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RESEARCH ARTICLE

Monocytes/Macrophages Upregulate the

Hyaluronidase HYAL1 and Adapt Its

Subcellular Trafficking to Promote

Extracellular Residency upon Differentiation

into Osteoclasts

Emeline Puissant, Marielle Boonen*

Laboratoire de Chimie Physiologique - URPhyM, University of Namur, Namur, Belgium

* marielle.boonen@unamur.be

Abstract

Osteoclasts are giant bone-resorbing cells originating from monocytes/macrophages. Dur-

ing their differentiation, they overexpress two lysosomal enzymes, cathepsin K and TRAP,

which are secreted into the resorption lacuna, an acidified sealed area in contact with bone

matrix where bone degradation takes place. Here we report that the acid hydrolase HYAL1,

a hyaluronidase able to degrade the glycosaminoglycans hyaluronic acid (HA) and chon-

droitin sulfate, is also upregulated upon osteoclastogenesis. The mRNA expression and

protein level of HYAL1 are markedly increased in osteoclasts differentiated from

RAW264.7 mouse macrophages or primary mouse bone marrow monocytes compared to

these precursor cells. As a result, the HYAL1-mediated HA hydrolysis ability of osteoclasts

is strongly enhanced. Using subcellular fractionation, we demonstrate that HYAL1 proteins

are sorted to the osteoclast lysosomes even though, in contrast to cathepsin K and TRAP,

HYAL1 is poorly mannose 6-phosphorylated. We reported previously that macrophages

secrete HYAL1 proforms by constitutive secretion, and that these are recaptured by the cell

surface mannose receptor, processed in endosomes and sorted to lysosomes. Present

work highlights that osteoclasts secrete HYAL1 in two ways, through lysosomal exocytosis

and constitutive secretion, and that these cells promote the extracellular residency of

HYAL1 through downregulation of the mannose receptor. Interestingly, the expression of

the other main hyaluronidase, HYAL2, and of lysosomal exoglycosidases involved in HA

degradation, does not increase similarly to HYAL1 upon osteoclastogenesis. Taken

together, these findings point out the predominant involvement of HYAL1 in bone HA

metabolism and perhaps bone remodeling via the resorption lacuna.
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Introduction

Osteoclasts are giant multinucleated cells responsible for bone resorption that differentiate
from hematopoietic cells of monocyte/macrophage lineage. When in contact with bone, osteo-
clasts polarize and form a resorption lacuna sealed by an actin ring in which the bone matrix is
degraded, notably by secreted lysosomal acid hydrolases [1,2]. These are released when secre-
tory lysosomes fuse with the osteoclast apical membrane, a process that also provides vATPase
complexes which generate an acidified extracellular environment optimal for lysosomal hydro-
lase activity [3–7]. Secretory lysosomes of osteoclasts are particularly enriched in two lysosomal
hydrolases: the cysteine protease cathepsin K and the acid phosphatase TRAP (Tartrate-Resis-
tant Acid Phosphatase). Exocytosis of the lysosomal content appears to be the primary mecha-
nism underlying the secretion of cathepsin K (under its activated/processed form), whereas
TRAP can be secreted in two ways: by exocytosis and, under its precursor form, by the consti-
tutive secretory pathway [7,8]. Cathepsin K degrades type I collagen, a major constituent of
bone matrix [9,10], but the function of TRAP is less well understood. Except in brain, TRAP is
responsible for the dephosphorylation of acid hydrolases upon their arrival in the lysosomal
compartment [11]. In the bone system, it has been suggested that TRAP regulates the migra-
tion of osteoclasts through dephosphorylation of osteopontin, a protein involved in osteoclast
adhesion to bone matrix [12]. The ability of TRAP to generate radical oxygen species might
also contribute to the degradation of bone matrix products transcytosed from the resorption
lacuna [13,14]. Cathepsin K or TRAP deficient mice both exhibit osteopetrosis, an increase of
bone mineral density, demonstrating that these enzymes are required to maintain bone homeo-
stasis [15,16]. Interestingly, one common feature of cathepsin K and TRAP is their marked
upregulation, in contrast to other lysosomal acid hydrolases, upon differentiation of osteoclasts
from their monocytic precursors [17].

Several studies have highlighted that hyaluronic acid (HA), a high molecularmass (MM)
glycosaminoglycan present in extracellularmatrices, including bone matrix, can influence the
differentiation and activity of osteoclasts in a size-dependentmanner. Whereas low MM HA
can stimulate the differentiation and bone resorption activity of murine and human osteoclasts,
high MM HA exhibits the opposite effect [18–21]. Of note, the MM profile of HA in various
somatic tissues can be modulated through the hydrolytic action of two main endoglycosidases,
the hyaluronidases HYAL1 and HYAL2, aided by two lysosomal exoglycosidases, β-hexosa-
minidase and β-glucuronidase. A model of HA catabolism [22] proposes that HYAL2, a glyco-
sylphosphatidylinositol-anchored cell surface hyaluronidase [23], starts to cleave high MM HA
into smaller fragments, probably down to 20 kDa [24]. These fragments are then degraded
more thoroughly by HYAL1 and exoglycosidases in the endo/lysosomal system. Whether a
similar system exists in the bone matrix is unknown.

We have now explored the hyaluronidases of osteoclasts and report that the expression of
HYAL1, but not HYAL2, is strongly upregulated, at the mRNA and protein level, upon in vitro
differentiation of macrophages into osteoclasts. In addition, our study reveals that the osteo-
clast differentiation process includes changes in the subcellular trafficking of HYAL1 that pro-
mote its extracellular residency, thereby providing new insight into bone metabolism.

Results

The expression level of HYAL1 increases strikingly during

osteoclastogenesis

To investigate the expression of HA-degrading enzymes during osteoclastogenesis,we used a
well-established in vitro system, i.e. the differentiation of RAW264.7 macrophages by treatment

HYAL1 Upregulation in Osteoclasts

PLOS ONE | DOI:10.1371/journal.pone.0165004 October 18, 2016 2 / 22



with the receptor activator of nuclear factor kappa-B ligand (RANKL), a cytokine that induces
osteoclastogenesis through binding to its receptor RANK located at the surface of monocytes/
macrophages [25]. As expected (Fig 1A), we observed that differentiated osteoclasts (i.e. treated
with RANKL for 5 days) contain large amounts of mature/proteolytically processed forms of
cathepsin K and TRAP (Fig 1A, open arrowheads), as well as low amounts of their precursor
forms (closed arrowheads), whereas macrophages (day 0) and cells treated for 2 days with
RANKL are mostly devoid of these proteins. We previously reported that RAW264.7 macro-
phages contain two main forms of HYAL1 that are detected by western blotting under reducing

Fig 1. The protein and activity levels of HYAL1 are upregulated during osteoclastogenesis.

