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Singular Value Analysis of Predictor Matrices

F.S. V. Bazdn * Ph. L. Toint

Revised September 22, 2000

Abstract

Predictor matrices arise in problems of science and engineering where one is interested in
predicting future information from previous ones using linear models. The solution of such
problems depends on an accurate estimate of a part of the spectrum (the signal eigenvalues) of
these matrices. In this paper, singular values of predictor matrices are analyzed and formulae for
their computation are derived. By applying a well-known eigenvalue-singular value inequality
to our results, we deduce lower and upper bounds on the modulus of signal eigenvalues. These
bounds depend on the dimension of the problem and allow us to show that the magnitude of
signal eigenvalues is relatively insensitive to small perturbations in the data, provided the signal
is slightly damped and the dimension of the problem is large enough. The theory is illustrated by

numerical examples including the analysis of a signal arising from experimental measurements.

Key words. Singular values, eigenvalues, linear prediction, time series, exponential modeling

1 Introduction

Predictor matrices often arise in a number of areas such as modal analysis, speech processing, system
identification, etc, where prediction of future from previous information, is of primary interest.
In many cases, this prediction is computed using linear models. The nature of the information
itself depends on the particular application under study and often has the form of discrete time
series, commonly known in engineering as discrete time signals. More precisely, given a set of real
or complex-valued observations hg, hgi1,...,hern—1, a linear prediction model assumes that the

future value hy4n has the form

fihe + fohoy1 4+ + fnheny 1 = horn, £€>0. (1.1)
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In this formulation, N is the order of the model and the f’s, are complex coefficients known as
predictor parameters. These coefficients reflect intrinsic properties of the signal such as frequencies,
plane waves, damping factors, etc, whose estimation from a finite data set {hk},%zo, is an important
problem in areas such as system identification and spectral estimation, among others. The linear
prediction model is also currently used in other areas such as economy and zoology; see [21] and
[6] for details. In this work, we focus on those applications where the data are assumed to be of

the form
n n
hy = er(esfm)]g = erzf, k=0,1,...,
j=1 j=1

where rj,s; € C, sj # s for j # k, sj = aj +iwj, + = v/—1, and a; < 0. In these applications
the problem is to estimate the parameters r;, s; and the number n (the signal parameters), from a
finite sampling of the observed signal. We always assume w;At < 7. The classical approach for the
problem is relatively simple in the noiseless case: the parameters s; are extracted from the roots

of the so-called forward predictor polynomial
Py(t) = fr+ fot + -+ fnt" =17, (1.2)

whose coefficients f] are estimated by solving the set of linear prediction equations

he her oo hepnoa h hetn
hett hega -+ heyn f2 hernt1
. . . = . , (1.3)
heyp—1 hesn - heypyn—2 Iy heynrin—1

where we assume M > N > n, and n is the rank of the coefficient matrix. The underlying idea
behind this is that n zeros of P;(t), known as signal zeros, are of the form z; = e% At a result early
proven by R. de Prony for the case M = N = n. For details of Prony’s method, see Section 9.4
in Hildebrand [11]. Applications of Prony’s method are encountered in number of areas such as
acoustics, electromagnetics, and structural dynamics, among others, see, e.g., Magda, Strauss and
Wei [20], Braun and Ram [7, 8], Kumaresan [16], and Kurka [19]. A new theoretical approach
for Prony’s method is described in Wei and Majda [25]. Once the signal zeros are available, the
problem of estimating the parameters r; is simple and we do not comment any further about this.

One could also use the linear prediction equations in the reverse order, replacing (1.1) by
Blhg + 62h4+1 + -+ ENth—l =hy_1, £2>1. (1.4)
Then the parameters s; are extracted from the zeros of the backward predictor polynomials

Pb(t) :(_)N-l-(_)N_lt-i-"' -l-(_)ltN_l —tN, (1.5)



whose coefficients are estimated as above. In this case, the signal zeros are zj_l = e %A [16].
However, as only the signal zeros are of interest, one is faced with the problem of separating them
from the other N — n zeros, called extraneous zeros, which appear as a consequence of choosing
N > n since n is not known in advance. This separation turns out to be difficult since the extraneous
zeros depend on how one chooses the coefficients f] from the infinitely many solutions of the system
(1.3). Further details about the zeros of predictor polynomials can be found in Kumaresan [16],
and also in Cybenko [9], where the problem is examined in the framework of infinite dimensional
Hilbert spaces. A more recent approach, where signal zeros are viewed as eigenvalues of predictor
matrices (the signal eigenvalues), can be found in Bazin and Bezerra [2] and Bezerra and Bazin [4].

