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Singular Value Analysis of Predi
tor Matri
esF. S. V. Baz�an � Ph. L. TointRevised September 22, 2000Abstra
tPredi
tor matri
es arise in problems of s
ien
e and engineering where one is interested inpredi
ting future information from previous ones using linear models. The solution of su
hproblems depends on an a

urate estimate of a part of the spe
trum (the signal eigenvalues) ofthese matri
es. In this paper, singular values of predi
tor matri
es are analyzed and formulae fortheir 
omputation are derived. By applying a well-known eigenvalue-singular value inequalityto our results, we dedu
e lower and upper bounds on the modulus of signal eigenvalues. Thesebounds depend on the dimension of the problem and allow us to show that the magnitude ofsignal eigenvalues is relatively insensitive to small perturbations in the data, provided the signalis slightly damped and the dimension of the problem is large enough. The theory is illustrated bynumeri
al examples in
luding the analysis of a signal arising from experimental measurements.Key words. Singular values, eigenvalues, linear predi
tion, time series, exponential modeling1 Introdu
tionPredi
tor matri
es often arise in a number of areas su
h as modal analysis, spee
h pro
essing, systemidenti�
ation, et
, where predi
tion of future from previous information, is of primary interest.In many 
ases, this predi
tion is 
omputed using linear models. The nature of the informationitself depends on the parti
ular appli
ation under study and often has the form of dis
rete timeseries, 
ommonly known in engineering as dis
rete time signals. More pre
isely, given a set of realor 
omplex-valued observations h`; h`+1; : : : ; h`+N�1, a linear predi
tion model assumes that thefuture value h`+N has the form�f1h` + �f2h`+1 + � � �+ �fNh`N�1 = h`+N ; ` � 0: (1.1)�Departamento de Matem�ati
a, Universidade Federal de Santa Catarina, Florian�opolis, Santa Catarina 88040-900,Brasil (fermin�mtm.ufs
.br). Part of this resear
h was supported by CNPq, Brasil, grant 300487/94 - 0(NV).1



In this formulation, N is the order of the model and the �f 's, are 
omplex 
oeÆ
ients known aspredi
tor parameters. These 
oeÆ
ients re
e
t intrinsi
 properties of the signal su
h as frequen
ies,plane waves, damping fa
tors, et
, whose estimation from a �nite data set fhkgLk=0, is an importantproblem in areas su
h as system identi�
ation and spe
tral estimation, among others. The linearpredi
tion model is also 
urrently used in other areas su
h as e
onomy and zoology; see [21℄ and[6℄ for details. In this work, we fo
us on those appli
ations where the data are assumed to be ofthe form hk = nXj=1 rj(esj�t)k = nXj=1 rjzkj ; k = 0; 1; : : : ;where rj ; sj 2 IC, sj 6= sk for j 6= k, sj = �j + i!j ; { = p�1, and �j � 0. In these appli
ationsthe problem is to estimate the parameters rj, sj and the number n (the signal parameters), from a�nite sampling of the observed signal. We always assume !j�t < �. The 
lassi
al approa
h for theproblem is relatively simple in the noiseless 
ase: the parameters sj are extra
ted from the rootsof the so-
alled forward predi
tor polynomialPf (t) = �f1 + �f2t+ � � �+ �fN tN�1 � tN ; (1.2)whose 
oeÆ
ients �fj are estimated by solving the set of linear predi
tion equations26664 h` h`+1 � � � h`+N�1h`+1 h`+2 � � � h`+N... ... � � � ...h`+M�1 h`+M � � � h`+M+N�2 3777526664 �f1�f2...�fN 37775 = 26664 h`+Nh`+N+1...h`+M+N�1 37775 ; (1.3)where we assume M � N � n, and n is the rank of the 
oeÆ
ient matrix. The underlying ideabehind this is that n zeros of Pf (t), known as signal zeros, are of the form zj = esj�t, a result earlyproven by R. de Prony for the 
ase M = N = n. For details of Prony's method, see Se
tion 9.4in Hildebrand [11℄. Appli
ations of Prony's method are en
ountered in number of areas su
h asa
ousti
s, ele
tromagneti
s, and stru
tural dynami
s, among others, see, e.g., Magda, Strauss andWei [20℄, Braun and Ram [7, 8℄, Kumaresan [16℄, and Kurka [19℄. A new theoreti
al approa
hfor Prony's method is des
ribed in Wei and Majda [25℄. On
e the signal zeros are available, theproblem of estimating the parameters rj is simple and we do not 
omment any further about this.One 
ould also use the linear predi
tion equations in the reverse order, repla
ing (1.1) by�b1h` +�b2h`+1 + � � �+�bNh`N�1 = h`�1; ` � 1: (1.4)Then the parameters sj are extra
ted from the zeros of the ba
kward predi
tor polynomialsPb(t) = �bN +�bN�1t+ � � � +�b1tN�1 � tN ; (1.5)2