RAW264.7 macrophages were treated for 2 or 5 days with RANKL to induce osteoclastogenesis. (A)

Detection of cathepsin K, TRAP, HYAL1 and GAPDH by western blotting (under reducing conditions).

Closed and open arrowheads point to each hydrolase precursor and mature form, respectively. (B)

Visualization of the HA-degrading activity of HYAL1 by renatured protein zymography (“Renatured”) and

native protein zymography (“Native”) (non-reducing conditions). Precursor and mature forms are pointed as

described in A. (C) Measurement of the activity of β-hexosaminidase and β-glucuronidase in RAW264.7

macrophages and in osteoclasts derived from these cells. The graph shows the fold change (mean ± SD of

n = 3 independent experiments) in osteoclasts relative to the precursor cells.

doi:10.1371/journal.pone.0165004.g001
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conditions: a ~52 kDa precursor form that bears high-mannose N-linked glycans and likely
localizes to the endoplasmic reticulum (ER), and a mature form of ~48 kDa produced by proteo-
lytic cleavage [26]. The precursor is processed during transport of HYAL1 through endosomes,
on its way to lysosomes where the mature form accumulates [26]. Interestingly, we detected an
increased level of the 52 kDa precursor form of HYAL1 (closed arrowhead) in osteoclasts as
early as day 2 of the differentiation process, and a strong upregulation of both precursor and
mature forms at day 5 (Fig 1A), suggesting that differentiated osteoclastsmay contain large
amounts of HYAL1 in their endo/lysosomal system. Of note, HYAL1 could also be detected in
macrophages (day 0) using a longer exposure time (data not shown), in accordance with pub-
lished findings [26]. Based on the semi-quantitative analysis of 6 independent western blotting
experiments, we estimated that the population of HYAL1 proteins is increased by 25.5 ± 6.4-fold
in differentiated osteoclasts (day 5) compared to precursor cells (day 0) (p<0.001, non-paired
Student’s t-test using the housekeeping protein GAPDH for comparison).

To test whether, as a consequence of HYAL1 upregulation, osteoclasts become more profi-
cient in HA degradation, we used an in-gel HA degradation assay that specifically allows visu-
alization of HYAL1-mediated HA hydrolysis [26–30]. This zymography can be run either in a
non-denaturating polyacrylamide gel (referred to as “native protein” zymography) or after sep-
aration of the proteins in a SDS-containing gel, followed by a renaturation step (referred to as
“renatured protein” zymography). We have recently demonstrated that the precursor form of
HYAL1 can degrade HA in both native and renatured protein zymography assays, whereas the
activity of the cleaved/lysosomal form of murine HYAL1 can be efficiently detected by native
protein zymography only, suggesting that non-covalent interactions support the activity of the
latter [26,31]. In accordance with these prior findings, analysis of RAW264.7 macrophage and
osteoclast samples by renatured protein zymography revealed a single HA degradation area
around 70 kDa at day 2 and 5 of the differentiation process, which is where the precursor form
of HYAL1 migrates under non-reducing conditions (Fig 1B, upper panel, closed arrowhead).
Moreover, this form exhibited the same expression profile than the 52 kDa precursor form of
HYAL1 detected by western blotting (reducing conditions, Fig 1A). HA degradation by this
proform was also detected by native zymography (Fig 1B, lower panel, closed arrowhead), in
addition to a larger area devoid of HA lower in the gel, most prominent at day 5 of differentia-
tion (Fig 1B, lower panel, open arrowhead). Previous findings [26] and comparison with the
signal intensities obtained by western blotting (Fig 1A), identify this signal as the result of HA
degradation by the mature form of HYAL1. Taken together, these observations demonstrate
that upregulation of HYAL1 proteins in osteoclasts significantly enhances their HA degrada-
tion ability compared to the precursor cells.

Of note, these findings were validated using osteoclasts differentiated from primary mouse
bone marrow monocytes/macrophages (BMM). S1 Fig shows that the differentiation of these
cells in the presence of RANKL and M-CSF (macrophage colony-stimulating factor, added to
support BMM proliferation, differentiation and survival [32]) results in a similar increase of
HYAL1 protein and activity levels in osteoclasts. This supplemental figure also includes a con-
trol of the specificity of the anti-HYAL1 antibody.

HYAL1 is the only HA-degrading enzyme upregulated in osteoclasts

We used quantitative PCR (qPCR) to measure the mRNA levels of HA endo- and exo-glycosi-
dases. These analyses revealed a 4.0-fold increase of Hyal1 mRNA level 2 days after addition of
RANKL, and a 11.1-fold increase when osteoclasts were fully differentiated (Table 1), suggest-
ing that HYAL1 upregulation upon osteoclast differentiation is likely accounted for, at least
partly, by an enhanced transcription. Indeed, this progressive upregulation, albeit not as
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striking as the increases measured for cathepsin K and TRAP encodingmRNAs (Table 1),
nicely correlates with the elevation of HYAL1 protein and activity levels that occurs upon oste-
oclast differentiation (Fig 1A and 1B).

By contrast, the relative amounts of mRNAs coding for HYAL2 (the other active hyaluroni-
dase of somatic tissues) and for the exoglycosidase β-glucuronidase remained relatively stable
upon differentiation (Table 1). 2.6-fold and 4.6-fold increases were detected for β-hexosamini-
dase encodingmRNAs (α and β subunits, respectively). However, only marginal changes of
activity levels were detected upon osteoclastogenesis for both HA exoglycosidases using in
vitro enzyme assays (Fig 1C): a 1.1 ± 0.5-fold decrease was measured for β-glucuronidase and a
1.8 ± 0.2-fold increase for β-hexosaminidase (p = 0.45 and p<0.01, respectively; non-paired
Student’s t-tests conducted on n = 3 independent experiments using GAPDH as a housekeep-
ing protein). A larger elevation of 7.7-fold was measured for the mRNA coding for HYAL3.
This observation is not surprising as co-transcription of HYAL1 and HYAL3 encoding genes,
which are tightly clustered, has been reported in mouse liver [33]. Albeit its role in HA hydroly-
sis remains elusive, as this protein appears to have no HA degradation activity in somatic cells
[29,34], HYAL3 may increase the expression and activity of HYAL1 [29]. Of note, in accor-
dance with published findings [17], the mRNA expression level of several other acid hydrolases
(including cathepsin D, β-galactosidase,β-glucocerebrosidase and β-mannosidase) only exhib-
ited limited variations compared to HYAL1, cathepsin K and TRAP (Table 1), confirming that
only a subset of acid hydrolases are upregulated upon osteoclastogenesis. Similar observations
were made in BMM-derived osteoclasts (S1 Table and S1D Fig).

