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Introduction

Motivation

optimization of continuous problems occurs in a many applications:
shape optimization, data assimilation, control problems, . . .

Recent optimization methods have been designed to cope with these
problems, including multilevel/multigrid algorithms.

These algorithms involve the computation of a hierarchy of problem
descriptions, linked by known operators.

Our purpose: review some trust-region and linesearch recent proposals for

unconstrained/ bound-constrained optimization:

min
(x≥0)

f (x)
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Introduction

Hierarchy of problem descriptions

Can we use a structure of the form:

Finest problem description

Restriction ↓ R P ↑ Prolongation

Fine problem description

Restriction ↓ R P ↑ Prolongation

. . .

Restriction ↓ R P ↑ Prolongation

Coarse problem description

Restriction ↓ R P ↑ Prolongation

Coarsest problem description

Philippe Toint (University of Namur) Multilevel optimization (TR and LS) Oxford, November 2015 7 / 41



Introduction

Grid transfer operators

Ri : IRni → IRni−1 Restriction
Pi : IRni−1 → IRni Prolongation
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Introduction

Three keys to multigrid algorithms

oscillatory components of the error are representable
on fine grids, but not on coarse grids

iterative methods reduce oscillatory components
much faster than smooth ones

smooth on fine grids → oscillatory on coarse ones
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Introduction

Error at step k of CG

k = 0 k = 2 k = 4

k = 6 k = 8 k = 10

Fast convergence of the oscillatory modes
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Introduction

How to exploit these keys

Annihilate oscillatory error level by level:

Fine ǫ
smooth
→ Smooth fine ǫ Smaller fine ǫ

↓ R P ↑

Oscil. coarse ǫ
smooth
→ (recur)

smooth
→ Smooth coarse ǫ

Note: P and R are not othogonal projectors!

A very efficient method for some linear systems
(when A(smooth modes) ∈ smooth modes)
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Recursive trust-region methods

Recursive multilevel trust region

At each iteration at the fine level:

1 consider a coarser description model with a trust region

2

compute fine g (and H) step and trial point

Restriction ↓ R P ↑ Prolongation

minimize the coarse model within the fine TR

3 evaluate f at the trial point
4 if achieved decrease ≈ predicted decrease:

accept the trial point
(possibly) enlarge the trust region

5 else:

keep current point
shrink the trust region

Philippe Toint (University of Namur) Multilevel optimization (TR and LS) Oxford, November 2015 13 / 41



Recursive trust-region methods

RMTR

Until convergence :

Choose either a Taylor or recursive model

Taylor model: compute a Taylor step
Recursive: apply the Algo recursively

Evaluate change in the objective function

If achieved reduction ≈ predicted reduction,

accept trial point as new iterate
(possibly) enlarge the trust region

else

reject the trial point
shrink the trust region

Impose: current TR ⊆ upper level TR
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Recursive trust-region methods

RMTR - Criticality Measure

We only use recursion if:

‖glow‖
def
= ‖Rgup‖ ≥ κg‖gup‖ and ‖glow‖ > ǫg

We have found a solution to the current level i if

‖gi‖ < ǫgi

BUT: we must stop before we reach the border, or the inner trust
region becomes too small

‖x+low − x0low‖low = ‖P(x+low − x0low)‖up > (1− ǫ∆)∆up
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Recursive trust-region methods

Why Change?

RMTR

2-norm TR and criticality
measure

good results, but trust
region scaling problem
(recursion)

RMTR-∞

∞-norm (bound
constraints)

new criticality measure

new possibilities for step
length
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Recursive trust-region methods

∞-norm in trust regions

Possibility for asymmetric trust regions (more freedom)

In lower levels: a bound constrained subproblem

We will impose that the lower level steps must remain inside the
restriction of the upper level trust region: If

Bup = {x | lup ≤ x ≤ uup}

then
Blow = RBup = {x |Rlup ≤ x ≤ Ruup}

The resulting upper level step sup = Pslow will not necessarily be
inside the upper level trust region! But: If ∆up = radius(Bup), then

‖sup‖∞ ≤ ‖P‖∞‖R‖∞∆up.
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Recursive trust-region methods

New Criticality Measure

Each lower level subproblem is constrained by the restriction of the
upper level trust region; we can consider the lower level subproblem
as a bound constrained optimization problem.

Instead of evaluating glow to check criticality, we will look at

χ(xlow) = | min
d∈RBup

‖d‖≤1

〈glow, d〉|.

We only use recursion if:

χlow ≥ κχχup

We have found a solution to the current level i if

χ < ǫχi .
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Recursive trust-region methods

Model Reduction

Taylor iterations in the 2-norm version satisfy the sufficient decrease
condition

mi (x)−mi (x + s) ≥ κredg(x)min

[

g(x)

β
,∆

]

.