The problem, however, becomes difficult when the data are corrupted by noise, since both the
rank n and the parameters fj must be estimated from a linear prediction system whose coefficient
matrix is generally of full rank, though this can be often circumvented by taking N > n, see,
e.g., [17], [16], [22] and [23]. But, as polynomial root-finding methods are time consuming, new
approaches based on estimates of the so-called signal spaces (the row or column space of the data
matrix) are actually preferred. In these techniques, the signal zeros emerge as eigenvalues of a
small n x n matrix. Methods in this category include Kung’s method [18], Eigensystem Realization
Algorithm (ERA) of Juang and Pappa [14], HTLS of Van Huffel, Chen, Decanniere and Van
Hecke [24], OPIA of Bazan and Bavastri [1], and the matrix pencil method of Hua and Sarkar [13],
among others. Many references about both polynomial and subspace approaches can be found
in [23]. However, despite the bursting activity in new approaches, little is known about signal
eigenvalue sensitivity, an intrinsic component of the problem.

The goal of this paper is to perform a singular value analysis of predictor matrices, the results
of which provide insight into the sensitivity of these eigenvalues. Our analysis relies on the fact

@NXN

that, since the eigenvalues A; of any matrix A € satisfies the inequalities

on <|N\| <o j=1,2,---,N, (1.6)

(see Golub and Van Loan [10], page 318), where o and o; denote the smallest and largest singular
value of A, then reliable information about signal eigenvalue sensitivity can be drawn from (1.6),
provided these singular values are available. We provide analytic formulae for all singular values
of a class of predictor matrices and analyze the asymptotic behavior of the bounds (1.6) for N
large. As a consequence, we show that the magnitude of the signal eigenvalues becomes relatively
insensitive to small perturbations on the data, provided mild conditions are satisfied.

We first analyze in Section 2 the localization of signal eigenvalues extracted from the spectrum of
predictor matrices. The main results are presented in Section 3 where we give an exact description

of the annulus (1.6) for the class of predictor matrices obtained by orthogonal projection: we show



that an upper bound on the width of this annulus shrinks as the dimension of the problem increases,
and that it asymptotically becomes small provided the signal is slightly damped. Finally, Section 4

presents some numerical results which illustrate our theoretical analysis.

2 Predictor matrices and basic results

Predictor matrices are defined as follows in the noiseless case. Let H(¢) be the M x N Hankel

matrix of the system (1.3). We say that the N x N matrix F' is a forward predictor matriz if
H({+1)=H({)F, V¢ >0. (2.1)

Similarly, B is a backward predictor matriz if for £ > 1, it satisfies

H({¢—-1)=H()B. (2.2)

Notice that H(¢) can be factored as
H(¢) = VZ'RW, (2.3)
where Z = diag(z1,...,2n), R = diag(ry,...,ry), V is an M x n Vandermonde matrix with zi_l

as its (j, k) entry and W the transpose of the matrix that consists of the N first rows of V. Hence,
we have that (2.3) is a full-rank factorization of H(¢) and that for all £ > 0, rank[H (¢)] = n. The
column space of H(¢), denoted by R(H (£)), is spanned by the columns of matrix V', while the row
space of H(¢), R(H (£)*), is spanned by the columns of W*. Here the symbol * stands for complex
conjugate transpose. From (2.3) also follows that N (H(¢)), the null space of H(¢), is equal to the
null space of W, and that therefore

R(H(0)) = [N (W)]. (2.4)
Furthermore, if P denotes the orthogonal projector onto R(H (¢)*), then we have that
P=HW)H(l)=WW=w*Wwh, (2.5)

where T stands for the Moore-Penrose pseudo-inverse. The reader is referred to [5] for details on
projections and pseudo-inverses. We now observe that (2.1) and (2.2) have infinitely many solutions

because H () is rank deficient. The solutions set of (2.1), Sp, is
Sp={F|F=F+(—-P)X, XeRVN}, (2.6)

where F = H(I)'H(I + 1). Similarly, if we set B = H(I)!H(I — 1) , then the set of backward

predictor matrices is

Sp={B|B=B+(I-P)X, XeRVN} (2.7)



We observe that the signal eigenvalues can be extracted from any forward or backward predictor

matrix for, if one substitutes F' in (2.1), one has that,
WE = ZW, (2.8)

which shows that the rows of W are left eigenvectors of F' corresponding to the signal eigenvalues.

In the same way, (2.2) implies that
WB=27"'w, (2.9)

and thus the rows of W are left eigenvectors of B associated with the eigenvalues zj_l. However, if

signal eigenvalues are independent of which predictor matrix is chosen in the class, this is not the
case for the extra N —n eigenvalues (the extraneous eigenvalues). It turns out that a analysis of the

localization of these extraneous eigenvalues is possible, provided we restrict ourselves to a suitable

class of predictor matrices. We focus here on two interesting choices: the matrix F (or §) and
minimal norm predictor matrices with companion structure. This last class covers, if prediction is

carried out in the forward direction, predictor matrices of the form
F=lepes - ey f],

where e; is the j-th vector of the canonical basis and the last column vector, f = [f1 fa--- a7t

is the solution of the linear system
H({)f=H({+ 1)ey. (2.10)

of minimal 2-norm. If prediction is carried out in the reverse order instead, backward companion
predictor matrices have the form

B = [b €1 e - eN_l],
where the first column vector, b = [by by --- by]’, is the solution of the system
HOb=H{—1)e, £>1 (2.11)

of minimal 2-norm. The following result gives information about the eigenvalues of the above

predictor matrices.

