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Singular Value Analysis of Preditor MatriesF. S. V. Baz�an � Ph. L. TointRevised September 22, 2000AbstratPreditor matries arise in problems of siene and engineering where one is interested inprediting future information from previous ones using linear models. The solution of suhproblems depends on an aurate estimate of a part of the spetrum (the signal eigenvalues) ofthese matries. In this paper, singular values of preditor matries are analyzed and formulae fortheir omputation are derived. By applying a well-known eigenvalue-singular value inequalityto our results, we dedue lower and upper bounds on the modulus of signal eigenvalues. Thesebounds depend on the dimension of the problem and allow us to show that the magnitude ofsignal eigenvalues is relatively insensitive to small perturbations in the data, provided the signalis slightly damped and the dimension of the problem is large enough. The theory is illustrated bynumerial examples inluding the analysis of a signal arising from experimental measurements.Key words. Singular values, eigenvalues, linear predition, time series, exponential modeling1 IntrodutionPreditor matries often arise in a number of areas suh as modal analysis, speeh proessing, systemidenti�ation, et, where predition of future from previous information, is of primary interest.In many ases, this predition is omputed using linear models. The nature of the informationitself depends on the partiular appliation under study and often has the form of disrete timeseries, ommonly known in engineering as disrete time signals. More preisely, given a set of realor omplex-valued observations h`; h`+1; : : : ; h`+N�1, a linear predition model assumes that thefuture value h`+N has the form�f1h` + �f2h`+1 + � � �+ �fNh`N�1 = h`+N ; ` � 0: (1.1)�Departamento de Matem�atia, Universidade Federal de Santa Catarina, Florian�opolis, Santa Catarina 88040-900,Brasil (fermin�mtm.ufs.br). Part of this researh was supported by CNPq, Brasil, grant 300487/94 - 0(NV).1



In this formulation, N is the order of the model and the �f 's, are omplex oeÆients known aspreditor parameters. These oeÆients reet intrinsi properties of the signal suh as frequenies,plane waves, damping fators, et, whose estimation from a �nite data set fhkgLk=0, is an importantproblem in areas suh as system identi�ation and spetral estimation, among others. The linearpredition model is also urrently used in other areas suh as eonomy and zoology; see [21℄ and[6℄ for details. In this work, we fous on those appliations where the data are assumed to be ofthe form hk = nXj=1 rj(esj�t)k = nXj=1 rjzkj ; k = 0; 1; : : : ;where rj ; sj 2 IC, sj 6= sk for j 6= k, sj = �j + i!j ; { = p�1, and �j � 0. In these appliationsthe problem is to estimate the parameters rj, sj and the number n (the signal parameters), from a�nite sampling of the observed signal. We always assume !j�t < �. The lassial approah for theproblem is relatively simple in the noiseless ase: the parameters sj are extrated from the rootsof the so-alled forward preditor polynomialPf (t) = �f1 + �f2t+ � � �+ �fN tN�1 � tN ; (1.2)whose oeÆients �fj are estimated by solving the set of linear predition equations26664 h` h`+1 � � � h`+N�1h`+1 h`+2 � � � h`+N... ... � � � ...h`+M�1 h`+M � � � h`+M+N�2 3777526664 �f1�f2...�fN 37775 = 26664 h`+Nh`+N+1...h`+M+N�1 37775 ; (1.3)where we assume M � N � n, and n is the rank of the oeÆient matrix. The underlying ideabehind this is that n zeros of Pf (t), known as signal zeros, are of the form zj = esj�t, a result earlyproven by R. de Prony for the ase M = N = n. For details of Prony's method, see Setion 9.4in Hildebrand [11℄. Appliations of Prony's method are enountered in number of areas suh asaoustis, eletromagnetis, and strutural dynamis, among others, see, e.g., Magda, Strauss andWei [20℄, Braun and Ram [7, 8℄, Kumaresan [16℄, and Kurka [19℄. A new theoretial approahfor Prony's method is desribed in Wei and Majda [25℄. One the signal zeros are available, theproblem of estimating the parameters rj is simple and we do not omment any further about this.One ould also use the linear predition equations in the reverse order, replaing (1.1) by�b1h` +�b2h`+1 + � � �+�bNh`N�1 = h`�1; ` � 1: (1.4)Then the parameters sj are extrated from the zeros of the bakward preditor polynomialsPb(t) = �bN +�bN�1t+ � � � +�b1tN�1 � tN ; (1.5)2