whose 
oeÆ
ients are estimated as above. In this 
ase, the signal zeros are z�1j = e�sj�t [16℄.However, as only the signal zeros are of interest, one is fa
ed with the problem of separating themfrom the other N � n zeros, 
alled extraneous zeros, whi
h appear as a 
onsequen
e of 
hoosingN > n sin
e n is not known in advan
e. This separation turns out to be diÆ
ult sin
e the extraneouszeros depend on how one 
hooses the 
oeÆ
ients �fj from the in�nitely many solutions of the system(1.3). Further details about the zeros of predi
tor polynomials 
an be found in Kumaresan [16℄,and also in Cybenko [9℄, where the problem is examined in the framework of in�nite dimensionalHilbert spa
es. A more re
ent approa
h, where signal zeros are viewed as eigenvalues of predi
tormatri
es (the signal eigenvalues), 
an be found in Baz�an and Bezerra [2℄ and Bezerra and Baz�an [4℄.The problem, however, be
omes diÆ
ult when the data are 
orrupted by noise, sin
e both therank n and the parameters �fj must be estimated from a linear predi
tion system whose 
oeÆ
ientmatrix is generally of full rank, though this 
an be often 
ir
umvented by taking N � n, see,e.g., [17℄, [16℄, [22℄ and [23℄. But, as polynomial root-�nding methods are time 
onsuming, newapproa
hes based on estimates of the so-
alled signal spa
es (the row or 
olumn spa
e of the datamatrix) are a
tually preferred. In these te
hniques, the signal zeros emerge as eigenvalues of asmall n�n matrix. Methods in this 
ategory in
lude Kung's method [18℄, Eigensystem RealizationAlgorithm (ERA) of Juang and Pappa [14℄, HTLS of Van Hu�el, Chen, De
anniere and VanHe
ke [24℄, OPIA of Baz�an and Bavastri [1℄, and the matrix pen
il method of Hua and Sarkar [13℄,among others. Many referen
es about both polynomial and subspa
e approa
hes 
an be foundin [23℄. However, despite the bursting a
tivity in new approa
hes, little is known about signaleigenvalue sensitivity, an intrinsi
 
omponent of the problem.The goal of this paper is to perform a singular value analysis of predi
tor matri
es, the resultsof whi
h provide insight into the sensitivity of these eigenvalues. Our analysis relies on the fa
tthat, sin
e the eigenvalues �j of any matrix A 2 ICN�N satis�es the inequalities�N � j�j j � �1 j = 1; 2; � � � ; N; (1.6)(see Golub and Van Loan [10℄, page 318), where �N and �1 denote the smallest and largest singularvalue of A, then reliable information about signal eigenvalue sensitivity 
an be drawn from (1.6),provided these singular values are available. We provide analyti
 formulae for all singular valuesof a 
lass of predi
tor matri
es and analyze the asymptoti
 behavior of the bounds (1.6) for Nlarge. As a 
onsequen
e, we show that the magnitude of the signal eigenvalues be
omes relativelyinsensitive to small perturbations on the data, provided mild 
onditions are satis�ed.We �rst analyze in Se
tion 2 the lo
alization of signal eigenvalues extra
ted from the spe
trum ofpredi
tor matri
es. The main results are presented in Se
tion 3 where we give an exa
t des
riptionof the annulus (1.6) for the 
lass of predi
tor matri
es obtained by orthogonal proje
tion: we show3



that an upper bound on the width of this annulus shrinks as the dimension of the problem in
reases,and that it asymptoti
ally be
omes small provided the signal is slightly damped. Finally, Se
tion 4presents some numeri
al results whi
h illustrate our theoreti
al analysis.2 Predi
tor matri
es and basi
 resultsPredi
tor matri
es are de�ned as follows in the noiseless 
ase. Let H(`) be the M � N Hankelmatrix of the system (1.3). We say that the N �N matrix F is a forward predi
tor matrix ifH(`+ 1) = H(`)F; 8` � 0: (2.1)Similarly, B is a ba
kward predi
tor matrix if for ` � 1, it satis�esH(`� 1) = H(`)B: (2.2)Noti
e that H(`) 
an be fa
tored as H(`) = V Z`RW; (2.3)where Z = diag(z1; : : : ; zn); R = diag(r1; : : : ; rn), V is an M � n Vandermonde matrix with zj�1kas its (j; k) entry and W the transpose of the matrix that 
onsists of the N �rst rows of V . Hen
e,we have that (2.3) is a full-rank fa
torization of H(`) and that for all ` � 0, rank[H(`)℄ = n. The
olumn spa
e of H(`), denoted by R(H(`)), is spanned by the 
olumns of matrix V , while the rowspa
e of H(`), R(H(`)�), is spanned by the 
olumns of W �. Here the symbol � stands for 
omplex
onjugate transpose. From (2.3) also follows that N (H(`)), the null spa
e of H(`), is equal to thenull spa
e of W , and that therefore R(H(`)�) = [N (W )℄?: (2.4)Furthermore, if P denotes the orthogonal proje
tor onto R(H(`)�), then we have thatP = H(l)yH(l) =W yW =W �W y�; (2.5)where y stands for the Moore-Penrose pseudo-inverse. The reader is referred to [5℄ for details onproje
tions and pseudo-inverses. We now observe that (2.1) and (2.2) have in�nitely many solutionsbe
ause H(`) is rank de�
ient. The solutions set of (2.1), SF , isSF = fF j F = bF + (I �P)X; X 2 RN�Ng; (2.6)where bF = H(l)yH(l + 1). Similarly, if we set bB = H(l)yH(l � 1) , then the set of ba
kwardpredi
tor matri
es is SB = fB j B = bB + (I �P)X; X 2 RN�Ng: (2.7)4



