterium 
Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl Environ Microbiol 75, 
(2009). 

306 Sato, K. et al. A protein secretion system linked to bacteroidete gliding motility and pathogenesis. 
Proc Natl Acad Sci U S A 107, (2010). 

307 McBride, M. J. & Nakane, D. Flavobacterium gliding motility and the type IX secretion system. Curr 
Opin Microbiol 28, (2015). 

308 McBride, M. J. Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. 
Annu Rev Microbiol 55, (2001). 

309 Saiki, K. & Konishi, K. Identification of a Porphyromonas gingivalis novel protein sov required for 
the secretion of gingipains. Microbiol Immunol 51, (2007). 

310 Sato, K. et al. Identification of a new membrane-associated protein that influences 
transport/maturation of gingipains and adhesins of Porphyromonas gingivalis. J Biol Chem 280, 
(2005). 

311 Gorasia, D. G. et al. Structural Insights into the PorK and PorN Components of the Porphyromonas 
gingivalis Type IX Secretion System. PLoS Pathog 12, (2016). 

312 Veith, P. D. et al. Protein substrates of a novel secretion system are numerous in the Bacteroidetes 
phylum and have in common a cleavable C-terminal secretion signal, extensive post-translational 
modification, and cell-surface attachment. J Proteome Res 12, (2013). 

313 de Diego, I. et al. The outer-membrane export signal of Porphyromonas gingivalis type IX secretion 
system (T9SS) is a conserved C-terminal beta-sandwich domain. Sci Rep 6, (2016). 

314 Shoji, M. et al. Por secretion system-dependent secretion and glycosylation of Porphyromonas 
gingivalis hemin-binding protein 35. PLoS One 6, (2011). 

315 Chen, Y. Y. et al. The outer membrane protein LptO is essential for the O-deacylation of LPS and the 
co-ordinated secretion and attachment of A-LPS and CTD proteins in Porphyromonas gingivalis. 
Mol Microbiol 79, (2011). 

316 Konovalova, A. & Silhavy, T. J. Outer membrane lipoprotein biogenesis: Lol is not the end. Philos 
Trans R Soc Lond B Biol Sci 370, (2015). 

317 Wilson, M. M. & Bernstein, H. D. Surface-Exposed Lipoproteins: An Emerging Secretion 
Phenomenon in Gram-Negative Bacteria. Trends Microbiol, (2015). 

318 Evans, K. L. et al. Eliminating a set of four penicillin binding proteins triggers the Rcs phosphorelay 
and Cpx stress responses in Escherichia coli. J Bacteriol 195, (2013). 

319 Farris, C. et al. Antimicrobial peptides activate the Rcs regulon through the outer membrane 
lipoprotein RcsF. J Bacteriol 192, (2010). 

320 Majdalani, N. & Gottesman, S. The Rcs phosphorelay: a complex signal transduction system. Annu 
Rev Microbiol 59, (2005). 

321 Castanie-Cornet, M. P. et al. RcsF is an outer membrane lipoprotein involved in the RcsCDB 
phosphorelay signaling pathway in Escherichia coli. J Bacteriol 188, (2006). 

322 Morgenthau, A. et al. Bacterial receptors for host transferrin and lactoferrin: molecular 
mechanisms and role in host-microbe interactions. Future Microbiol 8, (2013). 

323 Irwin, S. W. et al. Preparation and analysis of isogenic mutants in the transferrin receptor protein 
genes, tbpA and tbpB, from Neisseria meningitidis. Mol Microbiol 8, (1993). 

324 Pettersson, A. et al. Molecular characterization of LbpB, the second lactoferrin-binding protein of 
Neisseria meningitidis. Mol Microbiol 27, (1998). 

325 Welsch, J. A. & Ram, S. Factor H and neisserial pathogenesis. Vaccine 26 Suppl 8, (2008). 
326 Hooda, Y. et al. Slam is an outer membrane protein that is required for the surface display of 

lipidated virulence factors in Neisseria. Nature Microbiology 1, (2016). 
327 Lewis, L. A. & Dyer, D. W. Identification of an iron-regulated outer membrane protein of Neisseria 

meningitidis involved in the utilization of hemoglobin complexed to haptoglobin. J Bacteriol 177, 
(1995). 

328 Lewis, L. A. et al. Molecular characterization of hpuAB, the haemoglobin-haptoglobin-utilization 
operon of Neisseria meningitidis. Mol Microbiol 23, (1997). 

329 Coutte, L. et al. Surface anchoring of bacterial subtilisin important for maturation function. Mol 
Microbiol 49, (2003). 



Introduction 
 

 68 

330 Coutte, L. et al. Subtilisin-like autotransporter serves as maturation protease in a bacterial 
secretion pathway. EMBO J 20, (2001). 

331 van Ulsen, P. et al. A Neisserial autotransporter NalP modulating the processing of other 
autotransporters. Mol Microbiol 50, (2003). 

332 Roussel-Jazede, V. et al. NalP-mediated proteolytic release of lactoferrin-binding protein B from 
the meningococcal cell surface. Infect Immun 78, (2010). 

333 Roussel-Jazede, V. et al. Lipidation of the autotransporter NalP of Neisseria meningitidis is 
required for its function in the release of cell-surface-exposed proteins. Microbiology 159, (2013). 

334 Pugsley, A. P. et al. Analysis of the subcellular location of pullulanase produced by Escherichia coli 
carrying the pulA gene from Klebsiella pneumoniae strain UNF5023. Mol Microbiol 4, (1990). 

335 Pugsley, A. P. et al. Extracellular pullulanase of Klebsiella pneumoniae is a lipoprotein. J Bacteriol 
166, (1986). 

336 d'Enfert, C. et al. Cloning and expression in Escherichia coli of the Klebsiella pneumoniae genes for 
production, surface localization and secretion of the lipoprotein pullulanase. EMBO J 6, (1987). 

337 Kornacker, M. G. et al. Outer membrane translocation of the extracellular enzyme pullulanase in 
Escherichia coli K12 does not require a fatty acylated N-terminal cysteine. J Biol Chem 266, (1991). 

338 Baldi, D. L. et al. The type II secretion system and its ubiquitous lipoprotein substrate, SslE, are 
required for biofilm formation and virulence of enteropathogenic Escherichia coli. Infect Immun 
80, (2012). 

339 Shi, L. et al. Direct involvement of type II secretion system in extracellular translocation of 
Shewanella oneidensis outer membrane cytochromes MtrC and OmcA. J Bacteriol 190, (2008). 

340 Radolf, J. D. & Samuels, D. S. Borrelia: Molecular Biology, Host Interaction and Pathogenesis.  
(Caister Academic Press, 2010). 

341 Barbour, A. G. & Hayes, S. F. Biology of Borrelia species. Microbiol Rev 50, (1986). 
342 Motaleb, M. A. et al. Borrelia burgdorferi periplasmic flagella have both skeletal and motility 

functions. Proc Natl Acad Sci U S A 97, (2000). 
343 Belisle, J. T. et al. Fatty acids of Treponema pallidum and Borrelia burgdorferi lipoproteins. J 

Bacteriol 176, (1994). 
344 Takayama, K. et al. Absence of lipopolysaccharide in the Lyme disease spirochete, Borrelia 

burgdorferi. Infect Immun 55, (1987). 
345 Chen, S. et al. Determination of Borrelia surface lipoprotein anchor topology by surface proteolysis. 

J Bacteriol 193, (2011). 
346 Kumru, O. S. et al. Surface localization determinants of Borrelia OspC/Vsp family lipoproteins. J 

Bacteriol 193, (2011). 
347 Schulze, R. J. & Zuckert, W. R. Borrelia burgdorferi lipoproteins are secreted to the outer surface by 

default. Mol Microbiol 59, (2006). 
348 Chen, S. & Zuckert, W. R. Probing the Borrelia burgdorferi surface lipoprotein secretion pathway 

using a conditionally folding protein domain. J Bacteriol 193, (2011). 
349 Schulze, R. J. et al. Translocation of Borrelia burgdorferi surface lipoprotein OspA through the 

outer membrane requires an unfolded conformation and can initiate at the C-terminus. Mol 
Microbiol 76, (2010). 

350 Lauber, C. L. et al. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial 
community structure at the continental scale. Appl Environ Microbiol 75, (2009). 

351 Kirchman, D. L. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol 
Ecol 39, (2002). 

352 Moran, N. A. et al. Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects 
from the bacterial phylum Bacteroidetes. Appl Environ Microbiol 71, (2005). 

353 Chang, H. H. et al. Complete Genome Sequence of "Candidatus Sulcia muelleri" ML, an Obligate 
Nutritional Symbiont of Maize Leafhopper (Dalbulus maidis). Genome Announc 3, (2015). 

354 Bjursell, M. K. et al. Functional genomic and metabolic studies of the adaptations of a prominent 
adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. J Biol Chem 281, 
(2006). 

355 Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, (2005). 
356 Koropatkin, N. M. et al. How glycan metabolism shapes the human gut microbiota. Nat Rev 

Microbiol 10, (2012). 
357 Sonnenburg, J. L. et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 

307, (2005). 
358 Xu, J. et al. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299, 

(2003). 
359 Mysak, J. et al. Porphyromonas gingivalis: major periodontopathic pathogen overview. J Immunol 

Res 2014, (2014). 
360 Socransky, S. S. et al. Capnocytophaga: new genus of gram-negative gliding bacteria. III. 

Physiological characterization. Arch Microbiol 122, (1979). 
361 Brook, I. The role of anaerobic bacteria in bacteremia. Anaerobe 16, (2010). 
362 Butler, T. Capnocytophaga canimorsus: an emerging cause of sepsis, meningitis, and post-

splenectomy infection after dog bites. Eur J Clin Microbiol Infect Dis 34, (2015). 



Introduction 
 

 69 

363 Gaastra, W. & Lipman, L. J. Capnocytophaga canimorsus. Vet Microbiol 140, (2010). 
364 Sears, C. L. Enterotoxigenic Bacteroides fragilis: a rogue among symbiotes. Clin Microbiol Rev 22, 

(2009). 
365 Sears, C. L. et al. Bacteroides fragilis subverts mucosal biology: from symbiont to colon 

carcinogenesis. J Clin Invest 124, (2014). 
366 Wexler, H. M. Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev 20, (2007). 
367 Bauer, M. et al. Whole genome analysis of the marine Bacteroidetes'Gramella forsetii' reveals 

adaptations to degradation of polymeric organic matter. Environ Microbiol 8, (2006). 
368 Terrapon, N. et al. Automatic prediction of polysaccharide utilization loci in Bacteroidetes species. 

Bioinformatics 31, (2015). 
369 Reeves, A. R. et al. A Bacteroides thetaiotaomicron outer membrane protein that is essential for 

utilization of maltooligosaccharides and starch. J Bacteriol 178, (1996). 
370 Reeves, A. R. et al. Characterization of four outer membrane proteins that play a role in utilization 

of starch by Bacteroides thetaiotaomicron. J Bacteriol 179, (1997). 
371 Foley, M. H. et al. The Sus operon: a model system for starch uptake by the human gut 

Bacteroidetes. Cell Mol Life Sci, (2016). 
372 Martens, E. C. et al. Complex glycan catabolism by the human gut microbiota: the Bacteroidetes 

Sus-like paradigm. J Biol Chem 284, (2009). 
373 Valentine, P. J. et al. Cloning and partial characterization of two chromosomal loci from Bacteroides 

ovatus that contain genes essential for growth on guar gum. Appl Environ Microbiol 58, (1992). 
374 Salyers, A. A. et al. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from 

the human colon. Appl Environ Microbiol 33, (1977). 
375 Martens, E. C. et al. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic 

human gut bacterial symbiont. Cell Host Microbe 4, (2008). 
376 Renzi, F. et al. Glycan-foraging systems reveal the adaptation of Capnocytophaga canimorsus to the 

dog mouth. MBio 6, (2015). 
377 Manfredi, P. et al. New iron acquisition system in Bacteroidetes. Infect Immun 83, (2015). 
378 Cho, K. H. & Salyers, A. A. Biochemical analysis of interactions between outer membrane proteins 

that contribute to starch utilization by Bacteroides thetaiotaomicron. J Bacteriol 183, (2001). 
379 Martens, E. C. et al. Recognition and degradation of plant cell wall polysaccharides by two human 

gut symbionts. PLoS Biol 9, (2011). 
380 Rogers, T. E. et al. Dynamic responses of Bacteroides thetaiotaomicron during growth on glycan 

mixtures. Mol Microbiol 88, (2013). 
381 Anderson, K. L. & Salyers, A. A. Genetic evidence that outer membrane binding of starch is required 

for starch utilization by Bacteroides thetaiotaomicron. J Bacteriol 171, (1989). 
382 Anderson, K. L. & Salyers, A. A. Biochemical evidence that starch breakdown by Bacteroides 

thetaiotaomicron involves outer membrane starch-binding sites and periplasmic starch-degrading 
enzymes. J Bacteriol 171, (1989). 

383 Cameron, E. A. et al. Multidomain Carbohydrate-binding Proteins Involved in Bacteroides 
thetaiotaomicron Starch Metabolism. J Biol Chem 287, (2012). 

384 Koropatkin, N. M. et al. Starch catabolism by a prominent human gut symbiont is directed by the 
recognition of amylose helices. Structure 16, (2008). 

385 Koropatkin, N. M. & Smith, T. J. SusG: a unique cell-membrane-associated alpha-amylase from a 
prominent human gut symbiont targets complex starch molecules. Structure 18, (2010). 

386 Shipman, J. A. et al. Physiological characterization of SusG, an outer membrane protein essential 
for starch utilization by Bacteroides thetaiotaomicron. J Bacteriol 181, (1999). 

387 Xu, J. et al. Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol 5, (2007). 
388 Rosewarne, C. P. et al. Analysis of the bovine rumen microbiome reveals a diversity of Sus-like 

polysaccharide utilization loci from the bacterial phylum Bacteroidetes. J Ind Microbiol Biotechnol 
41, (2014). 

389 Bobo, R. A. & Newton, E. J. A previously undescribed gram-negative bacillus causing septicemia and 
meningitis. Am J Clin Pathol 65, (1976). 

390 Shin, H. et al. Resistance of Capnocytophaga canimorsus to killing by human complement and 
polymorphonuclear leukocytes. Infect Immun 77, (2009). 

391 Mally, M. et al. Capnocytophaga canimorsus: a human pathogen feeding at the surface of epithelial 
cells and phagocytes. PLoS Pathog 4, (2008). 

392 Renzi, F. et al. The N-glycan glycoprotein deglycosylation complex (Gpd) from Capnocytophaga 
canimorsus deglycosylates human IgG. PLoS Pathog 7, (2011). 

393 Renzi, F. et al. Only a subset of C. canimorsus strains is dangerous for humans. Emerg Microbes 
Infect 4, (2015). 

394 Wilson, M. M. et al. Analysis of the outer membrane proteome and secretome of Bacteroides 
fragilis reveals a multiplicity of secretion mechanisms. PLoS One 10, (2015). 

395 Abby, S. S. et al. Identification of protein secretion systems in bacterial genomes. Sci Rep 6, (2016). 
396 McBride, M. J. & Zhu, Y. Gliding motility and Por secretion system genes are widespread among 

members of the phylum bacteroidetes. J Bacteriol 195, (2013). 



Introduction 
 

 70 

 

 

1. Defining the lipoprotein export signal of 
Bacteroidetes



Lipoprotein export signal 
 

 71 

 

 

1.1. Manuscript submitted: Identification of a new lipoprotein 
export signal in Gram-negative bacteria 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Lipoprotein export signal 
 

 72 

Identification of a new lipoprotein export signal in Gram-negative bacteria 

 

Frédéric Laubera, Guy Richard Cornelisa, Francesco Renzia# 

aDépartement de Biologie, Unité de Recherche en Biologie des Microorganismes 

(URBM), Université de Namur, 5000 Namur, Belgium 

 

#Address correspondence to Francesco Renzi, francesco.renzi@unamur.be 

 

 

Abstract  

Bacteria of the phylum Bacteroidetes, including commensals and 

opportunistic pathogens, harbor abundant surface-exposed multi-protein 

membrane complexes (Sus-like systems) involved in carbohydrate acquisition. 

These complexes have been mostly linked to commensalism and in some 

instances they have also been shown to play a role in pathogenesis. Sus-like 

systems are mainly composed of lipoproteins anchored to the outer membrane 

and facing the external milieu. This lipoprotein localization is uncommon in most 

studied Gram-negative bacteria while it is widespread in Bacteroidetes. Little is 

known on how these complexes assemble and in particular on how lipoproteins 

reach the bacterial surface. Here, by bioinformatic analyses, we identify a 

lipoprotein export signal (LES) at the N-terminus of surface-exposed 

lipoproteins of the human pathogen Capnocytophaga canimorsus corresponding 

to K-(D/E)2 or Q-A-(D/E)2. We show that, when introduced in sialidase SiaC, an 

intracellular lipoprotein, this signal is sufficient to target the protein to the cell 

surface. Mutational analysis of the LES in this reporter system showed that the 

amino acid composition, the position of the signal sequence and the global 

charge are critical for lipoprotein surface transport. These findings were further 

confirmed by the analysis of the LES of mucinase MucG, a naturally surface 

exposed C. canimorsus lipoprotein. Furthermore, we identify a LES in Bacteroides 

fragilis and Flavobacterium johnsoniae surface lipoproteins that allow C. 

canimorsus surface protein exposure, thus suggesting that Bacteroidetes share a 

common new bacterial lipoprotein export pathway that flips lipoproteins across 

the outer membrane. 
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Importance 

Bacteria of the phylum Bacteroidetes are important human commensals 

and pathogens. Understanding their biology is therefore a key question for 

human health. A main feature of these bacteria is the presence of abundant 

lipoproteins at their surface that play a role in nutrient acquisition. To date, the 

underlying mechanism of lipoprotein transport is unknown. We show for the 

first time that Bacteroidetes surface lipoproteins share an N-terminal signal that 

drives surface localization. The localization and the overall negative charge of the 

lipoprotein export signal (LES) are crucial for its role. Overall, our findings 

provide the first evidence that Bacteroidetes are endowed with a new bacterial 

lipoprotein export pathway that flips lipoproteins across the outer membrane.  

 

 

Introduction 

Among Gram-negative bacteria, the phylum Bacteroidetes is composed of 

a large diversity of organisms widely distributed in the environment. Some are 

saprophytes such as Flavobacteria, found in soil1 and aquatic environments2, 

while others are commensals of animals. Among them, Bacteroides spp. are 

common members of the intestinal flora where they play a major role in gut 

homeostasis3-7 while Capnocytophaga and Porphyromonas spp. are part of the 

oral flora8,9. Bacteroides fragilis, a commensal of the human intestine and 

Capnocytophaga canimorsus, a common member of the dog oral flora can cause 

severe systemic human infections10-15 while Porphyromonas gingivalis causes 

severe periodontal diseases8. The wide distribution of these organisms reflects 

their high adaptability, partially due to their vast array of glycosylhydrolases 

allowing them to degrade nearly all types of carbohydrates they can encounter 

7,16-19. Interestingly, these enzymes are often surface exposed lipoproteins and 

are part of multi-protein outer membrane (OM) complexes devoted to nutrient 

acquisition. These complexes, facing the outside environment20,21, are encoded in 

genetic regions named Polysaccharide Utilization Loci (PUL)19 that represent a 

hallmark of this phylum. 

To date, most studies focused at identifying and characterizing the 

function of these Bacteroidetes surface complexes5,7,16-18,22,23 but little is known 
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on how they assemble24 and in particular on how lipoproteins reach the bacterial 

surface. In Gram-negative Proteobacteria lipoprotein synthesis and transport has 

been well studied in model organisms such as Escherichia coli25. Lipoproteins are 

first synthesized as a precursor in the cytoplasm before their translocation to the 

periplasm via the Sec26,27 or Tat machinery28-30. This recognition is mediated by 

the N-terminally located signal peptide II 31, which contains a conserved cysteine 

residue critical for the subsequent steps of maturation32,33. After crossing the 

inner membrane (IM), lipoprotein precursors remain anchored to the 

periplasmic side of the IM where they are then processed by three enzymes, 

rendering a final tri-acylated lipoprotein34-37. Lipoproteins destined to be 

inserted into the OM are transported through the aqueous environment of the 

periplasm via the dedicated Lol (localization of lipoproteins) transport 

machinery, composed of five proteins, LolA, -B, -C, -D and -E25,38. In 

Proteobacteria most OM lipoproteins are inserted in the inner leaflet of the OM 

and thus face the periplasm. The surface localization of OM lipoproteins in 

Bacteroidetes thus implies the existence of a yet unknown dedicated recognition 

and transport mechanism.  

The present study deals with the reference strain C. canimorsus 539, which 

encodes 13 PUL. Three of them were recently shown to play critical roles in the 

biology and pathogenesis of this bacterium40-42. We address the question of how 

lipoproteins are targeted to the bacterial surface. We identify a signal sequence 

(LES) present at the N-terminus of surface exposed lipoproteins and we show 

that this signal is sufficient to target an intracellular lipoprotein to the cell 

surface. We extend our findings to other Bacteroidetes species, namely 

Flavobacterium johnsoniae and Bacteroides fragilis, identifying their specific LES 

thus showing that they share a new bacterial lipoprotein export pathway that 

flips lipoproteins across the outer membrane. 

 

 

Results 

In silico identification of a putative lipoprotein export signal  

In order to see if a specific amino acid motif would be responsible for the 

targeting of lipoproteins to the bacterial surface, we examined in detail the 
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sequences of the lipoproteins detected at the surface of C. canimorsus 517. When 

aligning the mature lipoproteins, a lysine (K), followed by either an aspartate (D) 

or a glutamate (E) residue, appeared to be conserved in close proximity to the N-

terminal cysteine at position +1 (Fig. S1). This was refined by a second alignment 

considering only the 15 N-terminal residues of the mature lipoproteins and 

excluding the invariant first cysteine (Fig. 1A). The resulting consensus motif 

corresponded to Q-K-D-D-E, located between positions +2 and +6 (Fig. 1B) with 

a conservation of 16, 72, 48, 44 and 23 % respectively (Fig. 1C). In order to see 

whether this motif is specific to the surface-exposed lipoproteins, the same 

analysis was performed on OM lipoproteins facing the periplasm17. No highly 

conserved residues were identified in this set of proteins (Fig. S2), suggesting 

that the QKDDE consensus motif could be indeed a bona fide lipoprotein export 

signal (LES). 
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Figure 1. Alignment of C. canimorsus surface exposed lipoproteins reveals the presence of 

an N-terminal conserved motif  

(A) MAFFT alignment of the first 15 N-terminal amino acids of mature surface exposed 

lipoproteins. The first invariant cysteine residue of each sequence was removed before 

performing the alignment. Highly conserved residues are highlighted according to Clustal color 

code (R, K in red; D, E in magenta; P in yellow; G in orange; Q, N, S, T in green, C in pink; A, I, L, M, 

F, W, V in blue; H, Y in cyan)43. The derived consensus sequence is shown below. (B) Generated 

WebLogo of the consensus sequence determined in (A). Positions relative to the +1 cysteine are 

indicated below. Charged residues are indicated in color. The color code is the same as in (A). (C) 

Amino acid frequency for each position of the consensus sequence, expressed as percentage. The 

three most represented amino acids for each position are shown. MucG (Ccan_17430) is 

indicated by a star. 

 
 
The LES leads to surface localization of the periplasmic lipoprotein 

sialidase 

To verify this hypothesis, we introduced the QKDDE motif in the sequence 

of the C. canimorsus sialidase (SiaC), an OM lipoprotein that faces the 

periplasm42,44. SiaC harboring the LES (SiaC+2QKDDE+6) (Fig. 2A and B) was 

detected at the bacterial surface by immunolabeling followed by flow cytometry 

and microscopy (Fig. 2D and E and Fig. S3). In contrast, wild type SiaC and the 

soluble SiaCC17G variant were undetectable. Furthermore, proteinase K 

accessibility assays on intact cells showed that more than 90% of SiaC+2QKDDE+6 

was surface exposed (Fig. S4). This indicated that the addition of the consensus 

to an OM periplasmic lipoprotein is sufficient to drive its efficient transport to 

the bacterial surface and hence that this consensus represents a LES.  

 
 

Determination of the minimal consensus allowing surface localization of 

sialidase  

 We next determined the minimal sequence required to constitute a 

functional LES. We first substituted the least conserved amino acids of the LES, 

namely the +2 Q and +6 E, by alanine residues generating constructs 

SiaC+2AKDDE+6 and SiaC+2AKDDA+6 (Fig. 2A). After monitoring protein expression 

(Fig. 2B), immunolabeling showed that both constructs localized to the bacterial 

surface (Fig. 2D and E), although to a lower extent than SiaC+2QKDDE+6, thus 

indicating that the KDD motif is sufficient to target lipoproteins to the cell 

surface. We then tested if glutamate was able to functionally replace aspartate 

(SiaC+2AKEEA+6) (Fig. 2A) since both residues were enriched in the alignment (Fig. 
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1C). Substitution of the two aspartate with two glutamate residues did not 

prevent surface localization but led to a clear reduction of fluorescence (Fig. 2D 

and E) in line with the lower conservation of glutamate at position +4 and +5 

(Fig. 1C), explaining that in C. canimorsus surface lipoproteins aspartate is 

preferred over glutamate.  

 

 
Figure 2. The LES allows SiaC surface exposure  
(A) SiaC wt and consensus sequence mutant constructs. Amino acids derived from the consensus 

are indicated in bold green, point mutations are indicated in bold grey. (B) Detection of SiaC by 

western blot analysis of total cell extracts of strains expressing the SiaC constructs described in 

(A). Expression of MucG was monitored as loading control. (C) Detection of SiaC by western blot 

analysis of total lysates (TL) and outer membrane (OM) fractions of bacteria expressing different 

SiaC constructs. Expression of MucG was monitored as loading control. (D) Quantification of SiaC 

surface exposure by flow cytometry of live cells labeled with anti-SiaC serum. Shown is the 

fluorescence intensity of stained cells only; NR: not relevant. The averages from at least three 

independent experiments are shown. Error bars represent 1 standard deviation from the mean; 

***, p ≤ 0.001 as compared to reference construct 3; n.s: not significant. The percentage of stained 

cells is indicated below; SD: standard deviation. Strains below detection limit (≤ 2.5 %) are 

highlighted in grey, strains with a statistically significant lower stained population are in red (p ≤ 
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0.001 as compared to reference construct 3). (E) Immunofluorescence microscopy images of 

bacteria labeled with anti-SiaC serum. Scale bar: 5 μm. 

 

 

We then generated two SiaC constructs harboring only either KD or KE 

(SiaC+2AKDAA+6 and SiaC+2AKEAA+6) (Fig. 2A) but these two couples of residues alone 

turned out to be very weak LES since only 29.8 ± 4.7 (SiaC+2AKDAA+6) and 16.3 ± 

2.5 % (SiaC+2AKEAA+6) of the cells displayed the proteins at their surface (Fig. 2D). 

In addition, the fluorescence intensity was weak: 28.2 and 29.4 % respectively of 

the intensity observed for the SiaC+2AKDDA+6 reference (Fig. 2D). In order to verify 

that these constructs were not impaired in their transport to the OM, we 

monitored their presence in isolated outer membrane fractions. Both mutant 

proteins were found to be anchored to the OM although at lower levels than the 

wt protein, in particular for the construct SiaC+2AKDAA+6, suggesting that these 

mutations could also impact to a minor extend OM localization of SiaC (Fig. 2C). 

Overall these data supported our hypothesis that K-(D/E)2 represents the 

minimal LES. These findings also suggested that a functional LES might require 

an overall negative charge, supported by the fact that KDD is allowing efficient 

transport of SiaC to the surface while KD only is not (Fig. 2D).  

We finally investigated the importance of the highly conserved lysine 

residue at position +3 of the LES (Fig. 2A). Unexpectedly, substitution of K alone 

(SiaC+2QADDE+6) had no impact on the display of SiaC at the bacterial surface (Fig. 

2D and E). However, removal of both K and Q (SiaC+2AADDA+6) led to more than 60 

% decrease of fluorescence intensity as compared to SiaC+2AKDDA+6. Since the 

glutamine residue itself was not found to be critical (SiaC+2AKDDA+6, Fig. 2D), we 

conclude that either the +2 Q or the +3 K is required to form a functional LES. 

Taken together, these data indicate that the minimal export motif allowing 

surface localization of SiaC is composed of only two negatively charged amino 

acids preceeded by a positively charged or polar residue. Based on the 

consensus, we thus defined the minimal C. canimorsus LES as being K-(D/E)2 or 

Q-A-(D/E)2. 
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Positional effect of the minimal LES on sialidase surface localization  

We next addressed the question of the importance of the position of the 

LES. The initial alignment showed that K is mainly conserved at position +3 (72 

%), to a lower extent at position +2 (13 %) and is completely absent from 

position +4 (Fig. 1C). In contrast, D and E were conserved at positions +4, +5 and 

+6 (48, 44 and 11 % for D and 20, 13 and 23 % for E respectively) and 

completely absent from position + 3 (Fig. 1C). This suggested that not only the 

composition of the export signal could be crucial but also its position relative to 

the +1 cysteine. We therefore generated constructs in which the KDD motif was 

separated from the +1 cysteine by zero, two, three or four alanine residues (Fig. 

3A) and compared their surface localization to the construct in which the KDD 

motif is separated from the +1 cysteine by only one alanine residue 

(SiaC+2AKDDA+6). Although the four proteins were expressed (Fig. 3B), none of 

them were exported as efficiently as the one where only one alanine separated 

the KDD motif from the +1 cysteine (SiaC+2AKDDA+6) (Fig. 3C and D). All proteins 

were anchored to the OM, thus again indicating that only the last step of 

transport to the surface was affected by these mutations (Fig. 3E). The position 

of the K-(D/E)2 signal relative to the +1 cysteine is thus critical for the C. 

canimorsus LES and the optimal situation is C-X-K-(D/E)2-X.  
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Figure 3. The position of the minimal LES is crucial for its function  

(A) SiaC wt and consensus sequence mutant constructs. Amino acids derived from the consensus 

are indicated in bold green, point mutations are indicated in bold grey. (B) Detection of SiaC by 

western blot analysis of total cell extracts of strains expressing the SiaC constructs described in 

(A). MucG expression was monitored as loading control. (C) Quantification of SiaC surface 

exposure by flow cytometry of live cells labeled with anti-SiaC serum. Shown is the fluorescence 

intensity of stained cells only; NR: not relevant. The averages from at least three independent 

experiments are shown. Error bars represent 1 standard deviation from the mean; ***, p ≤ 0.001 

as compared to reference construct 3. The percentage of stained cells is indicated below; SD: 

standard deviation. Strains below detection limit (≤ 2.5 %) are highlighted in grey, strains with a 

statistically significant lower stained population are in red (p ≤ 0.001 as compared to reference 

construct 3). (D) Immunofluorescence microscopy images of bacteria stained with anti-SiaC 

serum. Scale bar: 5 μm. (E) Detection of SiaC by western blot analysis of total lysates (TL) and 

outer membrane (OM) fractions of bacteria expressing different SiaC constructs. MucG 

expression was monitored as loading control. 

 
 

Characterization of the LES of the surface exposed lipoprotein MucG 

 Looking at the LES of different C. canimorsus surface lipoproteins (Fig 1), 

it appeared that some were quite divergent from the consensus. Among these is 
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the LES of mucinase MucG (Ccan_17430)41, KKEVEEE (Fig 1A and Fig S5A). We 

first confirmed that MucG is indeed a surface exposed lipoprotein (Fig. S5) and 

then we tested whether this poorly conserved LES would drive the export of 

sialidase to the surface of C. canimorsus. We introduced the MucG LES, KKEVEEE 

or part of this sequence, in SiaC, giving SiaC+2KKEVE+6, SiaC+2KKEVEE+7 and 

SiaC+2KKEVEEE+8 (Fig. S6A and B), and monitored their surface localization (Fig. S6C 

and D). SiaC+2KKEVE+6, was only poorly transported to the cell surface while 

SiaC+2KKEVEE+7 and SiaC+2KKEVEEE+8 showed clear surface localization. Although the 

overall protein amount of SiaC+2KKEVE+6 was reduced, the protein appeared to be 

anchored to the OM (Fig. S6E). The only difference between these constructs 

being the number of negatively charged amino acids in the LES, this strongly 

supported our initial findings that the LES requires an overall negative charge to 

drive transport of lipoproteins to the bacterial surface (Fig 2).  

 We next wanted to study the MucG LES in its native background. To this 

aim we systematically substituted residues 22 to 28 of the MucG LES by alanines 

(Fig. 4A). After verifying that all mutant proteins were expressed (Fig. 4B), we 

monitored the surface exposure of the MucG variants by flow cytometry (Fig. 

4C). Alanine substitution of K22, V25 and E27 did not significantly alter surface 

exposition of MucG, while mutation of K23, E24, E26 or E28 resulted in a 25 to 

50% decrease of surface exposure. None of these single mutations completely 

abolished surface localization, suggesting that the MucG motif is redundant, 

presumably due to the presence of two lysines and four glutamates. The 

mutation of one of those residues could therefore be compensated by the 

presence of another one in close proximity and indeed all protein variants we 

generated harbor an overall negatively charged functional LES.  

Because of this, we generated two additional constructs by mutating 

simultaneously either all negatively or all positively charged residues in the 

MucG LES (Fig. 4A). After having confirmed their correct expression (Fig. 4B), we 

analyzed their surface localization by flow cytometry (Fig. 4C). As expected, 

substitution of the two lysine residues (MucGAAEVEEE) led to MucG surface 

exposure in only 23.1 ± 4.5 % of the cells (Fig. 4C). Furthermore, the 

fluorescence intensity in this subset of cells was markedly decreased as 

compared to the wt strain (23.8 %), indicating that the efficiency of the transport 
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was also strongly affected in this subpopulation. This is in good agreement with 

our previous findings showing the importance of the K/Q residues for surface 

export (Fig. 2)  

Similarly, MucGKKAAAAA was surface localized in only 41.9 ± 6.9 % of the 

cells (Fig. 4C) and the fluorescence intensity in this subpopulation was decreased 

as compared to the wt strain (24.5 %). This is in agreement with our findings in 

SiaC that an overall negatively charged LES is critical for efficient surface 

localization. 

By combining the data obtained from single and multiple alanine 

substitutions, the minimal LES for optimal MucG surface exposure appears to be 

X-K-(D/E)3 downstream from the +1 cysteine, hence resembling the one deduced 

from previous experiments (X-K-(D/E)2-X) (Fig. 2, Fig. 3 and Fig. S6). 

 
 

 
Figure 4. MucG LES mutational analysis  

(A) MucG wt and mutant constructs. Point mutations are indicated in bold grey. (B) Detection of 

MucG by western blot analysis of total cell extracts of strains expressing the MucG constructs 

described in (A). Expression of SiaC was monitored as loading control. (C) Quantification of MucG 

surface exposure by flow cytometry of live cells labeled with anti-MucG serum. Shown is the 

fluorescence intensity of stained cells only; NR: not relevant. The averages from at least three 

independent experiments are shown. Error bars represent 1 standard deviation from the mean; 

***, p ≤ 0.001 as compared to reference construct 1; n.s: not significant. The percentage of stained 

cells is indicated below; SD: standard deviation. Strains below detection limit (≤ 2.5 %) are 

highlighted in grey, strains with a statistically significant lower stained population are in red (p ≤ 

0.001 as compared to reference construct 1). 
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The LES is conserved in the Bacteroidetes phylum 

To see if the LES identified in C. canimorsus would be conserved in other 

Bacteroidetes, we took advantage of the recently published B. fragilis NCTC 9343 

surfome study45 and performed an in silico analysis on the N-terminus of the 

identified surface lipoproteins (Fig. S7A). We found an enrichment in negatively 

charged amino acids in close proximity to the +1 cysteine (SDDDD) (Fig. S7A). 

However, unlike in the C. canimorsus LES, the aspartate residues were majorly 

located at position +3 and +4 instead of +4 and +5. Additionally, this region was 

not enriched in positively charged amino acids at position +3 but harbored a 

polar serine residue at position +2. This sequence is different from the LES 

identified in C. canimorsus but it has nevertheless a clear similarity with the C. 

canimorsus LES. Indeed, it starts with a polar residue followed by several 

negatively charged residues and in C. canimorsus, the lysine residue could be 

substituted by an alanine provided that a glutamine was present at position +2 

(Fig. 2D and E). We thus hypothesize that SDDDD represents the consensus LES 

of B. fragilis. We then searched for the LES of Flavobacterium johnsoniae UW101 

that belongs to the same family as C. canimorsus, the Flavobacteriaceae. Since no 

surfome analysis has been performed on this bacterium, we recovered the 

sequences of all predicted SusD homologs19, supposedly surface exposed 

lipoproteins. We next aligned their N-termini and derived the consensus 

sequence SDDFE (Fig. S7B). Interestingly, this motif seems closer to the LES of B. 

fragilis than to the C. canimorsus one in the sense that is enriched in a polar 

residue (S) rather than in a positively charged one. However, negatively charged 

amino acids are still predominant in this LES.  