whose oeÆients are estimated as above. In this ase, the signal zeros are z�1j = e�sj�t [16℄.However, as only the signal zeros are of interest, one is faed with the problem of separating themfrom the other N � n zeros, alled extraneous zeros, whih appear as a onsequene of hoosingN > n sine n is not known in advane. This separation turns out to be diÆult sine the extraneouszeros depend on how one hooses the oeÆients �fj from the in�nitely many solutions of the system(1.3). Further details about the zeros of preditor polynomials an be found in Kumaresan [16℄,and also in Cybenko [9℄, where the problem is examined in the framework of in�nite dimensionalHilbert spaes. A more reent approah, where signal zeros are viewed as eigenvalues of preditormatries (the signal eigenvalues), an be found in Baz�an and Bezerra [2℄ and Bezerra and Baz�an [4℄.The problem, however, beomes diÆult when the data are orrupted by noise, sine both therank n and the parameters �fj must be estimated from a linear predition system whose oeÆientmatrix is generally of full rank, though this an be often irumvented by taking N � n, see,e.g., [17℄, [16℄, [22℄ and [23℄. But, as polynomial root-�nding methods are time onsuming, newapproahes based on estimates of the so-alled signal spaes (the row or olumn spae of the datamatrix) are atually preferred. In these tehniques, the signal zeros emerge as eigenvalues of asmall n�n matrix. Methods in this ategory inlude Kung's method [18℄, Eigensystem RealizationAlgorithm (ERA) of Juang and Pappa [14℄, HTLS of Van Hu�el, Chen, Deanniere and VanHeke [24℄, OPIA of Baz�an and Bavastri [1℄, and the matrix penil method of Hua and Sarkar [13℄,among others. Many referenes about both polynomial and subspae approahes an be foundin [23℄. However, despite the bursting ativity in new approahes, little is known about signaleigenvalue sensitivity, an intrinsi omponent of the problem.The goal of this paper is to perform a singular value analysis of preditor matries, the resultsof whih provide insight into the sensitivity of these eigenvalues. Our analysis relies on the fatthat, sine the eigenvalues �j of any matrix A 2 ICN�N satis�es the inequalities�N � j�j j � �1 j = 1; 2; � � � ; N; (1.6)(see Golub and Van Loan [10℄, page 318), where �N and �1 denote the smallest and largest singularvalue of A, then reliable information about signal eigenvalue sensitivity an be drawn from (1.6),provided these singular values are available. We provide analyti formulae for all singular valuesof a lass of preditor matries and analyze the asymptoti behavior of the bounds (1.6) for Nlarge. As a onsequene, we show that the magnitude of the signal eigenvalues beomes relativelyinsensitive to small perturbations on the data, provided mild onditions are satis�ed.We �rst analyze in Setion 2 the loalization of signal eigenvalues extrated from the spetrum ofpreditor matries. The main results are presented in Setion 3 where we give an exat desriptionof the annulus (1.6) for the lass of preditor matries obtained by orthogonal projetion: we show3



that an upper bound on the width of this annulus shrinks as the dimension of the problem inreases,and that it asymptotially beomes small provided the signal is slightly damped. Finally, Setion 4presents some numerial results whih illustrate our theoretial analysis.2 Preditor matries and basi resultsPreditor matries are de�ned as follows in the noiseless ase. Let H(`) be the M � N Hankelmatrix of the system (1.3). We say that the N �N matrix F is a forward preditor matrix ifH(`+ 1) = H(`)F; 8` � 0: (2.1)Similarly, B is a bakward preditor matrix if for ` � 1, it satis�esH(`� 1) = H(`)B: (2.2)Notie that H(`) an be fatored as H(`) = V Z`RW; (2.3)where Z = diag(z1; : : : ; zn); R = diag(r1; : : : ; rn), V is an M � n Vandermonde matrix with zj�1kas its (j; k) entry and W the transpose of the matrix that onsists of the N �rst rows of V . Hene,we have that (2.3) is a full-rank fatorization of H(`) and that for all ` � 0, rank[H(`)℄ = n. Theolumn spae of H(`), denoted by R(H(`)), is spanned by the olumns of matrix V , while the rowspae of H(`), R(H(`)�), is spanned by the olumns of W �. Here the symbol � stands for omplexonjugate transpose. From (2.3) also follows that N (H(`)), the null spae of H(`), is equal to thenull spae of W , and that therefore R(H(`)�) = [N (W )℄?: (2.4)Furthermore, if P denotes the orthogonal projetor onto R(H(`)�), then we have thatP = H(l)yH(l) =W yW =W �W y�; (2.5)where y stands for the Moore-Penrose pseudo-inverse. The reader is referred to [5℄ for details onprojetions and pseudo-inverses. We now observe that (2.1) and (2.2) have in�nitely many solutionsbeause H(`) is rank de�ient. The solutions set of (2.1), SF , isSF = fF j F = bF + (I �P)X; X 2 RN�Ng; (2.6)where bF = H(l)yH(l + 1). Similarly, if we set bB = H(l)yH(l � 1) , then the set of bakwardpreditor matries is SB = fB j B = bB + (I �P)X; X 2 RN�Ng: (2.7)4



We observe that the signal eigenvalues an be extrated from any forward or bakward preditormatrix for, if one substitutes F in (2.1), one has that,WF = ZW; (2.8)whih shows that the rows of W are left eigenvetors of F orresponding to the signal eigenvalues.In the same way, (2.2) implies that WB = Z�1W; (2.9)and thus the rows of W are left eigenvetors of B assoiated with the eigenvalues z�1j . However, ifsignal eigenvalues are independent of whih preditor matrix is hosen in the lass, this is not thease for the extra N�n eigenvalues (the extraneous eigenvalues). It turns out that a analysis of theloalization of these extraneous eigenvalues is possible, provided we restrit ourselves to a suitablelass of preditor matries. We fous here on two interesting hoies: the matrix bF (or bB) andminimal norm preditor matries with ompanion struture. This last lass overs, if predition isarried out in the forward diretion, preditor matries of the formF = [e2 e3 � � � eN f ℄;where ej is the j-th vetor of the anonial basis and the last olumn vetor, f = [f1 f2 � � � fN ℄T ,is the solution of the linear system H(`) f = H(`+ 1)eN : (2.10)of minimal 2-norm. If predition is arried out in the reverse order instead, bakward ompanionpreditor matries have the form B = [b e1 e2 � � � eN�1℄;where the �rst olumn vetor, b = [b1 b2 � � � bN ℄T , is the solution of the systemH(`) b = H(`� 1)e1; ` � 1 (2.11)of minimal 2-norm. The following result gives information about the eigenvalues of the abovepreditor matries.Theorem 1 Let bF and bB be as in (2.6) and (2.7), respetively, and let F and B be the forwardand bakward minimal norm ompanion preditor matries. Then, provided N > n, we have that(a) F and B are both nonsingular. 5