Theorem 1 Let I and B be as in (2.6) and (2.7), respectively, and let F' and B be the forward

and backward minimal norm companion predictor matrices. Then, provided N > n, we have that

(a) F and B are both nonsingular.



(b) |A() <1, k=1,...N —n where \(-) denotes an extraneous eigenvalue and (-) any of the
matrices ﬁ, B\, F or B.

Proof. We note that to prove (a) for F, it suffices to prove that ejf # 0. Observe that f €
R(H(1)*). We then verify that e; does not belong to either /(W) or to its orthogonal complement.
The first of these two claims follows from the fact that We; = e, where e is the vector in €™ of
all ones. To see the second, we consider the system W*x = e;. If we select n equations of this
system starting from the second one, we obtain a square nonsingular homogeneous system whose
unique solution is £ = 0. However, this is in contradiction with the first equation, which shows
that the system is incompatible. Thus e; ¢ R(H(I)*), which ensures that ejf # 0, as claimed.
One can similarly check that B is nonsingular, and thus part (a) of the theorem holds. The proof

of (b) involving companion matrices can be found in [2]. We now prove that (b) for F and B.
In order to see that the extraneous eigenvalues of F fall inside the unit circle, notice that, as
F=HUO)H(+1) = WIZW, it is immediate to see that A\(F) = {z1,...,2n} U {0} (see Horn
and Johnson [12], Theorem 1.3.20). A similar argument can be applied for B , which concludes the

proof. [

As this theorem describes completely the locations of all eigenvalues of the predictor matrices
}/7\, E, F and B, what remains to do is to determine their singular values. We first start with a

technical lemma, that allows us to compute the singular spectrum of companion predictor matrices.

The determination of the singular spectrum of Band F is slightly more involved and is postponed

to the next section.

Lemma 2 Let ui, us, vi and vy be vectors in €Y, N > 2, such that at least one of the inner
products viuy or viug is different of —1. Suppose that the rank-two modification of the identity

gwen by I + u1v] + ugv3 is nonsingular. Then we have that,
det(I 4+ u1v] + ugvy) = 1 4+ viug + viug + viuiviue — ViUV U, (2.12)
and that, the associated characteristic polynomial is
p(A) = (1= NV A2 — (2 4+ vfug + viug)\ + 1 4 viug + viug + viugviug — viuiviug).  (2.13)

Proof. We assume, without loss of generality, that vju; # —1. It then follows that I 4+ u;v] is
nonsingular since det(I + u1v}) = 1 + viu; # 0. Hence, using properties of the determinant, we
have that

det(I + uivi +ugvy) = det(I +ujvi)det(I + (I + uiv}) tuguvy))
= (L4 ofun) (1403 (T + wivp) " tug),



and the first part of the lemma follows after applying the Sherman-Morrison formula to the last
right-hand side. On the other hand, given that

p(A) = det(I + uyv] + ugvy — AI) = det((1 — X\)I + uyv] + ugvy),
since p(1) =0 and N > 2, we have that A =1 is an eigenvalue of I 4+ ujv} + ugvy. If X # 1,
p(A) = (1 = N Vdet(I 4+ (1 — A) Lugof + (1 = N Lugd),

and the second part of the lemma is then obtained by applying (2.12) in this equation. O

Thus it suffices to extract the eigenvalues associated with a quadratic polynomial in (2.13) to
obtain the eigenvalues of the perturbed matrix, since the remaining ones are equal to one. We
illustrate this by considering the problem of computing the singular spectrum of the backward
companion matrix B introduced above. In fact, since the singular values of B can be computed

from the eigenvalues of BB*, we observe that

b

BB* = [bey ... en_1] T
€N-1

where b is the minimum 2-norm solution of 2.11, and hence that

BB* =1+ bb" —eney.

By applying Lemma 2 to BB*, with u; = v; = b and us = —v9 = ey, we find that the characteristic
polynomial of BB* is p(A\) = (1 — A)V2[A2 — A(1 + ||b]|?) + 4|b*en|?]. Hence, we have that the

singular spectrum of B, o(B), is of the form
o(B) ={01(B),1,1,...,1,0n(B)},

where

oA(3), () = W 1 TP 7 I) 210

This result is not new, (see for instance [15]), but the authors are not aware of a proof along the
lines developed here. We now use it to obtain an important eigenvalue bound. Since for each signal

eigenvalue A we have that,

b2 + 1+ /(DI + 1) — dley b2
aN(B)s|A|sU1(B)S\/ PP+ L P DP 40D o e, s

7



an interesting upper bound can be immediately derived provided ||b]|? is small enough (remember

in this case |A| > 1). In our context, as shown in [3], it is fortunate that ||b]|? ~ 0 in many practical
applications, provided the dimension of the problem is sufficiently large. If this is true, then the
form of the upper bound indicates that it could be rather tight. Hence, this preliminary analysis
suggests that reliable bounds could be obtained provided they only depend on quantities similar to
the right-hand side of (2.15). Unfortunately, no lower bound of interest can be obtained from the

left inequality because oy (B) = 0, which motivates our search for a better lower bound.