 
 

The LES from B. fragilis and F. johnsoniae is functional in C. canimorsus 

To validate our findings, we tested if the consensus sequences predicted 

for B. fragilis (SDDDD) and F. johnsoniae (SDDFE) would represent a functional 

LES in C. canimorsus. Both sequences were inserted in SiaC (Fig. 5A) and the 

recombinant proteins were tested in C. canimorsus (Fig. 5B). Both constructs 

were found to be surface localized (Fig. 5C and D), although at lower levels than 

SiaC harboring the C. canimorsus LES, indicating that the LES from Bacteroides 

and Flavobacteria allow surface transport of lipoproteins in Capnocytophaga. 
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Overall these data confirm the evidence of a shared novel pathway for 

lipoprotein export in this phylum of Gram-negative bacteria. 

 
 

 

 

Fig. 5. B. fragilis and F. johnsoniae LES allow SiaC surface localization  

(A) SiaC wt and consensus sequence mutant constructs. Amino acids derived from the B. fragilis 

or F. johnsoniae consensus are indicated in bold green. (B) Detection of SiaC by western blot 

analysis of total cell extracts of strains expressing the SiaC constructs described in (A). MucG 

expression was monitored as loading control. (C) Quantification of SiaC surface exposure by flow 

cytometry of live cells labeled with anti-SiaC serum. Shown is the fluorescence intensity of 

stained cells only; NR: not relevant. The averages from at least three independent experiments 

are shown. Error bars represent 1 standard deviation from the mean; ***, p ≤ 0.001 as compared 

to reference construct 2. The percentage of stained cells is indicated below; SD: standard 

deviation. Strains below detection limit (≤ 2.5 %) are highlighted in grey. (D) 

Immunofluorescence microscopy images of bacteria labeled with anti-SiaC serum. Scale bar: 5 

μm. 
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Discussion 

In conclusion, we show for the first time that surface exposed lipoproteins 

of Bacteroidetes harbor a specific signal at their N-terminus that drives their 

transport to the bacterial surface. In addition, we derived the canonical LES 

sequence that represents the most common choice of amino acid at each position 

for C. canimorsus, B. fragilis and F. johnsoniae. For C. canimorsus it is C-X-K-

(D/E)2-X, where X can be any amino acid as long as the overall negative charge of 

the LES is maintained. Interestingly, this is different from what has been 

described in the Spirochaetes Borrelia burgdorferi. This bacterium, also 

harboring a high proportion of surface lipoproteins, seems to transport them at 

its surface by default without the requirement of a specific signal46-48. This 

suggests that Bacteroidetes and Spirochaetes evolved different lipoprotein 

transport machineries and corresponding signaling pathways. The LES of 

Bacteroidetes is in direct proximity to the +1 cysteine, a region that acts as lol-

avoidance signal in Proteobacteria49-51 thus indicating that also the sorting rules 

distinguishing inner and outer membrane lipoproteins are different in 

Bacteroidetes.  

The discovery of the LES implies the existence of a novel export pathway 

in bacteria and represents the starting point for the identification of the 

machinery that allows surface lipoproteins localization. In this regard, it is 

interesting to note that Bacteroidetes do not encode any homolog of LolB, the 

OM lipoprotein responsible of the insertion of lipoproteins into the inner leaflet 

of the OM in E. coli and most studied bacteria52,53. The function of LolB in 

Bacteroidetes might therefore be fulfilled by another protein or protein complex 

that would also be able to flip surface exposed lipoproteins across the OM. 

Recently a novel lipoprotein export system has been discovered in the 

human pathogen Neisseria meningitidis54. This bacterium displays several 

lipoproteins at the bacterial surface, among which the TbpA and HupA proteins 

that are involved in iron uptake from transferrin and haemoglobin respectively 

55,56. Hooda et al. have shown that TbpA is transported to the bacterial surface by 

an integral outer membrane protein named Slam1 (lipoprotein assembly 

modulator 1) while HupA is transported by the paralog Slam2. While homologs 

of Slam could be found in several Proteobacteria54, we could not identify any 
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homolog in Bacteroidetes thus suggesting that in this phylum lipoproteins are 

transported to the bacterial surface via a different mechanism. Furthermore, in 

Neisseria no conserved signal sequence has so far been identified in surface 

exposed lipoproteins and the evidence that TbpA and HupA require each a 

specific Slam transporter suggests that in this bacterium the recognition 

between the lipoprotein and the transporter is different from Bacteoidetes 

where a common specific sequence would address the lipoproteins to the 

bacterial surface. We believe the discovery of the LES represents a step forward 

in understanding the complex biology of Bacteroidetes, being at the same time 

commensal and opportunistic pathogens, and is the starting point for the 

identification of the machinery that allows surface lipoproteins localization. 

  



Lipoprotein export signal 
 

 87 

Materials and Methods 

Bacterial strains and growth conditions 

Bacterial strains used in this study are listed in Table S1. Escherichia coli strains 

were routinely grown in lysogeny broth (LB) at 37°C. C. canimorsus strains were 

routinely grown on heart infusion agar (Difco) supplemented with 5% sheep 

blood (Oxoid) plates (SB plates) for 2 days at 37°C in the presence of 5% CO2. To 

select for plasmids, antibiotics were added at the following concentrations: 100 

μg/ml ampicillin (Amp), 50 μg/ml kanamycin (Km) for E. coli and 10 μg/ml 

erythromycin (Em), 10 μg/ml cefoxitin (Cfx), 20 μg/ml gentamicin (Gm) for C. 

canimorsus.  

 

Construction of siaC and mucG expression plasmids 

Plasmids and primers used in this study are listed in Table S2 and S3 

respectively. siaC (Ccan_04790) was amplified from 100 ng C. canimorsus 5 

genomic DNA with primers 4159 and 7696 using the Q5 High-Fidelity DNA 

Polymerase (M0491S; New England Biolabs). The initial denaturation was at 

98°C for 2 min, followed by 30 cycles of amplification (98°C for 30 s, 52°C for 30 

s, and 72°C for 2 min) and finally 10 min at 72°C. After purification, the fragment 

was digested using NcoI and XhoI restriction enzymes and cloned into plasmid 

pMM47.A, leading to plasmid pFL117. mucG (Ccan_17430) was cloned in the 

same way except that primers 7182 and 7625 were used for amplification and 

that the fragment was cloned into plasmid pPM5, leading to plasmid pFL43.  

Site-specific point mutations were introduced by amplifying separately the N- 

and C-terminal part of each gene using forward and reverse primers harboring 

the desired mutations in their sequence in combination with primers 4159 and 

7696 for siaC and 7182 and 7625 for mucG. Both PCR fragments were purified 

and then mixed in equal amounts for PCR using the PrimeStar HS DNA 

Polymerase (R010A; Takara). The initial denaturation step was performed at 

98°C for 2 min, followed by 30 cycles of amplification (98°C for 10 s, 60°C for 5 s, 

and 72°C for 3 min 30 s) and finally 10 min at 72°C. Final PCR products were 

then cleaned, digested using NcoI and XhoI restriction enzymes and cloned into 

plasmids pMM47.A or pPM5 for siaC and mucG respectively. The incorporation of 

the desired point mutations in all inserts was confirmed by sequencing. Plasmids 
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expressing siaC and mucG variants were transferred to C. canimorsus 5 siaC and 

mucG deletion strains respectively by electroporation39. 

 

Immunofluorescence labeling for flow cytometry and microscopy analysis 

Bacteria grown for 2 days on SB plates were collected, washed once with PBS, 

and resuspended in one ml PBS to an OD600 of 0.1. 5 μl of bacterial suspension 

(approximately 3 x 105 bacteria) were used to inoculate 2.5 ml of DMEM (41965-

039; Gibco) containing 10% heat-inactivated human serum (HIHS) in 12-well 

plates (665 180; Greiner Bio-one). Bacteria were harvested after 23h of growth 

at 37°C in the presence of 5% CO2, washed twice with PBS, and resuspended in 1 

ml PBS. The optical density at 600 nm of bacterial suspensions was measured 

and approximately 3 x 107 bacteria were collected for each strain. Bacteria were 

resuspended in 200 μl PBS containing 1% BSA (w/v) and incubated for 30 min at 

room temperature. Bacteria were then centrifuged, resuspended in 200 μl of a 

primary antibody dilution (rabbit anti-SiaC or rabbit anti-MucG antiserum) and 

incubated for 30 min at room temperature. Following centrifugation, bacterial 

cells were washed 3 times before being resuspended in 200 μl of a secondary 

antibody dilution (donkey anti-rabbit coupled to Alexa Fluor 488; A-21206; 

Invitrogen) and incubated for 30 min at room temperature in the dark. Following 

centrifugation, bacteria were washed 3 times, resuspended in 200 μl of 4% PFA 

(w/v) and incubated for 15 min at room temperature in the dark. Finally, 

bacteria were centrifuged, washed once and resuspended in 700 μl of PBS. For 

flow cytometry analysis, samples were directly analyzed with a BD FACSVerseTM 

(BD Biosciences) and data were processed with BD FACSuiteTM (BD Biosciences). 

Analysis was performed on all events without previous gating. For microscopy 

analysis, labeled bacteria were added on top of poly-L-lysine-coated coverslips 

and were allowed to adhere for 30 min at room temperature. After removal of 

bacterial suspension, coverslips were washed 3 times, mounted upside down on 

glass slides and allowed to dry overnight at room temperature in the dark. All 

microscopy images were captured with an Axioscop (Zeiss) microscope with an 

Orca-Flash 4.0 camera (Hamamatsu) and Zen 2012 software (Zeiss). As control, 

samples were prepared in parallel as described above except that rabbit pre-

immunization serum was used for labeling. 
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Proteinase K accessibility assay 

Bacteria were grown overnight as described above for immunofluorescence 

labeling. Bacteria were harvested, washed twice with PBS and resuspended in 1 

ml PBS. The optical density at 600 nm of bacterial suspensions was measured 

and approximately 6 x 107 bacteria were collected for each strain. Bacteria were 

then resuspended in 500 μl PBS containing 200 μg/ml Proteinase K (P2308, 

Sigma) and incubated for 30 min at 37°C. Bacteria were then centrifuged, 

whased once with PBS containing 5mM PMSF (P7626, Sigma), washed once with 

PBS and finally resuspended in 20 μl SDS PAGE buffer. Untreated control 

samples were realized in parallel. Eight microliter samples were loaded on 12% 

SDS PAGE gels. After gel electrophoresis, proteins were transferred onto 

nitrocellulose membrane and analyzed by Western blot. 

 

In vivo radiolabeling with [3H] palmitate, immunoprecipitation and 

fluorography 

Bacteria were grown overnight as described above for immunofluorescence 

labeling, except that bacteria were grown in 5 ml medium in 6-well plates (657 

160; Greiner Bio-one). After 18 h of incubation, [9,10-3H] palmitic acid (32 

Ci/mmol; NET043; Perkin-Elmer Life Sciences) was added to a final 

concentration of 50 μCi/ml and incubation was continued for 6 h. Bacteria were 

then collected by centrifugation, washed 2 times with 1 ml PBS and pellets were 

stored at -20°C until further use. Pellets were resupended in 300 μl PBS 

containing 1% TritonTM X-100 (28817.295; VWR) and vortexed 10 sec to lyse 

bacteria. Lysates were centrifuged 2 min at 14,000 g and the supernatant was 

transferred into a new tube. MucG proteins were immuno-precipitated by 

addition of 15 μl MucG antiserum for 90 min at room temperature with constant 

agitation. In parallel, 20 μl of Protein A agarose slurry (P3476; Sigma-Aldrich) 

were washed 2 times with 500 μl wash buffer (0.1% TritonTM X-100 in PBS), 

saturated with 500 μl 0.2% BSA (w/v) for 30 min and washed again 2 times with 

wash buffer. The Protein A agarose slurry was then added to the cell lysate and 

incubation was continued for 30 min at room temperature with constant 

agitation. Samples were then centrifuged at 14,000 g for 2 min and the 

supernatant was discarded. Pellets were washed 5 times with 500 μl wash 
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buffer. Bound proteins were eluted by addition of 50 μl SDS PAGE buffer and 

heating for 10 min at 95°C. Samples were centrifuged again and supernatants 

were carefully separated from the agarose beads and loaded on 10% SDS PAGE 

gels. After gel electrophoresis, gels were fixed in a 25/65/10 

isopropanol/water/acetic acid solution overnight and subsequently soaked for 

30 min in Amplify (NAMP100; Amersham) solution. Gels were vacuum dried and 

exposed to SuperRX autoradiography film (Fuji) for 13-21 days until desired 

signal strength was reached. 

 

Human salivary mucin degradation 

Fresh human saliva was collected from healthy volunteers and filter-sterilized 

using 0.22 μm filters (Millipore). Bacteria grown for 2 days on SB plates were 

collected, washed once with PBS, and set to an OD600 of 1. One hundred μl of 

bacterial suspension (approximately 5 x 107 bacteria) were then mixed with 100 

μl of human saliva and incubated for 240 min at 37°C. As negative control, 100 μl 

of saliva was incubated with 100 μl PBS. Samples were then centrifuged for 5 

min at 13,000 g, the supernatant carefully collected and loaded on 10% SDS 

PAGE gels. Mucin degradation was monitored by lectin staining with PNA 

agglutinin (DIG glycan differentiation kit, 11210238001; Roche) according to 

manufacturer’s instructions. Mucin degradation was estimated by loss or 

reduction of PNA staining as compared to the negative control. 

 

Outer membrane protein purification 

Outer membrane proteins were isolated as described in references 45 and 57 with 

several modifications. All steps were carried out on ice unless otherwise stated. 

All sucrose concentrations are expressed as percentages of w/v in 10 mM HEPES 

(pH 7.4). Bacteria collected from 2 plates were washed 2 times with 30 ml 10 

mM HEPES (pH 7.4) before being resuspended in 4.5 ml of 10% sucrose. 

Bacterial cells were then disrupted by 2 passages through a French press at 

35,000 psi. The lysate was collected and centrifuged for 10 min at 16,500 g to 

remove insoluble material. The crude cell extract was then layered on top of a 

sucrose step gradient composed of 1.33 ml of 70% sucrose and 6 ml of 37% 

sucrose and centrifuged at 100,000 g (28,000 rpm) for 70 min at 4°C in a SW41 
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Ti rotor. The yellow material above the 37% sucrose solution and at the 

10%/37% interface, corresponding to soluble and enriched inner membrane 

proteins, was collected and diluted to 7 ml with 10 mM HEPES (pH 7.4). The high 

density band at the 37%/70% interface, corresponding to enriched outer 

membrane proteins, was collected and diluted to 7 ml with 10 mM HEPES (pH 

7.4). Membranes from both fractions were then centrifuged at 320,000 g (68,000 

rpm) for 90 min at 4°C in a 70.1 Ti rotor. The supernatant of the yellow material 

fraction, corresponding to soluble proteins, was transferred to a fresh tube and 

stored at -20°C. The pellet of the same tube, corresponding to a mixture of inner 

and outer membrane fractions, was resuspended in 1 ml of 40% sucrose and 

stored at -20°C. The supernatant of the outer membrane proteins band was 

discarded, the pellet resuspended in 7 ml of 10 mM HEPES (pH 7.4) containing 

1% Sarkozyl (L5777; Sigma-Aldrich) and incubated at room temperature for 30 

min with constant agitation. The outer membrane fraction was then centrifuged 

at 320,000 g for 60 min at 4°C in a 70.1 Ti rotor, resuspended in 7 ml of 100 mM 

Na2CO3 (pH 11) and incubated at 4°C for 20 min with constant agitation. The 

outer membrane fraction was then centrifuged, washed with 7 ml unbuffered 40 

mM Tris and centrifuged again. Finally, the purified outer membrane was 

resuspended in 200 to 400 μl unbuffered 40 mM Tris and stored at -20°C. 

Protein concentration of all fractions was assessed using the Bio-Rad Protein 

Assay (500-0006; Bio-Rad) according to the manufacturer’s instructions. One to 

2 μg of total protein of total cell lysates and outer membrane fractions were 

loaded on 12% SDS PAGE gels. After gel electrophoresis, proteins were 

transferred onto nitrocellulose membrane and analyzed by Western blot. Purity 

of the outer membrane fraction was assessed by measuring the SDH activity as 

described previously 58. Total lysate and enriched inner membrane fractions 

served as controls (data not shown). 

 

Lipoprotein multiple sequence alignment 

The sequences of 40 lipoproteins previously identified as being part of the 

surface proteome of C. canimorsus 517 were retrieved from the Uniprot 

database59 (Release 2015_12). Additionally, 2 C. canimorsus 5 proteins (F9YSD4 

and F9YTT3) detected at the bacterial surface but predicted to harbour an SPI 
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signal were reanalysed with the PATRIC database60 and found to possess an SPII 

signal and thus considered lipoproteins, rendering a final list of 43 surface 

exposed predicted lipoproteins (Table S4). The SPII cleavage site of each protein 

was then predicted using the LipoP software61 (1.0 Server, default settings), 

showing that all proteins possess one clear SPII cleavage site. Accordingly, 

protein sequences were trimmed to their predicted mature form. Lists 

corresponding to either full-length protein sequences or 15 amino acids 

downstream of the +1 cysteine were generated. Datasets were then submitted to 

multiple sequence alignment using the MAFFT online tool62 (version 7.268, 

default settings) and the output was analysed using the Jalview software63 

(version 2.9.0b2). The final consensus sequence logo was drawn using 

WebLogo64 (version 2.8.2, default settings). The sequences of the 17 C. 

canimorsus outer membrane lipoproteins presumably facing the periplasm17 

were processed in the same way (Table S5). The sequences of the 22 previously 

identified proteinase K sensitive Bacteroides fragilis NCTC 9343 surface exposed 

lipoproteins45 were processed in the same way (Table S5). Forty-two 

Flavobacterium johnsoniae UW101 predicted SusD-like lipoproteins were 

identified in the PULDB of the CAZY database19, the corresponding sequences 

extracted from the Uniprot database and processed as described above (Table 

S5). 

 

Statistical analysis 

All data is presented as mean ± standard deviation (SD). Statistical analyses were 

done by one-way ANOVA followed by Bonferroni test using the GraphPad Prism 

version 5.00 for Windows, GraphPad Software, La Jolla California USA, 

www.graphpad.com. A P value ≤ 0.05 was considered statistically significant. 
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Figure S1. Multiple sequence alignment of full length C. canimorsus surface lipoproteins  

MAFFT alignment of mature surface exposed lipoproteins. Only the N-terminal region, showing the conserved K-(D/E) motif, is displayed. Highly conserved 

residues are highlighted according to Clustal color code (R, K in red; D, E in magenta; P in yellow; G in orange; Q, N, S, T in green, C in pink; A, I, L, M, F, W, V in blue; 

H, Y in cyan). The derived consensus sequence is shown below. 
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Figure S2. Multiple sequence alignment of C. canimorsus periplasmic outer membrane 

lipoproteins  

MAFFT alignment of the first 15 N-terminal amino acids of intracellular OM lipoproteins. The 

first invariant cysteine residue of each sequence was removed before performing the alignment. 

Highly conserved residues are highlighted according to Clustal color code (for details, see Fig. 

S1). The derived consensus sequence is shown below. SiaC (Ccan_04790) is indicated by a star. 
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Figure S3. Flow cytometry analysis of anti-SiaC stained cells 

Shown are representative experiments for selected strains stained with either pre-immunization 
serum (negative control) or anti-SiaC serum. A shift of the fluorescence intensity in the P1 
channel indicates that cells are stained, i.e. SiaC is surface exposed 
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Figure S4. The C. canimorsus LES leads to efficient transport of SiaC to the cell surface 

(A) SiaC wt and consensus sequence mutant constructs. Amino acids derived from the consensus 
sequence are indicated in bold green, point mutations are indicated in bold grey. (B) 
Quantification of SiaC surface exposure by flow cytometry of live cells labeled with anti-SiaC 
serum. Shown is the fluorescence intensity of stained cells only; NR: not relevant. The averages 
from at least three independent experiments are shown. Error bars represent 1 standard 
deviation from the mean; ***, p ≤ 0.001 as compared to reference construct 3. The percentage of 
stained cells is indicated below; SD: standard deviation. Strains below detection limit (≤ 2.5 %) 
are highlighted in grey, strains with a statistically significant lower stained population are in red 
(p ≤ 0.001 as compared to reference construct 3). (C) Detection of SiaC by western blot analysis 
of intact cell expressing the SiaC constructs shown in (A) treated with proteinase K (+) or with 
reaction buffer (-). DPP7 expression was monitored as loading control, MucG was used as 
positive control for proteinase K accessibility. The wt strain was used as external control. 
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Figure S5. MucG is a surface exposed lipoprotein 

(A) MucG domain annotation. Predicted structural domains are indicated by grey boxes, amino 

acid positions are indicated on top. The predicted LES is shown below. (B) Western blot analysis 

(top) and fluorography (bottom) of the elution fraction of MucG immunoprecipitation of 3H 

palmitate labeled bacteria. MucG is lipidated in the wt and ΔmucG + MucG strains but not in the 

ΔmucG + MucGC21G strain in which the predicted site of lipidation is mutated, showing that MucG 

is a lipoprotein. Rabbit IgG hc correspond to the heavy chain of the rabbit MucG antiserum 

present in the analyzed elution fraction. The low molecular weight band in the MucG strain likely 

represents a truncated MucG form due to overexpression. This band being radiolabeled, this 

indicates that the truncation takes place at the C-terminus of MucG. The two low molecular 

weight bands in the MucGC21G mutant likely represent two different MucG truncated forms that 

are generated when the protein overexpressed is not lipidated and periplasmic. (C) MucG 

detection by western blot analysis of total cell lysates (TL) and outer membrane (OM) fractions 

of bacteria expressing different MucG constructs. MucG but not the soluble MucGC21G is detected 

in the OM fraction, showing that MucG is a bona fide OM lipoprotein. SiaC expression was 

monitored as loading control. (D) Quantification of MucG surface exposure by flow cytometry of 

live cells labeled with anti-MucG serum. Shown is the fluorescence intensity of stained cells only; 

NR: not relevant. The averages from at least three independent experiments are shown. Error 

bars represent 1 standard deviation from the mean.. The percentage of stained cells is indicated 

below; SD: standard deviation. Strains below detection limit (≤2.5 %) are highlighted in grey. (E) 
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Immunofluorescence microscopy images of bacteria labeled with anti-MucG serum. Scale bar: 5 

μm. (F) Detection of mucin by PNA lectin staining of human saliva following incubation with 

bacteria expressing different MucG constructs performed as in reference 41. Untreated saliva 

serves as negative control. Reduction of PNA staining indicates mucin degradation by surface 

localized MucG.  
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Figure S6. The MucG LES allows SiaC surface localization 

(A) SiaC wt and MucG LES sequence mutant constructs. Amino acids derived from the consensus 

or MucG LES are indicated in bold green, point mutations are indicated in bold grey. (B) 

Detection of SiaC by western blot analysis of total cell extracts of strains expressing the SiaC 

constructs shown in (A). MucG expression was monitored as loading control. (C) 

Immunofluorescence microscopy pictures of bacteria labeled with anti-SiaC serum. Scale bar: 5 

μm. (D) Quantification of SiaC surface exposure by flow cytometry of live cells labeled with anti-

SiaC serum. Shown is the fluorescence intensity of stained cells only; NR: not relevant. The 

averages from at least three independent experiments are shown. Error bars represent 1 

standard deviation from the mean; ***, p ≤ 0.001 as compared to reference construct 3; n.s: not 

significant. The percentage of stained cells is indicated below; SD: standard deviation. Strains 

below detection limit (≤ 2.5 %) are highlighted in grey, strains with a statistically significant 

lower stained population are in red (p ≤ 0.001 as compared to reference construct 3). (E) 

Western blot analysis of total lysates (TL) and outer membrane (OM) fractions of bacteria 

expressing different SiaC constructs. MucG expression was monitored as loading control.  
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Figure S7. Multiple sequence alignment of B. fragilis and F. johnsoniae surface lipoproteins  

(A) MAFFT alignment of the first 16 N-terminal amino acids of proteinase K sensitive B. fragilis 

lipoproteins. (B) MAFFT alignment of the first 16 N-terminal amino acids of SusD-like F. 

johnsoniae lipoproteins. Highly conserved residues are highlighted according to Clustal color 

code (for details, see Fig. S1). Corresponding Weblogo and amino acid frequencies are indicated 

below.  
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Table S1. Bacterial strains used in this study 

 

Strain Genotype and/or description Reference 

E. coli 

Top10 
F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 recA1 
araD139 Δ(araleu)7697 galU galK rpsL endA1 nupG; Smr 

Invitrogen 

C. canimorsus 

Cc5 Wild type (BCCM-LMG 28512) (39) 

ΔsiaC Replacement of Ccan_04790 by ermF; Emr (39) 

ΔmucG Replacement of Ccan_17430 by ermF; Emr (41) 

 

Table S2. Plasmids used in this study 

 

Plasmid Description Reference 

Vectorsa 

pMM47.A 
ColE1 ori; (pCC7 ori); Apr; (Cfxr). E. coli-C. canimorsus expression 
shuttle plasmid with ermF promoter 

(39) 

pPM5 
ColE1 ori; (pCC7 ori); Apr; (Cfxr). E. coli-C. canimorsus expression 
shuttle plasmid with ompA promoter 

(40) 

Expression plasmids 

pFL43 
Full length mucG with a C-terminal HA tag amplified with primers 
7182/7625 and cloned into pPM5 using NcoI/XhoI restriction 
sites 

This study 

pFL44 
Full length mucG C21G with a C-terminal HA tag amplified with 
primers 7259/7625 and cloned into pPM5 using NcoI/XhoI 
restriction sites 

This study 

pFL71 
Full length mucG K22A with a C-terminal HA tag amplified with 
primers 7182/7487 and 7486/7625 and cloned into pPM5 using 
NcoI/XhoI restriction sites 

This study 

pFL72 
Full length mucG K23A with a C-terminal HA tag amplified with 
primers 7182/7489 and 7488/7625 and cloned into pPM5 using 
NcoI/XhoI restriction sites 

This study 

pFL73 
Full length mucG E24A with a C-terminal HA tag amplified with 
primers 7182/7491 and 7490/7625 and cloned into pPM5 using 
NcoI/XhoI restriction sites 

This study 

pFL74 
Full length mucG V25A with a C-terminal HA tag amplified with 
primers 7182/7493 and 7492/7625 and cloned into pPM5 using 
NcoI/XhoI restriction sites 

This study 

pFL75 
Full length mucG E26A with a C-terminal HA tag amplified with 
primers 7182/7495 and 7494/7625 and cloned into pPM5 using 
NcoI/XhoI restriction sites 

This study 

pFL76 
Full length mucG E27A with a C-terminal HA tag amplified with 
primers 7182/8048 and 8047/7625 and cloned into pPM5 using 
NcoI/XhoI restriction sites 

This study 

pFL77 
Full length mucG E28A with a C-terminal HA tag amplified with 
primers 7182/8050 and 8049/7625 and cloned into pPM5 using 
NcoI/XhoI restriction sites 

This study 

pFL79 
Full length mucG with a C-terminal HA tag amplified with primers 
7182/7510 and 7509/7625 and cloned into pPM5 using 
NcoI/XhoI restriction sites. Replacement of aa 22-28 by AAEVEEE 

This study 

pFL84 Full length mucG with a C-terminal HA tag amplified with primers This study 
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7182/7899 and 7898/7625 and cloned into pPM5 using 
NcoI/XhoI restriction sites. Replacement of aa 22-28 by 
KKAAAAA 

pFL117 
Full length siaC amplified with primers 4159 and 7696 and 
cloned into pMM47.A using NcoI/XhoI restriction sites 

This study 

pFL118 
Full length siaC C17G amplified with primers 5545 and 7696 and 
cloned into pMM47.A using NcoI/XhoI restriction sites 

This study 

pFL132 
Full length siaC amplified with primers 4159/8017 and 
8016/7696 and cloned into pMM47.A using NcoI/XhoI restriction 
sites. Replacement of aa 18-22 by KKEVE 

This study 

pFL133 
Full length siaC amplified with primers 4159/8054 and 
8052/7696 and cloned into pMM47.A using NcoI/XhoI restriction 
sites. Replacement of aa 18-22 by KKEVEE 

This study 

pFL134 
Full length siaC amplified with primers 4159/7972 and 
7971/7696 and cloned into pMM47.A using NcoI/XhoI restriction 
sites. Replacement of aa 18-22 by KKEVEEE 

This study 

pFL143 
Full length siaC amplified with primers 4159/8058 and 
8057/7696 and cloned into pMM47.A using NcoI/XhoI restriction 
sites. Replacement of aa 18-22 by QKDDE 

This study 

pFL144 
Full length siaC amplified with primers 4159/8086 and 
8085/7696 and cloned into pMM47.A using NcoI/XhoI restriction 
sites. Replacement of aa 18-22 by AKDDE 

This study 

pFL145 
Full length siaC amplified with primers 4159/8084 and 
8083/7696 and cloned into pMM47.A using NcoI/XhoI restriction 
sites. Replacement of aa 18-22 by AKDDA 

This study 

pFL146 
Full length siaC amplified with primers 4159/8153 and 
8152/7696 and cloned into pMM47.A using NcoI/XhoI restriction 
sites. Replacement of aa 18-22 by AKEEA 

This study 

pFL147 
Full length siaC amplified with primers 4159/8149 and 
8148/7696 and cloned into pMM47.A using NcoI/XhoI restriction 
sites. Replacement of aa 18-22 by AKDAA 

This study 

pFL148 
Full length siaC amplified with primers 4159/8151 and 
8150/7696 and cloned into pMM47.A using NcoI/XhoI restriction 
sites. Replacement of aa 18-22 by AKEAA 

This study 

pFL149 
Full length siaC amplified with primers 4159/8157 and 
8156/7696 and cloned into pMM47.A using NcoI/XhoI restriction 
sites. Replacement of aa 18-22 by AAKDD 

This study 

pFL150 
Full length siaC amplified with primers 4159/8159 and 
8158/7696 and cloned into pMM47.A using NcoI/XhoI restriction 
sites. Replacement of aa 18-22 by AAAKDD 

This study 

pFL151 
Full length siaC amplified with primers 4159/8161 and 
8160/7696 and cloned into pMM47.A using NcoI/XhoI restriction 
sites. Replacement of aa 18-22 by AAAAKDD 

This study 

pFL152 
Full length siaC amplified with primers 4159/8169 and 
8168/7696 and cloned into pMM47.A using NcoI/XhoI restriction 
sites. Replacement of aa 18-22 by KDDAA 

This study 

pFL153 
Full length siaC amplified with primers 4159/8165 and 
8164/7696 and cloned into pMM47.A using NcoI/XhoI restriction 
sites. Replacement of aa 18-22 by QADDE 

This study 

pFL154 
Full length siaC amplified with primers 4159/8167 and 
8166/7696 and cloned into pMM47.A using NcoI/XhoI restriction 
sites. Replacement of aa 18-22 by AADDA 

This study 

pFL155 
Full length siaC amplified with primers 4159/8164 and 
8163/7696 and cloned into pMM47.A using NcoI/XhoI restriction 
sites. Replacement of aa 18-22 by SDDFE 

This study 

pFL156 
Full length siaC amplified with primers 4159/8173 and 
8172/7696 and cloned into pMM47.A using NcoI/XhoI restriction 
sites. Replacement of aa 18-22 by SDDDD 

This study 
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a: Selection markers for C. canimorsus are in between brackets  

 

Table S3. Primers used in this study  

 

Ref. Sequence 5'-3' Restrictiona 

4159 cataccatgggaaatcgaattttttatctt NcoI 

5545 
catgccatgggaaatcgaattttttatcttttattcgcttttgttcttttgtcggctggtggaagcc
aaaaaaacg 

NcoI 

7182 ggccatggggaaaaaaatagtatccattagc NcoI 

7259 
ggccatggggaaaaaaatagtatccattagcttatttttccttatctcagcaactatttggttag
ccggtaaaaaggaag 

NcoI 

7625 ggctcgagctaagcgtaatctggaacatcgtatgggtaaaacgtaacttgagttctc XhoI 

7696 ggctcgagttagttcttgataaattcctcaactgg XhoI 

7486 tggttagcctgtgcaaaggaagttgaagaagaacc  

7487 ggttcttcttcaacttcctttgcacaggctaacca  

7488 ttagcctgtaaagcggaagttgaagaagaaccttttc  

7489 gaaaaggttcttcttcaacttccgctttacaggctaa  

7490 gcctgtaaaaaggcagttgaagaagaaccttttctaac  

7491 gttagaaaaggttcttcttcaactgcctttttacaggc  

7492 tgtaaaaaggaagctgaagaagaaccttttctaac  

7493 gttagaaaaggttcttcttcagcttcctttttaca  

7494 aaaaaggaagttgcagaagaaccttttctaacaatag  

7495 ctattgttagaaaaggttcttctgcaacttccttttt  

7509 tggttagcctgtgcagcggaagttgaagaagaacc  

7510 ggttcttcttcaacttccgctgcacaggctaacca  

7898 gcagctgcagcggctccttttctaacaatagaagaaaaaacc  

7899 agccgctgcagctgcctttttacaggctaaccaaatagttgc  

7971 aaaaaggaagttgaagaagaagtaatcggcggaggcgaatttacacaacccg   

7972 ttcttcttcaacttcctttttacaagccgacaaaagaacaaaagcg   

8016 aaaaaggaagttgaagtaatcggcggaggcgaatttacacaacccg   

8017 ttcaacttcctttttacaagccgacaaaagaacaaaagcg   

8047 aggaagttgaagcagaaccttttctaacaatagaagaaaaaacc  

8048 gaaaaggttctgcttcaacttcctttttacaggctaacc  

8049 ggaagttgaagaagcaccttttctaacaatagaagaaaaaacc  

8050 gaaaaggtgcttcttcaacttcctttttacaggctaaccaaatagttg  

8052 aaaaaggaagttgaagaagtaatcggcggaggcgaatttacacaacccg   

8054 ttcttcaacttcctttttacaagccgacaaaagaacaaaagcg   

8057 caaaaggacgatgaagtaatcggcggaggcgaatttacacaacccg   

8058 ttcatcgtccttttgacaagccgacaaaagaacaaaagcg   

8083 gcaaaggacgatgcagtaatcggcggaggcgaatttacacaacccg   

8084 tgcatcgtcctttgcacaagccgacaaaagaacaaaagcg   

8085 gcaaaggacgatgaagtaatcggcggaggcgaatttacacaacccg   

8086 ttcatcgtcctttgcacaagccgacaaaagaacaaaagcg   

8148 gcaaaggacgctgcagtaatcggcggaggcgaatttacacaacccg   
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8149 tgcagcgtcctttgcacaagccgacaaaagaacaaaagcg   

8150 gcaaaggaagctgcagtaatcggcggaggcgaatttacacaacccg   

8151 tgcagcttcctttgcacaagccgacaaaagaacaaaagcg   

8152 gcaaaggaagaggcagtaatcggcggaggcgaatttacacaacccg   

8153 tgcctcttcctttgcacaagccgacaaaagaacaaaagcg   

8156 gctgcaaaggacgatgtaatcggcggaggcgaatttacacaacccg   

8157 atcgtcctttgcagcacaagccgacaaaagaacaaaagcg   

8158 gcagctgcaaaggacgatgtaatcggcggaggcgaatttacacaacccg   

8159 atcgtcctttgcagctgcacaagccgacaaaagaacaaaagcg   

8160 gccgcagctgcaaaggacgatgtaatcggcggaggcgaatttacacaacccg   

8161 atcgtcctttgcagctgcggcacaagccgacaaaagaacaaaagcg   

8162 tctgatgacttcgaagtaatcggcggaggcgaatttacacaacccg   

8163 ttcgaagtcatcagaacaagccgacaaaagaacaaaagcg   

8164 caagcggacgatgaagtaatcggcggaggcgaatttacacaacccg   

8165 ttcatcgtccgcttgacaagccgacaaaagaacaaaagcg   

8166 gcagctgacgatgcagtaatcggcggaggcgaatttacacaacccg   

8167 tgcatcgtcagctgcacaagccgacaaaagaacaaaagcg   

8168 aaggacgatgcagctgtaatcggcggaggcgaatttacacaacccg   

8169 agctgcatcgtccttacaagccgacaaaagaacaaaagcg   

8172 agtgatgacgacgatgtaatcggcggaggcgaatttacacaacccg   

8173 atcgtcgtcatcactacaagccgacaaaagaacaaaagcg   
 

a: Restriction sites are underlined 

 

Table S4. C. canimorsus 5 surface exposed lipoproteins 

 

Uniprot 
Accession 

ORF name Annotation 
SPII cleavage 

sitec 
% of 

surfomed 

F9YPG1 Ccan_00120 Uncharacterized protein 22-23 8.35 

F9YPG2 Ccan_00130 Uncharacterized protein 19-20 4.25 

F9YPJ0 Ccan_00410 Uncharacterized protein 18-19 0.23 

F9YPJ1 Ccan_00420 Uncharacterized protein 17-18 0.32 

F9YPJ2 Ccan_00430 Uncharacterized protein 20-21 0.27 

F9YPJ3 Ccan_00440 Uncharacterized protein 19-20 0.14 

F9YPV6 Ccan_00790 Uncharacterized protein 19-20 12.80 

F9YPV7 Ccan_00800 Tetanolysin O 19-20 0.58 

F9YPV8 Ccan_00810 Uncharacterized protein 12-13 0.46 

F9YQU8 Ccan_02630 UPF0312 protein 19-20 3.63 

F9YRN1 Ccan_03880 TvBspA-like-625 20-21 1.24 

F9YS71 Ccan_05040 
Glycosyl hydrolase family 109 
protein 5 (EC 3.2.1.49) 

26-27 / 

F9YS78 Ccan_05110 Uncharacterized protein 18-19 0.69 

F9YSN4 Ccan_05870 
Carboxyl-terminal-processing 
protease (EC 3.4.21.102) 

16-17 1.02 

F9YT40 Ccan_06620 Thiol-activated cytolysin 21-22 1.37 
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F9YTK6 Ccan_07500 Uncharacterized protein 16-17 0.45 

F9YTK7 Ccan_07510 Uncharacterized protein 15-16 0.20 

F9YTY4 Ccan_08000 Uncharacterized protein 19-20 / 

F9YUD4 Ccan_08710 GpdD 16-17 3.99 

F9YUD5 Ccan_08720 GpdG 20-21 3.43 

F9YUD6 Ccan_08730 GpdE 16-17 1.28 

F9YUD7 Ccan_08740 GpdF 17-18 3.25 

F9YUS3 Ccan_09300 
Thioredoxin family protein (EC 
1.8.1.8) 

16-17 / 

F9YUW3 Ccan_09700 
Peptidyl-prolyl cis-trans 
isomerase (EC 5.2.1.8) 

19-20 0.71 

F9YVS5 Ccan_11230 Uncharacterized protein 17-18 0.17 

F9YVT2 Ccan_11300 Uncharacterized protein 17-18 1.11 

F9YPL2 Ccan_12420 Uncharacterized protein 18-19 2.57 

F9YQG8 Ccan_13910 Uncharacterized protein 21-22 0.27 

F9YQN5 Ccan_14580 Internalin-J (EC 3.2.1.83) 23-24 0.23 

F9YSD4 Ccan_17430a MucG mucinase 20-21 1.29 

F9YSD5 Ccan_17440 MucE 18-19 8.99 

F9YTL6 Ccan_19450 Uncharacterized protein 18-19 5.15 

F9YTT1 Ccan_20100 Uncharacterized protein 19-20 / 

F9YTT2 Ccan_20110 Uncharacterized protein 20-21 1.64 

F9YTT3 Ccan_20120b Uncharacterized protein 20-21 2.08 

F9YUN2 Ccan_21530 Uncharacterized protein 23-24 / 

F9YUN4 Ccan_21550 Uncharacterized protein 23-24 0.09 

F9YUP2 Ccan_21630 Uncharacterized protein 24-25 11.30 

F9YV08 Ccan_22020 Uncharacterized protein 17-18 0.03 

F9YV37 Ccan_22310 Uncharacterized protein 21-22 0.17 

F9YV38 Ccan_22320 Uncharacterized protein 20-21 0.19 

F9YVG4 Ccan_22830 Uncharacterized protein 16-17 0.12 

F9YVZ6 Ccan_23850 Uncharacterized protein 17-18 / 

   Total 84,06 

 

a: Using the annotated translational start site Ccan_17430 is predicted to be a cytoplasmic 

protein, but if translation begins at an AUG 13 codons downstream then it is predicted to be a 

lipoprotein  
b: Using the annotated translational start site Ccan_20120 is predicted to be a cytoplasmic 

protein, but if translation begins at an AUG 18 codons downstream then it is predicted to be a 

lipoprotein. 
c: SPII cleavage site predicted by the LipoP software; numbers indicate the position of the last 

amino acid of the signal peptide and the position of the +1 cysteine. 
d: Quantitative contribution to surfome composition, expressed in percentage, as described in 

(17). 