(b) j�̂k(�)j < 1; k = 1; : : : N � n where �̂(�) denotes an extraneous eigenvalue and (�) any of thematries bF , bB, F or B.Proof. We note that to prove (a) for F , it suÆes to prove that e�1f 6= 0: Observe that f 2R(H(l)�). We then verify that e1 does not belong to either N (W ) or to its orthogonal omplement.The �rst of these two laims follows from the fat that We1 = e, where e is the vetor in ICn ofall ones. To see the seond, we onsider the system W �x = e1. If we selet n equations of thissystem starting from the seond one, we obtain a square nonsingular homogeneous system whoseunique solution is x = 0. However, this is in ontradition with the �rst equation, whih showsthat the system is inompatible. Thus e1 =2 R(H(l)�), whih ensures that e�1f 6= 0, as laimed.One an similarly hek that B is nonsingular, and thus part (a) of the theorem holds. The proofof (b) involving ompanion matries an be found in [2℄. We now prove that (b) for bF and bB.In order to see that the extraneous eigenvalues of bF fall inside the unit irle, notie that, asbF = H(l)yH(l + 1) = W yZW , it is immediate to see that �( bF ) = fz1; : : : ; zng [ f0g (see Hornand Johnson [12℄, Theorem 1.3.20). A similar argument an be applied for bB, whih onludes theproof. �As this theorem desribes ompletely the loations of all eigenvalues of the preditor matriesbF , bB, F and B, what remains to do is to determine their singular values. We �rst start with atehnial lemma that allows us to ompute the singular spetrum of ompanion preditor matries.The determination of the singular spetrum of bB and bF is slightly more involved and is postponedto the next setion.Lemma 2 Let u1, u2, v1 and v2 be vetors in ICN , N > 2, suh that at least one of the innerproduts v�1u1 or v�2u2 is di�erent of �1. Suppose that the rank-two modi�ation of the identitygiven by I + u1v�1 + u2v�2 is nonsingular. Then we have that,det(I + u1v�1 + u2v�2) = 1 + v�1u1 + v�2u2 + v�1u1v�2u2 � v�2u1v�1u2; (2.12)and that, the assoiated harateristi polynomial isp(�) = (1� �)N�2[�2 � (2 + v�1u1 + v�2u2)�+ 1 + v�1u1 + v�2u2 + v�2u2v�1u1 � v�2u1v�1u2℄: (2.13)Proof. We assume, without loss of generality, that v�1u1 6= �1. It then follows that I + u1v�1 isnonsingular sine det(I + u1v�1) = 1 + v�1u1 6= 0. Hene, using properties of the determinant, wehave that det(I + u1v�1 + u2v�2) = det(I + u1v�1)det(I + (I + u1v�1)�1u2v�2))= (1 + v�1u1)(1 + v�2(I + u1v�1)�1u2);6



and the �rst part of the lemma follows after applying the Sherman-Morrison formula to the lastright-hand side. On the other hand, given thatp(�) = det(I + u1v�1 + u2v�2 � �I) = det((1� �)I + u1v�1 + u2v�2);sine p(1) = 0 and N > 2, we have that � = 1 is an eigenvalue of I + u1v�1 + u2v�2. If � 6= 1,p(�) = (1� �)Ndet(I + (1� �)�1u1v�1 + (1� �)�1u2v�2);and the seond part of the lemma is then obtained by applying (2.12) in this equation. �Thus it suÆes to extrat the eigenvalues assoiated with a quadrati polynomial in (2.13) toobtain the eigenvalues of the perturbed matrix, sine the remaining ones are equal to one. Weillustrate this by onsidering the problem of omputing the singular spetrum of the bakwardompanion matrix B introdued above. In fat, sine the singular values of B an be omputedfrom the eigenvalues of BB�, we observe thatBB� = [b e1 : : : eN�1℄26664 b�e�1...e�N�1 37775 = bb� + e1e�1 + � � � + eN�1e�N�1;where b is the minimum 2-norm solution of 2.11, and hene thatBB� = I + bb� � eNe�N :By applying Lemma 2 to BB�, with u1 = v1 = b and u2 = �v2 = eN ; we �nd that the harateristipolynomial of BB� is p(�) = (1 � �)N�2[�2 � �(1 + kbk2) + 4jb�eN j2℄. Hene, we have that thesingular spetrum of B, �(B), is of the form�(B) = f�1(B); 1; 1; : : : ; 1; �N (B)g;where �21(B); �2N (B) = kbk2 + 1�p(kbk2 + 1)2 � 4je�N bj2)2 : (2.14)This result is not new, (see for instane [15℄), but the authors are not aware of a proof along thelines developed here. We now use it to obtain an important eigenvalue bound. Sine for eah signaleigenvalue � we have that,�N (B) � j�j � �1(B) �skbk2 + 1 +p(kbk2 + 1)2 � 4je�N bj2)2 �p1 + kbk2; (2.15)7



