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The Collatz map T (Lothar Collatz, 1937)

J.C. Lagarias, "The Ultimate Challenge: the 3x+1 problem". 
American Mathematical Society, (2010).

Conjecture 
For any given positive integer             the iterates of the Collatz map 
                      eventually converge to the period-3 cycle {1,2,4} as 
             .

n0 2 N
nk = T �k(n)

k ! 1

Numerically verified up to 1.9x1017  
T. Oliveira E Silva, Math. Comp. 68 No. 1 (1999), 371

8n 2 N T (n) =

(
n
2 if n is even

3n+ 1 if n is odd.
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Main ideas of the proof

1) Introduce the third iterate of the Collatz map and consider 
the equivalence classes of integer numbers modulo 8; 

2) Define a finite state Markov chain with a suitable invariant 
probability measure, whose transition probabilities reflect 
the deterministic map; 

3) Prove a weak version of the conjecture: diverging orbits 
cannot exist due to the bound on the average stationary 
distribution; 

4) Prove the conjecture by excluding other periodic orbits.
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1) The third iterate of the Collatz map S=To3

B(k, 8) := {n 2 N : 9m 2 N, n = 8m+ k} k 2 {0, . . . , 7}

The 3-cycle {1,2,4} becomes a fixed point

S(n) =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

n
8 if n 2 B(0, 8)
6n+2

8 if n 2 B(1, 8)
6n+4

8 if n 2 B(2, 8)
36n+20

8 if n 2 B(3, 8)
6n+8

8 if n 2 B(4, 8)
6n+2

8 if n 2 B(5, 8)
6n+4

8 if n 2 B(6, 8)
36n+20

8 if n 2 B(7, 8) .

8n 2 N
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1) The third iterate of the Collatz map S=To3

B(k, 8) := {n 2 N : 9m 2 N, n = 8m+ k} k 2 {0, . . . , 7}

The 3-cycle {1,2,4} becomes a fixed point

S(n) =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

n
8 if n 2 B(0, 8)
6n+2

8 if n 2 B(1, 8)
6n+4

8 if n 2 B(2, 8)
36n+20

8 if n 2 B(3, 8)
6n+8

8 if n 2 B(4, 8)
6n+2

8 if n 2 B(5, 8)
6n+4

8 if n 2 B(6, 8)
36n+20

8 if n 2 B(7, 8) .

8n 2 N

contraction by 1/8
contraction by 3/4
contraction by 3/4

contraction by 3/4
contraction by 3/4
contraction by 3/4

expansion by 9/2

expansion by 9/2
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2) A finite states Markov process

8 symbols alphabet: B(k, 8) k = 0, . . . , 7

Transition probabilities:
q

⇤
ij = P [S(x) 2 B(j, 8)|x 2 B(i, 8)]

q⇤ij :=
µ
⇥
B(i, 8) \ S�1B(j, 8)

⇤

µ [B(i, 8)] (i, j = 0, . . . , 7)

given a probability space (N, µ)
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2) A finite states Markov process

q(m)
ij :=

µ [B(i, 8) \ S�mB(j, 8)]
µ [B(i, 8)] (i, j = 0, . . . , 7)

q(m)
ij versus q⇤ij ?
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2) A finite states Markov process

q(m)
ij :=

µ [B(i, 8) \ S�mB(j, 8)]
µ [B(i, 8)] (i, j = 0, . . . , 7)

q(m)
ij versus q⇤ij ?

q(m)
ij =

�
q⇤ij

�m
If    is an invariant measure for S thenµ
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2) A finite states Markov process

q⇤ij :=
µinv

⇥
B(i, 8) \ S�1B(j, 8)

⇤

µinv [B(i, 8)]

invariant (probability) measureµinv

Chapman-Komogorov equation

Let               be the probability to be in            after m steps 
being initially in           . Then:

pm 0(j|i) B(j, 8)
B(i, 8)

pm 0(j|i) =
X

k1,...,km�1

pmm�1(j|km�1)pm�1m�2(km�1|km�2) . . . p1 0(k1|i)
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2) Markov process. Invariant measure

Let          , there exist           and n 2 N s0, . . . , sk�1 2 {0, . . . , 7}k � 1

n = sk�18
k�1 + · · ·+ s18 + s0

⌫(s0) =
1

6
if s0 = 0, 2, 4, 6 and ⌫(s0) =

1

12
if s0 = 1, 3, 5, 7.