Taken together, these findings suggest that HYAL1 likely plays a predominant role in osteo-
clasts, compared to other acid hydrolases and HA-degrading enzymes.

The processed form of HYAL1 localizes to lysosomes in osteoclasts

Our previous study of the subcellular trafficking of HYAL1 in RAW264.7 cells demonstrated
that the mature form of HYAL1 accumulates in lysosomes where it can exert its activity [26].
To investigate the intracellular localization of HYAL1 in osteoclasts, we fractionated
RAW264.7-derived osteoclasts into 5 fractions by differential centrifugation, i.e. nuclear (N),
heavy mitochondrial (M), light mitochondrial (L), microsomal (P), and cytosolic (S) [35]. As

Table 1. Relative mRNA expression levels of hyaluronidases and lysosomal hydrolases in osteo-

clasts collected at day 2 or 5 of the differentiation process, compared to RAW264.7 precursor macro-

phages (day 0).

Protein / Gene name Fold change

Day 2 / Day 0 Day 5 / Day 0

Cathepsin K / Ctsk 32.80 296.11

TRAP / Acp5 154.20 534.85

HYAL1 / Hyal1 4.01 11.10

HYAL2 / Hyal2 1.30

HYAL3 / Hyal3 7.67

β-glucuronidase / Gusb -1.14

β-hexosaminidase α / Hexa 2.63

β-hexosaminidase β / Hexb 4.58

Cathepsin D / Ctsd 1.08

β-galactosidase / Glb1 3.72

β-glucocerebrosidase / Gba 1.04

β-mannosidase / Manba 1.72

doi:10.1371/journal.pone.0165004.t001
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expected, the lysosomal marker enzyme β-galactosidase (detected by enzyme assay, Fig 2A)
and the mature form of cathepsin K (detected by western blotting, Fig 2B, open arrowhead)
were found predominantly enriched in the L fraction, and to a lesser extent in the M fraction.
In contrast, the precursor form of cathepsin K (Fig 2B, closed arrowhead) distributed between
the L and P fractions, which is consistent with its presence in pre-lysosomal compartments.
Indeed, the P fraction is more enriched in biosynthetic compartments such as the ER, com-
pared to the M and L fractions, as indicated by the distribution profile of the ER marker alka-
line α-glucosidase (Fig 2A). Similarly to the cathepsin K proform, the 52 kDa HYAL1
precursor form distributed between the L and P fractions (Fig 2C, closed arrowhead). In addi-
tion, the mature form of HYAL1 (Fig 2C, open arrowhead) was found enriched in the M and L
fractions, as observed for the lysosomal markers (β-galactosidase and mature cathepsin K).

To test whether these co-distributions reflected the presence of HYAL1 precursor forms in
pre-lysosomal structures and of mature forms in lysosomes, we used two different density gra-
dient centrifugationmethods. Of note, we could not use an immunofluorescence assay as non-
specific staining is detectedwith currently available anti-HYAL1 antibodies. Hence, we pre-
pared a pooledM+L+P fraction, which was centrifuged in a self-forming Percoll™ density gra-
dient, allowing lysosomes (enriched in β-galactosidase and mature cathepsin K) to sediment
until the densest fraction of the gradient. In contrast, biosynthetic/pre-lysosomal compart-
ments (containing alkaline α-glucosidase and the cathepsin K precursor) remained in the
lower density zone (Fig 3A and 3B). Detection of HYAL1 by western blotting revealed the pres-
ence of the 52 kDa precursor form of HYAL1 in the upper region of the gradient (Fig 3C,
closed arrowhead). This is in accordance with its localization in pre-lysosomal compartments.
By contrast, the mature form of HYAL1 was detected in the lysosome-containing fraction at
the bottom of the gradient (Fig 3C, open arrowhead).

Lastly, an M+L+P pooled fraction was prepared from control osteoclasts or osteoclasts
treated for 24 h with U18666A, and fractionated in a linear sucrose density gradient. U18666A
is a chemical compound that inhibits cholesterol egress from lysosomes and, as a result, modi-
fies the density of lysosomes in sucrose gradients [36]. This was reflected here by a shift of dis-
tribution of β-galactosidase and of mature cathepsin K toward the lower density region of the
gradient (Fig 4A, 4C and 4D). Similarly, the mature form of HYAL1, which co-distributedwith
β-galactosidase and mature cathepsin K in control conditions, was detected in lower density
fractions after treatment (Fig 4E and 4F). Importantly, the distributions of the precursor forms
of HYAL1 and cathepsin K, and of the ER marker alkaline α-glucosidasewere only marginally,
if at all, affected by the U18666A treatment demonstrating that the density shift is specific to
lysosomes (Fig 4B–4F).

Taken together, these three fractionation experiments results demonstrate the lysosomal
residency of large amounts of mature HYAL1 in osteoclasts while the precursor form is mostly
present in pre-lysosomal compartments (e.g. the ER).

Osteoclasts secrete HYAL1 by exocytosis of lysosomes and constitutive

secretion

We previously reported that RAW264.7 macrophages secrete a single form of HYAL1 of ~65
kDa via the constitutive secretory pathway [26], i.e. a precursor form that traffics through the
Golgi apparatus where its N-linked oligosaccharidic chains become of the complex-type, giving
rise to a slightly higher form compared to the intracellular, newly synthesized 52 kDa precursor
that bears high-mannose glycans (Fig 5A, see asterisk and closed arrowhead, respectively).
After deglycosylation with Peptide-N-Glycosidase F (PNGase F), which removes all N-linked
glycans from glycoproteins, both intracellular (52 kDa) and secreted (65 kDa) precursor forms
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Fig 2. The mature form of HYAL1 co-distributes with lysosomal markers after osteoclast

fractionation by differential centrifugation. Osteoclasts differentiated from RAW264.7 cells were

fractionated into five fractions (N, M, L, P and S) following de Duve’s fractionation scheme. (A) The activities

of β-galactosidase and alkaline α-glucosidase were detected by fluorometric assay to establish the

distribution of lysosomes and of the ER, respectively. The graph shows the relative specific activity (ratio of

the percentage of activity of the enzyme in a given fraction to the percentage of proteins in this fraction),

which is indicative of the enrichment factor of the enzyme in the fractions, plotted against the percentage of

proteins in each fraction. (B-C) The distribution of cathepsin K and HYAL1 was analyzed by western blotting

(reducing conditions). Equal amounts of proteins were loaded for each fraction, except for S, which was

diluted 1:2 compared to the other fractions. The mature and precursor forms are highlighted by open and

closed arrowheads, respectively. Of note, in panel B, a longer exposure time is shown for the upper part of

the blot to help visualization of cathepsin K proforms.

doi:10.1371/journal.pone.0165004.g002
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exhibit the same MM of ~45 kDa, whereas the 48 kDa mature form of HYAL1 (exclusively
intracellular, open arrowhead in Fig 5A) exhibits a protein backbone of ~35 kDa after deglyco-
sylation, reflecting its proteolytic processing in endo/lysosomes.The results of these glycosidase
treatments can be found in Puissant et al. [26].