We observe that the signal eigenvalues 
an be extra
ted from any forward or ba
kward predi
tormatrix for, if one substitutes F in (2.1), one has that,WF = ZW; (2.8)whi
h shows that the rows of W are left eigenve
tors of F 
orresponding to the signal eigenvalues.In the same way, (2.2) implies that WB = Z�1W; (2.9)and thus the rows of W are left eigenve
tors of B asso
iated with the eigenvalues z�1j . However, ifsignal eigenvalues are independent of whi
h predi
tor matrix is 
hosen in the 
lass, this is not the
ase for the extra N�n eigenvalues (the extraneous eigenvalues). It turns out that a analysis of thelo
alization of these extraneous eigenvalues is possible, provided we restri
t ourselves to a suitable
lass of predi
tor matri
es. We fo
us here on two interesting 
hoi
es: the matrix bF (or bB) andminimal norm predi
tor matri
es with 
ompanion stru
ture. This last 
lass 
overs, if predi
tion is
arried out in the forward dire
tion, predi
tor matri
es of the formF = [e2 e3 � � � eN f ℄;where ej is the j-th ve
tor of the 
anoni
al basis and the last 
olumn ve
tor, f = [f1 f2 � � � fN ℄T ,is the solution of the linear system H(`) f = H(`+ 1)eN : (2.10)of minimal 2-norm. If predi
tion is 
arried out in the reverse order instead, ba
kward 
ompanionpredi
tor matri
es have the form B = [b e1 e2 � � � eN�1℄;where the �rst 
olumn ve
tor, b = [b1 b2 � � � bN ℄T , is the solution of the systemH(`) b = H(`� 1)e1; ` � 1 (2.11)of minimal 2-norm. The following result gives information about the eigenvalues of the abovepredi
tor matri
es.Theorem 1 Let bF and bB be as in (2.6) and (2.7), respe
tively, and let F and B be the forwardand ba
kward minimal norm 
ompanion predi
tor matri
es. Then, provided N > n, we have that(a) F and B are both nonsingular. 5



(b) j�̂k(�)j < 1; k = 1; : : : N � n where �̂(�) denotes an extraneous eigenvalue and (�) any of thematri
es bF , bB, F or B.Proof. We note that to prove (a) for F , it suÆ
es to prove that e�1f 6= 0: Observe that f 2R(H(l)�). We then verify that e1 does not belong to either N (W ) or to its orthogonal 
omplement.The �rst of these two 
laims follows from the fa
t that We1 = e, where e is the ve
tor in ICn ofall ones. To see the se
ond, we 
onsider the system W �x = e1. If we sele
t n equations of thissystem starting from the se
ond one, we obtain a square nonsingular homogeneous system whoseunique solution is x = 0. However, this is in 
ontradi
tion with the �rst equation, whi
h showsthat the system is in
ompatible. Thus e1 =2 R(H(l)�), whi
h ensures that e�1f 6= 0, as 
laimed.One 
an similarly 
he
k that B is nonsingular, and thus part (a) of the theorem holds. The proofof (b) involving 
ompanion matri
es 
an be found in [2℄. We now prove that (b) for bF and bB.In order to see that the extraneous eigenvalues of bF fall inside the unit 
ir
le, noti
e that, asbF = H(l)yH(l + 1) = W yZW , it is immediate to see that �( bF ) = fz1; : : : ; zng [ f0g (see Hornand Johnson [12℄, Theorem 1.3.20). A similar argument 
an be applied for bB, whi
h 
on
ludes theproof. �As this theorem des
ribes 
ompletely the lo
ations of all eigenvalues of the predi
tor matri
esbF , bB, F and B, what remains to do is to determine their singular values. We �rst start with ate
hni
al lemma that allows us to 
ompute the singular spe
trum of 
ompanion predi
tor matri
es.The determination of the singular spe
trum of bB and bF is slightly more involved and is postponedto the next se
tion.Lemma 2 Let u1, u2, v1 and v2 be ve
tors in ICN , N > 2, su
h that at least one of the innerprodu
ts v�1u1 or v�2u2 is di�erent of �1. Suppose that the rank-two modi�
ation of the identitygiven by I + u1v�1 + u2v�2 is nonsingular. Then we have that,det(I + u1v�1 + u2v�2) = 1 + v�1u1 + v�2u2 + v�1u1v�2u2 � v�2u1v�1u2; (2.12)and that, the asso
iated 
hara
teristi
 polynomial isp(�) = (1� �)N�2[�2 � (2 + v�1u1 + v�2u2)�+ 1 + v�1u1 + v�2u2 + v�2u2v�1u1 � v�2u1v�1u2℄: (2.13)Proof. We assume, without loss of generality, that v�1u1 6= �1. It then follows that I + u1v�1 isnonsingular sin
e det(I + u1v�1) = 1 + v�1u1 6= 0. Hen
e, using properties of the determinant, wehave that det(I + u1v�1 + u2v�2) = det(I + u1v�1)det(I + (I + u1v�1)�1u2v�2))= (1 + v�1u1)(1 + v�2(I + u1v�1)�1u2);6



and the �rst part of the lemma follows after applying the Sherman-Morrison formula to the lastright-hand side. On the other hand, given thatp(�) = det(I + u1v�1 + u2v�2 � �I) = det((1� �)I + u1v�1 + u2v�2);sin
e p(1) = 0 and N > 2, we have that � = 1 is an eigenvalue of I + u1v�1 + u2v�2. If � 6= 1,p(�) = (1� �)Ndet(I + (1� �)�1u1v�1 + (1� �)�1u2v�2);and the se
ond part of the lemma is then obtained by applying (2.12) in this equation. �Thus it suÆ
es to extra
t the eigenvalues asso
iated with a quadrati
 polynomial in (2.13) toobtain the eigenvalues of the perturbed matrix, sin
e the remaining ones are equal to one. Weillustrate this by 
onsidering the problem of 
omputing the singular spe
trum of the ba
kward
ompanion matrix B introdu
ed above. In fa
t, sin
e the singular values of B 
an be 
omputedfrom the eigenvalues of BB�, we observe thatBB� = [b e1 : : : eN�1℄26664 b�e�1...e�N�1 37775 = bb� + e1e�1 + � � � + eN�1e�N�1;where b is the minimum 2-norm solution of 2.11, and hen
e thatBB� = I + bb� � eNe�N :By applying Lemma 2 to BB�, with u1 = v1 = b and u2 = �v2 = eN ; we �nd that the 
hara
teristi
polynomial of BB� is p(�) = (1 � �)N�2[�2 � �(1 + kbk2) + 4jb�eN j2℄. Hen
e, we have that thesingular spe
trum of B, �(B), is of the form�(B) = f�1(B); 1; 1; : : : ; 1; �N (B)g;where �21(B); �2N (B) = kbk2 + 1�p(kbk2 + 1)2 � 4je�N bj2)2 : (2.14)This result is not new, (see for instan
e [15℄), but the authors are not aware of a proof along thelines developed here. We now use it to obtain an important eigenvalue bound. Sin
e for ea
h signaleigenvalue � we have that,�N (B) � j�j � �1(B) �skbk2 + 1 +p(kbk2 + 1)2 � 4je�N bj2)2 �p1 + kbk2; (2.15)7