µinv(sk�1 . . . s1s0) =
1

2k
1

7

1

8k�2
⌫(s0)

Note:                on all integers.µinv > 0
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2) Markov process. Invariant measure

Theorem

For any integer           and for all                             we havem � 1 j = 0, . . . , 8m � 1

µinv

⇥
S�1B(j, 8m)

⇤
= µinv [B(j, 8m)]

µinv (N) = 1

Step 1: compute µinv [B(j, 8m)]

Step 2: compute                                by induction on mµinv

⇥
S�1B(j, 8m)

⇤
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Remark (On the solution of congruence linear equations) 
Given positive integers a, b and n, then the equation ax=b mod n has solution iff 
d=gcd(a,n) (greatest common divisor) is a divisor of b, in this case the number of 
distinct solutions is given by d.

2) Markov process. Invariant measure (step 2)

3

where the integers (m
i

)0i7 and (r
i

)0i7 are given by

m0 = 1,m1 = m2 = m4 = m5 = m6 = 6 and m3 = m7 = 36 (5)

r0 = 0, r1 = r5 = 2, r2 = r6 = 4, r4 = 8 and r3 = r7 = 20 . (6)

As a side remark, we observe that S is thus in the form of a generalised Collatz map [3]. In the following we will
need the explicit value of x

i

= S(i) = (m
i

i+ r

i

)/8 for i = 0, . . . , 7, that is

x0 = 0 , x1 = 1 , x2 = 2 , x3 = 16 , x4 = 4 , x5 = 4 , x6 = 5 and x7 = 34 . (7)

B. A finite states Markov process

The (finite states) Markov process that we are going to introduce considers the aforementioned congruence classes,
B(i, 8), as a finite alphabet. The transition probabilities among di↵erent states follow the deterministic map S(n),
provided one works with a probability space (N, µ

inv

), for some S-invariant measure µ

inv

, that we will introduce
hereafter. More precisely, for any given pair of classes B(i, 8) (i = 0, . . . , 7) and B(j, 8) (j = 0, . . . , 7) the probability [6]
q

⇤
ij

of being initially in B(i, 8) and then land in B(j, 8), that is the conditional probability P [S(x) 2 B(j, 8)|x 2 B(i, 8)],
is given by:

q

⇤
ij

:=
µ

inv

⇥B(i, 8) \ S

�1B(j, 8)⇤

µ

inv

[B(i, 8)] (i, j = 0, . . . , 7) . (8)

To compute the above transition probabilities, one needs to explicitly determine S�1B(j, 8), j = 0, . . . , 7. To gather
this information we start with a preliminary remark:

Remark 3 (On the solution of congruence linear equations). Let us recall a basic fact of congruence linear equations;
given integers a, b and n, the equation

ax ⌘ b mod n ,

can be solved if and only if d = gcd(a, n) (gcd stand for the greatest common divisor) is a divisor of b (that is b can
be divided by d), in this case the number of distinct solutions is given by d.

We are now in a position to prove the following result:

Proposition 4. Let j = 0, . . . , 7, then S

�1B(j, 8) is the union of disjoint congruence classes mod64, B(l
j

, 64), where
the indexes l

j

depend on the mod8 congruence class j.
In explicit form:

S

�1B(0, 8) = B(0, 64) [ B(10, 64) [ B(42, 64) [ B(3, 64) [ B(19, 64) [ B(35, 64) [ B(51, 64) [ B(20, 64) [ B(52, 64) [
[B(21, 64) [ B(53, 64)