3 Signal eigenvalue bounds

In spite of the promising quality of the above upper bound, the link of the signal eigenvalues with
the solution of a “large eigenvalue problem” seems to generate a new inconvenience, in that it
appears to require that the prediction matrix is sufficiently large. In this section, we shall show
that this can be circumvented provided signal eigenvalue bounds are derived by using the singular
spectrum of predictor matrices obtained via orthogonal projections. We say that the n X n matrix

Fp, is a forward predictor matrix obtained by orthogonal projection if, it is of the form
Fp =V{"FVq, (3.16)

where V) denotes any N xn matrix with orthonormal columns that span R(H (¢)*). The motivation

for this definition relies on the fact that the spectrum of Fp, A\(Fp), only contains the n signal

eigenvalues, since A\(Fp) = A(PF) = A(}/?’\ ) when zero eigenvalues are discarded. Similarly, Bp is a

backward predictor matrix obtained by orthogonal projection if it is of the form
Bp = V|*BVj. (3.17)

The spectrum of Bp then consists of the reciprocal of the signal eigenvalues. Thus, if eigenvalue
bounds are derived from the singular spectrum of these matrices, the signal eigenvalues are related
to a small n x n eigenvalue problem. The purpose of this section is therefore to develop a singular

value analysis of these matrices and to analyze the corresponding signal eigenvalue bounds.

Theorem 3 Suppose B is the backward predictor matriz introduced in (2.7). Then the singular
spectrum of B\, U(E), satisfies
o(B) = o(Bp) U{0}, (3.18)



where

2+ [1BI” — Il |I* + /(1611 + [lpn[1%)? — 4lef b2

2 B _

o1 (Bp) 5 ’

oi(Bp) = 1, (i=2,....,n—1), (3.19)
2 b 2 _ 2 _ bl|2 22 — 4]t b2

o2 (Bp) = + [[l]* = llpw | \/(II2 2 + [on[?)Z — 4lei b |

where b and py are the first and the last column vectors of B and the projector P, respectively.
Proof. From 2.7 we have that B = PB = ViV*B. Hence,
B*B = B'V\V}V1V{'B = (Vi B)*(V{"B),

and therefore
o(B) = o(V;'B). (3.20)

On the other hand, if we introduce A = V|*B, then Bp = AV; and
BpBj = AV;V A" = APA*. (3.21)
But, as P = ViV = WIW = W*W ™ by (2.5), then
A* = B*V, = B*PV, = BW'WYV, = W*Z*wTw,

where the last equality is because of (2.9). Hence, since W*W* = I, where I denotes the n x n

identity matrix, we have, using (2.9) again, that
PA* = W*WHW*Z* WiV, = BW*W ™V, = B*V, = A" (3.22)

Using this property in (3.21), we deduce that the singular values of Bp are the singular values of A,
and thus the first part of the theorem follows from (3.20). To prove the second statement, notice
that

b*V,

eiVa

AA* = [Vl*b, Vl*el,...,Vl*eN_l] : = Vf‘bb*VI +V1*€16>{V1 + - +V1*6N_1€*NflV1,

*
en_1V1

can be rewritten as
AA* =1 + zz* — yy*,



where z = V[*b, and y = V|"en. By applying Lemma 2 to AA* with u; = vy = z and up = —vy =y,
we obtain that the spectrum of this matrix is formed by n — 2 eigenvalues equal to 1, and the

remaining ones, obtained from the roots of the polynomial in (2.13), are given by

_ 2+ 2] = Nyl £ V(=] + [ly]%)? — 4(=*y)?

>‘1a>‘2 2

Now, observe that ||px| = ||[ViVi'en|| = [[Vi(Vi"en)|| = [|Viy]| = |lyl|, since V} is an isometry, and
that

|l = 6" VA Vb = b*Pb = b*b, = [|b],
[z*y| = [b*ViVien| = |(0*P)en| = |b*en|

since b € R[H (¢)*]. We now observe that the largest value of the above roots, A;, say, is larger
than one because the eigenvalues of B are larger than one in modulus. Assume now that As > 1.