an interesting upper bound 
an be immediately derived provided kbk2 is small enough (rememberin this 
ase j�j � 1). In our 
ontext, as shown in [3℄, it is fortunate that kbk2 � 0 in many pra
ti
alappli
ations, provided the dimension of the problem is suÆ
iently large. If this is true, then theform of the upper bound indi
ates that it 
ould be rather tight. Hen
e, this preliminary analysissuggests that reliable bounds 
ould be obtained provided they only depend on quantities similar tothe right-hand side of (2.15). Unfortunately, no lower bound of interest 
an be obtained from theleft inequality be
ause �N (B) � 0, whi
h motivates our sear
h for a better lower bound.3 Signal eigenvalue boundsIn spite of the promising quality of the above upper bound, the link of the signal eigenvalues withthe solution of a \large eigenvalue problem" seems to generate a new in
onvenien
e, in that itappears to require that the predi
tion matrix is suÆ
iently large. In this se
tion, we shall showthat this 
an be 
ir
umvented provided signal eigenvalue bounds are derived by using the singularspe
trum of predi
tor matri
es obtained via orthogonal proje
tions. We say that the n� n matrixFP , is a forward predi
tor matrix obtained by orthogonal proje
tion if, it is of the formFP = V �1 FV1; (3.16)where V1 denotes any N�n matrix with orthonormal 
olumns that spanR(H(`)�). The motivationfor this de�nition relies on the fa
t that the spe
trum of FP , �(FP ), only 
ontains the n signaleigenvalues, sin
e �(FP ) = �(PF ) = �( bF ) when zero eigenvalues are dis
arded. Similarly, BP is aba
kward predi
tor matrix obtained by orthogonal proje
tion if it is of the formBP = V �1 BV1: (3.17)The spe
trum of BP then 
onsists of the re
ipro
al of the signal eigenvalues. Thus, if eigenvaluebounds are derived from the singular spe
trum of these matri
es, the signal eigenvalues are relatedto a small n� n eigenvalue problem. The purpose of this se
tion is therefore to develop a singularvalue analysis of these matri
es and to analyze the 
orresponding signal eigenvalue bounds.Theorem 3 Suppose bB is the ba
kward predi
tor matrix introdu
ed in (2.7). Then the singularspe
trum of bB, �( bB), satis�es �( bB) = �(BP) [ f0g; (3.18)
8



where �21(BP) = 2 + kbk2 � kpNk2 +p(kbk2 + kpNk2)2 � 4je�N bj22 ;�i(BP ) = 1; (i = 2; : : : ; n� 1);�2n(BP ) = 2 + kbk2 � kpNk2 �p(kbk2 + kpNk2)2 � 4je�N bj22 ; (3.19)where b and pN are the �rst and the last 
olumn ve
tors of B and the proje
tor P, respe
tively.Proof. From 2.7 we have that bB = PB = V1V �1 B. Hen
e,bB� bB = B�V1V �1 V1V �1 B = (V �1 B)�(V �1 B);and therefore �( bB) = �(V �1 B): (3.20)On the other hand, if we introdu
e A = V �1 B, then BP = AV1 andBPB�P = AV1V �1 A� = APA�: (3.21)But, as P = V1V �1 =W yW =W �W y� by (2.5), thenA� = B�V1 = B�PV1 = B�W �W y�V1 =W �Z��W y�V1;where the last equality is be
ause of (2.9). Hen
e, sin
e W y�W � = I, where I denotes the n � nidentity matrix, we have, using (2.9) again, thatPA� =W �W y�W �Z��W y�V1 = B�W �W y�V1 = B�V1 = A�: (3.22)Using this property in (3.21), we dedu
e that the singular values of BP are the singular values of A,and thus the �rst part of the theorem follows from (3.20). To prove the se
ond statement, noti
ethatAA� = [V �1 b; V �1 e1; : : : ; V �1 eN�1℄26664 b�V1e�1V2...e�N�1V1 37775 = V �1 bb�V1 + V �1 e1e�1V1 + � � �+ V �1 eN�1e�N�1V1;
an be rewritten as AA� = I + xx� � yy�;9



