Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

RESEARCH OUTPUTS / RESULTATS DE RECHERCHE

Computer-Aided Database Engineering
Hainaut, Jean-Luc

Publication date:
2002

Link to publication

Citation for pulished version (HARVARD):
Hainaut, J-L 2002, Computer-Aided Database Engineering: Database Models..

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/publications/06c3678c-14f7-4cc8-8783-878fb8e2826a

DB-MAIN Manual Series

Computer-Aided Database
Engineering

Volume 1: Database Models

Fourth Edition - 1999

The University of Namur - Institut d’'Informatique

1-2

Credits

To be written

Contacts

Professor Jean-Luc Hainaut
University of Namur - Institut d’'Informatique
rue Grandgagnage, 21B-5000 Namur (Belgium)

jlhainaut@info.fundp.ac.be - http://www.info.fundp.ac.be/~dbm

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

1-3

INTRODUCTION

to be written

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

Volume 1: Database Models
Table of contents

1. Building our first database

1.1 Introduction 2
1.2 Starting DB-MAIN 3
1.3 Opening a new project

1.4 Defining a new schema

1.5 Defining entity types COMPANY and PRODUCT

1.6 Entering entity type attributes

1.7 Entering relationship type MANUFACTURES 10
1.8 Defining entity type identifiers 12
1.9 Documenting the schema 13
1.10 Producing a SQL database 14
1.11 Saving the project 16
1.12 Quitting DB-MAIN 16

2. A closer look at schemas

2.1 Starting Lesson 2 2
2.2 On including database schemas into a document 2
2.3 Graphical views of a schema 3
2.4 Textual views of a schema 6
2.5 Application: far jumps through a graphical schema 10

3. An even closer look at schemas

3.1 Starting Lesson 3 2
3.2 Securing our work 2
3.3 Manipulating the graphical components of a schema 3
3.3.1 Moving objects
3.3.2 Aligning objects
3.3.3 Zooming in and out
3.3.4 Fonts
3.3.5 Grids

~
NgPhw

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

1-5

3.3.6 The Reduce function 7
3.3.7 Colors 7
3.3.8 Marking objects 8
3.3.9 Auto-draw 9
3.3.10 Using a larger schema 10
3.3.11 Last observations 10
3.4 Navigation through textual views 10
3.5 Reordering attributes and roles 12
3.6 Generating reports 12
3.7 Copying objects 15
3.8 Inspecting objects 16
3.9 External links 17
3.10 Quitting the lesson 18

4. Multi-product projects

4.1 Starting Lesson 4 2
4.2 Conceptual and logical schemas 2
4.3 SQL code generation 6
4.4 Generating reports 8
4.5 Multi-product project 8
4.6 Deleting objects 10
4.7 Export/import of schema components 10
4.8 Why to export schemas? 12

5. The basics of conceptual modeling

5.1 Starting Lesson 5 2
5.2 Updating an object 2
5.3 What is a conceptual schema? 2
5.4 Cardinality of an attribute 3
5.5 Atomic and compound attributes 5
5.6 Multiple identifiers 7
5.7 Hybrid identifiers 8
5.8 On defining identifiers 10
5.9 N-ary relationship types 11
5.10 Relationship types with attributes 12

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

1-6

5.11 Relationship types with identifier(s)

5.12 Cyclic relationship types

5.13 The complete schema

5.14 On the cardinalities of rel-types
5.14.1 Binary rel-types
5.14.2 N-ary rel-types

5.15 Minimal identifiers

5.16 What next?

6. The basics of logical and physical modeling

6.1 Introduction
6.2 What is a logical schema?
6.3 Transformation into a logical schema
6.4 Reference attributes (foreign keys)
6.5 Access keys
6.6 On the conceptual relational translation rules
6.7 Defining entity collections
6.8 Name processing
6.9 SQL code generation
6.9.1 About the coding rules
6.9.2 On SQL generation styles
6.9.3 The Voyager 2 meta-development environment
6.10 About the DB-MAIN graphical representation
6.11 Logical vs physical schemas
6.12 Closing the lesson

7. Names

21/

7.1 Introduction

7.2 Uniqueness rules

7.3 Ambiguous names (the | symbol)
7.4 How to choose names

7.5 Name processing

7.6 Changing the prefix of names
7.7 Lexicons

03/2002

12
15
18

20
20
22

22
23

w

11

13

17

18

22
25
26
26

27
28
29

=
'_\m_bwf\)

11

DB-MAIN Tutorial E] J-L Hainaut 1999

1-7

8. More about entity types

8.1 Starting Lesson 8 2
8.2 Classification hierarchies (I1S-A relations) 2
8.3 Properties of the subtypes of an Entity type 5
8.4 Supertype/Subtype inheritance 8
8.5 Multilevel IS-A hierarchy 11
8.6 Multiple inheritance 13
8.7 Processing units of a schema 18
8.8 Quitting DB-MAIN 19

9. More about attributes

9.1 Introduction 2
9.2 Built-in domains 2
9.3 User-defined domains 4
9.4 Stable and non-recyclable attributes 7
9.5 Attribute identifiers 9
9.6 Non-set multivalued attributes 12
9.6.1 Sets 14
9.6.2 Bags 14
9.6.3 Unique lists 15
9.6.4 Lists 15
9.6.5 Arrays 16
9.6.6 Unique arrays 17
9.6.7 Summary 17
9.6.8 Set expression of non-set multivalued attributes 18
9.7 Multivalued identifiers 21
9.8 More on access keys 23
9.9 Multivalued reference attributes 24
9.10 Non-standard reference attributes 26
9.10.1 Hierarchical foreign key to a multivalued attribute 27
9.10.2 Overlapping foreign keys 27
9.11 Object attributes 28

10. More about constraints
10.1 Introduction 2

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

1-8

10.2 Existence constraints 2
10.3 Coexistent components of an entity type 2
10.4 Exclusive components of an entity type 5
10.5 Groups with at least one, or exactly one, existing component 8
10.6 Existence constraints rules 9
10.7 Existence constraints and IS-A relations 12
10.8 Other existence constraints 15
10.9 Generic constraints 16
10.9.1 Generic group constraints 16
10.9.2 Generic inter-group constraints 18
10.10 Schema transformation: another look 19

11. More about relationship types

11.1 Introduction 2

11.2 Multi-ET roles 2

11.3 Generic rel-types 4
11.3.1 Aggregation 5
11.3.2 Topological relationships 7

12. View schemas

12.1 Introduction 2
12.1.1 When to use views? 2
12.1.2 Principles 3

12.2 Specifying the objects of the view 3

12.3 Defining the view 5

12.4 Displaying a latent view 5

12.5 Materializing a view as a view schema 6

12.6 Modifying a view schema 8

12.7 What if | change my mind about the view? 9

12.8 Modifying the source schema 10

12.9 Propagating the modification of the source schema to view schemas 11

12.10 Warning 12

12.11 Other operations 14

12.12 Technical information 14

12.13 The View Menu 15

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

1-9

12.14 There are views and views! 15

13. Text Processing

13.1 Introduction 2
13.2 Text file manipulation 2
13.2.1 Selecting and marking text lines? 3
13.2.2 Line annotation 6
13.2.3 Reports from text files 7
13.3 Text structure and text analysis 8
13.4 Natural language analysis 8
13.5 DDL physical schema extraction 8
13.6 Patterns 10
13.7 Dependency graphs 11
13.8 Program slice 12

14. Conceptual Modelstp be completed

14.1 Introduction

14.2 Entity-relationship models

14.3 Object-role models

14.4 Object-oriented models

14.5 The UML class model (conceptual)

15. Logical Models {o be completed

15.1 Introduction

15.2 Relational models

15.3 Object-oriented models

15.4 The UML class model (logical/physical)
15.5 Object-relational models

15.6 CODASYL DBTG models

15.7 Hierarchical models

15.8 Shallow models

15.9 Standard file models

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

1-10

16. Miscellaneous

16.1 Introduction 2

16.2 Generic properties
16.2.1 Semi-formal properties
16.2.2 Dynamic properties

16.3 Configuration settings

© gwhN

Appendix A: The Generic DB-MAIN Model

A.1 The specification model in short
A.2 Project

A.3 Base schema

A.4 View schema

A.5 Text file

A.6 Inter-product relationship

A.7 Entity type (or object class)
A.8 Relationship type (rel-type)
A.9 Collection

A.10 Attribute

A.11 Object-attribute

A.12 Non-set multivalued attribute
A.13 Group

A.16 Inter-group constraint

A.15 Processing units

A.16 Common characteristics
A.17 Names

A.18 Structure of a text file

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 1

Buildin g our first database

Objective

In this first lesson, the reader will learn how to start and quit the
DB-MAIN CASE tool, how to introduce a simple Entity-Rela-
tionship conceptual schema, and how to translate it into table and
column structures expressed into the SQL language. S/he will
also save her/his work for further use.

Above all, the reader will get an insight into wBattabase De-
signis all about.

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

1-2

11

1.2

Lesson 1: Building our first database

Preliminary checking

For this lesson, be sure that the DB_MAIN directory includes the
DB_MAIN.EXE program (the CASE tool) as well as all the run-time libraries
(*.dll). See th(README.TXTile for further detail.

This lesson assumes that you use DB-MAIN Version 5, but is valid for version
4 as well.

Introduction

We will develop a very simple database intended to describe companies that
manufacture products. Through this process we will familiarize ourselves
with some important concepts in database engineering.

For instance, we will learn that besides the data structures that are built in the
computer, and in which we will store the data about tikesganies which
manufacture these productbere exists another, more abstract and more in-
tuitive way to describe these concepts, namelgdineeptual schemaWhile

data are stored into tables or into files, a conceptual schema describes the con-
cepts in terms of entity types (classes of similar objects), attributes (entity pro-
perties) and relationship types (associations holding among entities).

The most straightforwarcbnceptual schema&omprises the entity tyf@OM-

PANY, which describes the class of companies, and the entitPRQOUCT
representing the class of products. The fact that companies manufacture pro-
ducts is represented byraany-to-oneelationship type calleshanufactu-

res connecting their entity types. We will give these entity types some
attributes that describe the properties of the companies (such as their company
identifier, their name and their revenue) and of the products.

Starting DB-MAIN

Through the Explorer (or File Manager), we go into the DB_MAIN directory,
and we start the DB_MAIN program by double-clicking on the
DB_MAIN.EXE name or on thBB-MAIN icon. We acknowledge the presen-
tation box by clicking on the OK button, or by pressinggh&er key. The
main DB-MAIN window appears, showing, among othersMeau bar(with

two items onlyFile andHelp), theTool bar(with a few buttons, among which

21/03/2002 DB-MAIN Tutorial E] J-L Hainaut 2000

Lesson 1: Building our first database 1-3

arebuild a new projecandopen an existing projegtheWorkspacein which
the project window will be displayed (currently empty), andStetus bar

DA-EAIE 50 [IOl =]
Fla Heo - Menu bar
s e Tool bar
L Workspace
[I - Status bar

Figure 1.1 -The main window of DB-MAIN.

1.3 Creating a new project

We are ready to open a new project through the comiwigmtiNew project

This command opensRroject Property boXor Project boxfor short), which

asks us some information about the new project. Our project will be called
MANU-1and will be given the short nanMl. We validate the operation by
clicking on buttorOK

Project Properties

Mame [ManU-1
Short name |M1|
tethodalogy I

Creation Date Browse |

File name I

Sem. | Tech. | Prop. |

Ok I Cancel |

Figure 1.2 -The properties of the new project.

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

1-4

Lesson 1: Building our first database

Note 1 There is a simpler way to open a new project, namely by pressiidgthe
project button in the Tool bay.

Now, a new window, namely tHeroject window appears in the DB-MAIN
workspace. Currently, it includes a small rectangle, which is the iconic repre-
sentation of the project itself (any DB-MAIN object has a graphical represen-
tation). To examine its properties, ffile / Project Properties’. Later on,

this window will also show all the products of the project, such as the various
schemas and texts, together with their relation§hips

MANU-1,16/2/72000,7:02:39

< | 21

Figure 1.3 -The project window in which all the documents of the project will
appear.

The Menu bar and the Tool bar have changed too, offering more functions that
will be used later on. Make sure that $tandard tools bais available. Othe-
rwise useNindows / Standard tools to make it visible.

Y T T T _ e
BTl et R 0 3 o, . 0 L o i ST

Figure 1.4 -The complete Menu bar and the full Tool bar.

Double-clicking does not work here, for reasons that will be explained later.

. This window can also show all the activities that have been carried out to build these pro-

ducts. In other words, the Project window can show, if requested to, the history of the pro-
ject. We will ignore this feature in the following lessons.

21/03/2002 DB-MAIN Tutorial E] J-L Hainaut 2000

Lesson 1: Building our first database 1-5

1.4 Defining a new schema

We create a new schema in which we will draw the conceptual structures of
the database. Through the comm&mndduct / New schemahe Schema box
appears and asks us the namarfufacturing), the short nameManu)

and the version of the schema. This schema will include the conceptual des-
cription of our database in project, so tGanceptual should be a clear ver-

sion name that suggests the objective of the schema.

Schema Properties

Create a schema

MHame I b arufacturing

Short hame Ih-'lanu

Werzion IEDnceptuaI
Schema type I j
Creation Date
Last UpD ate
% Data " Processing
Sem. | Tech. | Prop. |

Eonnectionl Cancel |

Figure 1.5 -Creating a new schema.

We ignore the other properties and we validate the operation by clicking on the
OKbutton.

Two things happen. First, a new icon with the naamufacturing/
Conceptual appears in the Project window, indicating that the project com-
prises a new document, or product, which is a schema. Later on, double-clic-
king on such an icon will open i&hema window

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

1-6

Lesson 1: Building our first database

MANU-1.16/2/2000,7:02:39 _ O] =]
MANT-1

atmufacturingConceptus

1] | Bl

Figure 1.6 -The project window includes the new schema®.

Secondly, &chema windovwe opened, showing the same icon, but nothing el-
se.

FA Manufacturing/Conceptual

M arnufacturing/Conceptua

< | [

Figure 1.7 -The schema window is empty, except for the icon of the schema
itself. This window is like a blank page on which we will draw the conceptual
schema of the future database.

This icon represents the schema. Double-clicking on it opeBstiesma (pro-
perty) box So far, this schema is empty. We will work in this window, so
that it is a good idea to enlarge it.

In some rare situations (for instance, if you work on a DB-MAIN version already used by a
professional who configured it differently) a small rectangle with the lIsbelschema

also appears in the Project windows. To get rid of it, check that the Project window display
mode isGraphical DependencfthroughView / Graph. Dependency. The other modes

are quite nice as well, but probably a bit disturbing for an introductory lesson!

21/03/2002 DB-MAIN Tutorial E] J-L Hainaut 2000

Lesson 1: Building our first database 1-7

From now on, in order to simplify the illustrations used in this lesson, we will
hide the schema object, except when needed.

Note To free the workspace, especially when it is crammed with many windows, it
is best to iconize (minimize) the Project window.

1.5 Defining entity types COMPANY and PRODUCT

To enter thereate entity typenode, we click on th button. That changes
the cursor that now looks like a little rectangular box. We choose a point in
the schema window, we put the cursor on it and we double-click. This lays an
entity type at that point and opens ity type bosthat allows us to define

a new entity type (Figure 1.8).

armfacturingConceptus

Entity type Properties
Examine/modify the properties of an entity type

Hame [COMPANY |
Short name |EI]M |

Length 0
Supertypes | Yotad | Eriviemt

<< Add |

Remove))l
1| | » 4| | »

Sem. | Tech. | Prop. |

Hew ent. | Mew att | ‘ Ok I Cancel |

Figure 1.8 -The first entity type is defined.

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

1-8

1.6

Lesson 1: Building our first database

We enter the nan@OMPAN¥Nnd short nam€OM We validate the operation
by clicking on theDKbutton.

In the same way, we double-click at another point to define entityPiRae-
DUCTwith short nam&RO To quit the entry mode, we click on thew En-
tity typebutton again, or we press thecape key.

Now, the schema window shows the newly defined entity types as two boxes.
We move the boxes (by dragging them with the mouse) in the window in order
to give the schema a nice layout (Figure 1.9)

M anufacturing/Conceptual A=]
COMPANTY FRODUCT J

-

Kl [Ay

Figure 1.9 -So far, the current schema is made up of two entity types.

Entering entity type attributes

To specify that some specific information items are associated with the entities
of each type, we will define tregtributesof these entity types. We open the
property box of entity typ€OMPANYyY double-clicking on its name in the
schema window, then we click on tNewatt. button. TheAttribute box
invites us to define the first attribute (Figure 1.10). We give it the i@ome

ID, the typechar (acter) and the lengtth. This attribute represents the com-
pany identifier, and is considered as a string of 15 characters. For now, we can
ignore the other properties.

There are other attributes that we want to associateaS@PANYT herefore,

we click on buttorNext att (ribute), which validates the current definition,
and which calls the Attribute box again (since this button is the active one, just
pressing thé&nter key will do it). We define successively attribu@sm-
Name(char 25)Com-Address (char 50) an€om-Revenue (numeric 12).

The last attribute will be validated by clicking on kebutton instead to stop

the entry process.

21/03/2002 DB-MAIN Tutorial E] J-L Hainaut 2000

Lesson 1: Building our first database 1-9

Attribute Properties |

Create attribute of

COMPANY
Marme ID::m-ID
Shart namel
Cardinality |1-1 -
— Type
Il:har "I [~ Stable [~ Mon Pecyclable
Lengh [15 =]

Sem. | Tech. | Frop. |

‘ Ok | Eancell

Figure 1.10 -The first attribute of COMPANY is defined. The next attributes
will be defined by pressing the Next att. button, or more simply by pres-
sing the Enter key.

First att.

In the same way, we define attribuRr®-ID (char 8) andPro-Name (char
25) of entity typePRODUCT

The schema window now looks like Figure 1.11.

Manufacturing/Conceptual [[O]]

COMPANTY
Com-ID PRODUCT
Com-Hame Pro-ID —I
Com-Address Pro-Hame

Com-Revenue

4 = v

Figure 1.11 -The entity types have been given specific attributes.

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

1-10

1.7

Lesson 1: Building our first database

Entering relationship type MANUFACTURES

Now we want to represent the fact thampanies manufacture producihis

can be done by drawing a relationship type¢btypefor short) between the-

se entity types.

We enter theNew rel-typemode by clicking on the butto[4] in the Tool
ba. The cursor takes a cross-hair shape, so that we can draw a line from
COMPAN0 PRODUCTN the schema window (Figure 1.12).

2l
COMPANY
ComID PRODUCT
Comm-Hame Q ro-1D) _I
Com-Address m
Com-Revenue

4 = v

Figure 1.12 -A line is drawn between the boxes of the entity type we want to
connect.

A link appears between both rectangles with a hexagon on it. Normally, the
default namdRis selected (white on black). If it is not, we click on it. We press
theEnter key to open th&el-type boxor we double-click on nan®) We

enter the correct nanmeanufactures , then we validate through tiak but-

ton (Figure 1.13).

We quit the entry mode just like we did for the entity types by pressing the
Escape key or by clicking on the butto again (or on any another entry
button).

Each end of the rel-type is calledade. Each role is taken by an entity type
and is given aardinality constraintthat appears as a pair of symbols, such as
0-N and 1-1.

The 0-N cardinality specifies that a@OMPAN¥ntity will appear in at least

0 and at mosi (standing foiinfinity) manufactures relationships.

4. or buttonE in Version 3.

21/03/2002 DB-MAIN Tutorial E] J-L Hainaut 2000

Lesson 1: Building our first database 1-11

Manuf acturing/Conceptual O] x|
COMPANTY
Com-ID FRODUCT
Clom-Mame _U-Nl-l_ Pro-IT) |
Com-bddress Pro-Iame
Com-Beverue
R el-type Properties I
Ll _I Examine/modify the properties of a rel-type
Mame |manulactures |

Short name | |

Length (1

Sem. | Tech. | Prop. |

Ok I Cancel |

Mew rel_l Hew mlel Hew atl_l

Figure 1.13 -A relationship type links the entity types. It will be given the
name manufactures.

COMPANY J
ComID FRODUCT
Com-Name _U-Nl-l_Prn-ID |
Com-Address Pro-Matne
Com-Revenue

4 | 20

Figure 1.14 -Now the schema explicitly tells that companies manufacture pro-
ducts.

We will study later the concept of cardinality in greater detail. For now, we
understand th@-N cardinality as & company manufactures an arbitrary
number (i.e,. from 0 to N) of produttsSimilarly, the schema shows that a
PRODUCEntity will appear in exactly one (i.e., from 1 tomanufactu-

res relationship.

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

1-12

1.8

1.9

Lesson 1: Building our first database

The cardinality can be changed by double-clicking on the role, i.e., on its car-
dinality symbol. This will be examined in detail in another lesson.

Defining entity type identifiers

Normally, the entities of the same class, for instance all the companies, have a
special property that allows us to designate each of them. This property is cal-
led anidentifier of the entity type. Usually, it is a name, a code, a reference or
anything else that makes the entities unique in their class.

For instance, we want to tell th@bm-ID is the unique code of companies.
We select this attribute by clicking on its name (which appears white on black)
than we click on thé&dentifier button on the Tool bar.

In the same way, we defilRRO-ID as the identifier of entity tygRRODUCT
The schema can now be considered as complete (Figure 1.15).

M anufacturing/Conceptual =]
COMPANTY ;I
Com-ID FRODUCT
o Crasniactures >—1-1— o0
Com-Address _D_NM_I_I Pro-Hame |
Com-Revenue id: Pro-ID
id: Com-[D
Kl || i

Figure 1.15 -An identifier has been associated with each entity type.

Note that the identifier is graphically mentioned twice (assuming the novice
analyst has not noticed the fact!): first throughitheclause that appears at the
bottom of the entity type box, and secondly by the underlining of the compo-
nent attribute. This latter way will be used when the identifier comprises at-
tributes only.

Documenting the schema

You have probably observed that most boxes that define the properties of an
object have a special button nangsm Clicking on theSembutton opens a

21/03/2002 DB-MAIN Tutorial E] J-L Hainaut 2000

Lesson 1: Building our first database 1-13

small text window in which we are allowed to enter a free text that describes
the meaning of the current object, i.e. s#snantics

Let us double-click on the OMPAN¥ntity type (another way: seld€COMPA-

NY, then press thEnter key). We get the Entity type property box@DM-
PANY We click on theéSembutton, and we enter a text that defines what a
company is (Figure 1.16).

Semantic Descnption [_ O]

A regiztered business orgamization with which we have had commercial ﬂ

contacts for less than 5 years.

Ok Cancel |

Figure 1.16 -The Semantic description text window of an object.

The text can be as long as needed (with a 64 Kb limit however). It can be cut,
copied and pasted from/to any other program in the usual way (ctrl-X, ctrl-C,

ctrl-V).

In the same way, we can enter a descriptioPRODUCa&ndmanufactu-

res , for each of the attributes, for each role, for each identifier and even for

the schema and the project themselves.

Note There is a similar butto on tandard tooldar which has the same ef-

fect: select any object in the current schema, then click on this button to open the Se-
mantic description window of the objegt.

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

1-14 Lesson 1: Building our first database

1.10 Producing a SQL ° database

There are several ways in which this conceptual schema can be translated into
table and column structures. For now, we have no special requirements as far
as performance, or any other consideration, are concerned. We will be happy
with an unsophisticated translation of this schema into SQL commands.

This translation can be done in a straightforward way through the command
Transform / Quick SQL. DB-MAIN simply asks you, with the standard file
dialog box, in which file you want the SQL program to be stored. By default,
the file will be namednanu-1.ddl , following the name of the project (Fi-
gure 1.17).

Save SOL Generation As...

Dans : I a i T uat
Mom : Imanu-'l ddl
Type: IDDL Files [*.ddl) j Annuler |

Figure 1.17 -The SQL program that is being generated from the conceptual
schema will be saved as manu-1.DDL file.

Now, we go back to the Project window. We observe that a new product has
been made available. The slightly different icon shape indicates that this new
document is a text file calledanu-1.ddl . Obviously, this is the SQL pro-
gram we just generated in the last step.

We can examine the contents of this text file by double-clicking on its icon. A
new text window opens, showing the SQL code implementing the conceptual
schema. It should read like in Figure 1.19.

5. SQL must be read SEQUEL.

21/03/2002 DB-MAIN Tutorial E] J-L Hainaut 2000

Lesson 1: Building our first database 1-15

DB-MAIN Tutorial -[J J-L Hainaut 2000

MANU-1,16/2/2000,7:02:39 _ O] =]
MANT-1

atmafacturing/Conceptia

matig-1.ddl]

1] | M

Figure 1.18 -Now, the project window includes two products, namely the con-
ceptual schema and the SQL program that derives from it.

create database Manufacturing;

create table COMPANY (
Com-ID char(15) not null,
Com-Name char(25) not null,
Com-Address char(50) not null,
Com-Revenue numeric(12) not null,
primary key (Com-ID));

create table PRODUCT (
Pro-ID char(8) not null,
Pro-Name char(25) not null,
Com-ID char(15) not null,
primary key (Pro-ID));

alter table PRODUCT add constraint FKmanufactures
foreign key (Com-ID) references COMPANY;

create unique index IDCOMPANY on COMPANY (Com-ID);
create unique index IDPRODUCT on PRODUCT (Pro-ID);
create index FKmanufactures on PRODUCT (Com-ID);

Figure 1.19 -The contents of the manu-1.ddl text file can be examined by
double-clicking on its icon in the project window.

21/03/2002

1-16 Lesson 1: Building our first database

To be quite precise, this SQL program will not necessarily be executable on
all machines, and would probably need some syntactic adjustements. For ins-
tance, dashes ("-") are not allowed by most SQL DBMS, and should be repla-
ced by, say, underscores ("_"). We will see later how this kind of problem can
be addressed in a systematic way.

In addition, the set of indexes may not be the most efficient one, and would
need some refinement. Such decisions relate to physical design, an activity
that obviously is far beyond the scope of this first lesson!

1.11 Saving the project

As is natural after working such a long time, we carefully save our work throu-
gh commandrile / Save project(or button) or commarnigile / Save pro-
ject as (or button) in order to make it available for further use.

Save Project Az _.

Daps: I a biriTut

MHom : IM.-’-‘«NUJ.Iun Erreqistrar I
Tupe: ILUN Files [*.Iun) j Annuler |

Figure 1.20 -The whole project is saved on disk.

By default, the project is saved as finu-1.lun . We validate the opera-
tion through the butto®K

The*.lun extension is typical to the saved DB-MAIN projects, so do not use
them for other files.

21/03/2002 DB-MAIN Tutorial E] J-L Hainaut 2000

Lesson 1: Building our first database 1-17

1.12 Quitting DB-MAIN

It is now time to exit from the DB-MAIN tool by commaiide / Exit.

We have built our first SQL database, and we are now able to build other sim-
ple SQL databases just by applying the basics that have been presented in this
lesson.

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

1-18 Lesson 1: Building our first database

Key ideas of Lesson 1

1. A CASE (Computer-Aided Software Engineeringol is a software that
allows a developer to draw the conceptual schema of an application domain,
then to generate the SQL tables that represent this application domain.

2. Theapplication domainis that part of the real world about which we want to
collect, maintain and process information. This information will be represen-
ted by data stored in the database of the application domain.

3. A databaseis a collection of data that codes facts about the application
domain. At the present time, most databases are organized into relational
tables. A table is made up of columns; some of which can be declared its pri-
mary key. Indexes can be associated with each table.

4. A conceptual schemds the computer-independent description of the facts
that make up an application domain. It comprises entity types, attributes,
relationship types (or rel-types) and identifiers. An entity type describes a
class of significant concrete or abstract objects of the application domain. An
attribute represents a property common to the entities of a given type. A rel-
type represents a class of associations between entities.

5. The CASE tools can turn a conceptual schema into a database schema. It sto-
res both schemas so that they can be used again later on.

21/03/2002 DB-MAIN Tutorial E] J-L Hainaut 2000

Lesson 1: Building our first database 1-19

Summary of Lesson 1

* In this first lesson, we have studied some important concepts:
- the concept of CASE tools
- projects and schemas
- entity types, relationship types, attributes and identifiers
- conceptual schemas
- SQL expression of a conceptual schema

+« We have also learned to:
- run the DB-MAIN CASE tool

- Ccreate a new project: File / New project
- create a new schema: Product / New schema
- define an entity type: New / Entity type
- define an attribute: New / Attribute
- define a relationship type: New / Rel-type
- define an identifier: New / Group
- add a semantic description:
- save the current project: File / Save as
- save the current project: File / Save By
- produce SQL code: Quick DB / SQL

or Transform / Quick SQL
- exit from DB-MAIN: File / Exit

* We have produced two types of files:
- saved projecté.lun)
- executable code such as SQld¢dl).

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

1-20 Lesson 1: Building our first database

Exercises for Lesson 1

Define a project, a conceptual schema and generate an SQL database creation
program for each of the situations described below.

1.1 The small database we developed in this lesson was based on the hypo-
thesis that a product is manufactured by one company only (cardinality
1-1). Now, consider that product can be produced by any number of
companiegi.e., by 0, 1, 2, or more companies). Change the schema ac-
cordingly. Don’t save this project.

1.2 Customers buy products in such a way that each customer can buy any
number of products and each product can be bought by an arbitrary
number of customers. Imagine some natural attributes for the entity ty-
pes. Call this proje@ALES1and save it.

1.3 Students belong to classes: each student belongs to exactly one class (no
less, no more), while a class comprises any number of students. Each
student can be registered in any number of courses while any number of
students can be registered for a given course. Imagine some natural at-
tributes for the entity types. Call this proj&XUDENTland save it.

1.4 Complete thtMANU-1project by considering countries to which pro-
ducts are exported.

Don't save the modified project (we will make use of the original ver-
sion in further lessons), unless you give it another name.

21/03/2002 DB-MAIN Tutorial E] J-L Hainaut 2000

Lesson 2

A closer look at schemas

Objective

This is an easy and relaxing lesson (just playing with existing
schemas!). It presents some useful schema display formats and
the way to use them.

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

2-2

2.1

2.2

Lesson 2: A closer look at schemas

Preliminary checking

In this lesson, we will use the proj@dANU-1(file manu-1.lun) that has
been created in Lesson 1, and tBRARY project (or its French equivalent
BIBLIO) that comes with the DB-MAIN software.

Starting Lesson 2

Let us start DB-MAIN and open tidANU-1 project through the command
Project / Openproject or by clicking on the butto[g8] . When the project is
opened, we double-click on the icon of tianufacturing/Concep-

tual schema to display its contents.

For this lesson, we will need some new functions that are offered by the menu,
but that are available on a new tool palette as well. We display this new palette
throughWindows / Graphical tools (Figure 2.1). These tools can be placed
anywhere on the screen, for instance unde&thadard tool bar

I |
O[S} TR = e o s e (R et ol

Figure 2.1 -The graphical tool bar. It can be resized according to your taste.

On including database schemas into a document

In the first lesson, several figures include a schema, showing the step-by-step
construction of the conceptual description of our database. As everybody
should have observed, these schemas have been obtained from screen copies.
This technique provides nice looking results, but is rather painful (the screen
shots have to be processed with an image processing software) and yields huge
documents.

The DB-MAIN tool includes a function that copies selected schema objects
onto the clipboard in a more concise format (as vector-based objects). So, se-
lect all the objects of the schema, then calBti / Copy graphic menu item

or click on the[] button in th€raphical toolsbar. Then, open a Word or

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 2000

Lesson 2: A closer look at schemas 2-3

Powerpoint document, and paste the clipboard content@asteor Paste
Specialaccording to the software).

The schema objects appear in the text document as in Figure 2.2 (bottom). The
result can be modified as any vector-based graphical bbjEcom now on,

we will use this technique to include schema fragments in this lesson and in
the next ones.

M anufacturing/Conceptual E=l
COMPANY d
ComID FPRODUCT
Cot-M ame - _ |Bto-ID
Com-Address _D-NMI-I FPro-Iame —I
Com-Revenue id: Pro-ID
id: Com-ID
b
Kl I i
COMPANY
Com-ID PRODUCT|
Com-Name Pro-ID
L 0. t 21—
Com-Address 0 N—wl L Pro-Name
Com-Revenue id: Pro-ID
id: Com-ID

Figure 2.2 -Bitmap (top) and vector-based (bottom) schemas as they appear
in a text document.

2.3 Graphical views of a schema

In Lesson 1, the schema was represented in a Schema window through graphi-
cal objects. There are several other ways to display this schema. They can be
classified intographical viewsandtextual views This section is devoted to
graphical views.

1. In some products, such as MS-Word or FrameMaker, the labels may appear to be too long
or too short for the rectangles in which they are enclosed after the schema has been redi-
mensioned. This is due to the way Windows redimensions a graphical object: continuously
for geometrical components and point by point for texts. In this case, just expand or stretch
the schema framieorizontally until the texts correctly fit in their boxes.

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

2-4

Lesson 2: A closer look at schemas

Let us first examine a new way of presenting large schemas, namegnthe

pact view It can be obtained through tieéew / Graph. compactcommand.

The attributes and identifiers are hidden in such a way that only the schema
skeletorappears (Figure 2.3).

Figure 2.3 -The compact graphical view of the MANU-1/Conceptual schema.

Now, we go back to the standard graphical view throtigiv / Graph. stan-
dard, to get the view we have used so far (Figure 2.4). Since this V|ew is the
most useful, it has been given a special button on the Standard toqZT

COMPANY
Com-ID PRODUCT|
Com-Address Pro-Name
Com-Revenue id: Pro-ID
id: Com-ID

Figure 2.4 -The standard graphical view of the MANU-1/Conceptual schema.

Starting from this standard view, we can derive some simplified forms by
using the graphical settings panéigw / Graphical settings) (Figure 2.5).

The buttons of th&how Objectblock of this panel can be unchecked, which
hides the attributes, or the identifiers (caljgdupsin the panel), or both (Fi-
gure 2.6). You can also show the attribute types if needed.

Graphical variants exist to represent entity types and rel-types. For instance,
we can choose to draw entity type and/or rel-type boxes with round corners

instead of square ones by selectmehdedshape in the Graphical settings pa-

nel (Figure 2.7). These settings are valid for the current schema. They can be
useful to distinguish different levels of schemas.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 2000

Lesson 2: A closer look at schemas 2-5

Graphical Settings
™ independent |
—&oom factor———— ~Gnd format———————
I'l il j INDne j

— Reduce factor

YWidth IEI.EIEI cm
I‘]DD j Length IW cm

— Show ohjectz

W Atibutes W Groups [Processing unit
[Attribute types

— Entity lppes

[154 square

Shape ISquare j [~ Shaded
—Rektypes

Shape ISquare | I Shaded

Cancel |

Figure 2.5 -The graphical settings panel.

COMPANY 011 PRODUCT]|
id: Com-ID id: Pro-ID

COMPANY
Com-ID: char (15) PRODUCT

Com-Name: char (25) —0-1-1— Pro-ID: char (8)

Com-Address: char (50) Pro-Name: char (25)
Com-Revenue: num (12)

Figure 2.6 -The Standard view without Attributes (top) and without Groups
(i.e., without identifiers) but with attribute types (bottom).

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

2-6

2.4

Lesson 2: A closer look at schemas

COMPANY

Com-ID PRODUCT
Com-Name | _ 1| Pro-ID
Com-Address 0 manutactures -1 Pro-Name
Com-Revenue id: Pro-ID
id: Com-ID

COMPANY
Com-ID PRODUCT]
Com-Name | .| Pro-ID
Com-Address| ° 1 1 Pro-Name
Com-Revenud id: Pro-ID
id: Com-ID

Figure 2.7 -Round-corner shape and shaded boxes as alternate graphical re-
presentations.

A last trick before leaving the graphical views of a schdmai to retrieve a
selected objedh a schemal et us suppose that the (small) schema window
shows a fragment of a (large) schema. Let us also suppose that an object is
selected, somewhere in the schema, but not shown in the window. How to
move the window in such a way that the selected object is at the center of this
window? Nothing can be simpler: just presstthekey.

What if there is more than one selected object? tdthdey brings thenext
selected objedb the window.

Textual views of a schema

The contents of a schema can be presented as a pure text as well. In this mode,
four formats are available.

The simplest one is tlempact view It shows a mere list of the names of the
entity types followed by that of the relationship types (Figure 2.8).

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 2000

Lesson 2: A closer look at schemas 2-7

Schema Manufacturing/Conceptual

COMPANY
PRODUCT

manufactures

Figure 2.8 -The Text compact view of a schema

This list is a sort of dictionary. It can be obtained through the comiviand
/ Text Compact

The compact view does not display the detail of a schema and can be used as
a quick index to locate an object in a large schema.

For a more detailed textual view, try tBéandard view It can be obtained
through the commandiew / Text Standard, and presents the current schema

as in Figure 2.9. Since it is frequently used, it can also be obtained through a
specific button on the Standard tools

Schema Manufacturing/Conceptual

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

manufactures(
[1-1] : PRODUCT
[0-N] : COMPANY)

Figure 2.9 -The Text standard view of a schema

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

2-8 Lesson 2: A closer look at schemas

Theextended views an even more complete presentation. In addition to the
information of the standard view, tegtended viewhows, among others, the
short names, the type and length of the attributes and the roles in which each
entity type appears. The symlpS] indicates that a semantic description has
been associated to the object.

This view is obtained through the commariéw / Text extended and ap-
pears as in Figure 2.10.

Schema Manufacturing/Connceptual / Manu [S]

COMPANY / COM [S]
Com-ID char (15) [S]
Com-Name char (25) [S]
Com-Address char (50) [S]
Com-Revenue numeric (12) [S]
id: Com-ID
role: [0-N] in manufactures

PRODUCT / PRO [S]
Pro-ID char (8) [S]
Pro-Name char (25) [S]
id: Pro-ID
role: [1-1] in manufactures

namufactures [S] (
[1-1] : PRODUCT
[0-N] : COMPANY)

Figure 2.10 -The Text extended view of a schema. The directed arcs show
the possible jumps through the hyperlinks activated by a right-button click.

Note that theole linesthat appear both in the entity type and rel-type paragra-
phs makes it possible to navigate through the whole schema by jumping from
an entity type to the relationship types in which it appears, and conversely:

- to jump from an entity type to one of its relationship types: click on the line
of the role in the entity type paragraptih theright buttonof the mouse.

- to jump from a relationship type to one of its entity types: click on the line
of the role in the rel-type paragrapith theright buttonof the mouse.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 2000

Lesson 2: A closer look at schemas

2-9

Thesehyperlinkfunctions are very handy for large schemas. More on schema

navigation later on in Lesson 3.

The last format is theorted viewwhich presents an unstructured sorted list of

all the names that appear in the schema, together with their type and origin.
This view is particularly important for large and complex schemas, specially
in reverse engineeringctivities. It can be used too when checking names in
conceptual analysis. In addition, itis the easiest way to retrieve an object when

only its name is known.

The sorted view can be obtained through the comrvéma / Text sorted,

and appears as in Figure 2.11.

Schema Manufacturing/Conceptual
Com-Address Att. of COMPANY
Com-ID Att. of COMPANY
Com-Name Att. of COMPANY
Com-Revenue Att. of COMPANY
COMPANY Entity type
manufactures Rel-type
Pro-ID Att. of PRODUCT
Pro-Name Att. of PRODUCT
PRODUCT Entity type

Figure 2.11 - The Text sorted view of a schema

Two important properties

- Objects that are selected (in white on black) in a view still are selected in
any other view in which they appear. For instance, an attribute with a par-
ticular name can be retrieved in a schema by usingettiesorted view
Now, choosing thetandard graphical viewallows us to examine this attri-

bute in its context.

2. Reverse engineerincan briefly be described as the converse of what we did in the first
lesson, that isecovering the conceptual schema of an existing datablase/olves com-
plex techniques and tools that are described in other documents but that will be ignored in

this tutorial.

DB-MAIN Tutorial -[J J-L Hainaut 2000

21/03/2002

2-10 Lesson 2: A closer look at schemas

- Building a schema, or examining, deleting and modifying its components,
can be performed whatever the view in which this schema is displayed. For
instance, double-clicking on the line of an object in a text view opens the
same property box as in a graphical view.

2.5 Application: far jumps through a graphical schema

Navigating through a large schema can be fairly tricky. Let us examine the
simple following problemconsidering entity typ€ OMPAN Yshow the entity
type that playshe other rolein rel-typemanufactures

In the schema of Figure 2.4, the problem is solved simply by positioning the
schema window on entity tyf@OMPANMhen in selecting the other end of
rel-typemanufactures

Now, let us consider that these objects are parts of a large schema, in such a
way that both entity types aneore than one meter apartFigure 2.12). Re-
trieving rel-typemanufactures , then entity typePRODUCTgets much

more difficult. We have to activate the scroll bars in several directions, fol-
lowing very carefully the arcs that make the rel-types. Itis easy to confuse two
crossing arcs, and to follow the wrong direction.

EX Manufacturing/Conceptual

Com-Iame
Com-Address
Com-Fevenue o
id: Com-ID
manfactiy o
I ﬁ

Figure 2.12 -How to retrieve the other entity type of manufactures ?

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 2000

Lesson 2: A closer look at schemas 2-11

The solution is to use the right view(s) in the right way:

1. in the Graphical standard view, we select entity type COMPANY (Figure
2.12);

2. we switch to the Text extended view and we click with the right button on
the role line fole: [0-N] in manufactures", which sends us to rel-typaa-
nufactures (Figure 2.13);

3. inthe list of roles ofmanufactures , we identify the opposite rolgLf1]:
PRODUCT) and we click on it with the right button;

4. this sends us to entity typdlRODUCT(Figure 2.14);

5. we switch to a graphical view, which shows the selected Skjeigure
2.15), andvoila!

FA Manufacturing/Conceptual

Achema Manufactuing/Conceptual § atg —

COMPANTY / COM [3]
Com-ID: char (15 [3]
Com-Mame: char (25) [3]
Com-&ddress: char (50 [3]
Com-Revenue: num (12) [3]
id: Com-ID

== role: [0-M]in manufactures

PRODUCT £ PRO [3]

Pro-ID: char (8) [3]
Pro-MName: char (25 [5]
id: Pro-1D

F> role: [1-1] i manufactures

Emanufactures [3] (]
[0-}] : COMIPANY
[1-1]: PRODUCT

i o

Figure 2.13 -We reach rel-type manufactures by right-clicking on the role
of COMPANY

3. When selected objects are outside the current window, just pregabtkey to move the
window to the next selected object.

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

2-12 Lesson 2: A closer look at schemas

EA Manufacturing/Conceptual
Schema ManufacturingConceptual £ Manu ;I

COMPANY fCOR [3]
Cotn-ID: char (15 [3]
Cotn-Mlame: char (25 [3]
Com-&ddress: char (500 [3]
Com-Reverue: num (1) [3]
id: Com-ID
role: [O-H7in marmafactures

=PRODUCT fPRO[3

Pro-1D: char (%) [3]
Fro-Hame: char (25) [3]

id: Pro-ID

role: [1-1] i manafactures

matifactures [3] —
[0-M] : COMPANY
== [1-11:PRODUCT)

o | 2y

Figure 2.14 -The opposite entity type has been found ...

fA Manufacturing/Conceptual

id: Pro-1D

Figure 2.15 -... and presented in a graphical view.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 2000

Lesson 2: A closer look at schemas 2-13

Key ideas of Lesson 2

1. A CASE tool can memorize the products (schemas and generated texts) of a
project on secondary memory. They can be opened later on.

2. A fragment of a schema can be incorporated into a text document either as a
bitmap image (through PrintScreen key) or, better, as a vector-based drawing.

3. A schema can be displayed under various formats, either graphical or textual.
Each of them shows some or all aspects of the schema objects.