an interesting upper bound an be immediately derived provided kbk2 is small enough (rememberin this ase j�j � 1). In our ontext, as shown in [3℄, it is fortunate that kbk2 � 0 in many pratialappliations, provided the dimension of the problem is suÆiently large. If this is true, then theform of the upper bound indiates that it ould be rather tight. Hene, this preliminary analysissuggests that reliable bounds ould be obtained provided they only depend on quantities similar tothe right-hand side of (2.15). Unfortunately, no lower bound of interest an be obtained from theleft inequality beause �N (B) � 0, whih motivates our searh for a better lower bound.3 Signal eigenvalue boundsIn spite of the promising quality of the above upper bound, the link of the signal eigenvalues withthe solution of a \large eigenvalue problem" seems to generate a new inonveniene, in that itappears to require that the predition matrix is suÆiently large. In this setion, we shall showthat this an be irumvented provided signal eigenvalue bounds are derived by using the singularspetrum of preditor matries obtained via orthogonal projetions. We say that the n� n matrixFP , is a forward preditor matrix obtained by orthogonal projetion if, it is of the formFP = V �1 FV1; (3.16)where V1 denotes any N�n matrix with orthonormal olumns that spanR(H(`)�). The motivationfor this de�nition relies on the fat that the spetrum of FP , �(FP ), only ontains the n signaleigenvalues, sine �(FP ) = �(PF ) = �( bF ) when zero eigenvalues are disarded. Similarly, BP is abakward preditor matrix obtained by orthogonal projetion if it is of the formBP = V �1 BV1: (3.17)The spetrum of BP then onsists of the reiproal of the signal eigenvalues. Thus, if eigenvaluebounds are derived from the singular spetrum of these matries, the signal eigenvalues are relatedto a small n� n eigenvalue problem. The purpose of this setion is therefore to develop a singularvalue analysis of these matries and to analyze the orresponding signal eigenvalue bounds.Theorem 3 Suppose bB is the bakward preditor matrix introdued in (2.7). Then the singularspetrum of bB, �( bB), satis�es �( bB) = �(BP) [ f0g; (3.18)
8



where �21(BP) = 2 + kbk2 � kpNk2 +p(kbk2 + kpNk2)2 � 4je�N bj22 ;�i(BP ) = 1; (i = 2; : : : ; n� 1);�2n(BP ) = 2 + kbk2 � kpNk2 �p(kbk2 + kpNk2)2 � 4je�N bj22 ; (3.19)where b and pN are the �rst and the last olumn vetors of B and the projetor P, respetively.Proof. From 2.7 we have that bB = PB = V1V �1 B. Hene,bB� bB = B�V1V �1 V1V �1 B = (V �1 B)�(V �1 B);and therefore �( bB) = �(V �1 B): (3.20)On the other hand, if we introdue A = V �1 B, then BP = AV1 andBPB�P = AV1V �1 A� = APA�: (3.21)But, as P = V1V �1 =W yW =W �W y� by (2.5), thenA� = B�V1 = B�PV1 = B�W �W y�V1 =W �Z��W y�V1;where the last equality is beause of (2.9). Hene, sine W y�W � = I, where I denotes the n � nidentity matrix, we have, using (2.9) again, thatPA� =W �W y�W �Z��W y�V1 = B�W �W y�V1 = B�V1 = A�: (3.22)Using this property in (3.21), we dedue that the singular values of BP are the singular values of A,and thus the �rst part of the theorem follows from (3.20). To prove the seond statement, notiethatAA� = [V �1 b; V �1 e1; : : : ; V �1 eN�1℄26664 b�V1e�1V2...e�N�1V1 37775 = V �1 bb�V1 + V �1 e1e�1V1 + � � �+ V �1 eN�1e�N�1V1;an be rewritten as AA� = I + xx� � yy�;9



where x = V �1 b, and y = V �1 eN . By applying Lemma 2 to AA� with u1 = v1 = x and u2 = �v2 = y,we obtain that the spetrum of this matrix is formed by n � 2 eigenvalues equal to 1, and theremaining ones, obtained from the roots of the polynomial in (2.13), are given by�1; �2 = 2 + kxk2 � kyk2 �p(kxk2 + kyk2)2 � 4(x�y)22 :Now, observe that kpNk = kV1V �1 eNk = kV1(V �1 eN )k = kV1yk = kyk; sine V1 is an isometry, andthat kxk2 = b�V1V �1 b = b�Pb = b�b;= kbk2;jx�yj = jb�V1V �1 eN j = j(b�P)eN j = jb�eN jsine b 2 R[H(`)�℄. We now observe that the largest value of the above roots, �1, say, is largerthan one beause the eigenvalues of B are larger than one in modulus. Assume now that �2 > 1.Then we obtain from its de�nition that�kxk2 � kyk2�2 > (kxk2 + kyk2)2 � 4(x�y)2;whih an be simpli�ed to kxk2kyk2 < jx�yj2. This is impossible as it ontradits the Cauhy-Shwarz inequality, and we therefore dedue that �2 � 1. These roots are therefore �21(BP ) and�2n(BP), respetively, whih onludes the proof. �Thus, we have obtained an exat desription of the singular spetrum of preditor matriesobtained by projetion and the annulus (1.6) whih provides lower and upper bounds for the signaleigenvalues. However, notie that these bounds are not immediately useful beause they are derivedfrom the expressions of the singular values given by the last theorem, whih depend themselveson the projetor P. In order to overome this diÆulty we prove the following result, where wereintrodue the minimum norm solution f of (2.10).Theorem 4 Suppose that AN is the annulus de�ned byAN = (z 2 IC j 1p1 + kfk2 � jzj �p1 + kbk2) ; (3.23)where N is the dimension of the preditor matrix B, then the eigenvalues of BP belong to AN .Proof. We shall prove that both �1(BP ) and �n(BP) belong to AN . In fat, using (3.19), we have�21(BP ) = 2 + kbk2 � kpNk2 +p(kbk2 + kpNk2)2 � 4je�N bj22 � 1 + kbk2;10



