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Statistical theory of quasistationary states beyond the single water-bag case study
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An analytical solution for the out-of-equilibrium quasistationary states of the paradigmatic Hamiltonian mean
field (HMF) model can be obtained from a maximum entropy principle. The theory has been so far tested with
reference to a specific class of initial condition, the so called (single-level) water-bag type. In this paper a step
forward is taken by considering an arbitrary number of overlapping water bags. The theory is benchmarked to
direct microcanonical simulations performed for the case of a two-level water-bag. The comparison is shown to
return an excellent agreement.

DOI: 10.1103/PhysRevE.85.021148 PACS number(s): 05.20.−y, 05.45.−a, 05.70.Ce, 05.70.Fh

I. INTRODUCTION

Long-range interacting systems (LRS) are becoming a
popular topic of investigation [1] in physics due to the rich
and intriguing phenomenology that they display. A system
is said to fall in the realm of LRS if the two-body potential
scales as r−α with α < d, where r stands for the interparticle
distance and d the dimension of the embedding space. Several
physical systems share this property, which ideally embraces
distinct domains of applications. Gravity [2,3] is certainly the
most spectacular example among the wide gallery of systems
governed by long-range interactions, but equally important
are the cases of turbulence [4], plasmas [5], and wave-particle
interactions [6,7].

Peculiar and counterintuitive thermodynamics features
manifest in LRS: negative specific heat can occasionally
develop in the microcanonical ensemble [8], close to first-order
phase transitions, a surprising fact first discovered in astro-
physical context, that seeds statistical ensemble inequivalence
[9]. As concerns the dynamics, LRS have been reported
to experience a very slow relaxation toward the deputed
thermodynamic equilibrium. Indeed, they can be trapped in
long lasting out-of-equilibrium phases called quasistationary
states (QSSs) [10]. The lifetime of the QSSs diverges with
the systems size N . Interestingly, it displays different scaling
behaviors versus N , which range from exponential to power
law, being relic of the specific initial condition selected.
As a consequence, the order the limits N → ∞ and t →
∞ are taken does matter. Performing the continuum limit
before the infinite time limit implies preventing the system
from eventually attaining its equilibrium and so freezing it
indefinitely in the QSS phase.
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In physical applications where long-range couplings are at
play, as the ones mentioned above, the number of elementary
constituents composing the system being examined is gen-
erally large. The time of duration of the out-of-equilibrium
phase can therefore be exceedingly long, definitely longer the
the time of observation to which experimentalists are bound.
Given this scenario, it is of paramount importance to develop
dedicated analytical strategies to gain quantitative insight into
the complex and diverse zoology of the QSSs, as revealed
by direct numerical simulations. Working along these lines,
it was shown that QSS can be successfully interpreted as
equilibria of the collisionless Vlasov equation which appears
to rule the dynamics of a broad family of long-range models,
when recovering the continuum picture from the governing
discrete formulation. The average characteristics of the QSS,
including the emergence of out-of-equilibrium transitions, can
be analytically predicted via a maximum entropy variational
principle, pioneered by Lynden-Bell in Ref. [11] and more
recently revisited with reference to paradigmatic long-range
applications [7,12–14].

As we shall clarify in the forthcoming sections, the
predictive adequacy of the Lynden-Bell violent relaxation
theory has been so far solely assessed for a very specific
class of initial conditions. These are the so called (single)
water-bags: particles are assumed to initially populate a bound
domain of phase space and therein distributed with a uniform
probability. The aim of this paper is to take one simple step
forward and challenge the validity of the theory when particles
are instead distributed within two (uniformly filled) levels.
In principle, any smooth profile could be approximated by a
piecewise function, made of an arbitrary number of collated
water-bags [15]. Our idea is to perform a first step toward the
generalized multilevels setting, by first evaluating the formal
complexity of the procedure involved and then drawing a direct
comparison with the numerics relative to the two-level case.

To accomplish this task we will focus on the celebrated
Hamiltonian mean field model, often referred to as the
representative model of long-range interactions. The HMF
describes the motion on a circle of an ensemble of N rotors
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mutually coupled via an all-to-all cosines-like potential. In
the continuum limit the single particle distribution function
obeys to the Vlasov equation, the driving potential being
self-consistently provided by the global magnetization, namely
the degree of inherent bunching. QSSs exist for the HMF
model and have been deeply studied, both with analytical and
numerical means, for the single water-bag case.