Then we obtain from its definition that
2
(Nl = Nlwl*)” > () + [lyl1%)* — 4(z*y)?,

which can be simplified to ||z|?||ly||> < |z*y|?>. This is impossible as it contradicts the Cauchy-
Schwarz inequality, and we therefore deduce that Ay < 1. These roots are therefore o?(Bp) and
02 (Bp), respectively, which concludes the proof. O

Thus, we have obtained an exact description of the singular spectrum of predictor matrices
obtained by projection and the annulus (1.6) which provides lower and upper bounds for the signal
eigenvalues. However, notice that these bounds are not immediately useful because they are derived
from the expressions of the singular values given by the last theorem, which depend themselves
on the projector P. In order to overcome this difficulty we prove the following result, where we

reintroduce the minimum norm solution f of (2.10).

Theorem 4 Suppose that Ay is the annulus defined by

1
Ay = {zeq: | ———— <4 < \/1+||b||2}, (3.23)

L+I71l
where N is the dimension of the predictor matriz B, then the eigenvalues of Bp belong to Ay .

Proof. We shall prove that both o1(Bp) and o, (Bp) belong to Ay. In fact, using (3.19), we have

2+ )% — 24+ /(J|b]12 + 2)2 — 4]e% b[2
2(Bp) = 161" = llpw | \/(H2 17+ llpw[[*)* — 4len bl <1+l

10



which shows that o1 (Bp) € Ax. To prove that o, (Bp) is not smaller than the inner radius of Ay,
we first show that Bp = F5': using the definitions of both matrices, (2.5), (2.8), (2.9), and the
fact that WWT = I, we have that

BpFp = VBVIV{'FV, = Vi PBPFV, = Vi WIWBW I WFV, = V;WIZ-'\WWTZwV, =1,
as claimed. We next observe that this enables us to compute o, (Bp) as
on(Bp) = 1/01(Fp), (3.24)

and o1 (Fp) can be determined in a way similar to that used for the singular values of the backward

predictor matrix. This yields that

_ 24 AP = llpal? + VAL + Mlpa %) — 4lei £

0’1(F77)2 2

<1+ 1P

where p; is the first column of P and f the minimum norm solution of (2.10). This ensures that
the left inequality of (3.23) is satisfied by o, (Bp), which completes the proof.(]

We now make the crucial observation that, depending on the dimension of the problem N, the
inner and outer radii of Ay become excellent approximations of o1 (Bp) and o, (Bp), respectively.
This can be seen as follows. Since e}y b is the independent coefficient of the characteristic polynomial

associated to the companion matrix B, which is not zero by Theorem 1, then
N—n n
el =TT Pl TT 1l (3.25)
k=1 j=1

where /):k are the so-called extraneous eigenvalues and \; = z;l. Hence, as |/>:k| < 1 by Theorem 1,

and, since for N large enough, |eb|*> ~ 0, from (3.19) we have that o?(Bp) ~ 1 + ||b]|%. A similar

reasoning on |e} f| gives that o2 (Fp) ~ 1+ ||f||?, and the quality of these approximations improves

when N increases.

Before stating our final result, we introduce two technical lemmas.

Lemma 5 Define Gg = V5'BV,, where Vy is an N x (N — n) matriz whose columns form an
orthonormal basis of N(H(£)). Then,

(3.26)

{U?(GQ) = 17j2172"'7N_n_17
o%r_n(Go) L— (L + (o),

where qy is the first column of the orthogonal projector Q onto N (H(Z)).

11



Proof. The proof is in appendix Al.

Lemma 6 Let b and f be the first and last column vector of B and F respectively. Then

n

L+[ol” _ 2
e~ 11!
7=1
for N > n. Moreover, both ||b|| and || f| decrease monotonically when N increases.

Proof. The proof is in appendix A2.
We now return to our main objective and continue analyzing the behavior of the width of Ay
as function of ||b|| and || f||, and, consequently, of N. Note that, because of Lemma 6, this reduces

to analyzing the norm of the forward coefficients || f||. But, since (2.8) is equivalent to the system

W f = ZNe, where e is the vector in €" of all ones, which follows from (2.3), and, as
Il = W' z¥e| < [WHvap™, (3.27)

where we set 8 = max{|zj|, j=1,...,n}, it suffices to analyze |WT|| as function of N. We now

choose, for notational convenience, N =p x n, p > 1. We also write
W =[Wy DWy ... DP~'Wy,

where W) is the n x n Vandermonde matrix whose (j, k) entry is z;-c_l, and D = Z™. Using these

definitions, one can then prove that the smallest singular value of W, o, (W), satisfies

1/2

p
on(W) > on(Wo) [ D 0710 (3.28)
j=1

where v = min{|z;|, j=1,...,n} (see [3], Theorem 1, for details). Hence, we have that

1) if a; <0, i.e. the signal is damped, from (3.27) we have then that
lim |[f] =0, (3.29)
N—00

because BV — 0 and |WT|| = 1/0,,(W) is bounded as y < 1 ensures that the sum in (3.28)

is finite;

2) if the signal is undamped instead, i.e., aj = 0, then (3.28) implies that [|[WT|| — 0 as N — oo
because f = = 1, and thus once more we obtain the limit (3.29) from (3.27).