whih shows that �1(BP ) 2 AN . To prove that �n(BP) is not smaller than the inner radius of AN ,we �rst show that BP = F�1P : using the de�nitions of both matries, (2.5), (2.8), (2.9), and thefat that WW y = I, we have thatBPFP = V �1 BV1V �1 FV1 = V �1 PBPFV1 = V �1 W yWBW yWFV1 = V �1 W yZ�1WW yZWV1 = I;as laimed. We next observe that this enables us to ompute �n(BP) as�n(BP ) = 1=�1(FP ); (3.24)and �1(FP) an be determined in a way similar to that used for the singular values of the bakwardpreditor matrix. This yields that�1(FP )2 = 2 + kfk2 � kp1k2 +p(kfk2 + kp1k2)2 � 4je�1f j22 � 1 + kfk2;where p1 is the �rst olumn of P and f the minimum norm solution of (2.10). This ensures thatthe left inequality of (3.23) is satis�ed by �n(BP), whih ompletes the proof.�We now make the ruial observation that, depending on the dimension of the problem N , theinner and outer radii of AN beome exellent approximations of �1(BP) and �n(BP ), respetively.This an be seen as follows. Sine e�Nb is the independent oeÆient of the harateristi polynomialassoiated to the ompanion matrix B, whih is not zero by Theorem 1, thenje�Nbj = N�nYk=1 jb�kj nYj=1 j�j j; (3.25)where b�k are the so-alled extraneous eigenvalues and �j = z�1j . Hene, as jb�kj < 1 by Theorem 1,and, sine for N large enough, je�N bj2 � 0, from (3.19) we have that �21(BP ) � 1 + kbk2. A similarreasoning on je�1f j gives that �21(FP) � 1+ kfk2, and the quality of these approximations improveswhen N inreases.Before stating our �nal result, we introdue two tehnial lemmas.Lemma 5 De�ne GQ = V �2 BV2, where V2 is an N � (N � n) matrix whose olumns form anorthonormal basis of N (H(`)). Then,� �2j (GQ) = 1; j = 1; 2 : : : ; N � n� 1;�2N�n(GQ) = 1� (1 + kbk2)kq1k2; (3.26)where q1 is the �rst olumn of the orthogonal projetor Q onto N (H(`)).11



Proof. The proof is in appendix A1.Lemma 6 Let b and f be the �rst and last olumn vetor of B and F respetively. Then1 + kbk21 + kfk2 = nYj=1 jzj j�2for N > n. Moreover, both kbk and kfk derease monotonially when N inreases.Proof. The proof is in appendix A2.We now return to our main objetive and ontinue analyzing the behavior of the width of ANas funtion of kbk and kfk, and, onsequently, of N . Note that, beause of Lemma 6, this reduesto analyzing the norm of the forward oeÆients kfk. But, sine (2.8) is equivalent to the systemWf = ZNe, where e is the vetor in ICn of all ones, whih follows from (2.3), and, askfk = kW yZNek � kW ykpn�N ; (3.27)where we set � = maxfjzj j; j = 1; : : : ; ng, it suÆes to analyze kW yk as funtion of N . We nowhoose, for notational onveniene, N = p� n, p > 1. We also writeW = [W0 DW0 : : : Dp�1W0℄;where W0 is the n� n Vandermonde matrix whose (j; k) entry is zk�1j , and D = Zn. Using thesede�nitions, one an then prove that the smallest singular value of W , �n(W ), satis�es�n(W ) � �n(Wo)0� pXj=1 2n(j�1)1A1=2 ; (3.28)where  = minfjzj j; j = 1; : : : ; ng (see [3℄, Theorem 1, for details). Hene, we have that1) if �j < 0, i.e. the signal is damped, from (3.27) we have then thatlimN!1 kfk = 0; (3.29)beause �N ! 0 and kW yk = 1=�n(W ) is bounded as  < 1 ensures that the sum in (3.28)is �nite;2) if the signal is undamped instead, i.e., �j = 0, then (3.28) implies that kW yk ! 0 as N !1beause � =  = 1, and thus one more we obtain the limit (3.29) from (3.27).12