The paper is organized as follows. In the next section
we shall introduce the discrete HMF model and discuss its
continuum Vlasov based representation. We will also introduce
the basic of the violent relaxation approach. Then, in Sec. III
we shall turn to discussing the generalized water-bag setting,
solving, in Sec. IV, the corresponding variational problem.
We will then specialize in Sec. V on the two-levels case and
compare the theory predictions to the simulations. Finally, in
Sec. VI we will sum up and conclude.

II. THE HMF MODEL

The HMF model describes the dynamics of N particles
(rotors) moving on a circle and interacting via a mean field
potential which is self-consistently generated by the particles
themselves. Formally, the HMF is defined by the following
Hamiltonian:

H =
N∑

i=1

p2
i

2
+ 1

2N

N∑
i,j=1

[1 − cos(θi − θj )], (1)

where θi identifies the position of particle i on the circle
and pi is the canonically conjugated momentum. Because the
interactions are not bounded to a small number of neighboring
particles, the interaction is all-to-all thus the potential is
inherently long range.

Starting from the water-bag initial condition, the HMF
system experiences a fast relaxation toward an intermediate
regime, before the final equilibrium is eventually attained.
This metastable phase is a quasistationary state (QSS), the
out-of-equilibrium transient to which we have alluded to in
the Introduction. The lifetime of the QSS is shown to diverge
with the system size N [16], an observation that has nontrivial
consequences when one wishes to inspect the continuum
(N → ∞) limit. QSSs are in fact stable, attractive equilibria of
the continuous analog of the discrete Hamiltonian picture, and
bear distinctive traits that make them substantially different
from the corresponding equilibrium solutions.

To monitor the dynamics of the system it is customary to
record the time evolution of the magnetization. This latter is
defined as

M =
N∑

i=1

eiθ . (2)

It is a complex quantity whose modulus M measures the
degree of bunching of the distribution of particles. Depending
on the selected characteristics of the initial (single) water-bag,
the system can evolve toward an (almost) homogeneous
QSS or, conversely, result in a magnetized phase. The swap
between the two regimes can be understood as a genuine phase
transition, with energy and initial magnetization playing the
role of control parameters.

It can be rigorously shown [17] that, in the continuum limit,
the HMF system is formally described by the Vlasov equation,
which governs the evolution of the single particle distribution
function f (θ,p,t). In formula:

∂f

∂t
+ p

∂f

∂θ
− (Mx[f ] sin θ − My[f ] cos θ )

∂f

∂p
= 0, (3)

where Mx = ∫
f cos θdθdp and My = ∫

f sin θdθdp are the
two components of the magnetization M. With reference to
cosmological applications, Lynden-Bell proposed an analyt-
ical approach to determine the stationary solutions of the
Vlasov equation, pioneering the theory that it is nowadays
referred to as to the violent relaxation theory. He first
considered the coarse-grained distribution f̄ , obtained by
averaging the microscopic f (θ,p,t) over a finite grid. Then
the key idea is to associate to f̄ a mixing entropy S[f̄ ], via
a rigorous counting of the microscopic configurations that are
compatible with a given macroscopic state. The steps involved
in the derivation are highlighted in the remaining part of this
section.

Following the original discussion in Ref. [11] we remark
that: (i) the distribution function f (θ,p,t) never reaches
an equilibrium, if it is looked on a fine enough scale;
(ii) conversely, if a finite resolution is allowed for, then
the distribution function appears to converge to a stationary
profile. Lynden-Bell proposed a formal recipe to compute
the equilibrium coarse-grained distribution f̄ (θ,p), which
is eventually attained by the system after an initial violent
relaxation. Notice that the time dependence has been dropped
in f̄ , so to reflect the fact that we search for a stationary
solution.

To apply the statistical mechanics machinery, we divide the
phase space into a very large number of microcells each of
volume ω̃. The microcells define an hyperfine support that can
be invoked to obtain an adequate representation of the fine
grained function f , provided the mass of the phase element
that occupies each cell is given. Consider n levels of phase
density fJ , J = 1, . . . ,n. Then the phase element mass is fJ ω̃

or 0. Lynden-Bell suggested to group these microcells into
coarse-grained macrocells, still very small, but sufficiently
large to contain several microcells. Let us call ν the number
of microcells inside the macrocell, the latter having therefore
volume νω̃. Define niJ the number of elements with phase
density fJ that populate cell i, located in (θi,pi). Clearly∑

i niJ = NJ , where NJ stands for number of microcells
occupied by level fJ .