where x = V �1 b, and y = V �1 eN . By applying Lemma 2 to AA� with u1 = v1 = x and u2 = �v2 = y,we obtain that the spe
trum of this matrix is formed by n � 2 eigenvalues equal to 1, and theremaining ones, obtained from the roots of the polynomial in (2.13), are given by�1; �2 = 2 + kxk2 � kyk2 �p(kxk2 + kyk2)2 � 4(x�y)22 :Now, observe that kpNk = kV1V �1 eNk = kV1(V �1 eN )k = kV1yk = kyk; sin
e V1 is an isometry, andthat kxk2 = b�V1V �1 b = b�Pb = b�b;= kbk2;jx�yj = jb�V1V �1 eN j = j(b�P)eN j = jb�eN jsin
e b 2 R[H(`)�℄. We now observe that the largest value of the above roots, �1, say, is largerthan one be
ause the eigenvalues of B are larger than one in modulus. Assume now that �2 > 1.Then we obtain from its de�nition that�kxk2 � kyk2�2 > (kxk2 + kyk2)2 � 4(x�y)2;whi
h 
an be simpli�ed to kxk2kyk2 < jx�yj2. This is impossible as it 
ontradi
ts the Cau
hy-S
hwarz inequality, and we therefore dedu
e that �2 � 1. These roots are therefore �21(BP ) and�2n(BP), respe
tively, whi
h 
on
ludes the proof. �Thus, we have obtained an exa
t des
ription of the singular spe
trum of predi
tor matri
esobtained by proje
tion and the annulus (1.6) whi
h provides lower and upper bounds for the signaleigenvalues. However, noti
e that these bounds are not immediately useful be
ause they are derivedfrom the expressions of the singular values given by the last theorem, whi
h depend themselveson the proje
tor P. In order to over
ome this diÆ
ulty we prove the following result, where wereintrodu
e the minimum norm solution f of (2.10).Theorem 4 Suppose that AN is the annulus de�ned byAN = (z 2 IC j 1p1 + kfk2 � jzj �p1 + kbk2) ; (3.23)where N is the dimension of the predi
tor matrix B, then the eigenvalues of BP belong to AN .Proof. We shall prove that both �1(BP ) and �n(BP) belong to AN . In fa
t, using (3.19), we have�21(BP ) = 2 + kbk2 � kpNk2 +p(kbk2 + kpNk2)2 � 4je�N bj22 � 1 + kbk2;10



whi
h shows that �1(BP ) 2 AN . To prove that �n(BP) is not smaller than the inner radius of AN ,we �rst show that BP = F�1P : using the de�nitions of both matri
es, (2.5), (2.8), (2.9), and thefa
t that WW y = I, we have thatBPFP = V �1 BV1V �1 FV1 = V �1 PBPFV1 = V �1 W yWBW yWFV1 = V �1 W yZ�1WW yZWV1 = I;as 
laimed. We next observe that this enables us to 
ompute �n(BP) as�n(BP ) = 1=�1(FP ); (3.24)and �1(FP) 
an be determined in a way similar to that used for the singular values of the ba
kwardpredi
tor matrix. This yields that�1(FP )2 = 2 + kfk2 � kp1k2 +p(kfk2 + kp1k2)2 � 4je�1f j22 � 1 + kfk2;where p1 is the �rst 
olumn of P and f the minimum norm solution of (2.10). This ensures thatthe left inequality of (3.23) is satis�ed by �n(BP), whi
h 
ompletes the proof.�We now make the 
ru
ial observation that, depending on the dimension of the problem N , theinner and outer radii of AN be
ome ex
ellent approximations of �1(BP) and �n(BP ), respe
tively.This 
an be seen as follows. Sin
e e�Nb is the independent 
oeÆ
ient of the 
hara
teristi
 polynomialasso
iated to the 
ompanion matrix B, whi
h is not zero by Theorem 1, thenje�Nbj = N�nYk=1 jb�kj nYj=1 j�j j; (3.25)where b�k are the so-
alled extraneous eigenvalues and �j = z�1j . Hen
e, as jb�kj < 1 by Theorem 1,and, sin
e for N large enough, je�N bj2 � 0, from (3.19) we have that �21(BP ) � 1 + kbk2. A similarreasoning on je�1f j gives that �21(FP) � 1+ kfk2, and the quality of these approximations improveswhen N in
reases.Before stating our �nal result, we introdu
e two te
hni
al lemmas.Lemma 5 De�ne GQ = V �2 BV2, where V2 is an N � (N � n) matrix whose 
olumns form anorthonormal basis of N (H(`)). Then,� �2j (GQ) = 1; j = 1; 2 : : : ; N � n� 1;�2N�n(GQ) = 1� (1 + kbk2)kq1k2; (3.26)where q1 is the �rst 
olumn of the orthogonal proje
tor Q onto N (H(`)).11



Proof. The proof is in appendix A1.Lemma 6 Let b and f be the �rst and last 
olumn ve
tor of B and F respe
tively. Then1 + kbk21 + kfk2 = nYj=1 jzj j�2for N > n. Moreover, both kbk and kfk de
rease monotoni
ally when N in
reases.Proof. The proof is in appendix A2.We now return to our main obje
tive and 
ontinue analyzing the behavior of the width of ANas fun
tion of kbk and kfk, and, 
onsequently, of N . Note that, be
ause of Lemma 6, this redu
esto analyzing the norm of the forward 
oeÆ
ients kfk. But, sin
e (2.8) is equivalent to the systemWf = ZNe, where e is the ve
tor in ICn of all ones, whi
h follows from (2.3), and, askfk = kW yZNek � kW ykpn�N ; (3.27)where we set � = maxfjzj j; j = 1; : : : ; ng, it suÆ
es to analyze kW yk as fun
tion of N . We now
hoose, for notational 
onvenien
e, N = p� n, p > 1. We also writeW = [W0 DW0 : : : Dp�1W0℄;where W0 is the n� n Vandermonde matrix whose (j; k) entry is zk�1j , and D = Zn. Using thesede�nitions, one 
an then prove that the smallest singular value of W , �n(W ), satis�es�n(W ) � �n(Wo)0� pXj=1 
2n(j�1)1A1=2 ; (3.28)where 
 = minfjzj j; j = 1; : : : ; ng (see [3℄, Theorem 1, for details). Hen
e, we have that1) if �j < 0, i.e. the signal is damped, from (3.27) we have then thatlimN!1 kfk = 0; (3.29)be
ause �N ! 0 and kW yk = 1=�n(W ) is bounded as 
 < 1 ensures that the sum in (3.28)is �nite;2) if the signal is undamped instead, i.e., �j = 0, then (3.28) implies that kW yk ! 0 as N !1be
ause � = 
 = 1, and thus on
e more we obtain the limit (3.29) from (3.27).12