But the limit (3.29) and Lemma 6 together give thatlimN!1(1 + kbk2) = nYj=1 jzj j�2(1 + limN!1 kfk2) = nYj=1 jzj j�2:To onlude this disussion, we note that the last part of Lemma 6, this last limit and (3.23), ensurethe following result.Theorem 7 The annulus that ontains the signal eigenvalues assoiated to BP has a monotoniallydereasing width, i.e. AN+1 � AN : Moreover, it is asymptotially desribed byA1 = fz 2 IC =1 � jzj � nYj=1 jzj j�1g: (3.30)Thus, we have shown that the quality of the signal eigenvalues bounds depends on the speedat whih kfk2 approahes to zero as the dimension N inreases. However, as illustrated in (3.27),this speed depends on the behavior of kW yk as a funtion of N , whih ultimately depends onthe nature of the signal itself. The authors' experiene is that in most of pratial appliations,moderate values of N are suÆient to ensure values of the norms of the preditor oeÆients smallerthan one (see, for instane, the examples disussed in [3℄).Now onsider the ase of slightly damped signals. For suh signals, we know that the signaleigenvalues are relatively lose to one, whih we have shown to imply, for large N , that the widthof the annulus (1.6) is small. Sine these radii provide exellent approximations for �1(BP ) and�n(BP), these singular values must be lose to eah other. Furthermore, the stability of the singularvalues (see Golub and Van loan [10℄, Setion 8.3.1) guarantees that a small perturbation of the datawill not alter this property. This, in turn, implies that the width of the annulus (1.6) remains small,even after a small perturbation. As a onsequene, the magnitude of signal eigenvalues annot varyby a large amount. Further, sine these eigenvalues annot fall outside of the annulus, this propertysuggests that the eigenvalues themselves should be insensitive to small perturbations on the data.3.1 Connetion of Preditor Matries with Certain Subspae-Based MethodsOur goal here is to show that there exists a lose relationship between preditor matries obtainedby projetion orthogonal and ertain matries used by two known modal parameter identi�ationmethods. Spei�ally, we shall relate the forward preditor matrix of (3.16) with those matriesused by ERA and OPIA, and show that all these matries share the same eigenvalues. In fat, wenotie that OPIA uses an n� n matrix of the formS = V �FV; (3.31)13



where V 2 ICN�n is a matrix whose olumns are right singular vetors related to the largest singularvalues of H(`). This shows that the matrix used by OPIA is indeed a preditor matrix obtainedby projetion. On the other hand, the matrix used by ERA isSE = ��1=2U�H(`+ 1)V ��1=2; (3.32)where V is as before, U ontains the left singular values related to the largest singular values ofH(`) and � a diagonal matrix ontaining these singular values. Following referene [1℄ (see relations(17), (20), (22) and (27) therein), it an be proved that SE = �1=2S��1=2. This shows that bothS and SE share the same eigenvalues, and the result ontinues to hold regardless of whether thesignal is perturbed or not. We thus onlude that a uni�ed signal eigenvalue perturbation analysisovering ERA and OPIA using an appropriate preditor matrix is always possible. A report aboutthis subjet is in preparation and should appear in a future ontribution.4 Numerial ExamplesIn this setion we present the results of some omputer simulations whih illustrate the behavior ofthe bounds (3.23) and the role of kW yk. We onsider two numerial examples. The �rst is extratedfrom the speialized literature of the signal analysis �eld, and the seond is a signal synthesizedfrom experimental measurements. For eah example, we ompute kW yk and the bounds (3.23),(1 + kfk2)�1=2 and (1 + kbk2)1=2, for several values of N .4.1 Bounds for the Signal Eigenvalues of a Syntheti SignalThis example illustrates the bounds assoiated with the sampled signal de�ned byhk = e(�0:01+2�0:20{)k + e(�0:02+2�0:22{)k ; k = 0; 1; : : : ;whose signal eigenvalues are z1 = e(�0:01+2�0:20{) and z2 = e(�0:02+2�0:22{). In this ase, we havethat jz1j = 0:9900, jz2j = 0:9802 and the upper bound limit is Qnj=1 jzj j�1 = 1:035 (note thatn = 2). This signal is often used for testing the apability of algorithms to extrat frequenies anddeay fators from noisy signals, beause the two losely spaed frequenies are easily seen as asingle one when additive noise is present (see, e.g, [13℄). The behavior of the bounds as funtionsof N is displayed in Figure 1-(b). In Figure 1-(a) we show the behavior of kW yk on a logarithmisale. From these �gures we see the marked monotoni derease of both kW yk and the width ofthe annulus AN for inreasing values of N . In this example, we also verify that for N � 60, ourbounds agree with their limiting values 1 and 1.035 up to two deimal plaes.14
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(a) (b)Figure 1: (a) log(kW yk) as funtion of N . (b) Bounds 3.23 as funtion of N4.2 Bounds for Signal Eigenvalues related to a Mehanial SystemIn this example we illustrate the behavior of the bounds (3.23) for a synthesized signal obtainedfrom experimental measurements of the free response of a real vibratory system. Full informationabout the proedure used to synthesize the signal an be found in [3℄. For this ase, the signaleigenvalues ome in omplex onjugate pairs and n = 10. These eigenvalues are shown in Table 1.The behavior of the upper and lower bounds (3.23) as funtions of N , whih we denote here byj zj jzj j jzj j�11 0.9699 � 0.2248{ 0.9956 1.00442 0.9532 � 0.2931{ 0.9972 1.00283 0.9844 � 0.1619{ 0.9976 1.00244 0.9921 � 0.1055{ 0.9977 1.00235 0.9972 � 0.0585{ 0.9989 1.0011Table 1: Signal Eigenvalues of synthesized signal and orresponding moduli.LN and UN respetively, is displayed for N � 30 in Figure 2-(b). The rapid derease of the widthof the annulus AN is again very apparent.Notie that, beause jzj j � 1, the signal is slightly damped (see Figure 2-(a)). In order to betterillustrate the behavior of the bounds as funtions of N , we have omputed their distanes to theirorresponding limits, L1 = 1; and U1 =Q10j jzj j�1 = 1:0262; respetively. These distanes as wellas the norms kW yk are shown in Table 2 for ertain values of N . This table also illustrates thederease of kW yk as the e�et of inreasing N . We also note that the bounds agree well with theirlimits for N � 200. 15
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(a) (b)Figure 2: (a) Signal related to a mehanial system. (b) Bounds (3.23) as funtion of NN 10 20 30 40 50 60UN 415.0088 11.7560 4.6708 2.9155 2.1564 1.7303UN � U1 413.9826 10.7298 3.6445 1.8893 1.1302 0.7041LN 0.0025 0.0873 0.2197 0.3520 0.4759 0.5931L1 � LN 0.9975 0.9127 0.7803 0.6480 0.5241 0.4069kW yk 5:4548 � 109 0:0012 � 109 1:8228 � 104 0:0974 � 104 0:0096 � 104 0:0014 � 104N 200 220 240 260 280 300UN 1.0411 1.0410 1.0379 1.0367 1.0352 1.0338UN � U1 0.0149 0.0148 0.0117 0.0105 0.0090 0.0076LN 0.9857 0.9858 0.9888 0.9899 0.9913 0.9926L1 � LN 0.0143 0.0142 0.0112 0.0101 0.0087 0.0074kW yk 0.1127 0.1104 0.1095 0.1055 0.1044 0.1033Table 2: Behavior of bounds 3.23 and kW yk as funtions of N .5 Conlusions and perspetivesWe have developed a singular value analysis of ertain preditor matries that enabled us to derivea losed form for their singular spetrum. Using these results, we have derived lower and upperbounds for the so-alled signal eigenvalues, both depending of the dimension of the problem. Byanalyzing the inuene of the dimension on these bounds, we have shown that they an beomevery tight provided the dimension of the problem is suÆiently large and the signal is slightlydamped. This was illustrated with numerial examples inluding the analysis of the bounds for asignal related to a vibrating struture.We may antiipate interesting appliations of our results to ertain subspae-approahes formodal parameter identi�ation problems suh as ERA, Kung's method, and OPIA, among others.16