‘/’ stands for not quantified. 
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Table S5. Bacteroidetes outer membrane lipoproteins 

 
Uniprot 
Accession 

ORF name Annotation SPII cleavage sitec 

C. canimorsus 5 periplasmic outer membrane lipoproteins 

F9YQA5 Ccan_01510 Putative Subtilisin (EC 3.4.21.62) 18-19 

F9YQE9 Ccan_01950 Uncharacterized protein 19-20 

F9YRN0 Ccan_03870 Surface antigen BspA 20-21 

F9YS48 Ccan_04790 Neuraminidase 16-17 

F9YT17 Ccan_06390 Membrane or secreted protein 15-16 

F9YT18 Ccan_06400 Inner membrane lipoprotein yiaD 16-17 

F9YT35 Ccan_06570 Uncharacterized protein 19-20 

F9YT36 Ccan_06580 Uncharacterized protein 22-23 

F9YV81 Ccan_10100 Uncharacterized protein 19-20 

F9YQI1 Ccan_14040 Uncharacterized protein 16-17 

F9YQL3 Ccan_14360 Uncharacterized protein 32-33 

F9YQM4 Ccan_14470 
OmpA/MotB C-terminal like outer 
membrane protein 

17-18 

F9YSV1 Ccan_18300 Uncharacterized protein 25-26 

F9YTS3 Ccan_20020 Uncharacterized protein 20-21 

F9YV05 Ccan_21990 Uncharacterized protein 16-17 

F9YV31 Ccan_22250 TvaII (EC 3.2.1.1) 36-37 

F9YV59 Ccan_22530 Uncharacterized protein 20-21 

B. fragilis NCTC 9343 proteinase K sensitive surface exposed lipoproteins 

Q5L9H5 BF9343_3471 Uncharacterized protein 21-22 

Q5LAW1 BF9343_2981 Putative lipoprotein 22-23 

Q5LAN4 BF9343_3058 Putative lipoprotein 18-19 

Q5LBW6 BF9343_2621 Putative lipoprotein 22-23 

Q5LFL5 BF9343_1297 Uncharacterized protein 18-19 

Q5LFL6 BF9343_1296 Uncharacterized protein 20-21 

Q5LF14 BF9343_1504 Uncharacterized protein 25-26 

Q5LDF5 BF9343_2074 Putative exported protein 21-22 

Q5LFR2 BF9343_1250 Uncharacterized protein 22-23 

Q5LGH3 BF9343_0985 Conserved hypothetical lipoprotein 24-25 

Q5L8V3 BF9343_3698 Putative exported protein 20-21 

Q5L9U0 BF9343_3356 Putative lipoprotein 23-24 

Q5LF13 BF9343_1505 Uncharacterized protein 37-38 

Q5LDF3 BF9343_2076 Putative lipoprotein 25-26 

Q5LAV1 BF9343_2991 Putative exported protein 19-20 

Q5LFL7 BF9343_1295b Uncharacterized protein 24-25 

Q5CZE9 BF9343_p20c Uncharacterized protein 18-19 

Q5L9U1 BF9343_3355 Uncharacterized protein 29-30 

Q5L7N0 BF9343_4139 Putative outer membrane protein 28-29 

Q5LGX6 BF9343_0829 Possible outer membrane protein 16-17 

Q5LDF1 BF9343_2078 Conserved hypothetical lipoprotein 21-22 
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Q5L7M9 BF9343_4140 Uncharacterized protein 25-26 

F. johnsoniae UW101 SusD-like lipoproteins 

A5FNK0 Fjoh_0184 RagB/SusD domain protein 22-23 

A5FMX2 Fjoh_0404 RagB/SusD domain protein 17-18 

A5FM74 Fjoh_0666 RagB/SusD domain protein 19-20 

A5FLV9 Fjoh_0781 RagB/SusD domain protein 26-27 

A5FKM3 Fjoh_1212 RagB/SusD domain protein 19-20 

A5FK32 Fjoh_1406 RagB/SusD domain protein 24-25 

A5FJL9 Fjoh_1561 RagB/SusD domain protein 21-22 

A5FIL9 Fjoh_1925 RagB/SusD domain protein 19-20 

A5FIC6 Fjoh_2009 RagB/SusD domain protein 20-21 

A5FIB2 Fjoh_2021 RagB/SusD domain protein 18-19 

A5FI96 Fjoh_2044 RagB/SusD domain protein 22-23 

A5FI68 Fjoh_2078 RagB/SusD domain protein 20-21 

A5FH57 Fjoh_2432 RagB/SusD domain protein 21-22 

A5FGD1 Fjoh_2712 RagB/SusD domain protein 21-22 

A5FFU9 Fjoh_2893 RagB/SusD domain protein 18-19 

A5FFG2 Fjoh_3036 RagB/SusD domain protein 34-35 

A5FF76 Fjoh_3126 RagB/SusD domain protein 20-21 

A5FEV7 Fjoh_3250 RagB/SusD domain protein 19-20 

A5FEL9 Fjoh_3338 RagB/SusD domain protein 24-25 

A5FE35 Fjoh_3524 RagB/SusD domain protein 17-18 

A5FDZ2 Fjoh_3557 RagB/SusD domain protein 27-28 

A5FDB1 Fjoh_3801 RagB/SusD domain protein 18-19 

A5FD47 Fjoh_3864 RagB/SusD domain protein 21-22 

A5FD39 Fjoh_3870 RagB/SusD domain protein 20-21 

A5FD24 Fjoh_3881 RagB/SusD domain protein 21-22 

A5FCW3 Fjoh_3944 RagB/SusD domain protein 19-20 

A5FCG9 Fjoh_4094 RagB/SusD domain protein 20-21 

A5FCA0 Fjoh_4168 RagB/SusD domain protein 23-24 

A5FC59 Fjoh_4195 RagB/SusD domain protein 17-18 

A5FC33 Fjoh_4233 RagB/SusD domain protein 21-22 

A5FC07 Fjoh_4254 RagB/SusD domain protein 17-18 

A5FBT2 Fjoh_4328 RagB/SusD domain protein 18-19 

A5FBM9 Fjoh_4374 RagB/SusD domain protein 34-35 

A5FBI4 Fjoh_4433 RagB/SusD domain protein 20-21 

A5FBC7 Fjoh_4490 RagB/SusD domain protein 24-25 

A5FBC2 Fjoh_4499 RagB/SusD domain protein 17-18 

A5FB66 Fjoh_4558 RagB/SusD domain protein 20-21 

A5FB55 Fjoh_4561 RagB/SusD domain protein 18-19 

A5FAX8 Fjoh_4646 RagB/SusD domain protein 17-19 

A5FAV5 Fjoh_4672 RagB/SusD domain protein 19-20 

A5FAF6 Fjoh_4815 RagB/SusD domain protein 25-26 

A5FA21 Fjoh_4950 RagB/SusD domain protein 24-25 
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a: SPII cleavage site predicted by the LipoP software; numbers indicate the position of the last 

amino acid of the signal peptide and the position of the +1 cysteine. 
b: As described in reference (45), the translational start site of BF9343_1295 was moved 15 

codons downstream, resulting in a predicted lipoprotein. 
c: As described in reference (45), the translational start site of BF9343_p20 was moved 38 codons 

downstream, resulting in a predicted lipoprotein. 
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1.2. Extended results : Identification of a new lipoprotein export 
signal in Gram-negative bacteria 

 

 

1.2.1. Characterization of the MucG LES in SiaC 
 

Our in silico analysis identified as MucG LES the sequence 22-KKEVEEE-

28 (Fig. S5A). This was confirmed by mutational analysis in MucG (Fig. 4) as well 

as by introducing this sequence into SiaC resulting in protein surface exposure 

(Fig. S6). However, insertion of the sequence 22-KKEVE-26 into SiaC led to very 

poor surface localization of the protein (Fig. S6C and D) thus indicating the 

requirement of a negatively charged LES. Indeed, the 22-KKEVE-26 peptide is 

neutral in charge due to the presence of two positively and two negatively 

charged residues while 22-KKEVEE-27 and 22-KKEVEEE-28, both leading to 

clear surface localization of SiaC (Fig. S6C and D), have an overall negative charge 

thanks to the one or two additional glutamate residues. 

In order to further confirm this hypothesis, we generated two SiaC 

contructs by replacing the lysine residues at position 22 or 23 by alanines 

(SiaC+2AKEVE+6 and SiaC+2KAEVE+6 respectively) thus rendering the signal’s overall 

charge negative (Fig. E1A). Following western blot analysis to confirm protein 

expression (Fig. E1B), we monitored the presence of these SiaC variants at the 

cell surface by flow cytometry (Fig. E1C). Interestingly, SiaC+2AKEVE+6 was surface 

localized in 79.3 ± 3.4 % of the cells (Fig. E1C), although the total amount of SiaC 

displayed by each cell was lower than in the SiaC+2KKEVEE+7 and SiaC+2KKEVEEE+8 

constructs (approximately 25 %). This represents however a dramatic increase 

as compared to SiaC+2KKEVE+6 and confirmed that removal of one positively 

charged amino acid (K22) does indeed favor surface targeting. The fact that only 

a small amount of SiaC+2AKEVE+6 was transported to the surface could reflect our 

previous finding that glutamate is less efficient at promoting SiaC surface export 

than aspartate (Fig. 2D and E). In contrast, SiaC+2KAEVE+6 behaved as SiaC+2KKEVE+6, 

with very little protein transported to the surface (Fig. E1C). This result 

highlighted the fact that, although the introduced peptide motif is overall 

negatively charged, the position of the positively charged amino acid, K at 
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position +2 rather than +3 as in the consensus sequence, appears critical for 

proper surface localization of MucG.  

To validate this point, we constructed an additional hybrid protein by 

replacing amino acids 18 to 22 of SiaC by amino acids 23 to 27 of MucG 

(SiaC+2KEVEE+6), shifting the added MucG peptide by one amino acid as compared 

to SiaC+2KKEVE+6. This generates a signal peptide with only one positively charged 

residue (K) but located at position +2 rather than +3 (Fig. E1A). Similar to the 

SiaC+2KAEVE+6 contruct and in good agreement with our previous results, this 

construct only localized at the cell surface of 47.9 ± 1.9 % of the cells (Fig. E1C). 

Additionally, the fluorescence intensity was low, confirming a positional effect of 

the lysine residue on surface transport. 

Taken together, our data with the MucG LES in SiaC confirm the results 

obtained with the consensus LES in SiaC, namely the compositional as well as 

positional requirements of the C. canimorsus LES. 

 
 

 
 
Figure E1. Characterization of the MucG LES in SiaC 

(A) SiaC wt and MucG LES sequence mutant constructs. Amino acids derived from MucG are 

indicated in bold green, point mutations are indicated in bold grey. (B) Detection of SiaC by 

western blot analysis of total cell extracts of strains expressing the SiaC constructs described in 

(A). Expression of MucG was monitored as loading control. (C) Quantification of SiaC surface 

exposure by flow cytometry of live cells labeled with anti-SiaC serum. Shown is the fluorescence 

intensity of stained cells only; NR: not relevant. The averages from at least three independent 

experiments are shown. Error bars represent 1 standard deviation from the mean; ***, p ≤ 0.001 
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as compared to reference construct 4; n.s: not significant. The percentage of stained cells is 

indicated below; SD: standard deviation. Strains below detection limit (≤2.5 %) are highlighted in 

grey, strains with a statistically significant lower stained population are in red (p ≤ 0.001 as 

compared to reference construct 4). 

 
 

1.2.2. Arginine can functionally replace lysine in the MucG LES 
 

In our initial in silico analysis, the lysine located at position +3 was found 

to be the most conserved residue in C. canimorsus surface exposed lipoproteins 

(Fig. 1B and C). Surprisingly, point mutation of this residue did not affect surface 

exposure of SiaC unless the +2 residue was also mutated (Fig. 2D and E). In order 

to clarify whether the high conservation of lysine was linked to the nature of the 

amino acid itself or solely to its charge, we replaced singularly or simultaneously 

the lysine residues in the MucG LES by arginine residues (Fig. E2A). The 

expression of the resulting constructs, MucG+2RREVEEE+8, MucG+2RAEVEEE+8 and 

MucG+2AREVEEE+8, was then confirmed by western blot (Fig. E2B). Interestingly, 

substitution of both lysines by arginines led to a clear surface localization of 

MucG+2RREVEEE+8, although slightly lower than in the wt construct (Fig. E2C). This 

could be explained by the fact that arginine at postion +3 is only rarely found in 

C. canimorsus surface lipoproteins (Fig 1A and B). This also indicated that it is 

indeed the charge of the amino acid rather than the amino acid itself that is 

important for surface targeting. MucG+2RAEVEEE+8 and MucG+2AREVEEE+8 were also 

both surface exposed, 22-RAEVEEE-28 being even more efficient in MucG export 

than the wt LES sequence (Fig. E2C). On the other hand, MucG+2AREVEEE+8 was less 

efficiently transported (Fig. E2C). 

Taken together, these data show that the charge rather the nature of the 

amino acid in position +2 or +3 of the LES is involved in MucG surface exposure. 

  



Lipoprotein export signal 
 

 115 

 
 
Figure E2. Arginine can functionnaly replace lysine in the MucG LES 

(A) MucG wt and mutant constructs. Arginine substitutions are indicated in bold green, alanine 

substitutions are indicated in bold grey. (B) Detection of MucG by western blot analysis of total 

cell extracts of strains expressing the MucG constructs described in (A). Expression of SiaC was 

monitored as loading control. (C) Quantification of MucG surface exposure by flow cytometry of 

live cells labeled with anti-MucG serum. Shown is the fluorescence intensity of stained cells only; 

NR: not relevant. The averages from at least three independent experiments are shown. Error 

bars represent 1 standard deviation from the mean; **, p ≤ 0.01, ***, p ≤ 0.001 as compared to 

reference construct 1. The percentage of stained cells is indicated below; SD: standard deviation. 

Strains below detection limit (≤ 2.5 %) are highlighted in grey, strains with a statistically 

significant lower stained population are in red (p ≤ 0.001 as compared to reference construct 3). 

 
 

1.2.3. Discussion 
 

Here we pursued the analysis of the MucG LES, a model surface exposed 

lipoprotein. By introducing a truncated, non-functional derivative of the MucG 

LES (22-KKEVE-26) into SiaC, we could show by site directed mutagenesis that 

both the amino acid composition as well as the position of each amino acid 

relative to the +1 cysteine greatly impact the functionality of the MucG LES. This 

confirms our previous data obtained with the C. canimorsus consensus LES 

inserted into SiaC (Fig. 2 and 3). Additionally, we showed that arginine is able to 

functionally replace lysine as positively charged amino acid in this signal 

sequence. Based on the high conservation of lysine at position +3 in the C. 

canimorsus LES consensus and the almost complete absence of arginine at the 

same position, it is clear that in C. canimorsus lysine is preferred over arginine 
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although the reasons behind this compositional biais remain unknown. In the 

same line, it would also be interesting to test if a histidine residue could replace 

the lysine. 

In this regard, identification of the putative lipoprotein export machinery 

(see chapter 2) would likely help to clarify this matter. Indeed, understanding 

how the LES interacts with this putative transporter could shed light on why a 

positive charge next to the lipidated cysteine, although not absolutely required 

as seen in some constructs of SiaC, favors lipoprotein surface translocation. The 

same is true for the requirement of an overall negative charge of the LES. One 

could for exemple envision a specific binding pocket in the transporter 

composed of positively and negatively charged amino acids that would be 

complementary to the residues in the LES. Similarly, identification of the 

transporter could also clarify how lipoproteins such as SiaC remain intracellular 

while others are transported to the surface. A mechanism similar to the Lol-

avoidance signal might take place in which surface lipoproteins interact with 

their dedicated transporter while periplasmic lipoproteins avoid interaction 

with it. 

 

In conclusion, the identification of a conserved signal sequence in surface 

exposed lipoproteins (lipoprotein export signal - LES) in Bacteroidetes strongly 

indicates the existence and the conservation of a dedicated transport 

mechanism. Accordingly, the finding of the Bacteroidetes LES will certainly 

benefit the identification of this novel lipoprotein transport machinery. 

Considering that this transport system could a least partially protrude into the 

outside environment, it could represent an interesting target for the 

developement of new antibiotics. Indeed, generation of antimicrobials 

specifically targeting Bacteroidetes could be of major interest for the treatment 

of anaerobic infections (Bacteroides fragilis) and peridontal diseases 

(Porphyromonas gingivalis) in humans as well as economical relevant poultry 

and fish pathogens such as Riemerella anatipestifer and Flavobacterium 

columnare. 
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1.2.4. Supplemental materials 
 

Table E1. Plasmids used in extended results 

 

Plasmid Description Reference 

Expression plasmids 

pFL97 
Full length mucG with a C-terminal HA tag amplified with primers 
7182/7897 and 7896/7625 and cloned into pPM5 using 
NcoI/XhoI restriction sites. Replacement of aa 22-28 by RREVEEE 

This study 

pFL98 
Full length mucG with a C-terminal HA tag amplified with primers 
7182/7893 and 7892/7625 and cloned into pPM5 using 
NcoI/XhoI restriction sites. Replacement of aa 22-28 by RAEVEEE 

This study 

pFL99 
Full length mucG with a C-terminal HA tag amplified with primers 
7182/7895 and 7894/7625 and cloned into pPM5 using 
NcoI/XhoI restriction sites. Replacement of aa 22-28 by AREVEEE 

This study 

pFL140 
Full length siaC amplified with primers 4159/8029 and 
8028/7696 and cloned into pMM47.A using NcoI/XhoI restriction 
sites. Replacement of aa 18-22 by AKEVE 

This study 

pFL141 
Full length siaC amplified with primers 4159/8031 and 
8030/7696 and cloned into pMM47.A using NcoI/XhoI restriction 
sites. Replacement of aa 18-22 by KAEVE 

This study 

pFL142 
Full length siaC amplified with primers 4159/8082 and 
8081/7696 and cloned into pMM47.A using NcoI/XhoI restriction 
sites. Replacement of aa 18-22 by KEVEE 

This study 

 

Table E2. Oligonucleotides used in extended results 

 

Ref. Sequence 5'-3' Restrictiona 

4159 cataccatgggaaatcgaattttttatctt NcoI 

7182 ggccatggggaaaaaaatagtatccattagc NcoI 

7625 ggctcgagctaagcgtaatctggaacatcgtatgggtaaaacgtaacttgagttctc XhoI 

7696 ggctcgagttagttcttgataaattcctcaactgg XhoI 

7892 tggttagcctgtagagcggaagttgaagaagaaccttttc  

7893 gaaaaggttcttcttcaacttccgctctacaggctaacca  

7894 ttagcctgtgcaagagaagttgaagaagaaccttttc  

7895 gaaaaggttcttcttcaacttctcttgcacaggctaa  

7896 tggttagcctgtagaagagaagttgaagaagaaccttttc  

7897 gaaaaggttcttcttcaacttctcttctacaggctaacca  

8028 gcaaaggaagttgaagtaatcggcggaggcgaatttacacaacccg  

8029 ttcaacttcctttgcacaagccgacaaaagaacaaaagcg  

8030 aaagcggaagttgaagtaatcggcggaggcgaatttacacaacccg  

8031 ttcaacttccgctttacaagccgacaaaagaacaaaagcg  

8081 aaggaagttgaagaagtaatcggcggaggcgaatttacacaacccg  

8082 ttcttcaacttccttacaagccgacaaaagaacaaaagcg  

 

a: Restriction sites are underlined
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2. Identification of the export machinery of surface 
exposed lipoproteins in Bacteroidetes 

  



Lipoprotein export machinery 

 119 

2.1. Abstract  
 

Bacteroidetes display many lipoproteins at their cell surface and to date, little 

is known on how these proteins reach the bacterial surface. In addition, since 

Bacteroidetes do not encode a LolB homolog, also how lipoproteins are inserted 

into the OM remains unknown. 

 

Here, we address the question of how surface exposed lipoproteins reach the 

bacterial surface in the human pathogen C. canimorsus. Using LolA as bait protein 

to perform pull-down experiments, we identify three candidate proteins 

putatively involved in lipoprotein export (Ccan_02550, Ccan_09090 and 

Ccan_13690). Characterization of these candidates showed that all are involved 

to some extend in growth of C. canimorsus, Ccan_02550 being critical for 

proliferation in liquid medium and Ccan_09090 being an essential gene. 

Furthermore, we could show that absence of Ccan_02550 and Ccan_09090 

affects OM protein abundance as well as LPS synthesis and/or transport, 

suggesting a potential chaperone activity of these proteins. However, their 

precise function and involvement in lipoprotein export, if any, remains to be 

clarified. 

 

In parallel, we also made an educated guess approach based on the predicted 

characteristics of a putative surface lipoprotein transporter. We selected five 

highly conserved Bacteroidetes proteins, which, except one, all turned out to be 

essential in C. canimorsus. We could thus show for the first time that a BamA 

homolog possessing a lipid anchor (Ccan_17810) is essential in C. canimorsus and 

that its lipidation is crucial for its function. However, due to the lack of efficient 

genetic tools in C. canimorsus and the toxicity of Ccan_17810 in E. coli, we could 

not further investigate this candidate. 

 

In conclusion, we could identify several essential genes of C. canimorsus 

linked to OM biogenesis and that could have a potential role in lipoprotein 

export. However, further analysis is required to precisely determine their 

function. 
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2.2. Identification and characterization of LolA interaction 
partners 

 

2.2.1. Introduction  
 

C. canimorsus encodes homologs to all previously described components 

of the Lol machinery, except for LolB. Therefore, while lipoprotein synthesis, 

maturation and IM release are assumed to be mostly similar to what has been 

observed in E. coli1, nothing is known about how C. canimorsus lipoproteins are 

inserted into the OM after their transport across the periplasm nor how surface 

exposed lipoproteins are translocated across the OM. A likely hypothesis would 

be that a LolB-like protein inserts lipoproteins into the OM and that the same or 

another protein (or protein complex) then flips some of them to the cell surface. 

Such a predicted transporter would have several characteristics that would 

allow it to interact with lipoproteins. First, it is unknown whether or not surface 

lipoproteins are translocated in a folded or unfolded state; therefore, the 

transporter might have to interact with its substrates in a similar way than does 

BamA, thus involving protein-protein interaction domains such as POTRAs2, 

TPRs (tetratricopeptide repeat)3 or binding sites as found in chaperones4-7. 

Second, the lipid anchor of lipoproteins must be accommodated in some way 

during insertion into the OM and surface translocation; this could be achieved in 

a LolB-like fashion1 or involve several proteins similar to LptD and -E8, 

suggesting the presence of a hydrophobic cavity in the transporter. Third, in 

order to facilitate surface transport of lipoproteins across the OM, this 

transporter is likely a membrane protein itself, either completely or partially 

embedded into the OM, as BamA9 and LptD10. Finally, since surface-exposed 

lipoproteins are a hallmark of Bacteroidetes, this implies that the lipoprotein 

transporter is conserved in the phylum. 

Additionally, we assume that independently of their final localization, all 

OM and surface lipoproteins should cross the periplasm via LolA. In E. coli, LolA 

and LolB partially overlap during lipoprotein transfer11; this could also be the 

case for the putative OM lipoprotein transporter in Bacteroidetes. We thus 
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performed pull-down experiments using LolA as bait with the aim to find OM 

component(s) of the unknown lipoprotein export pathway.  

 

2.2.2. Identification of LolA interaction partners 
 

In order to perform a pull-down experiment using LolA as bait, we first 

needed to generate a C. canimorsus strain expressing a double tagged LolA-Strep-

His protein and delete the chromosomal wt lolA. Since LolA is essential for cell 

viability, this was achieved by deleting the LolA encoding gene (Ccan_16490) in a 

strain expressing a plasmid-born copy of wt LolA, followed by plasmid exchange 

with the vector encoding the double-tagged LolA protein (for details, see 

methods section). We next proceeded to purify LolA-Strep-His and its interaction 

partners from C. canimorsus by Histidine-Streptavidine tandem affinity 

purification. Taking into account that the interaction between LolA and its OM 

partner(s) might be transient, we performed in parallel purifications in the 

presence or absence of two different crosslinking reagents, formaldehyde (Fig. 

1A and D) and dithiobis succinimidyl propionate (DSP) (Fig. 1B and E). In 

addition, we also tested different lysis protocols, i.e. Triton X-100 (Fig. 1A and D) 

and French press (Fig. 1C and F), to evaluate the effect of detergents on the co-

purified proteins. The quality of the elution fractions was assessed by Western 

blot and silver staining. The co-purified proteins were then identified by mass 

spectrometry and subsequently analyzed in silico (Table 1). 

 

2.2.3. In silico characterization of LolA interaction partners 
 

Independent of crosslinking and lysis method, the majority of identified 

peptides belonged to cytoplasmic proteins, ranging from 73.30 to 93.73 % in 

abundance (excluding LolA) (Table 1). Most of these proteins were predicted to 

be involved in protein synthesis or maturation, a fact that can be explained by 

the high expression level of the plasmid-borne LolA-Strep-His protein. Since 

cytoplasmic proteins are unlikely to play a role in lipoprotein surface export, this 

group of proteins was not further investigated. 
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Fig. 1. LolA-Strep-His pull-down experiments 

Analysis of LolA-Strep-His pull-down elution fractions by Western blot and silver staining. (A - C) Silver staining of elution fractions from formaldehyde (FA) (A and 

B) or DSP (C) crosslinked samples lyzed by addition of Triton X-100 (A and C) or by French press (B). (D - F) Detection of LolA by Western blot analysis in elution 

fractions from formaldehyde (D and E) or DSP (F) crosslinked samples lyzed by addition of Triton X-100 (D and F) or by French press (E). Proteins were detected 

using an anti-Strep antibody. Numbers throughout the figure refer to: 1. His column elution fraction; 2. Strep column flow through fraction; 3. Strep column wash 

fraction; 4. Strep column elution fraction 1; 5. Strep column elution fraction 2; 6. Strep column elution fraction 3. 
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The remaining peptides corresponded to proteins with either a signal 

peptide I (periplasmic and OM proteins), a signal peptide II (lipoproteins) or 

proteins with predicted TMHs (transmembrane helix) (IM proteins). Periplasmic 

and OM proteins were the most abundant species (3.18 to 20.56 %) followed by 

lipoproteins (1.09 to 4.20 %) and TMH-containing proteins (0.22 to 2.49 %) 

(Table 1). Overall, the type of crosslink reagent and the lysis method used did not 

significantly affect the amount or the type of proteins co-purified with LolA. 

Interestingly, and in good agreement with our starting hypothesis, both 

intracellular and surface exposed lipoproteins were crosslinked to LolA, 

suggesting that LolA indeed transports both subtypes of lipoproteins across the 

periplasm (Table 1). Surprisingly however, the amount of lipoproteins 

crosslinked to LolA was relatively low, a fact that could reflect the efficiency of 

transport of LolA and its rapid cargo delivery to its unknown OM partner(s). 

Alternatively, this could also reflect the growth condition in which the 

crosslinking was performed (i.e. bacteria that are not actively growing or do not 

require lipoproteins for their growth in this specific condition). 

In order to find potential OM lipoproteins transporters, a first selection 

process was carried out based on the relative protein abundance and their 

annotation. This analysis showed that 7 proteins were particularly enriched in 

samples treated with a crosslinking reagent, representing between 2.49 and 

31.44% of all non-cytoplasmic proteins (Table 2). These proteins were then 

further analyzed for domain conservation, structural prediction as well as 

taxonomic conservation. This resulted in a final list of 4 candidates, comprising 

Ccan_02550, Ccan_02920, Ccan_09090 and Ccan_13690 (Table 2). 

Ccan_02920, annotated as an OmpA-like protein, has been previously 

analyzed in our lab and deletion of the gene encoding this protein did not result 

in any growth of morphological defects (F. Renzi, personal communication). As 

surface exposed lipoproteins are essential for the growth of C. canimorsus in the 

tested conditions, one would expect a strong phenotype upon removal of a 

protein involved in their localization. Hence, Ccan_02920 was not further 

investigated. 

Ccan_02550 and Ccan_13690 are both annotated as TPR-containing 

proteins and are well conserved throughout the Bacteroidetes phylum.  
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Table 1. General statistics of LolA crosslink experiments   

 

 

 

 

 

 

 
 

 

a: Total number of identified proteins 
b: Relative number and relative abundance (combined peak area of corresponding peptides) of identified proteins expressed in percentage 
c: Localization of lipoproteins based on C. canimorsus surface composition12. SpII In: proteins facing the periplasm; SpII Out: proteins facing the outside 

 

 

Table 2. Annotation of potential candidates 

Candidate Length (aa) Signal peptide Relative abundancea Conservationb Annotationc 

Ccan_02550 461 SpI 4.91 / 7.10 / 8.48 19/29 
TPR containing protein, structural similarity to 

Tom70/Tom71 

Ccan_02920 453 SpI 3.15 / 2.49 / ND 13/29 OmpA-like protein 

Ccan_09090 177 SpI 25.24 / 25.97 / 31.44 29/29 Chaperone protein Skp, OmpH-like family 

Ccan_13690 418 SpI 8.99 / 9.19 / 8.05 26/29 
TPR-containing protein, structural similarity to 

Tom70/Tom71, DnaJ-like protein 

Ccan_02630 219 SpII 0.81 / 1.30 / 1.22 18/29 YceI-like protein family 

Ccan_15210 238 SpI ND / 0.91 / ND 25/29 MotA/TolQ/ExbB proton channel family 

Ccan_15800 537 SpI 6.75 / 7.11 / 7.48 9/29 DUF4139, DUF4140 

 

Grey text corresponds to additional non-investigated potential candidates 
a: Relative abundance (combined peak area of corresponding peptides) in crosslink samples 1A / 1B / 2 among non-cytoplasmic proteins. ND: not detected  
b: Conservation of candidates among 29 Bacteroidetes reference genomes 

c: Predicted annotation derived from Pfam, CDD, HHPred and Phyre2 analyses

    Compositionb 

Sample Crosslinker Lysis Totala Cytoplasmic TMH SpI SpII Inc SpII Outc 

Control 1 - Triton X-100 64 73.44 (89.98) 3.13 (2.49) 20.31 (12.32) 1.56 (1.03) 1.56 (0.17) 

Crosslink 1A Formaldehyde Triton X-100 160 61.25 (73.37) 3.75 (1.88) 23.13 (20.56) 5.63 (2.49) 6.25 (1.71) 

Crosslink 1B Formaldehyde French press 134 75.37 (83.95) 0.75 (0.22) 16.42 (13.22) 3.73 (1.50) 3.73 (1.11) 

Control 2 - Triton X-100 118 86.44 (93.73) 4.24 (1.53) 6.78 (3.18) 1.69 (0.30) 0.85 (1.26) 

Crosslink 2 DSP Triton X-100 118 72.88 (89.32) 5.08 (1.04) 17.80 (8.54) 1.69 (0.19) 2.54 (0.90) 
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TPR domains are known to mediate protein-protein interaction as well as 

multiprotein complex formation3. Furthermore, structural prediction indicates 

that both proteins could have a similar fold to Tom70/Tom7113-15, two proteins 

involved in protein import across the outer membrane of mitochondria. 

Additionally, Ccan_13690 was identified in the OM fraction of C. canimorsus in a 

previous study12, suggesting that it could be an integral membrane protein. 

These proteins represented interesting candidates and were further investigated 

(see below). 

Ccan_09090, the most abundant candidate detected in all samples, is a 

homolog to the periplasmic E. coli Skp chaperone and is part of the OmpH family 

of proteins4,12. Structurally predicted to be very close to its E. coli homolog, 

Ccan_09090 (called SkpCc hereafter) has however been reported to be inserted 

into the OM of C. canimorsus12, a fact that could match its involvement in 

lipoprotein export. Furthermore, SkpCc is part of a conserved operon encoding a 

second OmpH-like protein (Ccan_09080) as well the C. canimorsus BamA 

homolog Ccan_09070, hinting a potential role in OM biogenesis16. The SkpCc 

protein thus represents an interesting candidate and was further characterized 

(see below). 