12



But the limit (3.29) and Lemma 6 together give that

n n

I 2y _ -2 : 2y _ -2

Jdim (L 02) = [T sl 2@+ Jim 171 =[] 12l
j=1 7=1

To conclude this discussion, we note that the last part of Lemma 6, this last limit and (3.23), ensure

the following result.

Theorem 7 The annulus that contains the signal eigenvalues associated to Bp has a monotonically

decreasing width, i.e. Ax11 C An. Moreover, it is asymptotically described by

n
A ={z€@ /1 < |2 <[] 17"} (3.30)
i=1
Thus, we have shown that the quality of the signal eigenvalues bounds depends on the speed
at which ||f||? approaches to zero as the dimension N increases. However, as illustrated in (3.27),

this speed depends on the behavior of |[W| as a function of N, which ultimately depends on
the nature of the signal itself. The authors’ experience is that in most of practical applications,
moderate values of N are sufficient to ensure values of the norms of the predictor coefficients smaller
than one (see, for instance, the examples discussed in [3]).

Now consider the case of slightly damped signals. For such signals, we know that the signal
eigenvalues are relatively close to one, which we have shown to imply, for large IV, that the width
of the annulus (1.6) is small. Since these radii provide excellent approximations for o1 (Bp) and
on(Bp), these singular values must be close to each other. Furthermore, the stability of the singular
values (see Golub and Van loan [10], Section 8.3.1) guarantees that a small perturbation of the data
will not alter this property. This, in turn, implies that the width of the annulus (1.6) remains small,
even after a small perturbation. As a consequence, the magnitude of signal eigenvalues cannot vary
by a large amount. Further, since these eigenvalues cannot fall outside of the annulus, this property

suggests that the eigenvalues themselves should be insensitive to small perturbations on the data.

3.1 Connection of Predictor Matrices with Certain Subspace-Based Methods

Our goal here is to show that there exists a close relationship between predictor matrices obtained
by projection orthogonal and certain matrices used by two known modal parameter identification
methods. Specifically, we shall relate the forward predictor matrix of (3.16) with those matrices
used by ERA and OPIA, and show that all these matrices share the same eigenvalues. In fact, we

notice that OPIA uses an n X n matrix of the form

S =V*FV, (3.31)

13



where V' € €V *" is a matrix whose columns are right singular vectors related to the largest singular
values of H(¢). This shows that the matrix used by OPIA is indeed a predictor matrix obtained
by projection. On the other hand, the matrix used by ERA is

Sp=X"Y2UrH{ +1)Vu~/2, (3.32)

where V' is as before, U contains the left singular values related to the largest singular values of
H(?) and ¥ a diagonal matrix containing these singular values. Following reference [1] (see relations
(17), (20), (22) and (27) therein), it can be proved that Sp = %/28%~/2, This shows that both
S and Sg share the same eigenvalues, and the result continues to hold regardless of whether the
signal is perturbed or not. We thus conclude that a unified signal eigenvalue perturbation analysis
covering ERA and OPIA using an appropriate predictor matrix is always possible. A report about

this subject is in preparation and should appear in a future contribution.

4 Numerical Examples

In this section we present the results of some computer simulations which illustrate the behavior of
the bounds (3.23) and the role of || ||. We consider two numerical examples. The first is extracted
from the specialized literature of the signal analysis field, and the second is a signal synthesized
from experimental measurements. For each example, we compute |[W || and the bounds (3.23),

(L4 [|£1>)~"/% and (1 4 ||b]|?)/?, for several values of N.

4.1 Bounds for the Signal Eigenvalues of a Synthetic Signal

This example illustrates the bounds associated with the sampled signal defined by

hy = e 0014270200k | ((-0.024270.220k (1

—0.01+270.202) —0.024270.222)

whose signal eigenvalues are z; = el and z; = el . In this case, we have

that 21| = 0.9900, |22| = 0.9802 and the upper bound limit is []7_, |zj| 1 = 1.035 (note that
n = 2). This signal is often used for testing the capability of algorithms to extract frequencies and
decay factors from noisy signals, because the two closely spaced frequencies are easily seen as a
single one when additive noise is present (see, e.g, [13]). The behavior of the bounds as functions
of N is displayed in Figure 1-(b). In Figure 1-(a) we show the behavior of ||W || on a logarithmic
scale. From these figures we see the marked monotonic decrease of both ||WT|| and the width of

the annulus Ay for increasing values of N. In this example, we also verify that for N > 60, our

bounds agree with their limiting values 1 and 1.035 up to two decimal places.
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Figure 1: (a) log(||W1||) as function of N. (b) Bounds 3.23 as function of N

4.2 Bounds for Signal Eigenvalues related to a Mechanical System

In this example we illustrate the behavior of the bounds (3.23) for a synthesized signal obtained
from experimental measurements of the free response of a real vibratory system. Full information
about the procedure used to synthesize the signal can be found in [3]. For this case, the signal
eigenvalues come in complex conjugate pairs and n = 10. These eigenvalues are shown in Table 1.