In partiular, they seem to open a way for a uni�ed signal eigenvalue perturbation analysis overingthese methods, provided they an be shown to depend on spei� preditor matries obtained byprojetion. This hallenging development is the objet of ongoing researh.AppendixA Proof of Lemma 5Notie that b is the minimum norm solution of (2.11) and therefore b 2 R(H(`)�). From thisGQ = V �2 B V2 = [0; V �2 e1; : : : ; V �2 eN�1℄V2;an be rewritten as GQ = V �2 J V2 � uv�; (A.1)where J is the permutation matrix J = [eN ; e1; : : : ; eN�1℄, and u� and v� are respetively, the lastand �rst row of V2. The proof of the theorem is then based on the omputation of the eigenvaluesof G�QGQ. We start then by observing thatG�QGQ = G�G�G�uv� � vu�G+ (u�u)vv�; (A.2)where we set G = V �2 J V2. Analyzing the �rst term of the right-hand side we see thatG�G = V �2 J �V2V �2 J V2 = V �2 J �(I � V1V �1 )J V2 = I � V �2 J �V1V �1 J V2; (A.3)where the last equality follows from the the orthogonality of J . On the other hand, observe thatJ �V1 an be rewritten as,J �V1 = � w�V "1 � = � b�V1V "1 � + � w� � b�V10 � = A� + � w� � b�V10 �where V "1 is the matrix of V1 onsisting of all rows exluding the last, w� is the last row of V1, andA� = BV1: Hene, we have thatV �2 J �V1 = V �2 � w� � b�V10 � = V �2 e1(w� � b�V1) = v(w� � b�V1); (A.4)sine V �2 A� = 0 by (3.22). Substituting this relation in (A.3) yieldsG�G = I � (kwk2 � b�eN � e�Nb+ kbk2)vv�: (A.5)17