4. The graphical formats are more intuitive, and show the direct environment of
an object.

5. The textual formats are more concise, and can show syntactic patterns of the
object names.

6. Some textual formats make it possible to jump to distant linked objects.

7. Switching between different formats allows us to quickly navigate through
rel-types in very large schemas.

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

2-14 Lesson 2: A closer look at schemas

Summary of Lesson 2

* In this first lesson, we have studied some important concepts:
- graphical views of a schema: compact, standard
- text views of a schema: compact, standard, extended, sorted
- navigation through the objects of a schema

* We have also learned:
- to open an existing project:
Project / Open project [E
- to open an existing schema
- toinclude fragments of a schema into a text:
Edit / Copy graphic
- to select a schema presentation format:
View / Text compact
View / Text standard
View / Text extended
View / Text sorted
View / Graph. compact
View / Graph. standard
- to give graphical objects rounded corners and shades:
View / Graphical settings
- in a text view, to navigat#om entity type to rel-typandfrom rel-type to
entity type right button on the role line
- in a graphical view, to get the next selected object in the center of the sche-
ma window: tab key

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 2000

Lesson 2: A closer look at schemas 2-15

Exercises for Lesson 2

Finding interesting exercises for such a lesson is quite a challenge! If you in-
sist, try these; otherwise start the next lesson.

Open thelLIBRARY project (or its French equivaleBtBLIO) and its con-
ceptual schemhibrary/Conceptual

2.1 Examine the semantic description of the objects in the schema. Change
and complete some of them.

2.2 Change the position of some attributes and roles in text views. Examine
the graphical view and change the position of some objects.

2.3 Find the other side of a rel-type from an entity type.

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

2-16 Lesson 2: A closer look at schemas

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 2000

Lesson 3

An even closer look at schemas

Objective

In this sequel to Lesson 2, we study how to manipulate graphical

and textual objects, how to change their apparent or actual size,
how to navigate through a schema and to generate reports. We
also examine various techniques to inspect the objects of a sche-
ma.

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

3-2

3.1

3.2

Lesson 3: An even closer look at schemas

Preliminary checking

Make sure that the projeRtANU-1(file manu-1.lun) created in Lesson 1,
andLIBRARY (or its French equivale®IBLIO) that comes with the DB-
MAIN software, are available.

Starting Lesson 3

We start DB-MAIN, we open the projeMANU-1, then the schenldanu-
facturing/Conceptual

Securing our work

This lesson, as well as the next ones, will lead us to perform various manipu-
lations on the current schema, and therefosgptil its initial shape and con-
tents. Of course, when this happens we could restore the original version that
has been saved on diskBye / Openproject, but this is rather tedious, espe-
cially for large projects.

Thesave point/rollbackechnique is much quicker:

- Edit / Savepoint saves the state of the current schema (or biE#ign),

- Edit /Rollback cancels the modifications carried out on the current schema
since its last save point; in other words, it restores the state of the schema
when the last save point was issued.

Three important rules

1. There is only one active save point for the schema, but each schema of the

project can have its own independent save point.

2. A save point cannot restore a schema that has been deletEdguSave
asinstead).

3. When a project is closed, all its save points are lost.

21/03/2002 DB-MAIN Tutorial E] J-L Hainaut 2000

Lesson 3: An even closer look at schemas 3-3

3.3 Manipulating the graphical components of a schema

The position of the objects of a schema can be changseldgting and drag-
gingthem in the usual way. Several objects can be selected (or deselected) by
pressing theshift key when selecting, or by drawing a selection rectangle
with the mouse, and moved simultaneously.

Moving objects

Moving objectsin their window obeys the general Windows rules:

- selected objects are moved by dragging them in the window space;
- selected objects are moved by pressing the cursor keys { 1);

- small-step moves are obtained by pressing the cursor keys while pressing
the Ctrl key;

- using the scroll bars moves the window in the four directions.

TheMove modedesignates the way DB-MAIN reacts when an object is mo-
ved on the screen: does it move the object antdlependeninode), or does it
reposition the connected objects as wagllendenmode)? This mode can be
set either in th&raphical settings panélndependent button) or through
theINDEP. button on thé&raphical toolsbar: :

In theDependenimode the graph is adjusted as follows (Figure 3.1 left):

- when an entity type is moved, its relationships types and their roles are
moved proportionally and redrawn;

- when a relationship type is moved, its roles are moved too,
- when arole is moved, nothing else is redrawn.
In thelndependent modéhe graph is adjusted as follows (Figure 3.1 right):

- when an object (entity type, relationship type, role) is moved, nothing
else is redrawn, except the arcs that link it to the other objects.

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

COMPANY

Com-ID
Com-Name
Com-Address
Com-Revenue

COMPANY

Com-ID
Com-Name
Com-Address
Com-Revenue

Lesson 3: An even closer look at schemas

id: Com-ID id: Com-ID
\
0-N 0-N
M — manufactures ,— -
1-1 11
|
PRODUCT] PRODUCT]
Pro-ID Pro-ID
Pro-Name Pro-Name
id: Pro-ID id: Pro-ID

Figure 3.1 -Moving rel-type manufactures in the dependent mode (left)
and in the independent mode (right).

Aligning objects

After a while, a schema may look like spaghetti, and we might want to put
some order among its components. A first nice feature is the rehtipe
action which allows us to align a role or a relationship type according to its
connected objects. We can get this effect by clicking on the object (role or rel-
type) with theright buttonof the mouse (Figure 3.2).

To align a larger set of objects, we will make use of\leav / Alignment
command, that provides us with eight operators, four for vertically aligning the
objects and four for horizontal alignment. They are also available @réhe
phical toolsbar (Figure 3.3).

In thehorizontal dimension, we can align objects on their left side, on their
right side, we can center them and we can distribute them horizontally at equal
distance.

In thevertical dimension, we can align objects on their top side, on their bot-
tom side, we can center them and we can distribute them vertically at equal
distances.

21/03/2002 DB-MAIN Tutorial E] J-L Hainaut 2000

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue

Lesson 3: An even closer look at schemas

COMPANY

Com-ID
Com-Name
Com-Address
Com-Revenue

COMPANY

Com-ID
Com-Name
Com-Address
Com-Revenue

id: Com-ID id: Com-ID id: Com-ID
7~ TN\
m anufactude 0-N
{anvtactgles

0-N O-N

11

PRODUCT] PRODUCT] PRODUCT|
Pro-ID Pro-ID Pro-ID
Pro-Name Pro-Name Pro-Name
id: Pro-ID id: Pro-ID id: Pro-ID

Figure 3.2 - Aligning roles (center) and relationship types (right) by clicking
with the right button of the mouse.

Horizontal object moves

. align to left

. align to right

. center horizontally between left and right

1) (&%) [l 2

. distribute evenly between left and right

Vertical object moves

. align to top

. align to bottom

. center between top and bottom

o= o) (3] |2

. distribute evenly between top and bottom

Figure 3.3 -The eight object alignment operators.

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

3-6 Lesson 3: An even closer look at schemas

Two comments

1. Horizontalmeans that the objects are mowedizontallyto reach their fi-
nal position (the same for tivertical direction).

Arc alignment

?ﬁ . horizontal staircase

| : vertical staircase

;'7';' . top corner
EI . bottom corner

Figure 3.4 -The four arc alignment operators.

i % ! L

Figure 3.5 -How to draw a source rel-type (top) with staircase style with just
a mouse click.

21/03/2002 DB-MAIN Tutorial E] J-L Hainaut 2000

Lesson 3: An even closer look at schemas 3-7

2. When the objects are distributed evenly, the distance is evaluated between
the edges of the objects, not between their centers. This provides a natural
positionning of roles and rel-types between their entity types.

The last four alignment operators (Figure 3.4) are dedicated to users who are
found ofstaircaserel-types. Since animage is worth one thousand words, we
suggest you had a look at Figure 3.5.

The best way to get acquainted with these operations is to play with a disali-
gned schema such as that of Figure 3.6, which is available in pvtgeci
3.lun , schemailignment

o
1-

0-N B
0-

C

N

Figure 3.6 - This schema obviously suffers from a severe disalignment di-
sease. Cureiit.

Zooming in and out

For large schemas,zoming functionis available to help fit a larger or a
smaller portion of the schema in the Schema window (zoom out), or to exami-
ne tiny details (zoom in). This function is available in@raphical settings
panel(Figure 2.5) and in th&raphical toolsbar (Figure 2.1) through the fol-
lowing buttons:

expands the schema representation by 10%;

shrinks the schema representation by 10%;

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

3-8

Lesson 3: An even closer look at schemas

sets the zoom factor by specifying its exact valuefithevalue
adjusts the zoom factor so that the schema fits in the schema win-
dow.

Fonts

Thefont, font sizeandstyle of the object names can be changed through the
commandEdit / Change font You can get a more compact view by de-
creasing the character size.

Grids

Organizing large schemas may require the use oGtigk function, which

draws lines that decompose the graphical space into equal size pages (see the
Grid formatblock in theGraphical settingpane| Figure 2.5). The page size

can be standard\B, A4, Letter), with portrait or landscape orientation, com-
pliant with the current printer, or customized.

The Reduce function

This is a way to change (shrink or expand) the actual size and position of each
object of the current schema by a certain factor. It seems similarZodne
function, but the latter only defines how close you are from the schema, while
leaving the objects themselves unchanged. The following table should make
the differences betwen Reducing and Zooming more explicit.

objects object appearance grid grid appearance

zoom out by 50% unchanged reduced by 50% unchanged reduced by 50%

reduce by 50%| reduced by 50% reduced by 50% unchanged unchanged

Colors

Normally, all the objects in a schema are drawn, and their names are written,
in black. You can change this by selecting objects, then giving drether

color. Use commanédit / Color selectedor click on the[®] button in the
Standard tooldar to give them the current color. This color can be changed
by the commanédit / Changecolor.

21/03/2002 DB-MAIN Tutorial E] J-L Hainaut 2000

Lesson 3: An even closer look at schemas 3-9

Marking objects

This is a very simple and powerful means to define persistent subsets of ob-
jects in a schemaMarking objects is obtained by first selecting the objects,
then askindgedit / Mark selectedor clicking on the butto in tigtandard

tools bar. Tounnmarkobjects, just mark them again. Marked objects are
drawn with specific attributes (Figure 3.7):

- a markecentity types shaded (unless it was already shaded, in which case
it is unshadeyland its name is written in boldface;

- a markedel-typeis shaded (unless it was already shaded, in which case it
is unshadeyland its name is written in boldface;

- a markedattributeis written in boldface;
- a markeddentifier (or group) is written in boldface;
- a markedole is written in boldface.

The main difference betweeselectingandmarkingobjects is that marking is
a permanent state while a selection is volatile. Closing a schema and saving it
on disk keep all the marks until we change them explicitly.

COMPANY

Com-ID PRODUCT
Com adrass| 0N manufactures 11— ZE0
Com-Address 0 Nwl 1 Pro-Name
Com-Revenue id: Pro-ID
id: Com-ID

Figure 3.7 - Entity type PRODUCTrel-type manufactures , attributes
Com-Address and Com-Revenue, role PRODUCT®f manufactures
and identifier Pro-ID are marked.

Retrieving all the marked objects in a schema cannot be simpler: just select
them byEdit / Select marked Tounmarkall the marked objectsf a schema,
select them as above, then mark them again.

In fact, it is possible to define up to 5 different sets of marked objects. Such a
set corresponds toraarking plane. All the marking operations are carried
out in the current marking plane. Changing the current plane is done through
a special button in th&tandard tooldar:

Mark1 ~|

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

3-10

Lesson 3: An even closer look at schemas

When a combination of marked and unmarked objects are s®irked the
result is that they are all marked. This makes it possible to combine the objects
marked in two planes into a third one:

1. transfer from plane 1 to plane 8hoose the first plane, select the marked
objects, choose the third plane and mark the selected objects,

2. transfer from plane 2 to plane 8hoose the second plane, select the mar-
ked objects, choose the third plane and mark the selected objects.

If no objects are marked eventually, this means that planes 1 and 2 were iden-
tical. In this case, just do step 1 again.

There are numerous applications of marking planes:

- in a large schema which is still in a validation phase, objects which are
already checked are marked; the schema is completed when all objects are
marked;

- objects which have been given a semantic description are marked; the sche-
ma is completely documented when all the objects are marked,;

- in a schema that comprises objects from different sources, each source is
marked in a different marking plane; an object can be marked in more than
one plan&

- marked objects can be manipulated by DB-MAIN processors (as we will
see later on)

- some DB-MAIN processors can return marked objects (as we will see later
on).

Auto-draw

If the layout of a schema does not fit your taste, you can ask DB-MAIN to sug-
gest a better spatial arrangement through the comivieavd / Auto-draw.

This function is particularly useful for large schemas that have not been ente-
red graphically (through theverse engineeringxtractors for instanc%) If
Auto-Drawinga schema does not produce a satisfying resulipio-drawing
again. Generally, you will need to fine-tune the layout manually.

For this aim, aiew schemas a much better means to define an arbitrary number of sub-
sets of objects. They will be studied in Lesson 12.

This function is at its best for large and complex schemas. It does not provide satisfying
results with small schemas. Before using it, it can be wise to save the schema state through
the Edit / Savepoint function, then to restore this state lbgit / Rollback if the result is

not satisfying.

21/03/2002 DB-MAIN Tutorial E] J-L Hainaut 2000

Lesson 3: An even closer look at schemas 3-11

3.4

Using a larger schema

To get a better feeling of the usefulness of the various views, we switch to ano-
ther project. We close the current one (comnaitel/ Close project), and

we open the IBRARY project (commandFile / Open project) and its con-
ceptual schema. Now we experiment with each view, and try to figure out the
meaning of the components of this schema, which obviously describes the ma-
nagement of a scientific library. Its contents include many more modeling
characteristics that will be discussed later.

Last observations

We observe that:

- switching from a view to another one is immediate, and can be asked for at
any time;

- the operations of the tool are independent of the view through which they
are executed;

- an object that is selected (highlighted) in a view still is selected when we
switch to another view;

- if several schemas of a project are opened (more on this later on), they can
be displayed in different views.

Navigation through textual views

When a schema is small, it spans one or two screens only. Retrieving an object
in such a schema needs no special skill nor any special tool. The problem is
less trivial when the schema is larger, and is several dozens of screens large
(large schemas can include thousands of entity types and rel-types): browsing
through such a schema can be time consuming and does not garantee that the
objects we are looking for will be found quickly, if ever.

Retrieving a specific object can often be made easier by working first on the
Text compactandText sorted views, using them as some kind of dictiona-
ries, then switching to the standard graphical or text views when the object of
interest has been found.

Another useful tool for object retrieval in context is the navigation feature of
DB-MAIN. To illustrate them, we need a larger schema, such as LIBRARY.

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

3-12

3.5

Lesson 3: An even closer look at schemas

We display it in thel'ext extended view and we reduce the Schema window
a little bit to simulate #arge schema in a too small window

Let us experiment the navigation capabilities of DB-MAIN. Unless told othe-
rwise, the following manipulations are valid for thext standard andText
extendedviews.

- We select the COPY entity type by clicking on its name; we observe that
each line in which the name COPY appears (i.e., each instance of COPY) is
tagged with symbols ">>"; such is the case for each role in which COPY
appears;

- If we press the TAB key; the next tagged instance of COPY appears in the
center line of the Schema window; this allows the cursor to jump to each of
the relationship types in which COPY takes part;

- We click with theright buttonon a line describing a role in which COPY
appears, in a rel-type paragraph; the COPY entity type is then selected; the
right button acts as@o homebutton;

- In theText extendedview, we click with theight buttonof the mouse on
a role in which COPY appears, in its entity type paragraph, then click; the
relationship type of the role is then selected

In Figure 3.8, the navigation rules are shown on the small pidpoa-1 .

Reordering attributes and roles

Though the order in which attributes (and roles) appear in the textual and gra-
phical views does not matter in most situations, you may want to change this
order.

To change the position of an attribute(graphical and text views), select it,
then

- press the Alt +# key§ to move it one position up,

- press the Alt 4 keys to move it one position down (Figure 3.9).
To change the position of a roldtext views), select it, then

- press the Alt # keys to move it one position up,

- press the Alt 4 keys to move it one position down.

3.

The keys must be pressed simultaneously, not sequentially.

21/03/2002 DB-MAIN Tutorial E] J-L Hainaut 2000

Lesson 3: An even closer look at schemas

3-13

COMPANY / COM [S]
Com-ID char (15) [S]
Com-Name char (25) [S]
Com-Address char (50) [S]

id: Com-ID
role: [0-N] in manufactures

PRODUCT / PRO [S]
Pro-ID char (8) [S]
Pro-Name char (25) [S]
id: Pro-ID
role: [1-1] in manufactures

namufactures [S] (
[1-1] : PRODUCT
[0-N] : COMPANY)

Com-Revenue numeric (12) [S]

Schema Manufacturing/Conceptual / Manu [S]

Figure 3.8 -Navigating in the Text extended view of a schema of project

Manu-1 with the right button of the mouse.

There are other ways to reorganize the attributes of an entity type, but they re-
guire more sophisticated functions (namely schema transformations) that will

be studied later.

COMPANY

Com-ID
Com-Name

Com-Revenu
id: Com-ID

4%

Figure 3.9 -Changing the order of the attributes with Alt + | 1.

DB-MAIN Tutorial -[J J-L Hainaut 2000

COMPANY

Com-Address >

Com-Name
Com-1D
Com-Revenu
Com-Address

id: Com-ID

21/03/2002

3-14 Lesson 3: An even closer look at schemas

3.6 Generating reports

A decent CASE tool must produce external documents that can be printed on
paper. This one does ittoo. Several kind of reports can be of interest, ranging
from simple object lists to sophisticated documents including a table of con-

tents, an index and footnotes. Though DB-MAIN can produce such docu-

ments, we will show how to generate simple outputs. Three formats are

available from the menus through the commkitel / Report.

Print dictionary EE |

™ Include semantic descriptions | | [Include technical description

Separator Separator

| Prefix M arked lines by I_ ™ Include dynamic properties values |

—Write ko file

[MANU-1.dic Browse |

| [~ Show repart generation |
Cancel |

Figure 3.10 -Generating a simple text report.

1. Textual view: the schema must be displyed iextview (for instance with
button). Its representation is sent to a file with some format options that
are set through therint dictionarypanel (Figure 3.10). This function pro-
duces &.dic plain ASCII file.

This panel allows us to specify
- the output file,
- whether we want the semantic description to be included,

- what character string will be included just before each semantic descrip-
tion (atab control can be used to clearly separate it from the object des-
cription4),

4. According to the Windows conventiongah control is entered &5trl + Tab.

21/03/2002 DB-MAIN Tutorial E] J-L Hainaut 2000

Lesson 3: An even closer look at schemas 3-15

3.7

- how the lines of marked objects are tagged.

We will ignore the other parameters for mow

Formatting the output text with a text/document processor can provide re-
ports such as that of Figure 3.11.

2. RTF: the schema is saved as a formatted RTF document. Various options
are availabl

3. Custom: the schema is processed through a customized Voyager 2 pro-

gran.
For immediate needs, you can directly send the current schema to the printer,
be it in graphical or textual view, through comméiile / Print. The printer
can be chosen and configured throtgle / Printer setupas usual.
There are other ways to produce reports. Let us remember one of them: the
Copy graphicfunction, that allows us to include fragments of schemas into
standard texts (Section 2.2).

Copying objects

When building a schema, it can happen that several entity types have to be gi-
ven similar attributes, or that the schema includes parts that are almost the sa-
me. Instead of entering the similar objects manually, it could be more
convenient to copy the original fragment, then to modify the copy.
The procedure is as expected:
1. select the components to copy and put them on the clipbadsd (or

Edit / Copy);

2. paste them in the schem#lI¢V or Edit / Paste);

For those whalo want to know:nclude dynamic peoperties values means that user-defi-

ned object properties are to be included in the report (see Lesson 18hcandeport
generation means that we want the report and its generation process to appear in the project
windows (in fact in the process history). In this lesson, the effect of checking this button
will be to show the report as a product in the project window.

Check that the DB-MAIN directory includes the filEXXXX and XXXXX . You can

define their paths througdfile / Configuration.

We will tell some words about these programs later on. For now, it suffices to know that
Voyager 2 is the programming language of DB-MAIN allowing its users to develop their
own functions.

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

3-16 Lesson 3: An even closer look at schemas

Dictionary report

Project MANU-1

Schema Manufacturing/Conceptual

A simple example of conceptual database
schema used in the first lessons of the
DB-MAIN tutorial. This schema has been
created on December 15, 1998.

* COMPANY A registered business organization with
which we have had commercial contacts for
less than 5 years.

Com-ID Internally assigned company Id.
Com-Name Official name of the company.
Com-Address Main address of the company.
Com-Revenue The total net income of company for the
last fiscal year.

id: Com-ID

* PRODUCT A product of interest for our company.
Pro-ID Internally assigned product Id.
Pro-Name The conventional name of the product.
id: Pro-ID

* manufactures (Specifies which products are manufactu-

red by each company.
[0-N] : COMPANY
[1-1] : PRODUCT)

Figure 3.11 -A simple text report.

3. if the the pasted objects are attributes, first select an entity type, a rel-type
or an attribute; the pasted objects will be inserted after this insertion point
(Figure 3.12).

If needed, DB-MAIN makes the names of the pasted objects unique through

the addition of a small suffix.

21/03/2002 DB-MAIN Tutorial E] J-L Hainaut 2000

Lesson 3: An even closer look at schemas

3.8

DB-MAIN Tutorial -[J J-L Hainaut 2000

3-17

Note Copying attributes to define near similar objects can be an evidence of a more
complex situation, where entity types appear to be subtypes of each other, or to have
a common supertype. These structures will be studied in Section 8.2.

CUSTOMER | SALESMAN CUSTOMER |SALESMAN

CustIlD EmpID CustiD EmpID

Name id: EmpID Name Name

Address Address Address
Number Number Number
Street Street Street
City City City

id: CustID id: CustID id: EmpID

Figure 3.12 -It appears that SALESMANnust be given attributes similar to
Nameand Address of CUSTOMEReft). Select the latter, type ctrl+C, select
EmpID of SALESMANhen type ctrl+V (right).

Inspecting objects

Examining the properties of the objects in a schema, or even the schema or the
project themselves, is quite easy. We double-click on the object (in any text
or graphical view) and its property box opens. To read its semantic descrip-
tion, we click on th&sem. button, which opens the semantic description win-
dow.

If we have to examine a large number of objects, this procedure may appear
tedious, and even painful. There exist two quicker ways to inspect the proper-
ties of the objects.

First, opening the semantic description window can be done by selecting the
object and clicking on th8EMbutton in the Standard tools

The second way is much more powerful, and uses a new DB-MAIN feature
called theProperty box It is opened through comma¥dindow / Property

box, and appears as in Figure 3.13.

This box is permanent until it is explicitly closed. It shows in real time all the
properties of the current object, i.e., the object which is currently selected.
Simply select another object, and the box shows the properties of this object.

21/03/2002

3-18 Lesson 3: An even closer look at schemas

I |
[ComBevense]
Froperties l SEmantics] Technical]
hame Com-Fevenue -
zhort_name
rmin card 1
rnax card 1
container type 5
hpe]
ztable falze
recyclable true
length 12
decim 1]
d

Figure 3.13 -The contents of the Property box when attribute Com-Revenue
is selected.

The Property box has three panels. The second one shows the semantic des-
cription of the selected object (Figure 3.14). Now, reading the semantic des-
cription of a series of objects can be done by merely selecting each of these
objects.

Com-Revenue

Froperties Semantics l Technical]

The tatal net income of company for the last fiscal J
wear,

Figure 3.14 -Examining the Semantic description of an object through the
Property box.

21/03/2002 DB-MAIN Tutorial E] J-L Hainaut 2000

Lesson 3: An even closer look at schemas 3-19

Note The Property box is read-only, and cannot be used to update the properties of
an object. To do so, we must use its standard Object property box.

3.9 External links

In some cases, the documentation of an object (entity type, attribute, etc.) is
available in external documents that cannot be included in the project. So, all
we can do is to reference these external documents from the schema objects,
and ask the users to go and read these documents.

In any semantic description, typing the name (and correct path) of an external
document has an interesting side effect: this name is an external link to the ori-
ginal document. Therefore, double-clicking on this name opens the document
with its source processor (Figure 3.15). Provided your system knows the as-
sociations between the file extensions and the processors, just double-clicking
on a document name allows you to read a Word document, examine a PDF
text, view a video movie or get a web document.

Semantic Description

A product of interest for our company. |

The complete list can be found nn(http:.-'.l‘mnv.uur_cnmpany.cumfpref)

Consult aIsc[M:\Flef—ducs'-.Prud list.doc
and (M:\Ret-docs\Prod_list.pdf)

| Camg; |

runs Acrobat Reader runs MS Word runs your Internet browser

Figure 3.15 -Automatic access to external documents.

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

3-20 Lesson 3: An even closer look at schemas

3.10 Quitting the lesson

We will still use this project later on. Therefore, we save it with the name
manu-3.lun and we quit DB-MAIN.

21/03/2002 DB-MAIN Tutorial E] J-L Hainaut 2000

Lesson 3: An even closer look at schemas 3-21

Key ideas of Lesson 3

1. A CASE tool must allow its users tancel all the modificationssince a
given reference point (save paint).

2. One of the main functions of a CASE tool is to offer an easy-tgmnagdic
editor that allows the developer to draw objects, to move objects, to align
objects, to enlarge or reduce the viewing angle (zoom), to change the size of
objects (reduce), to distribute objects into pages (grid), to color objects, to
reorder objects, to experiment with various schema layouts (auto-draw).

3. In a large schema, persistent and dynasualisets of objectxan be defined
and combined (mark, marking planes).

4. The various text views of a schema complement the graphical views. They
providehyperlink capabilities tanavigate through the objects of the schema.

5. External documents of any sort can be mentioned in a semantic description.
Their names form active hyperlinks to these documents

6. A CASE tool can produgerinted andformatted documentsor reports of
various kinds.

7. Objects havepecific properties(name, type, semantic description, etc.) that
can be inspected easily (specific property boxes, the general Property box).

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

3-22

Lesson 3: An even closer look at schemas

Summary of Lesson 3

* In this lesson, we have studied the following concepts:

save point of a schema

graphical aspects of a schema (zoom and reduce)

marking planes

text navigation througlole links
reordering attributes and roles
simple reports

general property box

active external documents.

* We have learned:
to define a save point for a schema Edit / Savepoint (or button%)

to cancel schema modifications
to move objects in the schema

Edit / Rollback
~{t - 1}andCtrl +{~ 1t - 1}

to change the move mode of objectd/iew / Graphic. settings

to align rel-types and roles
to align a set of objects

to zoom on a schema in and out

to reduce or expand a schema
to change the font of a schema

right button of the mouse
View / Alignment

Y I A2

i 8

it IR i 2
View / Graphic. settings

View / Graphic. settings
Edit / Changefont

to draw a grid in the schema space View / Graphic. settings

to color schema objects
to change the current color

21/03/2002

Edit / Color selected
Edit / Changecolor

DB-MAIN Tutorial E] J-L Hainaut 2000

Lesson 3: An even closer look at schemas 3-23

to mark/unmark objects and to play with marked objects
Edit / Mark selected
Edit / Selectmarked
to select a marking plane
to ask DB-MAIN for a new schema lay®iew / Auto-draw
to retrieve instances of an entity type in a text schema
tagged lines andtab key
to navigate between entity types and rel-types in a text schema
right button of the mouse
to change the order of attributes and roles in an entity type
alt+1 1

to copy selected objects elsewhere in the schema or in another schema of
the project:

Edit / Copy (ctrl+C)
Edit / Paste(ctrl+V)

to generate simple text reports File / Report / Textual view

to generate sophisticated reports File / Report / RTF

to generate custom text reports File / Report / Custom

to print a schema on the printer File / Print

to choose and configure the printer File / Printer setup

to inspect objects quickly Window / Property box and

to access an external document from the semantic description of objects:
double-click on the document name

* We have produced a new type of file:

dictionary reportg*.dic).

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

3-24

3.1

3.2

3.3

3.4

3.5

3.6

3.7

21/03/2002

Lesson 3: An even closer look at schemas

Exercises for Lesson 3

Open projedtibrary (orits French equivale®BLIO) and schema
Library/Conceptual . Generate and print a report based on each
of the text views. Try to find specific uses for each of them.

Open a Text standard report with a text processor. Include after each
entity type title the graphical representation of the entity type (through
the Copy graphic command).

Aligning objects. I'm not quite sure that you have completed the exer-
cise suggested in Figure 3.6! Now it's time to do it.

Zooming and reducing Open projedtibrary and schemhibra-
ry /Conceptual

Define a grid based on t#el/Landscape or Letter/Landsca-
pe paper format.

Choose a zoom factor such that the current page fits in its schema win-
dow.

Choose the maximum reduce factor such that the schema still fits into
the current page. Print it to check.

Marking and coloring objects. Use plane 1 to mark the entity types,
plane 2 to mark rel-types and roles, plane 3 to mark the attributes and
plane 4 to mark the identifiers.

Transfer the marks of planes 1, 2, 3 and 4 to plane 5.
Color each plane in a different color.
Unmark all the planes and color all the objects in black.

Examine the semantic description of all the objects of schirs
ry/Conceptual in less than 1 minute

Type the name of a document in the semantic description of an entity
type. Open this document from DB-MAIN.

DB-MAIN Tutorial E] J-L Hainaut 2000

Lesson 4

Multi-product projects

Objective

This lesson introduces the concepiailti-product projectdy
considering the example of a design in which we distinguish the
conceptual schema and the logical schema of a database as well
as two text files. Some characteristics of relational logical sche-
mas are examined. Additional functions related to schema and
object management are described as well. Transfer of compo-
nents between projects is described through export/import func-
tions.

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

4-2

4.1

4.2

Lesson 4: Multi-product projects

Starting Lesson 4

We start DB-MAIN, we open the projeMANU-3 then the schemislanu-
facturing/Conceptual

Conceptual and logical schemas

The way we worked in Lesson 1 to produce an SQL database structure was a
bit simplistic: we designed a conceptual schema, then we generated the equi-
valent SQL code to be executed by an RDBMShis procedure is fine for
small databases, but is not realistic for large projects. Of course, itis much too
early to tackle the problems induced by managing complex projects, but we
can already introduce the concepnuilti-schema projects.e., projects that
include more than one schema, through a more sophisticated procedure than
that suggested in Lesson 1.

Let us suppose that we want to keep in the project not only the description of
the conceptual scheméf.e., the current schemdanufacturing/Con-

ceptual), but also the description of thegical schema In traditional da-

tabase design methododologies, the logical schema is intended to describe the
same real-world situation as the conceptual schema does, but in technical
terms of tables, columns, primary keys, foreign keys and indexes hstead
The logical schema is made up of the database structures that are encoded into
a SQL program.

To develop these concepts, we need to go back to the piMpauti-3 that is
currently opened.

To give us the opportunity to go through this lesson again later on, we work
on a new project called, sayianu-4 , which has the same contentdvéenu-
3, at least initially.

To do so, we call the Project property box through the comifrigméProject
properties, we modify the name into Manu-4, and save the current préject (
le / Saveproject as) asManu-4.lun . From now on, we have two projects,

Relational Database Management System. Sybase, Informix, Oracle, SQL Server and
Access are some examples of RDBMS.

See the lessons of Volume 2, or reference textbooks such as [Teorey,1998], [Batini,1992]
or [Blaha,1998].

21/03/2002 DB-MAIN Tutorial E] J-L Hainaut 2000

Lesson 4: Multi-product projects 4-3

namelyManu-3, which is closed anManu-4 , the current project on which
we will work. So far, these projects have the same contents.

Building arelational logical scheméds fairly easy, though we may have no
idea on how to translate a conceptual schema into relational structures, i.e.,
into tables, columns, keys and the like. Indeed, DB-MAIN proposes a func-
tion which carries out this translation automatically by replacing a schema by
its SQL logical equivalent version. Since we want to keep both schemas in the
project, we proceed as follows:

. Cleaning and modifying tidanu-4 project.

We can get rid of the schemddignment , that is no longer useful. In the
same way, we delete the SQL program generated in Lesson 1.

Deleting objects is quite simple and intuitive: we select the objects, then we
press théel key. Another way is through the commdsdit / Delete

Now, the project looks like Figure 4.1.

MANU-4

Manufacturing/Conceptug

Figure 4.1 -The Manu-4 project in its beginning state.

Our conceptual schema is a bit simplistic, and we could find it interesting to
enhance it a little. We open the schema, and we state phnatiact can be
manufactured by an arbitrary number of companidscordingly, we change

the cardinality of the rolmanufactures.PRODUCT °from[1-1] to[O-

N] 4 To do so, we double-click on the role and we change the cardinality va-
lue, either by typing it or by selecting it in the listbox. The new version should
appear as in Figure 4.2.

3.

4.

A role can be designated by the name of the rel-type followed by the name of the entity
type. Another way to denote roles will be seen later.
As will be observed, the foreign key of Lesson 1 will be replaced with a connection table.

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

4-4 Lesson 4: Multi-product projects

Manufacturing/Conceptual)

COMPANY
Com-ID PRODUCT|
Com-Name O- Pro-ID
Com-Address Pro-Name
Com-Revenue id: Pro-ID
id: Com-ID

Figure 4.2 -The new Manufacturing conceptual schema.

2. Making a copy of the first schema.
Let us make a copy of the conceptual schema:

- we select the source schema in the Project window, or we open it (it is the
current case);

- we execute the commaidoduct / Copy product;

- theSchema property baxpens and proposes default characteristics for the
new schema: the name is that of the source schéftamufacturing ",
while the version proposed i€0nceptual-1 ". We change the version
into "Relational " and we click on the butto@K

The project window shows the new schema as well as its relationship with the
source conceptual schema (Figure 4.3).

We open the so-calldRlelationalschema. Not so surprisingly, it includes the
same objects as the conceptual schema, which is fairly common with copies!

3. Translating this copy into relational structures.

Now we will transform this schema into relational structures. We execute the
commandTransform / Relational model. The contents of the windows are
replaced by SQL structures. To improve the readability, we shade the "entity
types" (throughViews/ Graphical settingg, now to be interpreted as tables.

If things have gone right so far, the schdvenufacturing/Relatio-
nal should now read as in Figure 4.4.

21/03/2002 DB-MAIN Tutorial E] J-L Hainaut 2000

Lesson 4: Multi-product projects 4-5

MANU-4

Manufacturing/Conceptug

Manufacturing/Relationg

Figure 4.3 -The new Relational schema deriving from the Conceptual sche-
ma.

Manufacturing/Relational

COMPANY manufactures PRODUCT]
Com-ID Com-ID Pro-ID
Com-Name Pro-1D Pro-Name
Com-Address id: Pro-ID id: Pro-ID
Com-Revenug Com-ID acc
id: Com-ID acc />

acc ref: Pro-ID
acc
ref: Com-ID
acc

Figure 4.4 -The Relational schema.

This schema is no longer a conceptual schema since it represents data structu-
res of a specific DBMS: eaamntity typerepresents table eachattribute re-
presents aolumn and eaclidentifier represents primary key This kind of
schema is called relational logical schema

The main modification of the schema is the translation of relationship type
manufactures into entity typemanufactures

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

4-6 Lesson 4: Multi-product projects

We observe that the talteanufactures is made up of the colunfbom-

ID which acts as a reference, i.e., a foreign kefy, (to the tableCOMPANY

and of the columiPro-ID which references the tadlRRODUCT Both refe-

rence columns form the identifier (i.e., temary key of the table. In addi-

tion, an index (access key atc in the graphical view) is defined on each
identifier and on each reference column to give these structures reasonable
performance. Later on, we will examine in greater detail the way identifiers,
foreign keys and indexes are built and represented.

[XEW Edit Product Mew Transform Aszist Engineerng

MNew project...
Open project...
Save project
Save project az...
Cloze ormiect

e Yy Emer

Standard SOL...
Ed il WanRdbAMS 4.2
R Academic SGL..
Frint dictionan... Standard SGL [check)...
Frinter setup... YWaxRdbAYMS 4.2 [check)...
; ; Acadermic SOL [check]...
Caonfiguration...
; COBOL. ..
Exit
CODASYL...

Figure 4.5 -Generating a SQL program from the Relational schema.

4.3 SQL code generation
Currently, we have two schemas in our project, but still no SQL program to

build the corresponding database in the target computer. Therefore we need a
final operation to generate this SQL code. We could use the conTmeamss

21/03/2002 DB-MAIN Tutorial E] J-L Hainaut 2000

Lesson 4: Multi-product projects 4-7

form / Quick SQL as in Lesson 1, but we will explore a more professional
way.

We execute commarniéile / Generate then we select th8tandard SQL
(check)style (Figure 4.6). There are other more sophisticated ways to produ-
ce SQL code, but for the purpose of this lesson, this style is quite sufficient.

create database Manufacturing;

create table COMPANY (
Com-ID char(15) not null,
Com-Name char(25) not null,
Com-Address char(50) not null,
Com-Revenue numeric(12) not null,
primary key (Com-ID));

create table manufactures (
Com-ID char(15) not null,
Pro-ID char(8) not null,
primary key (Pro-1D,Com-ID));

create table PRODUCT (
Pro-ID char(8) not null,
Pro-Name char(25) not null,
primary key (Pro-1D));
alter table manufactures add constraint FKman_PRO
foreign key (Pro-ID)
references PRODUCT;

alter table manufactures add constraint FKman_COM
foreign key (Com-ID)
references COMPANY;

create unigue index IDCOMPANY
on COMPANY (Com-ID);

create unigue index IDmanufactures
on manufactures (Pro-1D,Com-ID);

create index FKman_PRO
on manufactures (Pro-ID);

create index FKman_COM
on manufactures (Com-I1D);

create unigue index IDPRODUCT
on PRODUCT (Pro-ID);

Figure 4.6 -The SQL program. The comment lines have been removed to
shorten the figure.

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

4-8

4.4

4.5

Lesson 4: Multi-product projects

This SQL code may not work as such on some DBMS. Indeed, some proces-
sing should have been done before generating this text. We will discuss these
problems in further lessons.

Generating reports

To complete the project, we generate a report from the conceptual schema.
When executing the commalikde / Print dictionary on a text view of the
schema, we check the buttaghbw report generation” (Figure 3.10) to inclu-

de the icon of the report in tiReoject window(Figure 4.7). Since any derived
product is placed under its source, we sometimes have to move it to a better
position.

Manufacturing/Conceptual

(Manufacturing/Relational)
manu-4.ddl/1

Figure 4.7 -A report has been generated from the conceptual schema.

2\
Manu-4.dic/1

Multi-product project

So far, our project comprises four documentproducts namely two sche-
mas and two text files. A large project can include hundreds of products.

It is sometimes useful to examine two products in parallel. The best way to
proceed is as follows:

21/03/2002 DB-MAIN Tutorial E] J-L Hainaut 2000

Lesson 4: Multi-product projects

- open both products,

- minimize theProject window(click on the leftmost of the three buttons at
the top right corner on the window),

- organize the windows by/indow / Tile.

Figure 4.8 shows the conceptual and logical schemas while Figure 4.9 presents

the logical schema and its SQL equivalent side by side.

Kl

COMPANY

Com-ID
Com-Hame

- ufact: 0-1—
Cnm—Address_DN N

Com-Fevenue

X Manufacturing/Conceptual

FRODUCT

Pro-ID
Pro-Mame

id; Pro-ID

ol

FRODUCT

Pro-ID
Pro-Mame

id: Pro-ID
ace

/

id: Com-ID
F"! M anufacturing/Relational
COMPANY manufactures
Com-ID Com-ID1
Com-Hame FPro-ID
Com-Address id: Pro-ID
Com-Fevenue Com-ID
id: Com-ID ace
ace tef: Pro-ID
ace
tef: Com-ID
ace

A

MANL-4,19... E.IEII:«]

Figure 4.8 -Comparing the conceptual and logical schemas.

If we want to make the schema disappear from the screen, we can close it by
closing itsSchema window.e., by clicking on the close button of that window

(the X button at the top right corner). Opening it again can be done by double-
clicking on its icon in théroject window(Figure 4.7).

DB-MAIN Tutorial -[J J-L Hainaut 2000

21/03/2002

4-10

4.6

4.7

Lesson 4: Multi-product projects

EX Manufacturing/Relational [3 manu-4.ddiA1 o =] E3
&]|22 create table COMPANY (=]
23 Com-ID chat(l5) not mall,

ccmﬂnlﬁm ?ﬂ-‘;"m‘ ;RD_DDI;UCT 24 Com-Name chan25 not null,
e —— Tro-Huume 25 Clom-& ddress char50) not mull,
oo Aeldress A oD o TroD 2 Com-Revenue muneric(12) not ool

create table manufactures
ref: Com ID 30 Com-ID char(15) not null,
40C 3 Pro-ID chat(®) not null,
32 primary key (Pro-ID, Com-IDON);

[one Foorerone om0 acc a7 primary key (Com-ICT;
id: ComeID it 28
40 \mf: Pro-ID 79

34 create table PRODUCT (
33 Pro-ID chat(8) not mall,
36 Pro-Mame chat(25) not ool

- |37 primary key (Fro-ILT); =

A | a7 K 2

Figure 4.9 -Comparing the logical schema with its SQL text.

Deleting objects

Deleting components of a project is the simplest thing on earth: we select the
objects, then we press tbel key on the keyboard. This applies to entity ty-
pes, relationship types, roles, attributes, groups (e.g., identifiers), constraints
and even schemas. An alternate way consists in executing the comdiand

/| Delete

There is no way to delete a project but by deleting.lis file from Win-
dows.

Export/import of schema components

Let us consider that we want to develop a new project that is fairly similar to
another existing project. Quite naturally, we want to reuse some part of the
specifications of the latter. Let us say that these projects share large sections
of their conceptual schemas.

One way to proceed could be to take a copy ofine file of the source

project, then to modify the copy according to the current needs: we change the
project name, we delete the unwanted products and we prune the conceptual

21/03/2002 DB-MAIN Tutorial E] J-L Hainaut 2000

Lesson 4: Multi-product projects 4-11

schema to delete the entity types, rel-types and attributes that are non relevant
in the current application domain. This is a brute force approach of which we
should not be particularly prOldeo, we will proceed in a more refined way.
Export/import is such a better technique. Grossly speaking, it consists in
identifying and selecting the relevant components of the source schema, then
in transfering them to the new project.

The first step consists gxporting the desired specifications from the source
schema:

1. Open the projedibrary.lun

2. Select the conceptual schebd8RARY/Conceptual and the logical
schemd.IBRARY/Logical Rel (don't open them).

3. Execute the commaridle / Export. Accept the name suggested, namely
Library.isl

This procedure generates a file calléorary.isl that includes the speci-
fications of the exported schemas.

The second step consistgnmporting these schemas into another project:

4. Create a new project or open an existing one (that which was used in this
lesson for instance).

5. Execute the commairkdle / Import ; choose the filkibrary.isl

6. Select the schemas you want to include in the current project (Figure
4.10).

The current schema includes a copy of the imported schemas. If a schema to
be imported has the same name as an existing one, the name of the former is
changed in order to make it unique in the project.

This procedure is adequate when we want to import whole schemas. But what
if we only need some objects to be imported from a source schema? In this
case, the export phase is slightly different:
1. Open the projedibrary.lun
2. Open the source schema (e.g., the conceptual sdiBRARY/Con-

ceptual) and select the specific objects you want to export.

3. Execute the commarkdle / Export. Accept the name suggested, namely
Library.isl

5. Many text processing mistakes come from such brutal copy/paste techniques.

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

4-12 Lesson 4: Multi-product projects

Now, the fileLibrary.isl includes only one schema, comprising the se-
lected objects. Importing these objects in the target schema is as described
above.
Integrate schema E3 |
Chooze the schemalz] o integrate to the
project
LIBRARY /Conceptual

LIERARY /Logical Rel

1] | 1
Ok, I Eancell Help |

Figure 4.10 -Choosing the schema(s) to import into the current project.

Why to import schemas?

We have based the discussion on a specific goal, that is, to reuse specifications
already developed in another project.

This is not the only reason why we could want to import schemas. Specifica-
tion integration is another activity which requires importing schemas. We can
sketch the problem as follows.

Let us assume that a large application domain has been decomposed into ho-
mogeneous subsystems, each of them being taken in charge by a developer (or
by a team of developers). So, each subsystem is analyzed independently by a
developer, who, eventually, produces a conceptual subsBhehsawe can
expect, any two subschemas, though they comprise different objects, will pro-
bably include some objects that model the same application concepts. Forins-

6. The term subschema is used to suggest that this schema describes a part only of the target
application domain. Technically, a subschema is just a schema.