Taylor iterations in the ∞-norm are constrained; they satisfy

hi (x)− hi (x + s) ≥ κredχi (x)min

[

1,
χi (x)

β
,∆

]

.
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Recursive trust-region methods

RMTR-∞

Until convergence :

Choose either a Taylor or recursive model

Taylor model: compute a Taylor step (∞-norm)
Recursive: apply the Algo recursively

Evaluate change in the objective function

If achieved reduction ≈ predicted reduction,

accept trial point as new iterate
(possibly) enlarge the trust region

else

reject the trial point
shrink the trust region

Impose: current TR ⊆Restricted upper level TR
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Recursive trust-region methods

Mesh refinement, as different from. . .

Computing good starting points:

Solve the problem on the coarsest level
⇒ Good starting point for the next fine level

Do the same on each level
⇒ Good starting point for the finest level

Finally solve the problem on the finest level
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Recursive trust-region methods

. . . V-cycles and Full Multigrid (FMG)

FMG : Combination of mesh refinement and V-cycles
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Recursive trust-region methods

A first test case: the minimum surface problem (MS)

Consider the minimum surface problem

min
v∈K

∫ 1

0

∫ 1

0

(

1 + (∂xv)
2 + (∂yv)

2
)

1
2 dx dy ,

where K =
{

v ∈ H1(S2) | v(x , y) = v0(x , y) on ∂S2
}

with

v0(x , y) =















f (x), y = 0, 0 ≤ x ≤ 1,
0, x = 0, 0 ≤ y ≤ 1,
f (x), y = 1, 0 ≤ x ≤ 1,
0, x = 1, 0 ≤ y ≤ 1,

where f (x) = x(1− x).
Finite element basis (P1 on triangles) → convex problem.
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Recursive trust-region methods

Some typical results on MS (n = 1272, 6 levels)

unconstrained bound-constrained

Mesh ref. RMTR2 RMTR∞ Mesh ref. RMTR∞

nit 1057 23 10 2768 214

nf 23 38 15 649 240

ng 16 28 14 640 236

nH 17 20 6 32 101
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Recursive trust-region methods

RMTR-∞ in practice

Excellent numerical experience !

Adaptable to bound-constrained problems

Fully supported by (simpler?) theory

Fortan code
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Multigrid limited memory BFGS

Linesearch quasi-Newton method

Until convergence :

Compute a search direction d = −Hg

Perform a linesearch along d , yieding

f (x+) ≤ f (x) + α〈g , d〉 and 〈g+, d〉 ≥ β〈g , d〉

Update the Hessian approximation to satisfy

H+(g+ − g) = x+ − x (secant equation)

BFGS update:

H+ =

(

I −
ysT

yT s

)

H

(

I −
ysT

yT s

)

+
ssT

yT s

with
y = g+ − g and s = x+ − x
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Multigrid limited memory BFGS

Generating new secant equations

The fundamental secant equation: H+y = s

Motivation:

G−1y = s where G =

∫ 1

0
∇xx f (x + ts) dt

Assume:

known invariants subspaces {Si}
p
i=1 of G .

known orthogonal projectors onto Si

G−1Siy = SiG
−1y = Si s

⇒ new secant equation: H+yi = si with si = Si s and yi = Siy
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Multigrid limited memory BFGS

(Limited-memory) multi-secant variant

Until convergence :

Compute a search direction d = −Hg

Perform a linesearch along d , yieding

f (x+) ≤ f (x) + α〈g , d〉 and 〈g+, d〉 ≥ β〈g , d〉

Update the Hessian approximation to satisfy

H+y = s and H+yi = si (i = 1, . . . , p)

Natural setting: limited-memory (BFGS) algorithm

⇒ apply L-BFGS with secant pairs (s1, y1), . . . , (sp, yp), (s, y)
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Multigrid limited memory BFGS

Multigrid and invariant subspaces

Are they reasonable settings where the Si are known?

Idea: Grid levels may provide invariant subspace information!

Fine grid: all modes

Less fine grid: all but the most oscillatory modes

Coarser grid: relatively smooth modes

Coarsest grid: smoothest modes

P iR i provides a (cheap) approximate Si operator!
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Multigrid limited memory BFGS

Multigrid multi-secant LBFGS. . . questions

How to order the secant pairs?
Update for lower grid levels (smooth modes) first or last?

How exact are the secant equations derived from the grid levels?
Measure by a the norm of the perturbation to true Hessian
G for the secant equation to hold exactly:

‖E‖

‖G‖
≤

‖Gsi − yi‖

‖si‖ ‖G‖

Should we control collinearity?
remember nested structure of the Si subspaces. . .
test cosines of angles between s and si?

What information should we remember?
a memory-less BFGS method is possible!