We now analyze the seond term of the right-hand side of (A.2). Notie that by using u = V �2 eNand v� = e�1V2, we have,G�u = V �2 J �V2V �2 eN = V �2 J �(I � V1V �1 )eN = V �2 J �eN � V �2 J �V1V �1 eN :But, if one observes that J �eN = e1 and V �1 eN = w, we have, using (A.4), thatG�u = v � v(w� � b�V1)w = v � v(w�w � b�V1V �1 eN ) = v � v(w�w � b�eN );sine b 2 R(H(`)�), and hene, G�uv� = (1� kwk2 + b�eN )vv�: (A.6)This, in turn, implies that the third term of the right-hand side of (A.2) isvu�G = (1� kwk2 + e�N b)vv�: (A.7)Replaing now (A.7), (A.6) and (A.5) into (A.2) and taking into aount that kwk2 + kuk2 = 1;beause [w�u�℄ is the last row of the orthogonal matrix [V1 V2℄, we dedue thatG�QGQ = I � (1 + kbk2)vv�:From this relation, we see that N � n � 1 eigenvalues of G�QGQ are equal to the unity, whilethe remaining one is 1 � (1 + kbk2)kvk2. The proof onludes by noting that kq1k = kQe1k =kV2V �2 e1k = kV2vk = kvk. �B Proof of Lemma 6We �rst derive auxiliary results involving the terms of the ratio1 + kbk21 + kfk2as funtions of N . For this, we onsider two onseutive values of N , and use the subsript [N ℄ todenote the dependene of the onsidered quantities on N . We start by observing thatW y�[N+1℄W y[N+1℄ = (W[N+1℄W �[N+1℄)�1 := A[N+1℄ (B.8)and that the W[N+1℄W �[N+1℄ = A�1[N+1℄ is a rank-one modi�ation of A�1[N ℄ =W[N ℄W �[N ℄, i.e.A�1[N+1℄ = A�1[N ℄ + ZNee�ZN� = ZA�1[N ℄Z� + ee�;18



where we used the two representationsW[N+1℄ = [W[N ℄ ZNe℄ = [e ZW[N ℄℄: Applying the Sherman-Morrison formula to eah of these forms, we derive thatA[N+1℄ = A[N ℄ � A[N ℄ZNee�ZN�A[N ℄1 + e�ZN�A[N ℄ZNe = Z��A[N ℄Z�1 � Z��A[N ℄Z�1ee�Z��A[N ℄Z�11 + e�Z��A[N ℄Z�1e : (B.9)Now, the projetor assoiated with the value N is given byP[N ℄ =W y[N ℄W[N ℄ =W y[N ℄[e ZW[N�1℄℄ = [W y[N ℄e W y[N ℄ZW[N�1℄℄beause of (2.5) and the de�nition of W[N ℄. This yields kp1;[N ℄k = kW y[N ℄ek: Combining this with(B.8), we obtain kp1;[N+1℄k2 = e�A[N+1℄e. Using this relation in the �rst equality of (B.9), weobtain kp1;[N+1℄k2 = e�A[N ℄e� e�A[N ℄ZNee�ZN�A[N ℄e1 + e�ZN�A[N ℄ZNe= kp1;[N ℄k2 � (e�1W y[N ℄ZNe)(e�ZN�W y�[N ℄e1)1 + e�ZN�A[N ℄ZNe= kp1;[N ℄k2 � je�1f[N ℄j21 + kf[N ℄k2 ; (B.10)
where f[N ℄ = W y[N ℄ZNe is the minimum norm solution of the system (2.10). On the other hand,using the equality between the left-hand side and the last right-hand side of (B.9), we have thate�A[N+1℄e = e�Z��A[N ℄Z�1e� e�Z��A[N ℄Z�1ee�Z��A[N ℄Z�1e1 + e�Z��A[N ℄Z�1e :This is nothing but kp1;[N+1℄k2 = kb[N ℄k2 � kb[N ℄k41 + kb[N ℄k2 = kb[N ℄k21 + kb[N ℄k2 ;where b[N ℄ =W y[N ℄Z�1e. This implies that1 + kb[N ℄k2 = 11� kp1;[N+1℄k2 : (B.11)We now observe that, using the fat that p1;[N ℄ = e1 � q1;[N ℄, (B.10) an be rewritten as1� kp1;[N+1℄k2 = kq1;[N ℄k2 + je�1f[N ℄j21 + kf[N ℄k2 ;19



whih, ombined with (B.11), gives1 = (1 + kb[N ℄k2)kq1;[N ℄k2 + je�1f[N ℄j21 + kf[N ℄k2 (1 + kb[N ℄k2);or equivalently, by Theorem 5,�2N�n;[N ℄(GQ) = je�1f[N ℄j2 1 + kb[N ℄k21 + kf[N ℄k2 : (B.12)The �nal part of our proof depends on two important observations. The �rst is that, as e�1f[N ℄, isthe independent term of the harateristi polynomial of F , that is non zero beause of Theorem 2,it is equal to the produt of the eigenvalues of F . That is,je�1f[N ℄j = N�nYk=1 jb�kj nYj=1 jzj j; (B.13)where the b�'s are the extraneous eigenvalues of F , and the z's are the signal eigenvalues. Theseond is that the extraneous eigenvalues of B are the onjugate of those of F , as proved in [2℄,Theorem 3.2. Hene the produt of their modulus is equal to the produt of the singular values ofV �2 BV2 = GQ. Using now Theorem 5, we dedue that�2N�r;[N ℄(GQ) = N�nYk=1 jb�kj2: (B.14)The �rst part of the theorem then follows from (B.14), (B.13) and (B.12).Now, observe that, using the seond equality of (B.9) and the de�nitions of f and b,kf[N+1℄k2 = e�ZN+1�A[N+1℄ZN+1e= e�ZN�A[N ℄ZNe� e�ZN�A[N ℄Z�1ee�Z��A[N ℄ZNe1 + e�Z��A[N ℄Z�1e= kf[N ℄k2 � jf�[N ℄b[N ℄j21 + kb[N ℄k2 ;whih shows that kfk dereases monotonially with N . The same onlusion then follows for kbkbeause of the �rst part of the theorem. �
20
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