 

2.2.4. Generation of putative lipoprotein transporter deletion 
strains  

 

In order to characterize the three selected LolA interaction partners 

Ccan_02550, Ccan_13690 and Ccan_09090 (SkpCc), we generated the 

corresponding deletion strains. While this was readily achieved for Ccan_02550 

and Ccan_13690, giving the ΔCcan_02550 and ΔCcan_13690 strains respectively, 

no deletion mutant could be obtained for skpCc suggesting that its function is 

essential for cell viability. We therefore introduced a plasmid encoding skpCc 

under the control of a C. canimorsus IPTG-inducible promoter (see chapter 3) 

into the wild type strain and then deleted the chromosomal copy of skpCc. This 

resulted in the generation of an Skp conditional mutant (cΔskpCc), dependent on 

the presence of IPTG for growth, and confirmed that SkpCc is essential in C. 

canimorsus. This result was somehow unexpected since in E. coli, absence of Skp 
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causes only moderate effects on growth and OMP levels, therefore suggesting 

that the chaperone networks in the two organisms are different. 

 

2.2.5. Growth of putative lipoprotein transporter mutants 
 

We next investigated the effect of these deletions on bacterial growth in 

heat inactivated human serum (HIHS) and on human embryonic kidney (HEK) 

cells, two conditions where PUL-encoded complexes are required for optimal 

growth17-19; mislocalization of PUL-encoded surface exposed lipoproteins would 

thus lead to a growth defect. As shown in Figure 2A and B, deletion of 

Ccan_13690 had no effect when bacteria were grown on HEK cells but led to a 

10-fold decrease of biomass in HIHS. When the growth of ΔCcan_02550 was 

tested, only few slow growing colonies were recovered from the plated inoculum 

and no colonies were recovered after incubation of the mutant in both the HIHS 

and HEK conditions (Fig. 2A and B). This suggested that although Ccan_02550 is 

not crucial for the growth on plates, its absence might compromise membrane 

integrity or permeability, resulting in a lethal phenotype in liquid medium. 

Alternatively, one could envision a decreased resistance to osmotic changes in 

the ΔCcan_02550 strain, which would inhibit growth in rich medium such as 

HIHS. Regarding Ccan_09090 (SkpCc), growth of cΔskpCc in non-permissive 

condition (without IPTG) had a dramatic effect in both HIHS and in the presence 

of HEK cells thus confirming its importance for cell viability. Addition of IPTG 

fully restored the growth on HEK cells and partially in HIHS (Fig. 2A and B), 

showing that the observed phenotype is indeed due to the depletion of SkpCc. We 

also monitored growth of cΔskpCc in permissive and non-permissive condition in 

10% HIHS over time, and found that depletion of SkpCc results in early growth 

arrest after approximately 12h while wt bacteria grew till 24h (Fig. 2C). Yet, 

microscopic analysis revealed only minor morphological differences between 

cΔskpCc and wt bacteria after 24h (Fig. 2D), suggesting that depletion of SkpCc 

blocks growth altogether rather than leading to growth or division defects.  

We then tested whether addition of GlcNAc, a known substrate of PUL-

encoded complexes that has been shown to be critical for C. canimorsus 

growth17,18, would rescue the growth impairment of the different mutants (Fig. 
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2A and B). However, addition of this compound had no effect, indicating that the 

observed phenotypes are not solely due to GlcNAc starvation. 

Taken together, these results indicate that all three LolA interaction 

partners are involved in C. canimorsus growth in liquid medium. Strikingly, 

deletion of Ccan_02550 completely abolished growth in liquid medium while 

depletion of skpCc, found to be an essential gene, led to early growth arrest in 

non-permissive conditions. 

 
 

 
Fig. 2. Growth phenotypes of putative lipoprotein transporter mutants 

(A) Counts of wt, ΔCcan_13690, ΔCcan_02550 and cΔskpCc bacteria after 23 hours of growth on 

HEK293 cells (MOI, 0.05) with or without GlcNAc (0.01%) or IPTG (0.5 mM). The averages from 

three independent experiments are shown. Error bars represent 1 standard deviation from the 

mean. < DL: below detection limit. (B) Counts of wt, ΔCcan_13690, ΔCcan_02550 and cΔskpCc 

bacteria after 23 hours of growth in HIHS with or without GlcNAc (0.01%) or IPTG (0.5 mM). The 

averages from three independent experiments are shown. Error bars represent 1 standard 

deviation from the mean. < DL: below detection limit. (C) Growth curve of wt and cΔskpCc bacteria 

grown in DMEM containing 10% HIHS with or without IPTG (0.5 mM). The averages from three 

independent experiments are shown. Error bars represent 1 standard deviation from the mean. 

(D) Bright-field microscopy pictures of wt and cΔskpCc bacteria grown as in (C) for 12, 18 and 24 

hours. Scale bar: 5 μm.  
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2.2.6. OMP composition and LPS profile of putative lipoprotein 
transporter mutants 

 

Since lipoprotein maturation and/or localization defects can have an 

impact on OMP assembly20 (Bam complex) and LPS transport21 (Lpt complex), 

we analyzed the OMP composition and the LPS profile of all deletion strains. 

Following isolation of the OM fraction of each strain (Fig. 3A), we compared the 

OM protein composition and the relative protein abundance of the deletion 

strains to the wt by Western blot and silver staining. While no major difference 

could be observed in the OM composition of the ΔCcan_13690 strain compared to 

the wt, the deletion of Ccan_02550 and depletion of SkpCc resulted in an overall 

decrease of OMP levels (Fig. 3B and C). However, very few proteins seemed to be 

directly affected by the deletion of these proteins as no band clearly disappeared 

or was shifted in size due to proteolytic cleavage. We thus hypothesized that 

both Ccan_02550 and SkpCc might work as general chaperones involved in 

lipoprotein or OMP biogenesis, similarly to Skp and SurA in E. coli, and that 

deletion of these factors would have a global effect on the bulk mass of OMPs 

rather than only on surface lipoproteins 22. 

We next analyzed the LPS profile of the mutant strains. In C. canimorsus 5, 

two independent LPS have been identified: a major LPS (migrating at 

approximately 20 kDa, Fig. 3D band C) and a second, smaller structure 

(migrating at approximately 15 kDa, Fig. 3D band D)23. Similarly to the OMP 

composition, deletion of Ccan_13690 had no impact on either LPS form as 

compared to the wt (Fig. 3D). The same was observed for the ΔCcan_02550 and 

cΔskpCc mutants. Interestingly however, these mutants showed the presence of 

an additional band in respect to the wt (Fig. 3D band X) that could represent a 

different LPS form. Noteworthy, the Ccan_02550 gene is located immediately 

upstream of the C. canimorsus LptC homolog Ccan_02560, which could indicate 

its implication in LPS synthesis or transport. Alternatively, the deletion of 

Ccan_02550 could also have a polar effect on Ccan_02560, resulting in 

accumulation of LPS at the IM and leading to partial LPS degradation. While this 

later hypothesis remains to be clarified, the inability of the ΔCcan_02550 strain to 

grow in liquid medium might therefore be explained by LPS assembly or 

transport defects resulting in compromised OM permeability. 
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Fig. 3. Outer membrane composition and LPS pattern of putative lipoprotein transporter 

mutants 

(A) Western blot analysis of OM fractions of wt, ΔCcan_13690, ΔCcan_02550 and cΔskpCc bacteria. 

Glutamine synthase (GS) serves as cytoplasmic control, SiaC serves as OM control. A total cell 

extract of wt bacteria was loaded in lane 1 as reference. (B) Silver staining of OM fractions 

analyzed in (A). (C) Western blot analysis of total cell extracts (TC) and OM fractions of wt, 

ΔCcan_13690, ΔCcan_02550 and cΔskpCc bacteria. Anti-C. canimorsus 5 antiserum was used for 

detection. (D) Western blot analysis of LPS preparations of wt, ΔCcan_13690, ΔCcan_02550 and 

cΔskpCc bacteria. Bands corresponding to the previously described LPS structures are indicated 

(band C and D). The additional band (band X), presumably LPS, detected in ΔCcan_02550 and 

cΔskpCc strains is also shown. Anti-C. canimorsus 5 antiserum was used for detection. (E) 

Quantification of lipoprotein abundance by Western blot analysis of total cell extracts of wt and 

cΔskpCc bacteria grown for 23h in HIHS. Glutamine synthase (GS) serves as loading control, SiaC 

is used to estimate OM lipoprotein abundance, CamB is used to estimate surface lipoprotein 

abundance.  
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Since deletion of Ccan_13690 had no visible effect on OMP composition or 

LPS pattern and Ccan_02550 seemed to be related to LPS rather than to 

lipoprotein transport, we decided to focus on skpCc and monitored the abundance 

of several OM lipoproteins after growth in non-permissive condition of this 

strain. Western blot analysis showed that, as observed for the OMP profile, the 

levels of the periplasmic OM lipoprotein SiaC and the surface exposed 

lipoprotein CamB (belonging to PUL11) were decreased by 2-fold in the cΔskpCc 

strain but were nevertheless present even after 23h of depletion (Fig. 3E). This 

suggested that SkpCc might be involved in a more general way in OM biogenesis 

rather than be specifically dedicated to lipoprotein localization. 

Taken together, these results, although indicating that Ccan_02550 and 

skpCc could be involved in OM biogenesis, did not allow a precise definition of 

their exact function. It is therefore not clear if the observed phenotypes result 

directly from impaired lipoprotein localization or if it is the indirect result of 

altered OMP and/or LPS biogenesis. 

 

2.2.7. Localization of SkpCc and identification of its interaction 
partners 

 

In order to clarify this, we decided to perform pull-down experiments 

using SkpCc as bait as previously done for LolA. We generated a strain expressing 

a plasmid born copy of SkpCc-Strep-His, followed by the deletion of the 

chromosomal wt copy (Fig. 4A). We first addressed the question of SkpCc 

localization by performing cell fractionation, using CamB and SiaC as outer 

membrane markers and SiaCC17G as soluble periplasmic marker. This analysis 

showed that, similarly to E. coli, SkpCc was majorly located in the soluble fraction 

of the cell lysate, indicating that the protein is periplasmic rather than 

membrane anchored (Fig. 4B). This is in contradiction with previously obtained 

data that showed that SkpCc-derived peptides were released from intact cells 

when treated with trypsin12. However, this could be explained by leakage of 

periplasmic content into the medium during cell surface shaving. While the 

evidence that SkpCc is soluble indicated that it is likely not the OM lipoprotein  
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Fig. 4. SkpCc-Strep-His localization and pull-down experiments 

(A) Detection of SkpCc-Strep-His by Western blot analysis of total cell extracts. The protein was 

detected using an anti-Strep antibody. MucG-Strep serves as positive control. (B) Western blot 

analysis of supernatant (SN) and total membrane (TM) fractions of wt, SkpCc-Strep-His and 

SiaCC17G bacteria. SiaCC17G is a soluble periplasmic variant of SiaC, an OM anchored lipoprotein. An 

anti-Strep antibody was used to detect of SkpCc-Strep-His. SiaC serves as OM lipoprotein control, 

CamB serves as surface lipoprotein control. (C) Silver staining of elution fractions from 

formaldehyde crosslinked samples (FA treatment) lyzed by addition of Triton X-100. (D) 

Detection of SkpCc-Strep-His by Western blot analysis of samples shown in (D). Proteins were 

detected using an anti-Strep antibody. Numbers in panel (C) and (D) refer to: 1. His column 

elution fraction; 2. Strep column flow through fraction; 3. Strep column wash fraction; 4. Strep 

column elution fraction 1; 5. Strep column elution fraction 2; 6. Strep column elution fraction 3. 

 
 

transporter itself, we did not exclude the possibility that SkpCc might still be 

involved in some way in lipoprotein surface exposure, for example by keeping 

lipoproteins in a transport compatible state or assisting the folding of the 

transporter. We therefore proceeded to purify SkpCc-Strep-His and its interaction 

partners by tandem affinity purification followed by identification by mass 

spectrometry (Fig. 4C and D). The in silico analysis was performed as described 



Lipoprotein export machinery 
 

 132 

before and led to the selection of 4 potential candidates (Table 3 and 4). Among 

them, 3 corresponded to previously identified LolA interaction partners, namely 

Ccan_02550, Ccan_02920 and Ccan_13690 (Table 4). The last candidate, 

Ccan_18290 is a predicted β-barrel protein homologous to E. coli FadL24 and 

Pseudomonas putida TodX25, a long-chain fatty acid and a toluene transporter 

respectively (Table 4). This type of transporter allows the entry of hydrophobic 

molecules and their insertion into the OM through lateral gate opening of the β-

barrel24. While these proteins are normally involved in import of substrates, the 

overall transport mechanism could well fit a putative lipoprotein transporter. 

However, deletion of this protein did not lead to any growth defect in HIHS (data 

not shown), thus excluding this protein as potential lipoprotein transporter. 

Interestingly, among the identified SkpCc putative interaction partners, we 

detected two C. canimorsus homologs of the Bam machinery, namely Ccan_09070 

(BamA) and Ccan_09420 (BamD) (Table 4). Strikingly, Ccan_09420 was the most 

abundant protein among all non-cytoplasmic proteins, representing in total 

10.63 %. This suggested either that SkpCc specifically interacts with the C. 

canimorsus Bam machinery, presumably delivering polypeptide chains to the 

complex, and that BamD is its preferred interaction partner, or that SkpCc is the 

main chaperone of BamD and assures its proper folding.  

Finally, to our surprise, LolA was not crosslinked to SkpCc. The most likely 

hypothesis is that since SkpCc seems to be a periplasmic chaperone, 

overexpression of LolA-Strep-His during the first pull-down experiment induced 

periplasmic stress and/or crowding, leading to recruitment of Skp to prevent 

LolA-Strep-His misfolding or aggregation. We thus assume that the observed 

LolA-SkpCc complex would result from a non-specific interaction. 
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Table 3. General statistics of SkpCc crosslink experiments 

 

 

 

 

 
 

a: Total number of identified proteins 
b: Relative number and relative abundance (combined peak area of corresponding peptides) of identified expressed in percentage 
c: Localization of lipoproteins based on C. canimorsus surface composition 12. SpII In: proteins facing the periplasm; SpII Out: proteins facing the outside 

 

 

Table 4. Annotation of potential candidates 

Candidate Length (aa) Signal peptide Relative abundancea Conservationb Annotationc 

Ccan_02550 461 SpI 2.25 19/29 
TPR containing protein, structural similarity to 

Tom70/Tom71 

Ccan_02920 453 SpI 5.97 13/29 OmpA-like protein 

Ccan_13690 418 SpI 3.88 26/29 
TPR-containing protein, structural similarity to 

Tom70/Tom71, DnaJ-like protein 

Ccan_18290 503 SpI 7.04 29/29 FadL-like protein, TodX-like protein 

Ccan_01510 538 SpII 2.07 23/29 Peptidase_S8 family, Serine protease, Subtilisin-like 

Ccan_09070 845 SpI 0.34 29/29 Omp85/BamA family 

Ccan_09420 286 SpII 10.63 29/29 BamD 

 

Grey text corresponds to additional non-investigated potential candidates 
a: Relative abundance (combined peak area of corresponding peptides) in crosslink sample among, non-cytoplasmic proteins  
b: Conservation of candidates among 29 Bacteroidetes reference genomes 
c: Predicted annotation derived from Pfam, CDD, HHPred and Phyre2 analyses

    Compositionb 

Sample Crosslinker Lysis Totala Cytoplasmic TMH SpI SpII Inc SpII Outc 

Control - Triton X-100 9 44.44 (19.09) 0.00 (0.00) 44.44 (53.40) 11.11 (27.49) 0.00 (0.00) 

Crosslink Formaldehyde Triton X-100 156 35.90 (29.77) 2.56 (1.10) 46.15 ( 38.95) 11.54 (23.66) 3.85 (6.49) 
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2.2.8. Discussion 
 

In conclusion, we could show by pull-down experiments that LolA 

interacts with both periplasmic OM lipoproteins as well as surface exposed 

lipoproteins, indicating that both subsets of proteins are processed the same way 

until they reach the OM.  

Our data also suggest that LolA interacts to some extend with 

Ccan_13690, Ccan_02550 and SkpCc, although the observed interaction might be 

due to LolA overexpression. Further experiments indicated that Ccan_02550 and 

SkpCc could be involved in OM biogenesis, however their precise role remains to 

be clarified. Our results suggest that Ccan_02550 might take part in LPS 

synthesis and/or transport or in the folding of another component related to 

these pathways. SkpCc was found to be an essential gene and to interact with the 

Bam machinery, especially with BamD, prompting its role in OMP assembly. 

While both proteins still require further investigation, this therefore indicates 

that their involvement in lipoprotein surface exposure is either minor or 

indirectly linked through OMP assembly and LPS transport. In this regard, it is 

interesting to note that a recent study showed that an Skp homolog in 

Porphyromonas gingivalis is involved in the maturation and processing of T9SS 

substrates26. Indeed, deletion of this protein resulted in decreased T9SS 

substrate activity as well as decreased virulence of the mutant strain. While a 

role of SkpCc in T9SS cannot be ruled out, its homolog in Porphyromonas 

gingivalis was however not found to be essential. This could indicate that Skp has 

different functions in these two organisms. 

In order to identify the putative lipoprotein transporter, several options 

can be investigated. For instance, the conditions in which the crosslink 

experiments were conducted are not optimal to detect transient interactions. 

Indeed, while C. canimorsus grows readily on plates, growth in liquid medium is 

much more fastidious. It is therefore difficult to grow large numbers of cells to 

exponential phase in this condition. As a result, the delay between the recovery 

of the bacteria from plates and the crosslinking reaction is probably too long to 

accurately fix transient interactions. Furthermore, a significant proportion of 

bacteria grown on plate could be in stationary phase, thus not actively growing, a 
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condition where lipoprotein export might be limited. An alternative would 

therefore consist in applying our pull-down approach using as model organism 

another Bacteroidetes species such as Flavobacterium johnsoniae that grows 

readily in defined media. Finally, use of alternative crosslinking reagents that do 

not cross the IM, such as DTSSP, would reduce the amount of cytoplasmic 

contaminants and hence increase the probability to specifically crosslink OM 

LolA interaction partners. 

Another option would be based on our identification of the lipoprotein 

export signal (LES). Indeed, one could generate a bait protein or peptide 

harboring the LES, overexpress it to saturate the transporter and then perform 

pull-down experiments followed by mass spectrometry. Using a peptide-based 

system would have the additional benefit of limiting non-specific interactions 

with other cellular proteins. A third option would consist in fusing the LES to an 

easily detectable reporter that would thus be surface localized. A transposon 

library could then be generated and screened for absence or decreased amount 

of the reporter at the cell surface, followed by mapping of the genetic regions 

involved. This approach could also be used on known surface exposed 

lipoproteins such as MucG, although the screening process would be more 

fastidious. Considering the fact that the lipoprotein transporter might be 

essential, one could also perform a Tn-seq analysis focusing on the genetic 

regions without transposon insertions, likely essential genes, to identify 

potential candidates. 
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2.3. An educated guess approach to the surface lipoprotein 
transporter 

 

2.3.1. Preface 
 

In order to identify the putative lipoprotein export machinery and in 

parallel to the work focusing on LolA, we also made an educated guess approach. 

Based on the previously defined characteristics of such a transporter (see 

section 2.2.1), i.e. a highly conserved Bacteroidetes OM protein with protein-

protein interaction domains and/or presence of a hydrophobic cavity, we 

selected five C. canimorsus candidate proteins. 

 

2.3.2. Selected lipoprotein export machinery candidates 
 

According to these parameters we selected the proteins encoded by 

genes: Ccan_09070, Ccan_17810, Ccan_20230, Ccan_16770 and Ccan_06900 (Table 

1). 

Ccan_09070, Ccan_17810 and Ccan_20230 belong to the omp85/TpsB 

protein superfamily27-29, which can be divided into the omp85 (e.g. BamA) and 

TpsB (e.g. FhaC, two-partner secretion system) protein families (Fig. 1)28. While 

structurally similar (presence of N-terminal POTRA domains and of a C-terminal 

β-barrel), there is a clear separation between the two protein families at the 

sequence level and in respect to the number of POTRA domains they harbor (Fig. 

1)28. The omp85 family can be further divided into nine subfamilies based on 

domain architecture. Two domain architectures referred to as TamA and “Lipo” 

(termed LipoBamA hereafter) stand out as being the only ones showing a 

taxonomic distribution indicating vertical inheritance rather than horizontal 

gene transfer (Fig. 1), suggesting a phylum specific function28. TamA 

(translocation and assembly module) has been described recently and was 

shown to be indispensable for membrane insertion of some autotransporter 

proteins30-33. Interestingly, TamA is mostly restricted to Proteobacteria28 and is 

linked to virulence in these organisms31,34-36. On the other hand, LipoBamA is of 

yet unknown function but shows a clear taxonomic restriction to the Chlorobi 
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Fig. 1. Structural diversity of the omp85/TpsB protein superfamily 

Schematic representation of the eleven subfamilies of the omp85/TpsB superfamily in Bacteria. The mitochondrial Sam50 is indicated for comparison. Crystal 

structures of BamA (PDB 4K3B), TamA (PDB 4C00) and FhaC (PDB 2QDZ) are indicated on the left, taxonomic distribution of each protein family is indicating on 

the right. Adapted from 28. 
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and Bacteroidetes phyla (Fig. 1)28. From a structural point of view, TamA and 

LipoBamA are very similar to each other and differ from the classical BamA 

protein family essentially by the number of N-terminal POTRA domains they 

carry (three rather than five) as well as the presence of a lipid anchor for 

LipoBamA (Fig. 1).  

Based on our in silico analysis, Ccan_09070 is the closest C. canimorsus 

homolog of BamA and likely performs the same function as the E. coli protein 

(Table 1 and Fig. 2).  

Ccan_17810 shares structural similarities with both E. coli BamA and 

TamA (Table 1). However, structural prediction also indicates that Ccan_17810 

harbors only three POTRA domains (Fig. 2). Additionally, Ccan_17810 is a 

predicted lipoprotein, suggesting that it is part of the LipoBamA subfamily. Given 

the taxonomic distribution of proteins with this type of domain architecture (Fig. 

1), this is of particular interest in respect to the putative lipoprotein export 

machinery. 

Ccan_20230 showed structural homology to Haemophilus ducreyi BamA 

and E. coli TamA (Table 1). DeltaBlast analysis also suggests some remote 

homology to E. coli FhaC. TamA and FhaC can be easily discriminated based on 

their number of POTRA domains (three for TamA, two for FhaC) as well as their 

β-barrel Pfam profile28. However no precise prediction could be obtained for 

either of these criteria likely due to Ccan_20230 sequence degeneration. Hence, 

it is not clear whether this protein belongs to the TamA or to the FhaC family. 

 

Ccan_16770 is a homolog of E. coli LptD (Table 1), having an OstA-like 

domain in its N-terminus and a β-barrel in its C-terminus (Fig. 2). However, 

unlike E. coli LptD, Ccan_16770 is a predicted lipoprotein. Similarly to 

Ccan_17810, this means that its N-terminus is anchored either to the IM or the 

OM, therefore limiting its flexibility. 

Finally, Ccan_06900 is a so far uncharacterized protein with only one 

annotated OstA-like domain in its N-terminus (Table 1) (Fig. 2). This is of great 

interest because in C. canimorsus we could not identify any homolog of LptA, the 

periplasmic protein bridging the IM and OM complexes allowing LPS transport to 

the cell surface in E. coli, by a classical Blast analysis. As already mentioned,
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Table 1. Homology and structural prediction of potential lipoprotein transporters 

 

 

 

DeltaBlast against E. coli K12 HHpred Phyre2 

 ORF name Homolog Coveragea E value Homolog Speciesb E value Homolog Speciesb Confidencec Conservationd 

Ccan_09070 BamA 100 0 BamA Ec 9.80E-72 BamA Ng 100 29/29 

 

TamA 99 2.00E-74 BamA Ng 1.00E-77 BamA Ec 100 

         TamA Ec 1.30E-52 TamA Ec 100 

 Ccan_17810 BamA 87 3.00E-143 BamA Ec 1.00E-55 BamA Ng 100 28/29 

 

TamA 79 4.00E-34 BamA Ng 1.90E-55 BamA Ec 100 

         TamA Ec 2.40E-49 TamA Ec 100 

 Ccan_20230 BamA 63 2.00E-29 BamA Hd 4.80E-27 BamA Ng 100 10/29 

 

FhaC 52 1.69E-03 TamA Ec 5.90E-26 BamA Ec 100 

   TamA 50 8.00E-02 BamA Ec 1.70E-25 TamA Ec 100 

 Ccan_06900 LptA 22 3.00E-33 LptD N-ter Sf 7.70E-15 LptD N-ter Sf 99.6 28/29 

 

LptD 20 1.80E-02 LptA Pa 1.30E-13 LptH  Pa 99.5 

         LptA Ec 7.10E-11 LptA Ec 99.5 

 Ccan_16770 LptD 52 4.00E-112 LptD Sf 3.40E-70 LptD Sf 100 29/29 

    

LptD Pa 4.60E-56 LptD Pa 100 

         LptD Yp 6.20E-54 LptD Yp 100 

  
a: query coverage in percentage 
b: Ec: E. coli; Ng: Neisseria gonorrhoeae; Hd: Haemophilus ducreyi; Sf: Shigella flexneri; Pa: Pseudomonas aeruginosa; Yp: Yersinia pestis 
c: model confidence in percentage  
d: Conservation of candidates among 29 Bacteroidetes reference genomes 
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LptA harbors an N-terminal OstA domain that is responsible for LPS binding. It 

could thus be that Ccan_06900 plays a role in LPS transport in C. canimorsus, 

maybe overtaking the function of LptA. Noteworthy, this protein is predicted to 

be much bigger than LptA, being 552 amino acids in length rather than 185. This 

could indicate that while Ccan_06900 might fulfill the LptA function, it could also 

have additional ones. Alternatively, this difference in size could also be the result 

of an adaptive process whereby Ccan_06900 evolved a long C-terminal domain in 

order to interact with the membrane anchored N-terminus of Ccan_16770 (the 

LptD homolog) in a different manner than what is observed between LptA and 

LptD in E. coli, while still allowing transfer of LPS. 

 

Except for Ccan_20230, all of the above-described candidates are highly 

conserved throughout the Bacteroidetes phylum, making them targets of choice 

for the putative OM lipoproteins transporter (Table 1). 

 

2.3.3. Generation of candidate mutants and their characterization 
 

We first attempted to generate the corresponding deletion strain of each 

candidate gene. With the exception of Ccan_20230, all genes turned out to be 

essential. We therefore proceeded as for Ccan_09090 (skpCc) by transforming the 

wt strain with a plasmid encoding each gene of interest downstream of an IPTG 

inducible promoter prior to deletion of the chromosomal copy. We thus 

generated the conditional mutants cΔCcan_09070, cΔCcan_17810, cΔCcan_06900 

and cΔCcan_16770. Next, we tested the growth of the Ccan_20230 deletion 

mutant and the four conditional mutants in HIHS in permissive and non-

permissive conditions. Surprisingly, none of the conditional mutants had a 

growth defect in absence of IPTG (Fig. 3). Since all genes with the exception of 

Ccan_20230 appeared to be essential, we concluded that the IPTG-regulatable 

expression system used was leaky and that basal expression was sufficient to 

sustain normal growth. This is also in agreement with the relatively low 

expression level of these genes as compared to skpCc (4 to 5 times lower) as 

determined by mRNA sequencing (K. Hack, unpublished data). 
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Fig. 2 Domain annotation of potential lipoprotein transporters 

Schematic representation of the domain architecture of potential C. canimorsus lipoprotein surface transporters. E. coli proteins BamA, LptD and LptA serve as 

references. The length of each protein is indicated in number of amino acids. Identified domains and their corresponding Pfam references are indicated in the 

legend. SPI: signal peptide I; SPII: signal peptide II. 
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Fig. 3. Growth in heat inactivated human serum of lipoprotein surface transporter 

candidate mutants 

Counts of wt, cΔCcan_09070, cΔCcan_17810, ΔCcan_20230, cΔCcan_06900 and cΔCcan_16770 

bacteria after 23 hours growth in HIHS with or without IPTG (0.5 mM). 

 
 

As to date no other inducible promoter is available for C. canimorsus and 

attempts to build a tetracycline based regulated system failed (see chapter 3), we 

then decided to try to identify the interaction partners of these candidates. We 

selected protein Ccan_17810 (belonging to the LipoBamA subfamily) as it 

seemed to be the best candidate for the surface lipoprotein transporter. Indeed, 

Ccan_06900 and Ccan_16770 are likely involved in LPS transport rather than 

lipoprotein localization, Ccan_09070 is most likely the homolog of BamA and 

Ccan_20230, while being an interesting candidate, is not essential in a growth 

condition where surface lipoproteins are required, indicating that it is not 

involved in their transport. However, it is not immediately clear why C. 

canimorsus would encode an additional essential copy of a BamA homolog. We 

therefore hypothesized that Ccan_17810 might have a novel, unrelated function 

to OMP assembly, namely lipoprotein surface transport.  

 

We started the analysis of the C. canimorsus LipoBamA Ccan_17810 by 

first investigating the role of the lipid anchor. We generated a variant of 
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Ccan_17810 in which the predicted site of lipidation was mutated 

(Ccan_17810C20G) and expressed it in the wt strain. We then tried to delete the 

chromosomal copy of Ccan_17810 in this strain but no mutant was obtained, 

indicating that the anchorage of the N-terminus of Ccan_17810 to the inner or 

outer membrane has an important biological function (Fig. 4). Presumably, if, 

unlike BamA, this protein works independently of other partners9, anchoring its 

N-terminus to the OM could allow more efficient substrate interaction and/or 

membrane targeting. 

We next generated strains expressing Ccan_17810 in fusion with a Strep 

and His tag either at its N- or C-terminus in order to perform pull-down 

experiments and identify possible interaction partners. However, when cell 

lysates of these strains were tested, no tagged Ccan_17810 proteins nor their 

degradation products could be observed (data not shown). This indicated that 

either the tagged proteins are not properly folded and thus undergo complete 

degradation or that the presence of the tags prevents the biological function of 

Ccan_17810, leading to their proteolysis. 

 
 

In conclusion, we could show genetically that Ccan_09070, Ccan_17810, 

Ccan_16770 and Ccan_06900 are essential in C. canimorsus. However, since so far 

no functional conditional mutants could be obtained, mainly because of the lack 

of efficient genetic tools in C. canimorsus, the role of these proteins could not be 

further investigated. We found that the lipid anchor of Ccan_17810 is probably 

critical for its biological function, which represents a novelty in respect to other 

BamA-like proteins. Unfortunately, no strain expressing a tagged Ccan_17810 

derivative could be generated to date, prompting us to produce an antibody 

against this protein in order to perform co-immunoprecipitation assays to 

identify Ccan_17810 interaction partners. 
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Fig. 4. Chromosomal deletion of Ccan_17810 
(A) Schematic representation of the possible recombination events leading to chromosomal deletion of Ccan_17810. The gene replacement is achieved in a two-step 

process by homologous recombination. First, the plasmid is integrated into the chromosome by recombination between the homologous regions H1 located on the 

plasmid and on the chromosome. Alternatively, the recombination takes place between the H2 regions. The second recombination then leads to removal of the 

backbone of the plasmid, the Ccan_17810 gene and its replacement by the ErmR resistance cassette. The gene of interest (Ccan_17810) is represented by a black 

arrow, erythromycin and cefoxitin resistance cassettes by blue (ErmR) and red (CfxR) arrows respectively. Homologous regions on the chromosome and the suicide 

plasmid are indicated by grey boxes. For sake of simplicity, the plasmid borne copy of Ccan_17810 is not displayed. The PCR strategy used to screen for second 

recombination events (removal of chromosomal Ccan_17810) is indicated by green arrows. Depending on which recombination event takes place, screens 1 and 2 

(H1 recombination) or screens 1 and 3 (H2 recombination) are used to determine successful deletion of Ccan_17810. (B) PCR screening of 4 individual clones 

recovered following conjugation of C. canimorsus expressing either Ccan_17810 or Ccan_17810C20G and E. coli harboring the suicide plasmid for Ccan_17810 

chromosomal deletion. Presence of the ErmR cassette is indicated by a band of 1800 bp while the wt gene corresponds to 2700 bp. Similarly, presence of the 

plasmid backbone in the chromosome is indicated by a band of 2,000 bp while no amplification is seen if the second recombination event occurred. C. canimorsus 

wt cells and genomic DNA (gDNA) serve as positive controls for screen 1, E. coli harboring the suicide plasmid serve as positive control for screens 2 and 3. 
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2.3.4. Expression analysis of Ccan_17810 in E. coli 
 

Since the study of Ccan_17810 in C. canimorsus was technically limited, 

we decided to express the protein in E. coli in order to better understand its 

function. Previous work in our group had shown that expression of C. canimorsus 

surface exposed lipoproteins in E. coli does not lead to their surface localization 

(F. Renzi, personal communication). We therefore reasoned that if Ccan_17810 is 

indeed the surface lipoprotein transporter, expressing it together with a known 

substrate, i.e. a C. canimorsus surface exposed lipoprotein, should lead to surface 

localization of this protein in E. coli. 

We first cloned Ccan_17810 downstream of an arabinose inducible 

promoter in the low copy plasmid pBAD33 and transferred it into E. coli MG1655 

cells, giving the strain E. coli pFL116. We then monitored the growth of this 

strain over time in the presence or absence of arabinose. As shown in Fig. 5A, 

induction of Ccan_17810 synthesis led to rapid growth arrest of E. coli cells until 

exhaustion of arabinose, at which point growth resumed normally. Alternatively, 

when Ccan_17810 expression was started at the time of inoculation, it led to a 

long lag phase (Fig. 5B). Microscopy analysis revealed that addition of arabinose 

induced formation of “ghost” cells in part of the population that could explain the 

apparent growth arrest (Fig. 5C).  

We reasoned that expression of Ccan_17810 in E. coli could be 

detrimental because it could cause misfolding or mislocalization of native E. coli 

proteins. We thus hypothesized that in the presence of a putative substrate the 

expression of Ccan_17810 would be tolerated by E. coli cells. We therefore 

cloned mucG (the mucinase of PUL9) downstream of an arabinose inducible 

promoter in the high copy vector pBAD24 and transferred this construct in E. coli 

pFL116 (expressing Ccan_17810). The growth of the resulting E. coli pFL116-

pFL114 strain was then assessed with and without induction. However, even in 

the presence of the putative substrate MucG, expression of Ccan_17810 led to 

rapid growth arrest and appearance of ghost cells (Fig. 5D). Monitoring MucG 

expression after induction showed that growth arrest was likely not linked to 

MucG protein synthesis blockage or induction of proteolysis (Fig. 5E and F). 
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Fig. 5. Expression of Ccan_17810 in E. coli leads to growth arrest and ghost cells formation  

(A) Growth curve of E. coli MG1655 in cM63 medium. Once exponential phase was reached 

(around OD=0.4), 0.2% arabinose (red arrow) was added (round shapes) or not (triangular 

shapes) to the culture. pFL116 refers to E. coli expressing Ccan_17810, pBAD33 refers to the 

control strain harboring the empty vector. (B) Growth curve of E. coli MG1655 in cM63 medium. 

Bacteria were inoculated (red arrow) in cM63 medium (triangular shapes) or in cM63 medium 
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containing 0.2% arabinose (round shapes). Strains are the same as in (A). (C) Bright-field 

microscopy pictures of E. coli pFL116 and E. coli pBAD33 grown in cM63 medium following 

induction with 0.2% arabinose Ghost cells are indicated by a black arrow. Scale bar: 5 μm. (D) 

Growth curve of E. coli MG1655 in cM63 medium. Once exponential phase was reached, 0.2% 

arabinose (red arrow) was added (round shapes) or not (triangular shapes) to the medium. 

pFL116 + pFL114 refers to E. coli expressing Ccan_17810 and MucG, pFL116 + pBAD24 refers to 

E. coli expressing only Ccan_17810. (E) Growth curve of E. coli MG1655 in cM63 medium. Once 

exponential phase was reached, 0.2% arabinose (red arrow) was added to the medium. pFL114 + 

pFL116 refers to E. coli expressing MucG and Ccan_17810 (white spheres), pFL114 + pBAD33 

refers to E. coli expressing only MucG (black spheres). (F) Western blot analysis of samples from 

panel (E). MucG expression is followed over time upon arabinose induction in the presence or 

absence of Ccan_17810. A representative experiment is shown for each panel. 

 
 

Taken together, our results indicate that expression of Ccan_17810 is 

toxic for E. coli and induces growth arrest. The exact reasons for this phenotype 

have not yet been addressed and require further investigations. For example, 

one could monitor the activation of different periplasmic stress pathways upon 

Ccan_17810 expression, such as σE, Cpx or Rcs. Depending on which response is 

triggered, this could help to better understand the role of Ccan_17810 in C. 

canimorsus.  

 

2.3.5. Discussion 
 

Here, we tried to identify the lipoprotein export machinery of C. 

canimorsus by investigating several candidates based on an educated guess. 