Interestingly, in contrast to macrophages, we found that osteoclasts derived from
RAW264.7 cells secrete two forms of HYAL1, i.e. the 65 kDa complex glycan-bearing form

Fig 3. HYAL1 and cathepsin K co-distribute in a self-forming Percoll™ density gradient. An M+L+P

pooled fraction of osteoclasts was centrifuged in a self-forming Percoll™ density gradient and 7 fractions

were collected from top to bottom. (A) The distribution of lysosomes and of the ER was established based on

the activities of β-galactosidase and alkaline α-glucosidase, respectively. The graph shows the percentage

of β-galactosidase and alkaline α-glucosidase in each fraction of the Percoll™ gradient and the density of

these fractions. (B-C) The distribution of the precursor and mature forms of cathepsin K and HYAL1 (pointed

by closed and open arrowheads, respectively) was analyzed by western blotting (reducing conditions).

doi:10.1371/journal.pone.0165004.g003
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Fig 4. U18666A modifies the distribution of mature HYAL1 in a sucrose gradient, similarly to

lysosomal markers. An M+L+P fraction was prepared from control or U18666A treated osteoclasts and

centrifuged in a linear sucrose density gradient extending from 1.04 g/mL to 1.26 g/mL. Nine fractions were

collected from top to bottom. (A-B) The activities of the markers β-galactosidase (A) and alkaline α-

glucosidase (B) were measured using fluorometric assay in the different fractions. The ordinate of the graphs

corresponds to the frequency (Q/SQ.r, where Q represents the activity found in the fraction, SQ, the total

activity recovered in the sum of the fractions, and r, the increment of density from top to bottom of the

fraction). (C-F) Cathepsin K and HYAL1 were detected by western blotting (reducing conditions) in the

fractions collected after centrifugation. The precursor and mature forms of these proteins are shown by

HYAL1 Upregulation in Osteoclasts
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(Fig 5B, asterisk) and the 48 kDa processed form (Fig 5B, open arrowhead). Indeed, treatment
of osteoclast medium with PNGase F showed that the two secreted HYAL1 forms exhibited
MM of ~45 and ~35 kDa after complete N-deglycosylation, respectively (Fig 5C). Since there
was no loss of cellular integrity (GAPDH, a cytosolic protein, was absent from the medium),
and since the neutral extracellular pH is not favorable to HYAL1 maturation (as osteoclasts do
not form an acidified lacuna when cultured on plastic), it is likely that some amount of HYAL1
transited through lysosomes prior to secretion. In support of this view, the mature forms of
TRAP and cathepsin K could also be detected in the culture medium of osteoclasts (Fig 5B),

closed and open arrowheads, respectively. Of note, a longer exposure time is shown for the upper part of the

blots shown in panels C and D, to visualize cathepsin K proforms.

doi:10.1371/journal.pone.0165004.g004

Fig 5. Osteoclasts secrete HYAL1 through both the constitutive secretory pathway and lysosomal

exocytosis. (A) Detection of HYAL1 by western blotting, under reducing conditions, in RAW264.7 cell lysate

and medium samples collected after a 5 h incubation in serum-free conditions. The cytosolic protein GAPDH

was used as a control of the cell integrity. The medium was concentrated 4-fold compared to the cell sample.

The closed arrowhead, open arrowhead and asterisk mark the 52 kDa intracellular precursor form, 48 kDa

intracellular mature form and 65 kDa secreted form of HYAL1, respectively. (B) Detection of cathepsin K,

TRAP, GAPDH and HYAL1 by western blotting in RAW264.7-derived osteoclast cell lysate and concentrated

medium (4 x). The precursor and mature forms of TRAP and cathepsin K are highlighted by closed and open

arrowheads, respectively. The different forms of HYAL1 are marked as described in A. (C) Aliquots of

osteoclast cell lysate and medium (concentrated 4-fold) were treated with PNGase F prior to the detection of

HYAL1 by western blotting. The different forms of HYAL1 are pointed as described in A. Note that the

extracellular precursor form (asterisk) exhibited the same MM as the intracellular precursor (closed

arrowhead) after deglycosylation, and that osteoclasts secreted mature forms of HYAL1 (detected at ~35

kDa after deglycosylation, open arrowhead).

doi:10.1371/journal.pone.0165004.g005
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and these results were confirmed using BMM-derived osteoclasts (S1E Fig). Thus lysosomal
exocytosis and the constitutive secretory pathway both contribute to the release of large
amounts of HYAL1 in the culture medium of osteoclasts.

The recapture of secreted HYAL1 is downregulated in osteoclasts

compared to precursor macrophages

Most lysosomal hydrolases use the mannose 6-phosphate (Man-6-P)-dependent pathway to
travel to lysosomes. They receive Man-6-P residues on their N-linked glycans during passage
through the Golgi apparatus, which allows their recognition by Man-6-P receptors (MPRs)
and subsequent packaging into transport vesicles that travel from the trans-Golgi network and/
or the plasma membrane to endo/lysosomes [37,38]. In osteoclasts, both cathepsin K and
TRAP use this pathway to travel to secretory lysosomes [7,17]. In contrast, the intracellular
trafficking of cathepsin D is independent of Man-6-P in osteoclasts, indicating that there are
also other ways to travel to lysosomes in those cells [7]. In RAW264.7 macrophages, HYAL1 is
targeted to lysosomes by a Man-6-P-independent secretion/recapture mechanism involving
endocytosis by the cell surface mannose receptor [26]. Similarly, it has been reported recently
that 22Rv1 human prostate adenocarcinoma cells secrete and recapture HYAL1 by endocyto-
sis, and that this process modulates HA internalization [39]. As bone matrix resorption relies
on the concentration of acid hydrolases in an extracellular degradation lacuna, we wondered
whether HYAL1, which is largely secreted by osteoclasts (see above), was also sorted to lyso-
somes by Man-6-P-independent recapture from the extracellularmedium, a mechanism that
would seem rather counterproductive in this context.