The sought entropy can be rigorously derived via the
following steps. First, we quantify the number of ways of
assigning the microcells to all

∑
J niJ phase elements that are

confined in the macrocell i. A simple combinatorial argument
yields to the estimate

ν!(
ν − ∑

J niJ

)
!
. (4)

Then, one needs to calculate the total number of microstates
W that are compatible with the single macrostate defined by
the numbers niJ . W is the product of (4) with the total number
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of ways of splitting the pool of available NJ elements into
groups of niJ . In formulas

W = �J

NJ !

�i(niJ )!
�i

ν!(
ν − ∑

J niJ

)
!
. (5)

Finally, the entropy S = log(W ) can be cast in the form

S = −
∑

J

∑
i

niJ

ν
log

niJ

ν

−
∑

i

(
1 −

∑
J

niJ

ν

)
log

(
1 −

∑
J

niJ

ν

)
, (6)

where we have rescaled S by ν and neglected some unim-
portant constant contributions. The term

∑
i(1 − ∑

J niJ /ν)
log(1 − ∑

J niJ /ν) reflects the exclusion principle that is
being imposed in the combinatorial analysis. Two elements of
phase cannot overlap, each microcell being solely occupied
by one of the available density levels, including zero. As
emphasized in Ref. [11], this procedure results in a novel
type of statistics, which explicitly accounts for the mutual
interference of distinguishable particles, at variance with the
Fermi-Dirac one, that deals with indistinguishable entities.
When only one level is allowed for, the Lynden-Bell and Fermi-
Dirac statistics coincide. We now introduce the probability
density ρiJ of finding the level of phase density fJ in cell i as

ρiJ = niJ

ν
. (7)

Notice that
∑

i

∑
J ρiJ = 1, as it should be. By inserting

Eq. (7) into the entropy expression (6) one gets

S = −
∑

J

∑
i

ρiJ log ρiJ

−
∑

i

(
1 −

∑
J

ρiJ

)
log

(
1 −

∑
J

ρiJ

)
. (8)

Following Lynden-Bell, one can define the coarse-grained
distribution function f̄ in (θi,pi) as

f̄ (θi,pi) =
∑

J

niJ

ν
fJ =

∑
J

ρiJ fJ . (9)

The density ρiJ and the coarse-grained distribution f̄ (θi,pi)
are the two main quantities upon which the description relies.
However, these are not independent quantities. Let us write the
density as ρiJ = αJ hi . The density factorizes hence into two
terms: hi depends on the ith cell, while the other contribution
αJ on the J th level. By inserting this ansatz into the definition
(9) for f̄ (θi,pi) we get

f̄ (θi,pi) =
∑

J

αJ hifJ (10)

for all i, from which we straightforwardly obtain

hi = f̄ (θi,pi) (11)

together with the normalization condition∑
J

fJ αJ = 1. (12)

Hence, summarizing we can rewrite (7) as

ρiJ = f̄ (θi,pi)αJ , (13)

which admits a simple interpretation. The probability of
finding an element of phase density fJ in cell i is given by
the probability of finding any element in such a cell, f̄ (θi,pi),
times the probability that the selected element is actually of
type fJ . Reasoning along these lines, αJ can be seen as the
relative fraction of phase space volume that hosts the elements
of phase density fJ .

Finally, one can obtain a compact expression for ρiJ that
explicitly evidences all allowed levels:

ρiJ =
∑
L

f̄ (θi,pi)αLδLJ . (14)

By taking the continuum limit both in the spatial variable
(θi,pi) → (θ,p), and in the level distribution fJ → η, one
obtains the generalized density function ρ(θ,p,η). Operating
under this condition, (9) rewrites as

f̄ (θ,p) =
∫

levels
ρ(θ,p,η)η dη, (15)

and (14) takes the form

ρ(θ,p,η) =
∫

levels
dxf̄ (θ,p)α(x)δ(x − η), (16)

where α(x) is the volume of the set of points (θ,p) such that
f (θ,p) = x.