21/03/2002 DB-MAIN Tutorial E] J-L Hainaut 2000

Lesson 4: Multi-product projects 4-13

tance, the concept oProduct will be represented in théroduction
subschema, but also in tMarehoussubschema. So, merging these subsche-
mas will produce a global conceptual schema that includes one representation
of each application domain concept, and therefore that encompasses the con-
cepts of all the subschemas. This merging is a complex processschakeda
integration that will be discussed in another volume.

A pragmatic scenario to build the global conceptual schema could be as fol-

lows:

1. First, we build a project for each subsystem. Each project comprises,
among others, a conceptual subschema.

2. Then, we create a new project, in which we import all the conceptual subs-
chemas.

3. Finally, we integrate all the imported subschemas into the global concep-
tual schema. For this, we will use the schema integration asSigtant
will be described in a further volume.

PERSONNEL/Concep) (FINANCE/Concept. AREHOUSE/Concep PRODUCTION/Concept.

ENTERPRISE/Concept

%
|/
N2
[

Figure 4.11 -Integration of four imported subschemas into a global concep-
tual schema.

This scenario is illustrated by Figure 4.11: subscheRERSONNELFI-
NANCEWAREHOUSEhdPRODUCTIOMave been developed independent-

ly, then have been imported into a new project. They have been integrated into
the global conceptual scherBAITERPRISE

Note about*.isl files

The ISL8 format is mainly intended to exchange specifications between CASE
tools. Hence its use in Export and Import functions. However, it has a broader

7.
8.

Called by the commanfksist/ Integration.
Standing fot nformationSystem specificatioh anguage.

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

4-14 Lesson 4: Multi-product projects

scope, and can replace standard repository format in some circumstances, e.g.,
when transfering specifications to an older version of DB-MAINIG files

are upward compatible only). The main difference Witm projects is that

*isl projects do not include the history of the activities, and, as a conse-
guence, they do not record the inter-product relationships.

In particular:

« A *isl file can be opened like ariylun project. You just have to
specify in theOpen project box that you want to open*dsl file type
instead of the standardun

* When you close a project, you can save itash file.

21/03/2002 DB-MAIN Tutorial E] J-L Hainaut 2000

Lesson 4: Multi-product projects 4-15

Key ideas of Lesson 4

1. So far, a project appears as a collection of products (or documents) together
with the relations between them. In its simplest form, a project is comprised
of the following products: aonceptual schemalogical schemaaSQL pro-
gramand someeports

2. A conceptual schemalescribes the concepts of an application domain, their
properties and their relationships. This description is independent of any
implementation technology. It is made up of entity types, attributes, rela-
tionship types and identifiers (and of more sophisticated constructs, as we
will see later on).

3. Alogical schemais the description of data structures implemented according
to the model of a DBMS. Aelational logical schemas mainly made up of
tables, columns, primary keys, foreign keys and indexes.

4. TheSQL program is the SQL expression of the data structures of the logical
schema.

5. Eachreport describes some aspects of a schema of the project.

6. Schemas from a project candogorted to another project. Similarly, selec-
ted components of a schema can be exported as well. This technique will be
used wherintegrating several schemas into a global schema.

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

4-16 Lesson 4: Multi-product projects

Summary of Lesson 4

* In this lesson, we have studied the following concepts:
- conceptual and logical schemas

- products, which are either schemas or text files,

- multi-product projects

* We have also learned:
- to create and use a multi-product project

- to make a copy of a product: Product / Copy product

- to transform a schema Transform / Relational model
- to generate SQL code File / Generate

- to delete an object Edit / Deleteor Del key

- to arrange the schema windows: Window / Tile
- to export (components of) schemad=ile / Export
- to import schemas: File / Import

* We have also generated and used a new kind of file:
- import/export specificationg {sl)

21/03/2002 DB-MAIN Tutorial E] J-L Hainaut 2000

Lesson 4: Multi-product projects 4-17

4.1

4.2
4.3

4.4

4.5

Exercises for Lesson 4

Open the projeGALES1you built as a solution to Exercise 1.2. Com-
plete this project by building a relational logical schema, and by gene-
rating a SQL program. Examine the schemas side by side, and compare
them.

Can you understand some of the rules that have been applied during the
schema transformation? If you don't, never mind, we will study them
in detail later on.

Same exercise on proj&TUDENT lof Exercise 1.3.

Same exercise on projedBRARY (or its French versioBIBLIO).
Make sure you don't save the resultinadvertently, except thrdsmea
ascommand.

Import in a new project that part of the schéunaary/Concep-
tual which concerns books, authors and copies.

Open ari.isl file with a text processor. Can you understand its con-
tents (or at least its main statements)? Can you say the sarmeiof a
file?

DB-MAIN Tutorial -[J J-L Hainaut 2000 21/03/2002

4-18 Lesson 4: Multi-product projects

21/03/2002 DB-MAIN Tutorial E] J-L Hainaut 2000

Lesson 5

The basics of conceptual modelin g

Objective

This lesson introduces the reader to the main constructs of the
DB-MAIN conceptual model. In particular, s/he will learn what
are optional/mandatory attributes, atomic/compound attributes,
single-valued/multivalued attributes, multiple identifiers, hybrid
identifiers, N-ary relationship types, relationship types with at-
tributes, others with identifiers, and cyclic relationship types.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

5-2

5.1

5.2

5.3

Lesson 5: The basics of conceptual modeling

Preliminary checking

In this lesson, we will use the proj@dANU-4 (file manu-4.lun) that has
been created in Lesson 4.

Starting Lesson 5

We start DB-MAIN and we open tihdANU-4project. We only keep the con-
ceptual schema, deleting all the other products.

To prevent from possible accidents, we change the name of this project into
MANU-5and we save it under the naMANU-5.lun .

Updating an object

We have seen in lesson 3 how to update the properties of a schema (namely its
Version). This technique also applies for any object of a project:

- either double-click on the object name in its Schema window, or select the
object (by clicking on its name) and pressRETURN key; either of these
actions opens the object property box;

- change the concerned properties of the object;

- either validate the operation by clicking on the button, or discard the
modifications by clicking on th€ancel button.

This works fine for schemas, entity types, relationship types, attributes and
groups. The only exception is theojectitself. To modify its properties, use
the commandrile / Project properties instead.

What is a conceptual schema?

Despite its limited scope, Lesson 1 has introduced some important notions
about conceptual schemas. First, it showed that such schemas are technology-
independent in that they comprise abstract objects that denote application do-
main concepts independently of their representation through DBMS cons-
tructs. The schema of Figure 5.1 has been developed by the analysis of the
facts the application domain is made up of. The way these facts will be repre-
sented in terms of tables, columns and foreign keys is irrelevant at this stage.

21/3/02 DB-MAIN Tutorial £] J-L Hainaut 1999

Lesson 5: The basics of conceptual modeling 5-3

5.4

COMPANY
Com-ID PRODUCT
Com-Name Pro-ID
L0- f 1 oY
Com-Address 0 Nl L Pro-Name
Com-Revenue| id: Pro-1ID
id: Com-ID

Figure 5.1 -The conceptual schema we built in Lesson 1.

This first experiment has taught us that a conceptual schema comprises entity
types COMPANYRODUCI relationship typesifanufactures), attribu-
tes Com-ID, Pro-Name) and identifiers (Com-ID}, { Pro-ID }).

An entity type represents a class of similar objects, or entities, that are percei-
ved as significant when we talk about the application domain. Such objects
are modeled through an entity type when we want to record information about
them, when they are associated with other entities and when they obey to spe-
cific behaviour rules.

A relationship type (rel-type) models similar associations between the enti-
ties of two entity types. A relationship is a pair of entities, each of them be-
longing to one of the participating entity types. Each participating entity type
plays a definiteole in the rel-type. this role is characterized by a cardinality
constraint expressed as a pair of symbols such as [1-1] or [0-N].

An attribute denotes a property of an entity type. It has a type (numeric, cha-
racter, date, etc.), a length and a cardinality.

An identifier is a group of attributes that uniquely qualifies the entities of a
type. At any time, two entities of this type must have distinct values for the
attributes of the identifier.

In this lesson, we will discuss variants of these concepts as well as new con-
cepts that will be useful to build more expressive conceptual schemas.

Cardinality of an attribute

Until now, we have implicitly understood that each attribute of an entity type
hadone and only onealue for each entity: ea€@OMPAN¥ntity has one va-

lue of Com-ID, one value o£om-Name one value o€om-Address and

one value ofcom-Revenue. No more, no less.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

5-4

Lesson 5: The basics of conceptual modeling

We now consider that this is not true for the latter attribute: some companies
have revenues while others may have none. Therefore, GOMKE AN¥nti-

ties have one value @om-Revenue, while others have none. In general,
we can say that angOMPAN¥ntity has from 0 to Com-Revenue value

and from 1 to 1, i.e., exactly on@pm-Namevalue.

An interval such af-1 and1-1 is called thecardinality of the attribute.

Any couple of non-negative values is valid, provided the first one is not greater
than the second one. The default valug-is, and is not displayed in the
Schema windows.

To illustrate this concept, we double-click @Gom-Revenue to open its At-
tribute property box, and we change its cardinality fdeth to0-1 , either by
typing the new value or by selecting it in the listbox.

Then, we define a new attribute, nankitne-Number , that is given cardi-
nality 1-4 , stating that any company has from 1 to 4 phone numbers (Figure
5.2).

COMPANY COM

COMPANY Com-ID: char (15)
Com-ID Com-Name: char (25)
Com-Name :

Com-Address Com-Address: char (50)
Com-Revenue[0-1] Com-Revenue: [0-1] num (12)
Phone-Number[1-4] Phone-Number: [1-4] char (14)
id: Com-ID id: COM-ID

Figure 5.2 -Optional and multivalued attributes.

An attribute whose cardinality has a lower bound of 0 is calitidnal. Con-
versely, an attribute whose cardinality has a non-zero lower bound is called
mandatory. For instance,

- Com-Nameis mandatory,
- Com-Revenue is optional,
- Phone-Number is mandatory.

An attribute whose cardinality has an upper bound greater than 1 iswalted
tivalued, while those with cardinalitd-1 or 1-1 , are said to beingle-va-
lued. For instance,

- Phone-Number is multivalued,

21/3/02 DB-MAIN Tutorial £] J-L Hainaut 1999

Lesson 5: The basics of conceptual modeling 5-5

- Com-NameandCom-Revenue are single-valued.

5.5 Atomic and compound attributes

Some attributes can be broken down into fragments that still are significant.
For instance, any value @om-Address can be seen as composed of a value
of Number + a value ofStreet + a value ofCity .

Attribute Com-Address is calledcompound AttributesNumber, Street
andCity are its components. Note that a component can itself be compound;
it is the case fo€City , which consists aZip-Code andCity-Name .
An attribute that is not compound is calldmic (i.e.unbreakabl® For ins-
tance, Com-Name Com-Address.Number and Com-Address.Ci-
ty.City-Name are atomic attributes.
Both single-valuedGom-Address) and multivaluedRhone-Number) at-
tributes can be compound.
ChangingCom-Address from atomicto compounds made by defining its
components:
- We open its Attribute property box, then click on bufast att., to add its
first componentNumber; after that, clicking omMext Att. or pressing the
Enter key opens the next Attribute property box. Stop the series by clicking
on theOK or Cancel button.
- Or we select attribut€om-Address in the Schema box and execute the
commandNew/ Attribute /First, or, equivalently, we click on the button
in theStandard tools bar We introduce the other attributes as descri-
bed above.
Later on, we can insert the next attributes by selecting the insertion point, then:
- either we open its property box and enter the next attributes;
- or we execute the commahiw / Attribute / Next;
- or we click on the butto[&] in titandard tools bar

To insert an attribute in the first position, we select the entity type or the rel-
type as the insertion point, then we proceed as above.

We modify theCOMPANStructure as shown in Figure 5.3.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

5-6 Lesson 5: The basics of conceptual modeling

COMPANY
Com-ID
Com-Name
Com-Address

Number
Street
City
Zip-Code
City-Name
Com-Revenue[0-1]
Phone-Number[1-4]
Country
Area
Local
id: Com-ID

Figure 5.3 -Compound attributes.

... or, more precisely, in the Text extended view of Figure 5.4.

COMPANY / COM [S]
Com-ID: char (15) [S]
Com-Name: char (25) [S]
Com-Address: compound (50) [S]
Number: num (5)
Street: char (20)
City: compound (25)
Zip-Code: num (7)
City-Name: char (18)
Com-Revenue[0-1]: num (12) [S]
Phone-Number[1-4]: compound (14)
Country: num (3)
Area: num (3)
Local: num (8)
id: Com-ID

Figure 5.4 - Compound attributes in the Text extended view.

Note that a compound attribute has a length too, as shown in its Property box.
However, this length is calculated, and cannot be changed through the Attri-

bute box itself.

21/3/02 DB-MAIN Tutorial £] J-L Hainaut 1999

Lesson 5: The basics of conceptual modeling

5.6

Multiple identifiers

5-7

You probably have observed that entity types, relationship types and even
groups (e.g., identifiers) have been assigned a length field ds slvalue
is the sum of the lengths of their attributes or components, if any.

An entity type can have more than one identifier. Let us consider the entity
type COMPANYIt is identified by its attribut€om-ID, which means that, in

the database described by the schema, naCQ@bIPAN¥ntities will be al-
lowed to share the same valueG@m-ID .

In addition, we assume that there are no two companies with the same name
and the same address. Therefore, we will specify a second identifier, compri-

sing Com-Name and Com-Address :
neously (use thshift key) and we click on thi® button in theStandard tools
bar as shown in Lesson 1 (Figure 5.5).

we select these attributes simulta-

COMPANY

Com-ID
Com-Name
Com-Address
Number
Street
City
Zip-Code
City-Name
Com-Revenue[0-1]
Phone-Number[1-4
Country
Area
Local

|

id: Com-ID
id': Com-Name
Com-Address

Figure 5.5 -An entity type with two identifiers. The first one {Com-ID} is pri-
mary while the second one {Com-NameCom-Address } is secondary.

1. The length is followed by a "+" sign when the object includes role components whose

length cannot be evaluated.

DB-MAIN Tutorial -[J J-L Hainaut 1999

21/03/2002

5-8

5.7

Lesson 5: The basics of conceptual modeling

If an entity type has identifier(s), one of them generally is declaiiathry
(notationid), while the others, if any, are declastondary and are noted

id' instead.

Note that an entity type can have secondary identifiers only. However, it can
have only one primary id. Itis a good practice to define the most natural iden-
tifier as primary. The problem of choosing identifiers can be a bit more com-
plex, and will be discussed later on.

Note An entity type need not have identifiers. An entity type without any ex-
plicit identifier is an infrequent, but quite valid situatipn.

Hybrid identifiers

Until now, an identifier consisted of one or several attributes of the entity type.
In some situations however, an identifier can be more complex.

To illustrate this point, we need a more sophisticated schema. We suppose that
a company comprises branches, and that products are manufactured by bran-
ches, not by companies. Therefore:

- We create entity typ@RANCH with attributesName (identifier) and
Country .

- We create rel-typbelongs betweerBRANCHandCOMPANMWy drawing
a line (use the butto) fro@OMPANY¥ BRANCH

- In manufactures , we replace OMPANWith BRANCHas follows: we
delete the rol€OMPAN¥Nd we draw a line (with the butt¢d|) between
manufactures andBRANCH.

In addition, let us suppose that all the branches of the same company are loca-
ted in distinct countries, but that two branches of different companies may be
installed in the same country.

Such a situation can be described by stating tBRANCHentityis identified

by theCOMPANI belongs to + its COUNTR.YThis identifier, made of at-
tributes and of roles, is callégybrid .

A hybrid identifier is defined in the same wayadlsattribute identifiers: we

select the attributBlameand the rolenanufactures. COMPANY , then we

click on thelD button (Figure 5.6).

21/3/02 DB-MAIN Tutorial £] J-L Hainaut 1999

Lesson 5: The basics of conceptual modeling 5-9

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue[0-1
Phone-Number[1-4]
id: Com-ID
id': Com-Name

Com-Address

I
0-N

1-1
\

< tBRANCH PRODUCT

ountry

Name —on—manufacures,—oN— E0

id: belongs.COMPANY| id: Pro-ID
Country :

Figure 5.6 -Entity type BRANCH has a hybrid identifier comprising a remote
role and a local attribute. The components of compound attributes have been
hidden for simplicity.

The identifier of an entity type can be made up of one of the following combi-
nations:

- one or more local attributes;
- two or more remote roles (hybrid);
- one or more local attributes + one or more remote roles (hybrid).

Itis interesting to further analyze the position of rel-types in constructing iden-
tifiers. For instance, why have we discarakhtifiers made of one role offly

Let us examine the examples of Figure 5.7. While a customer can place any
number of orders, each order has been placed by one customer only. So, we
can say thaeach order identifies a customeSimilarly, each vehicle can be

used by one salesman only, so tretticles identify salesmen

We could be tempted to declare these identifiers explicitly:
- for CUSTOMER id: places.ORDER
- for SALESMAN id: uses.VEHICLE

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

5-10

5.8

Lesson 5: The basics of conceptual modeling

However, it would be useless to declare them since they can be inferred from
the cardinality of the rel-types. Inde€@RDERs an identifier olCUSTOMER
thanks to its cardinalitil-1] inplaces , andVEHICLE is an identifier for
SALESMANIue to cardinality0-1] inuses .

These identifiers are calléahplicit, and must not be declared. Anyway, DB-
MAIN will not allow us to define them (try it to check!).

CUSTOMER SALESMAN

0-N 0-1
1-1 0-1

Figure 5.7 -Implicit entity type identifiers.

The concept of identifier can be richer than it appears in this lesson. It will be
discussed further later on.

On defining identifiers

The way we defined identifiers is very intuitive: selecting a group of compo-
nents, then telling (through the butti®) that they form an identifier.

This is just a short-hand for a more general technique that will be necessary
later on. So, it is useful to describe it now.

The idea is to select the entity type, then to create a new identifier for it. To
experiment with it, first delete the secondary iCQ@IMPANYselect the group
labelledid’, then press thBel key. Now we will define it again in another
way.

We select entity typ€OMPAN¥Nd we execute the commadw / Group.

A new property box opens. It allows us to defirgg@up of attributes and/or
roles that plays some outstanding functions with respect to their entity type.
Once the Property box is opened, we proceed as follows:

21/3/02 DB-MAIN Tutorial £] J-L Hainaut 1999

Lesson 5: The basics of conceptual modeling

5-11

- we specify what are the components of the group by selectingName
andCom-Address in the right list and adding them to the left list thanks
to the button#\dd First andAdd Next;

- we tell that this group of components formseaondary identifieby chec-
king theSecondary ID button (Figure 5.8);

- we confirm this choice by clicking on butt@x.

Group Properies |
E xamine/modify the properties of a group of the entity tupe
COMPAMY

‘Name IDCOMPANT Ll ?5|
— Functions — Components
£ e[Conn-Mame Com-D
' Secondary D | || Com-Address Com-Revenue
——— <<hdd Firstl Phorne-Mumber[*]
[Coexistence Phore-Humber(]. Courtr
[Exclusi Phore-Mumber*].Arza

REILIEE Phore-Mumber*). Local
[T Atleast-one <<Add Mewt| | 1:belongs BRAMCHI]
- {Com-D}
[Uszer const,
I]" Removes> |
[T Access key | KN i NN i

Sem. | Tech. | Frop. |‘ D:unstraintl Ol I Cancel |

Figure 5.8 -A secondary identifier of COMPANY is being defined.

As will be discussed later on, this box will be used to define many other so-
phisticated constraints.

5.9 N-ary relationship types

The relationship types we have defined so far are made of two roles, and the-
refore are calletbinary. It is possible to define relationship types with three
(or more) roles. They are calldédary rel-types, where N is the number of
roles, also called th@egreeof the rel-type.

DB-MAIN Tutorial -[J J-L Hainaut 1999

21/03/2002

5-12

Lesson 5: The basics of conceptual modeling

In the following schema, we have defined a new entity type, navieRKET
that represents the different markets on which products can be distributed. In
addition, we have considered that a branch manufactures products for some
markets only. Therefore, eacimanufactures relationship links one
BRANCHNntity (say B), on€RODUCEntity (P) and onMMARKEEntity (M).
Such a relationship expresses the fact that:

branch B manufactures product P for market M
We can change relationship typenufactures from binary (2 roles) to
ternary (3 roles) in a simple way: we draw a line (buf+h) fnoamu-
factures to MARKET(Figure 5.9). We improve the layout of the schema
by right-clicking on the rel-type.

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue[0-1]

Phone-Number[1-4 MARKET
id: Com-ID Name
id: Com-Name Size
Com-Address id: Name
\
O-N \

0-N

\

BRANCH 0-N 0
- PRODUCT]|
Country N\ ProID
Name Pro-Name
id: belongs.COMPANY id: Pro-ID
Country -ro

Figure 5.9 -A rel-type linking 3 entity types. Now, branches manufacture pro-
ducts for markets.

5.10 Relationship types with attributes

Attributes can be associated with relationship types as well. Let us suppose
that the manufacturing of a product P by a branch B for a given market M is
measured by eatio that states what part of the production of product P goes
to market M from branch B.

21/3/02 DB-MAIN Tutorial £] J-L Hainaut 1999

Lesson 5: The basics of conceptual modeling 5-13

The attribute describing this ratio is created in the same way as for entity types.
For instance:

- we open the property box ofanufactures ;
- we click on theNew Att. button and we define the attribute.
The schema should look like in Figure 5.10.

MARKET
Name
Size
id: Name
0-N
BRANCH 0- Rato 0
- PRODUCT
Country N\ Pro-ID
Name Pro-Name
id: belongs.COMPANY id: Pro-ID
Country 1d: 1o

Figure 5.10 -A rel-type can be given attributes as well.

5.11 Relationship types with identifier(s)

Relationship types can have identifiers too. For instance, we could imagine a
new rule of the application domain stating that,

when a branch manufactures a product, it does it for one market only

ConsideringPRODUCEnNtity P andBRANCHentity B, the database could not
include more than onmanufactures relationship in which both P and B
appear. Therefore there is at most BIRKE Entity associated with any cou-
ple of entities <P,B>. This property can be expressed eatifier of ma-
nufactures comprisingPRODUC&ndBRANCH

Such an identifier cannot be defined by simply clicking onHmutton, as for
entity types, due to the ambiguities that may arise in some sitfatiostead,
we will use the general technique described in Section 5.8:

2. There is no ambiguity when the identifier comprises a local attribute. In this case, the ID
button is active, and can be used as for entity types.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

5-14 Lesson 5: The basics of conceptual modeling

- we selecmanufactures by clicking on its name;
- we execute the commaniew / Group to open the Group property box;

- we select the rolesianufactures.PRODUCT andmanufactures.
BRANCR and we move them in the left list;

- we check the buttorimary ID and we confirm the operation (Figure 5.11).

MARKET

Name

Size

id: Name
0-N

manufactures
Ratio

id: PRODUCT
MARKET

BRANCH 0-N
Country
Name
id: belongs.COMPANY
Country

0-N PRODUCT|

Pro-ID
Pro-Name

id: Pro-1D

Figure 5.11 -A rel-type can have explicit identifiers.

In fact, unlike entity types, every relationship type has (at least) one identifier,
but most of them should not be declared explicitly as illustrated here above.
An intuitive principle could be thahere cannot exist two relationships of a
given type between the same entiti@® can tell thabranch B belongs to
company Cbut it is unnecessary to say it twice!

DB-MAIN will consider as anmplicit identifier of relationship type R,
- each role of R with cardinality 0-1 or 1-1,

- all the roles of R when R has no such 0-1 or 1-1 roles, and when no explicit
identifiers have been declared.

For instance, the (implicit) identifier of relationship typelongs is

BRANCHand the (implicit) identifier ofanufactures in MANU-4was

(COMPANY,PRODUCT)Therefore, such identifiers need not be declared,

DB-MAIN being able to cope with them adequately.

3. Note that the roles are prefixed within the Property box to distinguish them from attri-
butes.

21/3/02 DB-MAIN Tutorial £] J-L Hainaut 1999

Lesson 5: The basics of conceptual modeling 5-15

In short, an explicit identifier of a rel-type can be made up of one of the fol-
lowing combinations:

- two or more local roles;

- one or more local attributes + one or more local roles;

- one or more local attributes (infrequent but valid).

5.12 Cyclic relationship types

Each role of a relationship type is defined as the participation of an entity type.
A relationship type in which the same entity type participates more than once
is perfectly valid.

Let us consider that a product can be replaced, when unavailable, with another
product, called its substitute. This fact can be represented easily by rela-
tionships between sonRRODUCEntities and othd?PRODUCEntities. Such
relationships form ayclic relationship type.

To represent this, we define a new relationship type, with maplaces |,

and with two roles, both defined ®RODUC Twith cardinalityd-1 and0-N
respectively (Figure 5.12).

Here, we have a probler@B-MAIN does not let us draw a line between an
entity type and itselflSo, we have to work in a slightly different way:

- we define the rel-type through the butt (or comnided / Rel-ty-
pe),
- then we define the roles with the butt (or commidad/ / Role).
To distinguish the function of each of these roles, we will give them distinct
names. The role corresponding to the product that is replaced will be called

replaced , while the role corresponding to the product that replaces the for-
mer will be calledsubstitute

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

5-16 Lesson 5: The basics of conceptual modeling

replaces

substitute replaced
0-N 0-1

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

Figure 5.12 -A cyclic rel-type. Both roles have been explicitly named.

Cyclicity is not limited to binary rel-types. Indeed, rel-types of any degree can
be partially or fully cyclic. Figure 5.13 shows an example of a rel-type, two
roles of which have been defined on the same entity type. Its meaning is that,

at some date, a vehicle has been used to transfer a piece of equipment
from a site to another one

SITE

to from
0-N 0-N

0-N 0-N

Figure 5.13 -A quaternary (4-ary) partially cyclic rel-type.

About role names

Until now, we have ignored the roles names except in cyclic rel-types In fact,
a role can be given an explicit name, be it part of a cyclic rel-type or not. In
the schema of Figure 5.14, we have given roles explicit role names to stress
the specific role each member plays in the rel-type. When we give a role no
name, DB-MAIN gives it, as default name, that of the participating entity type.

21/3/02 DB-MAIN Tutorial £] J-L Hainaut 1999

Lesson 5: The basics of conceptual modeling 5-17

For instance, the relationship typelongs in Figure 5.9 has two roles with
default nameS€OMPAN¥ndBRANCHthough we gave them no explicit na-
mes.

COMPANY STPVEr“works-in - SMPI9Yee | pERSON

Figure 5.14 -A rel-type with explicit role names.

This being said, we can state a property each relationship type must satisfy:
the roles of a rel-type have distinct names, be they explicit or default

Applying this property to cyclic relationship types means that all their roles (or
all of them but one) must receive explicit distinct names.

Since the same role name may appear in several relationship types, its name
alone cannot identify it in its schema. Therefore, the full name of a role inclu-
des also that of its relationship type. Forinstance, the robedarfgs have

full namesbelongs.BRANCH andbelongs. COMPANY , and those afe-

places have nameseplaces.replaced andreplaces.substi-

tute . Accordingly, these full names appear in the listboxes of the Group
property boxes and in the specification of the groups in the schemas.

Cyclic, unary, recursive and reflexive rel-types

It must be noted that the teryclicis not standardized, and that other names
will be used in the literature.

Some authors consider that degree N is not the number of roles, but rather the
number of distinct participating entity types. Hence the concepiay rel-

type, that will be called in this modeyclic binary rel-typenstead, to comply

with the mathematical definition of relations.

Other authors call cyclic rel-typescursive. This term rather qualifies algo-
rithms that use such rel-types as well as other structures which includes cir-
cuits of rel-types.

The termreflexive is also sometimes used to designate cyclic rel-types. We
will avoid this term, since it has a well defined mathematical definitioff that
does not stand in arbitrary cyclic rel-types.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

5-18 Lesson 5: The basics of conceptual modeling

Finally, the term acyclic itself can be disputed. Indeed, the qualdiglicis

used to designate a (directed) relation in which no cycles are allowed (such as
parent defined fronpersongo persony. Therefore &yclic rel-typecould be
misleadingly interpreted as defined by a relation in which cycles are allowed.

5.13 The complete schema

If all the extensions described above have been included, the schema should
appear as in Figure 5.15 or Figure 5.16.

COMPANY
Com-1D
Com-Name
Com-Address

Number
Street
City

Zip-Code

City-Name
Com-Revenue[0-1
Phone-Number[1-4]

Country
Area
_dLgCéﬂ = MARKET
id: Com-
id': Com-Name g;r:e
Com-Address :
‘ id: Name
0-N |
N
substitute replaced
11 O-N 0-1
\ id: PRODUCT,
BRANCH 0-N MARKET 0-N PRODUCT
Country
Pro-ID
Name Pro-Name
id: belongs.COMPAN id: Pro-ID
Country :

Figure 5.15 -The Graphical standard view of the final schema.

4. Arrelation R(A,A) is reflexive if, for any element a of A, <a[aR.

21/3/02 DB-MAIN Tutorial £] J-L Hainaut 1999

Lesson 5: The basics of conceptual modeling

5-19

Schema Manufacturing/Conceptual-Final

BRANCH
Country
Name
id: belongs.COMPANY,Country

PRODUCT
Pro-1D
Pro-Name
id: Pro-ID
COMPANY
Com-ID
Com-Name
Com-Address
Number
Street
City
Zip-Code
City-Name
Com-Revenue[0-1]
Phone-Number[1-4]
Country
Area
Local
id: Com-ID
id': Com-Name,Com-Address
MARKET
Name
Size
id: Name

manufactures (
[0-N]: BRANCH
[0-N]: PRODUCT
[0-N]: MARKET
Ratio)
id: PRODUCT,MARKET

belongs (
[0-N]: COMPANY
[1-1]: BRANCH)
replaces (

substitute [0-N]: PRODUCT
replaced [0-1]: PRODUCT)

Figure 5.16 -The Text standard view of the final schema.

DB-MAIN Tutorial -[J J-L Hainaut 1999

21/03/2002

5-20 Lesson 5: The basics of conceptual modeling

5.14 On the cardinalities of rel-types

Let us first recall the meaning of the cardinality of a role. Considering rel-type
RT with rolesra andrb defined as follows (Text standard):

RT(
rafia-ja]: A
rbib-jb]: B)

role "rafia-jal: A" states that

any A entity appears in rolea in at leastia and in at mosfa RTre-
lationships.

The way of understanding the concept cardinality can be dhbgxhrticipa-
tion interpretation because it measures the numbepasticipationsof each
entity. According to it, cardinalitjia-ja] is a constraint on entity type5A
Binary rel-types

It is common practice to give some configurations specific names as follows:

R is called ... if ...
one-to-one ja=jb=1
one-to-manyrom A to B ja>1 andjb=1
many-to-ondrom A to B ja=1 andjb>1
many-to-many ja>1 andjb>1

In addition rolera will be called:

ra is called ... if ...
optionalfor A ia=0
mandatoryfor A ia>0

5. Some models such as OMT and UML use another interpretation of cardinalities. Both will
be discussed in another lesson.

21/3/02 DB-MAIN Tutorial £] J-L Hainaut 1999

Lesson 5: The basics of conceptual modeling 5-21

The schema of Figure 5.17 shows some examples of this classification:
- owns is one-to-manyor CUSTOMER,
- owns is many-to-ondor VEHICLE,
- involved is many-to-many
- covered by isone-to-one
- covered by is mandatoryfor VEHICLE,
- covered by isoptionalfor INSURANCE

CUSTOMER
Cust-Number
Name
Address
id: Cust-Numbe
0-N 0-N
1-1 1-1
VEHICLE INSURANCE
V-Number Contract-Number
Model -t covered by 0L Type
Date id: signs. CUSTOMER
id: V-Number Contract-Number
O-N ACCIDENT
Acc-Code
Cimabved > on-— ae
Type
id: Acc-Code

Figure 5.17 -A potpourri of rel-types.

Inasmuch as one-to-many, many-to-one and one-to-one rel-types materialize
mathematical functionghey also are callefdinctional rel-types.

As a last definition, we will calbinary schemaany schema in which all rel-
types areébinary and haveno attributes

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

5-22

Lesson 5: The basics of conceptual modeling

N-ary rel-types

The classification fronone-to-ongo many-to-manygenerally is not applica-

ble when N > 2. However, some authors generalize it by using terms such as
many-to-many-to-manye.g., manufactures in Figure 5.9) orone-to-
many-to-many

Hence the terrmanyrole to designate a role wijh> 1 andonerole to desi-

gnate a role with = 1. A one-to-many rel-type hasmany roleand lone

role.

5.15 Minimal identifiers

Let us go back to the schema of Figure 5.9. It tells us that there cannot exist
two companies sharing the sa@em-ID value. But what about two compa-
nies with the same values@bm-ID and Com-Name? Of course, there can-

not be more than one either.

The same reasoning can be held for any value set of combind@en {
longs.COMPANY,Name,Country }, which obviously designates at most
one BRANCH entity.

We can conclude that,
- {Com-ID, Com-Namg is an identifier of COMPANY,
- {belongs.COMPANY,Name, Country }is an identifier of BRANCH.

Of course, we feel that these are gobdidentifiers. We shall say that they
are not minimal. Aminimal identifier is a group of attributes and/or roles
such that any strict subset is no longer an identifier.

Needless to say, we will avoid declaring non-minimal identifiers, and that we

can keep the schema of Figure 5.9 as is. Practically speaking,

- we will discard any identifier a subset of which is an implicit or declared
identifier®,

- we will carefully examine each multi-component identifier to make sure
that none of its components can be discarded.

As we will see later on, the Schema Analysis assistant of DB-MAIN can detect these situa-
tions.

21/3/02 DB-MAIN Tutorial £] J-L Hainaut 1999

Lesson 5: The basics of conceptual modeling 5-23

5.16 What next?

There are many other useful conceptual constructs to be discussed. However,
those we described in this lesson are quite sufficient to build complex databa-

ses. Therefore, before learning about advanced conceptual structures, we will
get a deeper insight into logical structures such as those we caught a glimpse
of in Lesson 4.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

5-24

1.

Lesson 5: The basics of conceptual modeling

Key ideas of Lesson 5

Entity types
An entity typerepresents a class of concrete or abstract real-world entities,
such as customers, orders, books, cars and accidents.

An entity type can comprise attributes, can play roles in rel-types, and can be
given identifiers.

Relationship types (rel-types)

A relationship typeepresents a class of associations between entities. It con-
sists of entity types, each playing a specific role. A rel-type with 2 roles is cal-
led binary, while a rel-type with more than 2 roles is calidry. A rel-type

with at least 2 roles taken by the same entity type is cajielct.

Each role is characterized by d@ardinality [i-j] , a constraint stating that
any entity of this type must appear, in this rolg, itoj associations or rela-
tionships. Generally is0 or 1, whilej is1 or N (= manyor infinity). Howe-

ver, any pair of integers can be used, provideditkat, 0 <i andO <j .

A binary rel-typebetween A and B with cardinalifia-ja] for A, [ib-
jb] for B is called:

- one-to-one fa=jb=1
- one-to-many from AtoB ifa>1 andjpb=1
- many-to-one fromAtoB ifa=1 andjb>1

- many-to-many ifa>1 andjpb>1
- optional for A ifla=0
- mandatory for A ifia>0

A onerole has cardinalit§i-1] , while amanyrole has cardinalityi-j]
with j>1 . A binary rel-type with at least omme roleis calledfunctional A
binary schemancludes only binary rel-types without attributes.

A role can be given a name. When no explicit name is assigned, an implicit
default name is assumed, namely the name of the participating entity type. The
roles of a rel-type have distinct names, be they explicit or implicit. For instan-
ce, in a cyclic rel-type, at least one role must have an explicit name.

A rel-type can have attributes, and can be given identifiers.

21/3/02 DB-MAIN Tutorial £] J-L Hainaut 1999

Lesson 5: The basics of conceptual modeling 5-25

This model follows theparticipation interpretationof cardinalities. Accor-
ding to it, the cardinality of a role measures the number of relationships in
which any entity appears in this role.

3. Attributes

An attributerepresents a common property of all the entities (or relationships)
of a given type. Simple attributes have a value domain defined by a data type
(number, character, boolean, date, ...) and a length (1, 2, ..., 200, ..., N [stan-
ding for infinity]). These attributes are callatbmic

An attribute can also consist of other component attributes, in which case it is
calledcompoundTheparentof an attribute is the entity type, the relationship
type or the compound attribute to which it is directly attached. An attribute
whose parent is an entity type or a rel-type is said to be atlleVake compo-
nents of a levei- attribute are said to be at level i+1.

Each attribute is characterized by its cardinality [i-j], a constraint stating that
each parent has fromtoj values of this attribute. GenerailysO or 1, while

j is from1 to N (= infinity). However, any pair of integers can be used, pro-
vided thai <j,0<i andO <j . The default cardinality ig-1] , and is not
represented graphically. An attribute with cardindliy is called:

- single-valued if=1

- multivalued iff > 1

- optional ifi=0

- mandatory ifi>0
4. Groups

A group is made of components, which are attributes, roles and/or other
groups. A group represents a construct attached to a parent object, i.e. to an en-
tity type or a rel-type. It is used to represent, among otluenstifiers

- primary identifier the components of the group make up the main identifier
of the parent object; it appears with symido] if it comprises attributes on-
ly, the latter are underlined in the graphical view; a parent object can have
at most one primary id; all its components are mandatory.

- secondary identifierthe components of the group make up a secondary
identifier of the parent object; it appears with synitbl ; a parent object
can have any number of secondary id.

A minimal identifieris a group such that there is no strict subset that still is an

identifier.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

5-26 Lesson 5: The basics of conceptual modeling

Summary of Lesson 5

« In this first lesson, we have studied the following concepts:
- the cardinality of an attribute

- single-valued / multivalued attributes

- mandatory / optional attributes

- atomic / compound attributes

- multiple identifiers

- hybrid identifiers

- implicit identifiers

- identifiers as a special kind of group

- binary and N-ary relationship types

- attributes of relationship types

- identifiers of relationship types

- cyclic relationship types

- role names

- one-to-many, many-to-one, one-to-one, many-to-many rel-types
- functional rel-types

- minimal identifiers.

* We have also learned:
- to update the properties of an object
double-click on the object description
File / Project properties
- to define the cardinality of an attribute
- to define a compound attribute
New/ Attribute / First
from the Attribute box buttonFirst att.

21/3/02 DB-MAIN Tutorial £] J-L Hainaut 1999

Lesson 5: The basics of conceptual modeling 5-27

to define a rel-type

New/ Rel-type; New/ Role and/or [3H
- to add a role to a relationship type

New/ Role
to add attributes to a relationship type

same as for entity type attributes
to define an identifier for a relationship type

New/ Group or, if local attribute:
to give a role a name.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

5-28

51

5.2
5.3

54

55

21/3/02

Lesson 5: The basics of conceptual modeling

Exercises for Lesson 5

Build a schema describing a population of persons who have each a per-
son id, a name, 1 to 3 christian names, possibly a maiden name, and an
arbitrary number of addresses.

These persons may have children, who are persons too.

They can be married. They can even have been married several times,
but only once at any given time.

Consider the following schema. Complete it to take into account the
fact that,

an order cannot reference an item more than once

ITEM
CUSTOMER Iltem-Code
Cust-ID ORDER Description
Ord-ID
Name —0-1-1— Ord-D: QtyOnHand
Address Ord- ate Unit-Price
id: Cust-ID id: Ord-1D id: Item-Code
1-N 0-N

11 11

REFERENCE

Qty

The following schema tells thauthors write booksand that each
author appears in a given position in the author list for each of his/her
book (1st author, 2nd author, etc.). Complete the schema to express the
following facts:

- an author cannot appear more than once in a hbook
- the authors of a book appear in distinct positions

writes
BOOK -N — - AUTHOR
0 N Position 0 -

DB-MAIN Tutorial £] J-L Hainaut 1999

Lesson 5: The basics of conceptual modeling 5-29

5.6 What are themplicit identifiers of the following rel-types?

Al A —ow@m

w

>

|
e
H
@
z

|
w

E.
A \0-1®0-N/ B
0-N
F.
A 01 01— B
0-N
G.
A 01 01— B
0-1
C
H.
A \O-N®O-N/ B
0-N

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

5-30 Lesson 5: The basics of conceptual modeling

5.7 Build a schema that represents customers, products and suppliers (with
some natural properties such as name, address, quantity on hand, etc).
Represent the fact that suppliers supply products to customers, and that
they do so in a given supplied quantity and at a given date. Think very
carefully about the fact that,

customer C can be supplied product P by supplier S more than
once, but at different dates

5.8 What do you think of the following schema?

SATIENT MIEDICAL-FILE
Pat-Nbr E' ?'ID

Name —0-11-1— oot
Address & of PATIENT
id: Pat-Nbr " File-ID

21/3/02 DB-MAIN Tutorial £] J-L Hainaut 1999

Lesson 6

The basics of lo gical and physical
modelin g

Objective

The 6th lesson discusses some concepts of the DB-MAIN model
dedicated to the representation of logical and physical constructs,
i.e., components that appear in DBMS schemas as opposed to
those that make up computer-independent conceptual schemas.
We will describe and manipulate additional integrity constraints
(e.g., referential constraints), access keys (representing indexes
for instance) and entity collections (representing record files).
We will also examine how to make the names of a schema com-
ply with the syntactic rules of DBMS languages.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

6-2

6.1

6.2

Lesson 6: The basics of logical modeling

Preliminary checking

In this lesson, we will use projetANU-5(file manu-5.lun) that has been
created in Lesson 5.

Introduction

We startDB-MAIN and we open projeBIANU-5 We will work on this pro-
ject, so we will first make a copy we cMIANU-G

- throughFile / Project properties we change its name inkdANU-6

- we save this versior-{le / Saveproject asor button) under the name
manu-6.lun

What is a logical schema?

Lesson 4 explained how a conceptual schema can be translated into a relatio-
nal schema. Both schema represent the same information, but the latter ex-
presses it through the constructs of a DEM&hile the former is claimed to

be DBMS-independent. A relational schema is consideredlaglmal. The

same conceptual schema can be transformed into several relational logical
schemas, according to the design criteria we have in mind: readability, simpli-
city, ease of evolution, response time, space occupied on disk, etc. In addition,
considering other target DBMSs will lead to, for examplgect-relationa)
object-orientedstandard file IMS or CODASY Uogical schemas.

To keep things simple, we will mainly concentrate on relational schemas, i.e.,
on logical schemas that comply with the relational model. Other model will
be discussed in further lessons.

A relational logical schema comprises tables made up of columns, primary (or
candidate) keys and foreign key. Figure 6.1 shows the logical schema we built
in Lesson 4. It includes three tables, eight columns, three primaryi@gys (
two foreign keysref). In addition, it includes indexeadc, for access keys),
which have been defined on each key.

In other words, the conceptual structures are expressed into the model of a DBMS, or,
more precisely, into the model of a family of DBMSs.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 6: The basics of logical modeling 6-3

6.3

In this lesson, we will discuss in greater detail the concepts of which all rela-
tional logical schemas are made up.

COMPANY manufactures PRODUCT]
Com-ID Com-ID Pro-ID
Com-Name Pro-ID Pro-Name
Com-Address id: Pro-1D id: Pro-ID
Com-Revenug Com-ID acc
id: Com-ID acc

acc ref: Pro-ID
acc
ref: Com-ID
acc

Figure 6.1 -The logical schema built in Lesson 4.

Transformation into a logical schema

Let us produce a relational logical schema for the conceptual schema we de-
veloped in Lesson 5. We proceed as suggested in Lesson 4:

- we make a copy of the schema (we select schdaraufacturing/
Conceptual then executé®roduct / Copy schemg and we change its

"

version value tollogical ";

- in this new schema, we execi@nsform / Relational modelto produce
the relational structures;

- we change the graphical representation by adding shade to the entity types
(View / Graphical settingy, to make them look like tabiegwith a little
imagination!).