Through a genetic approach, we showed that Ccan_09070 and Ccan_16770, 

orthologs of BamA and LptD respectively, are essential in C. canimorsus, which 

was somewhat expected. The same was true for Ccan_06900, a putative distant 

homolog of LptA and presumably involved in LPS transport. Interestingly, we 

found that a second BamA homolog, Ccan_17810, is essential in C. canimorsus, 

and we thus tried to identify its function. However, despite several attempts 

(including genetics and protein engineering) and different approaches 

(expression of Ccan_17810 in E. coli), we could not elucidate the precise role of 

this protein. The next step should therefore consist in generating antibodies 

against different fragments of Ccan_17810. This would allow us to monitor its 

expression and to perform pull-down assays in the wt genetic background, 

thereby avoiding all possible effects of protein overexpression. Additionally, 
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since the C-terminus of Ccan_17810 is predicted to form a β-barrel, extracellular 

loops might be exposed at the cell surface. Incubation of C. canimorsus cells with 

anti-Ccan_17810 antibody could thus inhibit the function of the protein by 

binding to these loops, mimicking a depletion strain. One could then assess 

growth and OM composition over time, thereby helping to define the role of 

Ccan_17810. Finally, a recent study showed that RNA silencing takes place in 

Bacteroidetes and that it can be used for gene regulation35. This could be used as 

alternative method to generate a Ccan_17810 conditional mutant. 

 
 

2.3.6. Materials and Methods 
 

Bacterial strains and growth conditions 

(i) Conventional bacterial growth conditions and selective agents 

Bacterial strains used in this study are listed in Table S1. Escherichia coli strains 

were routinely grown in lysogeny broth (LB) at 37°C. For growth curves and 

induction tests, E. coli strains were grown in complete M63 medium (2 g/l 

(NH4)2SO4, 13.6 g/l KH2PO4, 0.5 mg/l FeSO4 7H2O) containing 1 mM MgSO4, 0.2% 

(w/v) glycerol and 0.1 % (w/v) casamino acids (cM63). Glucose and arabinose 

were added separately at 0.2 % (w/v) final concentration where indicated. C. 

canimorsus strains were routinely grown on heart infusion agar (Difco) 

supplemented with 5% sheep blood (Oxoid) plates (SB plates) for 2 days at 37°C 

in the presence of 5% CO2. To select for plasmids, antibiotics were added at the 

following concentrations: 100 μg/ml ampicillin (Amp), 50 μg/ml kanamycin 

(Km), 10 μg/ml chloramphenicol (Cm) for E. coli and 10 μg/ml erythromycin 

(Em), 10 μg/ml cefoxitin (Cfx), 20 μg/ml gentamicin (Gm), 10 μg/ml tetracycline 

(Tc) for C. canimorsus. 

 

(ii) E. coli MG1655 derivatives growth curve in cM63 medium 

E. coli MG1655 containing pFL114 and pFL116 were grown overnight in 5 ml 

cM63 containing 0.2 % glucose at 37°C. Cultures were then diluted to an OD600 of 

0.05 with fresh medium containing 0.2 % glucose or arabinose, dispensed into 

200 μl aliquots in 96-well plates and incubated at 37°C. Growth was assessed by 
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measuring the absorbance at 600 nm using an xMark microplate 

spectrophotometer (Bio-Rad) and Microplate Manager 6 software (version 6.0; 

Bio-Rad) over time. Alternatively, cultures were diluted with fresh medium 

containing 0.2 % glycerol and dispensed into 96-well plates. Once exponential 

phase was reached (OD600 of approximately 0.4), 0.2 % arabinose was added and 

incubation was continued. E. coli MG1655 containing empty vectors pBAD24 and 

pBAD33 served as control strains. All conditions were tested in triplicate. 

 

(iii) E. coli MG1655 derivatives induction in cM63 medium 

E. coli MG1655 containing pFL114 and pFL116 were grown overnight in 5 ml 

cM63 containing 0.2 % glucose. Cultures were then diluted to an OD600 of 0.1 

with fresh medium containing 0.2 % glucose and incubated at 37°C. Once 

exponential phase was reached (OD600 of approximately 0.4), a sample 

corresponding to 1 ml of an OD600 of 0.5 was taken (negative control). The 

remaining culture was then washed once with cM63 medium before being 

resuspended to its initial volume in cM63 medium containing 0.2 % arabinose. 

Growth was then monitored over time and samples corresponding to 1 ml of an 

OD600 of 0.5 were taken. All samples were centrifuged and resuspended in 50 μl 

SDS PAGE buffer (1% SDS, 10% glycerol, 50 mM dithiothreitol, 0.02% 

bromophenol blue, 45 mM Tris, pH 6.8) for Western blot analysis. In parallel, 500 

μl samples were taken for microscopy analysis, washed once with PBS and fixed 

with 0.8% PFA. All microscopy images were captured with an Axioscop (Zeiss) 

microscope with an Orca-Flash 4.0 camera (Hamamatsu) and Zen 2012 software 

(Zeiss). 

 

(iv) End point growth of C. canimorsus in heat-inactivated human serum 

(HIHS) 

Growth assays were performed in 96-well plates. Inocula were prepared from 

cultures grown on SB plates, set to an OD600 of 0.2, and serially diluted 1:10 four 

times. Twenty μl of bacterial suspension (around 2 x 102 bacteria) were then 

used to inoculate 180 μl of HIHS (S1-Liter, Millipore). HIHS was supplemented 

with IPTG (0.5 mM final concentration) or GlcNAc (A8625; Sigma; 0.01% final 

concentration) where indicated. Cultures were then incubated statically for 23 h 



Lipoprotein export machinery 
 

 150 

at 37°C in the presence of 5% CO2. Serial dilutions were plated on SB plates 

(containing 0.5 mM IPTG if required), and CFU were determined.  

 

(v) Growth curve of C. canimorsus in DMEM 10% HIHS 

Growth curves were performed in 24-well plates. Inocula were prepared from 

cultures grown on SB plates, set to an OD600 of 1, and serially diluted 1:10 two 

times. Two hundred μl of bacterial suspension (around 1 x 106 bacteria) were 

then used to inoculate 10 ml of Dulbecco’s modified Eagle’s medium (DMEM; 

Invitrogen) containing 10% (v/v) HIHS and dispensed into 1 ml aliquots. 

Cultures were then incubated statically at 37°C in the presence of 5% CO2. At 

different time points, one aliquot of medium was collected and serially diluted. 

Dilutions were plated on SB plates (containing 0.5 mM IPTG if required), and 

CFU were determined. 

 

(vi) Growth of C. canimorsus bacteria with HEK293 cells 

HEK293 cells were cultured in DMEM containing 10% (v/v) fetal calf serum 

(Invitrogen) and 1 mM sodium pyruvate. Cells were grown in medium without 

antibiotics in a humidified atmosphere enriched with 5% CO2 at 37°C. A total of 1 

x 104 bacteria were incubated with 2 x 105 HEK293 cells (multiplicity of infection 

(MOI) of 0.05) in a final volume of 1 ml. Cultures were supplemented with IPTG 

(0.5 mM final concentration) or GlcNAc (0.01% final concentration) where 

indicated. Cultures were incubated statically for 23 h at 37°C in the presence of 

5% CO2. Serial dilutions were plated on SB plates (containing 0.5 mM IPTG if 

required) and CFU were determined. 

 

(vii) End point growth of C. canimorsus for lipoprotein quantification  

Cultures for Western blot analysis of the wt and cΔskpCc conditional mutant were 

performed in 24-well plates. Inocula were prepared from cultures grown on SB 

plates and set to an OD600 of 0.02. Two μl of wt suspension were then used to 

inoculate 2 ml of DMEM containing 10% (v/v) HIHS and dispensed into 1 ml 

aliquots. One hundred μl of cΔskpCc suspension were used to inoculate 5 ml of 

DMEM containing 10% HIHS and dispensed into 1 ml aliquots. Cultures were 

incubated statically for 23h at 37°C in the presence of 5% CO2. Serial dilutions 
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were plated on SB plates (containing 0.5 mM IPTG if required) and CFU were 

determined. In parallel, bacteria were collected, washed once with PBS and 

pellets stored at -20°C. Following CFU count, pellets were resuspended in SDS-

PAGE buffer. Equivalent amounts corresponding to approximately 5 x 107 

bacteria were loaded on 12% SDS PAGE gels and analyzed by Western blot. 

 

Genetic manipulation of C. canimorsus and E. coli MG1655 

Plasmids and primers used in this study are listed in Table S2 and S3. 

 

(i) Gene deletion in C. canimorsus 

Mutagenesis of C. canimorsus was performed as described previously with slight 

modifications19. Briefly, replacement cassettes with flanking regions spanning 

approximately 500 bp homologous to regions directly framing the genes to be 

deleted were constructed with a three-fragment overlapping PCR strategy. First, 

two Q5 High-Fidelity DNA Polymerase (M0491S; New England Biolabs) PCRs 

were performed on 100 ng of C. canimorsus genomic DNA with primers for the 

upstream (oligonucleotides 1.1 and 1.2) and downstream (oligonucleotides 2.1 

and 2.2) regions flanking the sequence targeted for deletion. Primers 1.2 and 2.1 

included a 20-bp extension at their 5’ extremities corresponding to both ends of 

the ermF gene (including the promoter). The ermF resistance gene and its 

promoter were amplified from pMM106 with primers 3.1 and 3.2, which 

included approximately 20-bp extensions for further annealing to amplify 

homologous regions. All three products were cleaned and then mixed in equal 

amounts for PCR using Q5 High-Fidelity DNA Polymerase. The initial 

denaturation was at 98°C for 2 min, followed by 10 cycles without primers to 

allow annealing and extension of the overlapping fragments (98°C for 30 s, 52°C 

for 30 s, and 72°C for 60 s). After the addition of external primers (1.1 and 2.2), 

the program was continued for 25 cycles (98°C for 30 s, 52°C for 30 s, and 72°C 

for 60 s) and finally for 2 min at 72°C. Final PCR products consisted of 

locus::ermF insertion cassettes and were digested with PstI and SpeI restriction 

enzymes for cloning into the corresponding sites of the C. canimorsus suicide 

vector pMM2537. The resulting plasmids were transferred by RP4-mediated 

conjugation from E. coli S17-1 to C. canimorsus to allow the integration of the 
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insertion cassette. Transconjugants were selected for the resistance to 

erythromycin and subsequently checked for sensitivity to cefoxitin. 

 

(ii) Construction of LolA expression vector  

The Flavobacterium johnsoniae ompA promoter was amplified from pPM5 DNA 

using 7201 and 7202 and cloned into pMM104.A using BamHI and XbaI 

restriction sites, leading to plasmid pFL62. lolA (Ccan_16490) was amplified from 

C. canimorsus genomic DNA using 7203 and 7204 and cloned into pFL62 using 

NcoI and XbaI restriction sites, leading to plasmid pFL63. 

 

(iii) Construction of LolA-Strep-His and SkpCc-Strep-His expressing strains 

To engineer LolA with a C-terminal Strep and His tag, lolA (Ccan_16490) was 

amplified from C. canimorsus genomic DNA using 7203 and 7205 and cloned into 

pPM5 using NcoI and XbaI restriction sites in frame with the 6 x His sequence in 

the vector, leading to plasmid pFL64. SkpCc was engineered the same way, except 

that 7284 and 7302 were used for amplification, leading to plasmid pFL67. 

To generate the mutant expressing LolA-Strep-His, the wt strain was first 

transformed with pFL63 and tetracycline resistant colonies were selected. The 

resulting complemented strain was then used for conjugation with E. coli S17 

harboring the lolA mutator plasmid. Erythromycin and tetracycline resistant 

colonies were selected and checked for sensitivity to cefoxitin. Removal of the 

chromosomal lolA copy was further verified by PCR. This strain was then 

transformed with pFL64 and cefoxitin resistant colonies were selected. Colonies 

were then sub-cultured twice in DMEM containing 10 % (v/v) fetal calf serum 

and cefoxitin for 23h. Serial dilutions were plated on SB plates containing 

cefoxitin and colonies were checked for sensitivity to tetracycline. Expression of 

LolA-Strep-His was confirmed by Western blot using a mouse-HRP anti-Strep 

antibody (MCA2489P, AbD serotec). 

To generate the mutant expressing SkpCc-Strep-His, the wt strain was first 

transformed with pFL67 and cefoxitin resistant colonies were selected. The 

resulting complemented strain was then used for conjugation with E. coli S17 

harboring the skpCc mutator plasmid. Erythromycin resistant colonies were 

selected and removal of the chromosomal skpCc copy was verified by PCR. 
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Expression of SkpCc-Strep-His was confirmed by Western blot using a mouse-

HRP anti-Strep antibody (MCA2489P, AbD serotec). 

 

(iv) Generation of Ccan_06900, Ccan_09070, Ccan_09090, Ccan_16770 and 

Ccan_17810 conditional mutants 

The genes of interest were amplified from C. canimorsus genomic DNA and 

cloned into pFL32 using NcoI and XbaI restriction sites for Ccan_06900, 

Ccan_09070, Ccan_09090 and Ccan_16770 or NcoI and XhoI restriction sites for 

Ccan_17810. The wt strain was first transformed with each expression plasmid 

and cefoxitin resistant colonies were selected. The resulting complemented 

strains were then used for conjugation with E. coli S17 harboring the 

corresponding mutator plasmid on IPTG containing medium. Erythromycin 

resistant colonies were selected and checked by PCR for removal of the 

chromosomal copy of each gene. 

 

(v) Construction of E. coli MG1655 derivatives expressing C. canimorsus 

MucG and Ccan_17810 

mucG (Ccan_17430) was amplified from C. canimorsus genomic DNA using 7182 

and 6925 and cloned into pBAD24 using NcoI and XbaI restriction sites, leading 

to plasmid pFL114. Ccan_17810 was amplified from C. canimorsus genomic DNA 

using 7900 and 7901 and cloned into pBAD33 using KpnI and SphI restriction 

sites, leading to plasmid pFL116. pBAD33 having no Shine Dalgarno (SD) 

sequence, the SD box from pBAD24 was included into primer 7900. Plasmids 

were then transferred to E. coli MG1655 by electroporation. 

 

SDS PAGE, Western blotting and silver staining 

Bacteria grown for 2 days on SB plates were collected, washed once with PBS, 

and resuspended in 1 ml PBS at an OD600 of 1, corresponding to approximately 5 

x 108 bacteria. The cΔskpCc conditional mutant was grown for 2 days on SB plates 

containing IPTG, bacteria were then seeded on SB plates without IPTG and 

grown for 1 day before being collected. Bacteria were centrifuged for 3 min at 

5,000 g and resuspended in 100 μl SDS PAGE buffer. Samples were heated for 5 

min at 96°C and 5 μl were loaded on 12% SDS PAGE gels. After gel 
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electrophoresis, proteins were transferred onto nitrocellulose membrane 

(1060008; GE Healthcare) and analyzed by Western blot using rabbit antisera as 

primary antibodies and swine-HRP anti-rabbit (P0217; Dako) as secondary 

antibody. Proteins were detected using LumiGLO (54-61-00; KPL) according to 

manufacturer’s instructions. Alternatively, gels were analyzed by silver staining 

following electrophoresis. Briefly, gels were fixed for 2 h in 50% methanol, 12% 

acetic acid and 0.05% formaldehyde. Gels were then washed three times for 20 

min in 35% ethanol, sensitized for 2 min with 0.02% sodium thiosulfate and 

washed three times for 5 min in ddH2O. Gels were then stained with 0.2% silver 

nitrate, washed twice for 1 min in ddH2O and finally developed in 6% sodium 

carbonate. The developing reaction was stopped by washing extensively with 

ddH2O. 

 

Analysis of LPS profiles 

Bacteria grown for 2 days on SB plates were collected, washed once with PBS, 

and resuspended in 1 ml PBS at an OD600 of 0.75. The cΔskpCc conditional mutant 

was grown for 2 days on SB plates containing IPTG and passaged for 1 day on SB 

plates without IPTG before being collected. Bacteria were centrifuged for 3 min 

at 5,000 g, resuspended in 125 μl SDS PAGE buffer and heated for 10 min at 99°C. 

Proteinase K was then added at a final concentration of 50 μg/ml and samples 

were incubated overnight at 37°C. Samples were again heated, proteinase K 

added as before and incubation was continued for 3 h at 56°C. Finally, samples 

were heated before being loaded on 15% SDS PAGE gels. The LPS profiles were 

then analyzed as previously described for Western blotting using a rabbit anti-

Cc5 antiserum. 

 

Outer membrane purification 

Bacteria grown for 2 days on SB plates were collected, washed once with ice cold 

10 mM HEPES, pH 7.4, and resuspended in 3 ml ice cold HEPES at an OD600 of 1. 

The cΔskpCc conditional mutant was grown for 2 days on SB plates containing 

IPTG and passaged for 1 day on SB plates without IPTG before being collected. 

Bacterial suspensions were then sonicated on ice until clearance and centrifuged 

at 5,000 g for 5 minutes at 4°C to pellet insoluble material. Supernatants were 
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collected and centrifuged again for 30 minutes at 20,000 g at 4°C. Pellets were 

resuspended in 2 ml 10 mM HEPES containing 1% (w/v) sarcosyl (N-

Lauroylsarcosine sodium salt, Sigma) and incubated at room temperature for 30 

minutes. Finally, samples were centrifuged at 20,000 g for 30 min at 4°C and 

pellets resuspended in 100 μl SDS PAGE buffer. Samples were heated for 5 min at 

96°C and 10 μl were loaded on 12% SDS PAGE gels. Samples were then analyzed 

by silver staining. 

 

LolA and SkpCc crosslink and tandem affinity purification 

Bacteria expressing either LolA-Strep-His or SkpCc-Strep-His were grown on SB 

plates for 2 days at 37°C in the presence of 5% CO2. Bacteria from 6 plates were 

harvested and resuspended in 25 ml 10 mM HEPES, pH 7.4. The suspension was 

then split in two and formaldehyde at a final concentration of 1% was added to 

one of the tubes. Both tubes were then incubated for 25 min at room 

temperature under constant agitation. Glycine at a final concentration of 0.5 M 

was added to both tubes to stop the crosslink reaction. Alternatively, the 

crosslinking reaction was performed using DSP (22585; ThermoFisher 

Scientific) at a final concentration of 80 μg/ml and the reaction was stopped by 

addition of Tris-HCl at a final concentration of 20 mM. Bacteria were collected by 

centrifugation and resuspended in 35 ml lysis buffer (25 mM Tris-HCl, 150 mM 

NaCl, 0.4% Triton, 1% sodium deoxycholate, pH 7.6). Alternatively, bacteria were 

disrupted by 2 passages through a French press at 35,000 psi. The lysates were 

clarified by centrifugation (12 min at 16,000 g at 4°C) and the supernatant was 

diluted 1:2 in PBS containing 10 mM imidazole and proteinase inhibitor 

(cOmplete Mini, EDTA-free protease Inhibitor cocktail tablets; Roche). Aliquots 

of 3.5 ml of a 50% slurry of chelating Sepharose fast flow beads (GE Healthcare) 

were coupled to Ni2+ according to the manufacturer’s instructions, added to the 

cleared lysates and incubated overnight at 4°C under constant agitation. The 

solution was then loaded into a column, and the resin was washed with 25 

column volumes (CV) of high-salt buffer (50 mM Tris, 500 mM NaCl; pH 8.0) 

followed by 5 CV of low-salt buffer (50 mM Tris, 100 mM NaCl; pH 8.0). Proteins 

were eluted from the resin with 2 CV of elution buffer (50 mM Tris, 100 mM 

NaCl, 350 mM imidazole; pH 8.0). The elution fraction was then diluted 1:2 in 
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PBS and added on top of 1 ml of a 50% slurry (0.5 ml CV) of Strep-Tactin 

superflow resin (2-1206-002; IBA). The flowthrough was reloaded twice. The 

resin was then washed 4 times with 10 CV of buffer W (100 mM Tris, 150 mM 

NaCl, 1 mM EDTA; pH 8.0) and proteins were eluted in 3 steps with 0.5 ml of 

elution buffer (100 mM Tris, 150 mM NaCl, 1 mM EDTA, 2.5 mM desthiobiotin; 

pH 8.0). The elution fractions were then analyzed by Western blot and silver 

staining and the proteins were identified by LC/MS as described previously18. 

 

In silico analyses 

Candidate proteins identified in elution fractions of pull-down experiments or 

from genome mining were selected following in silico analyses using DeltaBlast 

for homology detection38, CD-search39 and Pfam40 for domain annotation, 

HHpred41 and Phyre242 for structural prediction and LipoP43 for signal peptide 

identification. All applications were run with default settings. Protein sequences 

were recovered from Uniprot44. Conservation of proteins was assessed using the 

MaGe Platform (http://www.genoscope.cns.fr/agc/mage) with the 

Capnocytophaga canimorsus Cc5 genome set as query and the search carried out 

against the following genomes: Bacteroides caccae ATCC 43185, Bacteroides 

fragilis NCTC 9343, Bacteroides ovatus ATCC 8483, Bacteroides thetaiotaomicron 

VPI-5482, Bacteroides vulgatus ATCC 8482, Capnocytophaga gingivalis ATCC 

33624, Capnocytophaga ochracea DSM 7271, Cellulophaga algicola DSM 14237, 

Cellulophaga lytica DSM 7489, Chitinophaga pinensis DSM 2588, Cytophaga 

hutchinsonii ATCC 33406, Dyadobacter fermentans DSM 18053, Dysgonomonas 

mossii DSM 22836, Flavobacterium johnsoniae UW101, Flavobacterium 

psychrophilum JIP02/86, Gramella forsetii KT0803, Leadbetterella byssophila 

DSM 17132, Odoribacter splanchnicus DSM 20712, Parabacteroides distasonis 

ATCC 8503, Pedobacter heparinus DSM 2366, Pedobacter saltans DSM 12145, 

Porphyromonas gingivalis ATCC 33277, Prevotella denticola F0289, Prevotella 

melaninogenica ATCC 25845, Prevotella ruminicola 23, Rhodothermus marinus 

DSM 4252, Riemerella anatipestifer DSM 15868 and Zobellia galactanivorans. 

Homology constraints were as follows: Query coverage ≥ 50%, query identity ≥ 

20%. 
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2.3.8. Supplemental materials 
 

Table S1. Bacterial strains used in this study 

 

Strain Genotype and/or description Reference 

E. coli 

Top10 
F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 
recA1 araD139 Δ(araleu)7697 galU galK rpsL endA1 nupG; 
Smr 

Invitrogen 

MG1655 K-12 F– λ– ilvG– rfb-50 rph-1 (45) 

C. canimorsus 

Cc5 Wild type (BCCM-LMG 28512) (37) 

ΔCcan_02550 Replacement of Ccan_02550 by ermF; Emr This study 

cΔCcan_06900 
Replacement of Ccan_06900 by ermF in C. canimorsus 
harboring pFL167; Emr Cfxr 

This study 

cΔCcan_09070 
Replacement of Ccan_09070 by ermF in C. canimorsus 
harboring pFL169; Emr Cfxr 

This study 

cΔCcan_09090 
Replacement of Ccan_09090 by ermF in C. canimorsus 
harboring pFL68; Emr Cfxr 

This study 

ΔCcan_13690 Replacement of Ccan_13690 by ermF; Emr This study 

cΔCcan_16770 
Replacement of Ccan_16770 by ermF in C. canimorsus 
harboring pFL168; Emr Cfxr 

This study 

cΔCcan_17810 
Replacement of Ccan_17810 by ermF in C. canimorsus 
harboring pFL170; Emr Cfxr 

This study 

ΔCcan_20230 Replacement of Ccan_20230 by ermF; Emr This study 

 

Table S2. Plasmids used in this study 

 

Plasmid Description Reference 

Vectorsa 

pMM25 ColE1 ori; Kmr (Cfr); suicide vector for C. canimorsus (37) 

pMM47.A 
ColE1 ori; (pCC7 ori); Apr; (Cfxr). E. coli-C. canimorsus expression 
shuttle plasmid with ermF promoter 

(37) 

pPM5 
ColE1 ori; (pCC7 ori); Apr; (Cfxr). E. coli-C. canimorsus expression 
shuttle plasmid with ompA promoter 

(19) 

pFL32 
ColE1 ori; (pCC7 ori); Apr; (Cfxr). E. coli-C. canimorsus expression 
shuttle plasmid with IPTG inducible cfxA promoter 

Chapter 3 

pFL62 
ColE1 ori; (pCC7 ori); Apr; (Tcr). E. coli-C. canimorsus expression 
shuttle plasmid. ompA promoter inserted into BamHI/XbaI sites 
of pMM104.A 

This study 

pFL172 

ColE1 ori; (pCC7 ori); Apr; (Cfxr). E. coli-C. canimorsus expression 
shuttle plasmid. Addition of Strep and His tag sequences for in 
frame cloning. Sequences were amplified using primers 
7369/7370 and cloned into pPM5 using XhoI/SpeI restriction 
sites.  

This study 

pBAD24 
pBR ori; Apr. High copy E. coli expression plasmid with arabinose 
inducible promoter 

(46) 

pBAD33 
pACYC ori; Cmr. Low copy E. coli expression plasmid with 
arabinose inducible promoter 

(46) 

Mutator plasmids 
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pMM106 ΔsiaC::ermF. Cassette for replacement of siaC by ermF. (37) 

pFL37 
ΔCcan_16490::ermF. Cassette for replacement of Ccan_16490 by 
ermF using 7207/7208 and 7209/7210 on gDNA, 7211/7212 on 
pMM106 and cloned into pMM25 using PstI/SpeI. 

This study 

pFL47 
ΔCcan_02550:: ermF. Cassette for replacement of Ccan_02550 by 
ermF using 7286/7287 and 7288/7289 on gDNA, 7290/7291 on 
pMM106 and cloned into pMM25 using PstI/SpeI. 

This study 

pFL48 
ΔCcan_06900:: ermF. Cassette for replacement of Ccan_06900 by 
ermF using 7236/7237 and 7238/7239 on gDNA, 7240/7241 on 
pMM106 and cloned into pMM25 using PstI/SpeI. 

This study 

pFL49 
ΔCcan_16770:: ermF. Cassette for replacement of Ccan_16770 by 
ermF using 7230/7231 and 7232/7233 on gDNA, 7234/7235 on 
pMM106 and cloned into pMM25 using PstI/SpeI. 

This study 

pFL50 
ΔCcan_09070:: ermF. Cassette for replacement of Ccan_09070 by 
ermF using 7309/7310 and 7311/7312 on gDNA, 7313/7314 on 
pMM106 and cloned into pMM25 using PstI/SpeI. 

This study 

pFL51 
ΔCcan_17810:: ermF. Cassette for replacement of Ccan_17810 by 
ermF using 7315/7316 and 7317/7318 on gDNA, 7319/7320 on 
pMM106 and cloned into pMM25 using PstI/SpeI. 

This study 

pFL52 
ΔCcan_20230:: ermF. Cassette for replacement of Ccan_20230 by 
ermF using 7321/7322 and 7323/7324 on gDNA, 7325/7326 on 
pMM106 and cloned into pMM25 using PstI/SpeI. 

This study 

pFL53 
ΔCcan_09090:: ermF. Cassette for replacement of Ccan_09090 by 
ermF using 7278/7279 and 7280/7281 on gDNA, 7282/7283 on 
pMM106 and cloned into pMM25 using PstI/SpeI. 

This study 

pFL166 
ΔCcan_13690:: ermF. Cassette for replacement of Ccan_13690 by 
ermF using 7292/7293 and 7294/7295 on gDNA, 7296/7297 on 
pMM106 and cloned into pMM25 using PstI/SpeI. 

This study 

pFL175 
ΔCcan_18290:: ermF. Cassette for replacement of Ccan_18290 by 
ermF using 8174/8175 and 8176/8177 on gDNA, 8178/8179 on 
pMM106 and cloned into pMM25 using PstI/SpeI. 

This study 

Expression plasmids 

pFL63 
Full length Ccan_16490 amplified with primers 7203/7204 and 
cloned into pFL62 using NcoI/XbaI restriction sites. 

This study 

pFL64 
Full length Ccan_16490 with a C-terminal Strep and His tag 
amplified with primers 7203/7205 and cloned into pPM5 using 
NcoI/XbaI restriction sites 

This study 

pFL67 
Full length Ccan_09090-StrepHis amplified from gDNA with 
7284/7302 and cloned into pPM5 using NcoI/XbaI. Addition of 
C-terminal Strep tag in frame with His tag. 

This study 

pFL68 
Full length Ccan_09090 amplified with primers 7284/7285 and 
cloned into pFL32 using NcoI/XbaI restriction sites 

This study 

pFL167 
Full length Ccan_06900 amplified with primers 7222/7229 and 
cloned into pFL32 using NcoI/XbaI restriction sites 

This study 

pFL168 
Full length Ccan_16770 amplified with primers 7219/7228 and 
cloned into pFL32 using NcoI/XbaI restriction sites 

This study 

pFL169 
Full length Ccan_09070 amplified with primers 7328/7329 and 
cloned into pFL32 using NcoI/XbaI restriction sites 

This study 

pFL170 
Full length Ccan_17810 amplified with primers 7330/7331 and 
cloned into pFL32 using NcoI/XhoI restriction sites 

This study 

pFL114 
Full length mucG amplified with primers 7182/6925 and cloned 
into pBAD24 using NcoI/XbaI restriction sites 

This study 

pFL116 
Full length Ccan_17810 amplified with primers 7900/7901 and 
cloned into pBAD33 using KpnI/SphI restriction sites 

This study 

pFL171 
Full length Ccan_17810 with N-terminal His and Strep tag 
amplified with primers 7330/7582 and 7581/7331 and cloned 
into pPM5 using NcoI/XhoI restriction sites. Addition of His-

This study 
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Strep tag between amino acids 25 and 26 

pFL173 
Full length Ccan_17810 with C-terminal Strep and His tag 
amplified with primers 7330/7688 and cloned into pFL172 using 
NcoI/XhoI restriction sites 

This study 

pFL174 

Full length Ccan_17810 C20G with N-terminal His and Strep tag 
amplified with primers 7330/7582 and 7583/7331 and cloned 
into pPM5 using NcoI/XhoI restriction sites. Addition of His-
Strep tag between amino acids 25 and 26 

This study 

 

a: Selection markers for C. canimorsus are in between brakets  

 

Table S3. Oligonucleotides used in this study  

 

Ref. Sequence 5'-3' Restrictiona 

7201 ccggatccttttttttaacatttgattttgtatttaaaaaatttgg BamHI 

7202 ggtctagaatatccatggttaatttttttaattacaatttagttaattacaagc XbaI 

7207 ggctgcagtagatgcgcaaggcgccgatcaactcatcgg PstI 

7208 gagtagataaaagcactgttcgtttttataaaatatttttattttctgcc  

7209 aaaaatttcatccttcgtagaagataagctttgagaattttagaccg  

7210 ccactagtgctactcttatacttaattcatcacc SpeI 

7211 ggcagaaaataaaaatattttataaaaacgaacagtgcttttatctactc  

7212 cggtctaaaattctcaaagcttatcttctacgaaggatgaaattttt  

7286 ggctgcagcgtgataatattaacattgatttgaatgc PstI 

7287 ctatgatgttgcaaataccgatgagcccaacagccaaagctacgattaaattttttc  

7288 gaaaaatttcatccttcgtaggcaaatggcagacaaaaaatcagcatatattttaaaag  

7289 ccactagtgcccgaacggtgctaaatttcttgtcg SpeI 

7290 gaaaaaatttaatcgtagctttggctgttgggctcatcggtatttgcaacatcatag  

7291 taaaatatatgctgattttttgtctgccatttgcctacgaaggatgaaatttttcag  

7236 ggctgcagtgctttggtttgtaattatatgc PstI 

7237 gagtagataaaagcactgttggtatctaattttctttgacgtgc  

7238 aaaaatttcatccttcgtagtgtacatattttattatgaataaaaccatagc  

7239 ggactagtcttgataatttgctgcaatgccttcgc SpeI 

7240 gcacgtcaaagaaaattagataccaacagtgcttttatctactc  

7241 gctatggttttattcataataaaatatgtacactacgaaggatgaaatttttcaggg  

7230 ggctgcaggataaaaacatcagctttggctctgttggc PstI 

7231 gagtagataaaagcactgttgctatattcgccttttgaacgctg  

7232 aaaaatttcatccttcgtagattataaatatcacataaccgtatg  

7233 ggactagtggggtatattcaaatcgtatcttaagaaagc SpeI 

7234 cagcgttcaaaaggcgaatatagcaacagtgcttttatctactc  

7235 catacggttatgtgatatttataatctacgaaggatgaaatttttcaggg  

7309 ggctgcagagcttttggtcaagtttcttaaaaagaaatacg PstI 

7310 ctatgatgttgcaaataccgatgagcaattttatttgagttgttcacttgtttttcc  

7311 cctgaaaaatttcatccttcgtagttttggcacgatattttcttaatcac  

7312 ccactagtgaatacaacattgaaacatcactcttttc SpeI 

7313 ggaaaaacaagtgaacaactcaaataaaattgctcatcggtatttgcaacatcatag  
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7314 caaaagtgattaagaaaatatcgtgccaaaactacgaaggatgaaatttttcagg  

7315 ggctgcaggaagataatgcacttgaacgcg PstI 

7316 ctatgatgttgcaaataccgatgagcaaataagacaaattaggcttca  

7317 cctgaaaaatttcatccttcgtagataattgctctttatcaatcaattttcatac  

7318 ccactagtctgtcagattatcaatcactgcgg SpeI 

7319 tgaagcctaatttgtcttatttgctcatcggtatttgcaacatcatag  

7320 gtatgaaaattgattgataaagagcaattatctacgaaggatgaaatttttcagg  

7321 ggctgcaggctttattcttttactttttgc PstI 

7322 ctatgatgttgcaaataccgatgagcggttactttctttttttattaaagaattgg  

7323 cctgaaaaatttcatccttcgtagttttctatgaatgatttattgaaaaatagg  

7324 ccactagtgcgttttccgtggcgactcacagc SpeI 

7325 ccaattctttaataaaaaaagaaagtaaccgctcatcggtatttgcaacatcatag  

7326 cctatttttcaataaatcattcatagaaaactacgaaggatgaaatttttcagg  

7278 ggctgcaggcaagaaaaatttggagcagaaaatggcgagtacg PstI 

7279 ctatgatgttgcaaataccgatgagcctgtgtaaattaaagtgttaatataatc  

7280 cctgaaaaatttcatccttcgtagtaaaaaattaaataaaatcgttattaaaagtgttcg  

7281 ccactagtaaaattccgttttttcgcaccgaatcgttactgg SpeI 

7282 gattatattaacactttaatttacacaggctcatcggtatttgcaacatcatag  

7283 cgaacacttttaataacgattttatttaattttttactacgaaggatgaaatttttcagg  

7292 ggctgcaggggcgaaactcacaaggggtacgtgg PstI 

7293 ctatgatgttgcaaataccgatgagcatctcttcgaatttatttttaaaatttttattc  

7294 cctgaaaaatttcatccttcgtagttttgtttcataataaataattaaacccctc  

7295 ccactagtcaagttttaaatcacgattttaaagg SpeI 

7296 gaataaaaattttaaaaataaattcgaagagatgctcatcggtatttgcaacatcatag  

7297 ggaggggtttaattatttattatgaaacaaaactacgaaggatgaaatttttcag  

7203 ccccatggggaaaaagatactattgttaatatc NcoI 

7204 ggtctagattatagttctgaaatatagtatcc XbaI 

7205 ggtctagagctttttcgaactgcgggtggctccatagttctgaaatatagtatccttc XbaI 

7284 ggccatggggatgagaaacattaaaactattatgattgcg NcoI 

7302 ggtctagagctttttcgaactgcgggtggctccagaatcctaattcctttttaacg XbaI 

7285 ggtctagattagaatcctaattcctttttaacgc XbaI 

7222 ggccatggggttgatactcaacatagcatacatacg NcoI 

7229 ggtctagattatttttgttcagatgttttttcttg XbaI 

7219 ggccatggggttgcataaaaaatttaattcaaacataaaaaaagttactattttgc NcoI 

7228 ggtctagattaattcaaacgtcggtcgggttctcgg XbaI 

7328 ggccatggggtcattgaagaaatttttgtctg NcoI 

7329 cctctagattaaaattgttgtccaaaaataaagtgtgtttgcc XbaI 

7330 ggccatggggaaatctcgttttaaaatatattgc NcoI 

7331 ggctcgagttagaaaggataatttatccc XhoI 

7182 ggccatggggaaaaaaatagtatccattagc NcoI 

6925 gctctagactaaaacgtaacttgagttctctctccg XhoI 

7900 atcgggtaccaggaggaattcaccatgaaatctcgttttaaaatatattgc KpnI 

7901 atcggcatgcttagaaaggataatttatccc SphI 

7581 catcacgctgcctggagccacccgcagttcgaaaaagtaccagaaaacacgcatttgc  

7582 gctccaggcagcgtgatgatggtgatgatgtcgtttggttgcattacaagccactaacg  
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7688 ggctcgaggaaaggataatttatcccaaaattatatac XhoI 

7369 ccgctcgagtggagccacccgcagttcgaaaaaggcgcac XhoI 

7370 ggactagttcaatgatgatgatgatgatgtgcgcctttttcg SpeI 

8147 ggctgcagtggaagatactatgatagttcaggacg PstI 

8145 ctatgatgttgcaaataccgatgagccttttcttctttagtttaattg  

8176 cctgaaaaatttcatccttcgtagatatttaattttgttagttttaaaaaagtcagc  

8177 ccactagtcctcctatggagatattgatattgaac SpeI 

8178 caattaaactaaagaagaaaaggctcatcggtatttgcaacatcatag  

8179 gctgacttttttaaaactaacaaaattaaatatctacgaaggatgaaatttttcagg  

 

a: Restriction sites are underlined 
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3. Development of regulatable expression systems for C. 
canimorsus 
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3.1. Introduction 
 

C. canimorsus was first isolated in 19761 and named dysgonic fermentor 2 

(DF2). Its actual name was given in 1989 by Brenner2 that described the main 

features of this species. Since 2001, our lab started the in depth characterization 

of this organism and to this aim a set of genetic tools was developed. This 

included the engineering of expression vectors as well as suicide plasmids in 

order to perform gene replacement by conjugation and homologous 

recombination3. Thanks to these tools, we succeeded in the identification and 

characterization of key genes involved in both bacterial metabolism and 

pathogenesis. Unfortunately the study of essential genes could not be afforded 

without genetic tools allowing to control the expression of these genes, i.e. 

regulatable promoters. Indeed, while many genetic systems have been developed 

for Proteobacteria, these often cannot be used in Bacteroidetes due to promoter 

incompatibility. We therefore sought to engineer vectors with inducible and/or 

repressible promoters for C. canimorsus that would allow switching on/off genes 

of interest. This would be of particular interest in respect to the identification of 

the lipoprotein export machinery that is likely essential in this bacterium. 