First, we investigated the mannose-6-phosphorylation level of HYAL1 in osteoclasts using
a Man-6-P receptor (CI-MPR) affinity column, as previously described [26,40]. As a control,
we measured the mannose 6-phosphorylation level of cathepsin K, which uses this pathway
to travel to lysosomes in those cells [7,17]. In accordance with the presence of TRAP in osteo-
clast lysosomes, which removes Man-6-P signals on acid hydrolases [11], the binding of the
intracellular and secreted mature forms of cathepsin K to the column were very low. Only
0.5 ± 0.3% and 0.5 ± 0.7% of the total mature forms eluted after addition of Man-6-P, respec-
tively (Fig 6A and 6B, open arrowheads). In contrast, 31.9 ± 9.9% of the intracellular precur-
sor form of cathepsin K and 39.6 ± 13.2% of its secreted precursor form (Fig 6A and 6B,
closed arrowheads) bound to the column, confirming that newly synthesized cathepsin K is
efficiently phosphorylated. When the analysis was performed on HYAL1, we observed that,
similarly to cathepsin K, only marginal amounts of mature/lysosomal HYAL1 bound to the
column: 0.8 ± 0.4% of intracellular mature HYAL1 and 1.4 ± 1.4% of the mature form
secreted by lysosomal exocytosis (Fig 6C and 6D, open arrowheads). However, in contrast to
cathepsin K, the phosphorylation level of HYAL1 was also very low on its precursor form:
only 4.6 ± 1.6% and 4.3 ± 2.1% of the intracellular and secreted 65 kDa precursor forms bore
Man-6-P signals, respectively (Fig 6C and 6D, asterisks). Binding of the intracellular 52 kDa
precursor forms to the column was not detected. The slightly higher phosphorylation level of
the 65 kDa HYAL1 precursor forms (compared to the 48 kDa mature forms) is consistent
with some HYAL1 precursor forms exiting the cells through the constitutive secretory path-
way, bypassing TRAP-containing lysosomes, but also suggests that HYAL1 is not a good sub-
strate of the phosphotransferase that catalyzes the first step of Man-6-P synthesis. Overall,
the average phosphorylation level of the HYAL1 precursor in osteoclasts only amounted to
4.4 ± 1.8%, compared to 35.7 ± 11.2% for cathepsin K (non-paired Student’s t-test, n = 3
independent experiments, p<0.001). This finding indicates that, similarly to macrophages,
osteoclasts mostly target HYAL1 to lysosomes by Man-6-P-independent pathway(s), and
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points out that HYAL1 secreted by osteoclasts is only weakly, if at all, recaptured by Man-6-P
receptors.

Next, we tested whether the mannose receptor recaptured secreted HYAL1 in osteoclasts.
Previously we showed that the addition of mannan, a mannose receptor ligand, to the culture
medium of RAW264.7 cells for 24 h significantly reduces the endocytosis of HYAL1 and, as a
consequence, the intracellular level of mature/lysosomal HYAL1 which originates from the
recapture of the secreted protein [26]. However, in osteoclasts, no change of HYAL1 intracellu-
lar level was detected after a 24 h incubation period in the presence of mannan, or Man-6-P for
that matter (Fig 7A, no statistically significant differences between groups as determined by a
one-way ANOVA analysis, using a Bonferroni’s post-test for multiple comparisons, n = 3 inde-
pendent experiments). Interestingly, an endocytosis assay conducted using 125I-labeled recom-
binant human (rh) HYAL1 revealed that osteoclasts internalize 2.3 ± 0.1, 2.6 ± 0.5 and
2.6 ± 1.2 times less enzyme than macrophages after 5, 10 and 30 min of incubation at 37°C
(Fig 7B, p<0.05, 0.001 or 0.01, respectively. Non-paired Student’s t-tests, n = 3 independent
experiments).Moreover, whereas mannan efficiently inhibited the capture of 125I-HYAL1 by

Fig 6. HYAL1 is poorly mannose 6-phosphorylated in osteoclasts. Cell lysate (A, C) or culture medium

(B, D) of osteoclasts differentiated from RAW264.7 cells were collected after a 5 h culture period in serum-

free conditions and loaded on a CI-MPR affinity column. The presence of cathepsin K (A-B) and HYAL1

(C-D) was analyzed, using western blotting (reducing conditions), in the starting sample (ST), flow-through

(FT), washes (Wash) and elution fractions (trichloroacetic acid-precipitated). Proteins non specifically bound

to the column were eluted using 5 mM of Glucose 6-Phosphate (Glc-6-P) while proteins that bound

specifically to CI-MPRs were eluted with 5 mM of mannose 6-phosphate (Man-6-P). Cathepsin K precursor

and cleaved forms are indicated by closed and open arrowheads, respectively. The 65 kDa precursor and 48

kDa mature forms of HYAL1 are indicated by asterisks and open arrowheads, respectively. One

representative experiment is shown. Specific binding of each cathepsin K or HYAL1 forms to the column was

calculated in n = 3 independent experiments and expressed as a percentage of the total signal detected for

the corresponding form in the starting sample (mean ± SD of the 3 independent experiments are shown).

doi:10.1371/journal.pone.0165004.g006
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macrophages (as reported previously [26]), it had no impact on HYAL1 internalization in oste-
oclasts (Fig 7B). These results suggest that the secretion/recapturemechanism identified in
macrophages may not be the main trafficking route followed by HYAL1 to reach lysosomes in
osteoclasts. In accordance with this hypothesis, efficient sorting of endocytosed rhHYAL1 to

Fig 7. Osteoclasts downregulate the mannose receptor-dependent recapture mechanism that

targets HYAL1 to lysosomes in macrophages. (A) Osteoclasts derived from RAW264.7 cells were treated

for 24 h with 15 mg/mL of mannan (Man) or 5 mM of Man-6-P, and the intracellular amount of HYAL1 was

subsequently visualized using western blotting. The graph shows the quantifications of 52 kDa precursor

(grey squares) and 48 kDa mature (white squares) HYAL1 forms in n = 3 independent experiments

(mean ± SD). (B) Osteoclasts (Ost) and their RAW264.7 precursor macrophages (Mac) were incubated for 5,

10 or 30 min with iodinated rhHYAL1. When indicated, 10 mg/mL of mannan (Man) were added on the cells 5

min prior to the assay and 20 mg/mL during the pulse period. After washing, the proteins bound to the

surface were stripped prior to cell lysis and counting of the internalized radioactivity. Three independent

experiments were quantified (mean ± SD). (C) After a 2 h incubation at 37˚C with rhHYAL1 (± leupeptin [Leu]/

pepstatin A [Pepst A]) followed by a 15 min chase, the amount of rhHYAL1 endocytosed by macrophages

(Mac) and osteoclasts (Ost) was detected using renatured protein zymography. Of note, only low amounts of

proteins are loaded on the gel in these assays; therefore, the endogenous protein is below detection level.