SchemaManufacturing/Logical is transformed intaelational data

structures(Figure 6.3 and Figure 6.4).

From now on, we should use the tetaideinstead of entity typeolumnins-

tead of attribute, etc. However, the logical model is independent of specific
technologies, and in particular of relational DBMS. Figure 6.2 gives the trans-
lation rules for RDBMS. Similar tables can be built for other data manage-
ment systems. We will keep using the standard termentify typesand
attributes except when mentioned otherwise.

2. The idea is that shading gives the objects a 3D look, which makes theroancrete

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

Lesson 6: The basics of logical modeling

DB-MAIN concepts

Relational terms (SQL)

entity type

attribute

primary identifier
secondary identifier
reference group
access key

entity collection

table

column

primary key

candidate keyr(ot pure SQ)
foreign key

index

(table-/db-)spacent standarl

Figure 6.2 -Translation table of DB-MAIN names into relational names.

COMPANY

Com-ID
Com-Name

Com_Number
Com_Street
Com_Zip-Code
Com_City-Name
Com-Revenue[0-1]

id: Com-ID

acc
id': Com-Name
Com_Number
Com_Street
Com_Zip-Code
Com_City-Name
acc

BRANCH
Com-ID
Country
Name
id: Com-ID
Country
acc

ref: Com-ID
acc

Phone-Numbe
Com-ID
Local
Area
Country
id: Com-ID
Local
Area
Country
acc
equ: Com-ID
acc
manufacturep MARKET
Name Name
Pro-ID Size
Ratio id: Name
Com-ID acc
Country
id: Pro-ID
Name
acc PRODUCT
ref: Name Pro-1D
acc Pro-Name
ref: Pro-ID Substitute[0-1]
acc | ———__[id: Pro-ID
ref: Com-ID acc
Country | _|ref: Substitute
acc acc

Figure 6.3 -First version of the logical schema.

21/03/2002

DB-MAIN Tutorial E] J-L Hainaut 1999

Lesson 6: The basics of logical modeling

6-5

Schema Manufacturing/Logical

BRANCH

Com-ID

Country

Name

id: Com-ID,Country
access key

ref: Com-ID -> COMPANY.Com-ID
access key

COMPANY
Com-ID
Com-Name
Com_Number
Com_Street
Com_Zip-Code
Com_City-Name
Com-Revenue[0-1]
id: Com-ID
access key
id": Com-Name,Com_Number,Com_Street,Com_Zip-Code,Com_City-Name
access key

manufactures

Name

Pro-ID

Ratio

Com-ID

Country

id: Pro-ID,Name
access key

ref: Name -> MARKET.Name
access key

ref. Pro-ID -> PRODUCT.Pro-ID
access key

ref. Com-ID,Country -> BRANCH.(Com-ID,Country)
access key

MARKET
Name
Size
id: Name
access key

DB-MAIN Tutorial -[J J-L Hainaut 1999

21/03/2002

6-6

6.4

Lesson 6: The basics of logical modeling

Phone-Number

Com-ID

Local

Area

Country

id: Com-ID,Local,Area,Country
access key

equ: Com-ID = COMPANY.Com-ID
access key

PRODUCT

Pro-ID

Pro-Name

Substitute[0-1]

id: Pro-ID
access key

ref. Substitute -> PRODUCT.Pro-ID
access key

Figure 6.4 -First version of the logical schema - Text standard view.

This schema is inevitably more complicated and less readable than its concep-
tual counterpart (otherwise it would have been preferable to reason from the
beginning in the relational model!). Though the objective of this lesson is not
to describe in detail how and why the transformation was carried out, we will
try to understand, at least intuitively, the main translation rules that have been
used (Section 6.6). Now, we will discuss in greater detail some important
constructs that we already encountered in lesson 4, and that appear again in
this schema, namely tieference attributeand theaccess keys

Reference attributes (foreign keys)

A reference attribute is an attribute whose values act as references to other
entities. For instance, attribu@®m-ID in entity typeBRANCHk aimed at de-
signating sCOMPAN¥ntity. Since each entity type represents a table in this
logical SQL schemaom-ID is what is called &reign keyin the RDBMS
language. In general, since a foreign key can comprise more than one attribu-
te, we will talk abouteference groups

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 6: The basics of logical modeling 6-7

COMPANY
Com-ID
Com-Name
Com_Number
Com_Street
Com_Zip-Code
Com_City-Name
BRANCH Com-Revenue[0-1]
Com-ID id: Com-ID
Country acc
Name id: Com-Name
id: Com-ID Com_Number
Country Com_Street
acc Com_Zip-Code
ref: Com-ID| Com_City-Nam
acc acc

Figure 6.5 -Reference group, aka foreign key.

The way this attribute is denoted in DB-MAIN views expresses that each value
of Com-ID in anyBRANCHentity must be &om-ID value in som&€OMPA-

NY entity. We observe that the attribute mentioned in the target entity type
(hereCOMPAN)Ss its primary identifier. In some situations, the target attri-
bute can be a secondary identifier as well.

BRANCH manufacturgs
Com-ID Name
Country Pro-ID
Name Ratio
id: Com-ID Com-ID

Country Country
acc id: Pro-ID
ref: Com-ID| Name
acc acc
ref:Name
acc
ref:Pro-ID
acc
ref:Com-ID
Country
acc

Figure 6.6 -Multicomponent reference group.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

6-8

Lesson 6: The basics of logical modeling

If the identifier of the target entity type is made of several attributes, then the
reference must be supported by several reference attributespasufac-

tures entity type, where the values of attribut€sn-1D , Country) desi-
gnate sEBRANCHentity (Figure 6.6).

There is a more sophisticated form of reference attributes that can be found in
entity type (i.e. tablelPhone-Number . Let us first observe that each entity

of this type represents a phone number of a company, and that all the phone
numbers of company X are represented byPth@ne-Number entities with
Com-ID = X . ThereforeCom-ID is a reference attribute (or foreign key)

to COMPANY

However, the conceptual schema tells us that each company muat least
one phone number (cardinalift-4]). This property translates, in the cur-
rent logical schema, into a constraint stating that €@MPAN¥ntity must
have at least one correspondlgpne-Number entity. More precisely, the
value ofCom-ID of eachCOMPAN¥ntity must match thEom-ID value of
at least on®hone-Number entity.

Since theCOMPANY.Com-IDvalues form a subset of tHRHONE-NUM-
BER.Com-ID values and thEHONE-NUMBER.Com-IDralues form a sub-
set of theCOMPANY.Com-IDvalues, we can conclude that,
the set of COMPANY.Com-IDvaluesis equal tothe set ofPHONE-
NUMBER.Com-IDvalues.

To represent this constraint, DB-MAIN uses the tequ, that expresses that
the value sets afom-ID in both entity types arequal (Figure 6.7).

COMPANY
Com-ID
Com-Name
Com_Number
Com_Street Phone-Numbgr
Com_Zip-Code Com-ID
Com_City-Name Local
Com-Revenue[0-1] Area
id: Com-ID Country
acc id: Com-ID

Local
Area
Country
acc

id": Com-Name
Com_Number
Com_Street
Com_Zip-Code
Com_City-Nam equ: Com-ID
acc acc

Figure 6.7 -Equality reference group.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 6: The basics of logical modeling 6-9

So far, referential attributes are automatically defined as the representation of
relationship types. Later on we could find it useful to define referential cons-
traints manually, for instance to document an existing SQL database.

To practice defining referential attributes, we delete the last constraint of enti-

ty type manufactures by clicking on the ref. Com-ID,Country "

line, and pressing theel key. The line disappears.

To build it again, we define for entity type (tabfeanufactures , a group

of attributes comprisinG@OM-1D andCountry

- we select both attributes, and we click on the bufssh iSthedard
tools bar(Figure 6.8);

- we open the Property box of this group (pres<titer key or double-click)
(Figure 6.9).

manufacturgs
Name
Pro-1D
Ratio
Com-ID
Country
id: Pro-ID
Name
acc
ref:Name
acc
ref:Pro-1D
acc
gr: Com-I1D
Country

Figure 6.8 -A group comprising {Com-ID,Country } has been defined

Now we have to tell DB-MAIN that this group is a reference to BRANCH

We click on theConstraint button (forinter-group constraijt TheConstraint

box opens. We have two properties to specify:

- whatkind of constraintlo we want? Let us click on tief button;

- what is thearget entity typeand what is th&arget identifie? DB-MAIN
will help us considerably by suggesting candidate entity types, and for each
of them suggesting candidate identifiers. These suggestions are based on

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

6-10 Lesson 6: The basics of logical modeling

the structure of the source group we have built, i.e., its composition, the type
and the length of its components. In this case, there is not much choice: only
theBRANCHntity type has an identifier composed of two attributes whose
types and lengths match those of the current group. Therefore, DB-MAIN
proposes this target entity type and this identifier only.

To make this schema equivalent to its former version, don't forget to click on
the Access key button as well (more on this below).

DB-MAIN includes specific tools for finding foreign keys, such as DDL ex-
tractors and the Foreign key Assistant. They will be studied in other lessons
devoted to Reverse Engineering.

Group Properties

Examine/modify the properties of a group of the entity type
manufactures
|Name [FKman_BRa Lemalh 35|
— Functionz — Components
1 BrimanpI Com-ID hame
i Secgndar}l 10 EDUI"I[I_'.J PfD'lD
_— <<Add Firstl Ratio
[T Coexistence {ProlD Mame}
[Exclusive EE;TE}}
[T Ableastone <hdd NE“"
[User const.
I j' Removes s |
[T &coess key ‘ EAN 2l KiN l
Sem. | Tech. | Frop. | ‘ Constraint | Ok, I Cancel |

Figure 6.9 -The properties of the newly defined group.

Note

In this section, we have described foreign keys made of single-valued attribu-
tes. In Lesson 7, we will consider more complex forms of foreign keys that
can be found in non-relatiorfaor in post—relationéldatabases.

3. Such as in COBOL files.
4. Such as in Object-oriented and SQL-3 databases.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 6: The basics of logical modeling 6-11

6.5

Consztraint Properties

Create constraint of
marufactures FEman_BRA

Mame Fkmar_BRA

Type

= Ak C rwerse | € Incluzion | € Copy
" RefEqu | Generic |€ [nel Equ [Copy Equ

Target entity types

|BRANCH =l
Referenced keps
| {ComeD Country =l

Hemwel Ok I Carcel |

Figure 6.10 -Choosing the target of the reference group.

Access keys

The transformation has generatetess keysThis term designates technical
data structures that provide efficient selective access to data records. An ac-
cess key will generally be implemented agaexor ahash tablan relational
DBMS. However, the terraccess kehias been chosen insteadrafexsince

each DBMS generally proposes its own names to denote these tec?miques

Let us consider entity tyddARKET{Figure 6.11). Its attributdameis de-
clared bothidentifier (id) andaccess keyacc oraccess key). Indeed,
RDBMS generally require that each identifier be an index as well. This means
thatNameis an identifier, and, in addition, an access key. Therefore, asking
for the MARKETwhoseNameis known will lead to a quick answer from the
database.

5. Let us citeecord keysn COBOL files andtalculated keyin CODASYL databases.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

6-12

Lesson 6: The basics of logical modeling

MARKET MARKED
Name
Name .
Size ,5'26
id: Name id: Name
ace access key

Figure 6.11 -Identifiers often are supported by access keys.

In addition, all the reference groups (foreign keys) have been made access
keys as well (Figure 6.12). It is not mandatory, but DB-MAIN has found it
handy to propose this in its transformation process. Indeed, such attributes im-
plement relationship types, and therefore will most probably be used as selec-
tion criteria in the programs (in join-based queries for instance).

BRANCH BRANCH
Com-ID Com-ID
Country Country
Name Name
id: Com-I1D id: Com-ID, Country
Country| access key
acc ref: Com-ID -> COMPANY.Com-ID
ref:Com-1D access key
acc

Figure 6.12 -Reference groups (foreign keys) are supported by access keys.

So far, an access key is just an additional property of another construct (iden-
tifier or referential group). We can also decide to declare other access keys if
we think they can boost the performance of queries.

For instance, we can consider that asking for a product of which only the name
is known, is a frequent query. To accelerate the processing of this query, we
decide to build an access keyPro-Name of PRODUCT

An access key is just a special kind @fraup. To illustrate it, we add a new
group toPRODUCT

- we select attribute thero-Name , and we click on the butto :

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 6: The basics of logical modeling

6-13

- we open the Property box of this group (pres<titer key or double-click)

(Figure 6.9);

- we click on the buttoAccess key and we confirm the operation.
The entity typdPRODUCTHow reads as in Figure 6.13.

PRODUCT

Pro-1D
Pro-Name
Substitute[0-1]

id: Pro-ID
acc

ref: Substitute
acc

acc: Pro-Namg

PRODUCT

Pro-1D

Pro-Name

Substitute [0-1]

id: Pro-1D
access key

ref: Substitute -> PRODUCT.Pro-ID
access key
access key: Pro-Name

Figure 6.13 -An additional access key.

6.6 On the conceptual

- relational translation rules

By comparing the conceptual schema with the logical schema of Figure 6.3,
we can guess the main translation rules that have been used to produce the lat-
ter schema from the former one.

First, it is clear that eaantity type is represented by a table, and that each
atomic, single-valued attribute is represented by a column (Figure 6.14).

A compound attribute is translated in as many columns as it has atomic com-
ponents, and this, recursively (Figure 6.15).
A multivalued attribute is represented by a new table, that includes the colu-
mn(s) of the attribute + a foreign key that references the source entity type (Fi-

gure 6.16).
MARKET MARKET
Name Name
Size Size
id: Name id: Name
acc

Figure 6.14 -Translation of a conceptual entity type into a table.

DB-MAIN Tutorial -[J J-L Hainaut 1999

21/03/2002

6-14

Lesson 6: The basics of logical modeling

COMPANY COMPANY
Com-ID Com-ID
Com-Name Com-Name
Com-Address Com_Number

Number Com_Street
Street Com_Zip-Code
City Com_City-Name
Zip-Code Com-Revenue[0-1]
City-Name id: Com-ID
Com-Revenue[0-1 acc
id: Com-ID

Figure 6.15 -Translation of compound attributes into a series of columns.

COMPANY Phone-Numbe
Com-ID Com-ID
Com-Name Local
Com-Revenue[0-1] Area
Phone-Number[1-4 COMPANY Country

Country Com-ID id: Com-ID
Area Com-Name Local
Local Com-Revenue[0-1 Area
id: Com-ID id: Com-ID Country
acc \ acc
id': Com-Name equ: Com-ID
acc acc

Figure 6.16 -Translation of a multivalued attribute into a secondary table.

There are two kinds of rel-types, naméyctionalrel-types (one-to-one or
one-to-many) aneon-functionalrel-types (many-to-many or N-ary or with
attributes), also callecomplex

A functional rel-type is represented by a foreign key from tdmeside to the

manyside, if any (Figure 6.17). In case of a cyclic rel-type, the foreign key
references its own table.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 6: The basics of logical modeling 6-15

COMPANY COMPANY
Com-ID Com-ID
Com-Name Com-Name
Com-Revenue[0-1] Com-Revenue[0-]L]
id: Com-ID id: Com-ID

\ acc
0-N id': Com-Name
acc
1"1 BRANCH
BRANCH Com-ID
Country
Caunty Narme
id: belongs. COMPANY id: gom-ID
Country ountry
acc
ref:Com-ID
acc

Figure 6.17 -Translation of a functional rel-type into a foreign key.

A complex rel-typeis translated into a new table, which materializes the re-
lationships, hence the nam&ationship table Each role of the rel-type beco-
mes a foreign key of the relationship table toward the table of the entity type
playing this role. The rel-type attributes translate into columns of the rela-
tionship table. Identifiers are made explicit (Figure 6.18).

As discussed in Section 6.5, each identifier and each foreign key has been
made an access key. Due to the lack of information on performance require-
ments, there is no possibility to generate other access keys, and none have been
defined!

We can guess that these are not the only possible translation rules, and things
can get more complex for larger and more sophisticated schemas. In addition,
taking into account additional requirements such as response time, update time
or disk space reduction can require more refined translation rules. They will
be addressed later dn

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

6-16 Lesson 6: The basics of logical modeling

MARKET
Name
Size
id: Name
\
0-N
id: PRODUCT
BRANCH 0- MARKET O-N___|PRODUCT
Cotmty ProID
- Pro-Name
id: belongs. COMPANY & Pro-id
Country :
manufacturgs MARKET
Name Name
BRANCH Pro-1D Size
Com-ID Ratio id: Name
—— Com-ID acc
Country Country
Name —
- id: Pro-ID
id: Com-ID Name
Country acc
acc ref: Name PRODUCT
acc Pro-ID
ref: Pro-1D Pro-Name
acc Substitute[0-1
ref: Com-ID id: Pro-ID
Country acc
acc

Figure 6.18 -Translation of a complex rel-type into a relationship table.

6. We want to mention just a simple rule that could improve the schema obtained so far:
under certain conditions, when an index has been defined on colulBsG >, any
index defined on arefix subset such asfsB > or <A> can be discarded without perfor-
mance penalty. In this way, 3 indexes can be removed from the logical schema. This rule
will be discussed in Volume 2 of this tutorial.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 6: The basics of logical modeling 6-17

6.7 Defining entity collections

In a real database, that is, one which is implemented in an actual computer, ta-
ble rows and records are stored in a large secondary memory, such as on a ma-
gnetic disk. More specifically, they are stored in storage units called,
depending on the data management systiées, data files, datasets, areas,
realms, DBspacegr tablespaces

DB-MAIN proposes a concept to represent such storage units, namelythe

tity collection, or, more simply, theollection.

Let us suppose that the six tables of the relational database have to be stored
into two distinct files, one, calld@R_STOREwhich can accomodate the rows

of PRODUCT MARKET and manufactures , and the other, called
CY_STOREin which the rows cEOMPANBRANCHindPhone-Number

will be stored.

Collection Properties |

E wamine/maodify the properties of a collection

Mame |CY-STORE

Short namel

— Entity lypes
COMPAMNY : manufactures
BRAMCH <<add Flrst| MARKET
Phone-Murnber PRODUCT

<<ihdd Ne:-:j
v I I _’I Flemu:uve>>| y I I _’I

Sem. | Tech. | Prop. |

e call. Ok Cancel
| | |

Figure 6.19 -Defining the entity collection CY_STORE.

A collection is created through the butt and specified througBdhe
lection property boxcalled up by pressing tister key or by double-clicking

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

6-18

6.8

Lesson 6: The basics of logical modeling

on the name of the collection (Figure 6.19). It allows us to specify the name,
short name, semantic and technical (see below) descriptions, and the list of the
entity types (otableg whose entitiesr¢ws) are to be stored in the collection.

Any number of entity types can be stored in a collection, and an entity type can
be storedin any number of collections. However, some DBMS can impose
more limited configuration. For instance, many relational DBMS force the
rows of each table to be stored in one table space only, though the latter can
receive rows from several tables.

These collections appear in all schema views (Figure 6.20 and Figure 6.21).

COMPANY PRODUCT
BRANCH MARKET
Phone-Number manufactures

Figure 6.20 -Entity collections: storage units to store table rows in.

Name processing

Now we could believe that we are ready to generate the SQL schema that cor-
responds to the final version of our relational database.

However, a quick look at this schema will show a little but potentially an-
noying problem: some names include the character "-" (dash), which is invalid
in SQL data names. A standard remedy consists in replacing each character
"-" by, say, the character "_" (underscore). For insta@oe)-ID should be
replaced byCom_ID, and so on.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 6: The basics of logical modeling 6-19

Schema Manufacturing/Logical / Manu

collection CY-STORE
COMPANY
BRANCH
Phone-Number

collection PR-STORE
PRODUCT
MARKET
manufactures

BRANCH
in CY-STORE
Com-ID: char (15) [S]
Name: char (1)

..$

COMPANY / COM [S]
in CY-STORE
Com-ID: char (15) [S]
Com-Name: char (25) [S]

manufactures [S]
in PR-STORE
Name: char (24)
Pro-ID: char (8) [S]

Figure 6.21 -Entity collections, according to the Text extended view.

DB-MAIN has a specific processor for that task. Itis called up throuayhs-

form / Name processing which opens th&lame Processing pan@rigure
6.22). We will examine this processor in detail in a further lesson, but we can
already use it to solve our problem.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

6-20 Lesson 6: The basics of logical modeling

Nome Processing |
' Global v Mames W Collections [~ Processing urits
" Selected W Shotnamez W Entitwtppes [Roles
" Marked i [T Groups

Patterns : Add Inzert | Deletel

IO

¢ lower->uppercase { upper-rlowercase " Capitalize
[~ Remove accents [~ Shorten to I_l:haracters

™ Canfim Eancell Load | Save |

Figure 6.22 -Processing the names of the schema.

We proceed as follows:

- we set the scope telobal (i.e., processing the whole schema);
- we want to process both tRames and theShort names ...

- ... of theEntity types, Attributes andCollections;

- first, we tell the processor that we want all the names to be converted into
uppercase characters (buttower -> uppercase)

- then we define the translation pattern:

- we click on buttorAdd, therefore opening theew pattern box (Fi-
gure 6.23):

- the character - is typed in tearch for field,
- the character _ is typed in tReplace by field,
- and we confirm by clicking on the butt@x;

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 6: The basics of logical modeling 6-21

Mew pattern E |
Search far :
Feplace by

Cancel |

Figure 6.23 -Defining a substitution pattern.

- the translation pattery” -> " " now appears in theatterns
field (Figure 6.22);

- we leave the buttoGonfirm unchecked to avoid being asked for confirma-
tion before each substitution;
- we validate by clicking on the butt@k.

All the "-" characters have been replaced with the character "_", just as we
wanted them to be and all the names are now in uppercase (Figure 6.24).

The same procedure will also be used to remove space characters or to replace
the reserved words it may comprise: no user name can belong to a list that in-
cludes such words aseate, table, integer, char, date, index, references, uni-
que, checketc.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

6-22

COMPANY PHONE_NUMBEH @
COM_ID COM_ID -
COM_NAME LOCAL MANUFACTURES
COM_NUMBER AREA MARKET
COM_STREET COUNTRY PRODUCT
COM_ZIP_CODE id. COM D ~
COM_CITY_NAME LOCAL o
COM_REVENUE[0-1] AREA (_CY_STORE)
id: ggM—'D g(?cUNTRY PHONE_NUMBER
id: COM_NAME ﬂ\equ: COM_ID ggﬁﬂl\;ﬂw

COM_NUMBER acc
COM_STREET
Engﬁ{ﬁEﬁ,E MANUFACTURES MARKET
ace NAME NAME
PRO_ID SIZE
RATIO id: NAME
BRANCH COM_ID acc
COM_ID COUNTRY
COUNTRY id: PRO_ID
NAME NAME
P acc PRODUCT
id: ggmﬁﬁw ref: NAME PRO_ID
acc ficho D SS%%I\SEE[O 1]
rer. -
ref: com.ip ace ——___[i&: PRO_ID
ref: COM_ID acc
COUNTRY | |ref:SUBSTITUTE
acc acc

Lesson 6: The basics of logical modeling

Figure 6.24 -The final schema.

6.9 SQL code generation

Now we can ask for the SQL translation function as proposed in lesson 4
through the commanigile / Generate/ Standard SQL(check).

-- * Standard SQL generation *
% *

-- * Generator date: Dec 8 1998 *

-- * Generation date: Mon Jan 04 21:50:31 1999 *

Fkkkkkkkkkkkkkkk kkkk

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 6: The basics of logical modeling

-- Database Section --
create database Manufacturing;
-- DBSpace Section --

create dbspace CY_STORE;
create dbspace PR_STORE;

-- Table Section --

create table BRANCH (
COM_ID char(15) not null,
NAME char(20) not null,
COUNTRY numeric(3) not null,
primary key (COM_ID,COUNTRY))
in CY_STORE;

create table COMPANY (
COM_ID char(15) not null,
COM_NAME char(25) not null,
COM_NUMBER numeric(5) not null,
COM_STREET char(20) not null,
COM_ZIP_CODE numeric(7) not null,
COM_CITY_NAME char(18) not null,
COM_REVENUE numeric(12),
primary key (COM_ID),

COM_CITY_NAME))
in CY_STORE;

create table MANUFACTURES (
PRO_ID char(8) not null,
NAME char(24) not null,
RATIO numeric(4,4) not null,
COM_ID char(15) not null,
COUNTRY numeric(3) not null,
primary key (PRO_ID, NAME))
in PR_STORE;

create table MARKET (
NAME char(24) not null,
SIZE numeric(6) not null,
primary key (NAME))
in PR_STORE;

DB-MAIN Tutorial -[J J-L Hainaut 1999

unique (COM_NAME,COM_NUMBER,COM_STREET,COM_ZIP_CODE,

6-23

21/03/2002

6-24

21/03/2002

Lesson 6: The basics of logical modeling

create table PHONE_NUMBER (
COM_ID char(15) not null,
LOCAL numeric(8) not null,
AREA numeric(3) not null,
COUNTRY numeric(3) not null,
primary key (COM_ID, LOCAL, AREA, COUNTRY))
in CY_STORE;

create table PRODUCT (
PRO_ID char(8) not null,
PRO_NAME char(25) not null,
SUBSTITUTE char(8),
primary key (PRO_ID))
in PR_STORE;

-- Constraints Section

alter table BRANCH add constraint FKBELONGS
foreign key (COM_ID) references COMPANY;

alter table COMPANY add constraint
check(exists(select * from PHONE_NUMBER
where PHONE_NUMBER.COM_ID = COM_ID));

alter table MANUFACTURES add constraint FKMAN_MAR
foreign key (NAME) references MARKET;

alter table MANUFACTURES add constraint FKMAN_PRO
foreign key (PRO_ID) references PRODUCT;

alter table MANUFACTURES add constraint FKMAN_BRA
foreign key (COM_ID,COUNTRY) references BRANCH;

alter table PHONE_NUMBER add constraint FKCOM_PHO
foreign key (COM_ID) references COMPANY;

alter table PRODUCT add constraint FKREPLACES
foreign key (SUBSTITUTE) references PRODUCT;

-- Index Section --

create unique index IDBRANCH on BRANCH (COM_ID,COUNTRY);

create index FKBELONGS on BRANCH (COM_ID);

DB-MAIN Tutorial E] J-L Hainaut 1999

Lesson 6: The basics of logical modeling 6-25

create unique index IDCOMPANY on COMPANY (COM_ID);

create unique index IDCOMPANY on COMPANY (COM_NAME,COM_NUMBER,
COM_STREET,COM_ZIP_CODE,COM_CITY_NAME);

create unique index MANUFACTURES on MANUFACTURES (PRO_ID,NAME);

create index FKMAN_MAR on MANUFACTURES (NAME);

create index FKMAN_PRO on MANUFACTURES (PRO_ID);

create index FKMAN_BRA on MANUFACTURES (COM_ID,COUNTRY);

create unique index IDMARKET on MARKET (NAME);

create unique index IDPHONE_NUMBER on PHONE_NUMBER (COM_ID,LOCAL,
AREA,COUNTRY);

create index FKCOM_PHO on PHONE_NUMBER (COM_ID);

create unique index IDPRODUCT on PRODUCT (PRO_ID);

create index FKREPLACES on PRODUCT (SUBSTITUTE);

Figure 6.25 -The SQL program creating the database.

About the coding rules

The rules used to transcript relational structures into SQL statements are rather
straightforward. Two comments are worth making:

- Foreign keys have been created in a specific section that follows the table
creation statements. The reason is that most SQL compilers do not accept
forward references, i.e., declaring foreign keys whose target table has not
been declared yet.

- The second constraint declaration certainly will have drawn your attention.
Remember that thequ constraint betweePHONE_NUMBER.COM_ID
andCOMPANY.COM_IB made of two independent constraints, namely a
foreign key fromPHONE_NUMBEHRd an inclusion constraint froBOM-
PANY.COM_IDandPHONE_NUMBER his declaration defines the predi-
cate that expresses the second part oétfueconstraint.

In fact, this translation may not work for two reasons. First, many DBMS

do not acceptheck predicates referencing more than one row. Secondly,
the translation of the two parts of thgu constraint form a kind oflea-

dlock. Indeed, they imply that (1)BHONE_NUMBEBw cannot be inser-

ted before its parec@@OMPANYow has been inserted, and (Zy@MPANY

row cannot be inserted before the first of its childPefONE_NUMBEBwsS

has been inserted! The solution lies in specific transaction structures based
on deferred constraints. These techniques go well beyond the scope of this
tutorial.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

6-26

Lesson 6: The basics of logical modeling

On SQL generation styles

Despite what this section may suggest, there are many ways to code a logical/
physical schema into a SQL program. Actually, coding all aspects of a logical
schema can prove a complex tasioB-MAIN proposes several styles from
which you can choose.

- Built-in generators TheFile / Generatecommandproposes 6 simple SQL
generators. Explore them to evaluate their characteristics. In particular,
what do you think of thécademicstyle?

- External generatorsThey are available a&soxo programs through the
File / ExecuteVoyager command or the butto . Progr&®QL.oxo
is similar to built-in generatd@tandard SQL (check). The source code of
this generator is available as f8)L.V2, and can be modified.

- Component SQL-GEN of Application Library.#This collection of 9 ge-
nerators proposes different ways to code basic constructs such as identifiers
and foreign keys.

- A more comprehensive and parametrized generator is available, but its use
requires concepts that go beyond the scope of this tutorial.

In this section, we have mentioned a key feature of DB-MAIN, namely the
Voyager extensions. Though this part of the tool is too complex to be dis-
cussed in this volume, we will say some words on its characteristics.

The Voyager 2 meta-development environment

DB-MAIN offers a complete programming langualyy@yager 2 that allows
analysts to develop their own components to include in the CASE tool. So-
phisticated code and report generators, but also analyzers, transformers, eva-
luators, etc., can be developed without resorting to the C++ native language of
DB-MAIN. Programs written ivoyager 2*.V2) are compiled inté.oxo

binary code, that is executed by the Voyager virtual machine of DB-MAIN.

SQL.OX0Oand the components of tAgplication Librarie§ are some exam-
ples of public-domain extensions.

The Voyager development environment is described in specific manuals.

In fact, there are currenttyo good commercial SQL generatorg., generators that pro-
duce a correct and efficient code for all the constructs of logical schemas. In addition, the
current generators are rigid code builders that allow for practically no customization.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 6: The basics of logical modeling 6-27

6.10 About the DB-MAIN graphical representation

One could be surprised by the graphical conventions used to represent identi-
fiers and reference groups. Indeed, such software packages as Microsoft Ac-
cess also represent relational schemas in a graphical way through simpler
techniques (Figure 6.26). Primary keys are highlighted and references are
shown through directed field-to-field connections.

The reason lies in the greater generality of CASE tools, and particularly of DB-
MAIN. Such tools must cope with much more complex situations, not only in
developing new databases according to relational and non-relational technolo-
gies, but also in describing the recovery of ancient databases that exhibit non-
standard structures. Forinstance, consider how simple graphical drawing con-
ventions as those used in Figure 6.26 could cope with the following situations:
- atable can have an arbitrary number of identifiers;
- two identifiers can share common columns (without one of them being non-
minimal);
- aforeign key can reference secondary identifiers;
- an identifier can be a foreign key as well;
- two foreign keys can share common columns;
- aforeign key can reference more than one table;
- self-referencing tables (a foreign key of table T references T);
- the components of an identifier or of a foreign key can be submitted to ad-
ditional constraints, such asexistencéwill be seen later);
- two foreign keys submitted to constraints suchaexistencer exclusivity
(will be seen later);

- an identifier (or a foreign key) can have specific properties that make it an
object on its own: semantic description, usage statistics, physical parame-
ters, implementation technology, etc.

These constructs, and others, can only be described by making identifiers, fo-
reign keys, and in general any group, specific objects, with their own graphical
representation.

8. An Application Libraryis a collection of useful Voyager/Delphi applications that can be
used by analysts. The first volume includes executable and source versions of two RTF
report generators, a natural language paraphraser, a schema metrics evaluator, a perfor-
mance evaluator for relational and COBOL databases, and an organizational units manage-
ment system for data administration.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

6-28 Lesson 6: The basics of logical modeling

COMPANY
COM_ID
COM_MaME MAMUFACTURES

COM_HUMBER
COM_STREET
COM_SF_CODE
COM_CITY_MWaME
COM_REYEMUE

Figure 6.26 -A (seemingly) more intuitive way to represent primary and forei-
gn keys (Relation window of Microsoft Access).

6.11 Logical vs physical schemas

Now it is time to give some explanation of the title of this lesson. Actually,
what is exactly dogical schemand what is @hysical schenta

The answer is not simple since it depends on the nature of the DBMS.

- For most authors, lagical schemais a non-technical description of the da-
tabase according to the model of a family of DBMS. A schema that includes
the description of tables, columns, primary keys and foreign key=la-a
tional logical schemaln the same way, a schema describing files, record
types, fields and record keys can be call&@DBOL logical schema

We will add another property: a logical schema is the necessary and suffi-
cient information a programmer or a user must be supplied with in order to
write queries and programs that use the database. This means that any cons-
truct whose knowledge is not required to write programs does not belong to
the logical schema of the database. For instance, indexes (access keys) and
storage spaces (collections) are not part of relational logical schemas. On
the contrary, these constructs are integral parts of COBOL logical schemas,
since the programmer must explicitly mention them in his/her programs.

- Thephysical schemaof a database includes constructs and properties that
govern the placement of data in the secondary memory, as well as the way
they are accessed and updated. These specifications are strongly perfor-
mance-oriented and require from the database engineer a deep knowledge
of the technical aspects of the H/S environment and of the DBMS. They can

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 6: The basics of logical modeling 6-29

be ignored by the programmers. It is clear that indexes and storage spaces,
as well as page size and buffer management are componentsedatioe
nal physical schema
Now let us return to the lesson title. To simplify the discussion, we have not
distinguished between logical and physical components of relational schemas.
Therefore, all the schemas of this lesson are mixed logical/physical, since they
include both logical and physical constructs. In Volume 2, devoteddo
mation analysis and database desigre will carefully separate these schemas
as well as the reasonings and techniques that relate to them.

6.12 Closing the lesson

We can now quit DB-MAIN. The modified project can be saved as suggested
by DB-MAIN.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

6-30

Lesson 6: The basics of logical modeling

Key ideas of Lesson 6

Reminder. A conceptual schemalescribes the abstract concepts that are (or
will be) represented in a database. It is made of entity types, attributes, rel-
types, identifiers and various other constructs.

A logical schemais the description of the database according to the model of
a family of DBMS. Arelational logical schemanainly describes tables,
columns, primary keys, candidate keys and foreign keys. Users and program-
mers need to consult the logical schema to write queries and programs run-
ning on the database. A logical schema is obtained by applying
representation rules to the conceptual constructs. For instance, an entity type
can be represented by a table, an attribute by a column, a functional rel-type
by a foreign key and a complex rel-type by a relationship table. Names must
often be translated as well. More complex rules can be designed to meet
advanced criteria.

A physical schemaincludes the data structures of the logical schema, enri-
ched with technical constructs defining the implementation and exploitation
modes of the physical database. Physical schemas are strongly dependent on
the specific DBMS with which the database is implemented. Its design is
mainly performance-oriented. A typical relational physical schema includes,
among others, the specification of storage spaces and indexes.

. A coded schemas a program expressed into the Data Description Language

of a DBMS (such as SQL-DDL). Coding rules are straighforward for the
main constructs of the physical schema. However, some constraints can lead
to complex and tricky code that make the coding process a far from trivial
task.

. A reference group (generally calledoreign keyin relational DBMS) is a

group of attributes (columns) whose values are used to designate rows in ano-
ther (or in the same) table.

. Anaccess keygenerally calledndexin relational DBMS) is a group of attri-

butes (columns) which an access mechanism is associated with, that provides
fast access to records (rows) matching the values of this group.

. An entity collection is a named storage area in which records or table rows

can be stored. It corresponds to files or table spaces in most DBMS.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 6: The basics of logical modeling 6-31

Summary of Lesson 6

* In this lesson, we have studied new notions:
- ref reference group (or foreign key)

- equ reference group

- access key (e.g., index)

- entity collections

* We have also discussed in further detail the conceptsgmfal schema
physical schemandcoded schemas opposed to conceptual schemas.

* We have learned aboubyagerexternal programs.

* We have learned,
- todefine agroup New/Group
- to define a reference group
theConstraint button in the Group Property box
- to define an access key
theAccess key button in the Group property box
- to define a collection
New / Collection
- to replace substrings in names
Transform / Name processing
- to execute an external Voyager program
File / ExecuteVoyager [=]

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

6-32 Lesson 6: The basics of logical modeling

Exercises for Lesson 6

6.1 Enter manuaIR/a relational logical schema describing the database that
was built by the following SQL program:

create database RESULTS;

create table STD (
STD_ID char(15) not null,
STD_NM char(25) not null,
STD_PHONE char(10),
primary key (STD-ID));

create table LCT (
LCT_CD char(5) not null,
LCT_NM char(25) not null,
primary key (LCT_CD));

create table CRS (
CRS_NM char(25) not null,
LCT_CD char(5) not null,
HOURS decimal(3) not null,
primary key (CRS_NM,LCT_CD),
foreign key (LCT_CD) references LCT));

create table RES (
STUD_ID char(15) not null,
CRS_NM char(25) not null,
LCT_CD char(5) not null,
GRADE decimal(5,1),
primary key (STUD_ID,CRS_NM,LCT_CD),
foreign key (STUD_ID) reference STUD,
foreign key (CRS_NM,LCT_CD) references CRS)

9. Frustratingly (for you!), DB-MAIN includes a powerful tool that can build logical schemas
from SQL code. However, using it would make you miss the objective of the exercise.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 6: The basics of logical modeling 6-33

6.2

6.3

6.4

6.5

This schema is particularly obscure, due to the choice of (too) short na-
mes. In fact, the names can be changed to make them more informative.
Applying the following substitution leads to a much more readable
schema:

STD — STUDENT

LCT LECTURE
CRS - COURSE
RES - RESULT
NM - NAME
CD - CODE

Use the Name processing function to carry out these replacements.
Note that you can add several patterns inrRthgerns field, so that
all the transformations can be executed in one operation.

Ll

Define the access keys (applyingnsform / Relational modelwill

do the job), then generate a new SQL creation program. Though struc-
turally equivalent to the first one, it enjoys a highly desirable quality:
readability.

Try to guess which conceptual schema this logical schema could have

come front?,

Consider ProjedlANU-6 again. Rework the schema hierarchy and
some schema constructs in order to propose a neater organization:

- the hierarchy shows the conceptual, logical, physical and coded sche-
mas;

- the physical schema does not inclydefix access keys

10. Note that this kind of problem resorts to the Database Reverse Engineering domain, which
will be addressed later on..

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

6-34 Lesson 6: The basics of logical modeling

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 7

Names

Objective

This lesson stresses the importance of names. It discusses con-
straints on names in a schema and compares different approaches
to assign names to objects. It also describes three name proces-
sors: one that can translate, transform and convert naaese(
processing, a second one that changes the prefix of a series of
names Change prefixand a final one that manages consistent
sets of synonymd_gxicons.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

7-2 Lesson 7: Names

7.1 Introduction

Names are the main links between the abstract and formal objects of a schema
and the application domain objects. So, the quality of a schema strongly de-
pends on the way names have been assigned to objects. In addition, object na-
mes can change from a schema to another one. For instance, conceptual names
are not convenient to generate SQL programs. Hence the need for changing
names. All this is the topic of this lesson.

7.2 Uniqueness rules

When entering and modifying schemas in former lessons, you certainly have
observed that you cannot give objects arbitrary names. Obviously, some rules
must be followed, such &se entity types of a schema have distinct narmes

deed, the DB-MAIN model includes namingnstraints that make it possible

to denote objects through their name. Here are the main rules:

« Two names composed of the same characters, be they in uppercase or in
lowercase, in the same order, are considered identic&tustomer and
CUSTOMERre the same names; the accents are taken into account, so
thatEleve andElevé are distinct names;

« all the printable characters, including spaces, /, [, {, (, punctuation sym-
bols and diacritical characters, can be used to form names; however sym-
bols " and | are prohibited;

« theschemasf a project are identified by the combination <name>/<ver-
sion>, or merely <name> if <version> is empty;

» eachentity typeof a schema is identified by its name;

« eachrel-typeof a schema is identified by its name;

» acollectionof a schema is identified by its name;

« directattributesof a definite parent (an entity type, a rel-type or a com-
pound attribute) have distinct names;

« agroupof a definite parent (idem) is identified by its name.

» eachprocessing unibf a definite parent (an entity type, a rel-type or a
schema) is identified by its name.

We can enforce stricter rules through 8shema analysis assistahat will
be discussed later on. For example, we can stipulates that attribute names are
distinct throughout the schema.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 7: Names 7-3

7.3 Ambiguous names (the | symbol)

The standard uniqueness rules described above may appear too strong in some
situations, particularly for rel-types. For instance, the analyst who builds a
tree-like schema (Figure 7.1) may find it useless to name rel-types.

SALESMAN

0-N

5

1-1

?O-N CUSTOMER O-N?
1-1 11
ORDER INVOICE

Figure 7.1 -A hierarchical schema (IMS-like) in which rel-types are left un-
named, without loss of readability.

There exist other variants of Entity-relationship conceptual models, such as
NIAM or ORM (Object-Role}, that insist on role names but ignore rel-type
names. Moreover, many schemas include a large number of rel-types defining
generic relations such gadrt of ", "in ", "of ", "cross ", "overlap ", etc.

In these situations the analyst would want to give these rel-types either the
same name (Figure 7.3), or no name at all (Figure 7.6). The syntax of DB-
MAIN names includes the special symbol "[", which is a valid character, but
which has a special effect when displayed in a schema thiecharacter as

well as all the characters that follow it are not displayed

Figure 7.2shows a schema in which three entity types are being given the
same name. The full name of the current entity type includes a visible part

1. Inhierarchicaldatabases records are organized into tree structures: a record either is a root
record (no parent) or is a child record that has one parent record. IMS from IBM is the
main DBMS of this category. The teherarchicalis standard, but a bit misleading, since
hierarchically organized records can have an arbitrary number of parents.

2. These models are at the core of specific approaches of information system design based on
a linguistic analysis. They will be discussed later on.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

7-4 Lesson 7: Names

"PERSONand a hidden part 'version 3 ". No other entity types can
bear the namePERSON)| version 3 ". However, several entity types can
be assigned the same visible part, as shown in the right list box.

E xamine/modify the properties of an entity tupe
FERSON
Name |PERSONI version 3
FERSON Short hame |
Length 0
— Supertypes
I=| Tictal 2| Disjait
PERSOM| wersion 1
< Add | PERSOM| version 2
Remove >>|
KN i3 [L]
Sem. | Tech. | Frop. |
MHew ent. | MHew att. |‘ Cancel |

Figure 7.2 -The full name of the current entity type includes a visible part
"PERSONand a hidden part "| version 3

7.4 How to choose names

Models, methodologies and CASE tools generally offer the analysts (almost)
full freedom to give names to objects in a schema. However, giving objects
quite arbitrary names would lead to a poor schema, which will be difficult to
read, to interpret and to use.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 7: Names 7-5

T

Figure 7.3 -1t would be worthless to give these rel-types distinct names such
as "has wheels ","has body ", etc. In fact, they have been given distinct
names "has|wheels ", "has|body ", etc.

CAR

So, the question of how to assigh names to objects in a consistent way is quite
relevant.

In most casesntity types represenmajor conceptof the application do-
main, so that it is natural to name each of them witinthan of the concept:
CUSTOMERCCIDENTor BRANCH Whether it is better to use singular or
plural forms is a matter of taste. In this book, we use the singular form to de-
note the concept more than its population:atahetypalcustomerinstead of
theset ofcustomers

Attributes denotelocal properties and are given names that suggest these
properties. Generally, attribute names @oens such adate , Amount,
Address . In some cases, the name can take a more complex form, such as
an assertiontdasChildren , IsValid, IsComingFrom . Many of these
attributes have a boolean domain.