In the following we will be concerned with the intermediate
situation where the levels are discrete in number. In this case,
by using the spatially continuous version of Eq. (14) in the
entropy (8), one gets

S(f̄ ) = −
∫

dτ ′
{∑

J

αJ f̄ (θ,p) log
∑

J

αJ f̄ (θ,p)

+
[

1 −
∑

J

αJ f̄ (θ,p)

]
log

[
1 −

∑
J

αJ f̄ (θ,p)

]}
,

(17)

where dτ ′ = dθdp/(ω̃ν) and the
∑

J cumulates the contribu-
tion of all levels that insists on cell i.

The equilibrium coarse-grained distribution function f̄

maximizes the entropy functional S(f̄ ), while imposing the
constraints of the dynamics. These latter are the energy,
momentum, and normalization, as well as the phase space
volumes αJ associated with each of the allowed levels. In the
following we shall discuss a specific class of initial condition,
the multilevel water-bags, which naturally extends beyond the
single water-bag case study, so far explicitly considered in the
literature. It is our intention to test the predictability of
the Lynden-Bell theory within such generalized framework.
The theory will be developed with reference to the general
setting, including n levels. The benchmark with direct simu-
lations will be instead limited to the two-levels case, that is,
n = 2.
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III. THE GENERALIZED WATER-BAG

The single water-bag initial condition takes a constant
value f1 within a finite portion of the phase space, and zero
outside of it. Although this is the only prescription to be
accommodated for, rectangular domains are usually chosen
for practical computational reasons. Following [13], we shall
label [�θ,�p] the widths of such a rectangle, as calculated,
respectively, along θ and p directions. A second simplification
is also customarily assumed: the rectangle is centered in the
origin, so that θ ∈ [−�θ

2 ,�θ
2 ] and p ∈ [−�p

2 ,
�p

2 ].
By operating in this context, the Lynden-Bell variational

problem studied in, for example, [13], is shown to yield to a
Fermionic stationary distribution, which successfully enables
us to capture some of the essential traits of the QSS. These
includes an accurate characterization of the out-of-equilibrium
transitions from magnetized to nonmagnetized QSS. First- and
second-order phase transitions, that merge in a tricritical point,
were in fact singled out for the HMF model, a theoretical
prediction confirmed by direct numerical inspection. As stated
above, the general philosophy that inspires the Lynden-Bell
theory is however broader than the specific realm to which
it was relegated and its potentiality deserves to be further
clarified. We will here extend the treatment to the multilevels
water-bag initial condition, a step that opens up the perspective
to eventually handle more realistic scenarios, where smooth
distributions could be considered.

Following the notation introduced above, the arbitrary
integer n quantifies the total number of distinct levels that
are to be allowed for when considering the generalized initial
distribution function finit. Arguably, by accounting for a large
enough collection of independent and discrete levels, one
can approximately mimic any smooth profile. A pictorial
representation of the family of initial conditions to which we
shall refer to in the forthcoming sections when discussing the
specific case study n = 3 is depicted in Fig. 1.

Mathematically, the initial distribution function finit can be
written as

finit(θ,p) =
{

fJ if θ ∈ J and p ∈ PJ,

f0 = 0 elsewhere.
(18)

�J = [J ,PJ ], J = 1, . . . ,n identifies the domain in phase
space associated to level fJ and has area αj .

We have already seen that the normalization condition (12)
links together the 2n constants fJ and αJ that are to be assigned
to fully specify the initial condition. In other words, only
2n − 1 scalars are needed to completely parametrize the initial
condition. Importantly, the single water-bag limit is readily

FIG. 1. Pictorial representation of a tree-levels (n = 3) water-bag
initial condition.

recovered once the phase space support of the levels indexed
with J other than J = 1 shrinks and eventually fades out.
This condition implies requiring αJ → 0 for J > 1. Moreover,
by making use of the normalization condition (12), one gets
α1 = 1

f1
. The entropy S(f̄ ) becomes therefore

S(f̄ ) = −
∫

dτ ′
[

f̄

f1
log

f̄

f1
+

(
1 − f̄

f1

)
log

(
1 − f̄

f1

)]
(19)

which coincides with the Fermionic-like functional that is
known to apply to the single water-bag case study [7,11,13].

IV. THE GENERALIZED n-LEVELS EQUILIBRIUM

The QSS distribution function f̄eq(θ,p) for the HMF
model, relative to the generalized n-levels water-bag initial
condition, is found by maximizing the Lynden-Bell entropy,
under the constrains of the dynamics. This in turn implies
solving a variational problem. The solution is relative to the
microcanonical ensemble since the Vlasov equation implies
that we work with fixed total energy.