 

3.2. Adaptation of an IPTG-inducible expression system 
 

A recent study described the construction of an IPTG-inducible 

expression vector for Bacteroides fragilis4. This was achieved by engineering the 

promoter of the cfxA resistance gene (PcfxA), adding the LacI binding sequences 

lacO3 and lacO1 upstream of the -33 binding box and downstream of the 

transcription initiation site (TIS) of PcfxA, giving the lacO3 PcfxA lacO1 construct. 

This fragment was then inserted into an expression vector encoding lacI under 

the control of the constitutive tetQ promoter (PtetQ). This rendered the final 

plasmid pFD1146 in which the expression of genes cloned downstream of lacO3 

PcfxA lacO1 is induced by IPTG. Briefly, in the absence of IPTG (non permissive 

condition), LacI binds to the lacO binding sites in the modified PcfxA promoter4,5, 

thereby blocking transcription. In the presence of IPTG (permissive condition), 
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LacI binds to IPTG which in turn blocks its binding to lacO, thus allowing 

transcription of the gene of interest4,5. 

Taking advantage of this, we recreated the above system by amplifying 

the lacO3 PcfxA lacO1 and PtetQ-lacI fragments from pFD1146 and inserting them 

into the C. canimorsus expression vector pMM47.A3, giving the final vector pFL32 

(Fig. 1A and B). We then cloned the C. canimorsus mucG gene downstream of the 

lacO3 PcfxA lacO1 promoter (plasmid pFL157) and tested MucG IPTG dependent 

expression. As shown in Fig. 1C, addition of IPTG significantly increased the 

expression of MucG in the strain harboring pFL157. The plasmid pFL32 allowed 

us to characterize for the first time an essential C. canimorsus gene (Ccan_09090, 

encoding SkpCc) by constructing a conditional mutant that relied on IPTG for 

growth (see chapter 2). However, as already observed by the authors that 

constructed pFD1146, the expression of this system is leaky, having a basal 

expression even in the absence of IPTG4. This was for us a major issue when we 

wanted to generate conditional mutants for Ccan_09070, Ccan_17810, 

Ccan_06900 and Ccan_16770, candidate genes for the lipoprotein export 

machinery. Indeed, while all these genes are essential in C. canimorsus, no 

growth defect could be observed in non-permissive conditions (see chapter 2). 

We reasoned that the basal expression of these genes from the leaky lacO3 PcfxA 

lacO1 promoter might be sufficient to sustain growth of C. canimorsus. This 

hypothesis is also supported by the relatively low expression level of these genes 

as compared to Ccan_09090 (4 to 5 times lower) as determined by mRNA 

sequencing (K. Hack, unpublished data). Because the use of this system could not 

allow us to study most of the essential lipoprotein transporter candidates, we 

decided to construct new regulatable expression vectors for C. canimorsus. 
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Fig. 1 Construction of an IPTG-regulatable expression system for C. canimorsus 

(A) Map of the expression vector pFL32. E. coli specific genetic elements are indicated in grey, C. canimorsus specific genetic elements in blue. The lacI and lacO 

binding sites are indicated in purple and green, respectively. (B) Nucleotide sequence of the lacO3 PcfxA lacO1 promoter amplified from pFD1146. lacO1 and lacO3 

binding sites are indicated in green, SalI and NcoI restriction sites in red, the -33 and -7 boxes and the transcription initiation site (TIS) in bold. (C) Western blot 

analysis of IPTG induction test of pFL157 (pFL32 encoding mucG). C. canimorsus cells harboring pFL157 were grown for one day on IPTG-containing plates before 

being analyzed. Proteins were detected using an anti-HA antibody. ΔmucG serves as negative control; ΔmucG + pFL43, constitutively expressing MucG, serves as 

positive control. 
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3.3. Construction of TetR-based expression systems 
 

As already mentioned, IPTG-inducible expression systems are known to 

be leaky, even in E. coli. More tightly regulated systems have therefore been 

developed to circumvent this problem. One of the most widespread systems, 

both for prokaryotes and eukaryotes, is based on the use of tetracycline (Tc)6.  

In bacteria, after entering the cytoplasm of the cell, Tc binds to the small 

subunit of the ribosome resulting in protein synthesis inhibition and ultimately 

growth arrest7. The most common tetracycline resistance mechanism in bacteria, 

for example in E. coli, relies on two proteins, TetR and TetA7. TetR is a 

homodimeric transcription regulator that binds Tc once it reaches the cytoplasm. 

TetA is an IM spanning efflux pump that exports the TetR-Tc complex out of the 

cytoplasm7. In the absence of Tc, TetR binds to its cognate nucleotide binding site 

tetO, thereby blocking the transcription of TetA. Upon addition of Tc, the TetR-Tc 

complex is formed, resulting in dissociation of TetR from tetO. Transcription of 

TetA can thus resume, leading to active export of Tc from the cytoplasm7. The 

classical vector system therefore usually consists of one promoter harboring the 

tetO binding sites downstream of which the gene of interest is cloned and of the 

tetR gene under the control of a constitutive promoter. In brief, absence of Tc 

inhibits gene expression while addition of Tc induces it. 

Several features have contributed to make this system popular. First, TetR 

is not subject to catabolic repression as it can be the case for LacI-based 

systems8. Second, an artificial analog of Tc, anhydrotetracycline (ATc), has been 

developed9. This compound has the dual advantage of having a higher affinity 

than Tc towards TetR and at the same time poorly binds to the small ribosomal 

subunit. Compared to Tc, ATc is therefore a more potent regulator of gene 

expression whit the advantage of having almost no bacteriostatic effect9. Finally, 

a reverse variant of TetR (revTetR) has been isolated and found to bind to tetO 

only in the presence of Tc, thus allowing switching off gene expression instead of 

switching it on10. For these reasons, we decided to adapt Tc-based vector 

systems to C. canimorsus. 

To this aim, we introduced an E. coli tetO binding site upstream of the -33 

box of the PcfxA promoter (tetO PcfxA) and replaced the constitutive promoter of 
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Fig. 2 Construction of a TetR-based expression system for C. canimorsus using one tetO binding site 

(A) Map of the expression vectors pFL159 and pFL160. E. coli specific genetic elements are indicated in grey, C. canimorsus specific genetic elements in blue. 

TetR/revTetR and the tetO binding site are indicated in purple and green, respectively. (B) Nucleotide sequence of the tetO PcfxA promoter amplified from 

pMM47.A. The tetO binding site is indicated in green, SalI and NcoI restriction sites in red, the -33 and -7 boxes and the transcription initiation site (TIS) in bold. A 

schematic reprensentation of the regulation mechanism is shown below. Note that only the TetR regulation is depicted and that revTetR functions in the opposite 

way. (C) Western blot analysis of pFL161 and pFL162 (pFL159 and pFL160 encoding Ccan_22280 respectively) induction test using 100 ng/ml of ATc. Proteins 

were detected using an anti-HA antibody. 
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pMM47.A by this construct. The resulting plasmid was then restricted in order to 

insert either the tetR or revtetR encoding gene under the control of the 

constitutive ermF promoter (PermF), leading to pFL159 (TetR inducible system) 

and pFL160 (revTetR repressible system) vectors (Fig. 2A and B). We then 

monitored expression of the C. canimorsus amylase Ccan_22280 over time upon 

addition of ATc to assess the performance of these vectors. Surprisingly, the 

amount of protein detected at t0 and at later time points was constant in both 

constructs (Fig. 2C) thus showing absence of regulation. The presence of 

Ccan_22280 throughout the course of the experiment in the revTetR-based 

system might be explained by an insufficient amount of ATc, resulting in 

incomplete repression of gene expression. However, the presence of a band at t0 

in the TetR-based system, where no expression should occur unless ATc is 

provided, rather suggests that the TetR protein is either not expressed or is not 

recognizing the tetO binding sequence. Alternatively, the presence of only one 

tetO binding site might not be enough to assure control over gene expression. 

To rule out this possibility, we decided to mimic the previously 

constructed LacI-based system by inserting tetO binding sites upstream and 

downstream of the PcfxA promoter, giving tetO PcfxA tetO. This construct was 

then inserted in pFL161 instead of the tetO PcfxA promoter leading to the vector 

pFL163 (Fig. 3A and B). We then monitored expression of Ccan_22280 over time 

following addition of ATc to the medium (Fig. 3C). As for plasmid pFL161, the 

protein was already detectable at t0 and no increase of protein amount was 

observed at later time points, even in presence of a high concentration of inducer 

thus indicating complete absence of regulation. Since the tetO binding sites are 

inserted at the same positions as the lacO binding sites, we hypothesized that 

TetR could not be expressed or could undergo proteolysis in C. canimorsus. 

However, when a HA-tagged version of TetR was cloned downstream of a 

constitutive promoter and tested in C. canimorsus, the protein was clearly 

detectable (data not shown). The most likely conclusion therefore is that 

although expressed, E. coli TetR might not be folded properly in C. canimorsus 

and hence does not bind to tetO. 
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Fig. 3 Construction of a TetR-based expression system for C. canimorsus using two tetO binding sites 

(A) Map of the expression vector pFL163. E. coli specific genetic elements are indicated in grey, C. canimorsus specific genetic elements in blue. TetR and the tetO 

binding sites are indicated in purple and green, respectively. Ccan_22280 is indicated in orange. (B) Nucleotide sequence of the tetO PcfxA tetO promoter. The tetO 

binding sites are indicated in green, SalI and NcoI restriction sites in red, the -33 and -7 boxes and the transcription initiation site (TIS) in bold. A schematic 

reprensentation of the regulation mechanism is shown below. (C) Western blot analysis of amylase Ccan_22280 expression from pFL163 induction test using 100 

and 500 ng/ml of ATc. Proteins were detected using an anti-HA antibody. 
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3.4. Construction of a TetQ-based expression system 
 

We thus thought of an alternative approach based on the tetracycline 

resistance mechanism described in Bacteroidetes. Unlike E. coli, Bacteroidetes 

species do not actively export Tc out of the cytoplasm but modify their 

ribosomes to prevent Tc binding thanks to the TetQ resistance protein7,11. It is 

important to note that in this system, the amount of TetQ is controlled at the 

level of translation rather than of transcription, meaning that a certain amount of 

tetQ mRNA is always present in the cell. This translational regulation is achieved 

thanks to the organization of the tetQ mRNA that contains two regions, the 

leader sequence and the tetQ sequence11 (Fig. 4A). 

In the absence of Tc, ribosomes bind to the leader sequence of the tetQ 

mRNA and translate a so-called leader peptide11. This results in the formation of 

a hairpin structure that makes the ribosome binding site (RBS) of the tetQ 

sequence inaccessible (Fig. 4A, step I). Once Tc binds to ribosomes, translation of 

the leader sequence stalls. This allows formation of alternative hairpin 

structures, freeing the tetQ RBS and thus leading to translation of the transcript11 

(Fig. 4A, step II). TetQ then interacts with ribosomes in order to prevent their Tc 

binding7,11 (Fig. 4A, step III), thus enabling resuming of protein synthesis. 

Interestingly, this leads to a negative feedback loop, as the now Tc-resistant 

ribosomes will again be able to translate the leader sequence, which in turn 

blocks translation of tetQ (Fig. 4A, step IV). The resistance conferred by TetQ 

therefore leads to a balance between Tc-resistant and Tc-sensitive ribosomes.  

In order to see whether this regulation could be exploited in C. 

canimorsus, we amplified the tetQ promoter and leader sequence of pMM104 and 

inserted it into pMM47.A, giving plasmid pFL164 (Fig. 4B and C). We then cloned 

mucG downstream of the tetQ promoter, originating plasmid pFL165. We did not 

add the tetQ resistance gene itself in this vector in order to avoid the above 

mentioned negative feedback loop. Since the regulation mechanism depends on 

the ability of Tc to bind to ribosomes, ATc, because of its low affinity for 

ribosomes, cannot be used in this system. We thus tested several sub-inhibitory 

concentrations of Tc and monitored MucG expression (Fig. 4D). Surprisingly, 

MucG was not expressed in any condition tested. This result could be due to the 
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Fig. 4 Construction of a Tc-regulatable expression system for C. canimorsus using the tetQ 

promoter 

(A) Proposed model of TetQ provided tetracycline resistance. In the absence of Tc, ribosomes 

bind to the tetQ mRNA and translate a leader peptide (dashed line) (step I). This results in the 

formation of a hairpin structure between regions Hp1 and Hp8 of the mRNA, rendering the RBS 

of tetQ inaccessible to ribosomes (shaded box). Once Tc (asterisk) binds to ribosomes, translation 

of the leader sequence stalls (step II). This induces the formation of alternative hairpin structures 

in the mRNA, rendering the RBS of tetQ accessible to ribosomes that have not bound Tc. This 

leads to TetQ synthesis, which will interact with ribosomes to make them Tc-resistant (step III). 

Tc-resistant ribosomes are then able to resume translation of the leader peptide, which results in 

the formation of the hairpin structure blocking tetQ translation. TetQ therefore regulates its own 

expression by a negative feedback loop. (B) Map of the expression vector pFL164. E. coli specific 

genetic elements are indicated in grey, C. canimorsus specific genetic elements in blue. The tetQ 

promoter is indicated by a white box. (C) Nucleotide sequence of the tetQ promoter. The Hp1 and 

Hp8 sequences involved in haiprin formation are indicated in green, SalI and NcoI restriction 

sites in red, the -33 and -7 boxes and the transcription initiation site (TIS) in bold. (D) Western 

blot analysis of pFL165 (pFL164 encoding mucG) induction test using various concentration of 

Tc. Proteins were detected using an anti-HA antibody. 

 
 
fact that sub-inhibitory concentrations of Tc might still affect a large proportion 

of ribosomes thus attenuating protein synthesis. Alternatively, the Tc 

concentrations used might be too low to efficiently induce ribosome stalling on 

the leader sequence, thereby preventing MucG expression. We are therefore 

currently testing if the addition of the TetQ encoding gene would improve the 

expression of MucG in this system. While this would add the risk of decreasing 

the translation of MucG due to the negative feedback loop, it would allow us to 

use higher Tc concentrations. This could generate equilibrium between Tc-

sensitive and Tc-resistant ribosomes, resulting in an overall constant expression. 

 
 

3.1. Conclusion and perspectives 
 

Development of new genetic tools and in particular of regulatable protein 

expression systems for C. canimorsus is critical and so far represents the 

bottleneck for the study of essential genes in this organism. While construction 

of new regulatory systems has so far proven difficult, in the future efforts will be 
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pursued in order to be able to characterize physiological processes such as 

lipoprotein surface transport in detail. So far, our attempts have mainly focused 

on promoter activity regulation; however, a very recent study showed that RNA 

silencing takes place in Bacteroidetes and that it can be used for gene 

regulation12. This therefore opens the door for new regulatory strategies that we 

will try to adapt for C. canimorsus. 

 
 

3.2. Materials and Methods 
 

Chemicals and reagents 

Tetracycline (Tc, T7660, Sigma) and anhydrotetracycline (ATc, 37919, Sigma) 

were stored at -20°C as 10 mg/ml and 2.5 mg/ml stock solutions respectively in 

50% ethanol. IPTG (I6758, Sigma) was sterile filtered and stored at -20°C as 0.5 

M stock solution in ddH2O. Western blot analysis of MucG-HA and Ccan_22280-

HA was performed using rat anti-HA (11867423001, Roche) and goat-HRP anti-

rat (629520, Invitrogen) antibodies. 

 

Bacterial strains and growth conditions 

(i) Conventional bacterial growth conditions and selective agents 

Bacterial strains used in this study are listed in Table S1. E. coli strains were 

routinely grown in lysogeny broth (LB) at 37°C. C. canimorsus strains were 

routinely grown on heart infusion agar (Difco) supplemented with 5% sheep 

blood (Oxoid) plates (SB plates) for 2 days at 37°C in the presence of 5% CO2. To 

select for plasmids, antibiotics were added at the following concentrations: 100 

μg/ml ampicillin (Amp), 50 μg/ml kanamycin (Km), for E. coli and 10 μg/ml 

erythromycin (Em), 10 μg/ml cefoxitin (Cfx), 20 μg/ml gentamicin (Gm) for C. 

canimorsus. 

 

(ii) IPTG induction assay 

Bacteria harboring pFL157 were grown for 2 days on SB plates before being 

passage for 1 day on SB containing 0, 0.5 or 1 mM IPTG. Bacteria were then 

collected, washed once with PBS, and resuspended in 1 ml PBS at an OD600 of 1. 
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Bacteria were centrifuged for 3 min at 5,000 g and resuspended in 100 μl SDS 

PAGE buffer, followed by Western blot analysis. 

 

(iii) Tetracycline/anhydrotetracycline induction assays 

Strains harboring pFL161 or pFL162 were grown for 2 days on SB plates, 

collected, washed once with PBS, and resuspended in 1 ml PBS at an OD600 of 10. 

The bacterial suspensions were then used to inoculate 10 ml PBS containing 

20% (v/v) fetal calf serum. ATc was added at a final concentration of 100 ng/ml 

and cultures were incubated at 37°C with constant agitation. One-ml samples 

were collected over time, washed once with PBS and resuspended in 100 μl SDS 

PAGE buffer followed by Western blot analysis. Bacteria harboring pFL163 were 

treated in the same way, except that 100 and 500 ng/ml ATc concentrations 

were tested in parallel. 

Tetracycline-dependent expression of bacteria harboring pFL165 was assessed 

in 96-well plates. Inocula were prepared from cultures grown on SB plates, set to 

an OD600 of 1, and serially diluted 1:10 three times. Two hundred μl of bacterial 

suspension were then used to inoculate 10 ml DMEM containing 10% (v/v) HIHS 

and dispensed into 1 ml aliquots. After 18 h of incubation, 0.01, 0.025, 0.05, 0.1, 

0.5, 1 or 2 μg/ml of Tc were added and incubation was continued for 6 h. 

Bacteria were then collected by centrifugation, washed twice with PBS and 

resuspend in 75 μl SDS PAGE buffer followed by Western blot analysis. 

 

Genetic manipulation of C. canimorsus and E. coli MG1655 

Plasmids and primers used in this study are listed in Table S2 and S3. 

 

(i) Construction of pFL32 expression vector  

In order to adapt the IPTG-inducible promoter system described in 4, the lacO3 

PcfxA lacO1 promoter from pFD1146 was amplified using 7144 and 7145 and 

cloned into pMM47.A using SalI and NcoI restriction sites, leading to plasmid 

pFL31. PtetQ-lacI was amplified from pFD1146 DNA using 7195 and 7149 and 

cloned into pFL31 using HindIII and SphI restriction sites, leading to plasmid 

pFL32. To test IPTG induction, mucG (Ccan_17430) was amplified from C. 
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canimorsus genomic DNA using 7182 and 7183 and cloned into pFL32 using NcoI 

and XbaI restriction sites, leading to plasmid pFL157. 

 

(ii) Construction of tetO-PcfxA expression vector  

PcfxA was amplified from pMM47.A using 7242 and 7243 and cloned into pPM5 

using SalI and NcoI restriction sites, leading to plasmid pFL158. In order to insert 

the tetO binding sequence upstream of the -33 box of the PcfxA promoter, the 

tetO sequence 5’-TCCCTATCAGTGATAGAGA-3’ was included into primer 7242. 

The tetR and revtetR genes were fused to the PermF promoter by overlapping 

PCR. First, PermF was amplified from pMM47.A using 7244 and 7245 for fusion 

with tetR or using 7244 and 7246 for fusion with revtetR. In parallel, tetR was 

amplified from pBBR-IBA3plus using 7247 and 7249 while revtetR was amplified 

from pDH624 using 7248 and 7250. For each overlapping PCR, both products 

were cleaned and then mixed in equal amounts for PCR as described previously. 

The resulting fragments were cloned into pFL158 using BamHI and XmaI 

restriction sites, leading to pFL159 (TetR) and pFL160 (RevTetR). Finally, C. 

canimorsus amylase (Ccan_22280) with a C-terminal HA tag was amplified from 

genomic DNA using 7184 and 7185 and cloned into pFL159 or pFL160 using 

NcoI and XbaI restriction sites, leading to pFL161 and pFL162 respectively. 

 

(iii) Construction of tetO-PcfxA-tetO expression vector  

The tetO-PcfxA promoter was amplified from pFL158 using 7242 and 7258 and 

cloned into pFL161 using SalI and NcoI restriction sites, leading to plasmid 

pFL163. In order to insert the tetO binding sequence downstream of the 

transcription initiation site of the PcfxA promoter, the tetO sequence 5’-

TCCCTATCAGTGATAGAGA-3’ was included into reverse primer 7258, resulting 

in a tetO-PcfxA-tetO construct. 

 

(iv) Construction of the PtetQ expression vector  

The tetQ promoter and leader sequence was amplified from pMM104 using 7888 

and 7889 and cloned into pMM47.A using SalI and NcoI restrictions sites, leading 

to plasmid pFL164. C. canimorsus mucG (Ccan_17430) was amplified from 
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genomic DNA using 7182 and 7183 and cloned into pFL164 using NcoI and XbaI 

restriction sites, leading to pFL165. 
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3.4. Supplemental materials 
 

Table S1. Bacterial strains used in this study 

 

Strain Genotype and/or description Reference 

E. coli 

Top10 
F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 
recA1 araD139 Δ(araleu)7697 galU galK rpsL endA1 nupG; 
Smr 

Invitrogen 

C. canimorsus 

Cc5 Wild type (BCCM-LMG 28512) (3) 

ΔmucG Replacement of Ccan_02550 by ermF; Emr (13) 

ΔCcan_22280 Replacement of Ccan_22280 by ermF; Emr  This study 

 

Table S2. Plasmids used in this study 

 

Plasmid Description Reference 

Vectorsa 

pMM25 ColE1 ori; Kmr (Cfr); suicide vector for C. canimorsus (3) 

pMM47.A 
ColE1 ori; (pCC7 ori); Apr; (Cfxr). E. coli-C. canimorsus expression 
shuttle plasmid with ermF promoter 

(3) 

pMM104 
ColE1 ori; (pCC7 ori); Apr; (Tcr). E. coli-C. canimorsus shuttle 
plasmid 

(3) 

pMM106 ΔsiaC::ermF. Cassette for replacement of siaC by ermF. (3) 

pFD1146 
ColE1 ori; Spr; (Emr). E. coli-B. fragilis expression shuttle plasmid 
with lacO3-PcfxA-lacO1 promoter 

(4) 

pBBR-
IBA3plus 

pBBR1 ori, GmR; Broad host-range vector allowing expression of 
genes under control of the tet promoter 

(14) 

pDM291 
Schizosaccharomyces pombe vector allowing regulatable 
expression of genes via revtetR-tup11Δ70  

(15) 

Suicide plasmids 

pFL42 
ΔCcan_22280::ermF. Cassette for replacement of Ccan_22280 by 
ermF using 7170/7171 and 7172/7173 on gDNA, 7174/7175 on 
pMM106 and cloned into pMM25 using PstI/SpeI. 

This study 

Expression plasmids 

pFL31 
PtetQ-lacI amplified from pFD1146 with primers 7195/7149 and 
cloned in pMM47.A using SphI/HindIII restriction sites 

This study 

pFL32 
lacO3-PcfxA-lacO1 amplified from pFD1146 with primers 
7144/7145 and cloned into pFL31 using SalI/NcoI restriction 
sites 

This study 

pFL43 
Full length mucG with a C-terminal HA tag amplified with 
primers 7182/7625 and cloned into pPM5 using NcoI/XhoI 
restriction sites 

Chapter 1 

pFL157 
Full lenght mucG with a C-terminal HA tag amplified with 
primers 7182/7183 and cloned into pFL32 using NcoI/XbaI 
restriction sites 

This study 

pFL158 
tetO-PcxfA amplified from pMM47.A using 7242/7243 and 
cloned into pPM5 using SalI/NcoI restriction sites. Addition of 
tetO sequence (5’-TCCCTATCAGTGATAGAGA-3’) upstream of -33 

This study 
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box  

pFL159 

PermF-tetR inserted into pFL158 using BamHI/XmaI restriction 
sites. PermF was amplified from pMM47.A with primers 
7244/7245 and tetR was amplified from pBBR-IBA3plus with 
primers 7247/7249 

This study 

pFL160 

PermF-revretR fusion inserted into pFL158 using BamHI/XmaI 
restriction sites. PermF was amplified from pMM47.A with 
7244/7246 and revTetR was amplified from pDH624 with 
primers 7248/7250. 

This study 

pFL161 
Full length Ccan_22280 with a C-terminal HA tag amplified with 
primers 7184/7185 and cloned into pFL159 using NcoI/XbaI 
restriction sites 

This study 

pFL162 
Full length Ccan_22280 with a C-terminal HA tag amplified from 
with primers 7184/7185 and cloned into pFL160 using 
NcoI/XbaI restriction sites 

This study 

pFL163 

tetO-PcxfA-tetO amplified from pFL158 using primers 
7242/7258 and cloned into pFL161 using SalI/NcoI restriction 
sites. Addition of tetO sequence (5’-TCCCTATCAGTGATAGAGA-
3’) upstream of -33 box and downstream of TIS 

This study 

pFL164 
PtetQ promoter and leader sequence amplified from pMM104 
using primers 7888/7889 and cloned into pMM47.A using 
SaI/NcoI restriction sites 

This study 

pFL165 
Full lenght mucG 24-28A with a C-terminal HA tag amplified with 
primer 7182/7183 and cloned into p164 using NcoI/XbaI 
restriction sites 

This study 

 

a: Selection markers for C. canimorsus are in between brakets  

 

Table S3. Oligonucleotides used in this study  

 

Ref. Sequence 5'-3' Restrictiona 

7144 gggtcgacggcagtgagcgcaacgc SalI 

7145 ggccatggaattgttatccgctcacaattgc NcoI 

7149 gggcatgctcactgcccgctttccagtcgg SphI 

7170 cgctgcagcttctaataatcgtagccaatatatcg  PstI 

7171 aaaaatttcatccttcgtagttacgaattctaaattacaaatttcaaattacg  

7172 gagtagataaaagcactgttaagtatgaaatcaattacgaattacg   

7173 ggactagtggtactaatcaacgaaaaatatgg SpeI 

7174 cgtaatttgaaatttgtaatttagaattcgtaactacgaaggatgaaatttttcagg  

7175 cgtaattcgtaattgatttcatacttaacagtgcttttatctactccg  

7182 ggccatggggaaaaaaatagtatccattagc NcoI 

7183 ggtctagactaagcgtaatctggaacatcgtatgggtaaaacgtaacttgagttctc XbaI 

7184 ggccatggggaaaaaaaatattttaacaatgg NcoI 

7185 ggtctagactaagcgtaatctggaacatcgtatgggtattttgaaaccgaccaaacc XbaI 

7195 ccaagcttgaattcccaaaaggtctaaaagtaaattttatcc HindIII 

7242 gggtcgactccctatcagtgatagagattacaaagaaaattcgacaaactg SalI 

7243 ccccatgggccgacaaaggtacataactaaagtttcccaccc NcoI 

7244 ggggatccgctcatcggtatttgcaacatcatagaaattgc BamHI 
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7245 cactttacttttatctaaacgagacatcatgtaacttcttacaggtgaatacttcttg  

7246 cactttacttttatctaatctggacatgtaacttcttacaggtgaatacttcttg  

7247 caagaagtattcacctgtaagaagttacatgatgtctcgtttagataaaagtaaagtg  

7248 caagaagtattcacctgtaagaagttacatgtccagattagataaaagtaaagtg  

7249 ggcccgggttaagacccactttcacatttaagttg SmaI 

7250 ggcccgggttatccactttcacatttaagttg SmaI 

7258 ccccatggtctctatcactgatagggagccgacaaaggtacataactaaagtttcccacc NcoI 

7888 atgtcgacacctacgtttccctaataaaatgtctatgg SalI 

7889 atccatggttggattaagcaataatatactacaatagatgc NcoI 

 

a: Restriction sites are underlined 
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New Iron Acquisition System in Bacteroidetes

Pablo Manfredi,a Frédéric Lauber,a,b Francesco Renzi,a,b Katrin Hack,b Estelle Hess,b Guy R. Cornelisa,b

Biozentrum der Universität Basel, Basel, Switzerlanda; Université de Namur, Namur, Belgiumb

Capnocytophaga canimorsus, a dog mouth commensal and a member of the Bacteroidetes phylum, causes rare but often fatal
septicemia in humans that have been in contact with a dog. Here, we show that C. canimorsus strains isolated from human infec-
tions grow readily in heat-inactivated human serum and that this property depends on a typical polysaccharide utilization locus
(PUL), namely, PUL3 in strain Cc5. PUL are a hallmark of Bacteroidetes, and they encode various products, including surface
protein complexes that capture and process polysaccharides or glycoproteins. The archetype system is the Bacteroides
thetaiotaomicron Sus system, devoted to starch utilization. Unexpectedly, PUL3 conferred the capacity to acquire iron from se-
rotransferrin (STF), and this capacity required each of the seven encoded proteins, indicating that a whole Sus-like machinery is
acting as an iron capture system (ICS), a new and unexpected function for Sus-like machinery. No siderophore could be detected
in the culture supernatant of C. canimorsus, suggesting that the Sus-like machinery captures iron directly from transferrin, but
this could not be formally demonstrated. The seven genes of the ICS were found in the genomes of several opportunistic patho-
gens from the Capnocytophaga and Prevotella genera, in different isolates of the severe poultry pathogen Riemerella anatipes-
tifer, and in strains of Bacteroides fragilis and Odoribacter splanchnicus isolated from human infections. Thus, this study de-
scribes a new type of ICS that evolved in Bacteroidetes from a polysaccharide utilization system and most likely represents an
important virulence factor in this group.

Capnocytophaga canimorsus is a commensal bacterium from the
oral cavity of dogs that is regularly isolated, since its descrip-

tion in 1989, from extremely severe human infections worldwide
(1, 2). Following contact with a dog, these infections generally
start with vague influenza symptoms, and patients enter the hos-
pital with fulminant septicemia often associated with peripheral
gangrene. Mortality is as high as 40% in spite of adequate antibio-
therapy and frequent amputations (1, 3–7). Infections do not nec-
essarily occur after severe injuries, which generally are followed by
a preventive antibiotic treatment, but rather after small bites,
scratches, or even licks (8). Many cases involve splenectomized,
alcoholic, or immunocompromised patients, but more than 40%
of the cases concern healthy people with no obvious risk factors (5,
8–12), indicating that C. canimorsus infections are not restricted
to immunocompromised individuals. It is worth noting that there
is no report of a dog having been infected by C. canimorsus, al-
though 74% of the dogs carry it (13–15). Thus, evolution shaped
these bacteria essentially as commensals of the mouth and not as
pathogens. Besides C. canimorsus, the oral cavity of dogs also har-
bors Capnocytophaga cynodegmi (14), the species most closely re-
lated to C. canimorsus, with a difference in the 16S RNA sequence
only in the range of 1.5% (13). Interestingly, C. cynodegmi is not
reported to cause human infections (13, 16). Other bacteria from
the genus Capnocytophaga colonize the oral cavity of diverse
mammals, including humans (17, 18). Capnocytophaga are fastid-
ious capnophilic (i.e., CO2 loving) Gram-negative bacteria that
belong to the family of Flavobacteriaceae in the phylum Bacte-
roidetes. Flavobacteriaceae include a variety of environmental and
marine bacteria, such as Flavobacterium johnsoniae (19), and a few
severe animal pathogens, like Flavobacterium psychrophilum, the
causative agent of cold water disease in salmonid fish (20), and
Riemerella anatipestifer, which causes duckling disease in water-
fowl and turkeys (21, 22). Besides the Flavobacteriaceae, the phy-
lum Bacteroidetes includes the Bacteroidaceae, which contain
many anaerobic commensals of the mammalian intestinal flora,

such as Bacteroides thetaiotaomicron and Bacteroides fragilis (23).
The phylum Bacteroidetes is taxonomically remote from the Pro-
teobacteria group, including most studied human pathogens, and
the biology of these bacteria reveals a number of original features.
One of these features is the presence of many systems resembling
the archetypal starch utilization system (Sus) discovered in B.
thetaiotaomicron (24). The Sus system is a cell envelope-associated
multiprotein complex characterized by the coordinated action of
several proteins and lipoproteins involved in substrate binding,
degradation, and internalization into the periplasm (14, 24–31).
Subsequent microbial genome sequencing projects revealed the
presence of many polysaccharide utilization loci (PUL) encoding
Sus-like systems in the genome of B. thetaiotaomicron and other
saccharolytic Bacteroidetes (26, 31, 32), targeting all major classes
of host and dietary glycans (33). The genome of saprophytic Bac-
teroidetes like F. johnsoniae also contains a large number of PUL
(34), indicating that they are a hallmark of the Bacteroidetes phy-
lum rather than of the commensal Bacteroides only. The genome
of the clinical isolate type strain C. canimorsus 5 (also called strain
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Cc5) (35, 36) contains 13 such PUL, which may encode surface
feeding machineries (37). At least 10 of them are expressed, ac-
counting for more than half of the surface-exposed proteins, when
Cc5 bacteria are grown on HEK293 cells. All of these findings
indicate that surface-exposed complexes specialized in foraging
complex glycans or other macromolecules play a central role in
the biology of C. canimorsus (37). Indeed, C. canimorsus has the
unusual property of harvesting N-linked glycan chains of soluble
proteins like immunoglobulins and even of surface glycoproteins
from animal cells, including phagocytes. This capacity depends on
a Sus-like complex encoded by PUL5 (38). However, the function
of the other PUL is not known yet, and their impact on pathoge-
nicity is unclear. In the present study, we aimed at identifying C.
canimorsus virulence factors implicated in septicemia, and we
demonstrate that PUL3 encodes a Sus-like system devoted to the
acquisition of iron from transferrins, including human serotrans-
ferrin (STF).

MATERIALS AND METHODS
Ethics statement. Blood samples from healthy volunteers who had signed
a written informed consent were provided by the Blutspendezentrum SRK
Beider Basel. The experiments were approved by the Ethikkommission
Beider Basel EKBB (no. EK398/11).

Bacterial strains. This study was carried out with C. canimorsus strains
isolated from human infections (35, 36) and C. canimorsus and C. cyno-
degmi strains isolated from dogs in two areas of Switzerland. One strain of
C. cynodegmi was purchased from the ATCC. Escherichia coli S17-1, Pseu-
domonas aeruginosa PAO1, and the C. canimorsus mutant strains are de-
scribed in Table S1 in the supplemental material.