S

�1B(1, 8) = B(1, 64) [ B(33, 64) [ B(22, 64) [ B(54, 64) [ B(8, 64)
S

�1B(2, 8) = B(2, 64) [ B(34, 64) [ B(12, 64) [ B(44, 64) [ B(13, 64) [ B(45, 64) [ B(7, 64) [ B(23, 64) [ B(39, 64) [
[B(55, 64) [ B(16, 64)

S

�1B(3, 8) = B(25, 64) [ B(57, 64) [ B(14, 64) [ B(46, 64) [ B(24, 64)
S

�1B(4, 8) = B(26, 64) [ B(58, 64) [ B(11, 64) [ B(27, 64) [ B(43, 64) [ B(59, 64) [ B(4, 64) [ B(36, 64) [ B(5, 64) [
[B(37, 64) [ B(32, 64)

S

�1B(5, 8) = B(17, 64) [ B(49, 64) [ B(6, 64) [ B(38, 64) [ B(40, 64)
S

�1B(6, 8) = B(18, 64) [ B(50, 64) [ B(28, 64) [ B(60, 64) [ B(29, 64) [ B(61, 64) [ B(15, 64) [ B(31, 64) [ B(47, 64) [
[B(63, 64) [ B(48, 64)

S

�1B(7, 8) = B(9, 64) [ B(41, 64) [ B(30, 64) [ B(62, 64) [ B(56, 64) . (9)

Proof. Let n 2 B(l, 64) for some l = 0, . . . , 63, that is it exists k 2 N such that n = l + 64k. Let l ⌘ i mod8, namely
l = i+ 8h for some i = 0, . . . , 7 and h = 0, . . . , 7.

We can then evaluate S(n) using Eq. (4):

S(n) =
m

i

n+ r

i

8
=

m

i

(l + 64k) + r

i

8
=

m

i

l + r

i

8
+ 8m

i

k =
m

i

(i+ 8h) + r

i

8
+ 8m

i

k = x

i

+m

i

h+ 8m
i

k ,
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2) Markov process. Invariant measure (step 2)

5

Assume � 2 {0, . . . , 7} given and define D
k

(�) to be the set of all words of length k that have s0, the less significant
symbol, equal to �. The number of elements in D

k

(�) is 7⇥ 8k�2: as one symbol is fixed and the first symbol cannot
be 0, the entire collection of allowed words is obtained by permuting the available symbols in the remaining k � 2
positions. Each word in D

k

(�) has by definition measure 1
2k

1
7 8k�2 ⌫(�), and thus one gets:

µ

inv

(D
k

(�)) = 7⇥ 8k�2 1

2k
1

7

1

8k�2
⌫(�) =

1

2k
⌫(�) .

Let D(�) = [
k�1Dk

(�), that is the set of all words of any length whose first symbol is �. Observe that D(�) is
nothing but B(�, 8), as previously defined. Then, one obtains

µ

inv

(B(�, 8)) =
X

k�1

µ

inv

(D
k

(�)) =
X

k�1

1

2k
⌫(�) =

X

k�1

1

2k
⌫(�) = ⌫(�) ,

hence

µ

inv

(B(�, 8)) = 1

6
if � = 0, 2, 4, 6 and µ

inv

(B(�, 8)) = 1

12
if � = 1, 3, 5, 7.

Clearly N = [
�=0,...,7D(�), that is the set of words of any length starting with any symbol, and thus

µ

inv

(N) =
7X

�=0

µ

inv

(B(�, 8)) =
7X

�=0

⌫(�) = 1 ,

that is µ
inv

is a probability measure.
Similarly one can define D

k

(�1�0) to represent the set of words of length k whose first two symbols are �1�0 (taken
in that order). The number of elements of D

k

(�1�0) is 7⇥ 8k�3 and each element has measure 1
2k

1
7

1
8k�2 ⌫(�). Hence

µ

inv

(D
k

(�1�0)) = 7⇥ 8k�3 1

2k
1

7

1

8k�2
⌫(�0) =

1

2k
⌫(�0)

8
.