Namingrel-types androles can be more complex. Let us first observe that
they do not always require names, as illustrated in Figure 7.1. In many cases,
a rel-type represents action between two concrete or abstract concepts: a
customersignsa contract, a compamgntscars, an orddrasdetails, an acci-
dentinvolvesvehicles, etc. Therefore, many rel-types are given names which
derive fromverbs, such as the verb itself (Figure 7.4) or an abbreviated form

of it (from insteadcoming from in Figure 7.5). According to this ap-
proach, roles are given names that denote the subset of the entity type that
plays this role.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

7-6 Lesson 7: Names

Rel-typerents involves two participants, namely thented car which is a

car, and theenter, which is a company. Hence role nammt#ed car and

renter (Figure 7.4).Rolesgenerally are given no names (in which case the
name of the entity type is use instead), or names whiahoares. Though it

is quite neutral as far as naming conventions are concerned, the DB-MAIN
model slightly favors these rules as can be observed in the composition of
groups: a group comprises components that are best denoted by nouns
(sender andSerNumber in Figure 7.5).

CAR
CarNumber
Make
Model
id: CarNumbe
rented car solc‘i car maintained car

0-1

L =

renter buyer mamtenance company
0-N 0- 0-
\
COMPANY
CompanyName
Address
id: CompanyName

Figure 7.4 -Conventional naming conventions. Generally, roles are given no
names, except to solve ambiguities in cyclic rel-types.

ORDER
SerNumber
CUSTOMER 58_“591-1 Date
id: from.sende
SerNumber

Figure 7.5 -Use of role names in groups.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 7: Names 7-7

This convention for naming rel-types has a drawback though. Since the name
of the rel-type is the verb extracted from the assertion that defines its seman-
tics, the verb can have two forms, namely active or passive. For instance, the
semantics of rel-typeents of Figure 7.4 can be expressedaasompany

rents cars or, equivalently, asars are rentedy companieshence two pos-

sible names for this rel-typeents andrented by . To avoid this prob-

lem, some authors use the infinitive form of the verb, fice.rent in our

case. By choosing the correct form of the verb, the rel-type can then be read
either way.

CAR
CarNumber
Make
Model
id: CarNumbe

\
rented by bought by maintained by
0-1 0-1 1-1

I

rents buys maintains
0-N 0-N 0-N
\
COMPANY
CompanyName
Address
id: CompanyName

Figure 7.6 -Rel-type and role naming conventions that use roles to name the
relationships between entity types. Such conventions will be found in ORM
models, but can be used in Entity-relationship schemas as well.

As mentioned above, some approaches are based on roles more than on rel-ty-
pes. Such is the case for ORN which each role is given a name that allows
users who read a schema to form natural sentences.
For instance, the schema of Figure 7.6 can be read as follows:

* acarisrented by acompany

3. The Object Role Model, first developed by G. Njissen in the eighties, has since been exten-
ded by several authors. See [Halpin,1996] for instance.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

7-8 Lesson 7: Names

e acompanyents cars

* acarismaintained by acompany
e acompanynaintains cars

* efc.

Tentative conclusion

There is no unique naming approach that brings all benefits but no problems
in all situations. The important point is that the naming conventions you adopt
must beconsistentthroughout your schemas.

7.5 Name processing

For different reasons, it can be useful or even necessary to modify the names
in a schema. For example, names must be in uppercase, or must not be more
than N character long, or cannot include some substrings. Processing each
name individually can be realistic for small schemas, but coping with thou-
sands of names cannot be performed without tools.N&hee processingol

of DB-MAIN has been developed with this objective. This tool is not quite
new for us. Indeed, we already used it in Lesson 6 to replace charatters "
with "_"in physical schemas.

The main control panel is shown in Figure 7.7. It includes the following sec-
tions:

1. Scope Defines the objects to which the transformations will be applied.

- Where Global: in the whole schema&elected: among the selected
objects;Marked: among the marked objects.

- Which namesNames and/orShort names.
- For which object type<ollections, Entity types, Rel-types, etc.

2. Substitution patterns. List of substitution patterns in the following for-
mat:

- "search string" - "new string"
3. Character transformations.
- change case, capitalize, remove accents and shorten names

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 7: Names 7-9

NameProcessng |
& Global v Mames [T Collection: ™ Processing units
" Selected [Shotnames [Ertitytypes [Roles
" Marked [Reltypez [Groups

v attributes
Patterns : Add |msert | Delete |
"PRODUCT-" - "PRO-" -

"CUSTOMER-" -» "CUS-
"SUPPLIER-" - "SUP-"

"0ORDER-" - "ORD-"

UINWOICE-" - VM

"PURCHASE-" -» "PUR-"

"PAYMENT-" -» "PAY- LI
O lower-ruppercase upper-:lowercase ¥ Capitalize

¥ Remove accents [Sharten to mcharacters

[™ Confirm (1] 3 I Cancell Load | Save |

Figure 7.7 -This panel has been programmed to normalize the names of the
attributes of the current schema. The accents are removed, names are capi-
talized (first character in uppercase, the others in lowercase), and long object
names are replaced with short names. In addition, the resulting names are
trimmed to 24 characters.

4. Load/Save control parameters

- loads/saves the contents of the panel, including the substitution pat-
terns. Saved in‘apat file.

The principles of pattern substitution are simple. Consider the form as it ap-
pears in the pattern field of the panel (note that quotation marks are not part of
the strings and must not be typed):

"search string" - "new string"

1. Each instance afearch string found in the defined scope is replaced with
the stringnew string.

2. ltis possible to tell thatearch string are thdfirst charactergwith symbol
N) or thelast charactergwith symbol $) of the searched names.

3. "old string” can include wildcard characters * and ?. ? matches any single
character while * matches any empty or non-empty string.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

7-10 Lesson 7: Names

4. If new string is empty, then the instancessetarch string are deleted.
To illustrate the use of substitution patterns, let us consider the pattern
search - "XXX"

wheresearch is the search argument that will be discussed. ¢tlet"
phant " be the name to process. Considering various substitution patterns,
the results will be as shown in Figure 7.8.

substitution patterns resulting name
"leph" - "XXX" eXXXant

"e" - "XXX" XXXIXXXphant
"e?" - "XXX" XXXXXXhant
"*p" - "XXX" XXXhant

"I*h" - "XXX" exXXXant

"p*" - "XXX" eleXXX

"ex" - "XXX" XXX

e - "XXX" XXX

"he" - "XXX" XXXlephant
"t$" - XXX elephanXXX
"e$" - XXX elephant
"Nerp?a*t$” - "XXX" XXX

Figure 7.8 -Applying substitution patterns to the name elephant

The list of substitution patterns can be as long as you want. For instance, you
can define a translation dictionary to convert the names of a schema into ano-
ther language. However, do not expect a high quality translation when com-
posed names are frequent!

When more than one transformation is asked for, they are performed in the fol-
lowing order:

pattern matching
removal of accents
case conversion
shortening

oD PE

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 7: Names 7-11

7.6 Changing the prefix of names
A nice little tool allows you to change the prefix of a series of attribute names.
These attributes are all the direct attributes of a parent object which can be an
entity type, a compound attribute or a rel-type. Proceed as follows (Figure
7.9).
1. Select the parent object (hétRODUC)T
2. Execute functiofransform / Changeprefix.
3. The prefix processor computes the largest prefix of the attributes of the
parent objects and displays it in theefix field (PRO-). This prefix can
be empty.
4. Change this value in threfix field (typeP_). If you want to suppress
this prefix, empty th@refix field.
5. Click onOK.
e Unpeetix | T
| | Allthe direct attributes of entity type
PEO-Code FRODUCT| are prefized by PRO- P_Code
PRO-Hame Common prefix : P_Hame
PRO-Price D P_Price
PRO-QiyenHand . F_CityonHand
PRO-Invurtber |F'refm {P_ | P_Invifumber
PRO-Supplierl ame P_Suppliert ame
PRO-Suppliert ddress Carcel | FP_Supplierdddress
Figure 7.9 -The largest prefix ("PRO-") of the names of direct attributes of en-
tity type PRODUCT have been replaced with the new prefix "P_".
7.7 Lexicons
Each object in a schema, including the schema itself, receives a name. To be
more precise, it receivezhly one namé. Very often, one wants to give an
object several names, generally cabgdonyms However, giving some ob-
jects two names, while giving another one three or four names quickly leads
4. Theshort namehat appears in the property box of several objects and ifettieextended

view cannot be considered as a name in its own right. It is mainly used as an aid for buil-
ding names automatically in some processes, such as transformations and generators.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

7-12 Lesson 7: Names

to an unmanageable situation. The DB-MAIN tool proposes a disciplined way
to assign synonyms to objects through the concelpgéxiton.

A Lexicon is a consistent set of names, each one being assigned to one object
of the schema. Figure 7.10 shows the same schema to which two lexicons
have been applied. The first one gives objects English names (left), while the
second one gives them French names (right).

Creating theenglish Lexicons straighforward:
1. We assign each object an English name;

2. We create a new Lexicon with the naremglish ".
To create another Lexicon, we proceed in the same way:
1. We update each object to give it a French name;

2. We create a new Lexicon with the narkeehch ".

Similarly, we can defin®utch German Italian or Arabic Lexicons. Lexi-
cons can be used to give objec#tural namesnormalized namesechnical
names They can be used to assig@BOL, Javaor RPGnames to objects.

To give objects the names from a definite Lexiatigplay the Lexican An
existing Lexicon can bepdatedanddeleted

CUSTOMER CLIENT
CustNumber NumClient
Name Nom
Address Adresse
0-N 0-N 0-N 0-N
1-1 1-1 1-1 1-1
| | I I
VEHICLE CONTRACT VEHICULE CONTRAT
VehicIeNumbeil_l0_:Ir ContractNumbe NumVéhicIeil_lO_li NumcContrat
Make Date Marque Date
Year Type Année Type
\ \
0-N N
ACCIDENT ON ACCIDENT
AccNumber NumAccident|
O N pate O'Nf Date
Location Localisation

Figure 7.10 -The same schema displayed according to two distinct Lexicons,
respectively called English and French .

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 7: Names 7-13

The Lexicons are managed by a snvalyager 2applicatior? calledLexi-
con.oxo . It can be run as follows:

1. click on the red butto@ in the Standard tools bar (or use comirilend
| ExecuteVoyager)
2. double-click program fileexicon.oxo

The Lexicon processor proposes four functions:

1. Create a Lexicon: asks you a Lexicon name and stores all the cur-
rent names in it;

2. Update a lexicon: shows all the known Lexicons, lets you choose
one and stores all the current names in the selected Lexicon;

3. Display a Lexicon: shows all the known Lexicons, lets you choose
one and replaces the current names with the contents of the selec-
ted Lexicon;

4. Delete a Lexicon: shows all the known Lexicons, lets you choose
one and deletes it.

Type the number of the selected function into the bottom field, clickkon
and follow the instructions.

Note

If you want to run thé.exicon program again, you do not need to proceed
according the above procedure. Indeed, this program still is in the memory of
the Voyagerabstract machine. All you need to do to run it is to click on the
button @ (or to execute commakde / Rerun Voyager).

5. We already me¥oyagerapplications in Lesson 6, where we mentioned that DB-MAIN can
be enriched by additional components developed in the meta-landoyzager 2

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

7-14

Lesson 7: Names

Key ideas of Lesson 7

. Names are essential components of schemas. Carefully choosing them is

an important task that will make schemas easy to use by both users and
developers, therefore maximizing the reliability of the specifications.

. A name is used to designate an object among all the objects of the same

kind, in a definite scope, such ak the entity types of the schemgall
the direct attributes of an entity type

. Generally, a name is made of a non-empty character string. However,

giving empty names to rel-types and roles can be useful.

. In many cases, the following naming conventions yield schemas that are

easy to readname an entity typwith the noun with which the domain
concept is referred toname an attributevith the noun with which the
domain property is referred tajame a rel-typavith the verb with which

the domain relationship is referred to. Greées the name of the subset

of the entity type that play this role. Other consistent rules can be chosen
to name objects in a schema.

. In several engineering processes, it can be useful to modify the names of

the objects of a schema to improve their consistency or their readability, or
to make them compliant with the syntax of a DBMS. Naame proces-
singtool and theChange prefiXunction of DB-MAIN can help changing
names in a large and complex schema.

. Assigning several names to an object is an important requirement in some

environments. The DB-MAIN Lexicon manager can be used to create sets
of synonyms for the objects of a schema.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 7: Names 7-15

Summary of Lesson 7

« In this lesson, we have studied new concepts:
- ambiguous names; visible and hidden parts of names
- Lexiconsas sets of consistent synonyms for the objects of a schema

* We have also learned:
- to choose names for objects in a schema

- to define ambiguous names: symbol |
- to use rel-type and role names to describe relationships between application
concepts

- to change the names in a schema:

Name processing tool

Change prefix tool
- to define and use Lexicons:

Lexicon.oxo Voyagerprocessor
- to rerun loade&oyager processors:

File / Rerun Voyager 2]

* We have produced a new type of file:
- Name processing parametetpat).

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

7-16

7.1

7.2

7.3

7.4

21/03/2002

Lesson 7: Names

Exercises for Lesson 7

Open the schema of Figure 5.15 you built in Lesson 5. Define a set of
substitution patterns that give other names to all the objects of this sche-
ma. For instance, chan@ity into Town, Size into Volume and
manufactures intoproduces . Check it on a copy of the schema.

Define Name processingparameters that translate the names in the
schema of Figure 5.15 in such a way that the derived relational schema
will meet the following requirements:

- names are SQL-compliant (no "-", no SQL reserved words);
- names are in uppercase;
- names have at most 10 characters.

Considering the origin names in Figure 5.15 and the sets of names defi-
ned above, build three Lexicons.

In the playl'he Bald Sopran@_a cantatrice chauyelaywright Eugene
lonesco imagines a scene in which two characters talk about their rela-
tives (parents, neighbors, doctors and even dogs), who all happen to be
namedBobby Watsan

Build a schema in which all the objects (entity types, rel-types, attribu-
tes) are nameBobby Watson .

DB-MAIN Tutorial E] J-L Hainaut 1999

Lesson 8

More about entity types

Objective

This lesson discusses the concepts of supertype/subtype relation
(also calledS-Arelation), of total/partial and exclusive/overlap-
ping subtypes, and of inheritance. These constructs define a clas-
sification scheme according to which an entity type can belong to
more than one type by declaring it a subtype of another one, thus
inheriting some of its properties from the latter. Procedures can
be associated with entity types, rel-types and schemas. Such pro-
cedures (or methods) can be used to define object classes in ob-
ject-oriented schemas.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

8-2

8.1

8.2

Lesson 8: More about entity types

Starting Lesson 8

We startDB-MAIN and we create a new project called, £agson08 .

Classification hierarchies (IS-A relations)

We create a new schema with nal®A and versiori.

Let us suppose that we are describing the activitiégobdrieswhich are in
relation to theisuppliersand theircustomerswhich all arecompanies

In other words, factories, suppliers and customers are companies. In addition,
each factory can have customers and can have suppliers. From now on howe-
ver, we will ignore the latter facts.

If we represent factories, suppliers, customers and companies by entity types
FACTORYSUPPLIER, CUSTOMERNdCOMPANYespectively, we get the
schema of Figure 8.1.

Figure 8.1 -Four unrelated entity types (so far!).

We then have to express some additional facts:
- afactory is a company as well;
- similarly, each supplier is a company;
- and each customer is a company.

Another way to describe these facts is to say that a factory (as well as a supplier
and a customer) isspecial kind otompany. This translates in the Entity-re-
lationship model as follows:

- FACTORYSs declared aubtype of COMPANY
- SUPPLIERIs asubtype of COMPANY
- CUSTOMER asubtype of COMPANY

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 8: More about entity types 8-3

Conversely, we can say th@DMPANYs asupertype of FACTORYSUP-
PLIER andCUSTOMER

To define thisubtype/supertypelation, we open the Entity box BACTORY
(double-click as usual), and we move the n@@MPANYom the right list
to theSupertypes list on the left (Figure 8.2).

Entity type Properties |

E xamine/modify the properties of an entity type

Name |FACTORY
Short name IF.-'l'-.EI

Length 0
— Supertypes
7 Tatall I Digioint
COMPANY CUSTOMER

e

Remaove >>|
| 2 KN 2

Sem. | Tech. | Prop. |

Mew ent. | Mew att. |‘ Ok, I Cancel |

Figure 8.2 -FACTORYSs being declared a subtype of COMPANY

Defining similarly thatSUPPLIER andCUSTOMERoth haveCOMPAN¥s
their supertype leads to the schema of Figure 8.3.

It is common to talk abouB-A relation between the supertype and its subty-
pes. The origin of this name lies in the natural language interpretation of the
facts modeled in this way:

each supplieis acompany, each factoig acompany, etc
The standard view is shown in Figure 8.4 and the extended view in Figure 8.5.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

8-4 Lesson 8: More about entity types

FACTORE

Figure 8.3 -SUPPLIER, FACTORYand CUSTOMERre subtypes of COM-
PANY

COMPANY

CUSTOMER
is-a COMPANY

FACTORY
is-a COMPANY

etc.

Figure 8.4 -The Text standard view of 1S-A relations.

COMPANY / CY
sub-types: SUPPLIER, CUSTOMER, FACTORY

CUSTOMER / CUS
is-a COMPANY

FACTORY / FAC
is-a COMPANY

etc .

Figure 8.5 -The Text extended view of I1S-A relations.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 8: More about entity types 8-5

8.3

As we can guess by playing with the Entity box, it is possible to declare that
an entity type has more than one supertype. However, such situations, often
called multiple inheritance are a bit more complicated. They will be dis-
cussed specifically later in this lesson.

Properties of the subtypes of an Entity type

So far, we have defined the relation between each subtype and its supertype:
each entity of the subtype is an entity of the supertype. So we know that each
customer is also a company, and so forth for factories and suppliers.

Now, what about a customer being a supplier as well? ... and about a company
which is neither a customer, a factory, nor a supplier?

These questions address two main properties that concern the entity types in-
volved into a supertype/subtype relation. The questions can be stated more
formally:

- are any two subtypes disjoint, or can they ovéﬂ’dpthe subtypes are pai-
rwise disjoint, then any supertype entity belong to at most one of its subty-
pes; otherwise it can belong to several subtypes. To assert this property, we
will say that the subtypes of entity ty@®©MPAN¥reDisjoint. Since this
property concerns all the subtype€C@dMPANNYt is considered to be a pro-
perty of the supertype.

- must each entity of the supertype belong to a subtype, or can it be in none
of then? If each supertype entity must belong to at least one subtype, we
will say that the subtypes of entity ty@®MPAN¥reTotal. This too is a
property of the supertype.

When the collection of the subtypeskois both disjoint and total, this collec-
tion forms aPartition . In a partition, each entity belongs to exactly one sub-
type.

To allow us to declare these properties Ehtity boxof the supertype includes
two buttons, namenfisjoint andTotal (Figure 8.6). Each can be checked and
unchecked independently. When both are checked, the subtypesHartin a
tion, that is, eacCOMPAN¥ntity is ofexactly onesubtype.

1. To be more precise, this question concerns the set of entities of each type.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

8-6 Lesson 8: More about entity types

Entity type Properties |

E xamine/modify the properties of an entity type

Name |COMPANY
Short name IEY
Length 0
— Supertypes

W datat [Disjoint

¢ Add |

Remaove >>|

KN . i KN i
Sem. | Tech. | Prop. |
MHew ent. | Mew att. |‘ (] 3 I Cancel |

Figure 8.6 -The subtypes of COMPAN?Ybtal ly cover the entity set of COM-
PANY

To practice these concepts, we define the subtypEOMPAN¥s beingo-
tal:

- we open thé&ntity boxof COMPANYby double-clicking on its name);
- we click onTotal;

- we click onOK.

The schema appears as in Figure 8.7 and Figure 8.8.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 8: More about entity types 8-7

COMPANY

FACTORﬂ CUSTOMER

Figure 8.7 -Each COMPAN¥ntity also is a SUPPLIER, a FACTORYor a
CUSTOMERNtity (or several of them).

COMPANY / CY
sub-types (T): SUPPLIER, CUSTOMER, FACTORY

CUSTOMER / CUS
is-a COMPANY

etc.

Figure 8.8 -The Text extended view of the I1S-A relations of Figure 8.7.

The triangle symbol represents a collection of subtypes. This symbol can in-
clude an additional charactar:for Total, D for Disjoint andP for Partition.

The absence of character means botidisjoint andnon-total, i.e., anover-
lapping andpartial collection of subtypes.

This point being very important in modeling, we will synthesize the different
situations in Figure 8.9. It shows a simple IS-A hierarchy made up of super-
type A and subtypes B1 and B2. Each pattern is defined as follows.

o Partition: eachA entity is either a B1 entity or a
IV Totsl ¥ Disicint B2 entitybut not both.

Total eachA entity is either a B1 entity or a B2
v Taotal [Digjaint entity or both.

Disjoint: an A entity can be a B1 entity or a B2 en-

™ Total ¥ Disivint tity but not both. Some A entities are neither B1
nor B2 entities.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

8-8 Lesson 8: More about entity types

Free an A entity can be a B1 entity or a B2 entity

™ Taotsl T Disjoint or both. Some A entities are neither B1 nor B2
entities.
Total (T) Partial (- T)
Disjoint
(D) P D
‘Bl“BZ‘ ‘Bl“BZ‘

Overlapping
(=D) T

‘Bl“BZ‘ ‘Bl“BZ‘

Figure 8.9 -Synthesis of subtype properties.

8.4 Supertype/Subtype inheritance

The Supertype/subtype IS-A relation is not as simple as it appears at first glan-
ce. One of its most dramatic consequences is the so-g#lledtance me-
chanism. To describe it, we need first to enrich our schema a little bit by
giving entity types some attributes. Let us record the following facts:

- each company has a name (identifier) and an address;
- each supplier has an account number;
- each factory has a production type;

- each customer has a customer number (identifier), a status and an amount
due.

The current schema can be completed easily (Figure 8.10).

Though it is quite correct, this schema does not show explicitly all its contents.
For instance, eaatustomerpeing acompany has also aame(which identi-
fies it) and araddress

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 8: More about entity types 8-9

COMPANY
Name
Address
id: Name
T
CUSTOMER
SUPPLIER FACTORY —gt“;ﬂ:br
AccountNbr ProductType AmountDue
id: CustNbr

Figure 8.10 -An IS-A hierarchy with attributes.

Thus, the whole list of attributes of entity typ&/STOMER in fact made of:
CustNbr , Name Address , Status and AmountDue. Among them,
CustNbr , Status andAmountDue are called theroper attributes, whi-
le NameandAddress are thenherited attributes. In additionCUSTOMER
has two identifiers, namelgustNbr (a proper identifier) andlame(an in-
herited identifier).

Should the schema show all the attributes and all the identifiers of each entity
type, it would appear as in Figure 8.11.

The first version is more concise, while the latter is more informative and in-
cludes redundant specificati&nsHowever, both views have the same infor-
mation contents. The only difference is how we have to interpret them.

The concept of inheritance also applies to all the structural properties of the
entity types, and is not restricted to attributes and identifiers as discussed so
far. More specifically, the subtypes also inherit allrifles and thantegrity
constraintsof their supertype.

For instance, iICOMPAN} linked to entity typ&EGION thenCUSTOMER
FACTORYandSUPPLIER are linked taREGIONas well (Figure 8.12). Its
explicit semantic contents are shown in Figure 8.13.

2. For instance, it tells usvice that acustomer has a namence through an inherited attri-
bute and once as a proper attribute of the supertype.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

8-10 Lesson 8: More about entity types

COMPANY
Name
Address
id: Name
T
CUSTOMER
SUPPLIER FACTORY CustNbr
Name Name ng;e
Address Address Statuesss
AccountNbr ProductType
id:Name id:Name AmountDue
= . id: CustNbr
id':Name

Figure 8.11 -Attribute and identifier inheritance explicitly shown. The inheri-
ted components are marked for readability.

COMPANY REGION
Name | 1_@ N Name
Address 0 0N Population
id: Name id: Name
T
CUSTOMER
suPPLIER FACTORY Staws
AccountNbr ProductType AmountDue
id: CustNbr

Figure 8.12 -The supertype plays a role in a rel-type.

By comparing both views, the gain of conciseness induced by the supertype/
subtype relation is obvious, specially in large schemas. There are other advan-
tages as well. For instance, inherited components are described only once at
the supertype level. Therefore, changing the definition of an attribute (or a ro-
le), adding an attribute or deleting an existing attribute, must be done only on-

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 8: More about entity types 8-11

8.5

ce. All these changes are automatically applicable to all the subtypes of the
supertype.

COMPANY REGION
Name Name
Address | O < > O-N— Population
id: Name id: Name
T
CUSTOMER
SUPPLIER FACTORY Custhbr
Name Name Name
Address Address é? dress
atus
AccountNbr ProductType
TN TN AmountDue
d-Name d-Name id: CustNbr
id':Name

0-N

0-N 0-N 0-N
fin 0-N
s_in

Figure 8.13 -Attribute, identifier and role inheritance shown explicitly.

The drawback of IS-A constructs is that the schema can be less readable. In-
deed, the actual attributes (and other components) comprise the proper attribu-
tes + the inherited ones.

Multilevel IS-A hierarchy

The example developed in this lesson includes one level of subtypes only, for-
ming a 2-level hierarchy. Some problems require deeper hierarchies, as illus-
trated in Figure 8.14. This schema classifies the documents available in a
corporate library. The rules discussed above still are valid for more than 2 le-
vels. For instance, scientific bookis abook which in turn is adlocument
Therefore, anycientific bookis adocumenias well, and thus inherits from
bothbooksanddocuments

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

8-12 Lesson 8: More about entity types

DOCUMENT

| TECHNICAL-BOOK| | SCIENTIFIC-BOOK | PROJECT-REPORINTERNAL-REPORT

Figure 8.14 -A 3-level IS-A hierarchy.

DOCUMENT

DoclD

Title

Author[0-5]

id: DoclD

BOOK REPORT

1SBN ReportID
Publisher Department
DatePublished id: ReportID

id: ISBN
. A

TECHNICAL-BOOK| | SCIENTIFIC-BOOK | PROJECT-REPOR[INTERNAL-REPORT]
Domain Theme ProjectID SecurityLevel
System Level ProjectStatus

DateWritten

Figure 8.15 -The IS-A hierarchy with all the proper attributes and identifiers
shown.

Let us assign some plausible attributes to each of these entity types (Figure
8.15). According to the inheritance rules, each subtype is assigned the attribu-

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 8: More about entity types

8.6

tes (and constraints and roles) of all its direct or indirect supertypes (Figure

8-13

8.16).
DOCUMENT
DoclID
Title
Author[0-5]
BOOK id: Doclb REPORT
DoclD DoclID
Title Title
Author[0-5] Author[0-5]
ISBN ReportlD
Publisher Department
DatePublished id: ReportID
id: ISBN id": DocID
id": DocID I
o D
TECHNICAL-BOOK| | SCIENTIFIC-BOOK PROJECT-REPORT INTERNAL-REPORT]
DoclID DoclID DoclD DoclID
Title Title Title Title
Author[0-5] Author[0-5] Author[0-5] Author[0-5]
1SBN 1SBN ReportID ReportID
Publisher Publisher Department Department
DatePublished DatePublished ProjectID SecurityLevel
Domain Theme ProjectStatus id: ReportID
System Level DateWritten id" DocIlD
id: ISBN id: ISBN id: ReportID
id": DocID id": DocID id": DocID

Figure 8.16 -The IS-A hierarchy with all the proper and inherited attributes
and identifiers shown.

Multiple inheritance

So far, any entity type has at most one supertype from which it inherits a part
of its properties. Situations may occur that require a subtype to inherit from
more than one supertype. Considering the schema of Figure 8.15, we can ima-
gine somaeports for instanceproject reports being published ascientific

books So, theseublished reportsare bothproject reportsand scientific

books As a consequence, a published reportégaart ID and goroject status

DB-MAIN Tutorial -[J J-L Hainaut 1999

21/03/2002

8-14

Lesson 8: More about entity types

X

(as project report) as well as ®BNand aheme(as scientific book). Such a
structure, illustrated in Figure 8.17, generally is cathedtiple inheritance.

The term is a bit improper, since inheritance is just a consequence of the I1S-A
relation. A better name would beultiple 1S-A hierarchy .

DOCUMENT

DoclD

Title

Author[0-5]

id: DoclD

BOOK A REPORT

ISBN ReportlD
Publisher Department
DatePublished id: ReportID
id: ISBN

A

TECHNICAL-BOOK

SCIENTIFIC-BOOK

PROJECT-REPOR

'I

INTERNAL-REPORT

Domain

System

Theme
Level

ProjectID
ProjectStatus

DateWritten

A

PUBLISHED-REPOR|T

Sponsor

SecurityLevel

Figure 8.17 -Example of multiple inheritance: PUBLISHED-REPORTs both
a SCIENTIFIC-BOOK and a PROJECT-REPORT

This example raises interesting questions.

1. Let us first observe that PUBLISHED-REPORT has a single ancestor,
namelyDOCUMENTvhich can be found by navigating upwards through
the left branch SCIENTIFIC-BOOK
through the right branchPROJECT-REPORT- REPORT- DOCU-

MENT.

2. Now, let us consider the subtypedD@dCUMENTThey have been decla-
red overlapping(no D nor P symbols), so that some documents can be

21/03/2002

DB-MAIN Tutorial E] J-L Hainaut 1999

. BOOK - DOCUMENTor

Lesson 8: More about entity types

8-15

both booksand reports. It is fortunate, because a published report being
both a book and a report, this overlapping property makes it possible to
have published reports. Think of what would have happened regarding
PUBLISHED-REPORTif the subtypes oDOCUMENWere declared dis-

joint3

3. Note thattUBLISHED-REPORTis not the intersectionof SCIENTI-
FIC-BOOK andPROJECT-REPORY but more generallis a subset of

this intersection.

BOOK

ISBN
Title
Authors[1-5] D

&

SCIENTIFIC-BOOK

Title
Domain

BOOK
ISBN
Title
Authors[1-5]

o

SCIENTIFIC-BOOK

Domain

Figure 8.18 -The supertype and the subtype have an attribute with the same
name. If they represent the same meaning, one of them only must be kept.

Let us now discuss the inherited attributes. Three conflicting problems may

arise and must be addressed.

1. What if a subtype has a proper attribute with the same name as some attri-
bute of the supertype (Figure 8.18)? If these attributes are the same and
describe the same real world property, one of them must be removed.
Otherwise they have different meanings and the name of one of them must
be changed. Indeed, the attributes of the supertype are attributes of the
subtype, and in any entity type, the attributes of the same level must have

distinct name3

3. This would be an interesting exampleirafonsistent structure i.e., a structure no data
will ever satisfy. IndeePUBLISHED-REPORTwould always be empty!
4. As already mentioned, we identify antity typeand itspopulationat any given time. Not

quite correct but very handy to simplify the discussion.

DB-MAIN Tutorial -[J J-L Hainaut 1999

21/03/2002

8-16

Lesson 8: More about entity types

PRODUCT OFFERING
ProdID Name
Name Market

A

A

MARKET-PRODUCT

Price

PRODUCT OFFERING
ProdID Name
Name Market

A

A

MARKET-PRODUCT

ProdID

Market
Price

PRODUCT.Name
OFFERING.Name

Figure 8.19 -A market productis a productthat is offered to consumers. The-
refore, it has an internal product name and an offering name, that can be dif-
ferent. When considering these names from the MARKET-PRODUCT
viewpoint, it is good practice, to solve the naming conflict, to think of them as

being prefixed with the name of their source entity type.

2. Two independent entity types can each have an attribute with the same
name. What if they share a common subtype? The latter inherits two dif-
ferent attributes with the same name. A good practice can be to prefix the
inherited attributes with the name (or unique short name) of their source

entity type (Figure 8.19).

3. In a multiple IS-A hierarchy, an entity type inherits from one or several
common ancestors through more than one branch. Therefore, the ances-
tor’s attributes are inherited more than once! Of course, for each of them,

only one must be considered (Figure 8.20).

Now, considering the schema of Figure 8.17, we can state exactly what the at-
tributes and identifiers of entity type PUBLISHED-REPORT are (Figure

8.21).

5. In some models, the designer is allowed to change the definition of an inherited attribute.
For instance, its domain of values can be restricted to a subset of that of the origin attribute.

To simplify the discussion, we will ignore this possibility.

21/03/2002

DB-MAIN Tutorial E] J-L Hainaut 1999

Lesson 8: More about entity types

8-17

EMPLOYEE
EmpID
Department

A

PERSON

Name
Address

|

CLIENT
CustID
Account

A

INTERNAL-CLIENT

Rebate

INTERNAL-CLIENT

Name
Address
EmpID
Department
CustID
Account
Rebate

Figure 8.20 -INTERNAL-CLIENT inherits from PERSON twice. However, the

attributes of the ancestor are inherited only once.

DocID

Title
Author[0-5]
ISBN
Publisher
DatePublished
Theme

Level
ReportID
Department
ProjectID
ProjectStatus
DateWritten
Sponsor

PUBLISHED-REPORT

id: ISBN
id": DoclD
id": ReportID

Figure 8.21 -The proper and inherited attributes and identifiers of entity type
PUBLISHED-REPORT from Figure 8.17.

DB-MAIN Tutorial -[J J-L Hainaut 1999

21/03/2002

8-18 Lesson 8: More about entity types

8.7 Processing units of a schema

An entity type represents the existence and the properties (attributes and cons-
traints) of a class of outstanding objects of the application domain. Besides this
static view, we could want to describe the behaviour of these objects. The
standard way is througbperations or methods as proposed in object-orien-

ted approaches.

A method is a service associated with an entity type. Eacheemititﬂyis type
can respond to any call for this service (t@H is generally called message

Figure 8.22 shows some methods associated with entity@p83 OMERNd
ORDERN the form ofprocessing units

CUSTOMER
CustNumber
Name
Address
id: CustNumber
register_customer()
remove_customer
update_address()

\
0-N

1‘-1 PRODUCT

ORDER ZrodCode
OrdNumber P:g;e
QrdDate QtyOnHand
id: OrdNumber id: ProdCode
enter_order() .

— o . -N| new_product
make_invoice() | oN] cancel produ(():t
remove_order o 1 DETAIL 11 @ change_ price()

2N QtyOrd) get_quantity()
id: ref. PRODUCT
of. ORDER
enter_detail()
detail_cost

Figure 8.22 -Each entity type has been given processing units, or methods .

6. The OO approach distinguishelass methodswhich the entity type is responsible for,
from instance methodsthat can be taken in charge by the entities. For instance,
register_customer is a class method that must be asked to entityGAdS T O-
MERwhile remove_customer s an instance method.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 8: More about entity types 8-19

A processing unit is defined by selecting the entity type and by executing the
commandNew / Processingunit (Figure 8.23).

Processing Unit Properties

Create processing unit of
PROCUCT

Hame Inew_pn:uduct[]

Shaort name I

Sem. | Tech. | Prop. |

Mext proc. I Ok | Cancel |

Figure 8.23 -Defining a processing unit for entity type PRODUCT

Processing units can be associated with rel-types and schemas (Figure 8.24) as
well. In the latter case, they represent global functions of the system, such as
organizational functions in a conceptual schema or application programs in a
logical schema.

(Company/Concepta)

Personnel

Invoicing
Order_Management
Marketing
Manufacturing

Figure 8.24 -Global procedures associated with a schema.

Processing units can be inherited too. However, special mechanisms will be
used, such asverloading. More on this later on.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

8-20

Lesson 8: More about entity types

Key ideas of Lesson 8

1. Supertypes and subtypes

An entity type can be a subtype of one or several other entity types, called its
supertypes. If B is a subtype of A, then each B entity is an A entity as well. The
collection of the subtypes of entity type A is declared total (symbol T) if each
A entity belongs to at least one of its subtypes; otherwise, it is said to be partial.
This collection is declared disjoint (symbol D) if an entity of a subtype cannot
belong to another subtype of B; otherwise, it is said to overlap. If this collec-
tion is both total and disjoint, it forms a partition (symbol P).

Since a supertype/subtype relation is interpretegels B entity is an A entjty

it is called an IS-A relation. IS-A relations form what is called an IS-A hierar-
chy.

An entity type can have more than one supertype. Such a situation is called
multiple 1S-A hierarchy, or more commonly (but improperly) multiple inheri-
tance.

2. Inheritance

Since all B entities are A entities as well, entity type B inherits all the proper-
ties of entity type A. In particular, all the attributes of A are attributes of B as
well. This is true too for the identifiers and other constraints, as well as for all
the rel-types in which A participates.

In a multiple 1S-A hierarchy, some rules must be satisfied in order to make the
inheritance mechanism conflict-free.

3. Processing units

Procedures can be associated with entity types, rel-types and schemas, to re-
present the behaviour of the system described by the schema. Processing units
of entity types can be used to define methods in object-oriented schemas.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 8: More about entity types 8-21

Summary of Lesson 8

In this lesson, we have studied the following notions:

supertypes, subtypes, supertype/subtype relation or IS-A relation
total, disjoint and partition properties of the collection of the subtypes
inheritance of attributes, constraints and rel-types

processing units associated with entity types, rel-types and schemas

* We have also learned

- to specify the supertype(s) of an entity type:
in the Entity type box of the subtype, include the na-
me(s) of the supertype(s) in tBapertype list box

- to define the total, disjoint properties:

in the Entity type box of the supertype: click on the
buttonsTotal, Disjoint.

- to define a processing unit:
New/ Processingunit.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

8-22

8.1

8.2

8.3

8.4

8.5

21/03/2002

Lesson 8: More about entity types

Exercises for Lesson 8

In the begining of this lesn, we wrote... factories, suppliers and cus-
tomers are companies$n addition,each factory can have customers
and can have suppliers. ...

Complete the corresponding schema in order to include these specifica-
tions.

In the same schema, describe the fact that each companyaantie
sidiary of another compar(iHint: use a cyclic relationship type). Show
how this fact must be interpreted through the 1S-A relation. In other
words, make explicit the inherited relationship type. On the basis of this
small example, what do you think of the conciseness of IS-A relations?

Build a schema (called PERSONNEL) representing the following ap-
plication domain.

The company has employees. Each of them is identified by an employee
id, and has a name and an address. An employee can have a personal
file. This file has an identifying code, a date and a content. Among the
employees, there are clerks and workers. Workers are characterized by
a salary, and must be affiliated to a trade union. A clerk has a level and

a function. A trade union has a name and an address.

Consider four different hypotheses:

- each employee is either a clerk or a worker, but not both (version 1);
- an employee can be a clerk or a worker, but not both (version 2);

- each employee is either a clerk or a worker, or both (version 3);

- an employee can be a clerk or a worker, or both (version 4).

Derive from one of these schemas another schema which makes all the
properties of each entity type explicit by showing the effect of the inhe-
ritance mechanism.

An application domain concerns vehicles. Some are cars while others
are trucks. There are special vehicles that are both cars and trucks. Ima-
gine two or three different kinds of cars and two kinds of trucks. Draw
the Entity-relationship schema of this application domain and define
proper attributes for each of these entity types.

DB-MAIN Tutorial E] J-L Hainaut 1999

Lesson 9

More about attributes

Objective

Attributes form the building blocks of every schema. In this les-
son, we examine new forms and new features of attributes. We
learn more on domains (particular user-defined domains), multi-
valued attributes, stable and non-recyclable attributes, attribute
identifiers, multivalued identifiers, reference attributes and ac-
cess keys and object attributes.

Some of these concepts are specific to conceptual schemas, while
others will be used in logical schemas.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

9-2 Lesson 9: More about attributes

9.1 Introduction

If entity types are the building block of schemas, attributes are those of entity
types. Hence the need for a rich set of features to define the many kinds of
attributes that appear in all the data models in which databases can be speci-
fied.

9.2 Built-in domains

Built-in domains are very general, meaningless, data types that are proposed
by most programming languages, DBMSs and CASE todBharacter
strings numericanddatedata types are some of the most common built-in do-
mains. The DB-MAIN CASE tool proposes eight of them through the Type
list-box of the Attribute property box (Figure 9.1).

Attribute Properties |

E xamine/maodify the propertiez of an attribute of
FERSOM

Mame IName

Shaort name |
Cardinality I'I -1 "I

— Type
Char | stable I Non Recyclable

Boolean l’ i’

Compound

EISE:; Tech. | Frop. |

A Index -
Murneric I

Sequence ﬂ ‘ ok Eancell
—archar

Object type
Il zer-defined

Figure 9.1 - Atomic attributes can be based on built-in domains: boolean,
Char(acter), Date, Float, Index, Numeric, Sequence and Varchar(acter). An
attribute is Compound if it is given component attributes.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 9: More about attributes 9-3

aprwDdE

Boolean(n) Set {true,false }, or any set of 2 elements.
Char(n) The set oh-character strings.

Varchar(n) The set of strings with length from Oro
Date(n) Set of dates or timestamps.

Numeric(n[,d]} Set of numerical values of decimal digits, includingl
decimals.

Float(n): Set of floating point numerical values with a representation of
bytes.

. Index(n) Numerical values that designate the elements of parent attribute

A[l-J], which is a multivalued attribute of tyeray. If A has actual car-
dinality k, the index attribute instances talsesne values from 1 to k.
More on this in Section 9.6.

. Sequence(nNumerical values that designate the elements of parent attri-

bute A, which is a multivalued attribute of tyl&. If A has actual cardi-
nality k, the index attribute instances tak#éithe values from 1 to k. More
on this in Section 9.6.

In these definitionsn stands for the lengtiB6olean, Char, Date, Numeric,
Float, Index, Sequengeor the max lengthMarchar), of the domain values.

For each type, the tool proposes a default length. Exceptafterand Boo-

lean it is an unusual value that should, in most cases, be replaced. Indeed,
mostChar(1) values must be considered as a length that the analyst forgot
to set. The&schema analysis assistagan easily detect this pattern.

The table of Figure 9.3 describes the rulemfdfigure 9.2 shows some exam-
ples of usage of built-in domains.

PRODUCT
ProdNum: num (8)
Name: char (28)
Description: varchar (N)
Price: num (8,2)
Available: boolean
id: ProdNum

Figure 9.2 -Some attributes based on built-in domains.

1. Will be described later on.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

9-4 Lesson 9: More about attributes

Type range of n default particular rule
Boolean 1-99 1
Char 1-99999 1
Varchar 1-99999; N 1 N stands famlimited length
Date 1-99 10
Numeric 1-99; 0-99 1 1st figure = total length
2nd figure = decimals
Float 1-99 1
Index 1-9 1 not shorter than length of max card/| of
the array (e.g., 3 for max card. = 500)
1-9 1 not shorter than length of max card| of
Sequence the list

Figure 9.3 -Rules for length n of each built-in domain: range, default length
and some particular rules.

9.3 User-defined domains

Built-in domains convey almost no semantics: just numbers, character strings
and the like. What a pity for such essential elements! What about defining our
own, semantics-bearing, domains? That's the goasef-definedr applica-
tion-specificdomains.

A user-defined domain is like an attribute, except that it has no parent, and can
be used as a domain for true attributes. Let us consider an application domain
in which several attributes are some variants of personal ID, addresses, phone
numbers and VAT numbers. It would be most convenient if we could use spe-
cial domains calle®1D, Address , PhoneNumber and VATnumber ins-

tead of meaningless built-in domaimsmeric andcharacter strings.

Using user-defined domains has several advantages:

- incremental modelingdiscovering the main information types of the appli-
cation domain is the first step in several information system design metho-
dologies; in any methodologies, user-defined domains can be considered as
a first level of reuseable components;

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 9: More about attributes 9-5

- readability. the semantics of attribute can be made more explicit, making
the schema much more informative;

- maintainability and ease of evolutitime name or the definition of a domain
can be changed at one place, then propagated to all the attributes that use it;
for instance, modifying the structure of phone numbers in all the schemas
of a project can be made in a centralized way;

- consistencyattributes that denote similar properties and concepts can be
based on the same domain, therefore increasing the simplicity and coheren-
ce of the specifications;

- code generatioran increasing number of DBMSs include domain declara-
tion statementscfeate domain of SQL) or even abstract data types.