Conventional bacterial growth conditions and selective agents. C.
canimorsus bacteria were routinely grown on heart infusion agar (Difco)
supplemented with 5% sheep blood (Oxoid) (SB plates) for 2 days at 37°C
in the presence of 5% CO2. Escherichia coli strains were grown routinely in
lysogeny broth (LB) at 37°C. Pseudomonas aeruginosa PAO1 (39) was
grown on SB plates at 37°C in the presence of 5% CO2. To select for
plasmids, antibiotics were added at the following concentrations: 10 �g ·
ml�1 erythromycin, 10 �g · ml�1 cefoxitin, 20 �g · ml�1 gentamicin.

Mutagenesis by allelic exchange and trans-complementation. Mu-
tagenesis of the Cc5 wild type (wt) was performed as described in refer-
ence (40), with slight modifications. Briefly, replacement cassettes with
flanking regions spanning approximately 500 bp homologous to regions
directly framing targeted genes were constructed with a three-fragment
overlapping PCR strategy. First, two PCRs using Phusion polymerase
(M0530S; New England BioLabs) were performed on 100 ng of Cc5
genomic DNA with primers for the upstream (oligonucleotides 1.1 and
1.2) and downstream (oligonucleotides 2.1 and 2.2) regions flanking the
sequence targeted for deletion. Primers 1.2 and 2.1 included a 20-bp ex-
tension at their 5= extremities corresponding to both ends of the ermF
gene (including the promoter). The ermF resistance gene was amplified
from pMM13 with primers 3.1 and 3.2, which included approximately
20-bp extensions for further annealing to amplify homologous regions.
All three PCR products were cleaned and then mixed in equal amounts for
PCR using Phusion polymerase. The initial denaturation was at 98°C for 2
min, followed by 10 cycles without primers to allow annealing and exten-
sion of the overlapping fragments (98°C for 30 s, 50°C for 40 s, and 72°C
for 2 min). After the addition of external primers (1.1 and 2.2), the pro-
gram was continued for 20 cycles (98°C for 30 s, 50°C for 40 s, and 72°C for
2 min 30 s) and finally for 10 min at 72°C. Final PCR products consisted of
locus::ermF insertion cassettes and were digested with PstI and SpeI for
cloning into the appropriate sites of the C. canimorsus suicide vector,
pMM25 (40). The resulting plasmids were transferred by RP4-mediated
conjugative DNA transfer from E. coli S17-1 to Cc5 to allow the integra-
tion of the insertion cassette. Transconjugants then were selected for the
presence of the ermF resistance cassette and checked for sensitivity to

cefoxitin, indicating the loss of the pMM25 backbone, and the mutated
regions were sequenced with primers 1.1 and 2.2. Trans-complementa-
tion of the different knockouts was done by introducing the relevant genes
cloned in the C. canimorsus expression vector pPM5. Mutant strains are
listed in Table S1 in the supplemental material, primers are in Table S2,
and plasmids are in Table S3.

PCR screen for PUL3. For PCR screen of PUL3 genes, strains were
grown for 2 days on SB plates, collected, and resuspended in 400 �l phos-
phate-buffered saline (PBS) at an OD600 of 2. Bacterial suspensions then
were centrifuged at 6,000 relative centrifugal forces (RCF) for 5 min and
resuspended in 400 �l H2O. Five-�l aliquots of bacterial suspensions
then were used in 35-cycle PCRs as described in reference 13. Primers used
for the amplification of genes Ccan_03640 (icsA), Ccan_03650 (icsC),
Ccan_03680 (icsD), Ccan_03690 (icsE), Ccan_03700 (icsF), Ccan_03710
(icsG), and Ccan_03720 (icsH) are listed in Table S2 in the supplemental
material. 16S rRNA genes were amplified as a control (see Table S2).

Sera and protein-depleted serum derivatives. Batches of fresh hu-
man blood pooled from 20 individuals were collected at the University
Hospital of Basel (Blutspendezentrum). The pooled blood was clotted and
centrifuged for 10 min at 6,000 RCF, and the supernatant (serum) was
collected for further analyses. Alternatively, human serum collected off
the clot from healthy normal humans was purchased from EMD Millipore
(S1-liter; Billerica, MA, USA). Serum then was heat inactivated (HIHS) at
55°C for 1 h when required. Protein-depleted human serum (PDHS) was
obtained by collecting the flowthrough of 15 ml human serum passed
through a single Amicon filter unit with a nominal molecular mass limit of
50 kDa (UFC905024; Millipore) by spinning at 4,000 RCF for 40 min at
20°C. Protein depletion then was monitored by SDS-PAGE (41) and silver
staining (42). Transferrin depletion was checked by anti-STF immuno-
blotting (goat anti-human transferrin; T2027; Sigma-Aldrich). Filtered
serum then was heat inactivated as described above.

Growth in heat-inactivated and protein-depleted human sera.
Growth assays were performed in 96-well plates. Inocula were prepared
from cultures grown on SB plates, set to an OD600 of 0.2, and serially
diluted 1:10 four times. Twenty-two- and 10-�l bacterial suspensions
then were used to inoculate 200 �l of HIHS and 50 �l of PDHS, respec-
tively. HIHS was supplemented with iron (III) chloride (FeCl3; 0.25 mM),
iron (III) citrate (FeC6H5O7; 0.25 mM), or iron (II) sulfate (FeSO4; 0.25
mM) if required. PDHS was supplemented with iron (III) chloride (0.25
mM), human STF (3 g · liter�1; 16-16-032001; Athens Research), human
ApoSTF (3 g · liter�1; 16-16-A32001; Athens Research), human lactofer-
rin (1.5 g · liter�1; 30-1147; Fitzgerald), bovine STF (3 g · liter�1; PRO-
510; Prospecbio), hemin (0.25 mM; H9039; Sigma-Aldrich), or hemoglo-
bin (0.1 mM; H7379; Sigma-Aldrich) if required. Equivalent volumes of
inocula also were plated in order to precisely determine bacterial concen-
trations by CFU counting at the inoculation time point. Infections then
were incubated statically for 23 h at 37°C in the presence of 5% CO2. Serial
dilutions were plated on SB plates, and CFU were determined. The num-
ber of generations was calculated according to the following formula: CFU
in the well � inoculum � 2Number of generations. Cocultures were performed
essentially in same the way, except that 200 �l of HIHS was inoculated
with both 22 �l of wild-type C. canimorsus 5 and 22 �l of the deletion
strain set at an OD600 of 0.2 and serially diluted 1:10 four times. In addi-
tion, serial dilutions following incubation were plated in parallel on SB
plates and on SB plates containing erythromycin for the selection of dele-
tion strains. The total growth of the deletion strains corresponded to the
CFU on erythromycin-containing plates, while the total growth of the wt
was determined by subtracting the CFU counts on erythromycin-contain-
ing plates from the CFU counts on SB plates.

Protein concentrations were checked using a Bio-Rad protein assay kit
(500-0002; Bio-Rad), and iron concentrations, except for hemoglobin,
were checked using the ferrozine assay (43). The iron concentration of
hemoglobin was specifically determined using a modified ferrozine assay
(44). Protein and iron concentrations are given in Table S4 in the supple-
mental material.
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Monitoring of transcription by real-time RT-PCR. The Cc5 wt was
inoculated at a density of 5 � 105 bacteria · ml�1 in 15 ml of HIHS at 37°C
in the presence of 5% CO2 with or without 0.25 mM iron (III) citrate.
Bacteria were harvested after 6 h (corresponding to the mid-log growth
phase) by centrifugation at 7,000 RCF at 4°C for 5 min. The pellet was
resuspended in RNAprotect bacterial reagent (76506; Qiagen) and centri-
fuged again at 5,000 RCF for 10 min. The �furA deletion strain was grown
under the same conditions without the addition of iron. Bacteria were
lysed in 200 �l Tris-EDTA (TE) buffer containing proteinase K (60 mAU ·
ml�1; 19131; Qiagen) and lysozyme (1 mg · ml�1; 10837059001; Roche)
for 10 min at 25°C on a shaker. RNA was extracted with the miRNeasy
minikit (217004; Qiagen). One ml of QIAzol reagent was heated up to
65°C and added to each sample. Samples were vortexed for 3 min and
incubated for 5 min at room temperature. Two hundred �l chloroform
was added. The following steps were performed according to the manu-
facturer’s instructions. To remove genomic DNA, an on-column DNase
digestion and an additional DNase digestion postextraction were per-
formed using an RNase-free DNase set (79254; Qiagen). RNA was puri-
fied with the RNeasy MinElute cleanup kit (74204; Qiagen). RNA integrity
was verified by nondenaturing agarose gel electrophoresis (1% agarose
[EP-0010-05; Eurogentec] in Tris-acetate-EDTA [TAE]). The absence of
genomic DNA was tested by PCR for 16S rRNA. One hundred to 500 ng of
RNA was reverse transcribed using Superscript II reverse transcriptase
(200 U) (18064-014; Invitrogen) and random primers (100 ng · ml�1)
(48190011; Invitrogen) according to the manufacturer’s instructions. A
no-enzyme control was included for all RNA samples to confirm the ab-
sence of genomic DNA. Quantitative PCR (qPCR) was performed using
FastStart Universal SYBR Master (Rox) (04913850001; Roche) and prim-
ers at 0.3 �M. Primers were designed with NCBI primer-BLAST. Three
technical replicates were run for each target and condition. Before per-
forming the actual qPCR, serial cDNA dilutions were amplified, and PCR
and primer efficiencies were evaluated by means of a standard curve. All
qPCRs were performed on a StepOne machine (Applied Biosystems) us-
ing the following thermal cycling conditions: 2 min at 50°C, 10 min at
95°C, 40 cycles 15 s at 95°C, and 1 min at 60°C. Fold change was calculated
as described in reference 45, with the ��CT method (where CT is thresh-
old cycle) considering the efficiency of the PCR for each target. 16S rRNA
served as a reference gene.

Transferrin deglycosylation analyses and lectin stainings. For the
assessment of the deglycosylation of STF by Cc5, bacteria were collected
from SB plates and resuspended in PBS at an OD600 of 1. One hundred
microliters of bacterial suspensions then was incubated with 100 �l of a
transferrin (16-16-032001; Athens Research) solution (0.2 g · liter�1) for
180 min at 37°C. As a negative control, 200 �l of a 1:2-diluted transferrin
solution alone was incubated for 180 min at 37°C. Samples then were
centrifuged for 5 min at 13,000 RCF, supernatant was collected, and a
12-�l aliquot was loaded in a 12% SDS-PAGE gel. Samples were analyzed
by Coomassie brilliant blue R250 (B0149; Sigma) and lectin stainings with
Sambucus nigra lectin (SNA) according to the manufacturer’s recommen-
dations (digoxigenin glycan differentiation kit; 11210238001; Roche).
For the deglycosylation of human STF by PNGase F, 9 �l of human STF
(2 g · liter�1; 16-16-032001; Athens Research) was incubated with 2 �l
of either fresh or heat-inactivated (10 min at 75°C) enzyme (P0704L;
New England BioLabs) in the presence of 1.2 �l of 10� G7 buffer
(B3704; New England BioLabs) for 2 h at 37°C. Deglycosylation then
was monitored by immunoblotting and lectin stainings with SNA as
described above. For subsequent growth assays, PDHS was supple-
mented with 4 �l of deglycosylated STF for a minimal final concentra-
tion required for growth of 0.1 g · liter�1.

Siderophore detection assay. Siderophore production was assayed
using a modified chrome azurol S (CAS) procedure (46, 47). CAS
reagent was prepared as described in reference 46. In order to reach the
same final count, C. canimorsus 5 and Pseudomonas aeruginosa PAO1
were inoculated at approximately 104 and 107 bacterial cells, respectively,
in 1 ml HIHS in 12-well plates and incubated for 23 h at 37°C in the

presence of 5% CO2. Serial dilutions were plated on SB plates to determine
the final growth by CFU counting. Bacterial cells were removed by two
successive centrifugation steps at 12,000 RCF for 5 min at 20°C. Superna-
tants then were dialyzed overnight at 4°C (3,500 molecular weight cutoff
[MWCO]; 133110; Spectra/Por Biotech) against 4 ml double-distilled wa-
ter (ddH2O) containing 0.02% sodium azide. An uninfected control sam-
ple of HIHS was treated in parallel. Finally, dialysates were concentrated
for approximately 8 h at 37°C to 200 to 250 �l using a Concentrator plus
centrifuge (Eppendorf). Fifty �l of dialysate was mixed with an equal
volume of CAS solution in a 96-well plate and incubated for 4 h at 37°C.
Absorbance at 630 nm was measured using an xMark microplate spectro-
photometer (Bio-Rad) and Microplate Manager 6 software (version 6.0;
Bio-Rad), ddH2O containing 0.02% sodium azide serving as a blank, and
uninfected HIHS serving as the reference. All measurements were realized
in duplicates. Siderophore production was estimated by comparing the
ratio [(A630 of sample)/(A630 of reference)] of Cc5 and PAO1 dialysates to
a desferrioxamine mesylate (Desferal) (252750; Calbiochem) standard
curve in ddH2O containing 0.02% sodium azide.

Uptake of iron from transferrin by C. canimorsus. 55Fe-transferrin
was prepared according to references 48 and 49. ApoSTF at 1 mg · ml�1 in
40 mM Tris-HCl buffer (pH 7.4) containing 2 mM sodium carbonate was
mixed with 0.075 �mol of sodium citrate and 0.0075 �mol of 55Fe-Cl3
(Perkin-Elmer) and incubated at room temperature for 30 min. The so-
lution then was transferred into dialysis tubing (6,000 to 8,000 MWCO;
132665; Spectra/Por Biotech) and dialyzed four times against 250 ml 40
mM Tris-HCl buffer (pH 7.4) containing 2 mM sodium carbonate for 16
h. The final protein and iron concentrations were evaluated as described
above, and transferrin was found to be 20% iron saturated. Five hundred
�l 55Fe-STF (3.25 �M) was mixed with 500 �l of bacterial suspension in
RPMI (R8758; Sigma-Aldrich) with 2.5% HIHS set to an OD600 of 1. The
mixture was incubated statically at 37°C for 24 h, and a control sample was
incubated in parallel on ice. Cells then were harvested by centrifugation
(6,000 RCF, 3 min), washed four times with 1 ml PBS, and resuspended in
a final volume of 1 ml of PBS. The OD600 was measured for each sample,
and equivalent amounts of bacteria were transferred into scintillation
vials. Four ml of scintillation liquid (Ultima Gold; 6013329; Perkin-El-
mer) was added, and vials were incubated overnight in the dark. Radio-
activity associated with bacteria was quantified with a Beckman LS6500
liquid scintillation counter (Beckman Coulter, Fullerton, CA).

Identification of PUL3 gene members in the genome of other
organisms. icsA (Ccan_03640; gi|340621142; YP_004739593.1), icsC
(Ccan_03650; gi|340621143; YP_004739594), Ccan_03660 (gi|340621144;
YP_004739595.1), Ccan_03670 (gi|340621145; YP_004739596.1), icsD
(Ccan_03680; gi|340621146; YP_004739597.1), icsE (Ccan_03690;
gi|340621147; YP_004739598.1), icsF (Ccan_03700; gi|340621148;
YP_004739599.1), icsG (Ccan_03710; gi|340621149; YP_004739600.1),
and icsH (Ccan_03720; gi|340621150; YP_004739601.1) from C. canimor-
sus 5 were blasted against the nr database and clustered at 70% identity
(50). Hits above the threshold (high-scoring segment pair E value of
�10�5) were aligned with ClustalW (default settings) (51). Alignments
were used to build hidden Markov models with HMMER.3 (http:
//hmmer.org/). Models were calibrated and searched against a local copy
of the microbial complete genome database, including approximately
2,100 genomes (NCBI) with HMMER.3 and an E value cutoff of 0.0001. A
series of Perl scripts was used to sort the outputs and to count occurrences
of complete or partial systems. Occurrences of homologous systems then
were reported on an illustrative phylogenetic tree based on 16S rRNA
sequences from the ribosomal database project (RDP; http://rdp.cme
.msu.edu/index.jsp). All sequences were 1,200 nucleotides long and
tagged as good quality according to RDP. Type strains and isolated
samples were preferred. At least two sequences per genus were down-
loaded as alignment files from RDP. Consensus was inferred using
EMBOSS (http://www.sanger.ac.uk/Software/EMBOSS). Genus consen-
suses were aligned with ClustalW (default settings), and phylogenetic
analyses were conducted in MEGA4 (52). Evolutionary history was in-
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ferred using unweighted-pair group method using average linkages (UP-
GMA), and evolutionary distances were computed using the maximum
composite likelihood method. All positions containing gaps and missing
data were eliminated (complete deletion option), leaving a total of 1,143
positions in the final data set. Further searches for PUL3 genes involved in
iron acquisition in organisms absent from the complete genome database
were based on PSIBLAST searches with default parameters at the NCBI
website (http://blast.ncbi.nlm.nih.gov/Blast.cgi) with two reiterations in
total. Only the first 500 hits below an E value of 0.05 were considered. The
computations were performed on the CPU cluster of the [BC]2 Basel
Computational Biology Center (http://www.bc2.ch/center/index.htm).

Accession numbers for relevant genes and proteins mentioned
in the text. The sequences of icsA (Ccan_03640; gi|340621142;
YP_004739593.1), icsC (Ccan_03650; gi|340621143; YP_004739594),
icsD (Ccan_03680; gi|340621146; YP_004739597.1), icsE (Ccan_03690;
gi|340621147; YP_004739598.1), icsF (Ccan_03700; gi|340621148;
YP_004739599.1), icsG (Ccan_03710; gi|340621149; YP_004739600.1),
and icsH (Ccan_03720; gi|340621150; YP_004739601.1) were deposited in
GenBank previously.

RESULTS
C. canimorsus strains isolated from human infections grow
readily in heat-inactivated human serum. While Cc5 bacteria
survived in 10% fresh human serum (53), they were killed in 100%
fresh human serum (FHS) (data not shown). In contrast, they
grew readily in 100% heat-inactivated human serum (HIHS) (Fig.
1), reaching after 23 h a density of about 15 � 109 CFU · ml�1

irrespective of the inoculum. In order to assess the relevance of
this observation for pathogenesis of human infection, we moni-
tored the growth of 78 different Capnocytophaga strains in HIHS.
Nine strains of C. canimorsus isolated from human infections (re-
ferred to as clinical isolates), 62 strains of C. canimorsus isolated
from dog mouth (dog isolates), and 7 strains of oral canine C.
cynodegmi were inoculated in HIHS, and colonies were counted
after 23 h of incubation. All clinical isolates grew readily, achieving
19 � 3.7 generations (Fig. 1). In contrast, dog isolates fell into two
groups, a first group of strains (31 strains, 50%) performed 18.4 �

3.2 generations, similar to the clinical isolates, while a second
group of 31 strains either did not grow or produced fewer than 8
generations (Fig. 1). The very different proportions of C. canimor-
sus strains able to grow in HIHS among clinical isolates and dog
strains strongly suggests that this capacity correlates with patho-
genicity and that clinical isolates originate from a subpopulation
of dog strains. The strains of C. cynodegmi that were tested per-
formed 9.3 � 4 generations in HIHS (Fig. 1), which is significantly
different from both groups of C. canimorsus isolated from dogs
(P values below 10�3). This is somewhat surprising, given that C.
cynodegmi is not reported to cause systemic human infections.
However, the differences between C. cynodegmi and the two
groups of C. canimorsus suggest that several factors can influence
the growth of bacteria from this taxon in HIHS.

PUL3 is crucial for growth in HIHS. In order to identify the
genes underlying the capacity to grow in HIHS, we compared the
genomes of Cc5 (35), three additional clinical isolates of C. cani-
morsus (Cc2, Cc11, and Cc12) (36), three C. canimorsus dog
strains that failed to grow in HIHS (CcD38, CcD93, and CcD95),
and three strains of C. cynodegmi that displayed moderate growth
levels (Ccyn2B, Ccyn49044, and Ccyn74). The genome sequences
and their annotations will be described in detail elsewhere. This
comparative analysis identified 97 orthologous groups of genes
whose presence correlates with the capacity to grow in HIHS. Only
54 of these orthologous clusters included genes with a predicted
function. Thirty-eight were involved in a variety of processes, but
16 encoded Sus-like feeding complexes (data not shown). The
latter 16 genes belong to only 3 polysaccharide utilization loci,
namely PUL3 (9 genes), PUL7 (6 genes), and PUL11 (one gene)
(37). Because PUL genes represent 16.5% of those differentiating
strains that can or cannot grow in HIHS while all of the PUL genes
represent only about 4% of the Cc5 complete genome, we first
tested the PUL3, PUL7, and PUL11 knockout mutants for growth
in HIHS. In good agreement with the prediction based on genom-
ics, bacteria deprived of the PUL3 locus were dramatically im-

FIG 1 Growth of C. canimorsus and C. cynodegmi strains in heat-inactivated human serum. The number of generations achieved after 23 h in HIHS for individual
Capnocytophaga species strains are graphed. Black, clinical isolates of C. canimorsus; the diamond shape indicates strain Cc5; gray, dog isolates of C. canimorsus;
white, dog isolates of C. cynodegmi. The best significant expectation-maximization clustering of the C. canimorsus dog isolates is reached when clustering the
isolates into the two groups (growing and nongrowing) separated by the dotted line. Solid lines indicate the average number of generations for each group
(averages from 3 experiments). ***, t test error probability below 0.001. The clinical isolates and the growing dog isolates of C. canimorsus cannot be discriminated
by a t test on the sole basis of their growth scores (n.s.). The group of C. cynodegmi strains displays intermediate growth.

ICS of Bacteroidetes

January 2015 Volume 83 Number 1 iai.asm.org 303Infection and Immunity

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.bc2.ch/center/index.htm
http://iai.asm.org


paired in their capacity to grow in HIHS, while bacteria deprived
of PUL7 or PUL11 did not show any significant growth reduction
compared to the wt (see Fig. S1 in the supplemental material). We
also tested the 10 Cc5 knockout mutants deprived of the other
PUL genes (37). Not surprisingly, PUL5 mutants had a moderate
growth defect in HIHS compared to the wt (see Fig. S1). This is
consistent with the fact that PUL5 encodes the Gpd glycoprotein
deglycosylation system that is essential for aminosugar scavenging
(37, 54). The deletion of PUL1 also led to a moderate growth
defect, but this was not investigated further.

PUL3 has a unique genetic organization compared to the
other PUL genes of C. canimorsus 5. PUL3 was annotated as a
large locus of 15 genes sharing the same transcriptional orienta-
tion (Ccan_03600 to Ccan_03740) (37) (Fig. 2). PUL3 has two
major features that make it different from the other PUL of Cc5.
First, it is the only PUL where the susC-like gene Ccan_03650 is
separated from the susD-like lipoprotein gene by other genes.
However, these intervening genes (Ccan_03660 and Ccan_03670)
have a functional annotation that is unusual for PUL genes
(Fig. 2A), suggesting that they have inserted within an ancestral
canonical PUL. The second unusual feature of PUL3 is the
presence of two susC-like genes instead of a single one
(Ccan_03640 and Ccan_03650). Ccan_03640 is 378 amino acids

smaller than Ccan_03650 and shares some remote similarities
with the iron (III) dicitrate transporter FecA of E. coli (Uniprot
accession number P13036). Significant intergenic regions of
around 400 bp frame each susC-like gene (Fig. 2A), while in most
PUL there is only one large noncoding sequence with promoter
activity located upstream from the single susC homologue (37). As
for most other PUL, the last genes from the putative main operon
(Ccan_03690 to Ccan_03720) encode conserved hypothetical li-
poproteins for which no function could be assigned (Fig. 2A).
Genes at both ends of the locus (Ccan_03610, Ccan_03620, and
Ccan_03730) seem to lie outside the putative main operon; nev-
ertheless, their predicted localization and function is compatible
with a role in glycan or glycoprotein degradation at the bacterial
surface (Fig. 2A). A bias in the DNA K-mer composition, as de-
tected by the Alien_hunter software (55), can be observed from
Ccan_03640 to Ccan_03720 with respect to the rest of the chro-
mosome (Fig. 2A), suggesting that the central region of PUL3 has
been acquired more recently than the other genes at the periphery.

The sus-like genes of PUL3 are required for iron scavenging
in human serum. Since the annotation of Ccan_03640 pointed to
an iron transporter, we tested whether the addition of various iron
sources to the HIHS could rescue the growth of the �PUL3 mu-
tant bacteria. When HIHS was supplemented with different iron

FIG 2 Functional characterization of PUL3. (A) Genetic organization and functional annotation of PUL3. Genes likely involved in the capture of iron by C.
canimorsus in human serum are labeled icsA-H. Gray-delineated white arrows indicate genes whose deletion had no effect on iron acquisition. The two genes
marked by dashed white arrows were not knocked out in this study. White and black circles at the N terminus of the coding sequences indicate that the protein
has a type I or type II (lipoprotein) signal peptide, respectively. The numbers under the arrows correspond to the Ccan_ gene references of strain Cc5. The black
double arrow indicates the span of the deletion in the �PUL3 mutant used throughout this study. The gray double arrow shows the range of the region of PUL3
exhibiting a DNA composition bias with respect to the rest of the chromosome, as computed by Alien_Hunter with a local score of 34.589 (default significance
cutoff, 18). (B) Number of generations achieved by the wt and single-gene mutants in HIHS (white bars) and in HIHS supplemented with 0.25 mM iron (III)
chloride (FeCl3) (black bars). Gray bars indicate the growth of mutants trans-complemented with a plasmid expressing the corresponding deleted gene. Error
bars indicate standard deviations (averages from 3 experiments). All differences above 7 generations have t test-based error probabilities below 0.008.
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salts at a concentration of 250 �M, the growth of �PUL3 mutant
bacteria was fully restored to the wt level (data not shown).

In order to investigate whether the whole Sus-like apparatus or
only one of the SusC-like proteins was involved in iron uptake, we
performed a systematic replacement of each of the 13 genes, rang-
ing from Ccan_03610 to Ccan_03730, by an erythromycin resis-
tance cassette. Interestingly, the substitution of each of the seven
typical PUL genes had a drastic effect on the growth capacity in
HIHS (Fig. 2B). Indeed, the deletion of each of the two susC ho-
mologs (Ccan_03640 and Ccan_03650), the susD homolog
(Ccan_03680), and each of the four uncharacterized lipoprotein
genes (Ccan_03690, Ccan_03700, Ccan_03710, and Ccan_03720)
reduced the number of generations per 23 h from 22.5 � 0.8 to an
average of 4.5 � 1.1 (Fig. 2B). As expected, the addition of iron
(III) chloride to the HIHS restored the growth capacity of all the
mutant strains (19.4 � 1.7 generations) (Fig. 2B). Trans-comple-
mentation of the seven individual mutants restored the growth
capacity, indicating that each of these genes is involved in the
growth process in HIHS (Fig. 2B). These results lead to the con-
clusion that iron uptake requires not only a putative TonB-depen-
dent outer membrane transporter but also a multiprotein Sus-like
complex.

The strains deleted of the two genes with an unusual functional
annotation for PUL genes (Ccan_03660 and Ccan_03670) and the
deletion mutants for upstream (Ccan_03610, Ccan_03620, and
Ccan_03630) and downstream (Ccan_03730) genes in the locus
were able to grow normally in HIHS (Fig. 2B). Thus, the locus
encoding the iron capture system (ICS) (gray double arrow in Fig.
2A) is smaller than the whole of PUL3, as initially described by
Manfredi et al. (37), and corresponds to the genes sharing a similar
K-mer bias in their DNA content (55), as mentioned above. We
named the seven genes required for iron acquisition ics. We called
Ccan_03640 and Ccan_03650, the two putative TonB-dependent
porins (SusC-like), icsA and icsC, respectively, and the gene en-
coding a homolog of susD (Ccan_03680) was named icsD. The
four additional lipoproteins were named according to their order
in the putative operon of icsE, icsF, icsG, and icsH (Ccan_03690,
Ccan_03700, Ccan_03710, and Ccan_03720, respectively) (Fig.
2A). We suggest limiting PUL3 to the genes forming an iron cap-
ture system that has been acquired at once by horizontal transfer.

PUL3 expression is regulated by iron and FurA. If PUL3 was
indeed devoted to iron capture, its expression probably would be
modulated by iron. To assess this, we monitored the expression by
real-time PCR of three PUL3 genes (Ccan_03640, Ccan_03650,
and Ccan_03680) as representatives of the PUL3 locus, comparing
the expression of these genes in Cc5 bacteria grown in HIHS to
those of bacteria grown in HIHS supplemented with iron (III)
citrate as a source of free iron. The addition of iron (III) citrate led
to a ca. 2-fold decrease in the expression of all three PUL3 genes,
indicating that PUL3 expression is modulated by the presence of
free iron in the serum (see Fig. S2 in the supplemental material).

In many bacteria, the expression of genes involved in iron stor-
age and iron uptake, such as iron channels, as well as transferrin
and hemoglobin binding proteins and siderophores, is regulated
by the transcriptional regulator FurA. Upon increasing the con-
centration of free iron, Fe2	 cations may bind to FurA, which then
activates or represses gene transcription (56). Since the genome of
Cc5 encodes a FurA-like protein (Ccan_15860), we generated a
furA deletion mutant. We then quantified Ccan_03640 (icsA),
Ccan_03650 (icsC), and Ccan_03680 (icsD) mRNA levels by real-

time PCR, in the wt and the furA mutant, during growth in HIHS.
The expression of PUL3 genes increased by about 2-fold in the
furA mutant strain compared to wt levels (see Fig. S2 in the sup-
plemental material). These results suggest that furA regulates
PUL3 and reinforces the previous results showing that PUL3 is
modulated by iron.

PUL3 encodes a system capturing iron from human transfer-
rin. In order to identify the source of iron exploited by C. cani-
morsus in human serum, we first depleted the HIHS of most of its
protein content until the growth of C. canimorsus became depen-
dent on the supply of iron (III) chloride. Protein depletion was
monitored by silver-stained SDS-PAGEs and mass spectrometry
analysis (Fig. 3A). With the exception of small amounts of human
serum albumin (Uniprot accession number P02768), only trace
amounts of other proteins could be detected in the PDHS. Deple-
tion of STF, the major iron-binding protein in human serum, was
confirmed specifically by Western blotting (Fig. 3B). We then
tested whether the addition of human serotransferrin could re-
store growth in this PDHS. As shown in Fig. 3C, human iron-
bound STF could restore the growth of wt Cc5 bacteria but not of
�PUL3 mutant bacteria. In contrast, when human ApoSTF was
used instead of its iron-loaded counterpart, neither wt bacteria
nor the �PUL3 bacteria grew. Additionally, we monitored the
uptake of iron from 55Fe-loaded transferrin by wt and �PUL3
mutant Cc5 bacteria. As shown in Fig. 3D, over a period of 24 h, wt
Cc5 bacteria assimilated around 200-fold more 55Fe at 37°C than
on ice, indicating that the capture mechanism is an active mech-
anism. In good agreement with the previous data, at 37°C, �PUL3
mutant bacteria captured around 80-fold less iron than did wt
bacteria. Together, these data demonstrate that PUL3 encodes an
ICS that allows iron scavenging from transferrin.

Given the oral ecology of C. canimorsus, we tested whether
lactoferrin (LTF), which is abundant in saliva and body fluids, also
could serve as an iron source. Like human STF, human LTF could
restore the growth of the wt but not of the �PUL3 mutant bacteria
in PDHS (Fig. 3E). Since humans are not a natural host for C.
canimorsus, we suspected that the ICS would not be human spe-
cific. Indeed, bovine STF could serve as an iron source in a PUL3-
dependent manner (Fig. 3E). Despite the broad recognition spec-
trum among members of the transferrin family, other iron-
binding molecules found in the human body, such as hemoglobin
or hemin, could not restore the growth defect of wt bacteria in
PDHS, indicating that C. canimorsus is not able to directly take up
heme or to secrete hemophores (Fig. 3E). This suggests that the
PUL3-encoded system is specific for proteins of the transferrin
family.

Iron capture from transferrin does not involve soluble fac-
tors. Several attempts to demonstrate the direct binding of trans-
ferrin to the ICS turned out to be unsuccessful. Hence, we had to
exclude that the ICS could be involved in the synthesis, the release,
or the capture of an intermediary siderophore. To do this, we
performed a series of cross-feeding experiments between wt and
individual PUL3 gene mutants. We first confirmed that the
growth defect of the �PUL3 mutant bacteria in HIHS still could be
rescued by the addition of iron in the presence of wt bacteria,
indicating that there is no competition between the strains (see
Fig. S3A in the supplemental material). We then tested whether
the mutants lacking a single ics gene could grow in HIHS in the
presence of wt bacteria. As shown in Fig. S3B in the supplemental
material, the presence of wt bacteria did not allow the growth of
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any ics mutant. Thus, we can exclude that PUL3 gene products
serve to export or synthesize a soluble siderophore.

We then examined the genome of Cc5 to detect genes involved
in siderophore synthesis. The search included genes encoding the
synthesis of enterochelin, vibriobactin, pyochelin, yersiniabactin,
mycobactin, corynebactin, bacillibactin, myxochelin A or B, and,
more generally, carboxylate, catecholate, and hydroxamate sid-
erophores. No homologs were detected, suggesting that C. cani-
morsus does not produce already-known siderophores, but one
cannot exclude that C. canimorsus synthesizes a totally new and
unknown class of iron-fetching molecules. Therefore, we at-
tempted to detect a siderophore in the concentrated HIHS culture
supernatant of Cc5, taking Pseudomonas aeruginosa PAO1 (57,
58) as a control. While the chrome azurol technique (46, 47) de-
tected a siderophore in the culture supernatant of PAO1, even
after a 10-fold dilution, it gave a negative result for the undiluted
Cc5 culture supernatant at a comparable biomass (see Fig. S3C
and D in the supplemental material).

Although these observations do not formally rule out that C.
canimorsus secretes a siderophore that would be captured by the
ICS, they make it unlikely.

Iron capture occurs independently of the N-glycosylation of
transferrin. Since C. canimorsus has been shown to deglycosylate
N-linked glycoproteins through the PUL5-encoded GpdG com-
plex (54), we investigated whether the glycosylation state of trans-
ferrin plays a role in iron capture. We first monitored the glyco-
sylation state of the protein prior to and after incubation with C.
canimorsus. Not surprisingly, we observed a strong deglycosyla-
tion of the N-linked glycan chains of human STF by wild-type C.
canimorsus, and this deglycosylation turned out to be dependent
on PUL5 (see Fig. S4A and B in the supplemental material). How-
ever, deletion of PUL5 had only a slight effect on growth in HIHS
(see Fig. S1), suggesting that the iron capture system is not acting
downstream of the PUL5-encoded Gpd complex (54). In addi-
tion, nondenaturing removal of N-linked glycan chains from hu-
man STF with a PNGase F treatment prior to PDHS supplemen-
tation (Fig. 4A) did not alter iron chelation by STF, as indicated
by the low growth level of the �PUL3 mutant, or prevent the
ICS activity in the case of wt bacteria (Fig. 4A and B). These
observations indicate that N-linked glycans of human transfer-
rin do not play any determinant role in the process of iron
extraction from STF.

In C. canimorsus and C. cynodegmi, the capacity to grow in
HIHS correlates with the presence of ics genes. We mentioned
before that among the strains for which the full genome was se-
quenced, there was a perfect correlation between growth in HIHS
and the presence of PUL3. We then sought to further validate the
hypothesis that growth in HIHS depends on the capacity to ac-
quire iron by testing the effect of iron supplementation on the
growth of 15 strains otherwise unable to grow on HIHS. These 15
strains were known to be devoid of PUL3 because their full ge-

FIG 3 PUL3 encodes an iron capture system targeting transferrins. (A) Silver-
stained SDS-PAGE of normal human serum (HS) (0.1 �l) and protein-de-
pleted human serum (PDHS) (10 �l). The arrow indicates traces of serum
albumin as identified by mass spectrometry. Numbers on the left indicate the
protein masses of the references in kDa. (B) Anti-transferrin Western blot. The
first lane corresponds to purified human serotransferrin (0.3 �g). Lanes two
and three were loaded as described for lanes one and two of panel A. Numbers
on the left indicate the protein masses of the references in kDa. (C) Number of
generations achieved by wt (white bars) and �PUL3 mutant (black bars) bac-
teria after 23 h in PDHS supplemented with 0.25 mM iron (III) chloride
(FeCl3) and human serotransferrin at 3 g · liter�1 (human STF) or human
apo-serotransferrin at 3 g · liter�1 (human ApoSTF). (D) Uptake of iron from
transferrin by C. canimorsus cells. Number of cpm (counts per minute) mea-
sured for wt (white bars) and �PUL3 mutant (black bars) Cc5 bacteria incu-
bated without (�) or with 55Fe-labeled serotransferrin (55Fe-STF) for 24 h at
37°C. Bacteria incubated on ice in the presence of 55Fe-labeled STF serve as the

control. Error bars indicate standard deviations (averages from 3 experi-
ments). **, t test error probability of �0.01. (E) Number of generations
achieved by wt (white bars) and �PUL3 mutant (black bars) bacteria after 23 h
in PDHS supplemented with human lactoferrin at 1.5 g · liter�1 (human LTF),
bovine serotransferrin at 3 g · liter�1 (bovine STF), hemoglobin at 0.1 mM
(Hb), and hemin at 0.25 mM. Error bars represent standard deviations (aver-
ages from 3 experiments). All differences above 9 generations have t test-based
P values below 0.0034.
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nome was sequenced (CcD38, CcD93, and CcD95) or because the
individual ics genes could not be amplified by PCR (12 strains)
(data not shown). As expected, the addition of an excess of free
iron strongly enhanced the growth of all of these strains in HIHS
(Fig. 5).