Let D(�1�0) = [
k�1Dk

(�1�0), that is the set of all words of any length whose first two symbols are �1�0 (taken in
that order). Observe that D(�1�0)) is nothing but B(�18 + �0, 64), as previously defined. Then one obtains:

µ

inv

B(�18 + �0, 64)) =
X

k�1

µ

inv

(D
k

(�1�0)) =
X

k�1

1

2k
⌫(�0)

8
=

⌫(�0)

8
=

µ

inv

(B(�0, 8))

8
.

One can finally prove that this measure is invariant under S for all sets made by any finite intersection and union
of the congruence classes defined above. This is established in the following Theorem.

Theorem 5. For any m � 1 and for all j = 0, . . . , 8m � 1 we have

µ

inv

⇥
S

�1B(j, 8m)
⇤
= µ

inv

[B(j, 8m)] . (13)

The proof of the above theorem relies on the following Proposition

Proposition 6. For any m � 1 and for all j = 0, . . . , 8m � 1 we have

S

�1B(j, 8m) = A

(m)
e

(j) [A

(m)
o

(j) , (14)

where A

e

(j) is the union of disjoint classes B(l, 8m+1) with l even and A

(m)
o

(j) is the union of disjoint classes

B(l, 8m+1) with l odd. Moreover if j is even then A

(m)
e

(j) contains five elements and A

(m)
o

(j) six elements, while if j

is odd then A

(m)
e

(j) contains three elements and A

(m)
o

(j) two elements.

Proof. Observe that Eq. (14) holds true for m = 1 by Proposition 4. Let us assume it is true for all k  m � 1 and
prove it for k = m, namely we have to prove that S

�1B(j, 8m) is the disjoint union of classes B(l, 8m+1) and more

precisely #A

(m)
e

(j) = 5 if j is even and 3 if j is odd, while #A

(m)
o

(j) = 6 if j is even and 2 if j is odd.
Let thus n 2 B(l, 8m+1) for some l = 0, . . . , 8m+1 � 1, that is n = l + 8m+1

k for some positive integer k. Let l ⌘ i

mod8, l = i+ 8h, h = 0, . . . , 8m � 1. From the definition (3) we can compute

S(n) =
m

i

n+ r

i

8
=

m

i

l + r

i

8
+m

i

8mk = x

i

+m

i

h+m

i

8mk ,
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2) Markov process. Invariant measure (step 2)

5
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inv

(B(�, 8)) =
X

k�1

µ

inv
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X

k�1

1
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X
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1
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inv
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inv

(B(�, 8)) = 1
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if � = 1, 3, 5, 7.

Clearly N = [
�=0,...,7D(�), that is the set of words of any length starting with any symbol, and thus

µ

inv

(N) =
7X

�=0

µ

inv

(B(�, 8)) =
7X

�=0

⌫(�) = 1 ,

that is µ
inv

is a probability measure.
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k

(�1�0) to represent the set of words of length k whose first two symbols are �1�0 (taken
in that order). The number of elements of D

k

(�1�0) is 7⇥ 8k�3 and each element has measure 1
2k

1
7

1
8k�2 ⌫(�). Hence

µ

inv

(D
k

(�1�0)) = 7⇥ 8k�3 1

2k
1

7

1

8k�2
⌫(�0) =

1

2k
⌫(�0)

8
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µ

inv
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X

k�1

µ

inv

(D
k
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k�1

1

2k
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One can finally prove that this measure is invariant under S for all sets made by any finite intersection and union
of the congruence classes defined above. This is established in the following Theorem.

Theorem 5. For any m � 1 and for all j = 0, . . . , 8m � 1 we have

µ

inv

⇥
S

�1B(j, 8m)
⇤
= µ

inv

[B(j, 8m)] . (13)

The proof of the above theorem relies on the following Proposition

Proposition 6. For any m � 1 and for all j = 0, . . . , 8m � 1 we have

S

�1B(j, 8m) = A

(m)
e

(j) [A

(m)
o

(j) , (14)

where A

e

(j) is the union of disjoint classes B(l, 8m+1) with l even and A

(m)
o

(j) is the union of disjoint classes

B(l, 8m+1) with l odd. Moreover if j is even then A

(m)
e

(j) contains five elements and A

(m)
o

(j) six elements, while if j

is odd then A

(m)
e

(j) contains three elements and A

(m)
o

(j) two elements.