The behavior of the upper and lower bounds (3.23) as functions of N, which we denote here by

| 4 | Jzl [l
0.9699 + 0.2248: | 0.9956 | 1.0044
0.9532 £+ 0.29312 | 0.9972 | 1.0028
0.9844 + 0.1619z | 0.9976 | 1.0024
0.9921 £ 0.10552 | 0.9977 | 1.0023
0.9972 £+ 0.0585z | 0.9989 | 1.0011

T W N .

Table 1: Signal Eigenvalues of synthesized signal and corresponding moduli.

Ly and Uy respectively, is displayed for N > 30 in Figure 2-(b). The rapid decrease of the width
of the annulus Ay is again very apparent.
Notice that, because |z;| =~ 1, the signal is slightly damped (see Figure 2-(a)). In order to better

illustrate the behavior of the bounds as functions of N, we have computed their distances to their
corresponding limits, Lo, = 1, and Uy, = H;O |zj| ! = 1.0262, respectively. These distances as well
as the norms ||[W1|| are shown in Table 2 for certain values of N. This table also illustrates the

decrease of |W1|| as the effect of increasing N. We also note that the bounds agree well with their
limits for N > 200.
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| N ] 10 \ 20 30 40 \ 50 60
Un 415.0088 11.7560 4.6708 2.9155 2.1564 1.7303
Un —Us | 413.9826 10.7298 3.6445 1.8893 1.1302 0.7041
Ly 0.0025 0.0873 0.2197 0.3520 0.4759 0.5931
Lo — Ly 0.9975 0.9127 0.7803 0.6480 0.5241 0.4069

W | 5.4548 x 10° | 0.0012 x 10° | 1.8228 x 10* | 0.0974 x 10* | 0.0096 x 10* | 0.0014 x 10*

| N ] 200 220 240 260 280 300
Un 1.0411 1.0410 1.0379 1.0367 1.0352 1.0338
Un — Uso 0.0149 0.0148 0.0117 0.0105 0.0090 0.0076
Ly 0.9857 0.9858 0.9888 0.9899 0.9913 0.9926
Lo — Ly 0.0143 0.0142 0.0112 0.0101 0.0087 0.0074
Izl 0.1127 0.1104 0.1095 0.1055 0.1044 0.1033

Table 2: Behavior of bounds 3.23 and ||WT|| as functions of N.

5 Conclusions and perspectives

We have developed a singular value analysis of certain predictor matrices that enabled us to derive

a closed form for their singular spectrum. Using these results, we have derived lower and upper

bounds for the so-called signal eigenvalues, both depending of the dimension of the problem. By

analyzing the influence of the dimension on these bounds, we have shown that they can become

very tight provided the dimension of the problem is sufficiently large and the signal is slightly

damped. This was illustrated with numerical examples including the analysis of the bounds for a

signal related to a vibrating structure.

We may anticipate interesting applications of our results to certain subspace-approaches for

modal parameter identification problems such as ERA, Kung’s method, and OPIA, among others.
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In particular, they seem to open a way for a unified signal eigenvalue perturbation analysis covering
these methods, provided they can be shown to depend on specific predictor matrices obtained by

projection. This challenging development is the object of ongoing research.

Appendix

A Proof of Lemma 5

Notice that b is the minimum norm solution of (2.11) and therefore b € R(H (¢)*). From this
Go=VsBVa =10, Vyer, ..., Vi'en_1] V2,

can be rewritten as

Go =Vy J Vo —uv®, (A.1)

where J is the permutation matrix J = [en, e1,...,en—1], and u* and v* are respectively, the last
and first row of V5. The proof of the theorem is then based on the computation of the eigenvalues
of G5Gg. We start then by observing that

0Go =G"G — G"uv™ —vu*G + (u*u)vv”, (A.2)
where we set G = V" J V5. Analyzing the first term of the right-hand side we see that
G'G=VyTVVyIVe =V T (I —VVIVe =1 -V TNV TVa, (A.3)

where the last equality follows from the the orthogonality of 7. On the other hand, observe that

J*V1 can be rewritten as,

R A N R % R I w* — bV,
e[ [ ][5 ) oe 7 3

where VIT is the matrix of V; consisting of all rows excluding the last, w* is the last row of Vj, and

A* = BV;. Hence, we have that
Voo T'Vi =V5 0 =Vyer(w* —b*"V)) = v(w* —b*V1), (A.4)
since Vof A* = 0 by (3.22). Substituting this relation in (A.3) yields

GG =1 — (|Jw]® — b en — eib+ |b]2)vo*. (A.5)
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We now analyze the second term of the right-hand side of (A.2). Notice that by using u = Vy'en

and v* = e] Vs, we have,
G'u=Vy T VoVien = Vo' T"(I — ViV ey = Vo T ey — Vo T ViV en.
But, if one observes that J*eny = e; and Vj*ey = w, we have, using (A.4), that
G'u=v—v(w —b"V))w=v—v(ww-—-"ViViey) =v—v(w*w —b'ey),
since b € R(H (£)*), and hence,
Gruv* = (1 — ||w||? + b*en)vv*. (A.6)
This, in turn, implies that the third term of the right-hand side of (A.2) is
vu*G = (1 — ||| + eib)vv*. (A7)

Replacing now (A.7), (A.6) and (A.5) into (A.2) and taking into account that ||w||? + ||u|? = 1,

because [w*u*] is the last row of the orthogonal matrix [V} V3], we deduce that
5Go =1— (1+ |b|*)vv*.