But the limit (3.29) and Lemma 6 together give thatlimN!1(1 + kbk2) = nYj=1 jzj j�2(1 + limN!1 kfk2) = nYj=1 jzj j�2:To 
on
lude this dis
ussion, we note that the last part of Lemma 6, this last limit and (3.23), ensurethe following result.Theorem 7 The annulus that 
ontains the signal eigenvalues asso
iated to BP has a monotoni
allyde
reasing width, i.e. AN+1 � AN : Moreover, it is asymptoti
ally des
ribed byA1 = fz 2 IC =1 � jzj � nYj=1 jzj j�1g: (3.30)Thus, we have shown that the quality of the signal eigenvalues bounds depends on the speedat whi
h kfk2 approa
hes to zero as the dimension N in
reases. However, as illustrated in (3.27),this speed depends on the behavior of kW yk as a fun
tion of N , whi
h ultimately depends onthe nature of the signal itself. The authors' experien
e is that in most of pra
ti
al appli
ations,moderate values of N are suÆ
ient to ensure values of the norms of the predi
tor 
oeÆ
ients smallerthan one (see, for instan
e, the examples dis
ussed in [3℄).Now 
onsider the 
ase of slightly damped signals. For su
h signals, we know that the signaleigenvalues are relatively 
lose to one, whi
h we have shown to imply, for large N , that the widthof the annulus (1.6) is small. Sin
e these radii provide ex
ellent approximations for �1(BP ) and�n(BP), these singular values must be 
lose to ea
h other. Furthermore, the stability of the singularvalues (see Golub and Van loan [10℄, Se
tion 8.3.1) guarantees that a small perturbation of the datawill not alter this property. This, in turn, implies that the width of the annulus (1.6) remains small,even after a small perturbation. As a 
onsequen
e, the magnitude of signal eigenvalues 
annot varyby a large amount. Further, sin
e these eigenvalues 
annot fall outside of the annulus, this propertysuggests that the eigenvalues themselves should be insensitive to small perturbations on the data.3.1 Conne
tion of Predi
tor Matri
es with Certain Subspa
e-Based MethodsOur goal here is to show that there exists a 
lose relationship between predi
tor matri
es obtainedby proje
tion orthogonal and 
ertain matri
es used by two known modal parameter identi�
ationmethods. Spe
i�
ally, we shall relate the forward predi
tor matrix of (3.16) with those matri
esused by ERA and OPIA, and show that all these matri
es share the same eigenvalues. In fa
t, wenoti
e that OPIA uses an n� n matrix of the formS = V �FV; (3.31)13