Proof. Observe that Eq. (14) holds true for m = 1 by Proposition 4. Let us assume it is true for all k  m � 1 and
prove it for k = m, namely we have to prove that S

�1B(j, 8m) is the disjoint union of classes B(l, 8m+1) and more

precisely #A

(m)
e

(j) = 5 if j is even and 3 if j is odd, while #A

(m)
o

(j) = 6 if j is even and 2 if j is odd.
Let thus n 2 B(l, 8m+1) for some l = 0, . . . , 8m+1 � 1, that is n = l + 8m+1

k for some positive integer k. Let l ⌘ i

mod8, l = i+ 8h, h = 0, . . . , 8m � 1. From the definition (3) we can compute

S(n) =
m

i

n+ r

i

8
=

m

i

l + r

i

8
+m

i

8mk = x

i

+m

i

h+m

i

8mk ,

Compute µinv

⇥
S�1B(j, 8m)

⇤

µ
inv

⇥
S�1B(j, 8m)

⇤
= µ

inv

h
A(m)

e

(j)
i
+ µ

inv

h
A(m)

o

(j)
i

=
1

8m
1

6
#A(m)

e

(j) +
1

8m
1

12
#A(m)

o

(j)

=
1

8m
1

6
5 +

1

8m
1

12
6 =

1

8m�1

1

6
= µinv [B(j, 8m)](j even)
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2) Markov process. Transition probabilities

7

0

6

5

4

3

2

1

Q⇤ =

0

BBBBBBBBBB@

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

0 1
4 0 1

4 0 1
4 0 1

4
1
4 0 1

4 0 1
4 0 1

4 0
1
2 0 0 0 1

2 0 0 0
1
4 0 1

4 0 1
4 0 1

4 0
1
4 0 1

4 0 1
4 0 1

4 0
0 1

4 0 1
4 0 1

4 0 1
4

0 0 1
2 0 0 0 1

2 0

1

CCCCCCCCCCA

q⇤ij :=
µinv

⇥
B(i, 8) \ S�1B(j, 8)

⇤

µinv [B(i, 8)]
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2) Markov process. Some properties

The Markov process with stochastic matrix Q* is ergodic.

Q* is a stochastic matrix 8i = 0, . . . , 7
X

j

q⇤ij = 1

~PS = (1/6, 1/12, 1/6, 1/12, 1/6, 1/12, 1/6, 1/12)

The left eigenvector associated to            is � = 1 ~PSQ
⇤ = ~PS

µinv(B(k, 8)) = PS,k invariant (stationary) distribution
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3) Weak Collatz conjecture: all orbits are bounded

Ergodic Theorem

lim
k!1

#{0  j  k � 1 : S�j(n0) 2 B(i, 8)}
k

= µinv (B(i, 8)) 8i 2 {0, . . . , 7}

For          - almost everyµinv n0 2 N
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3) Weak Collatz conjecture: all orbits are bounded

Proof
Assume there exists a diverging orbit for S.

Given any             , then there exists a positive integer M(n0) 
such that  for                             all k>0.

n0 2 N
S�k(n0)  M(n0)

lim
k!1

#{0  j  k � 1 : S�j(n0) 2 B(i, 8)}
k

= µinv (B(i, 8)) 8i 2 {0, . . . , 7}

By the ergodic theorem
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3) Weak Collatz conjecture: all orbits are bounded

S(n) =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

n
8 if n 2 B(0, 8)
6n+2

8 if n 2 B(1, 8)
6n+4

8 if n 2 B(2, 8)
36n+20

8 if n 2 B(3, 8)
6n+8

8 if n 2 B(4, 8)
6n+2

8 if n 2 B(5, 8)
6n+4

8 if n 2 B(6, 8)
36n+20

8 if n 2 B(7, 8) .