From this relation, we see that N —n — 1 eigenvalues of GG g are equal to the unity, while

the remaining one is 1 — (1 + ||b||?)||v||*. The proof concludes by noting that ||q1|| = [|Qe1| =

[VaVier]| = [[Vaol| = ||v]|. O
B Proof of Lemma 6

We first derive auxiliary results involving the terms of the ratio

1+ [|b]?
L+ f117

as functions of N. For this, we consider two consecutive values of N, and use the subscript [y to

denote the dependence of the considered quantities on N. We start by observing that

T T _ * -1 -
W[N+1]W[N+1] - (W[N+1}W[N+1]) - A[N+1} (B'8)
and that the W[N+1]W[’§v+1} = Af]\}+1] is a rank-one modification of A[;\}] = Win W[*]‘V], ie.
-1 -1 N_ % r7Nx —1 % *
A[N+1} = A[N} +Z e 27" = ZA[N]Z + ee”,
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where we used the two representations Wiy 1) = [Win Z Nel=1le Z Win]- Applying the Sherman-

Morrison formula to each of these forms, we derive that

A[N]ZNGG*ZN*A[N] Z_*A[N]Z_IBB*Z_*A[N}Z_I

A — A — =Z*AnmZ7 - B.
N+ = AN T T N A Z e [N] [+ e ZAyZ e (B.9)
Now, the projector associated with the value N is given by
—wi —wi — T
Pivy = WiWiny = Wiyle ZWin—n] = [Wiye Wi ZWiv -
because of (2.5) and the definition of Wy This yields ||p; il = ||W[];V}e||. Combining this with

(B.8), we obtain ||P1,[N+1]||2 = e"A;yqqe. Using this relation in the first equality of (B.9), we

obtain
2 _ e A 2N ee 28 Avje
lp1, vl = e*Ame — L+ e ZN Ay ZNe
_ ||2_(e’fW&V]ZN@(e*ZN*W&“) (B.10)
= lIp1wy L+ e ZN Ay Z Ve
&5 finl?
2
e p T 0 119
| 1,[N}|| 1+||f[N]“2

where fiy] = W[EV}ZN e is the minimum norm solution of the system (2.10). On the other hand,

using the equality between the left-hand side and the last right-hand side of (B.9), we have that

e*Z_*A[N}Z_lee*Z_*A[N]Z_le
1+ e*Z—*A[N]Z—le

e*Anyie = e*Z_*A[N]Z_le —

This is nothing but

o lI* b I
L+ ol 14 [lop 127

||101,[N+1}“2 = “b[N]H2 -

where by = W&V]Z ~le. This implies that

1

S B.11
T P (B-11)

L+ [lopl1* =

We now observe that, using the fact that py n)=e1 — qi ) (B.10) can be rewritten as

et fin|?

1—lpy vl = a1 + Ry ek
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which, combined with (B.11), gives

e} fiv)?
L= (1 Pl + T2 L 1+ ),
or equivalently, by Theorem 5,
2 * 21""”(’[1\’]”2
on-nn)(Ge) = letfimlP 7 I TR (B.12)

The final part of our proof depends on two important observations. The first is that, as e fy), is

the independent term of the characteristic polynomial of F', that is non zero because of Theorem 2,

it is equal to the product of the eigenvalues of F'. That is,

N—n n
lei fiml = [T el T 1251, (B.13)
k=1 j=1

where the \’s are the extraneous eigenvalues of F', and the z’s are the signal eigenvalues. The
second is that the extraneous eigenvalues of B are the conjugate of those of F, as proved in [2],
Theorem 3.2. Hence the product of their modulus is equal to the product of the singular values of

Vo'BV, = G g. Using now Theorem 5, we deduce that

N—n
ox_rn(Ga) = T Pl (B.14)
k=1

The first part of the theorem then follows from (B.14), (B.13) and (B.12).
Now, observe that, using the second equality of (B.9) and the definitions of f and b,

||f[N-|—1}||2 = e*ZNH*A[NH}ZNHe
e*ZN*A[N}Z_lee*Z_*A[N]ZNe
1+ e*Z—*A[N]Z—le

= e*ZN*A[N]ZNe —

|f[*}v}b[N]|2

— 2 _

which shows that ||f]| decreases monotonically with N. The same conclusion then follows for ||b]|

because of the first part of the theorem. [
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