where V 2 ICN�n is a matrix whose 
olumns are right singular ve
tors related to the largest singularvalues of H(`). This shows that the matrix used by OPIA is indeed a predi
tor matrix obtainedby proje
tion. On the other hand, the matrix used by ERA isSE = ��1=2U�H(`+ 1)V ��1=2; (3.32)where V is as before, U 
ontains the left singular values related to the largest singular values ofH(`) and � a diagonal matrix 
ontaining these singular values. Following referen
e [1℄ (see relations(17), (20), (22) and (27) therein), it 
an be proved that SE = �1=2S��1=2. This shows that bothS and SE share the same eigenvalues, and the result 
ontinues to hold regardless of whether thesignal is perturbed or not. We thus 
on
lude that a uni�ed signal eigenvalue perturbation analysis
overing ERA and OPIA using an appropriate predi
tor matrix is always possible. A report aboutthis subje
t is in preparation and should appear in a future 
ontribution.4 Numeri
al ExamplesIn this se
tion we present the results of some 
omputer simulations whi
h illustrate the behavior ofthe bounds (3.23) and the role of kW yk. We 
onsider two numeri
al examples. The �rst is extra
tedfrom the spe
ialized literature of the signal analysis �eld, and the se
ond is a signal synthesizedfrom experimental measurements. For ea
h example, we 
ompute kW yk and the bounds (3.23),(1 + kfk2)�1=2 and (1 + kbk2)1=2, for several values of N .4.1 Bounds for the Signal Eigenvalues of a Syntheti
 SignalThis example illustrates the bounds asso
iated with the sampled signal de�ned byhk = e(�0:01+2�0:20{)k + e(�0:02+2�0:22{)k ; k = 0; 1; : : : ;whose signal eigenvalues are z1 = e(�0:01+2�0:20{) and z2 = e(�0:02+2�0:22{). In this 
ase, we havethat jz1j = 0:9900, jz2j = 0:9802 and the upper bound limit is Qnj=1 jzj j�1 = 1:035 (note thatn = 2). This signal is often used for testing the 
apability of algorithms to extra
t frequen
ies andde
ay fa
tors from noisy signals, be
ause the two 
losely spa
ed frequen
ies are easily seen as asingle one when additive noise is present (see, e.g, [13℄). The behavior of the bounds as fun
tionsof N is displayed in Figure 1-(b). In Figure 1-(a) we show the behavior of kW yk on a logarithmi
s
ale. From these �gures we see the marked monotoni
 de
rease of both kW yk and the width ofthe annulus AN for in
reasing values of N . In this example, we also verify that for N � 60, ourbounds agree with their limiting values 1 and 1.035 up to two de
imal pla
es.14
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(a) (b)Figure 1: (a) log(kW yk) as fun
tion of N . (b) Bounds 3.23 as fun
tion of N4.2 Bounds for Signal Eigenvalues related to a Me
hani
al SystemIn this example we illustrate the behavior of the bounds (3.23) for a synthesized signal obtainedfrom experimental measurements of the free response of a real vibratory system. Full informationabout the pro
edure used to synthesize the signal 
an be found in [3℄. For this 
ase, the signaleigenvalues 
ome in 
omplex 
onjugate pairs and n = 10. These eigenvalues are shown in Table 1.The behavior of the upper and lower bounds (3.23) as fun
tions of N , whi
h we denote here byj zj jzj j jzj j�11 0.9699 � 0.2248{ 0.9956 1.00442 0.9532 � 0.2931{ 0.9972 1.00283 0.9844 � 0.1619{ 0.9976 1.00244 0.9921 � 0.1055{ 0.9977 1.00235 0.9972 � 0.0585{ 0.9989 1.0011Table 1: Signal Eigenvalues of synthesized signal and 
orresponding moduli.LN and UN respe
tively, is displayed for N � 30 in Figure 2-(b). The rapid de
rease of the widthof the annulus AN is again very apparent.Noti
e that, be
ause jzj j � 1, the signal is slightly damped (see Figure 2-(a)). In order to betterillustrate the behavior of the bounds as fun
tions of N , we have 
omputed their distan
es to their
orresponding limits, L1 = 1; and U1 =Q10j jzj j�1 = 1:0262; respe
tively. These distan
es as wellas the norms kW yk are shown in Table 2 for 
ertain values of N . This table also illustrates thede
rease of kW yk as the e�e
t of in
reasing N . We also note that the bounds agree well with theirlimits for N � 200. 15
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(a) (b)Figure 2: (a) Signal related to a me
hani
al system. (b) Bounds (3.23) as fun
tion of NN 10 20 30 40 50 60UN 415.0088 11.7560 4.6708 2.9155 2.1564 1.7303UN � U1 413.9826 10.7298 3.6445 1.8893 1.1302 0.7041LN 0.0025 0.0873 0.2197 0.3520 0.4759 0.5931L1 � LN 0.9975 0.9127 0.7803 0.6480 0.5241 0.4069kW yk 5:4548 � 109 0:0012 � 109 1:8228 � 104 0:0974 � 104 0:0096 � 104 0:0014 � 104N 200 220 240 260 280 300UN 1.0411 1.0410 1.0379 1.0367 1.0352 1.0338UN � U1 0.0149 0.0148 0.0117 0.0105 0.0090 0.0076LN 0.9857 0.9858 0.9888 0.9899 0.9913 0.9926L1 � LN 0.0143 0.0142 0.0112 0.0101 0.0087 0.0074kW yk 0.1127 0.1104 0.1095 0.1055 0.1044 0.1033Table 2: Behavior of bounds 3.23 and kW yk as fun
tions of N .5 Con
lusions and perspe
tivesWe have developed a singular value analysis of 
ertain predi
tor matri
es that enabled us to derivea 
losed form for their singular spe
trum. Using these results, we have derived lower and upperbounds for the so-
alled signal eigenvalues, both depending of the dimension of the problem. Byanalyzing the in
uen
e of the dimension on these bounds, we have shown that they 
an be
omevery tight provided the dimension of the problem is suÆ
iently large and the signal is slightlydamped. This was illustrated with numeri
al examples in
luding the analysis of the bounds for asignal related to a vibrating stru
ture.We may anti
ipate interesting appli
ations of our results to 
ertain subspa
e-approa
hes formodal parameter identi�
ation problems su
h as ERA, Kung's method, and OPIA, among others.16



In parti
ular, they seem to open a way for a uni�ed signal eigenvalue perturbation analysis 
overingthese methods, provided they 
an be shown to depend on spe
i�
 predi
tor matri
es obtained byproje
tion. This 
hallenging development is the obje
t of ongoing resear
h.AppendixA Proof of Lemma 5Noti
e that b is the minimum norm solution of (2.11) and therefore b 2 R(H(`)�). From thisGQ = V �2 B V2 = [0; V �2 e1; : : : ; V �2 eN�1℄V2;
an be rewritten as GQ = V �2 J V2 � uv�; (A.1)where J is the permutation matrix J = [eN ; e1; : : : ; eN�1℄, and u� and v� are respe
tively, the lastand �rst row of V2. The proof of the theorem is then based on the 
omputation of the eigenvaluesof G�QGQ. We start then by observing thatG�QGQ = G�G�G�uv� � vu�G+ (u�u)vv�; (A.2)where we set G = V �2 J V2. Analyzing the �rst term of the right-hand side we see thatG�G = V �2 J �V2V �2 J V2 = V �2 J �(I � V1V �1 )J V2 = I � V �2 J �V1V �1 J V2; (A.3)where the last equality follows from the the orthogonality of J . On the other hand, observe thatJ �V1 
an be rewritten as,J �V1 = � w�V "1 � = � b�V1V "1 � + � w� � b�V10 � = A� + � w� � b�V10 �where V "1 is the matrix of V1 
onsisting of all rows ex
luding the last, w� is the last row of V1, andA� = BV1: Hen
e, we have thatV �2 J �V1 = V �2 � w� � b�V10 � = V �2 e1(w� � b�V1) = v(w� � b�V1); (A.4)sin
e V �2 A� = 0 by (3.22). Substituting this relation in (A.3) yieldsG�G = I � (kwk2 � b�eN � e�Nb+ kbk2)vv�: (A.5)17