Let us start by recalling the generic n-levels entropy which
was shown to take the following functional form:

S[f̄ ] = −
∫ {

n∑
J=1

f̄ αJ log(f̄ αJ )

+
(

1 −
n∑

J=1

f̄ αJ

)
log

(
1 −

n∑
J=1

f̄ αJ

)}
dθdp.

(20)

The conserved quantities are respectively the energy E:

E[f̄ ] =
∫

p2

2
f̄ (θ,p) dθdp − M[f̄ ]2 − 1

2
≡ En, (21)

and the total momentum P ,

P [f̄ ] =
∫

f̄ (θ,p)p dθdp ≡ Pn. (22)

The scalar quantity En relates to the geometric characteristics
of the bounded domains that define our initial condition.
Conversely, as we will be dealing with patches �J symmetric
with respect to the origin, one can immediately realize that
Pn = 0.

The n volumes of phase space, each deputed to hosting one
of the considered levels, are also invariant of the dynamics. We
have therefore to account for the conservation of n additional
quantities, the volumes �J [f̄ ] for J = 1, . . . ,n, defined as

�J [f̄ ] =
∫

f̄ (θ,p)αJ dθdp. (23)

Moreover, using the normalization condition for the coarse-
grained distribution function f̄ (θ,p), we get �J [f̄ ] = αJ .
Equivalently, by imposing the above constraints on the
hypervolumes, we also guarantee the normalization of the dis-
tribution function, which physically amounts to impose the
conservation of the mass.
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Summing up, the variational problem that needs to be solved
to eventually recover the stationary distribution f̄eq(θ,p) reads

max
f̄

{S[f̄ ] | E[f̄ ] = En; P [f̄ ] = Pn; �J [f̄ ] = αJ }, (24)

where the entropy functional S[f̄ ] is given by Eq. (20). This
immediately translates into

δS − βδE − λδP −
n∑

J=1

μJ δ�J = 0, (25)

where β, λ, and μJ stands for the Lagrange multipliers
associated, respectively, to energy, momentum, and volumes
(or equivalently mass) conservations.

A straightforward calculation yields to the following
expression for f̄eq(θ,p):

f̄eq = 1

B + Aeβ ′( p2

2 −M[f̄eq]·m)+λ′p+μ′
, (26)

where

B =
n∑

j=1

αj ; A =
⎛
⎝ n∏

j=1

α
αj

j

⎞
⎠

1
B

, (27)

where

β ′ = β

B
, λ′ = λ

B
, μ′ =

∑n
j=1 μj

B
, (28)

and m = [cos(θ ), sin(θ )].
The above solution is clearly consistent with that obtained

for the single water-bag case study [13]. This latter is in fact
recovered in the limit (αJ → 0 for J > 1 while α1 = 1

f1
)

lim
αj →0,j>1

f̄eq = f1

1 + ef1[β( p2

2 −M·m)+λp+μ1]
. (29)

Notice that the equilibrium distribution f̄eq depends on M,
which is in turn a function of f̄eq itself. The two components
of the magnetization, respectively, Mx and My are therefore
unknowns of the problem, implicitly dependent on f̄eq. This
latter is parametrized in terms of the Lagrange multipliers.
Their values need to be self-consistently singled out. As a
first simplification we observe that the specific symmetry
of the selected initial condition (Pn = 0) implies λ = 0.
Hence, just the two residual Lagrange multipliers are to
be computed: the Lynden-Bell inverse temperature β and
the cumulative chemical potential μ′.1 The number of total
unknowns therefore are four (Mx , My , β, μ′) and enter the
following system of implicit equations for the constraints:

E = Ã

2β ′3/2

∫
eβ ′M·mF2(y) dθ − M2 − 1

2
, (30)

1 = Ã√
β ′

∫
eβ ′M·mF0(y) dθ, (31)

1Being only interested in μ′ (to solve for f̄eq) and not on the complete
collection of μJ , we can hereafter focus just on the conservation of
the global mass, i.e., the normalization.