Needless to say that finding the optimal set of user-defined domains is an im-
portant asset when building successful and maintainable information systems.

Now, let us go in for practical aspects of user-defined domains.

User-defined domains |

Examitie, rmodify, create or remove
uzer-defined domainz

FID

Address
Country
ZipCode
CityM arme
StateCode
Street
Murnber

PhoneM urmber
CountryCode
Arealode
LocalCode

Mew | Mu:u:lif_l,ll Flemu:uvel I:Icusel

Figure 9.4 -The Management box of User-defined domains shows four do-
mains that have been defined already, two of which being compound.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

9-6

Lesson 9: More about attributes

We call the User-defined domain management box through comRrand

duct / Userdomains(Figure 9.4). This box shows the domains already defi-
ned, and allows us to create new domains, to modify and to remove existing
domains.

Defining a domain is just like defining a single-valued, mandatory attribute
(cardinality [1-1]), and is done through the same Property box. A domain can
be atomic or compound. A user-defined domain, or a component of it, can be
based on built-in domains or on other user-defined domains. Take the neces-
sary time to write a precise semantic description of each domain you define.
As you can expect, recursive domains, i.e., domains defined directly or indi-
rectly on themselves, are not allowed!

When defining an attribute, we can select a user-defined domain by choosing
User-defined in the Type list box (Figure 9.1). Then, a new field appears
(User-def.), showing all the available user-defined domains (Figure 9.5). Just
select one of them. Do practice this concept by defining the domains of Figure
9.4 and by entering the schema of Figure 9.6.

Attribute Properties |

E xamine/maodify the propertiez of an attribute of
PERSOM

Mame IF'ersu:unal.-'-‘-.du:Iress

Short name I
Cardinality I'I -1 vI

— Type

ILlser-defined "I [Stable [~ Mon Recyclable

Uszer-def. I.-'l'«ddress j

PhoneMurmber
Sem. FID
— VAT number =
FirStatt.l M et att.l ‘ | Ok I Cancel

Figure 9.5 -Any attribute can be defined on a User-defined domain.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 9: More about attributes 9-7

9.4

PERSON PERSON
PersonID: PID
PersoniD Name: char (24)
Name PersonalAddress: Address
Persona}IAddress ProfessionalAddress: Address
ProfessionalAddress id: PersonID
id: PersonlID

Figure 9.6 -PersonlID has been defined on user-defined domain PID , while
PersonalAddress and ProfessionalAddress have been defined
on domain Address .

Stable and non-recyclable attributes

Standard attributes have values that represent definite states of the application
domain at a given time: the address of an employee, the account level of a cus-
tomer or the description of a product. As a consequence, attribute values of an
entity evolve according to the changes of state of this entity: employees move,

account levels go up and down and a product can get another description.

However, we can want some properties of an entity type to be stable during the
life of each entity. Therefore, allowing users to change the values of the cor-
responding attributes can be considered undesirable.

Attributes can be given two special properties (Figure 9.7):

- stability: once an entity has received a value for this attribute, this value can
never be changed in the life of the entity;

- non-recyclability: once an entity has received a value for this attribute, this
value can never be reused for another entity, even long after the first entity
was deletetl

Of course, most attributes arastableand haveecyclabledomains.

These properties are closely linked with the identifiability of entities, and
mainly concerns primary identifiers. The best application of the concept su-
rely ishistory representation and managemehet us consider that we want

to record all the successive states of persons initially described as in Figure
9.6.

2.

In fact, the recyclability property is a characteristic of the domain of the attribute.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

9-8 Lesson 9: More about attributes

Attribute Properties |

E xamine/maodify the propertiez of an attribute of
PERSOM

Marne |F'ersu:unID

Short namel

Cardinality I'I-'I vI

— Type

ILlser-defined "I ¥ Stable W Mon Recyclable
Uzer-def. IF'ID j

Tech. | Prop. |

First att.l M et att.l ‘ Ok | Cancel |

Figure 9.7 -PersonID is stable, that is, once assigned to an entity, its value
cannot be changed, and non recyclable , so that no assigned values can ever
be reused, even when the entities have been deleted.

Now each state of each person is representedf$. PERSONentity (Fi-

gure 9.8), in whiclBegin andEnd are timestamp values that define the pe-

riod during which the person was in this state. When any property (name,
address, etc.) of a person changes, the current state is closed and a new current
state is created. A state is identified by B of the person and tH&egin

time of the state. The complete history of the person®lith= X is repre-

sented by the sequence of AIET_PERSONentities that havPID = X.

What would happen if attributeID value were allowed to change during the

life of a person? Clearly, it would be impossible to rebuild the history of this
person, because we would have lost the only common property of the states,
that is the unique PID value&Conclusion PID must be declarestable

Now, we suppose that we keep the histories of all the entities that have been
deleted deletionis the ultimatestate change It is quite obvious too that once

a PID value has been assigned to an entity, be it currently alive or deleted, it
can never be assigned to another entity, otherwise the concept of history would
become ambiguous. Indeed, all the histories with the same PID value, though

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 9: More about attributes 9-9

9.5

they come from different persons, would coalesce into a single history. The-
refore, PID must be declared, not ostgble but alsanon recyclable

HIST_PERSON
PersonlD
Begin
End
Name
PersonalAddress
ProfessionalAddress
id: PersonID
Begin

Figure 9.8 -Representing histories of persons.

Attribute identifiers

So far, entity types and rel-types can be given identifiers. On the other hand,
each value of a multivalued attribute is a set of values, i.e., a collection of dis-
tinct values. Inthe schema of Figure 9.9Salles values are unique, that is,

no twoSales values are made up of the saRegion value and the same
Year value and the samélume value.

SALESMAN

PID

Name

Address

Sales[0-20]
Region
Year
Volume

id: PID

Figure 9.9 -Each SALESMANntity has a set of distinct Sales values.

However, we feel that théolume component is useless to state the unique-
ness property of theales values. Clearly, the valuesRégion andYear
should suffice to identify on8ales value among all those of a giv&A-
LESMANentity. One way to assert this property is to say that the values of
Sales , for any givenSALESMANare identified by Region ,Year }. In

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

9-10

Lesson 9: More about attributes

other words, Region ,Year } is theidentifier of multivalued attribut&a-
les of SALESMAN

We define such an identifier as follows.
1. We select parent attribuBales .

2. We execute commariiew / Group. This opens the Group property box
for Sales .

3. We move componenRegion andYear in theComponent field.
4. We click on théPrimary ID button, then oi©K.

The resulting schema should look like that of Figure 9.10. Note that more than
one identifier can be declared for an attribute.

SALESMAN

PID
Name
Address
Sales[0-20]
Region
Year
Volume
id: PID
id(Sales):
Region
Year

Figure 9.10 -For any particular salesman, we record yearly sales for each re-
gion. Therefore, the Sales values of each SALESMANentity have distinct
Region and Year values. {Region ,Year }is declared the primary identi-
fier of attribute Sales .

To make the concept more understandable, it can be useful to give an equiva-
lent form of this schema. Let us suppose 8ales are represented &A-

LES entities instead. Rel-typger links SALESMANvith SALES What

about the identifier SBALES? Sincea salesman cannot make two sales in the
same region, the same ye#re identifier must comprisédr.SALESMAN ,

Region , Year } as shown in Figure 9.11. So, the schemas of Figure 9.10 and
Figure 9.11 convey exactly the same semantics.

There is a nice trick to show this, namelschema transformatiorfrirst open
the schema of Figure 9.10, then proceed as follows.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 9: More about attributes 9-11

SALES
SALESMAN Region
PID Year
Name —0-21-% Volume
Address id: for. SALESMAN
id: PID Region
Year

Figure 9.11 -The right side schema is another equivalent way to represent
the same situation.

1. We select attributBales .

2. We execute commanitansform / Attribute /-> Entity type. A small
box opens (Figure 9.12), which we validate.

3. We choose the name of the new entity typ&LES and of the new rel-
type for).

Surprise! We get the schema of Figure 9.11. If you are not fully convinced,

try the inverse transformation: select entity type SALES, then exécans-

form / Entity type /-> Attribute .

tibute > Entty ype |

Transfarmation of an attribute into an
entity tupe

% instance representation [1-1

{7 walue representation [1-H]

Ok I Cancel

Figure 9.12 -This box asks us what kind of attribute-to-entity-type transforma-
tion we want. So far, we have not the slightest idea of what this could mean!
Nevertheless, considering the limited list of possible techniques, it should not
be too difficult to choose.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

9-12

9.6

Lesson 9: More about attributes

Non-set multivalued attributes

Several conceptual models (ERA, Merise, NIAM, etc.) include the concept of
multivalued attribute, allowing analysts to model associations of sets of values
with entities, while other models, such as OMT and UML, do not propose it as
standard. Though this construct is simple and (generally) well defined, it
shows its weakness when more complex situations are to be modeled. Ordered
sets, collections of non-distinct elements and arrays are among the most fre-
guent non-set structures that appear to be difficult to specify and to understand.
First, we will try understand why non-set collections of values can be useful.
Then, we will propose an overview of thestandnon-setstructures, descri-

bing the main aspects of multivalued attributes and their conversion into pure
set-oriented constructs.

As a first example, let us consider the phone numbers of a population of per-
sons. We observe that each person can have from 0 to 5 phone numbers, which
we translate in the schema of Figure 9.13.

PERSON
PersonlD
Name
PersonalAddress
ProfessionalAddress
Phone[0-5]
id: PersonID

Figure 9.13 -Persons have from 0 to 5 phone numbers.

However, things are a bit more complex. Indeed, the phone numbers of a per-
son are not of equal importance. The first number is the the main one to try,
then, when it fails, we try the second one, and so forth to the last one. In other
words, phone numbers form ardered list of 0 to 5 distinct valuesThis is

easy to specify, as shown in Figure 9.14. The result appears in Figure 9.15,
whereu-list stands fotJnique list.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 9: More about attributes 9-13

Attribute Properties |

E wamine/modify the properties of an attribute of

PERSOM
M ame |F'h|:une
Short hame |
Cardinality IEI-S j I rique list j

Set B

— T_I,'|:|E Ba -
IEhar "I [T Stable W

Lzl |-| E rique array
Sl :’ Array

Sem. | Tech. | Prop. |

Firstatt.l Nentatt.l ‘ Ok, I Eancell

Figure 9.14 -Multivalued attributes can define mere sets. However, they can
alternately form bags, lists, lists of unique values, arrays or arrays of distinct
values.

PERSON
PersoniD
Name
PersonalAddress
ProfessionalAddress
Phone[0-5] u-list
id: PersonID

Figure 9.15 -Multivalued attribute Phone is declared a Unique list. for each
entity, its value form a sequence of unique values.

Now, it is time to examine all the collection types provided by the DB-MAIN
model. For each of them, we propose an intuitive definition based on a prac-
tical example. Afterwards, we will show how non-set constructs can ex-
pressed as pure set equivalent expression. The presentation is a bit tedious, but
it is worth being carefully followed.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

9-14

Lesson 9: More about attributes

Sets

An attribute A depending on parent object P is called multivalued if a collec-
tion of more than one value of A can be associated with each instance of P.
Otherwise, the attribute is called single-valued. The cardinality of the attribu-
tes states of how many values this collection can be made up. The schema of
Figure 9.16 (left) partly models an application domain in which each customer
can be given from 1 to 5 phone numbers.

CUSTOMER
CNum
Name
Phone[1-5]

Figure 9.16 -Phone is a set multivalued attribute of its parent CUSTOMER

In the most simple situations, this value collection is just a pure set, which
means that the values are distinct, and that no ordering (or whatever else) re-
lation holds among the values. For instance, if a customer happens to have 4
phone numbers, its entity will be given a collection of four distinct Phone va-
lues in which no number can be considered as the first or the last one. Venn
diagrams are commonly used to graphically represent such collections of va-
lues (Figure 9.16 - right). Except when specified otherwise, multivalued attri-
butes are sets.

Bags

This is nice for phone numbers (and for some other interesting situations), but
what about the following problem: our customer, besides having phone num-
bers, usually has cars too, for which we only want to record the make of each
of them. Since people tend to buy cars of the same make, we must accept to
record the same make name more than once. Therefore, we will associate,
with each CUSTOMER entity, a collection of make names in which certain
names can appear more than once. This particular form of collection in which
different elements can be identical is calletja@3 of values. Figure 9.17
shows entity typ€€CUSTOMERS well as the graphical representation of a bag

3.

... ormultiset.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 9: More about attributes 9-15

of Car values. In this example (right), the customer has one Ford car, one
Toyota and two VWs.

CUSTOMER Toyota

CNum Ford
Name VW

Car[0-10] ba VW

Figure 9.17 -Car is a bag multivalued attribute.

Unique lists

For some patrticular kinds of information, the order of the values in each col-
lection is meaningful. It is the case for the christian names of persons, among
which there a first one, usually used to call this person to mow the lawn on sa-
turday morning. Then there is a second one, generally reduced to its initial.
Most often there is a third one, and some persons can have a fourth one. So
the christian names of a person are distinct, but they are ordered. Such a col-
lection will be called ainique list. Figure 9.18 illustrates this situation and a
sample collection of christian names.

CUSTOMER

CNum ‘ John ‘ Andrew ‘ Mathiew ‘
Name

ChristianName[1-4] u-list

Figure 9.18 -ChristianName is a unique list multivalued attribute.

Lists

Of course, we could ask for the same privilege as we did for sets: being al-
lowed to built a list in which the same value can appear several times. Such a
collection simply is dist. There are many situations where lists are a useful
modeling construct. Let us consider second-hand cars sold by a company, and
for which advertisements have been published in newspapers. Potential
buyers call for appointment to examine one of the cars. The calls are recorded
by an answering machine, then, later on, the callers are contacted in the calling
order. Itis notuncommon that the same person call more than once. This pro-
tocol can be modeled by Figure 9.19. The car for which the phone calls are

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

9-16 Lesson 9: More about attributes

illustrated have been (or will be) examined by potential buyer with number
75.83.12, then by the one with number 22.67.40, and finally by the first one
again, exactly in this order.

CAR
Number

Make ‘ 75.83.12‘ 22.67.40‘ 75.83.12 ‘
Model

Year
BuyerPhone[0-20] lis

Figure 9.19 -BuyerPhone is a list multivalued attribute.

Arrays

Normally, we should have to close the discussion on multivalued attributes
with the List construct. Unfortunately, we cannot. The problem is simple to
state, though it is a bit more complicated to solve.

When examining what standard technologies propose to implement collec-
tions of values, we quickly learn that most of them offer one construct only,
i.e., thearray of elements. This is a universal structure, through which one
can easily represent sets, bags and all sorts of lists, but which also makes it
possible to implement other sorts of data structures, such as chains, hash ta-
bles, sparse tables, vectors, matrices, etc. Most decent 3GL languages such as
COBOL, PL/1, ADA, BASIC, Pascal and C include some variant of the array
construct.

An array is not a data structure as we have discussed them so far. It is a me-
mory organization, made of an indexed collection of cells. Each cell is desi-
gnated through its position (generally an integer number starting from 1). A
cell is empty until a value is explicitly stored in it. Two cells can contain the
same value.

Considering the contents of these cells only, an array appealistasf aon-
unique values that can include some null-valu€ke problem is that the po-
sition of a cell can be an implicit information. Figure 9.20 represents the mo-
del of a department for which we record the expenses according to 4 different

4. Some languages offers the list construct (LISP, PROLOG) while OO-DBMS often propose
bag and set constructs.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 9: More about attributes 9-17

categories, numbered from 1 to 4. In the sample data, there is an amount for
categories 1, 2 and 4 only.

DEPARTMENT

Name 1,250 825 1,250
Location

Expense[0-4] arrg,

Figure 9.20 -Expense is an array multivalued attribute.

Unique arrays

Arrays being pure storing structures, there generally is no uniqueness cons-
traints on the cell contents. Hence the concephafue array. The schema

of Figure 9.21 represents teams of persons in charge of projects. Each team
comprises from two to four persons, each of them taking a specific role (num-
bered from 1 to 4) in the team.

TEAM

Code J. Barrig Dodgson Milne
Skill

Role[2-4] u-array

Figure 9.21 -Role is a unique array multivalued attribute.

Summary

The table below shows the classification of multivalued constructs according
to two dimensions: structure and uniqueness.

unstructured ordered indexed array of cells
unique set u-list u-array
non unique bag list array

Generally (but there can be exceptions), sets, bags, lists and unique lists will
be used in conceptual specifications while arrays will rather be used in logical
and physical schemas.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

9-18

Lesson 9: More about attributes

Set expression of non-set multivalued attributes

It can be shown that any non-set collection of elements can be expressed into
an equivalent structure, generally more complex, but that includes set cons-
tructs only. Let us first examine how the examples of bag, list and array shown

above can be transformed into set expressions.

Bags A bag is transformed into a set of pairs;%>, wherev is a unique va-
lue andmis the number of instanceswin the bag.

<1;Toyota>
<1;Ford>

<2;VW>

Lists. A list is transformed into a set of pairs;% >, wheres is the position

of the element in the list andits value. Note that the valuessoform a con-

tinuous sequence, since each element of the list consists of a value (as opposed
to arrays).

<1;John>

‘John ‘Andrew ‘Mathiew ‘ UJ

<2;Andrew>

Arrays. An array is transformed into a set of pairs <>, wherei is the in-
dex of a non-empty cell andis its contents. Note that the value$ afo not
form a continuous sequence, since empty cells are not represented.

<1:1,250>
1,250 825 1,250 [<4:;1,250>
<2:825>

Now, we can propose precise translation rules for all the non set constructs.
For each of them, the following table shows an example of each non set attri-
bute, its set equivalent and a short description.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 9: More about attributes

9-19

CUSTOMER CUSTOMER The_ b:_;1g of cars is replaced with ajset
ENum cNurm of distinct car values. To recover the
Name - Name fact that each caralug can appear
Car[0-10] bag Car[0-10] more than once, Fultiplicity _
Multiplicity attribute states how many times this
Value value appears.
id(Car):
Value
CUSTOMER CUSTOMER The list is transformed intp a set of
cNum CNum couples made up of a christian ngme
Name - Name value {alue) and aSequence
ChrName[1-4] u-list ChrName[1-4 number that states the position of|the
Sequence value. The attribute identifiers arg
_Value necessary to tell that, for eaCluS-
id(ChrName): | ToMERentity, theChrName values
Sequence . .
id'(ChrName) are unique according t8equence
Value and according t&alue .

CAR CAR Thg list is transformed into a set of
Number Number pairs made up of a BuyerPhone
Make - Make value {alue) and aSequence
Model Model number that states the position of|the
Year) Year value. The attribute identifier tells
BPhone0-20] list Bzzoﬂi[,?giol that, for eaclfCARentity, the

Vaﬂ,e BPhone values are unique accor-
id(BPhone): ding toSequence .
Sequence
DEPARTMENT DEPARTMENT Each non-empty cell of the array |s
Name Name expressed as d&xpense value,
Location - Location that comprises thimdex value of
Expense[0-4] array Expense[0-4] the cell and th&/alue stored in it.
Index The attribute identifier tells that, for
_Value eachDEPARTMENG@ntity, the
Id(IIEerp:ane): Expense values are unigue accoy-
ding tolndex .

DB-MAIN Tutorial -[J J-L Hainaut 1999

21/03/2002

9-20

Lesson 9: More about attributes

TEAM TEAM Same as for array. An additional
Code Code attribute identifier states thRole
Skill - skill values are unique according to
Role[2-4] u-array Role[2-4] Value .

Index
Value
id(Role):

Index
id'(Role):
Value

Big questiondo we have to know all these rules? Not at all, DB-MAIN know
them much better than we could ever. For instance, select at€CibiName

of entity typeCUSTOMERNd execute commantransform / Attribute /

Multi Conversion We get a fairly complex control panel (Figure 9.22) which
asks us into what kind of collection type we want attriliCilName to be
converted. There seems to be a lot of possible target structures, but few con-
versions are labellego loss, stating that we will loose no information if we
select them.

To understand this panel we must examine some outstanding properties of mu-
tivalued attributes. Three of them are of particular importance, namely uni-
gueness, order and possible gaps.

1. Uniqueness Three constructs enforce uniqueness on their elements,
namely sets, unique lists and unique arrays. The other three accept multi-
ple instances of the same value.

2. Order. Two constructs form unordered collections of values, namely sets
and bags. The other four induce an order on the collection of their ele-
ments.

3. Gaps A cell of an array (be it unique or not) can be empty, leaving a gap
between its adjacent cells. This gap can have a specific meaning (absent
value for instance). Sets, bags and lists ignore this concepts.

When converting a collection type into another one, each of these properties
can be preserved (denoted by a gregrost (denoted by a red or introdu-

ced (denoted by a rex). A conversion produces a equivalent construct if it
preserves all three properties (presence or absence), i.e., if it is characterized
by three greer in the control panel. For a unique list, only the second con-
version preserves all its properties (Figure 9.22).

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 9: More about attributes 9-21

9.7

The best way to understand all this is to play with the different kinds of mul-
tivalued attributes and to apply all the possible conversions.

Multivalued attribute conversion |

Convert collection tepe unique list of multivalued
attribute "Chitame". [Chooze new collection type]

— Collection type—— r Unique | — Order— — Gap—
Set [logsz]

B ag [lozs)
Blag [holoss]
-t lmes]
(=i [ez
List [logz]

[t (e oes]

I-array [lozz)

i e i i i B e S T B

IEamay [moloss]
 Aray [loss)
0 fray (o loss]

Cancel |

1
T T T ||

Figure 9.22 -Converting non-set multivalued attribute ChrName of CUSTO-
MERiInto another collection type (including set).

Multivalued identifiers

Identifiers comprise attributes and/or roles. However all the examples used so
far were based on single-valued attributes. Nothing prevents us from defining
an identifier with a multivalued attribute, such as in the schema of Figure 9.23
(left), which states that customers have from 0 to 10 account numbers. Not
only each customer has unique account numbers (which is quite natural since
we defined them as a set of values), but each account number is unique among
all customers. In other words, an account number belongs to one and only one
customer.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

9-22 Lesson 9: More about attributes

This property is simply declared through the secondary identifer {
count[*] }. Note that the bracket part of expressidocount|*] tells
that each value dgkccount is, in its own right, an identifier.

To better grasp the essence of this construct, let us transform at&dute
count into an entity type (Figure 9.23, right):

1. we select attributAccount ,
2. we call commandransform / Attribute /-> Entity type,

3. we validate all the propositions (except for the rel-type name which will
feel better when renamed ax ™!).

Now look very carefully at both schemas, and try to convince yourself that
they convey exactly the same semantics.

CUSTOMER CUSTOMER
CustID CustIlD
Name Name
Address Address
Account[0-10] id: CustID
id: CustID \

id": Account[*] 0-10
l‘-l
| ACCOUNT|
Account
id: Account

Figure 9.23 -In the left side schema, attribute Account has been declared
an identifier of CUSTOMER represent the fact that an account belongs to
one customer only. Another equivalent way to represent the situation is pro-
posed in the right side schema.

Now, if we accept multivalued attributes as components of identifiers, we
could define very complex and quite obscure (and sometimes quite wrong
too!) structures. So that we would be wise to limit the valid arrangements to
meaningful combinations, or at least to those that can make sense for most of
us. Therefore, we propose to define identifiers that comply with the valid
forms described in Figure 9.24.

Some additional rules for identifiers of entity type E:

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 9: More about attributes

9.8

9-23

» The attribute components of any identifieroére attributes o, of any

level.

» Each role component belongs to binary rel-typR such that (1) is
played byF, (2) the other roles is played byE, (3)R.s has cardinality

[I-1]

, Wherel=1 for primary identifiers, (4R.r has cardinalityK-

L] , withL>1.
single-valued attribute | multivalued attribute role
format 1 1 or more 0 0
format 2 1 or more 0 1
format 3 0, 1 or more 0 2 or more
format 4 0 1 0

Figure 9.24 -valid formats for entity type identifiers.

More on access keys

The identifier of Figure 9.23 (left) can be declared an access key as well (do
it!), yielding a multivalued foreign key. Of course, such complex access keys
cannot be translated in a straightforward way into relational indeBat all

this is another story that will be told later on.

Access keys form a particulapecieswhose habits are described in Figure

9.25.
single-valued attribute | multivalued attribute role
format 1 1 or more 0 0
format 2 1 or more 0 1 or more
format 3 0 0 1 or more
format 4 0 1 0

Figure 9.25 -Vvalid formats for access keys.

5. Anyway, some (rare) DBMSs can manage multivalued indexes. ADABAS from Software
AG is one of them.

DB-MAIN Tutorial -[J J-L Hainaut 1999

21/03/2002

9-24 Lesson 9: More about attributes

Additional rules for access keys of entity type E:

* The attribute components of any identifiertoére attributes ok, of any
level.

« Each role component belongs to binary rel-typR such that (1) is
played byF, (2) the other rols is played byE.

The schema of Figure 9.26 shows some examples of hon-standard access keys.
They state that one can get fast acce$2BRSONentities (or records) (1)

from anyCarlD value, (2) or from anyipCode value, (3) or fromAc-
countNumber value of anyAccount value, (4) or from anREGIONenti-

ty (or record) vidives_in

REGION
O-Ni RegionName
Population
1-1 id: RegionName

\
PERSON

PersID
Name
CarlD[0-5]
City
ZipCode
CityName
Account[0-N]
AccountNbr
Amount
id: PersID
acc: CarlD[*]
acc: City.ZipCode
acc: Account[*].AccountNbr
acc: lives _in.REGION

Figure 9.26 -A handful of non-standard access keys.

9.9 Multivalued reference attributes

If identifiers and access keys can be multivalued, why couldn’t foreign keys
be multivalued as well? They can, indeed. Figure 9.27 shows that the link
betweenCUSTOMERNdORDER:an be defined by multivalued foreign key
CUSTOMER.Passesfrom CUSTOMER ORDERIinstead of the more tradi-
tional single-valued foreign key fro@RDERo CUSTOMER

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 9: More about attributes 9-25

CUSTOMER ORDER
CustID OrdNum
Name Date
Address id: OrdNum
Places[0-N]
id: CustiD />
id": Places[*]

equ

Figure 9.27 -A multivalued foreign key. Note that the id’ constraint states that
an ORDERentity cannot be referenced by more than one CUSTOMELRNtity
and the equ constraint states that each ORDERentity must be referenced by
one CUSTOMERBNtity.

The schema of Figure 9.28 is a more sophisticated illustration of the concept.
The multivalued foreign key implementsnaany-to-manyrel-type between
UNIT andPRODUCT

Multivalued foreign keys will be found either in standard files, where record
types can include multivalued fields acting as implicit, i.e., undeclared, foreign
keys, or in modern RDBMSs (SQL-3 or SQL:1999), that provide some way to
define multivalued columns. However, it can be demonstrated that any data
structure, even apparently purely relational, can include implicit multivalued
foreign keys. Indeed, a single-valued field can result from the concatenation
of the values of a multivalued field, and therefore represent potential multiva-
lued foreign key. Such complex structures are studied in the theory of reverse
engineering and are beyond the scope of this tutorial. However they are worth
being mentioned.

UNIT PRODUCT
UnitID ProdID
Name Name
Address Description

Produces[0-N] id: ProdID
id: UnitID /

ref: Produces[*]

Figure 9.28 -A multivalued foreign key that implements a many-to-many link
between two entity types: a production unit can produce several products whi-
le a product can be produced by several units.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

9-26 Lesson 9: More about attributes

9.10 Non-standard reference attributes

In the previous section, we already shook the apparent simplicity of the con-
cept of foreign key by suggesting that they could be made up of a multivalued
attribute. Not surprisingly, they can comprise compound or sub-attributes as
well. In addition, we will mention some other curious forms of foreign keys.
Some of them will appear naturally in standard database analysis and design
while others will found in legacy databases.

- Optional FK. All the components of the foreign key are optional; if the lat-
ter comprises more than one component, the foreign key should form a
coexistence group as well (why?).

- Total FK. A foreign key is called total if each value of the target identifier
must be referenced by at least one source entity. Such a foreign key has
been described in Section 6.4, and is represented by sgmbol

- Cyclic FK. A cyclic foreign key references its own table instead of another
table, so that it is a bit le$sreignthan the standard FK.

- ldentifier FK . The foreign key is an identifier as well.

- Secondary FK The foreign key references a secondary identifier instead of
a primary identifier.

- Conditional FK. The components can be interpreted as a foreign key only
under a definite condition.

- Multi-target FK . The foreign key references more than one table. Each va-
lue designates a row in each of the target tables.

- Alternate FK. The foreign key references more than one table. Each value
designates a row in one of the target tables only.

However, some even stranger kinds of foreign keys can be encountered in the
database jungle. We will examine two of them, that must be interpreted at the
logical levef, so that we will talk about record types (these structures are not
relational) instead of entity types and about fields instead of attributes. Five
more examples are proposed in the Exercise section.

6. About 25 non-standard foreign key patterns are discussed in J-L Hainaut, J-M. Hick, J.
Henrard, V. Englebert, D. Rolan@ihe Concept of Foreign key in Reverse Engineering - A
Pragmatic Interpretative TaxonomyB-MAIN Research Report, March 1997, FUNDP.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 9: More about attributes 9-27

Hierarchical foreign key to a multivalued attribute

Record types, as they appear in standard files, often compensate the lack of in-
ter-record explicit relationships by complex intra-record hierarchical field
structures. In particular, multivalued compound fields, possibly at several le-
vels, are popular structures to implement a hierarchy of entity types. In such
a structure, some dependant entities can be represented by instances of multi-
valued fields, instead of by records. Referencing these entities from within
other records consists in designating these values. Hence the concept of forei-
gn keys referencing field values instead of records.

In the schema of Figure 9.29, @RDERecord represents a customer order
that includes from O to 20 details. Each of these details mention a different
item in a definite quantity. This structure is represented b RiBERecord

type which includes multivalued fieldletail . This field has distindtem-

Code values (this property is declared by an attribute identifier). To identify
a uniqueDetail value, the programmer must supply a valugSraiD and
avalue oftemCode . For each detail, some shipments can be sent to the cus-
tomer. Therefore, each shipment is associated with a detail. SEHER
MENTrecord designates its pardbetail value through the hierarchical
foreign key {OrdID,ltemCode }.

SHIPMENT ORDER
ShipNumber OrdID
Date Date
OrdID Detail[0-20]
ItemCode ItemCode
Qty Qty
id: ShipNumbe id:OrdID
ref:OrdID | > id(Detail):

ItemCode ItemCodd

Figure 9.29 -The foreign key references a value of a multivalued attribute,
instead of an entity.

Overlapping foreign keys

Two multi-component foreign keys overlap if they share one or several colu-
mns and if none is a subset of the other. The schema of Figure 9.30 describes
lines of invoice, each of which belongs to an invoice and references a line of
order. Both invoice and line of order reference their unique origin order, hence
common componer@®@rderNumber .

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

9-28

Lesson 9: More about attributes

INVOICE LINE-of-INVOICE LINE-of-ORDER
OrderNumber OrderNumber OrderNumber
InvoiceNumber InvoiceNumber ltemCode
Date LineNumber Qty
Amount ItemCode id: OrderNumber
id: OrderNumber Qty ItemCode

InvoiceNumbe Amount

id: OrderNumber
InvoiceNumber
LineNumber

ref: OrderNumber

InvoiceNumber|
ref: OrderNumber
IltemCode

Figure 9.30 -The overlapping foreign keys share common field OrderNum-
ber

9.11 Object attributes

As has been accepted until now, the domain of an attribute is a set of values.
Some domains are made up of atomic values (numbers, character strings, dates
and the like) while others comprise more complex structures such as com-
pound domains as illustrated in Section 9.3.

Considering that a domain is just a sethifigs why can’t thes¢hingsbe en-
tities? Figure 9.31 is an example of this idea. AttrilBgrder has been gi-
ven a domain that is entity ty@JSTOMERistead of any set of elementary

values.
CUSTOMER ORDER
CustID OrdNum
Name Date
Address Sender: *CUSTOMER
id: CustID id: OrdNum

Figure 9.31 -The value of attribute Sender is not a CustiD value, as we
could expect, but a CUSTOMERNtity!

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 9: More about attributes 9-29

In other words, each value of this attribtgally is an entity, not a printable
value such a€ustID , as would have been the case should we deStame

der a foreign key taCUSTOMERFor instance, we can talk about sub-attri-
butesSender.Name and Sender.Address of ORDERas if Sender
were a compound attribute.

The schema of Figure 9.32 pushes the idea even further. The value of attribute
OrderPlaced of entity typeCUSTOMER a set o©ORDERentities. As abo-

ve, the value oBender is aCUSTOMERBNtity. Note thaOrderPlaced is

an identifier ofORDERtranslating the fact that an order is placed by one cus-
tomer only, and therefore identifies it. Edaétail value includes a value

of attributeProduct , which is aPRODUCEntity.

CUSTOMER ORDER PRODUCT
CustID OrdNum ProdNum
Name Date Name
Address Sender: *CUSTOMER Description
OrderPlaced[0-N]: *ORDER Detail[1-10] Price
id: CustID Product: *PRODUCT id: ProdNum
id": OrderPlaced[*] Qty

id: OrdNum

Figure 9.32 -This schema describes customers that place orders, the details
of which reference products. Object attributes is an alternative to rel-types and
foreign keys.

This schema includes a new feature, nameyindant structuresindeed, tel-

ling who is the sender of each order gives the same information as designating
all the orders of each customer. Therefore, object attrilrigsrPlaced
andSender convey exactly the same information. Moreover, they can be
considered as the inverse of each other. When custpiaces orded, we

must add entityDto attributeOrderPlaced of entity C and attributeésen-

der of Omust be set t€ Declaring thaBender andOrderPlaced are
inverse object attributes can be made as in Figure 9.34. To state this cons-
traint, we proceed as follows.

1. Each attribute must form a group. That is already don@raderPla-
ced, so that we just sele@ender and we click on buttoiGR in the
Standard tools bar.

2. We open the Property box of any of both groups Sagder) and we
click on buttonConstraint to call the Inter-group constraint panel.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

9-30 Lesson 9: More about attributes

Constraint Properties |

Examine/modify the properties of a conztraint of
ORDER.GRORDER

Mame GRORDER

Type

" Rief drverse [0 [relusion |7 Copy

" Ref Equ | Generic [lnel Equ |7 CopyEqu

T arget entity lwpes

[cUsSTOMER =l
Object type attributes
I OrderPlaced j

Hemwel Ol I Canicel |

Figure 9.33 -Choosing an inverse object attribute.

CUSTOMER ORDER

CustlD OrdNum
Name Date
Address Sender: *CUSTOMER
OrderPlaced[0-N]: *ORDER Detail[1-10]
id: CustID Product: *PRODUCT]
id": OrderPlaced[*] Qty

inv id: OrdNum

X inv: Sender

Figure 9.34 -Object attribute OrderPlaced has been declared the inverse
of Sender of ORDERo express the fact that the sender of an order placed
by customer C is C him/herself.

3. Buttoninverse is already checked (DB-MAIN understands what we are
doing). All the candidate inverse object attributes are shown in fietds

get entity types andObject type attributes’. We select one of them and we
validate the choice.

The schema appears as in Figure 9.34.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 9: More about attributes 9-31

For what reason could we want to represent inter-entity relationships through
object attributes instead of pure rel-types? Because it is the preferred (and on-
ly) way to link object classes iabject-oriented DBMSsor OO-DBMSs
(where entity types are interpreted as object classeg)bjett-relational
DBMSs, or ORDBMS, we can use either foreign keys or table-based columns,
i.e., object attributes.

The concept of inverse object attribute will be useful in OO-DBMSs, where
object attributes are often used to navigate between object classes: to get the
sender of an ordemnd the orders placed by a customer. On the contrary, OR-
DBMSs do not require such doubled representations. To close the discussion,
we give in Figure 9.35 a pure Entity-relationship schema that is equivalent to
that of Figure 9.32.

CUSTOMER PRODUCT
CustID ProdNum
Name Name
Address Description
id: CustID Price

id: ProdNum

Sender ‘
0-N O-N

g

OrderPlaced

l‘-l 1-1
ORDER
OrdNum DETAIL
= -10 -1
Date 120 of 11— o
id: OrdNum

Figure 9.35 -An Entity-relationship schema equivalent to that of Figure 9.32.

7. If the inverse attribute you have in mind is not displayed, that means that it cannot be
declared the inverse of the current attribute. For instédrgerPlaced appears in the
candidate list because its domainGRRDERand it has been declared an identifier of
CUSTOMERIf one of these conditions is not met, DB-MAIN does not propose this
attribute.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

9-32 Lesson 9: More about attributes

Key ideas of Lesson 9

1. Built-in and user-defined domains

Built-in domains are the basic data types which atomic attributes can be based
on in DB-MAIN. They correspond to the data types available in most DBMSs
and programming languages. Additional, application-specific, domains can
be defined as a named combination of basic data types. They offer a nice way
to built a collection of reusable components on which the schemas can be built.

2. Stable and non-recyclable attributes

The value of a stable attribute can be set, but cannot be changed afterwards. If
an attribute is non-recyclable, then any value that was once given to the attri-

bute of an entity cannot be assigned to another entity, even when the former

has disappeared.

3. Attribute identifiers

Considering multivalued, compound, attribute A depending on parent P (enti-
ty type, rel-type or compound attribute), a subset of the components of A can
be declared an identifier for A. For each parent instance, the values of A are
unique on this subset of values.

4. Non-set multivalued attributes

In many situations, the value of a multivalued attributesstaf values, that

is, an unordered collection of distinct values. Sometimes, we need more so-
phisticated kinds of value collections.bAgis an unordered collection of va-
lues that are not necessary distinct.umque listis an ordered collection of
distinct values, while these values can be nonunique in a distpl&n array

is an indexed set of cells in which values can be storeduriigae array the-

se values are unique. Note that some cells can be left empty.

Each non-set collection type can be transformed into an equivalent standard,
set-oriented, multivalued attribute.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 9: More about attributes 9-33

5. Multivalued identifiers

An entity type identifier can comprise attributes and/or roles. They can also
be made up of a multivalued attribute

6. Access keys

Complex access keys, defined on non-relational schemas can include multiva-
lued attributes, component attributes and even remote roles. Such access keys
will be used in optimized logical schema design.

7. Non-standard reference attributes

Besides classical relational foreign keys, made up of one or several atomic,
single-valued column, and referencing the primary id of one table, many other
kinds of referential structures can be encountered in actual databases. Interpre-
ting these structures is a problem that pertain to the reverse engineering do-
main.

8. Object attributes

An object attribute is an attribute whose domain is an entity type. Two object
attributes can be declared inverse of each other. An object attribute can be
used to represent a relationship type.

Such structures will be found in OO databases, in which entity types are called
object classes instead. They can be used in plain entity-relationship schemas
to define domains that are more complex than user-defined domains.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

9-34

Lesson 9: More about attributes

Summary of Lesson 9

In this first lesson, we have studied the following concepts:
Built-in domains

User-defined domains

Stable and non-recyclable attributes
Attribute identifiers

Non-set multivalued attributes
Multivalued identifiers

Complex access keys

Multivalued reference attributes
Non-standard reference attributes
Object attributes

We have also learned
to define and to use user-defined domains
Product / Userdomains
to define an attribute identifier
select the attribute, theéveew / Group
to transform an attribute into an entity type
Transform / Attribute /-> Entity type
to transform an entity type into an attribute
Transform / Entity type / -> Attribute
to convert non-set multivalued attributes into set attributes
Transform / Attribute / Multi Conversion

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 9: More about attributes 9-35

Exercises for Lesson 9

9.1 Define a dozen attribute that are specific to an accounting system. Same
exercise for an application domain that talks about students, teachers,
lectures and exams.

9.2 Transform the following structure into a schema that does not include
multivalued attributes.

CUSTOMER
CustID
Name
Purchase[0-100]
Date
Item

Qty
Shipment[0-5]
Date
Sty
id: CustID
id(Purchase):
Item
Date
id(Purchase.Shipment):
Date

9.3 Transform each example of non-set attribute proposed in this lesson into
a pure relational schema.

Hint: first transform it into a set multivalued attribute, then transform
the latter into relational structures through commarathsform / Re-
lational model.

Compare the result with the source schema.

9.4 Embedded foreign key

In a social security system, each child depends on a parent (which is a
person), and is associated with an account. A developer has coded this
situation as follows.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

9-36

9.5

21/03/2002

Lesson 9: More about attributes

PERSON
PID
Name CHILD
Address PID
Employer Name
id: PID Parent
Account
id: PID
A_CCOUNT ref: Parent
RegistrNumber ref: Parent
AccountNum Account
Date
id: RegistrNumbej
AccountNum

What do you think of this schema? Can you restructure it to make its
actual semantics explicit?

Partly optional foreign key

A collection of memoir subjects are proposed to last year students. A
memoir is identified by its title and the year it is being proposed. Stu-
dents are characterized by their name, the option they are registered in,
and the year they have to choose a memoir subject. When they have
made this choice, they are given the title of their memoir. Technically
speaking, when attribufditle of aSTUDENTentity is null, then this
entity references nMEMOIRentity, while whenTitle is not null,

then {Title,Year } references MEMOIRentity.

STUDENT MEMOIR
StudID Title
Name Year
Option Advisor
Title[0-1] id: Title
Year Year
id: StudID
ref: Title />

Year

This structure cannot be declared a foreign key in every RDBMS. Pro-
pose another equivalent structure that can be fully coded in SQL.

DB-MAIN Tutorial E] J-L Hainaut 1999

Lesson 9: More about attributes 9-37

9.6

9.7

9.8

By the way, could you give a correct Entity-relationship schema of this
implementation?

Partially reciprocal foreign keys

A fluid distribution network is made up of nodes and pipes linking no-
des in a directed tree structure. The fluid flows from the root node to
the leaf nodes. In a pipe, it flows from the source node to the sink node.
The pipes attached to a common source node are uniquely numbered.
Among the outgoing pipes of each source node, one is considered its
main pipe. A developer proposes the following relational schema, that
comprises a non-standard foreign key pattern, calbetally recipro-

qual FK. What could be the conceptual schema it is an implementation
of?

PIPE
NODE modebFrom
NodelD [umber
MainPipe EOdet-I:O[O'l]
Position —eng
- id: NodeFrom
id:NodelD Number
ref:NodelD id" NodeT
MainPipe -Nodeto
ref
equ: NodeFron

Design a relational schema that describes the following application do-
main: Towns are situated in countries (or states). Towns in the same
country have distinct names. In each country, one town is known as its
capital.

Give an equivalent conceptual schema of this logical schema.

Non-minimal FK

Many text books about relational theory base their introduction to Boy-
ce-Codd normal form on the following example:
registration(Student,Subject,Lecturer)
Lecturer— - Subject
Student,Subject — - Lecturer
There are several ways to transform this schema. One of them could be
as follows:

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

9-38 Lesson 9: More about attributes

REGISTRATION LECTURE
Student Subject
Subject Lecturer
Lecturer id: Subject
id: Student Lecturer

Subject id": Lecturer
ref: Subject

Lecturer

A LECTUREentity represents the fact that a lecturer teaches a given
subject. A lecturer is allowed to teach one subject only. This fact is no-
tified by the secondary identifiet.écturer }. A (non-minimal) pri-

mary identifier comprising $uject,Lecturer } has been defined

for technical reasons that have to be discovereRE&SISTRATION

entity states that a student is entitled to be taught a subject by a lecturer.
The identifier ofREGISTRATIONenforces the following constraint: a
student can be taught a subject by one lecturer only.

Can you explain the rationale of unusual identifiulject,Lec-
turer } and foreign key §ubject,Lecturer }?

9.9 Reflexive foreign key?
What do you think of the following schema? Can it be simplified?

A
Al

A2
id: Al

ref

8. This pattern was really found in an Oracle database (probably generated by a CASE tool).
We are still trying to guess what it was intended for!

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 10

More about constraints

Objective

This lesson describes new constraints to better express the com-
plexity of application domains, namely existence constraints.
These constraints dictates, among others, which attributes of an
entity type must have a value while others cannot. We will show
that these constructs are strongly related to 1S-A relations. More
general forms of constraints can be declared, namely the generic
constraints.