Many possible choices!
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Multigrid limited memory BFGS

A second test case: Dirichlet-to-Neumann transfer (DN)

It consists [Lewis,Nash,04] in finding the function a(x) defined on
[0, π], that minimizes

∫ π

0
(∂yu(x , 0)− φ(x))2 dx ,

where ∂yu is the partial derivative of u with respect to y ,

and where u is the solution of the boundary value problem

∆u = 0 in S ,
u(x , y) = a(x) on Γ,
u(x , y) = 0 on ∂S\Γ.
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Multigrid limited memory BFGS

A third test case: the multigrid model problem (MG)

Consider here the two-dimensional model problem for multigrid
solvers in the unit square domain S2

−∆u(x , y) = f in S2

u(x , y) = 0 on ∂S2,

f such that the analytical solution is u(x , y) = 2y(1− y) + 2x(1− x).

5-point finite-difference discretization

Consider the variational formulation

min
x∈Rnr

1

2
xTArx − xTbr ,
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Multigrid limited memory BFGS

Data assimilation: the 4D-Var functional

Consider a dynamical system ẋ = f (t, x) with solution operator
x(t) = M(t, x0).

Observations bi at time ti modeled by bi = Hx(ti ) + ǫ, where ǫ is a
Gaussian noise with covariance matrix Ri .

The a priori error error covariance matrix on x0 is B .

We wish to find x0 which minimizes

1

2
‖x0 − xb‖

2
B−1 +

1

2

N
∑

i=0

‖HM(ti , x0)− bi‖
2
R−1
i

,

The first term in the cost function is the background term, the
second term is the observation term.
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Multigrid limited memory BFGS

A fourth test case: the shallow water system (SW)

The shallow system is often considered as a good approximation of
the dynamical systems used in ocean modeling.

It is based on the Shallow Water equations











∂u
∂t

+ u ∂u
∂x

+ v ∂v
∂y

− fv + g ∂z
∂x

= λ∆u
∂v
∂t

+ u ∂v
∂x

+ v ∂v
∂y

+ fu + g ∂z
∂y

= λ∆v

∂z
∂t

+ u ∂z
∂x

+ v ∂z
∂y

+ z
(

∂u
∂x

+ ∂v
∂y

)

= λ∆z

Observations: every 5 points in the physical domain at every 5 time
steps

The a priori term is modeled using a diffusion operator [Weaver,
Courtier, 2001]

The system is time integrated using a leapfrog scheme.

The damping in λ∆ improves spatial solution smoothness

Philippe Toint (University of Namur) Multilevel optimization (TR and LS) Oxford, November 2015 35 / 41



Multigrid limited memory BFGS

Relative accuracy of the multigrid secant equations

Plot ‖E‖/‖G‖ against k
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⇒ size of perturbation marginal
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Multigrid limited memory BFGS

Testing a few variants

In our tests:

old approximate secant pairs are discarded

the LM updates are started with 〈y ,s〉
‖y‖2

times the identity

L-BFGS + 8 algorithmic variants:

collinearity control (0.999)
no yes

Update order mem nomem mem nomem

Coarse first CNM CNN CYM CYN
Fine first FNM FNN FYM FYN

Memory management:

*M: past “exact” secant pairs are used (mem)

*N: past “exact” secant pairs are not used (nomem)
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Multigrid limited memory BFGS

The results

Algo DN (n = 255) MG (n = 1272) SW (n = 632) MS (n = 1272)
levels/mem 7/10 6/9 3/5 4/5

L-BFGS 330/319 308/299 64/61 387/378
CNM 94/84 137/122 83/81 224/192
CNN 125/100 174/134 57/55 408/338
CYM 110/92 123/104 83/81 196/170
CYN 113/89 138/107 57/55 338/267
FNM 120/100 172/144 63/57 241/208
FNN 137/89 151/120 65/62 280/221
FYM 90/76 149/128 63/57 211/176
FYN 140/107 153/120 65/62 283/216

(NF/NIT)
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Multigrid limited memory BFGS

Further developments (not covered in this talk)

Observations:

L-BFGS acts as a smoother

the step is asymptotically very smooth

the eigenvalues associated with the smooth subspace are (relatively)
close to each other

the step is asymptotically an approximate eigenvector

an equation of the form

Hsi =
〈yi , si 〉

‖yi‖2
si

can also be included. . .

⇒ more (efficient) algorithmic variants!
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Multigrid limited memory BFGS

Conclusions

Multilevel/multigrid optimization useful and interesting

Much remains to be explored

Recursive trust-region methods often very effective

Invariant subspace information useful for some problems

Multilevel quasi-Newton information exploitable
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Multigrid limited memory BFGS

Perspectives

More complicated constraints (probably not)

Better understanding of approximate secant/eigen information

Invariant subspaces without grids?

Multilevel L-BFGS in RMTR?

Combination with ARp methods?

More test problems?

Thank you for your attention!
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