One representative experiment is shown (total independent experiments n = 3). (D) The mRNA expression

levels of the mannose receptor and CI-MPR were measured by qPCR in macrophages and osteoclasts. The

ΔCT values obtained in 3 independent experiments were averaged and used to calculate fold changes in

osteoclasts relative to precursor macrophages (2-ΔΔCT).

doi:10.1371/journal.pone.0165004.g007
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lysosomes was only observed in macrophages. Indeed, using a renatured protein zymography
assay, we estimated that only 22.9 ± 4.5% of rhHYAL1 endocytosedby osteoclasts was con-
verted into mature forms after a 2 h chase period, whereas this percentage reached 91.3 ± 1.9%
in macrophages (p<0.001, non-paired Student’s t-test, n = 3 independent experiments). Of
note, knowing that the maturation process of endocytosed rhHYAL1 (i.e. its transport to lyso-
somes) progressively causes a loss of its activity in the renatured protein zymography assay
[26], we also conducted this internalization assay in the presence of protease inhibitors to pre-
vent HYAL1 maturation. This translated by an increase of approximately 35.3 ± 5.1% of the
total signal detected in macrophages compared to non-treated macrophages (p<0.01, non-
paired Student’s t-test, n = 3 independent experiments) and, as expected, in a larger proportion
of HYAL1 detected under precursor form (Fig 7C). However, no changes of signal intensities
or ratio of HYAL1 forms occurred in treated osteoclasts versus non-treated osteoclasts (non
significant differences, non-paired Student’s t-test, n = 3 independent experiments), further
supporting that very little amount of the endocytosed rhHYAL1 reaches lysosomes in those
cells. Coupled with the lower capture efficiencyof HYAL1 by osteoclasts (Fig 7B), these results
support that recapture of secretedHYAL1 is an inefficient pathway in osteoclasts. Interestingly,
we correlated this finding with a large decrease of expression of the mannose receptor in differ-
entiated osteoclasts. qPCR analyses revealed a 15.1-fold decrease of mannose receptor encod-
ing mRNA level in osteoclasts compared to RAW264.7 precursor cells. For comparison, we
also measured the mRNA level coding for the CI-MPR: it was unchanged after differentiation
of the macrophages into osteoclasts (Fig 7D).

Taken together, our results support that: 1) HYAL1 is mainly sorted to lysosomes in osteo-
clasts by an intracellular Man-6-P-independent pathway; 2) osteoclasts secrete large amounts
of HYAL1 through constitutive secretion and lysosomal exocytosis; and 3) osteoclasts promote
the accumulation of HYAL1 in the extracellular space (and probably the resorption lacunae)
by downregulating its recapture through the mannose receptor.

Discussion

In this study, we report that the mRNA expression, protein level and activity of the hyaluroni-
dase HYAL1 are highly upregulated upon osteoclastogenesis. Furthermore, we demonstrate
that HYAL1 resides in lysosomes in osteoclasts and that these cells secrete both the precursor
form of HYAL1 (likely exiting the cells via the constitutive secretory pathway) and its mature/
cleaved form by lysosomal exocytosis. Although HYAL1 also localizes to lysosomes in macro-
phages, these cells almost exclusively release precursor forms of HYAL1, suggesting that lyso-
somal exocytosis significantly contributes to HYAL1 secretion only in differentiated
osteoclasts. Interestingly, the osteoclastogenesis-dependentmode of secretion of mature
HYAL1 develops in parallel with the appearance of secretory lysosomes in osteoclasts. Coupled
with the similarities detected betweenHYAL1 and the secretory lysosome component cathep-
sin K (i.e. their striking upregulation upon osteoclast differentiation and their perfect co-distri-
butions in all of our fractionation experiments), it is likely that HYAL1 resides, at least partly,
in those specialized lysosomes. HYAL1 does not use classical traffickingmechanisms to reach
this site though. The sorting of HYAL1 is mainly Man-6-P-independent, in contrast to cathep-
sin K and TRAP [7,17]. In addition, the mannose receptor-mediated recapture mechanism
that drives HYAL1 internalization in precursor macrophages [26] is downregulated upon dif-
ferentiation into osteoclasts. These observations indicate that osteoclasts promote the extracel-
lular accumulation of secreted HYAL1, possibly resulting in its concentration in the resorption
lacuna (often referred to as an “extracellular lysosome”) upon polarization of these cells on
bone. Importantly, our findings also consolidate the view that the subcellular trafficking of

HYAL1 Upregulation in Osteoclasts

PLOS ONE | DOI:10.1371/journal.pone.0165004 October 18, 2016 14 / 22



lysosomal hydrolases in osteoclasts relies, in part, on mannose 6-phosphate-independent sort-
ing pathways. Indeed, it has also been demonstrated that the subcellular trafficking of the
aspartic protease cathepsin D, which is mostly found in a population of osteoclast lysosomes
with low cathepsin K content and, to a lesser extent, in cathepsin K-enriched secretory lyso-
somes, is not affected by the disruption of the Man-6-P sorting pathway [7]. Although we can-
not exclude that a common alternative mechanism drives the lysosomal sorting of both
cathepsin D and HYAL1 in osteoclasts, the lack of sequence similarities between these hydro-
lases, and the fact that several alternative transport receptors have been found for cathepsin D
in other cell types [41–44], suggests that the biogenesis of lysosomes/secretory lysosomes in
osteoclasts, and therefore the bone resorption activity of those cells, might be controlled by sev-
eral transport mechanisms.