In addition, this lesson will introduce to the powerful concept of
schema transformation.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

10-2 Lesson 10: More about constraints

10.1 Introduction

This lesson will discuss new forms of constraints that can be used to better cap-
ture the semantic structures of complex application domains. Wé®8art
MAIN and we create a new project callexkson10 .

10.2 Existence constraints

When you observe, in the application domain, that

* an employee can be the manager of a department or the head of a project
but not both,

» when an employee works in a department, then the date s/he was hired is
known,

e acar must belong to a customer or allocated to a service
you can translate these observations @xistence constraints

These constraints are properties that hold among groups of optional attributes
and/or roles related to an entity type. They tell which of these attributes (and
roles) must have a value and which ones must have, or can have, no values.
We will describe in detail four of thenepexistenceexclusive at-least-one
andexactly-one

10.3 Coexistent components of an entity type

We create a new schema, calfédexistence , in which we will describe
persons who may work in companies and who may be married (a fairly com-
mon combination). More precisely, each person is described by its personal
number, its name, the name of his/her spouse, the date s/he was married, the
company s/he works for, and the date s/he was hired by this company.

However, not all the persons are married and/or work in a company. Therefo-
re, attributesSpouseName, DateMarried andDateHired are optional

and roleworks-in.PERSON is optional too. The corresponding schema
looks like Figure 10.1.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 10: More about constraints

Figure 10.1 -A schema describing persons working in companies.

COMPANY

CompNumber
CompName

id: CompNumbe

PERSON

PersID

Name
SpouseName[0-1
DateMarried[0-1]
DateHired[0-1]

|

id: PersID

10-3

However, things are not so simple. For instancemaliried personsave
both validdate marriedand validspouse namproperties, whilewon-married

personshave neither of them.

Similarly, working persondhave adate hiredproperty and aompanythey
work in, whilenon-working personkave neither.

We can say that attributBateMarried

andSpouseName arecoexistent

i.e., some entities have a value for these attributes, while all the others have no
values for them.

DB-MAIN provides us with a specific feature to declare this coexistence cons-
traint: thecoexistencegroup. It works as follows:

we create a gro&pcomprising attributeSpouseName and DateMar-
ried , and we give it theoexistencecharacteristics by clicking on the
Coexistence button in the Group box (Figure 10.2);

similarly, we defineworks-in.COMPANY andDateHired
coexistence group.

as another

The completed schema is shown in Figure 10.3 and in Figure 10.4.

1. Proceed as usual: select all the components then click on BRdn the Standard tools
bar. To open a selected group, just pres&thier key.

DB-MAIN Tutorial -[J J-L Hainaut 1999

21/03/2002

10-4 Lesson 10: More about constraints

Group Properties

E xamine/modify the properties of a group of the entity type
FERSOM]

Mame [COEXPERSON Length ’
— Functionz — Components

£ i SpouzeM ame PerzlD

" Secondamy 1D ||| DateMarried M arme
| <<tdd First | | D ateHired

W Coexistence rovork z-in COMPANY
= Excllisive {PerslD}

I Atleast-are <<Add Ne:-:tl

™ User const.

I j' Removes |

[T Access kep ‘ il_l ﬂ LLI _,I

Sem. | Tech. | Prap. ” Eonstrainll Ok I Cancel |

Figure 10.2 -Defining a coexistence group.

COMPANY
CompNumber
CompName ’
id: CompNumbe 0-1

\
PERSON

PersID

Name

SpouseName[0-1]
DateMarried[0-1]
DateHired[0-1]

id: PersID

coex: works-in.COMPANY

DateHired
coex: SpouseName

DateMarried

Figure 10.3 -Any person who works in a company must have a date hired,
and conversely. All married persons, and only they, have a spouse name and
a date of marriage.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 10: More about constraints 10-5

COMPANY
CompNumber
CompName
id: CompNumber
PERSON
PersID
Name
SpouseName[0-1]
DateMarried[0-1]
DateHired[0-1]
id: PersID
coexist: works-in.COMPANY, DateHired
coexist: SpouseName, DateMarried

works-in (
[0-N]: COMPANY
[0-1]: PERSON)

Figure 10.4 -Text view of coexistence constraints.

Note

1. All the components of a coexistence group must be optional. This condi-
tion is easy to check for attributes: their cardinality must be [0-]]. For the
role components (e.gnorks-in.COMPANY), the rule is a bit different:
the role specifies a relationship type whose other role must be optional, i.e.
it has cardinality [0-1]. This rule can be explained by the following inter-
pretation: a PERSON optionall{i.e., [0-1])works-in a COMPANY

2. A coexistence group can also be defined among the attributes of a rela-
tionship type.

10.4 Exclusive components of an entity type

This concept is quite similar to the coexistence of components.

Let us record in the current schema information aboutvdgesof the per-

sons. Considering that some persons are paid on an hourly basis, while the
others are paid at the end of each month, we can define two attributes, namely
HourlyWages and MonthlyWages .

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

10-6

Lesson 10: More about constraints

However, nPERSONntity can have a value for both attributes. We consider
these attributes aclusive

It is fairly easy to define agxclusive constraintin DB-MAIN through arex-
clusive group

1. we create a new grofipcomprising attributesHourlyWages and
MonthlyWages
2. we give it the exclusive characteristic by clicking onBkeusive button
in the Group box.
The schema appears as in Figure 10.5.
Let us now consider an additional rule, stating teatpanies do not hire mar-
ried person§ In other words, a person is married, or works in a company, (or
none), but not both.

PERSON

PersID
Name
SpouseName[0-1]
DateMarried[0-1]
DateHired[0-1]
MonthlyWages[0-1]
HourlyWages[0-1]
id: PersID
coex: works-in.COMPANY|
DateHired
coex: SpouseName
DateMarried
excl: MonthlyWages
HourlyWages

Figure 10.5 -A person paid monthly cannot be paid per hour, and conversely.

The information concerning the marriage is gathered into a coexistence group
{SpouseName, DateMarried } while the information related to the pro-

Provided no such group already exists. In such a case, just double-click on it and proceed
as told in step 2.

Non-equal-opportunitycompanies must be modeled as well. Whether describing politi-
cally incorrect situations is politically correct or not is beyond the scope of this introduc-
tion.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 10: More about constraints 10-7

fessional activity of the person is represented by the coexistence group
{works-in.COMPANY , DateHired }.

Theexclusive constraintis defined by amxclusive grougs follows:
1. we declare a new group comprising grougofks-in.COMPANY ,
DateHired } and group SpouseName, DateMarried }4,

2. we give it theexclusivecharacteristic by clicking on ttexclusive button
in the Group box.

We get the schema of Figure 10.6.

Notes
1. All the components of an exclusive group must be optional.

2. An exclusive group can also be defined among the attributes of a rela-
tionship type.
3. A simpler expression will be proposed in the following (Figure 10.10).

PERSON

PersID

Name

SpouseName[0-1]

DateMarried[0-1]

DateHired[0-1]

MonthlyWages[0-1]

HourlyWages[0-1]

id: PersID

coex: works-in.COMPANY
DateHired

coex: SpouseName
DateMarried

excl: MonthlyWages
HourlyWages

excl: {works-in.COMPANY
DateHired}
{SpouseName
DateMarried}

Figure 10.6 -Married persons cannot work in a company, and conversely. A
simplified expression will be discussed in the following.

4. Same procedure as for attributes: select the groups then click on GiRtam the Stan-
dard tools bar.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

10-8 Lesson 10: More about constraints

10.5 Groups with at least one , or exactly one , existing com-
ponent

Let us consider again the last schema. For the purpose of the demonstration,
we delete exclusive groupfonthlyWages , HourlyWages }.

Now we consider that all the persons are paid, in a way or in another. In our
schema, this rule translates as folloasleast oneof the attributesHour-
lyWages and MonthlyWages must have a value.

This property is called thet-least-one constrainfand can be specified throu-
gh anat-least-one groups follows:

1. we declare a new grouppnthly-Wages,Hourly-Wages H
2. we click on buttomt-least-one in the Group box.
Without surprise, we get the schema of Figure 10.7.

PERSON

PersID

Name

SpouseName[0-1]

DateMarried[0-1]

DateHired[0-1]

MonthlyWages|[0-1]

HourlyWages[0-1]

id: PersID

at-Ist-1: MonthlyWages
HourlyWages

Figure 10.7 -Every person must be paid, in whatever way(s)!

Very often, such a group will also be given thelusiveproperty, to declare
thatone and only one componenust have a value. To state this, we open the
group again and we click on tlEeclusive button, so that botBxclusive and
At-least-1 buttons are checked.

This condition is defined by thExactly-one property (symbolized with
exact-1in the schema) as shown in Figure 10.8.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 10: More about constraints 10-9

PERSON
PersID
Name
SpouseName[0-1]
DateMarried[0-1]
DateHired[0-1]
MonthlyWages[0-1]
HourlyWages[0-1]
id: PersID
exact-1: MonthlyWages
HourlyWages

Figure 10.8 -Every person must be paid, but in one way only.

Notes
1. All the components of afit-least-onegroup must be optional.
2. A group cannot have bo@oexistencandAt-least-onegroperties.

3. An At-least-onegroup can also be defined among the attributes of a rela-
tionship type.

10.6 Existence constraints rules

There are some logical rules that are useful to know when one defines several
existence rules. Most of them are quite intuitive, but it could be useful to shed
some light on them.

Let us first consider two examples.

1. Itis sometimes possible to simplify a set of coexistence groups. In Figure
10.9/left, two coexistence constraints hold among the attributes of entity
type PERSON One attribute appears in both constraints which makes
it valid to merge the groups.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

10-10

Lesson 10: More about constraints

PERSON
PersiD
Name
SpouseName[0-1]
DateMarried[0-1]
SpouseBirthDate[0-1]
coex: SpouseName

DateMarried
coex: SpouseName

SpouseBirthDate

PERSON
PersiD
Name
SpouseName[0-1]
DateMarried[0-1]
SpouseBirthDate[0-1]
coex: SpouseName

DateMarried

SpouseBirthDate

Figure 10.9 -Two coexistence constraints that share common components
must be merged.

2. Figure 10.6 has shown thatexclusiveconstraint can be defined on other
groups. If these groups define a coexistence constraint, then the exclusive

group can be reduced (Figure 10.10).

PERSON

PERSON

PersID

Name
SpouseName[0-1]
DateMarried[0-1]
DateHired[0-1]
MonthlyWages[0-1]
HourlyWages[0-1]

PersID

Name
SpouseName[0-1]
DateMarried[0-1]
DateHired[0-1]
MonthlyWages[0-1]
HourlyWages[0-1]

id: PersID

coex: works-in.COMPANY
DateHired

coex: SpouseName
DateMarried

excl: MonthlyWages
HourlyWages

excl: {works-in.COMPANY
DateHired}
{SpouseName
DateMarried}

id: PersID

coex: works-in.COMPANY
DateHired

coex: SpouseName
DateMarried

excl: MonthlyWages
HourlyWages

excl: works-in.COMPANY
SpouseName

Figure 10.10 -An exclusive constraint between two coexistent groups can be

simplified by replacing each group with one of its components.

21/03/2002

DB-MAIN Tutorial E] J-L Hainaut 1999

Lesson 10: More about constraints 10-11

It would be boring to precisely describe and illustrate all the rules that hold
among any arbitrary set of existence constraints. Figure 10.11 gives some of
them in an abstract way. You should easily find practical examples of each of
them without too much toil. Note that some rules define inference, while
others express equivalence or inconsistencies:

-Ci10 C2 Inference tells that whenever constraints C1 are sa-
tisfied, then constraints C2 are automatically satis-
fied; therefore, expressing C2 is useless.

-Cl - C2 Equivalencetells that constraints C1 are equivalent
to constraints C2: whenever one set is satisfied, the
other one is satisfied as well; therefore, we can defi-
ne C1 or C2.

- C1 0O C2isfalse Inconsistencietells that if constraints C1 are satis-
fied, then constraints C2 cannot be satisfied; there-
fore, expressing C1 and C2 leads to an inconsistent
schema.

E
ID

A[0-1]
B[0-1]
clo-1]
D[0-1]
E[0-1]
F[0-1]
G[0-1]

inference rules

coex: AB,C [] coex: A,B
excl: A,B,C [] excl: A,B

excl: A,B] coex: B,C
excl: A,C

excl: A,B excl: A,C
coex: B,C 2

coex: A,B] at-least-1: B,C
at-least-1: A,B,C

excl: AB,C] excl: A,B
at-least-1: A,B

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

10-12

Lesson 10: More about constraints

equivalence rules
excl: A,B o excl: A,B
excl: A,.C coex: B,C
coex: A,B o coex: A,B,C
coex: A,C
coex: A,B,.. o coex: A,B,..
coex: E,F,.. coex: E,F,..
ech:E{A B..}, excl: AE
{EF,.}
excl: A,B,C - exact-1: A,B
at-least-1: A,B is always null, can be removed
inconsistency rules
excl: A,B [] excl: B,C is false
excl: A,C
excl: A,B,C [] coex: B,C is false
coex: AB,C [] excl: B,C is false
at-least-1: A,B,C] at-least-1: B,C is false
at-least-1: AB,C [] coex: A,B,C is false

Figure 10.11 -Some rules to simplify and to find inconsistencies among exis-

tence constraints. This table is kindly intended for those who have problems
falling asleep at night.

10.7 Existence constraints and IS-A relations

You probably found this section ab@xistence constrainsbit complicated.

You may even have asked yourself (from now on, you should ask us!) why

precisely these constraingsd not all the others that we can imagine. Quite

right, other constraints of this kind can be defined, but these are particularly
meaningful when related with the different kinds of IS-A relations. It is a bit
too early to develop this point in detail, but we can get an idea on why these

constraints have been privileged.
Let us consider the small IS-A hierarchy of Figure 10.12.

21/03/2002

DB-MAIN Tutorial E] J-L Hainaut 1999

Lesson 10: More about constraints 10-13

EMPLOYEE

EmpID
Name

Address
id: EmpID

EXECUTIVE A ENGINEER

Function Skill
Level Experience

Figure 10.12 -A source schema including an IS-A hierarchy.

Now let us imagine that we want to translate this schema into relational struc-
tures. Obviously, the rules we used in Section 6.6 are useless, since they cope
with simple conceptual schemas only. Though we will discuss advanced
translation rules in another volume, we already can build an ad hoc relational
implementation of this schema as follows (Figure 10.13).

1. We move the attributes &XECUTIVE to EMPLOYEE They become
optional, since not all employees are executives.
2. We do the same for the attribute ENGINEER

EMPLOYEE
EmpID
Name
Address
Function[0-1]
Level[0-1]
Skill[0-1]
Experience[0-1]
id: EmpID
coex: Function
Level
coex: Skill
Experience

Figure 10.13 -A relational logical schema implementing the conceptual sche-
ma of Figure 10.12.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

10-14 Lesson 10: More about constraints

3. When arEMPLOYEHls anEXECUTIVE s/he has values féunction
andLevel . Otherwise s/he has no values for them. Same reasoning for
ENGINEER Hence the coexistence constraints shown in Figure 10.13.

In Figure 10.12, no constraints held among the subtypes. No, we consider that
no executive can be an enginegproperty that can be expressed through the

D (disjoint) property of the subtypes. The implementation of Figure 10.13 can
be kept, provided the additional property is explicitly expressed. It is not too
complicated: if attributesHunction , Level } have a value, then attributes

{ Skill, Experience } must be null, and conversely. In short, these
groups of attributes must be declas@lusivg(Figure 10.14).

EMPLOYEE EMPLOYEE
ErplD EmplD
Name Name
Address Address
id: EmpID Function[0-1]
A Level[0-1]
/A\ Skill[0-1]
EXECUTIVE ENGINEER Experience[o-l]
Function Skill id: EmpID .
Level Experience coex: Function
Level
coex: Skill
Experience
excl: Function
Skill

Figure 10.14 -Relational implementation of a disjunction

It is getting clear now that all the subtype properties can be completely trans-
lated into existence constraints:

Disjoint = exclusive
Total < at-least-one
Partition < exactly-one.

In conclusion, though existence constraints are useful in themselves, they also
are necessary and sufficient to express all the subtype properties of the 1S-A
constructs. This stresses their importance in building correct relational logical
schemas that fully translate IS-A relations, as we will see in the next volume.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 10: More about constraints 10-15

10.8 Other existence constraints

The constraints described so far are the most important among existence cons-
traints. However, many more can be imagined that cannot be explicitly inclu-
ded neither in formal models (such as the Entity-relationship model) or in
CASE tools. The implication constraint is one of them.

In its simplest form, the implication constraint states that the value of some at-
tributes B1, B2, ... can exist only when the values of other attributes Al, A2,
... exist as well. In other words, the existence of attributes B1, B®lies
the existence of attributes A1, A2, ...
Hence the implication expression:
{B1,B2,. } 0 {AL1,A2,. }

Let us consider the schema of Figure 10.15, in which the following constraints
hold:
« thename of the spous# an employee is valid only when this employee is

married, i.e., when s/he haPateMarried ;

« the birthdate of the spousef the employee is valid only when this
employee is married, i.e., when s/he h&ateMarried

PERSON
PersID
Name
SpouseName[0-1]
DateMarried[0-1]
SpouseBirthDate[0-1]

Figure 10.15 -An entity type in which two implication constraints hold.

These constraints can be expressed as follows:
* SpouseName [1 DateMarried
e SpouseBirthDate [l DateMarried

Unfortunately, there is no specific construct to declare such constraints, so that
we are forced to imagine an equivalent structure. What about the schema of
Figure 10.167? Can you prove that this schema translate both implication cons-
traints correctly?

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

10-16 Lesson 10: More about constraints

PERSON
PersiD
Name
Marriage[0-1]
DateMarried
SpouseName[0-1]
SpouseBirthDate[0-1]

Figure 10.16 -This schema is intended to express implication constraints: no
SpouseName without DateMarried and no SpouseBirthDate wi-
thout DateMarried . s it correct?

10.9 Generic constraints

The lessons studied so far have described a fairly large variety of constraints:
identifiers, attribute domains, attribute cardinality, rel-type cardinality, exis-
tence, subtype properties, etc. However, it is impossible to enumerate all the
constraints that are, or that may be, useful to describe some application do-
mains. Letus consider, for example, a constraint such as the followieg-

ployee can receive a salary greater than that of his/her marageders can

have a non-zero rebate only if they have at least 3 detddsice the need for

a more general means to declare arbitrary kinds of constraints. DB-MAIN of-
fers two generic constructs that can be used to define new constraints, namely
thegeneric groupconstraint and thgeneric inter-grougconstraint.

Generic group constraints

Les us consider a specific constraint that tellsahaing the mentioned nume-
ric attributes, at least one must be positideis a kind ofat-least-onecons-
traint, but this one checks the actual values, not only their presence or absence.

We will illustrate this constraint on the schema of Figure 10.18, where at least
one of the three account levels must be greater than zero. The constraint will
be namedt-Ist-1>0 , to be interpreted ad-least-one-greater-than-zero

Practically, we proceed as follows:

1. We define a group comprising the three attributes: we select these attribu-
tes and we click on the butt@Rr.

2. We open the property box of this group: we pres&iier key.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 10: More about constraints 10-17

3. We click on the buttowser const., we typeat-Ist-1>0 in the cons-
traint field (Figure 10.17). We close the Property box by clickin@kin

Group Properties |

E xamine/modify the properties of a group of the entity type

CUSTOMER
‘Name [GRCUSTOMER Length 3|
— Funchions — Components
€ Eiimapll Intdccount CuztlD
"~ Secondary D | [|Extdcoount Mame
= Savetcoount <zfdd Firgtl CustD}
[T Coesistence
[T Exclusive
[Ableast-one <<idd NE”"
V¥ Uszer const.
Iat-lst-‘|>D vI T — |
[T Acoess key ‘ LLI LI _’I
Senm. | Tech. | Prop. ” Eonstraintl Cancel |

Figure 10.17 -A new form of constraint is being defined.

The constraint appears as in Figure 10.18. Once this constraint has been defi-
ned, it can be used anywhere in any project without being redefined

CUSTOMER
CustID
Name
IntAccount
ExtAccount
SaveAccount
id: CustID
at-Ist-1>0: IntAccount
ExtAccount
SaveAccount

Figure 10.18 -A new form of constraint tells that at least one of the attributes
must have a positive value.

5. In fact, its definition has been stored in DB-MAIN.ini file.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

10-18 Lesson 10: More about constraints

Generic inter-group constraints

Several constraints are defined among groups or from a group to another one.
ConstraintRRef, Equ andinverse are some of them. The DB-MAIN model al-
lows us to define our own inter-goup constraints. Figure 10.19 shows a schema
that describesuppliers that supply itemandorders whose products are as-
signed to suppliers One obvious constraint is thate cannot assign a pro-

duct of an order to a supplier if this supplier does not supply this prodnct
other words, all the coupleSUPPLIERITEM} of relationshipsassigned

must be a subset stipplies relationship set. Such a constraint belongs to
the general family oihclusionconstraints, of which the referential constraint

is just a special case.

An inter-group constraint is built as follows.

1. We define group SUPPLIERITEM} of supplies and group JUP-
PLIER,ITEM} of assigned;

2. The latter is opened and defined as a generic group constraint with the
nameincl

3. We call the constraint panel (by clicking on but@onstraint), we select
the target objectRT:supplies and the target group SUP-
PLIER,ITEM}. We click on the buttoiGeneric and close all the panels.

SUPPLIER 0- 0- ITEM
0 N

-N 0-

incl: SUPPLIER
ITEM

0-N

Figure 10.19 -A new inter-group constraint that tells that each couple of
{SUPPLIERITEM} that appears in an assigned relationship must be a
supplies relationship as well.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 10: More about constraints 10-19

Note

Generic constraints can be consideregassiveconstraints, since the tool
does not understand their semantics. They can be processed through ad hoc
Voyagerprocedures.

10.10 Schema transformation: another look

To help understand the concepicoexistenceonstraint, we will propose an
equivalent structure which may be more illustrative of the very nature of this
constraint. To do so, we will use again trensformation toolkit of DB-
MAIN. This component will be studied in greater detail in future lessons, but
the current situation is a good opportunity to experiment with one of its sim-
plest toolsattribute aggregation

We consider the schema of Figure 10.3, and we proceed as follows:

- we select, by clicking on it, the group that compriSpsuseName and
DateMarried ;

- we execute commanttansform / Group / Aggregation (Figure 10.20);

- anew attribute is created; we give it the nafagriage (or any other na-
me);

Il Assizt Engneenng Log Wiew W

Entity pe 3
HEelfype F
AliiEnte 3
Fale F

> Betoe
[Eharge prefi.. £gdegation
Mame processing... = Multi-valued

Fielational model

Quick SOL...

Figure 10.20 -Asking for the aggregation of the components of the selected
group into a compound attribute.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

10-20 Lesson 10: More about constraints

As illustrated in Figure 10.21, the set of attribute®BRSOMas been res-
tructured as follows:

- now, SpouseName andDateMarried are the components of the new
compound attributMarriage ;

- these attributes are mandatory for their parent attribute;
- Marriage is optional;
- the coexistence constraint has been removed.

It is important to be convinced that the schemas of Figure 10.3 and Figure
10.21 convey exactly the same semantics, i.e., they describe the same portion
of the application domain. Indeed, Figure 10.21 tells tR&RSOMNtity can

have aMarriage value. In this case, it has a value for each of its compo-
nents, namehspouseName andDateMarried . If it has noMarriage

value, then, quite naturally, it has no values for the components of this attribu-
te. This is exactly what the coexistence constraint is intended to express.

PERSON
PersID
Name
Marriage[0-1]
SpouseName
DateMarried
DateHired[0-1]
id: PersID

Figure 10.21 Coexistent group {SpouseName,DateMarriage }has been
transformed into optional compound attribute Marriage

To push the experiment a bit further, we select the attrateiage , and
we execute the commaridansform / Attribute / Disaggregate

(Not really) surprisingly, we get the origin schema! We can draw from this
two essential conclusions that will be discussed later on:

1. each transformation is the inverse of the other one: each one erases the
effect of the other one; they are calladerse transformations

2. both schemas are equivalent, i.e., they represent exactly the same reality,
though through different structures. The choice of one of them will be
guided by criteria which are beyond the scope of this lesson. A transfor-
mation which replaces a schema with an equivalent one is callersi-

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 10: More about constraints 10-21

ble, or semantics-preserving
As we will see later on, such a transformation can be summarized as in Figure

10.22.
PERSON PERSON
PersiD PersID
Name - Name
SpouseName([0-1] Marriage[0-1]
DateMarried[0-1] SpouseName
DateHired[0-1] DateMarried
id: PersID DateHired[0-1]
coex: SpouseName id: PersID
DateMarried

Figure 10.22 -A couple of reversible transformations: Group/Aggregate (left
to right) and Attribute/Disaggregate (right to left).

DB-MAIN offers a fairly large number of schema restructuring techniques, or
schema transformations. These are among the most simple, but not the least
useful, as will be illustrated in further lessons.

Note

The othercoexistencgroup can be processed in a similar way. However,
it would need a more sophisticated transformation since it includes attribu-
tesand roles Thus, we will leave it to a further lesson.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

10-22 Lesson 10: More about constraints

Key ideas of Lesson 10

1. Existence constraints

These constraints are properties that hold among groups of optional attributes
and/or roles related to an entity type. They tell which of these attributes (and
roles) must have a value and which ones must have, or can have, no values.

We considered four of them:

» coexistencethe components of the group must be simultaneously present
or absent for any entity; the group appears with the syodmy

« exclusive among the components of the group at most one must be pre-
sent for any entity; the group appears with the syrakoll

» at-least-1 among the components of the group, at least one must be pre-
sent for any entity; the group appears with the syrabtst-1; all its com-
ponents are optional;

» exactly-1 among the components of the group, one and only one must be
present for any entity (= exclusive + at-least-1); synetxalct-1

Existence constraints can also hold among the attributes of a rel-type. Existen-
ce constraints can translate in relational logical schemas the subtype properties
(D, T) of IS-A relations.

2. Generic constraints

A generic group constraint is a user-defined property holding among the com-
ponents of a group. It defines a new integrity constraint which is given a user-
defined name. A generic inter-group constraint is a user-defined directed link
drawn from one group to another group. The meaning of generic constraints
is user-defined.

3. Schema transformation

A schema transformation is an operator that replaces constructs in a schema
with other constructs. Each transformation hagaersethat can undo its ef-

fect. A transformation that changes the form of the schema without affecting
its semantic contents is callsgmantics-preservingReplacing a coexistent
group of attributes with a compound attribuaérfbutegroupaggregation is

a semantics-preserving transformation. Its inversenspound attribute di-
saggregation

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 10: More about constraints 10-23

Summary of Lesson 10

« In this lesson, we have studied the following notions:

- coexistenceonstraint

- exclusiveconstraint

- at-least-oneconstraint

- exactly-oneconstraint

- generig or user-defined, constraints

- schema transformation, inverse transformation, reversible transformation

* We have also learned how
- to definecoexistentexclusiveat-least-ongeexactly-onegroups:

in the Group box, click on theoexistent, Exclusive,
At-least-one button

- to definea genericgroup constraint:

in the Group box, fill th&Jser constraint field
- to definea genericinter-group constraint:

in the Group box, click on th@onstraint button
- to define a compound attribute from its components:

if needed, make a group with the components; then
Transform / Group / Aggregate

- to disaggregate a compound attribute:
Transform / Attribute /Disaggregate

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

10-24

10.1

10.2

10.3

10.4

21/03/2002

Lesson 10: More about constraints

Exercises for Lesson 10

Let us consider the four schemas PERSONNEL that have been built in
Exercise 9.3. For each of them, derive another schema in which the IS-
A relation has been eliminated. Proceed as follows:

- replace the supertype/subtype relation by a one-to-one relationship
type drawn between the supertype (cardinality [0-1]) and each subty-
pe (cardinality [1-1]).

Take special care with all the derived existence constraints that express

the subtype properties.

Let us consider the four schemas PERSONNEL that have been built in
Exercise 9.3. For each of them, derive another schema in which the IS-
A relation has been eliminated. Proceed as follows:

- propagate (by inheritance) all the components of the supertype (attri-
butes, roles, constraints) to each of its subtype;

- remove the supertype.

Pay special attention to all the derived existence constraints. Be aware

that employees who are neither clerks nor workers must be represented

anyway.

Let us consider the four schenPERSONNELlhat have been built in
Exercise 9.3. For each of them, derive another schema in which the IS-
A relation has been eliminated. Proceed as follows:

- move all the properties of the subtypes to their supertype; for instan-
ce, the fact that all clerks have a function can be represented by an
optional attribute oEMPLOYEHKsee Figure 10.13);

- when all the properties have been pushed up to the supertype, remove
the subtypes.

Take special care with all the derived integrity constraints. The role of
an employee (clerk, worker, both or none) can be represented through,
for example, new attributemployeeType .

Can you formulate an opinion concerning these three techniques to eli-
minate super-type/subtype relations? Some criteria: readability, sim-

DB-MAIN Tutorial E] J-L Hainaut 1999

Lesson 10: More about constraints 10-25

10.5

10.6

10.7

plicity, conciseness, complexity of the additional integrity constraints,
ease of translation into a relational database.

Do you think that some of these techniques are more fitted in some si-
tuations (think of subtype properties for instance)?

Note.

The problem of IS-A relation translation is complex, particularly when
the database is to be implemented into a standard DBMS (e.qg., a relatio-
nal DBMS). It will be dealt with in a future lesson. Nevertheless, the
techniques described in the questions above represent the three standard
families of 1S-A relation representations.

A relational database includes two tables, A and B, built by the fol-
lowing SQL program (column domains are ignored for simplicity):

create table A (Al not null, A2 not null, A3, A4,
primary key (A1,A2))

create table B (B1 not null, B2, B3, B4,
primary key (B1),
foreign key (B3,B4) references A))

Represent these structures by a logical schema.

Observe that the foreign key is optional. Ideally, two cases only are va-
lid: either columns B3 and B4 both are null, or both have a value, in
which case these values must match an A row. Represent this constraint
in the logical schema.

Propose an equivalent conceptual schema.

Build entity type PERSON with, among others, optional attributes
Country , Area , Local . Express the fact that these attributes are si-
multaneouslynull or valued Make a compound attribute from them
and call itTelephone .

Add to entity typd’ERSONnandatory attributéddress , made of
(Number, Street andCity); City is in turn a compound attribute
comprisingZipCode andCityName .

- Disaggregate these attributes.
- MakeAddress optional then apply the same manipulations.

- Starting from these resulting flat structures, try to go back to the nes-
ted structures.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

10-26 Lesson 10: More about constraints

10.8 Consider once again the entity tfgieRSON Add two entity types, na-
mely COMPANYNd ADMINISTRATION. A person can work in a
company (where s/he receives a salary), in an administration (where s/
he has a level) or is unemployed (in which case s/he receives an unem-
ployment allowance). Add the necessary attributes and/or relationship
types to represent these fact/ithout resorting to I1S-A relations,
add the group constraints expressing the following situations:

- a person must either be in a company, or in an administration or
unemployed, but only in one of these situations;

- aperson can either be in a company, or in an administration or unem-
ployed, or nothing at all, but only in one of these situations;

- a person must be in a company, or in an administration or unem-
ployed, or in more than one of these situations;

- aperson can be in a company, or in an administration or unemployed,
in more than one of these situations, or in none of them.

Now, try to express these application domaimmsugh IS-A relations.
Compare both expressions.

10.9 Design a schema that expresses the same idea as in Figure 10.21, but in
which attributeMarriage is replaced by the entity typéARRIAGE

10.10 Define a generic inter-group constraint that declares implication cons-
traints.

10.11 Define a generic group constraint that states that the roles of a group
must be played by different entities.

10.12 Define a generic inter-group constraint that allows designers to declare
functional dependencies.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 11

More about relationship types

Objective

This lesson describes advanced constructs related with relation-
ship types, namelmulti-ET rolesandgeneric relationship types

A multi-ET role can be played by an entity taken from one of sev-
eral entity types. Instances of a generic rel-type are rel-types that
can appear at different places of a schema with the same name
and the same meaning.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

11-2 Lesson 11: More about relationship types

11.1 Introduction

We will describe multi-ET roles that can be used to simplify some schemas, to
make them more concise and more readable. Generic rel-types, i.e., rel-types
with the same semantics that appear in the same schema, will be found in some
specific application domains. We will examine two of them: aggregation and
topological rel-types.

We startDB-MAIN and we create a new project callexsson1l .

11.2 Multi-ET roles

Each role of a rel-type is played bgeentity that comes froraneentity type.

Sometimes, we would like to express the fact that the entity that plays this role

can beof type A or of type B, depending on the situation. As an example, we

consider a company in which pieces of equipment can be borrowed. The bor-

rower can be either an individual or a service. We can model these facts by

drawing a binary rel-types frorBQUIPMENTto ... both EMPLOYEEand
borrower

SERVICE (Figure 11.1).
0-N
< borrowed_by>

0-1

EQUIPMENT

Figure 11.1 -The borrower of a piece of equipment is either a service or an
employee.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 11: More about relationship types 11-3

Defining such a construct is easy:

1. drawborrowed_by rel-type fromSERVICE and EQUIPMENT(with
the button); adjust the cardinalities if necessary;

2. draw a line from roldorrowed _by.SERVICE and EMPLOYHKwith
the buttor[H); rename this role if necessary.

So, the roldorrower is played by two entity types, hence its qualification:
multi-ET role. Note that this does not mean that, in one particular instance of
rel-typeborrowed_by , this role can be played by several entities. Indeed,
each instance comprises exactly two entities, one of EypeIPMENTand

one of typeSERVICE or EMPLOYERHust like in standard binary rel-types.

Now, would it have been possible to describe this part of the world in another
way? As usual in database modeling, the answer is yes.

Let us first examine a tempting, but quite erroneous way to do it. It consists in
defining a 3-ary rel-type involving entity typ&ERVICE, EMPLOYEENd
EQUIPMENT(Figure 11.2). What is wrong with this schema? It tells us that
a piece of equipment is borrowed simultaneoushalservice and an em-
ployee which obviously describes a quite different borrowing rule.

SERVICE EMPLOYE

0-N 0-N
borrowed_by

0-1

EQUIPMENT

Figure 11.2 -This schema expresses a quite different situation from that of
Figure 11.1!

On the contrary, Figure 11.3 tries (and succeeds!) to express the same meaning
as Figure 11.1. In this schema, supertypdT generalizes all the organiza-
tional actors of the company, including services and employees, that can be
responsible for borrowing pieces of equipment, and probably for other actions

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

11-4

Lesson 11: More about relationship types

as well. Therefore, a borrower is just a unit, which in turn is either a service
or an employee.

borrower
0-N
< borrowed_by>
SERVICE EMPLOYE
0-1

EQUIPMENT

Figure 11.3 -Another way to describe the problem of Figure 11.1. The bor-
rower of a piece of equipment is an organizational unit , which in turn is either
a service or an employee.

The existence constraints studied in Lesson 10 give us still another way to mo-
del this situation. We can see things as follows:

The sentence
a piece of equipment is borrowed either by a seroiday an employee
can be rewritten without alteration of its meaning as

a piece of equipment either can be borrowed by a seorican be bor-
rowed by an employee
Hence the schema of Figure 11.4, which surely is far less elegant than the
others (it includes two rel-types with the same semantics + a complex cons-
traint), but which is quite correct too.

11.3 Generic rel-types

The rel-types defined in the schemas developed in the previous lessons repre-
sentspecific associationsetween pairs (or tuples) of entities. Figure 5.15 and
Figure 5.17 are typical examples of such rel-types. Defining other rel-types
with the same name and the same semantics is fairly unlikely. However, some
application domains may require similar rel-types to be defined in different

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 11: More about relationship types 11-5

parts of the schema. We will discuss some examples and examine how to re-

present them.
SERVICE EMPLOYE

0-N 0-N
borrowed_by_serv borrowed_by_empl
0-1 0-1
EQUIPMENT

excl: borrowed_by serv.SERVICE
borrowed_by_empl.EMPLOYH

Figure 11.4 -Still another way to express multi-ET role of Figure 11.1.

Aggregation

Aggregation rel-types describe the composition of compound objects such as
mechanical assemblies or chemical products. The schema of Figure 7.3 is the
first example of such rel-types. It tells us that a car is perceived as the aggre-
gation of 4 wheels, 1 body, 3 to 5 doors and 1 engine. Aggregation rel-types
generally are callegart-of |, to tell that each componeist a part ofthe
compound object. The DB-MAIN model does not include a specific construct
to represent aggregation rel-types, but such constructs can be represented in
several ways, among which you can choose. We will use an example proposed
in [Blaha, 1998] to illustrate these representations. The first schema makes use
of specific rel-types that have distinct names (Figure 11.5). Such a schema of-
fers poor readability because nothing suggests aggregation structures.

A much better representation mode consists in using gguaetiof rel-ty-

pes. All the rel-types in Figure 11.6 have a two-part name, consisting of the
visible partpart-of and the invisible patffront-matter , [title-

page, |toc , etc. By dedicating the narpart-of to aggregation structu-

res, we can represent in a standard and readable way simple and complex ag-
gregation structures. This technique produces a precise description of
cardinality constraints: eadfookhas ondront matter one or morehapters

and, optionally, onback matter

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

11-6 Lesson 11: More about relationship types

@@

1-1

|
‘ FRONT_MATTER‘ ‘CHAPTER‘ ‘ BACK_MATTER ‘

I
1-1 0-1 0-1

| 0-N 0-1
has-toc has-pref
\ \
1-1 1-1

11 11 11
|
‘ TITLE_PAGE‘ ‘TOC‘ ‘ PREFACE* ‘ APPENDIX‘ ‘ INDEX ‘

Figure 11.5 -Representing aggregation structures through standard rel-ty-
pes.

If all the components of an assembly have the same cardinality, then an even
simpler representation can be proposed through multi-ET roles (Figure 11.7,
where the multi-ET role name has been set to "|" to make it invisible).

CEC e

‘ FRONT_MATTER‘ ‘CHAPTER‘ ‘ BACK_ MATTER ‘

I
1-1 0-1 0-1
\

part-of part-of ‘ .
\

1-1 1-1 1-1

‘ TITLE_PAGE‘ ‘TOC‘ ‘ PREFACq ‘ APPENDIX‘ ‘ INDEX ‘

Figure 11.6 -Using the ambiguous name part-of to represent aggregation
structures.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 11: More about relationship types 11-7

1N
11
|
‘ FRONT_MATTER{ ‘CHAPTER‘ BACK_MATTER ‘
| !
0-N 0-N

1- 11
\
TlTLE_PAGq ‘TOC‘ PREFAC# ‘ APPENDIX‘ ‘ INDEX‘

Figure 11.7 -The relation between a compound object and all its components
is represented by one rel-type with ambiguous name and a multi-ET role.

Topological relationships

Spatial databases, such as those that underlie geographic information systems
(GIS), record information about entities that have spatial properties, such as a
form, a size and a position. Very often, users of spatial databases want to de-
fine topological relationships between objects suchoash cross don't-

cross disjoined These relationships can have two roles. Firstly, that can be
used as integrity constraintsiads don’t cross buildingand parcels and la-

kes are disjoined, rivers cannot cross riveésecondly, they can express inte-
resting synthetic relations between entitlesidings can touch roads, a river

can touch another rivela road can cross roagdsoads can cross rivers, buil-

dings can touch buildingsOf course, these relationships can be expressed as
relations between the coordinates of the concerned spatial entities. However,
such expressions are much less intuitive and expensive to compute (synthetic
relations). The schema of Figure 11.8 describes a small geographical database
in which generic relationship types express topological relationships.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

11-8 Lesson 11: More about relationship types

RIVER rga’iln
Name i
Form: *PolyLine se
id: Name 0-N
sec
G
main sec ’ main sec
main
0N O-Ngp 0-N O-N
ROAD BUILDING
RoadCode . BuildCode
Name 7r8alllnge§7 Address
Form: *PolyLine Form: *Polygon
id: RoadCode id: BuildCode

Figure 11.8 -Instances of two synthetic topological relations expressed as ge-
neric rel-types.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 11: More about relationship types 11-9

Key ideas of Lesson 11

1. Multi-ET roles

When a role is declaradulti-ET, the entities that play this role can be of one
of several types. This construct can also be expressed through a supertype or
by duplicating the rel-type for each entity type that plays this role.

2. Generic rel-types

Some application domains require a given relationship type to appear in diffe-
rent places of schemas. Instead of defining as many standard rel-types, with
different names, it can be better to gemeric rel-typesthat have the same
name and the same meaning. Engineering and spatial databases intensively
use generic rel-types.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

11-10 Lesson 11: More about relationship types

Summary of Lesson 11

« In this lesson, we have studied the following notions:
- multi-ET role
- generic rel-type.

* We have also learned
- to define a multi-ET role:

draw a single-ET role, then draw another line from
this role to another ET.
- to define a generic rel-type (reminder):

define a first instance of the rel-type, add the symbol
"|" at the end of its name; create additional rel-types
with the same name, followed with a distinct suffix
(copy + paste works fine).

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 11: More about relationship types 11-11

111

11.2

11.3

114

Exercises for Lesson 11

Propose a schema that describes the following situation with one rel-ty-
pe:
services and employees can borrow computers and printers.

We consider the following application domain:

A meal comprises a first course, a main course and a dessert. A first
course can be a cold dish, a warm dish or a soup. A main course can
be a fish or a meat dish. A dessert can be pastry, ice cream or fruit.

Model this application domain by three equivalent schemas based on
multi-ET roles, standard rel-types and IS-A relations.

Model with generic rel-types the structure of cars, seen as mechanical
and electrical assemblies.

Schemas comprise entity types and rel-types. A rel-type comprises ro-
les, defined on entity types. Entity types and rel-types comprise attribu-
tes; the same can be said of compound attributes. Atomic attributes are
defined on domains. Some domains comprise sub-damains

Model this application domain by using generic rel-types.

Note. The resulting schema describes schemas (including itself) and can
be called aneta-schemaEach CASE tool includes a database in which

the descriptions of schemas are recorded. Such a meta-database, whose
schema is a meta-schema, is generally calleyclopediaor reposito-

ry. The repositories of DB-MAIN are stored*itun files.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

11-12 Lesson 11: More about relationship types

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 12

View schemas

Objective

This lesson introduces a powerful feature of CASE tools, namely
the concept ofiew. A view, orview schemas a schema that in-
cludes a subset of a source schema. A view can be defined, gen-
erated and updated. The source objects themselves can be
modified. These modifications can be propagated down to the
view schemas.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

12-2 Lesson 12: View schemas

Preliminary checking
We will use a new project, callédews . It includes the schema of Figure

12.1.
CUSTOMER
CNumber SUPPLIER
Name SupCode
Address Name

;‘treCEtd Address

ipCode —

City id: SupCode
Phone[1-5] ‘
Account 0-N
id: CNumbe

on offer)

1‘—1

1-1
. E— ITEM
ORDER [tNumber
OrdNumber L on M 0-N__| Description
OrdDate \ OrdQty,/ Price
id: OrdNumbe QtyOnHand
id: ItNumber

Figure 12.1 -The reference source schema.

12.1 Introduction

A DB-MAIN view is a particular presentation of a subset of a source schema.
In its simplest form (callethtent view), a view is a just a named collection of
objects belonging to the source schema. It can also be materialized as an ex-
plicit schema, called @iew schema A view schema includes all the objects

of its corresponding latent view. You canmald, modify or deleteobjects

from a view schema. However, you camamethem,transformthem or
movethem in the graphical space.

When to use views?

A view can be used to specify and display the part of a schema that describes
a specific subset or a particular aspect of the application domain. Views are
useful to decompose a large and complex schema into manageable subsche-

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 12: View schemas 12-3

mas, making it more readable. A view will also be used to specify objects on
which further operations have to be applied (such as checking, generating, re-
porting, etc).

Principles

In short, views work as follows:

1.
2.

3.

The objects of a view are marked in the source schema.