We now analyze the se
ond term of the right-hand side of (A.2). Noti
e that by using u = V �2 eNand v� = e�1V2, we have,G�u = V �2 J �V2V �2 eN = V �2 J �(I � V1V �1 )eN = V �2 J �eN � V �2 J �V1V �1 eN :But, if one observes that J �eN = e1 and V �1 eN = w, we have, using (A.4), thatG�u = v � v(w� � b�V1)w = v � v(w�w � b�V1V �1 eN ) = v � v(w�w � b�eN );sin
e b 2 R(H(`)�), and hen
e, G�uv� = (1� kwk2 + b�eN )vv�: (A.6)This, in turn, implies that the third term of the right-hand side of (A.2) isvu�G = (1� kwk2 + e�N b)vv�: (A.7)Repla
ing now (A.7), (A.6) and (A.5) into (A.2) and taking into a

ount that kwk2 + kuk2 = 1;be
ause [w�u�℄ is the last row of the orthogonal matrix [V1 V2℄, we dedu
e thatG�QGQ = I � (1 + kbk2)vv�:From this relation, we see that N � n � 1 eigenvalues of G�QGQ are equal to the unity, whilethe remaining one is 1 � (1 + kbk2)kvk2. The proof 
on
ludes by noting that kq1k = kQe1k =kV2V �2 e1k = kV2vk = kvk. �B Proof of Lemma 6We �rst derive auxiliary results involving the terms of the ratio1 + kbk21 + kfk2as fun
tions of N . For this, we 
onsider two 
onse
utive values of N , and use the subs
ript [N ℄ todenote the dependen
e of the 
onsidered quantities on N . We start by observing thatW y�[N+1℄W y[N+1℄ = (W[N+1℄W �[N+1℄)�1 := A[N+1℄ (B.8)and that the W[N+1℄W �[N+1℄ = A�1[N+1℄ is a rank-one modi�
ation of A�1[N ℄ =W[N ℄W �[N ℄, i.e.A�1[N+1℄ = A�1[N ℄ + ZNee�ZN� = ZA�1[N ℄Z� + ee�;18



where we used the two representationsW[N+1℄ = [W[N ℄ ZNe℄ = [e ZW[N ℄℄: Applying the Sherman-Morrison formula to ea
h of these forms, we derive thatA[N+1℄ = A[N ℄ � A[N ℄ZNee�ZN�A[N ℄1 + e�ZN�A[N ℄ZNe = Z��A[N ℄Z�1 � Z��A[N ℄Z�1ee�Z��A[N ℄Z�11 + e�Z��A[N ℄Z�1e : (B.9)Now, the proje
tor asso
iated with the value N is given byP[N ℄ =W y[N ℄W[N ℄ =W y[N ℄[e ZW[N�1℄℄ = [W y[N ℄e W y[N ℄ZW[N�1℄℄be
ause of (2.5) and the de�nition of W[N ℄. This yields kp1;[N ℄k = kW y[N ℄ek: Combining this with(B.8), we obtain kp1;[N+1℄k2 = e�A[N+1℄e. Using this relation in the �rst equality of (B.9), weobtain kp1;[N+1℄k2 = e�A[N ℄e� e�A[N ℄ZNee�ZN�A[N ℄e1 + e�ZN�A[N ℄ZNe= kp1;[N ℄k2 � (e�1W y[N ℄ZNe)(e�ZN�W y�[N ℄e1)1 + e�ZN�A[N ℄ZNe= kp1;[N ℄k2 � je�1f[N ℄j21 + kf[N ℄k2 ; (B.10)
where f[N ℄ = W y[N ℄ZNe is the minimum norm solution of the system (2.10). On the other hand,using the equality between the left-hand side and the last right-hand side of (B.9), we have thate�A[N+1℄e = e�Z��A[N ℄Z�1e� e�Z��A[N ℄Z�1ee�Z��A[N ℄Z�1e1 + e�Z��A[N ℄Z�1e :This is nothing but kp1;[N+1℄k2 = kb[N ℄k2 � kb[N ℄k41 + kb[N ℄k2 = kb[N ℄k21 + kb[N ℄k2 ;where b[N ℄ =W y[N ℄Z�1e. This implies that1 + kb[N ℄k2 = 11� kp1;[N+1℄k2 : (B.11)We now observe that, using the fa
t that p1;[N ℄ = e1 � q1;[N ℄, (B.10) 
an be rewritten as1� kp1;[N+1℄k2 = kq1;[N ℄k2 + je�1f[N ℄j21 + kf[N ℄k2 ;19



whi
h, 
ombined with (B.11), gives1 = (1 + kb[N ℄k2)kq1;[N ℄k2 + je�1f[N ℄j21 + kf[N ℄k2 (1 + kb[N ℄k2);or equivalently, by Theorem 5,�2N�n;[N ℄(GQ) = je�1f[N ℄j2 1 + kb[N ℄k21 + kf[N ℄k2 : (B.12)The �nal part of our proof depends on two important observations. The �rst is that, as e�1f[N ℄, isthe independent term of the 
hara
teristi
 polynomial of F , that is non zero be
ause of Theorem 2,it is equal to the produ
t of the eigenvalues of F . That is,je�1f[N ℄j = N�nYk=1 jb�kj nYj=1 jzj j; (B.13)where the b�'s are the extraneous eigenvalues of F , and the z's are the signal eigenvalues. These
ond is that the extraneous eigenvalues of B are the 
onjugate of those of F , as proved in [2℄,Theorem 3.2. Hen
e the produ
t of their modulus is equal to the produ
t of the singular values ofV �2 BV2 = GQ. Using now Theorem 5, we dedu
e that�2N�r;[N ℄(GQ) = N�nYk=1 jb�kj2: (B.14)The �rst part of the theorem then follows from (B.14), (B.13) and (B.12).Now, observe that, using the se
ond equality of (B.9) and the de�nitions of f and b,kf[N+1℄k2 = e�ZN+1�A[N+1℄ZN+1e= e�ZN�A[N ℄ZNe� e�ZN�A[N ℄Z�1ee�Z��A[N ℄ZNe1 + e�Z��A[N ℄Z�1e= kf[N ℄k2 � jf�[N ℄b[N ℄j21 + kb[N ℄k2 ;whi
h shows that kfk de
reases monotoni
ally with N . The same 
on
lusion then follows for kbkbe
ause of the �rst part of the theorem. �
20
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