Variations of expression of the mannose receptor have been reported in several situations,
e.g. it is downregulated in macrophages upon incubation with pathogens or lymphokines, and
upregulated by dexamethasone, prostaglandins and IL-4 in macrophages [45–49]. However,
the relationship between these changes of expression and biological function(s) remains poorly
understood.Osteoclasts differentiate from macrophages, which themselves derive from mono-
cytes. Interestingly, while macrophages contain a large amount of mannose receptors, circulat-
ing monocytes are mostly devoid of this receptor [50]. Knowing that the mannose receptor
plays a predominant role in the capture of extracellular/circulatingacid hydrolases (N-glycosy-
lated) [26,45,51–53], this observation suggests that, in macrophages, the acquisition of the lyso-
somal hydrolytic arsenal may significantly rely on this receptor. In accordance with this view, it
has been documented that the lysosomal degradation activity of liver sinusoidal cells, which
express high levels of the mannose receptor, decreases by almost 50 percent when the mannose
receptor is knocked-out [54]. We now report that the mannose receptor is strikingly downre-
gulated upon differentiation of macrophages into osteoclasts. It is well known that osteoclasts
specialize in the degradation of extracellular bone matrix through several mechanisms, includ-
ing the formation of secretory lysosomes, the upregulation of a subset of lysosomal hydrolases
and membrane proteins (including the vATPase, cathepsin K and TRAP), the cell polarization
when in contact with bone, and the formation of a sealed extracellular lacuna in which secre-
tory lysosomes release their content. Our findings reveal that osteoclastogenesis promotes bone
matrix degradation in this lacuna in two additional ways: by upregulating the glycosidase that
is endowed with the highest HA depolymerization activity of all hyaluronidases, i.e. HYAL1,
and through the downregulation of the cell surface mannose receptor that would otherwise
recapture exocytosedhydrolases. Our results also suggest that, by contrast to macrophages,
lysosome biogenesis in differentiating osteoclasts does not heavily rely on cell surface mannose
receptors.

Taken together with the reports that, depending on its size and receptors, HA can influence
osteoclast and osteoblast function, the selective upregulation of HYAL1 in osteoclasts as well as
its subcellular localization and secretion by those cells support the view that HYAL1 is a key
actor of bone metabolism.

Materials and Methods

Osteoclast differentiation

The mouse macrophage cell line RAW264.7 was obtained from ATCC (TIB-71™), cultured in
DMEM (Lonza) containing 10% of inactivated FBS (Sigma-Aldrich) and supplemented with
100 U/mL of penicillin and 100 μg/mL of streptomycin (Lonza). Mycoplasma contamination
was checked using the MycoAlert™ PLUS Mycoplasma DetectionKit (Lonza). To generate
osteoclasts from these cells, they were treated with 20 ng/mL of RANKL (R&D Systems) and
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the medium was changed every other day. Cells were collected at day 0 (prior to treatment), as
well as after 2 and 5 days of RANKL treatment.

BMM were prepared as described [7] with slight modifications. Briefly, BMM were har-
vested from femurs of 2–5 month old male C57BL/6 mice euthanized with CO2 and cultured
for 6 days in Minimum Essential Medium Eagle-alpha modification (α-MEM, Lonza) contain-
ing 10% of inactivated FBS (Gibco), 1/10th volume of L929 cell culture supernatant which con-
tains M-CSF [55], 2 mM of glutamine (Lonza), 100 U/mL of penicillin and 100 μg/mL of
streptomycin (Lonza). After trypsinization and plating, the differentiation was induced by add-
ing 20 ng/mL of RANKL to the medium, which was replaced every other day. Hyal1 -/- mice
(B6.129X1-Hyal1tm1Stn/Mmucd) purchased from MMRRC (Mutant Mouse Resource Research
Centers, USA) were raised in our laboratory and backcrossed for 9 generations on a C57BL/6
genetic background. This study required the use of 9 mice. All experimental procedures were
approved by the Animal Ethics Committee of the University of Namur.

Quantitative PCR (qPCR)

Total RNA was extracted from cells and reverse transcribed into cDNA using the High Pure
RNA Isolation Kit (Roche) and the RevertAidH Minus First Strand cDNA Synthesis Kit
(Thermo Fisher Scientific) according to the manufacturer's protocol, respectively. qPCR was
performedwith the FastStart Universal SYBR Green Master (Roche), using a 7300 Real-Time
PCR System (Applied Biosystems) and gene expression level was normalized using the house-
keeping gene Gapdh. Fold change (2-ΔΔCT) betweenmacrophages and osteoclasts samples for
each gene was calculated from the average ΔCT values obtained in 3 independent experiments
(including 2 replicates for each gene). The sequences of the primers used are listed in S2 Table.

Western blotting

The western blotting experiments were performed as previously described [26]. The following
antibodies were used: mouse monoclonal anti-GAPDH (1:4 000 dilution, G8795, Sigma-
Aldrich), anti-HYAL1 (1:1 000 dilution, 1D10, produced by hybridoma cells generously pro-
vided by B. Triggs-Raine, University of Manitoba, Winnipeg, Canada) and anti-cathepsin K
(1:1 000 dilution, MAB3324, Millipore), as well as goat polyclonal anti-TRAP (1:1 000 dilution,
SC-30833, Santa Cruz Biotechnology).When conditioned media were prepared, the cells were
cultured for 5 h in serum-freemedium prior to lysis of the cells in PBS—Triton X-100 1% sup-
plemented with protease inhibitors (cOmplete, mini protease inhibitors cocktail, Roche).
When indicated, cells were incubated for 24 h with either 15 mg/mL of mannan (Sigma-
Aldrich) or 5 mM of Man-6-P (Sigma-Aldrich). In Fig 5C, cell extracts and conditioned media
were treated with PNGase F (New England Biolabs) according to the manufacturer's instruc-
tions. Of note, the specificity of the anti-HYAL1 antibody was validated by an absence of signal
in osteoclasts differentiated from BMM of Hyal1 -/- mice (S1A Fig). HYAL1 signals were quan-
tified using the ImageJ (Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda,
Maryland, USA, http://imagej.nih.gov/ij/, 1997–2015).

Enzymatic assays

The HA-degrading activity of HYAL1 was analyzed by "native" and "renatured protein" zymo-
graphy as detailed in Puissant et al. [26]. Signals were quantified using the ImageJ software.

The enzymatic activity of lysosomal acid hydrolases and ER marker alkaline α-glucosidase
was measured with the following 4-methylumbelliferyl-coupled specific substrates (Sigma-
Aldrich): 4-methylumbelliferyl-β-D-galactopyranoside (β-galactosidase), 4-methylumbelli-
feryl-β-D-glucuronidehydrate (β-glucuronidase), 4-methylumbelliferyl-N-acetyl-β-D-
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glucosaminide (β-hexosaminidase) and 4-methylumbelliferyl-α-D-glucopyranoside (alkaline
α-glucosidase). The samples were incubated at 37°C with 5 mM of substrate in a 50 mM citrate
buffer, pH 4.5 containing 0.05% Triton X-100, except for the alkaline α-glucosidase activity
assay. In this case, the reaction was conducted using 1 mM of substrate diluted in a 0.1 M gly-
cine-NaOH solution (pH 9) containing 0.05% Triton X-100. After 6 h of reaction, a 0.1 M gly-
cine-NaOH solution (pH 10.3) was added to stop the enzymatic activities and the fluorescence
was measured at 495 nm.