Mx = Ã√
β ′

∫
eβ ′M·mF0(y) cos(θ ) dθ, (32)

My = Ã√
β ′

∫
eβ ′M·mF0(y) sin(θ ) dθ. (33)

Here we have expressed the relations as function of the

Fermi integrals Fh(y) = ∫
phe−p2/2

1+ye−p2/2
dp, with y = ÃBeβ ′M·m

and Ã = A−1e−μ′
. The system of Eqs. (30)–(33) can be

solved numerically. In doing so one obtains a numerical
value for the involved Lagrange multipliers, as well as for
the magnetization components, by varying the parameters that
encode for the initial condition. We numerically checked (data
not shown) that in the limit of a single water-bag αJ>1 → 0
the solution reported in Ref. [13] is indeed recovered. In the
following section we turn to discussing the theory predictions
with reference to the simple case of two water-bag (n = 2),
validating the results versus direct numerical simulations.

V. THE CASE n = 2: THEORY PREDICTIONS
AND NUMERICAL SIMULATIONS.

We here consider the simplifying setting where two levels
(n = 2) water-bag are allowed for. We are in particular

interested in monitoring the dependence of M =
√

M2
x + M2

y

versus the various parameters that characterize the initial
condition. We recall in fact that, for the case of a single
water-bag, out of equilibrium transitions have been found
[13], which separates between homogeneous and magnetized
phases. A natural question is thus to understand what is going
to happen if one additional level is introduced in the initial
condition. The level f1 is associated with a rectangular domain
�1 of respective widths �θ1 and �p1. The level f2 insists
instead on an adjacent domain �2, whose external perimeter
is delimited by a rectangle of dimensions �θ2 and �p2. The
corresponding surface totals hence �θ2�p2 − �θ1�p1.

Recall that the energy E2 (En for n = 2) can be estimated
as dictated by formula (21) and reads in this specific case:

E2 = 1

24

[
f1�θ1�p3

1 + (f2 − f1)f2�θ2�p3
2

]
+ 1−16[f1�p1 sin �θ1/2+(f2 − f1)�p2 sin �θ2/2]

2
.

(34)

The one-level limit is readily recovered by simultaneously
imposing �θ2 → 0 and �p2 → 0 (which also implies α2 →
0). By invoking the normalization condition (12) the following
relation holds:

lim
�θ2,�p2→0

E2 = 1
6�p2

1 + 1
2

(
1 − M2

0

)
, (35)

where M0 = 2 sin(�θ1/2)/�θ1. The above relation coincides
with the canonical expression for E1, as, for example, derived
in Ref. [18].

Relation (34) enables us to estimate the energy associated
to the selected initial condition and can be used in the
self-consistency equations (30). Before turning to illustrate
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FIG. 2. (Color online) Analytical predictions for the equilibrium
magnetization M[f̄eq] as obtained for different values of the initial two
levels water-bag distribution. The two levels are, respectively, labeled
f1 and f2. We here work at constant α1 = 5 and �f = f2 − f1,
while moving the control parameter f1. The analysis is repeated for
distinct values of �f (from left to right �f = 0.2, 0.15, 0.1, 0.05).
α2 is computed according to Eq. (12). For f1 → 1/α1 = 0.2 the
normalization condition yields to α2 → 0, and the distribution
collapses to the limiting case of a single water-bag.

the predicted solution, let us note that the normalization (12)
reduces for n = 2 to

α1f1 + α2f2 = 1. (36)

To explore the parameter space we have decided to monitor
the dependence of M on f1, which therefore acts as a control
parameter. To this end we proceed by fixing the quantity
�f ≡ f2 − f1, the difference in hight of the considered levels.
Furthermore, we specify the quantity α1, while α2 is calculated
to match the normalization constraint.

The analysis is then repeated for distinct choices of �f ,
to eventually elaborate on the importance of such a crucial
parameter. The results are displayed in Fig. 2. The curves
collapse toward a point that corresponds to the limiting
condition α2 → 0 (f1 = 1/α1): this special solution is met
when the hypervolume populated by the level f2 shrinks
to zero, so driving the system toward the standard one
level setting. By progressively reducing f1 the predicted
magnetization first increases and subsequently decreases to
eventually reach zero at a critical threshold f c

1 . For f1 > f c
1

the system is predicted to evolve toward a magnetized, hence
nonhomogeneous phase. Alternatively, for 0 < f1 < f c

1 a
homogeneous phase is expected to occur. Interestingly, the
transition point f c