In conclusion, growth in HIHS globally correlates with the
presence of PUL3, and the absence of growth in HIHS correlates
with the absence of PUL3 genes. All of this suggests that the ICS,
encoded within the accessory genome of Capnocytophaga, is a ma-
jor factor responsible for iron capture and, by extension, for
growth in HIHS.

The complete ICS is found in Bacteroidetes species most fre-
quently isolated from human infections. Each of the 9 genes of

PUL3 (Ccan_03640-Ccan_03720) was considered to assess the
occurrence of the ICS within the bacterial kingdom. Search models
for each gene of PUL3 were built and screened against the complete
genome database (http://www.ncbi.nlm.nih.gov/genome/browse/).
Out of the 2,100 genomes screened, the two genes which were not
involved in the ICS (Ccan_03660 and Ccan_03670) were found in a
large taxonomic range and frequently were independent of the occur-
rence of the other genes of PUL3 (data not shown). In contrast, the
seven ics genes were identified only in synteny in the complete ge-
nomes of three other Bacteroidetes isolated from infected hu-
mans: Bacteroides fragilis YCH46 (NC_006347), isolated from a
human septicemia, Bacteroides fragilis NCTC9343 uid57639
(NC_003228), isolated from an abdominal infection, and Odorib-

FIG 4 Process of iron capture from STF is independent from N-linked glycan chains. (A) Sambucus nigra lectin (SNA) staining (top) and anti-serotransferrin
immunoblot (bottom) of human serotransferrin (STF) after treatment with fresh (lane 1) and heat-inactivated (lane 2) PNGase F. The black arrow corresponds
to the position of the intact protein, while the gray arrow indicates the faint shifted band of the N-deglycosylated STF. Numbers on the left indicate the protein
mass of the references in kDa. (B) Number of generations achieved by wt (white bars) and PUL3-deleted (black bars) bacteria after 23 h in PDHS supplemented
with human STF (120 mg · liter�1) treated with either fresh or heat-inactivated PNGase F. Error bars represent standard deviations (averages from 3 experi-
ments). For comparisons to wt values, t test-based error probabilities were �0.01 (**) and �0.001 (***), respectively.

FIG 5 Dog strains unable to grow in HIHS are rescued by the addition of iron. Shown are the number of generations achieved by the wt and �PUL3 isolates, three
sequenced dog isolates (CcD95, CcD93, and CcD38), and 12 other randomly picked dog isolates after 23 h in HIHS alone (white bars) or supplemented with 0.25
mM iron (III) citrate (FeC6H5O7) (black bars). Error bars indicate standard deviations (averages from 3 experiments). An asterisk indicates sequenced dog
strains.
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acter splanchnicus DSM20712 uid63397 (NC_015160), isolated
from an abdominal abscess (see Fig. S5A in the supplemental ma-
terial). In addition, Riemerella anatipestifer DSM15868 uid60727
(NC_014738), isolated from a duck infectious serositis, also pos-
sesses the seven ics genes, although the synteny is not entirely
conserved (see Fig. S5A).

Additional PSI-BLAST searches for the ics genes were carried out
against the nonredundant database. The complete set of genes re-
quired for the ICS again was exclusively identified in organisms im-
plicated in human or animal infections. These include several Cap-
nocytophaga and Prevotella species, diverse Riemerella anatipestifer
isolates, and several additional Bacteroides fragilis isolates, Orni-
thobacterium rhinotracheale DSM 15997, Odoribacter splanchnicus
DSM 20712, and Porphyromonas sp. strain F0450, oral taxon 279
(see Fig. S5B in the supplemental material). Thus, the ICS de-
scribed here is present in a number of Bacteroidetes species with
pathogenic potential. Interestingly, PUL3 occurs in bacteria that
are able to infect not only mammals but also birds.

DISCUSSION

Here, we showed that nine C. canimorsus strains out of nine iso-
lates from human infections grow and survive in HIHS, while only
half of the strains isolated from the oral cavity of dogs do so. By
genome comparison of representative isolates from groups with
distinct growth capacities in HIHS, we could delimit a subset of 97
genes from the Capnocytophaga accessory genome potentially in-
volved in growth and survival in human serum. Interestingly, this
pool of genes was enriched in genes of the so-called polysaccharide
utilization loci of Bacteroidetes (16 genes) (30). Out of the 13 PUL
knockout mutants (37), two of them showed a moderate growth
defect, while the deletion of PUL3 led to a dramatic impairment in
the capacity to replicate in HIHS. As suggested by the functional
annotation of IcsA, a FecA homologue (59), the PUL3-encoded
machinery was found to be responsible for the acquisition of iron
in human serum. Importantly, iron acquisition did not require
IcsA only but also six other ics-encoded proteins (IcsC to IcsH).
Consistent with its role in iron scavenging in human serum, the
PUL3-encoded system proved to be essential for fetching iron ions
from serotransferrin. Acquisition of iron via heme utilization has
been described previously for Porphyromonas and Bacteroides
(60–62); however, in the case of C. canimorsus, neither hemin nor
hemoglobin was able to rescue iron deprivation in the PDHS,
indicating that C. canimorsus is not able to directly take up heme
or secrete hemophores. Additionally, the hypothesis that PUL3 is
involved in the release of a siderophore was investigated through
different approaches and no evidence could be gained, suggesting
that iron capture from transferrin does not involve soluble factors.
Thus, by analogy with the systems encoded by other PUL, we
hypothesize that the iron capture system (ICS) directly interacts
with STF, but this could not be formally demonstrated because of
the existence of another receptor, still unidentified, that binds
many glycoproteins, including STF. Clearly, further work is
needed to decipher the mechanism by which the PUL3-encoded
Sus-like machinery captures iron from transferrin.

Evolutionarily distant from the Tbp or Lbp system of patho-
genic Neisseriaceae and Pasteurellaceae (63) or from the staphylo-
coccal transferrin receptor (64), the C. canimorsus ICS initially
had been annotated as a polysaccharide utilization system. Indeed,
like the canonical starch utilization system (Sus), it consists of
SusC and SusD homologs and additional lipoproteins, coencoded

within a single putative operon. Despite these classical features of
typical polysaccharide-degrading complexes of Bacteroidetes, the
ICS was shown to function independently from the presence or
absence of N-linked transferrin glycan moieties. Whether this
capture involves some glycan chains of transferrin still needs to be
clarified. Another point that requires further clarification is the
requirement of the two different SusC-like (putative TonB-de-
pendent porins) proteins IcsA and IcsC.

The presence of a partially conserved PUL3 devoid of the fecA-
like transporter gene (icsA) in several environmental and plant-
associated Bacteroidetes spp. suggests the existence of an ancestral
version of PUL3 possibly devoted to a classical carbohydrate sub-
strate. On the other hand, with 341 genome hits, icsA is the ics gene
with the broadest taxonomic occurrence. It can be identified in
genomes from diverse taxonomic groups, including Proteobacte-
ria, Spirochetes, Bacteroidetes, or green sulfur bacteria. This con-
trasts with the occurrence of the other SusC-like gene, icsC, which
was identified in only 54 genomes, including 48 from the Bacte-
roidetes phylum (data not shown). This taxonomic restriction to
the Bacteroidetes phylum is typical of PUL genes and suggests that
icsA has been integrated into a classical PUL, which then evolved
as a complex iron acquisition system. The other genes of PUL3
essential for iron capture (icsD, icsE, icsF, icsG, and icsH) were
exclusively identified among Bacteroidetes, with icsG being found
exclusively in genomes including the six other ics genes and rep-
resenting a good marker for the presence of the ICS in other or-
ganisms.

Strikingly, the correlation between the occurrence of PUL3
genes in C. canimorsus and the capacity to grow in HIHS strongly
suggests a crucial role of the ICS in the process of converting
harmless commensal C. canimorsus into potential pathogens. The
deep compositional DNA bias (55) shared by the genes of PUL3
(from Ccan_03640 [icsA] to Ccan_03720 [icsH]) with respect to
the chromosomal backbone indicates that they were acquired
from another organism at the same time. Thus, it is not surprising
to repeatedly find a conserved version of PUL3 in the genome of
Bacteroidetes species most frequently isolated from human infec-
tions (e.g., for many clinical isolates of B. fragilis). To our knowl-
edge, this is the first report of a PUL-encoded system serving a
purpose other than glycan chain degradation and, by extension,
iron acquisition. Besides, the ICS is unique among Gram-negative
bacteria in that it can handle a wide range of transferrin isomers,
including paralogic (e.g., human STF and human LTF) and ortho-
logic (e.g., human STF and bovine STF) variants, potentially al-
lowing growth in different host environments. This feature con-
sequently explains the taxonomic spread of the ICS among
pathogens, which can be considered a key virulence factor of Bac-
teroidetes.
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4.2. Supplemental materials 
 

 

Figure S1. Growth in HIHS of C. canimorsus 5 mutants deleted from individual PULs 

Number of generations achieved by each of the individual PUL deletion mutant after 23 hours in 

HIHS. The black bar and to a lesser extent the dark grey bars indicate significantly reduced 

growth scores with respect to wt. Error bars indicate standard deviations (average of 3 

experiments). (*) and (***) apply to comparisons to wt values and stand for t-test based error 

probabilities of <0.05 and <0.001 respectively.  

 

 

 

 
 

 

Figure S2. Regulation of transcription of PUL3 by free iron and the FurA transcriptional 

regulator 

Fold change of mRNA levels of the two susC homologues Ccan_03640 and Ccan_03650 and the 

susD homologue Ccan_03680. (A) Relative mRNA levels from wt bacteria grown in HIHS plus iron 

(III) citrate (+Fe) vs. HIHS with no iron supplementation (-Fe). (B) Relative mRNA levels of ΔfurA 

vs. wt Cc5 grown in HIHS. Error bars represent the standard deviation (average of 3 

experiments). (*) and (**) apply to comparisons to wt values and stand for t-test based error 

probabilities of <0.05 and <0.01 respectively. 
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Figure S3. Iron capture from transferrin does not involve soluble factors 

(A) Number of generations achieved by wt (white bars) and ΔPUL3 (black bars) C. canimorsus 

bacteria after 23 hours of co-culture in HIHS alone or supplemented with 0.25 mM iron (III) 

citrate (FeC6H5O7). (B) Number of generations achieved by the wt (white bars) and each of the 

individual ics deletion mutants (black bars) after 23 hours of co-culture in HIHS. (C) Total growth 

in HIHS of P. aeruginosa PAO1 wt (dark grey bar) and Cc5 wt (white bar). (D) Siderophore 

detection in Cc5 wt (white bar) and P. aeruginosa PAO1 wt (light and dark grey bars) HIHS 

culture supernatants using the chrome azurol S assay. Decrease of the ratio A/Aref at 630 nm 

indicates presence of siderophore. Dots: dilution series of the iron chelator desferrioxamine 

mesylate (DFOM) used as standard curve. PAO1 1/10: PAO1 supernatant diluted 1 to 10 in 

ddH2O. Error bars in all panels represent standard deviation (average of 3 experiments). (**) and 

(***) apply to comparisons to Cc5 wt values and stand for t-test based error probabilities of <0.01 

and <0.001 respectively.  
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Figure S4. Cleavage of human serotransferrin N-glycans by the Gpd complex 

(A) Coomassie staining of SDS-PAGE loaded with STF incubated in absence (NT, lane 1 & 4) or 

presence of wt (lane 2 & 5), PUL3 deleted (lane 3) or PUL5 deleted (lane 6) C. canimorsus. (B) 

Sambucus Nigra Lectin (SNA) staining of human STF incubated in absence (NT, lane 1) or 

presence of wt (lane 2), PUL3 deleted (lane 3) or PUL5 deleted (lane 4) C. canimorsus. Numbers 

on the left indicate protein mass of the references in kDa. Grey and black arrows indicate a shift 

in electrophoretic mobility of STF.  
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Figure S5. The ICS is mostly found among pathogenic members from the Bacteroidetes 

phylum and has broad species specificity 

(A) Orthologous PULs of Cc5 PUL3 identified in the Complete Genomes database. The PULs 

display has been limited to the genes implicated in iron scavenging with a putative TonB-

dependent outer membrane protein ortholog to either icsA or icsC. For the sake of readability, 

only the largest SusC like homologs and the last represented genes are tagged here. In the case of 

R. anatipestifer DSM 15868, an additional FecA-like protein that shares higher similarity with 

other orthologs than with its paralog is found at approximately 1 Mb from the SusC like protein. 

(B) Non-exhaustive occurrences of PUL3 genes among other bacteria spotted on a representative 

16S rRNA phylogenetic tree. The evolutionary history has been inferred using the Maximum 

Parsimony method and the consensual 16S rRNA sequences from the different taxa where genes 

from PUL3 were found. Spots indicate major combinations of PUL3 encoded genes found within 

each taxon. Letters in the round spots refer to the proteins encoded by PUL3, namely IcsA (A), 
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IcsC (C), IcsD (D), IcsE (E), IcsF (F), IcsG (G) and IcsH (H). Underlined taxon names indicate the 

occurrence of strains exhibiting all seven ics genes in their genome. 

 

 
Table S1 Bacterial strains used in the study  

 

Strain Description Reference 

E. coli 

S17-1 hsdR17 recA1 RP4-2-tet::Mu-1kan::Tn7 SmR (65) 

P. aeruginosa 

PAO1 Wild-type P. aeruginosa (39) 

C. canimorsus 

Cc5 Wild type (BCCM-LMG 28512) (36) 

ΔPUL1 Substitution of PUL1 by ermF; EmR (37) 

ΔPUL2 Substitution of PUL2 by ermF; EmR (37) 

ΔPUL3 Substitution of PUL3 by ermF; EmR (37) 

ΔPUL4 Substitution of PUL4 by ermF; EmR (37) 

ΔPUL5 Substitution of PUL5 by ermF; EmR (37) 

ΔPUL6 Substitution of PUL6 by ermF; EmR (37) 

ΔPUL7 Substitution of PUL7 by ermF; EmR (37) 

ΔPUL8 Substitution of PUL8 by ermF; EmR (37) 

ΔPUL9 Substitution of PUL9 by ermF; EmR (37) 

ΔPUL10 Substitution of PUL10 by ermF; EmR (37) 

ΔPUL11 Substitution of PUL11 by ermF; EmR (37) 

ΔPUL12 Substitution of PUL12 by ermF; EmR (37) 

ΔPUL13 Substitution of PUL13 by ermF; EmR (37) 

ΔCcan_03610 Substitution of Ccan_03610 by ermF using pFL1; EmR This study 

ΔCcan_03620 Substitution of Ccan_03620 by ermF using pFL2; EmR This study 

ΔCcan_03630 Substitution of Ccan_03630 by ermF using pFL3; EmR This study 

ΔCcan_03640 Substitution of Ccan_03640 by ermF using pFL4; EmR This study 

ΔCcan_03650 Substitution of Ccan_03650 by ermF using pFL5; EmR This study 

ΔCcan_03660 Substitution of Ccan_03660 by ermF using pFL6; EmR This study 

ΔCcan_03670 Substitution of Ccan_03670 by ermF using pFL7; EmR This study 

ΔCcan_03680 Substitution of Ccan_03680 by ermF using pFL8; EmR This study 

ΔCcan_03690 Substitution of Ccan_03690 by ermF using pFL9; EmR This study 

ΔCcan_03700 Substitution of Ccan_03700 by ermF using pFL10; EmR This study 

ΔCcan_03710 Substitution of Ccan_03710 by ermF using pFL11; EmR This study 

ΔCcan_03720 Substitution of Ccan_03720 by ermF using pFL12; EmR This study 

ΔCcan_03730 Substitution of Ccan_03730 by ermF using pFL13; EmR This study 

ΔCcan_15860 Substitution of Ccan_15860 (furA) by ermF using pFL61; EmR This study 
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Table S2 Primers used in the study 

 

Ref. Sequence 5’-3’ Restrictiona 

6953 cgctgcaggctacctatatgatggagcc PstI 

6954 aaaaatttcatccttcgtagaaaaacttcttacgatttttatttag  

7027 gagtagataaaagcactgtttagggacaggacgtg  

7028 ggactagtatccgtctgtgccaataccc SpeI 

6957 ctaaataaaaatcgtaagaagtttttctacgaaggatgaaatttttcagggacaac  

6958 ggacaggacacgtcctgtccctaaacagtgcttttatctactccgatagcttc  

6959 cgctgcagtttacgagcaggacatcc PstI 

6960 aaaaatttcatccttcgtagaaatgataatctttg  

7050 gagtagataaaagcactgttcacttggttacaacgttcc  

7051 ggactagtatccgagtgttttctacc SpeI 

6963 caaagattatcatttctacgaaggatgaaatttttcagggacaac  

7052 ggaacgttgtaaccaagtgaacagtgcttttatctactccgatagcttc  

6965 cgctgcagccaaaacagtttacattgacgg PstI 

6966 aaaaatttcatccttcgtagtctctactatttcctattttttac  

6967 gagtagataaaagcactgttaataacaatatataaaaatagaatag  

6968 ggactagtacccaaatagcggaaagg SpeI 

6969 gtaaaaaataggaaatagtagagactacgaaggatgaaatttttcagggacaac  

6970 ctattctatttttatatattgttattaacagtgcttttatctactccgatagcttc  

6971 cgctgcagaaatcagtgggaagtaaccgc PstI 

6972 aaaaatttcatccttcgtagttttatgttctttcttgtag  

6973 gagtagataaaagcactgttttttttagtatttgcccaacg  

6974 ggactagtttttccgttccgtaaggttctgccc SpeI 

6975 ctacaagaaagaacataaaactacgaaggatgaaatttttcagggacaac  

6976 cgttgggcaaatactaaaaaaaacagtgcttttatctactccgatagcttc  

6977 cgctgcagattgggggagagcctcgtgc PstI 

6978 aaaaatttcatccttcgtagatcatctgatatttttattatttgatttgatgc  

6979 gagtagataaaagcactgtttttgtaaggaagggacgtgtcc  

6980 ggactagtccttctcatcgaaattattgacatcg SpeI 

6981 
gcatcaaatcaaataataaaaatatcagatgatctacgaaggatgaaatttttcagggacaa
c 

 

6982 ggacacgtcccttccttacaaaaacagtgcttttatctactccgatagcttc  

7527 ggctgcaggatttgtacgtaaccaatgtgcttttcacc PstI 

7528 gttgcaaataccgatgagcgattattttttattttaagcggaaaggacacg  

7529 cctgaaaaatttcatccttcgtagaatatgaaaaaatatcttattctgttggc  

7530 ccactagtgtattcacgagcgggttcaatagaattagtgg SpeI 

7531 cgtgtcctttccgcttaaaataaaaaataatcgctcatcggtatttgcaac  

7532 gccaacagaataagatattttttcatattctacgaaggatgaaatttttcagg  

7533 ggctgcagcgcaagacttctgattgtacaagagaccg PstI 

7534 gttgcaaataccgatgagcattttattgatttacgtatgatttaagtcgc  

7535 cctgaaaaatttcatccttcgtagaaacaagctaaaaaataatatgac  

7536 ccactagtccatcttttgaaacggctgagatacttgc SpeI 
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7537 gcgacttaaatcatacgtaaatcaataaaatgctcatcggtatttgcaac  

7538 gtcatattattttttagcttgtttctacgaaggatgaaatttttcagg  

6995 cgctgcagcagaaaataatgttcagaaagc PstI 

6996 aaaaatttcatccttcgtagattattttttagcttgtttctatttgtc  

6997 gagtagataaaagcactgttacgtgttggaatgacagcgg  

6998 ggactagtttcctgcaatcgcacttgatac SpeI 

6999 gacaaatagaaacaagctaaaaaataatctacgaaggatgaaatttttcagggacaac  

7000 ccgctgtcattccaacacgtaacagtgcttttatctactccgatagcttc  

7001 cgctgcagtccattgataatcagcgagag PstI 

7002 aaaaatttcatccttcgtagattttttctgtttgtaagaacaagaatcgcc  

7003 gagtagataaaagcactgttagtaaaaaggattttcttttc  

7004 ggactagtctcctttgaagagaggaagcc SpeI 

7005 ggcgattcttgttcttacaaacagaaaaaatctacgaaggatgaaatttttcagggacaac  

7006 gaaaagaaaatcctttttactaacagtgcttttatctactccgatagcttc  

7059 cgctgcagaatactctatttacacgg PstI 

7060 aaaaatttcatccttcgtagttttataaattttggtg  

7061 gagtagataaaagcactgttttttttgaaactgtcatttgg  

7062 ggactagtaagttgcccaatttctgc SpeI 

7063 caccaaaatttataaaactacgaaggatgaaatttttcagggacaac  

7064 ccaaatgacagtttcaaaaaaaacagtgcttttatctactccgatagcttc  

7065 cgctgcagattagtatgttggcattgg PstI 

7066 aaaaatttcatccttcgtagaatattttctttaaagtatgatc  

7067 gagtagataaaagcactgttaatttgttttttatcttacaatc  

7068 ggactagtttgagacagagtaaaagc SpeI 

7069 gatcatactttaaagaaaatattctacgaaggatgaaatttttcagggacaac  

7070 gattgtaagataaaaaacaaattaacagtgcttttatctactccgatagcttc  

7085 cgctgcagatagggtttatccctgctggggaagg  PstI 

7086 aaaaatttcatccttcgtagctctttttctatttatatctg  

7087 gagtagataaaagcactgttaatctgtataaaaatgc   

7088 ggactagtcatcgcgaggatgaagcaaaatataatcc SpeI 

7089 cagatataaatagaaaaagagctacgaaggatgaaatttttcagggacaac  

7090 gcatttttatacagattaacagtgcttttatctactccgatagcttc  

7096 cgctgcagacgctgataccagattgattgattttcaaacagg PstI 

7097 aaaaatttcatccttcgtagatttcaatacttatcatttgtttttaatgc  

7098 gagtagataaaagcactgttgcatcaatcagctacaaccaaaaatcc  

7099 ggactagttacttccgagtatttggttggc SpeI 

7100 gcattaaaaacaaatgataagtattgaaatctacgaaggatgaaatttttcagggacaac  

7101 ggatttttggttgtagctgattgatgcaacagtgcttttatctactccgatagcttc  

7102 cgctgcagggaaatttggataaatacaataatg PstI 

7103 gagtagataaaagcactgttctgcttggtgttttcttttttag   

7104 gaaaaatttcatccttcgtagccaagatggcagtagatttattac  

7105 ggactagtattggcaaggttacgataacg SpeI 

7106 ctaaaaaagaaaacaccaagcagaacagtgcttttatctactc  

7107 gtaataaatctactgccatcttggctacgaaggatgaaatttttc  

7036 cgtaccatggcgtgttaccaaaagatagg NcoI 
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7037 tgactagttaaaacttcacattcactcc SpeI 

7038 cgtaccatggcgaatcaatcaatgataaagaaactactatatagcg NcoI 

7039 tgactagttaaaacccaacatttacc SpeI 

7040 cgtaccatggcgcccaacgaaagagcatcaaatc  NcoI 

7041 tgactagttatcttggattgggtgctaaacc SpeI 

7042 cgtaccatggcgagaagaatatacataatattaacattgg NcoI 

7043 tgactagttattgatttacgtatgatttaagtcgc SpeI 

7044 cgtaccatggcgaaaaaatatcttattctgttggc NcoI 

7045 tgactagttatttgtcaactatttcagc SpeI 

7046 cgtaccatggcgacaatgaatagaaaatatttatttttgataatattactgggg NcoI 

7047 tgactagttatggcaaaataatatactcgc SpeI 

7048 cgtaccatggcgtggaaatatacagttttaatagtgtccc NcoI 

7049 tgactagttatctttttatatcattgattgaaattccg SpeI 

7077 cgtaccatggatagtcatatttggatagaaaagtgg NcoI 

7078 tgactagttattgcttccgtgctacaaatcgg SpeI 

7079 cgtaccatggcgaagtcaaaaaaaatag NcoI 

7080 tgactagttatctttcttcaaaataagc SpeI 

3451 agagtttgatcctggctcag  

3454 gggttgcgctcgttg  

3818 gttttcccagtcacgac  

4730 ggcacgttccagttctttcag  

7125 atgctcaaattgtttgtttgtctcc  

7126 gagcaaacatataaccgaggaacaaagtgc  

7335 caatgcggctcgaatgactg  

7336 gggaatgggcgtagaaacca  

7337 tcggtgaggtggttgttacg  

7338 tacgcgtccttcgagcatac  

7339 caggcaaacaaagcgttgga  

7340 gttccgtaaggttctgccca  

7341 ggacagtgtttacttgttatcaagtc  

7342 gctataatgtgacgagctaaatcac  

7343 tgagtggctaagcgaaagtga  

7344 cttggtaaggttcctcgcgt  

5470 cgatgtcgacttttttttaacatttgattttgtatttaaaaaatttggtgttacttttgc SalI 

5471 cgatccatggttaatttttttaattacaatttagttaattacaagcaaaagtaacacc NcoI 

 

a: Restriction sites are underlined 
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Table S3 Plasmids used in the study 

 

Plasmid Descriptiona Reference 

Vectors 

pMM13 ColE1 ori, Apr (Emr) (40) 

pMM25 ColE1 ori; Kmr (Cfr); suicide vector for C. canimorsus (40) 

pMM47.A 
ColE1 ori; (pCC7 ori); Apr; (Cfxr). E. coli-C. canimorsus expression 
shuttle plasmid with ermF promoter 

(40) 

pPM5 

ColE1 ori; (pCC7 ori); Apr; (Cfxr); promoter of ompA (Fjoh_0697) 
from Flavobacterium johnsoniae was amplified by PCR using 
primers 5470 and 5471, digested with SalI and NcoI, and inserted 
into the corresponding sites of pMM47.A, replacing the original 
ermF promoter 

This study 

Mutator Plasmids  

pFL1 
ermF framed by the 5’ and 3’ regions of Ccan_03610 cloned into 
pMM25 

This study 

pFL2 
ermF framed by the 5’ and 3’ regions of Ccan_03620 cloned into 
pMM25 

This study 

pFL3 
ermF framed by the 5’ and 3’ regions of Ccan_03630 cloned into 
pMM25 

This study 

pFL4 
ermF framed by the 5’ and 3’ regions of Ccan_03640 cloned into 
pMM25 

This study 

pFL5 
ermF framed by the 5’ and 3’ regions of Ccan_03650 cloned into 
pMM25 

This study 

pFL6 
ermF framed by the 5’ and 3’ regions of Ccan_03660 cloned into 
pMM25 

This study 

pFL7 
ermF framed by the 5’ and 3’ regions of Ccan_03670 cloned into 
pMM25 

This study 

pFL8 
ermF framed by the 5’ and 3’ regions of Ccan_03680 cloned into 
pMM25 

This study 

pFL9 
ermF framed by the 5’ and 3’ regions of Ccan_03690 cloned into 
pMM25 

This study 

pFL10 
ermF framed by the 5’ and 3’ regions of Ccan_03700 cloned into 
pMM25 

This study 

pFL11 
ermF framed by the 5’ and 3’ regions of Ccan_03710 cloned into 
pMM25 

This study 

pFL12 
ermF framed by the 5’ and 3’ regions of Ccan_03720 cloned into 
pMM25 

This study 

pFL13 
ermF framed by the 5’ and 3’ regions of Ccan_03730 cloned into 
pMM25 

This study 

pFL61 
ermF framed by the 5’ and 3’ regions of Ccan_15860 cloned into 
pMM25 

This study 

Expression plasmids 

pFL14 Ccan_03640 amplified with 7036 & 7037 and cloned into pPM5 This study 

pFL15 Ccan_03650 amplified with 7038 & 7039 and cloned into pPM5 This study 

pFL16 Ccan_03660 amplified with 7077 & 7078 and cloned into pPM5  This study 

pFL17 Ccan_03670 amplified with 7079 & 7080 and cloned into pPM5  This study 

pFL18 Ccan_03680 amplified with 7040 & 7041 and cloned into pPM5  This study 

pFL19 Ccan_03690 amplified with 7042 & 7043 and cloned into pPM5  This study 

pFL20 Ccan_03700 amplified with 7044 & 7045 and cloned into pPM5  This study 

pFL21 Ccan_03710 amplified with 7046 & 7047 and cloned into pPM5  This study 

pFL22 Ccan_03720 amplified with 7048 & 7049 and cloned into pPM5  This study 
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a: Selection markers for C. canimorsus are in between brakets  

 

 

Table S4 Protein and iron concentration of products used in the study 

 

 [Iron] (μM) [Protein] (g/l) 

Serotransferrin 41.2 ± 3.0 5.4 ± 0.2 

Apotransferrin 0.5 ± 0.2 4.4 ± 0.1 

Lactoferrin 37.4 ± 7.2 3.5 ± 0.1 

Bovine transferrin 38.1 ± 3.5 4.3 ± 0.2 

Hemoglobin 257.4 ± 16.3 5.9 ± 0.6 

Human serum, heat 
inactivated (Millipore) 

18.1 ± 1.0 49.0 ± 1.1 

Human serum, heat 
inactivated (University 
Hospital of Basel) 

19.5 ± 1.7 57.2 ± 5.2 

Protein depleted human 
serum, heat inactivated 

0.9 ± 0.6 N/A 
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4.3. Addendum 
 
 

The genome sequences and annotations of the C. canimorsus clinical isolates 

(Cc2, Cc11, and Cc12)1, the C. canimorsus dog strains (CcD38, CcD93, and 

CcD95)2 and the C. cynodegmi dog strains (Ccyn2B, Ccyn49044, and Ccyn74)3 

have been deposited in the ENA/NCBI database.  

Furthermore, the C. canimorsus dog strains (CcD38, CcD93, and CcD95) have now 

been classified as belonging to a new, separate species, namely Capnocytophaga 

canis 4,5. 

 

1 Manfredi, P. et al. Draft Genome Sequences of Three Capnocytophaga canimorsus Strains Isolated 
from Septic Patients. Genome Announc 3, (2015). 

2 Manfredi, P. et al. Draft Genome Sequences of Three Capnocytophaga canimorsus Strains Isolated 
from Healthy Canine Oral Cavities. Genome Announc 3, (2015). 

3 Manfredi, P. et al. Draft Genome Sequences of Three Capnocytophaga cynodegmi Strains Isolated 
from the Oral Cavity of Healthy Dogs. Genome Announc 3, (2015). 

4 Oren, A. & Garrity, G. M. List of new names and new combinations previously effectively, but not 
validly, published. Int J Syst Evol Microbiol 66, (2016). 

5 Renzi, F. et al. Only a subset of C. canimorsus strains is dangerous for humans. Emerg Microbes 
Infect 4, (2015). 
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General discussion 
 
 

The present work aimed at providing a better understanding of the 

biology of Gram-negative bacteria from the phylum Bacteroidetes using our 

model organism Capnocytophaga canimorsus, a dog commensal and human 

pathogen. In particular, we focused at exploring the mechanisms underlying 

lipoproteins surface localization, a characteristic feature of Bacteroidetes. We 

also studied in detail one PUL-encoded C. canimorsus OM protein complex mainly 

composed of lipoproteins. 

 

We found that this protein complex represents a new type of iron 

acquisition system (Ics) essential for growth of C. canimorsus in human serum. 

Unlike iron scavenging strategies from other bacteria, this system displayed 

broad substrate specificity by targeting several different iron carrying proteins 

found in mammals. Interestingly, the Ics has the classical architecture of Sus-like 

systems, i.e. an outer membrane anchored complex mostly composed of surface 

exposed lipoproteins. This study thus showed for the first time that Sus-like 

systems are not limited to carbohydrate acquisition. This also supported our 

hypothesis that surface exposed lipoproteins, and their underlying transport 

machinery, are essential in C. canimorsus, at least in some growth condition. 

 

We thus investigated how lipoproteins can reach the bacterial surface. 

Using in silico analyses and site directed mutagenesis, we could show that 

surface exposed lipoproteins in C. canimorsus harbor a conserved N-terminal 

signal sequence that we named LES (Lipoprotein Export Signal). We determined 

the minimal composition for a functional LES as well as its optimal positioning. 

We also showed that the derived LES of two other Bacteroidetes species, namely 

Bacteroides fragilis and Flavobacterium johnsoniae, are functional in C. 

canimorsus. This indicated strong conservation of the signaling and the putative 

lipoprotein transport mechanisms in Bacteroidetes, which is in agreement with 

the fact that surface exposed lipoproteins are widespread in this phylum.  
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The discovery of the LES prompted us to focus at identifying the 

underlying lipoprotein transport machinery. By performing pull-down 

experiments using the lipoprotein chaperon LolA as bait, we identified and 

investigated several candidate proteins, among which an Skp homolog 

(Ccan_09090) and a BamA homolog (Ccan_17810). We could show that 

Ccan_09090 is essential in C. canimorsus and that its depletion leads to early 

growth arrest, a fact that is in line with its potential involvement in outer 

membrane biogenesis. Ccan_17810, a second copy of BamA, also turned out to be 

essential and to require a lipid anchor for its functioning. However, direct 

involvement of these proteins in lipoprotein export remains to be determined. 

 

In order to identify the Bacteroidetes lipoprotein transport machinery, 

we will now focus on different approaches. 

Based on our discovery of the Ics and of several other surface exposed 

Sus-like systems, we know that C. canimorsus relies on several surface exposed 

lipoprotein complexes to acquire iron and glycans to sustain growth. We thus 

plan on generating a transposon library that we will test for growth in human 

serum, followed by selection of the mutants that are strongly impaired in 

growth. However, this supposes that surface lipoproteins are required in liquid 

but not solid medium, a question that is so far unresolved. In the event that the 

lipoprotein transport machinery would be essential even on solid medium, we 

therefore also plan to perform a Tn-seq experiment, which will allow us to 

generate a list of essential genes in C. canimorsus, including the potential 

lipoprotein transport machinery. 

An alternative approach will be based on our discovery of the LES. By 

introducing this signal sequence into an easily detectable reporter protein, we 

can generate a rapid readout system for surface exposure of lipoproteins. We 

could then use this strain to create a transposon library that we would screen for 

the exposure of the reporter protein at the cell surface. 

 

In parallel to these genetics based approaches, we also plan to use a more 

biochemical approach. We will generate different bait proteins or peptides 
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harboring the LES, followed by pull-down experiments and mass spectrometry. 

The identified interaction partners will then be further investigated.  

We also plan on pursuing our analysis of Ccan_17810, the lipidated BamA 

homolog, the so far most promising candidate for the export machinery. We will 

generate antibodies against the entire or parts of this protein that will be used to 

perform co-immunoprecipitation experiments. Antibodies raised against the 

extracellular domains of Ccan_17810 could also be used to inhibit its biological 

function, hence mimicking a depletion strain. 

 

While these approaches would mainly focus on C. canimorsus, we will also 

apply them to less fastidious organisms, such as Flavobacterium johnsoniae. 

Indeed, one of the major difficulties so far is to grow large amounts of C. 

canimorsus in exponential phase, a problem that can be easily circumvented 

using F. johnsoniae since it grows readily in most common growth media. 

Furthermore, this bacterium can also be grown in defined medium with specific 

carbon sources. This means that lipoproteins surface exposure in F. johnsoniae 

can be easily monitored in conditions where growth requires the presence of 

Sus-like systems, i.e. surface exposed lipoproteins.. 

 

From a more general point of view, the identification of the LES could be 

used as tool to display a number of different proteins at the bacterial cell surface, 

which could be of interest for industrial purposes, especially in protein 

expression and purification. In the same line, Bacteroidetes expressing specific 

antigens at their surface could be used in probiotic foods or as a new approach 

for vaccine development.  

The fact that surface exposed lipoproteins, and hence their dedicated 

transport machinery, are widespread in Bacteroidetes could also lead to the 

generation of new antimicrobials specifically targeting bacteria of this phylum. 

Indeed, if this machinery is partially surface exposed, as it is the case for the Bam 

complex and the LPS transporter LpdD, it could represent an interesting 

candidate for drug development. This would be of major interest for the 

treatment of anaerobic infections (Bacteroides fragilis) and peridontal diseases 

(Porphyromonas gingivalis) in humans as well as economical relevant poultry 
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and fish pathogens such as Riemerella anatipestifer and Flavobacterium 

columnare. 