8n 2 N
µinv [B(j, 8)] =

1

6
if j 2 {0, 2, 4, 6}

µinv [B(j, 8)] =
1

12
if j 2 {1, 3, 5, 7}
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3) Weak Collatz conjecture: all orbits are bounded

Contradiction with the unboundedness of the orbit.

fQ⇤ =

✓
1

8

◆1/6 ✓3

4

◆2/3 ✓9

2

◆1/6

=
3

4
< 1

average contracting/expanding factor:

S(n) =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

n
8 if n 2 B(0, 8)
6n+2

8 if n 2 B(1, 8)
6n+4

8 if n 2 B(2, 8)
36n+20

8 if n 2 B(3, 8)
6n+8

8 if n 2 B(4, 8)
6n+2

8 if n 2 B(5, 8)
6n+4

8 if n 2 B(6, 8)
36n+20

8 if n 2 B(7, 8) .

8n 2 N
µinv [B(j, 8)] =

1

6
if j 2 {0, 2, 4, 6}

µinv [B(j, 8)] =
1

12
if j 2 {1, 3, 5, 7}
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3) Weak Collatz conjecture: all orbits are bounded

The result of the ergodic theorem holds  for         - a.e.µinv n0 2 N
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3) Weak Collatz conjecture: all orbits are bounded

The result of the ergodic theorem holds  for         - a.e.µinv n0 2 N

µinv
n0 2 N

The existence of zero        measure sets can be ruled out because 
                          for allµinv(n0) > 0

So ALL the orbits are bounded
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4) Markov process with absorbing state

Let us observe that once we have proved the weak Collatz  
conjecture we can conclude using the following finite state 
Markov process

8

7

0

6

5

4

3

2

1

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

C0 = B(0, 8)
C1 = B(1, 8) \ {1}
C2 = B(2, 8) \ {2}
C3 = B(3, 8)
C4 = B(4, 8) \ {4}
C5 = B(5, 8)
C6 = B(6, 8)
C7 = B(7, 8)
C8 = {1, 2, 4}
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4’) Collatz cycle: {1,2,4} is the unique attracting cycle

Proof

 No periodic orbits of period different from 1 exist for S.
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4’) Collatz cycle: {1,2,4} is the unique attracting cycle

Proof

Assume there exists a L-periodic orbit for S with L > 1. Observe it is a  
possible realisation of the Markov chain, hence it should infinitely visit 
the 8 classes.

 No periodic orbits of period different from 1 exist for S.
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4’) Collatz cycle: {1,2,4} is the unique attracting cycle

Proof

Assume there exists a L-periodic orbit for S with L > 1. Observe it is a  
possible realisation of the Markov chain, hence it should infinitely visit 
the 8 classes.

 No periodic orbits of period different from 1 exist for S.

Invoking the ergodic theorem this orbit should have fQ⇤ < 1
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4’) Collatz cycle: {1,2,4} is the unique attracting cycle

Proof

Assume there exists a L-periodic orbit for S with L > 1. Observe it is a  
possible realisation of the Markov chain, hence it should infinitely visit 
the 8 classes.

 No periodic orbits of period different from 1 exist for S.

Invoking the ergodic theorem this orbit should have fQ⇤ < 1

Contradicting the periodicity (that would require                )fQ⇤ = 1
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4’) Collatz cycle: {1,2,4} is the unique attracting cycle

Proof

Assume there exists a L-periodic orbit for S with L > 1. Observe it is a  
possible realisation of the Markov chain, hence it should infinitely visit 
the 8 classes.

 No periodic orbits of period different from 1 exist for S.

Invoking the ergodic theorem this orbit should have fQ⇤ < 1

Contradicting the periodicity (that would require                )fQ⇤ = 1

µinvThe existence of zero        measure sets can be ruled out as previously done 



www.unamur.be timoteo.carletti@unamur.be

October the 25th, 2016, Namur, Belgium

New insight the Collatz conjecture.  
A contracting Markov walk  

on a directed graph.

Timoteo Carletti & Duccio Fanelli