1 depends on the selected �f : the larger �f

the smaller the value of the transition point, corresponding
to a shift to the left in Fig. 2. Notice that above a limiting
value of �f , which self-consistently corresponds to imposing
α2 > 1/�f , the value of f1 has to forcefully become negative
to respect the normalization condition. A well hence opens up
in phase space, an intriguing scenario that can be formally
handled within the descriptive Vlasov framework but that
we have here deliberately omitted to deepen any further. The
smooth phase transition as depicted in Fig. 2 is therefore lost
above a threshold value of �f , when the predicted value of M

associated to f1 = 0 turns out to be greater than zero.
To elucidate the specificity of the outlined transition, we

plot in Fig. 3 the energy E2 associated with each of the selected
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FIG. 3. (Color online) The analytical curves (same setting as
in Fig. 2) are now plotted in the plane (E2,f1) (from left to right
�f = 0.2, 0.15, 0.1, 0.05). Here we only represent the points that
are associated to positive M[f̄eq]. The transition occurs at constant
energy E2 	 0.675, regardless of the specific domains that result in
the two level water-bag distribution.

initial conditions, versus f1, for the same choice of parameters
as employed in Fig. 2. As suggested by visual inspection of
the figure, the transitions, which we recall take place within
a finite window in f1, always occur for an identical value of
the energy (in this case Ec

2 	 0.675). The transition point is
hence insensitive to the specificity of the two water-bags, being
neither dependent on their associated volumes nor relative
heights. It is in principle possible to extend the above analysis
and so reconstruct the complete transition surface in the
(f1,f2,E2) space, a task which proves however demanding
from the computational viewpoint and falls outside the scope
of the present paper.

To test the validity of the theory we have run a series of
numerical simulations of the HMF model. The implementation
is based on fifth order McLachlan-Atela algorithm [19] with
a time step δt = 0.1. The initial condition is of a two levels
water-bag type, with respective domains assigned as follows
the aforementioned prescriptions. As a preliminary check we
have monitored the approach to equilibrium (Fig. 4).
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Thermal equilibrium
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FIG. 4. (Color online) Magnetization M as a function of time t , as
seen in a typical simulation. The system experiences a fast relaxation
and then settles down into the lethargic QSS phase, whose duration
(data not shown) increases with N . Later on the system moves toward
the deputed equilibrium. In this simulation a two levels water-bag is
assumed with f1 = 0.14, f2 = 0.1, α1 = 0.2, α2 = 0.3. The energy
is E2 = 1.0 and N = 104.
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FIG. 5. The analytical predictions (solid line) for the QSS
magnetization as a function of f1 in the two-levels water-bag case
are compared (filled circles) to the numerical simulations performed
for N = 104. The comparison is drawn for two distinct values of �f

[�f = 0.1 (left) and �f = 0.2 (right)]. α1 = 5 and α2 follows the
normalization condition. Numerical values of M are computed as a
time average over a finite time window where the QSS holds. The
data are further mediated over four independent realizations.

As expected and generalizing the conclusion that have been
shown to hold for the simpler one level water-bag family of
initial conditions, the system settles down into a QSS, whose
lifetime grows with the number of simulated particles (data not
shown). The QSS are indeed the target of our analysis and it is
the magnetization as recorded in the QSS phase that needs to
be compared to the Lynden-Bell predictions. The comparison
between theory and simulations is reported in Fig. 5. Filled
symbols refer to the simulation while the solid lines stand for
the theory, for two distinct choice of �f . The agreement is

certainly satisfying and points to the validity of the Lynden-
Bell interpretative framework, beyond the case of the single
water-bag, so far discussed in the literature.

VI. CONCLUSIONS

The dynamics of long-range interacting system is studied,
as concerns the intriguing emergence of long lasting quasis-
tationary states. The problem is tackled within the context
of the Hamiltonian mean field model, a very popular and
paradigmatic case study. Building on previous evidences, the
QSS are interpreted as stable equilibria of the Vlasov equation,
which rules the dynamics of the discrete HMF system in
the infinite system size limit (N → ∞). The QSS are hence
characterized analytically by means of a maximum entropy
principle inspired to the seminal work of Lynden-Bell. This
technique is known to yield to reliable predictions when
dealing with a very specific class of initial condition, the so
called (single) water-bag. The scope of this paper is to push
forward the analysis by considering the case where multiple
water-bags are allowed for. The theory is challenged with
reference to the case of a two levels water-bag initial condition
and the comparison with the simulations proves accurate.
Phase transitions are in fact predicted and observed in direct
N -body simulations. Motivated by this success, we argue that
the Lynden-Bell approach could be adapted to more complex,
and so realistic, family of initial conditions.
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