HYAL1 endocytosis assays

RAW264.7-derived osteoclasts and their precursor cells were incubated for 2 h at 37°C in the
presence of 4 μg/mL of rhHYAL1, diluted in DMEM containing FBS and supplemented, when
indicated, with 75 μM of leupeptin and pepstatin A (Sigma-Aldrich).A 15 min chase period in
the absence of rhHYAL1 was then conducted and the cells were lysed in PBS—1% Triton X-
100 containing protease inhibitors. The amount of HYAL1 endocytosedby the cells was
assessed by renatured protein zymography as described above.

To quantify endocytosis levels more precisely, RAW264.7 macrophages and derived osteo-
clasts plated in 12-well plates were incubated at 37°C for 5, 10 or 30 min in DMEM containing
FBS and rhHYAL1 labeled with 125Iodine, as described in Puissant et al., 2014 [26]. To test the
impact of mannan on HYAL1 endocytosis, the cells were pre-treated for 5 min with PBS con-
taining 1% of BSA and 10 mg/mL of mannan, then incubated with 125I-HYAL1 for the indi-
cated periods of time in the presence of 20 mg/mL of mannan. The cells were then washed with
PBS and cell proteins bound to the cell surface stripped with a 0.5 M NaCl/0.2 M acetic acid
solution, pH 3.5, for 30 sec at 4°C. Lastly, the cells were lysed in 0.1 M NaOH and the intracel-
lular radioactivity counted using a Beckman counter (Beckman Coulter LS 6500+).

Subcellular fractionation

A slightly modified version of the differential fractionation protocol describedby de Duve et al.
[35] was used to separate RAW264.7-derived osteoclasts into five different subcellular frac-
tions: nuclear (N), heavy mitochondrial (M), light mitochondrial (L), microsomal (P), and sol-
uble (S). The protocol is detailed in Puissant et al., 2014 [26], except for the following
modification: the M and L fractions were prepared separately, as initially described [35].

An adapted version of the protocol described in Green et al. [56] was then used to further
separate some organelles in a self-forming Percoll™ density gradient. Briefly, the M, L and P
fractions were pooled and loaded on top of an 18% Percoll™ solution (18% v/v Percoll™ [Phar-
macia], 0.25 M sucrose, 2 mM EDTA and 10 mM Tris-HCl, pH 7.4). After centrifugation at 59
000 × g in a SW55Ti rotor (BeckmanCoulter) for 40 min at 4°C, the gradient was divided into
seven fractions from top to bottom. As a control of the formation of the density gradient, the
refractive index of each fraction was measured with a refractometer. The activity of marker
enzymes was measured in all collected fractions as described above. For western blotting and
zymography assays, an aliquot of each Percoll™ gradient fraction was incubated with 1% Triton
X-100 for 30 min at 4°C, then centrifuged for 30 min at 200 000 x g in a TLA-100.3 rotor (Beck-
man Coulter) at 4°C to remove the Percoll™ beads.

When indicated the cells were pre-treated for 24 h with 2 μg/mL of U18666A (Millipore), a
molecule that inhibits the lysosomal export of cholesterol [36,57], prior to fractionation of an
M+L+P pooled fraction in a preformed linear sucrose density gradient (1.04–1.26 g/mL). Iso-
pycnic centrifugationwas performed at 144 000 x g for 16 h in a SW55Ti rotor. Nine fractions
were collected and assayed for marker enzyme activities and presence of HYAL1 and cathepsin
K as described above.
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CI-MPR affinity chromatography

As previously described [26], the presence of Man-6-P moieties on HYAL1 and cathepsin K
was assessed using CI-MPR affinity chromatography [40]. Briefly, cell lysates and conditioned
media (collected after a 5 h culture period in the absence of serum) were loaded on 1 mL col-
umns made of CI-MPRs immobilized on a sepharose 4B matrix (a generous gift from P. Lobel,
Center for Advanced Biotechnology and Medicine, Piscataway, USA). After washes and elution
of non-specifically bound proteins with 5mM of glucose 6-phosphate (Gluc-6-P, Sigma-
Aldrich), the mannose 6-phosphorylated proteins were eluted with 5 mM of Man-6-P (Sigma-
Aldrich). The collected fractions were pooled two by two, precipitated with trichloroacetic acid
and resolved by SDS-PAGE to detect HYAL1 and cathepsin K using western blotting.

Supporting Information

S1 Fig. HYAL1 is overexpressed and secretedby BMM-derivedosteoclasts. (A) To check the
specificity of the anti-HYAL1 antibody used throughout this work, BMM were isolated from
wild-type (WT) or HYAL1 deficient (Hyal1 -/-) mice. These cells were then cultured in the
presence of M-CSF for 6 days, and subsequently differentiated into osteoclasts by the addition
of RANKL. WT and Hyal1 -/- osteoclast lysates were then analyzed by western blotting, which
demonstrates the absence of signal in the knockout cells. (B) The expression of HYAL1,
cathepsin K, TRAP and GAPDH was detected by western blotting at day 2 and day 5 of the dif-
ferentiation process of BMM into osteoclasts. Precursor and mature forms of the enzyme are
pointed by closed and open arrowheads, respectively. (C) The activity of HYAL1 was analyzed
in BMM and osteoclasts derived from these cells by renatured and native protein zymography.
Closed and open arrowheads point to precursor and mature forms, respectively. (D) Measure-
ment of the enzymatic activity of β-hexosaminidase and β-glucuronidase upon osteoclastogen-
esis of BMM. Results are shown as fold change in osteoclasts relative to their precursor cells
(mean ± SD of n = 3 independent experiments). (E) After 5 h of incubation in serum-free con-
ditions, the secretion of HYAL1, cathepsin K and TRAP was analyzed by western blotting. The
cell integrity was confirmed by the absence of the cytosolic protein GAPDH in the conditioned
medium (concentrated 4-fold). The 65 kDa secreted form, 52 kDa precursor form and 48 kDa
cleaved form of HYAL1 are highlighted by asterisk, closed and open arrowheads, respectively.
The precursor and mature forms of cathepsin K and TRAP are pointed by closed and open
arrowheads, respectively.
(TIF)

S1 Table. Fold change in mRNA expression levels of hyaluronidases and lysosomalhydro-
lases in osteoclasts collectedat day 2 or 5 of their differentiation process, compared to
BMM precursormacrophages (day 0).
(DOCX)

S2 Table. Sequences (5'-3') of the primers used in qPCR.
(DOCX)
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