Then, a view including the marked objects is defined by giving it a name.
So far, the view itatent

A latent view can also be materialized through the generatiorviefra
schemahat includes a copy of all the objects of the view. If an attribute is
included, then its parent object (entity type, rel-type or compound attri-
bute) is included as well. If an entity type, rel-type or compound attribute
is marked, you can ask for thaitributesandprocessing unit$o be inclu-

ded as well.

. When modifications are applied on source schema objects, you can ask for

refreshing the view schemas in order to propagate these modifications.

A view schemaan be reworked: moving objects, renaming and transfor-
ming them. These modifications are preserved when you refresh the view
schema.

12.2 Specifying the objects of the view

Open the only schema of the project. Choose a free marking plane; unmark
the objects if needed(it / Selectmarked, then press the buttdir{ ,Bdit
/ Selectall, then press the buttdm] twice).

Select the desired objects and mark them (Figure 12.2):

if you mark arentity type arel-typeor acompound attributetheir attribu-
tes and groups can be asked to be automatically selected when generating
the view schema,;

if you mark arel-type the roles whose entity types are selected are included
in the view as well;

if you mark amattribute, its parent will be implicitly included in the view;
agroupis implicitly selected if all its components are selected;

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

12-4

Lesson 12: View schemas

- if you mark acollection only the marked entity types will appeatr;
- anlS-A relationis implicitly selected if the supertype and at least one sub-

type are selected;

- if you mark an entity type, a rel-type or a schema, freicessing unitsan
be asked to be inserted in the view schema.

In the example of Figure 12.2, all the marked objects will belong to the view,
together with entity typeSUSTOMERNITEM, and attributéddress , sin-

ce they are parents of

selected objects. Figure 12.3 shows all the components

that are explicitly and implicitly inserted in the view.

CUSTOMER
CNumber SUPPLIER
Name SupCode
Address Name
Street Address
ZipCode id: SupCode
Town
Phone[1-5] ‘
Account 0-N
id: CNumber
I
on offer
1-1 ‘
| ITEM
ORDER [tNumber
OrdNumber | @ 0-N— Description
OrdDate \ 0rdQty / Price
id: OrdNumbe QtyOnHand
id: ItNumber

Figure 12.2 -The components to insert in the view are marked.

21/03/2002

DB-MAIN Tutorial E] J-L Hainaut 1999

Lesson 12: View schemas 12-5

CUSTOMER] ORDER/Conceptud

CNumber SUPPLIER

Name SupCode

Address Name
g_tr%etd Address
IpCoade id: SupCode
City e

Phone[1-5] ‘

Account O-N

id: CNumber

o (ofer>

T

1-1
f ITEM
ORDER ItNumber
OrdNumber O—NO—N Description
OrdDate W Price
id: OrdNumber QtyOnHand
id: ItNumber

Figure 12.3 -The components that actually are included in the view, thanks
to the propagation rules.

12.3 Defining the view

Now, we define a view comprising the marked objects. We execute tyhe com-
mandProduct / View / Define view We call the viewCustomers&Or-
ders (Figure 12.4).

12.4 Displaying a latent view

Later on, we can retrieve all the objects that make a latent view by the com-
mandProduct / View / Mark view. The objects of the selected view appear

to be marked. Note that this operation first cleans the current marking plane,
and that former markings are lost.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

12-6 Lesson 12: View schemas

Yiew |
The name aof the view o
define

Cuztomers&Orders

Ok I Cahcel

Figure 12.4 -Defining a view with the name Customers&Orders

Yiew |
The name aof the wiew ko
generate

Cuztomers&Orders

v include attributes

[include processing units

Ok I Cahcel

Figure 12.5 -Selecting a latent view to materialize it as a view schema.

12.5 Materializing a view as a view schema
Now, let's go for more interesting things. We want to create a new schema

that comprises the objects of a latent view. We can calhthtsrializingor
generating the latent viewlhe new schema is a bit special, as we will see.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 12: View schemas 12-7

We execute commarkRfoduct / View / Generateview (Figure 12.5). We se-
lect a view name (not much choice so far!). All the marked objects, as well as
their parents, will be copied into the new schema.

However, we can tell DB-MAIN to include the components of marked objects
by clicking on thenclude attributes button @o it!). In this case, all the attribu-

tes and groups of the selected entity types, rel-types and compound attributes
are copied as well. Otherwise, only selected objects, together with their pa-
rents, are copied.

ORDER/Conceptud

ORDER/Customers&Ordeps

Figure 12.6 -A standard schema and a materialized view schema.

CUSTOMER ORDER/Customers&Ordeds
CNumber

Name

Address

ZipCode

City
id: CNumber

1-1
\

ORDER ITEM
OrdNumber | ., detail [tNumber
OrdDate O-N OrdQty 0N Description
id: OrdNumbe id: ItNumber

Figure 12.7 -The contents of view schema ORDER/Customers&Orders

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

12-8 Lesson 12: View schemas

A new product is added to the projesiew schemaORDER/Custo-
mers&Orders (Figure 12.6). Opening this view shows the contents of the
materialized view (Figure 12.7).

12.6 Modifying a view schema

Things can get more challenging when, as time goes on, we want to modify
the view schema or its source schema. Let us first consider the first problem.
Normally, a view is just a subset of its source schema. Consequently, adding
or deleting entity types, rel-types, attributes, groups, or any other objects, in a
view schema should be prohibited. However, some ligbtesmetic opera-

tions could be useful, and therefore allowed, provided they do not change the
semanticof the objects.

For instance, the objects of the view schema, while quite comfortable in their

natural environment (the source schema) can get an awkward and distorted
look when they appear in the view schema. Therefore, moving and aligning

the objects should be allowed. In addition, transforming objects changes their
appearence, but not their meaning. So, transformations should be allowed
either. Finally, just changing the name of an object does not change its very
meaning, while improving its readability for given classes of users.

In summary, the objects of a view schema can be changed as follows:

- objects can be renamed,;

- objects can be transformed;

- objects can be moved.

Other direct operations which may change the semantics of the view (add, de-
lete, modify objects and their properties) are prohibited.

Figure 12.8 illustrates some possible changes that can be performed on our
view schema:

- the entity typd TEM has been renam@&RODUCT

- the rel-typedetail has been transformed into the entity tiRieFEREN-
CE

- various objects have been moved.

Though their visual presentations are different, the schemas of Figure 12.7 and
Figure 12.8 convey the same semantics, i.e., they represent the same portion
of the application domain.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 12: View schemas 12-9

CUSTOMER ORDER/Customers&Ordey
CNumber
Name
Address PRODUCT
Zi‘pCode ItNumber
City Description
id: CNumber id: ItNumber
| |
O-N ORDER 0-N
1_1‘ OrdNumber
OrdDate
id: OrdNumbe @

\ g
on 1‘ 1

REFERENCE
1-1— OrdQty

id: ref. PRODUCT
from.ORDER

Figure 12.8 -View schema of Figure 12.7 manually updated.

12.7 What if | change my mind about the view?

Let us suppose that we wantadd objects to the viewand toremove ob-
jects. We just have to modify its definition, and to regenerate the new version.
Changing the latent view

- we open the source schema, and we select a free marking plane (needless to
clean it);

- we display the latent viewProduct / View / Mark view;

- we mark the new objects to insert and we unmark those to remove; for ins-
tance, we remove (unmarkQUSTOMER.Address.ZipCode and we
add (mark)CUSTOMER.Address.Street andPRODUCT .Price ;

- we redefine the view:Product / View / Define view in which we select
view nameCustomers&Orders

(Re)generating the view schema

- we just callProduct / View / Generateview and select view nameus-
tomers&Orders

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

12-10

Lesson 12: View schemas

CUSTOMER ORDER/Customers&0Orde)s

CNumber

233”'9 PRODUCT
StrreeZtS ItNumber
City Description

id: CNumber Price
’ I id: ItNumber

0-N ORDER O‘N

1_17 OrdNumber
OrdDate
id: OrdNumbe @

0-N

1-1
|
REFERENCE

1-1
OrdQty
id: ref. PRODUCT
from.ORDER

Figure 12.9 -The new version of view Customers&Orders

Now, the new objects appear in the view schema while those discarded have
been removed. In addition]l the modifications made in the view schema
have been applie(Figure 12.9).

12.8 Modifying the source schema

So far, so good. But what if we wantrwdify the source schematself?
Schema changes are frequent, following the evolution of the application do-
main. If the view schema has been kept in its generation state, the situation is
easy to master:

we modify the source scheredding, deleting and modifying objects;
if needed, we modify the definition of the latent view,

weredefine the view

and weregenerate it

The problem can be more compléwe have reworked the view schemagin
the case oCustomers&Orders

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 12: View schemas 12-11

As an example of this situation, let us consider thanwdify the source sche-
maas follows (Figure 12.10).

- attributeCity is renamed asown
- new attributeDelivDate is added t@©RDER
- cardinality[O-N] of detai. ORDER changed int¢1-20]

Now the big question: what about the views of this schema? Obviously, they
are obsolete and should be updated.

The first step clearly is to update the latent view by redefinirgraduct /
View / Define view.

CUSTOMEF ORDER/Conceptudl

CNumber SUPPLIER

Name SupCode

Address Name
S_treet Address
ZipCode id: SupCode
Town

Phone[1-5] ‘

Account O-N

id: CNumbe

ON @

1-1 ‘
|
ORDER |tN|TEt')V|
ItNumber

OrdNumber B m Description
OrdDate 1-20 0-N—| Pri
DelivDate W QrtICSnHand
id: OrdNumbe id');tNumber

Figure 12.10 -The source schema has been modified. What about the
views?

12.9 Propagating the modification of the source schema to
view schemas

To propagate these modifications to Wimwv schemawe have to rebuild it ex-

plicitly. We just have to generate the view again thrdeigiduct / View / Ge-
nerateview. The resulting view schema includes both the modifications of the

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

12-12 Lesson 12: View schemas

source schema and the reworking it was submitted to since its first materiali-
zation (Figure 12.11).

Note. The source of a view schema can be a view schema itself. However, in
this case, the derived schema will be lost when refreshing the source view
schema. This structure is adequate for static hierarchies of views.

CUSTOMER ORDER/Customers&Ordeds

CNumber

xgg.e PRODUCT
Street Deseriy
oo Description

] Price

id: CN‘umber id: ItNumber

o ORDER \
OrdNumber O-N

1—1— OrdDate
DelivDate
id: OrdNumbe @
\
1-20

1-1
|
REFERENCE

1-1
OrdQty
id: ref. PRODUCT
from.ORDER

Figure 12.11 -The updated view schema including the new versions of the
modified objects of the source schema.

12.10 Warning

Not all source schema modifications can be propagated to the view schema.
Indeed, an object is known by its nantiea source object is renamed or re-
moved after it has been modified in the view schema, DB-MAIN is unable

to process it when refreshing the view scheman case of renaming, the ob-

ject in the view schema keeps its former state.

For example, if we change the name of rel-tgp&il into sub-order

(Figure 12.12), DB-MAIN will be unable to cope with this rel-type (Figure
12.13), and all the view updating operations relatedetail ~ will be igno-

red (Figure 12.14).

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 12: View schemas 12-13

CUSTOMEF ORDER/Conceptudl

CNumber SUPPLIER

Name SupCode

Address Name
S_treet Address
ZipCode id: SupCode
Town

Phone[1-5]

Account O-N

id: CNumbe|

ON @

11 \

ORDER ITEM
ItNumber

orepa” Descripti
OrdDate |, ,p/ Sub-orderN o | Description

DelivDate W Price

De QtyOnHand
id: OrdNumbe id: ItNumber

Figure 12.12 -Rel-type detail has been renamed as sub-order

DB-MAIM <]

o Unknown rel-type : detail

Figure 12.13 -DB-MAIN is unable to apply the view modifications on de-
tail

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

12-14

CUSTOMER

CNumber

Name

Address
Street
Town

id: CNumber

0-N

12.11 Other operations

ORDER/Customers&Ordeds

Lesson 12: View schemas

PRODUCT

ItNumber

Description
Price

ORDER

id: ItNumber

1-1—

OrdNumber

OrdDate
DelivDate

id: OrdNumbe

Soway /

Figure 12.14 -The incompletely generated view schema.

Other operations are proposed:

- Remove viewemoves a latent view and its view schema, if any.

- Copy viewdefines a new latent view, with a specified name, that includes
the same objects as an existing view. No view schema is generated.

- Rename viewchanges the name of a latent view and of the corresponding
view schema, if any.

12.12 Technical information

In DB-MAIN versions 3 and 4, views are implemented through system dyna-

mic properties:

- schema propertylist_view specifies the list of views it is the source of; pro-
pertylsView indicates whether this schema is a view or not;

- objects propertyview specifies the list of views of which this object is a

component.

21/03/2002

DB-MAIN Tutorial E] J-L Hainaut 1999

Lesson 12: View schemas 12-15

For each view schemahéstory journal is automatically opened. This jour-

nal logs all the operations performed on the view schema. When refreshing a
view, the tool automatically replays this journal. If a source objectis renamed,
the journal will ignore it when replayed since it knows it by its former name
only. Similarly, if the name of an object is given to another object, indetermi-
nacy problems may arise.

Note. Let us mention that there existstaeat toolthat allows us to change a
view scheménto aplain schemand conversely. Not recommended of course!

12.13 The View Menu

A short synthesis on how views can be managed:

Eroduct (Re)define a view comprising the
Mew schema... marked objects.
&dd file...)
Dpen Generate (or refresh) a view schema
Pronet from the latent view.
EEEETES

Copy zchema...

Mark the objects of the source sche-

Define view.. ma that belongs to a latent view.

Generate view..:
Meta 4 .
. Fark wiew...
Usger domaing... -

Delete an existing latent view, to-
Eemove view. gether with its view schema, if any.
Copy wiew... —

Fename wiew...

NS

Define a new latent view with the
same contents as an existing view.

Give an existing view (latent and/or
schema) a new name.

12.14 There are views and views!

It goes without saying that the views we have discussed in this lesson have no-
thing to do with the various views (or display formats) of a schema we descri-
bed in Lesson 2!

We could say, for instance, tresich view schema of a source schema can be
examined according to each text or graphical View

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

12-16

Lesson 12: View schemas

Key ideas of Lesson 12

. A view of a source schemas a schema whose semantics are a subset of

that of the source schema.

. Views of a large schema are a privileged way to define homogeneous parts

corresponding to subsystems of the application domains.

. A view can be latent or materialized. |&ent view consists of a collec-

tion of marked objects in the source schemama®erialized view is a
new product of the project, calledii@w schemathat includes the objects
of a latent view + related objects defined by propagation rules.

. A view schema can bmodified through a limited set of operators:

moving, transforming and renaming objects.

. Modifications of source objects that are included in a view can be propa-

gated to the view schemas (though with some restrictions).

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 12: View schemas 12-17

Summary of Lesson 12

* In this lesson, we have studied:

- the concept of view, and more precisely that of,

- latent view

- and materialized view, in the form of a view schema.

* We have also learned:
- to define a latent view, through object marking, then,
Product / View / Define view
- to generate a view schema
Product / View / Generateview
- to mark the objects of a latent view
Product / View / Mark view
- to remove a view from a source schema
Product / View / Removeview
- to build a new latent view as a copy of an existing latent view
Product / View / Copy view
- to rename a latent view and its view schema
Product / View / Renameview

* We have produced a new type of schema:
- the view schemas.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

12-18

121

21/03/2002

Lesson 12: View schemas

Exercises for Lesson 12

Open the projetibrary . We consider three services of the library,
namely,

- Catalography concerned with books and their description;

- Loan managementconcerned with borrowers to whom copies of
books are loaned;

- Borrower registration concerned with borrowers and the projects
they borrow books for.

Define a view for each service. Materialize these rules into view sche-
mas. Rearrange and transform the latter to give them a customized
layout.

Change the source schema to practice the modification propagation ru-
les.

DB-MAIN Tutorial E] J-L Hainaut 1999

Lesson 13

Text Processin g

Objective

Texts have been largely overlooked so far. Itis time to show that
they can prove as important in database engineering activities as
database schemas themselves.

We will first learn how to manipulate texts of any nature. Then,
we will discuss the specific properties of computer-oriented texts,
and briefly describe some processors that can extract essential in-
formation from them. In particular, we will examine a natural
language extractor, DDL extractors, a text pattern analyzer, a de-
pendency graph processor and a program slicer.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

13-2 Lesson 13: Text Processing

13.1 Introduction

A database project comprises schemas and text files. Though texts appear so
far as mere output documents such as reports and SQL texts, they can prove a
very rich information source for major engineering processes ranging from
conceptual schema design to reverse engineering. We will first examine how
to manipulate text files, then we will say some words about the structures that
underlie text files.

13.2 Text file manipulation

In all the lessons of this tutorial, we have concentrated on database schemas.
However, a project generally includes not only schemas, but also text files.
We have somewhat overlooked these project components. There is not much
to say about output text files such as the SQL programs or reports we produced
in our small projects. They just have to be submitted to their favorite proces-
sor: a database engine for SQL files and a word processor for report files.

However, some projects may comprise input files in which important informa-
tion can be extracted. We will mention three such file categories.

1. Application domain documentd/hen trying to model the concepts of a
part of an application domain, we generally use various kind of informa-
tion sources, the main of which are plain documents. Indeed, legal docu-
ments, accounting listing, sales reports, marketing brochures, interview
transcripts, all include important information that can contribute to a better
understanding of the application domain structure and behaviour.

2. DDL files. Very often, databases already exist, that implement a part of the
application domain. Recovering the conceptual schema of existing databa-
ses (often calletbgacy databas¢swhatever their quality, is a major goal
of the reverse engineering process. The first step is to build the physical or
logical schema of these databases, an activity that is best carried out by
analyzing their DDL text.

3. Program files In the same context, analyzing old programs can bring us
essential information on the structure, the properties and the management
rules related to the files and databases of legacy applications.

Needless to say that these documents can be huge and complex, and that trying
to analyze them by mere visual inspection can prove boring and highly unre-
liable. For instance, considering a large relational database of 500 tables

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 13: Text Processing 13-3

6,000 columns, 1,000 indexes, 2,000 foreign keys, 800 triggers, and some ad-
ditional technical adornments, the SQL script that encodes its structures can be
more than 1,000 page long. Analyzing such a text will be particularly painful.
Understanding a 30,000 line-of-code COBOL or PL/1 module which was writ-
ten in the late seventies is not an easy task éither

Hence the need for specific text presentation and manipulation functions simi-
lar to those available for data structures in schemas.

To make the discussion more concrete, we create a new project and we include
some text files in its workspace (if needed, we close the current project):

1. Creating a new projectVe click on theNew project button[] (or exe-
cute the commanHile / New project).

2. Including an external text fil&Ve search the DB-MAIN directory for a
file namedlibrary.txt . We drag it from the Explorer window and
drop it in the project window. Another way to include this file: execute
the commandProduct / Add text.

3. Including another external text filgVith the same procedure, we include
a file namedibrary.ddl

4. Including a third external text file ... and still another text called
order.cob

The project window looks like Figure 13.1.

We double-click on each of these products to examine their contents. The first
one appears to be an interview report, the second one is a SQL script while the
third one is a COBOL source text. Discussing specific processors for each of
these text categories is beyond the scope of this volume. However, we will
examine some of the main properties common to all texts files.

Selecting and marking text lines

We open the file library.ddl. We can make two interesting observations:

« Each line has a line number; however, this number is not part of the text,
as we can observe by examining this text with a text procesdone
numbers are used to reference specific parts of the text;

A

Databases of more than 1,000 tables are not uncommon.

Particularly if this module is just one component of a 3,000,000 LOC program.

If you have none available, you can use a standard text editor through the cdrieand
Edit text file.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

13-4 Lesson 13: Text Processing

Mizcellaneous =] E
.

library ddL1 ORDER.COB/]

-

| | v

Figure 13.1 -Three text files have been included into the current project.

* The text cannot be modified: lines cannot be deleted, updated or inserted.
Of course, the text can be changed through another text processor; howe-
ver, this would not be a good idea, since then line numbers would no lon-
ger reference their target line.

Rule : do not add or delete lines in a text which curently is included in a
project. Modifying an existing line can be harmless unless DB-MAIN has
already analyzed the contents of this line. A text can be changed without
problems, provided it has not yet been, or is no longer, included in a pro-
ject.

Line selection Clicking on a line selects it. Several lines can be simulta-
neously selected by using téteft andctrl keys like in any Windows compliant
application (Figure 13.2).

Line marking . Selected lines can be marked just like objects in a schema (Fi-

gure 13.3). Lines are marked in a definite marking plane through the button

Mark. Up to five planes can be used, so that five different subsets of lines can
be permanently maintained for each text file.

Line copy/paste Selected lines can be copied on the clipbokdit(/ Copy

or Ctrl+C), then pasted in a text of the projeS8Ei or TECH annotation for
instance) or in any external text document. Line numbers can be included in
the copy if requested: execute the commassist/ Text analysis/ Settings

then check the buttobopy line number.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 13: Text Processing

[; librarp_ddi/1 H=lE
St tahle AUTHOR (=
27 ID_AUT char(10) not rall

28 HAME char(30) not mall, =
29 FIRST _MAME char(307,

30 ORIGIN chax 300,

31 primary key (ID_ATTI

32 in BOOKES DATA,

33

34 create table BOOE (]

35

36 TITLE char{30) not rmll,

37 PUELISHER char{40) not rmall,

33 DATE_PUBLISHED date not mall,

39 ABSTEACT chax 20,

40 3

41 in BOOKS DATA, e

N AW

Figure 13.2 -Selected lines in a text file.

[; hibrary_ddi/1 =] E
26 create tahle AUTHOR [=]
27 ID'_AUT char{10} not null,

28 HAME char 307 not mall, =
29 FIFST MAME chax30),

30 ORIGIN chax30),

31 primary key (ID_ATUT

32 i BOOESDATA,

a3

34 create table BOOK({

35 BOOE_ID numeric{d) not null,

56 TITLE cha(307 not wmall,

57 PUBLISHER: chax(40) not wmall,

38 DATE_PUEBLISHED date not mll,

59 ABSTRACT cha(E0),

40 primary key (BOOK_ID5)

41 in BOOKS DATA, -
N Ay

Figure 13.3 -Marked lines in a text file.

DB-MAIN Tutorial -[J J-L Hainaut 1999

13-5

21/03/2002

13-6

Changing font, size and styleThe font, as well as the character size and style,

Lesson 13: Text Processing

can be set through the commadgudit / Changefont.

Line annotation

By double-clicking on a text line, we open a text windows in which we can
write comments, remarks or any kind of textual information (Figure 13.4).

PP R

30 QFIGIN chax(30),

s et

31 primary key (ID_4 & book is any written piece of work in the literary, ;l
32 mBOCESDATA, |scientific or technical domain.

33

L - ate table BOOE ()

35 BOOE_ID mamericl

il TITLE chax(30) nc

37 PUUBLISHER. char(: [

38 DATE_PUELISHE

39 ABITEACT chax(®
40 primary key (EOOE

Ok

41 m BOOES DATA,

Cancel |

Figure 13.4 -Annotation associated with a text line.

Print dictionary HE |

Separator [
before

Separatar (]
after

Prefis Marked lines by I“_

—rike to file

IEustu:um.u:Iiu:

Browse |

™ Show report generation

Cancel |

Figure 13.5 -Report definition box.

21/03/2002

DB-MAIN Tutorial E] J-L Hainaut 1999

Lesson 13: Text Processing 13-7

Reports from text files

A report can be produced from any text file (commaitel / Print dictiona-

ry). Itis made up of all the lines of the source text, together with a marking
symbol which specifies marked lines, and, if requested, with the text annota-
tion associated with each line.

In the report defined in Figure 13.5, marked lines will be prefixed with symbol
" and annotation will appear between a tab control + "[" and "]".

A fragment of the resulting report appears in Figure 13.6. The formatting rule
has been set in the text processor in such a way that the annotations appear ni-
cely outlined.

* create table AUTHOR ([Any author who participated in
the writing of a book recorded in
the library.]
* |D_AUT char(10) not null,
NAME char(30) not null,
FIRST_NAME char(30),
ORIGIN char(30),
* primary key (ID_AUT))
in BOOKS.DATA;

* create table BOOK ([A book is any written piece of
work in the literary, scientific
or technical domain.]

* BOOK_ID numeric(6) not null,

TITLE char(30) not null,
PUBLISHER char(40) not null,
DATE_PUBLISHED date not null,
ABSTRACT char(80),

* primary key (BOOK_ID))

in BOOKS.DATA;

Figure 13.6 -The resulting report with marking symbol and annotations.

13.3 Text structures and text analysis

So far, a text is just a string of characters, or at best, a sequence of lines.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

13-8

Lesson 13: Text Processing

In fact, many texts have a significant structure. Such is the case for DDL texts,
which describe physical database schemas, and program source texts which
define programming objects such as data types, variables and algorithms.
Even plain texts in natural language can be considered as structured, provided
they obey some definite grammar. Once the structure of a text can be recogni-
zed, useful abstractions can be extracted. For instance, a tool that knows the
COBOL grammar can draw the paragraph calling tree and build the variable/
statement cross-reference table from any COBOL program.

DB-MAIN includes a collection of tools devoted to text analysis and object
extraction. We will briefly mention some of them. They will be detailed in
another volume.

13.4 Natural language analysis

DB-MAIN includes a set of tools with which one can extract a conceptual
schema from a simple text written in EngﬁshThe first component analyzes

the text to check its grammatical correctness and to detect unknown verbs.
The latter are classified, then introduced in a dictionary. The second compo-
nent extracts the concepts and their relationships from the text to produced a
first-cut conceptual schema. The third component normalizes the schema.

As an illustration, the English text of Figure 13.7 (top) has been analyzed and
transformed into the schema of Figure 13.7 (bottom).

13.5 DDL physical schema extraction

DDL extractors are kinds of compilers that parse DDL texts in order to build
the physical schema the text describes. To get an idea on what this means, try

the following manipulations.

4. These tools are distributed in the DB-MAIN Application Library #2.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 13: Text Processing

DB-MAIN Tutorial -[J J-L Hainaut 1999

13-9

have at most 6 keywords. A book is characterized by its physical-state. At
cal-document must have a comment.

date, and an origin. Each author has a surname. An author must write at
book.

number. Each copy is characterized by its date and its location.

ne-numbers. A borrower can borrow at most 5 books.

A book can be a literary-document, a scientific-document or a technical-docyment.

A book is identified by a number. Each book is characterized by its title, the| first-
published-date, keywords, an abstract and its bibliographic-references. A book can

echni-

A book can be written by several authors. An author can have a first-name, a birth-

least 1

A book can be represented by several copies. The copies are identified by their ser-

A copy can be borrowed by 1 borrower. Borrowers are identified by a personal-
id. Borrowers are characterized by their name. Borrowers can have at most 5 pho-

AUTHOR
Surname
writing 1-N First-name[0-1]
‘ Origin[0-1]
0-N Birth-date[0-1]
\
BOOK
Number
Title
Keyword[0-6]
First-published-date BORROWER
Bibliographic-reference Personal-id
Physical-state Name
Abstract Phone-number[0-5]
id: Number id: Personal-id
\
0-N 0-5
1-1 0-1
‘ SCIENTIFIC-DOCUMENT ‘
COPY
‘LITERARY-DOCUMENT ‘ Ser-number
Location
TECHNICAL-DOCUMENT Date
Comment id: Ser-numbe

Figure 13.7 -The conceptual schema automatically extracted from the En-
glish text above.

21/03/2002

13-10 Lesson 13: Text Processing

« In the Project window, select text filbrary.ddl/1 , then execute
File / Extract / SQL. Examine the extraction report and the resulting
schema.

* Now select text fleORDER.COB/1 and executeFile / Extract /
COBOL. In the same way, examine the resulting schema.

This process is one of the first steplatabase reverse engineeringln most

cases, more information must be extracted from various sources, such as
views, application programs, screen and report layout, as well as from data.
Furthermore, the completed logical schema mustteepretedor conceptua-
lizedthat is, entity types, attributes, rel-types and various constraints must be
built from these logical constructs. Though the SQL physical schema is fairly
complete, and should be transformed into a conceptual schema without much
problem, the COBOL schema is far too incomplete to lead to a decent concep-
tual schema. Further analysis of the procedural code of the program is needed
to get additional knowledge on the record structures. More on this in another
volume.

Note If you are too eager to wait for another lesson, and you want to try recovering
the conceptual schema, do as follows:

* execute the commanfbksist/ Global transformation;

« click on the buttoriPredefined, then select the scrikelational rev. eng.

 click on the buttorOK.

So, you get a tentative conceptual schema. Unfortunately, things can be much more
complex in actual systems. Forinstance, applying the same procedure on the COBOL
physical schema is uselegs!

13.6 Patterns

Texts which have a meaningful structure, such as any kind of programs, often
include patterns. Aext patternis a formally defined text structure that can
appear in several places in the text, and that is defined by a set of syntactic ru-
les. Any section of text that satisfies these rulegnstanceof this pattern.

For instance, a COBOL text file will include simple assignment statements
which all look like:

MOVE <variable name> TO <variable name>

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 13: Text Processing 13-11

Text sections such asMOVE VAT-RATE TO A-FIELD " or "MOVE NAME
OF RECA TO B" are two instances of this pattern.

Text patterns are defined as regular expressions expressed into a ppéecific
tern definition language (PDL). The exact definition of the pattern above is
as follows (see th&ext Analysifssistant):

cobol_name ::= /g"[a-zA-Z][-a-zA-Z0-9]*";
cobol_var ::= cobol_name [- "OF" - cobol_name];
move ::= "MOVE" - cobol_var - "TO" - cobol_var ;

The first rule describes how COBOL variable names are formed (simplified):
one letter possibly followed by a string made of dashes, letters and digits; let-
ters can be in upper or lower case. The second rule defines two forms of va-
riable designation: independent and component. The third rule expresses the
basic form of the COBOL assignment statement.

Pattern analysis can be carried out throughléhe analysisssistant.

13.7 Dependency graph

Useful abstract structures can be extracted from program files, such as depen-
dency graphsProgram variable B is said tiepend orvariable A if the
program includes an assignment statement sua@¥E A TO B" or
"B=A+C "or"LETB=SQRT(A) ". The graph that describes all the
variables together with the inter-dependencies is calledependency graph

of the program. As a general rule, the nature of the dependencies we are inte-
rested in are defined by the text patterns of the statements that generate them.
DB-MAIN can build the dependency graph of a program, based on the defini-
tion of the patterns that define the dependencies. The user can then query the
dependency graph by clicking on any variable in the source program.

Dependency graph building and querying can be done througexthanaly-
sisassistant.

13.8 Program slice

When we consider a specific point (statement) S of a program P, we can be in-
terested in collecting all the statements that will be executed just before the

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

13-12 Lesson 13: Text Processing

program execution comes to this point. More precisely, we could ask to res-
trict these statements to only those which contribute to the state of a definite
variable V used by S. This (hopefully small) sub-program P' is called the bac-
kwardslice of P with respect to criterion (S;V).

Let us be more concrete, and consider statement 12,455 of the 30,000-line pro-
gram P. This statement reads:

12455 WRITE COMNVALID KEY GOTO ERROR.

We want to understand which data have been stored into i€CGivblefore it

is written on disk. All we want to know is in P', the slice of P according to
(12455;COM). P' is the minimum subset of the statements of P whose execu-
tion would giveCOMhe same state as will give the execution of P in the same
environment.

The goal of program slicing is obvious: trying to understand the properties of
recordCOMs easier when examining a 200-line fragment than struggling with
the complete 30,000-line program!

Text patterns, dependency graphs and program slices are very important con-
cepts in program understanding activities, and therefore in database reverse
engineering, which strongly relies on them. They all are available iFetkte
analysis assistant

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson

[EEN

13: Text Processing 13-13

Key ideas of Lesson 13

. A project includes schemas and texts. Input texts can include essential
information to build new databases or to modify existing ones. Among
the input texts we recognize three important classes, namely application
domain texts, DDL texts that encode physical schemas and source pro-
grams.

Most text files are structured as a sequence of lines. Lines can be selected
and marked in chosen marking planes. Each line can be given an annota-
tion that includes various formal and informal information items such as
comments.

Some application domain text files can be analyzed to find conceptual
constructs.

. DDL texts can be analyzed by language-specific extractors that build the
physical schema that is encoded by this DDL file. Such a schema can then
be conceptualized into its underlying conceptual schema.

. Program files can be searched for spetific patterns Thedependency
graphthat defines the dependency relationships between variables can be
built and queried. Excerpts of a progrgmogram sliceycan be derived
by collecting the statements that contribute to the state of a variable at a
given point of the program.

. The program analysis techiques mentioned in this lesson will be develo-
ped in detail in another volume.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

13-14 Lesson 13: Text Processing

Summary of Lesson 13

« In this lesson, we have studied the following concepts:
- text files, and more particularly input text files
- projects and schemas

* We have mentioned (but not developed) sophisticated concepts and techni-
gues that we will study later on:

DDL analysis

text patterns
dependency graphs
program slice

* We have also learned to:
- include a text file in a project Product / Add text (or drag&drop)
- select, mark, copy and paste text lines
- change the font, the size or the style of a text file
Edit / Change font
- associate an annotation with a text line:
double-click on the line
- print a report from a text file: File / Print dictionary
- extract a physical schema from a DDL file:
File / Extract / <DDL brand>
- conceptualize a physical schemaAssist/ Global transformation
thenPredefined

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 13: Text Processing 13-15

131

13.2

13.3

Exercises for Lesson 13

Open the SQL text fileibrary.ddl . Mark all the table definition
headers in plane 1, all column definitions in plane 2, primary key defi-
nitions in plane 3, foreign key definitions in plane 4 and index defini-
tions in plane 5.

Create a new text in which you copy the header definitions only.

Take a copy of the filebrary.txt . Split each line in such a way
that each fragment (a bit modified and enriched if needed) now is repre-
sented by one object of the conceptual schema of the prdjeaty

For example, the source sentences:

« Every book has an identifying number, a title, a publisher, a first
published

» date, key words, and an abstract (the abstracts are being encoded),
the names

« of its authors, and its bibliographic references (i.e., the books it
references).

could be restructured into:

» Every book has an identifying number

« Every book has a title

» Every book has a publisher

« Every book has a first published date

» Every book has key words

« Some book has an abstract (the abstracts are being encoded)

» Every book has the names of its authors

« Every book has its bibliographic references (i.e., the books it refe-
rences).

Now, copy each sentence in the semantic description (SEM) of the cor-
responding object.

Build a new project in which you include the SQL fManu-6.ddI
we generated in Lesson 6. Extract its physical schema. Conceptualize
this schema with the script we used in Section 13.5. Compare the result
with the source conceptual schema we developed in Lesson 5.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

13-16 Lesson 13: Text Processing

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 16

Miscellaneous

Objective

This lesson discusses some additional functions of the DB-MAIN
model and CASE tool that have not found their place in the other
sections. First, two ways to extend the specification model are
described and compared, namely semi-formal properties and dy-
namic properties. Both allow us to enrich the standard object
classes (entity type, rel-type, attribute, etc.) with new, user-de-
fined, properties.

Several parameters that govern the default behaviour of the tool
are described. They allow users to customize their working envi-
ronment.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

16-2 Lesson 16: Miscellaneous

16.1 Introduction

We will examine some features of the DB-MAIN model and tool that could
make the developer’s life easier, particularly in complex projects.

16.2 Generic properties

Object types (entity type, rel-type, attribute, etc.) have their own efilof

in (or static) properties For instance, each attribute hasme, ashort name,
acardinality, a collection type (optional),tgpe, stability andrecyclability indi-
cators, dength, a number oflecimals (optional), a semantic annotation (but-
tonSem) and a technical annotation (buttteth) (Figure 16.1). There is also
aProp(erty) button that will be described below.

Attribute Properties |

Examine/modify the properties of an attribute of

FRODUCT
M arne ISUF'P"ET
Shaort namel
Cardinglty [05 x| se =
— Type
IEhar vI [~ Stable [Mon Recyclable
Length I'I i’

Sem. | Tech. | Prop. |

Firzt att.l I et att.l ‘ Eancell

Figure 16.1 -The built-in properties of attributes.

For some kinds of application domains, this set of properties could be consi-
dered as too poor to describe this domain adequately. On the other hand, it
would be unrealistic to expect a general purpose CASE tool offering all the po-
sible properties we could ever want. Therefore, a CASE tool should provide

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 16: Miscellaneous 16-3

a means to add new user defined object properties dynamically, what we can
call generic properties

DB-MAIN offers two kinds of generic properties, namsgmi-formal proper-
tiesanddynamic properties

Though they are adequately managed by the tool (especially the dynamic pro-
perties), the latter is unaware of their meaning. Therefore, it cannot be asked
to process them according to the intended semantics. Specific processing of
generic properties must be developeWagager 2programs and procedures.
This being a rather sophisticated point, it will be ignored in this tutorial. See
theVoyager 2manual instead.

Semi-formal properties

Semantic and technical annotations are intended to associate free text descrip-
tions with any specification object. For example, the semantic annotation of
entity typePRODUCTWiIll include a natural language definition of what we
mean by & product in the application domain. In the technical annotation,

we will rather specify some computer-oriented properties of the object, such
as implementation mode or performance constraints.

However, it is possible to insert textual specifications in a more precise format
in these annotations, namely gemi-formal propertiesA semi-formal pro-
perty is a new characteristics of the current object which is specified through
the following statement:

#<property-name> = <property-value>

where <property-name > is the hame of the property,
<property-value > is its value; the end mark of the value is either
the end of the annotation or end-of-linefollowed by the # charac-
ter (these symbols being excluded).

In the example of Figure 16.2, the entity tygirODUChas been given a se-
mantic annotation which first gives a natural language specification of what is
a product, then specifies five semi-formal properties

The qualifier semi-formal tells that (1) a precise syntax makes it possible to
process (read, create, delete and update) such properties through specific
Voyager 2procedures, but (2) there is no control on the consistency and the
correctness of these specifications. Any typing mistake makes the sentence
useless.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

16-4

Lesson 16: Miscellaneous

Semantic Description

A product is any item that appears in a valid catalog. [+
and that can be bought by the company customers.

#natural-name=customer product
#plural=customer products

H#is—verified=NO

#status=public

#description=Any item that appears in a valid
catalog, and that can be bought by the company e
customers. -

Ok Cancel |

Figure 16.2 -Five semi-formal properties have been defined for the entity type
PRODUCT. The last one, Description , has a multi-line value.

This technique is very flexible since it does not require changing the structure
of the repository. However, it can prove unreliable for complex extensions. It
will be particularly useful to build simple functional extensions of the tool.

Application. The natural language paraphrazsfrDB-MAIN is a nice appli-

cation of this technique. This processor generates a plain text description of a
conceptual schema (in French in the current version; an English version is in
preparation). Since the names of the objects maypbatural (e.g.,QtyOn-

Hand, ProlD , ComAddress), and their gender as well as their plural form
may be non standard, the user is asked to specify this information whenever
standard rules do not apply. For instance, the (French) attributeQiame
Disponible cannot be used as a correct noun in a text. We must tell the
paraphrazer that:

« the natural name guantité disponible

» the gender ifeminine

» the plural isguantités disponibles

Hence the following semi-formal properties associated with this attribute:

#n=quantité disponible

1.

Included in the Application Library #1.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 16: Miscellaneous 16-5

#g=f
#p=quantités disponibles

Defining a dynamic property surely is less flexible, but is a more structured
and secure way to augment the modeling power of the tool.

Dynamic properties

A dynamic property is a characteristics associated with an object class of the
repository in an explicit way. Adding such a characteristics must follow a
strict procedure. First, it must be defined precisely (name, type, updatability,
etc.), then only can it be used.

To help us grasp the concept, let us assume that we want to indicate, for each
entity type,which departmentsown the datait describes. For instance, we
would like to tell that th@ersonnel andFinance departments are tlwsvners

of thePRODUC ata. Obviously, such a property is unknown by the CASE
tool. So we add it as follows.

Defining a dynamic property
We execute the commamtoduct / Meta / Properties, which opens the dy-
namic property Management panel (Figure 16.3).

Meta-properties Lists

Examine, modify, create or remove dynamic properties of the
meta-ohjects

—Meta-objecte————— ~ Dyhamic properties

Atomic attribute -
Callection —

Eumiuund attribute

Group
Procezsing unit
Project
Reltype

Fiole

Schema Ll
Create | E:-:aminel ol Elifi | Hemwel Cloze I

Figure 16.3 -The Dynamic property management panel.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

16-6 Lesson 16: Miscellaneous

We choose the object class to which we want the new property to be associa-
ted. In this case, we select the itEnity type. Then we click on th€reate
button.

The dynamic property definition box opens (Figure 16.4). We specify the
name Owner) and the typestring) of the dynamic property. We indicate that
its values can be given and updated by the usrafable), that these values
must be drawn from a predefined dete@efined values) and that more than
one value can be assignédu(tivalued).

Dynamic Property

Create a dynamic property for
the meta-abject Entity type

M ame IDwner

Type IString - l

— Functionz
W Updatable ¥ Predefined values
v Multivalued

Cancel |

Figure 16.4 -Defining new dynamic property Owner as a list of character
strings chosen from a predefined list.

Senm.

It is good practice to associate a short description with a dynamic property, so
that future users can understand its meaning. We click on the Isattoto

open the desired box. We introduce this description, as well as the list of pre-
defined values. For this, we follow the format of semi-formal properties (Fi-
gure 16.5). Finally, we confirm the operation (but@i).

Now, the dynamic property is defined and can be used to specify the owners
of each entity type. Later on, we can update this definition, for instance by mo-
difying the predefined value list.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 16: Miscellaneous 16-7

Semantic Dezcription

Through this property, you can specify what are the |+
owners of the instances [data) of the parent object.

#Values=
Personnel
Finance
YWarehouse
Production
Marketing
Maintenance

-

Cancel |

Figure 16.5 - Specifying the predefined values of the dynamic property
Owner.

Setting and viewing dynamic property values

Now, we are ready to assign values to dynamic properties of each object. The-
se properties are available from the property box of the object: we double-click
on the entity typd?RODUCTthen we click on the buttderop. An alternate

way consists in merely selecti®/iRODUC Tthen clicking on th@ROP button

in the Standard tools bar (Figure 16.6).

CUSTOMER

< add | |DADER

mE ATl e
Sem. | Tech. | < Prop. | > j SEﬂlTE@-I PRDFi >@|HHH‘”E

Mew ent. | Mew att. |‘| Ok I\Eﬁ |

Figure 16.6 -How to get the Dynamic property box of an object: click on the
Prop. button in the Property box of the object or on the PROP button in the
Standard tools bar.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

16-8

Lesson 16: Miscellaneous

We get the dynamic property boxBRODUCTFigure 16.7). In the left side
list, we select the proper@wner. Then, we select the values in the right side
list, and we click on the buttorkAdd first. We confirm this choice (button
OK). That's all.

Dynamic Properties List |

Examine/modify the dynamic properties values af the
entity type PRODUCT

—Walue [lizt of predefined strings]

Perzonnel Perzonnel
Finance - Finance
<<odd First \Warehouse
Production

<cAdd New] | Marketing
Maintenance
Fiemu:uve>>|

Sem. Clear | Cancel |

Figure 16.7 -Declaring that the departments Personnel and Finance are the
owners of entity type PRODUCT.

If we only want to consult the properties of a series of objects, the simplest pro-
cedure is to open the general Property box through the comiawidws /
Property box (Figure 16.8).

So, what to do with dynamic properties? The answer is the same as for the
semi-formal properties. They can be used to record more precise specifica-
tions. However, they show all their power when associated with specific pro-
cedures written ivoyager 2 It is important to note that some assistants can
use dynamic properties as well, namely §uhema analysiand Advanced
global transformatiorassistants. More on this in another volume.

Application. An add-on has been developed to allow data administrators to
manage not only the corporate information, but also the organizational units,
and their roles in information managentfent

This package, called ORGA, is included in Application Library #1. An example of the
organizational unit map is shown in thenction overview

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 16: Miscellaneous 16-9

I |
PRODUCT

Properties | Semanticsl Technicall

name FRODUCT -
zhart_name FRO
Cwaner PersonnelFinance

Figure 16.8 -The property box of an object shows all the properties, be they
built-in or dynamic.

The system comprises three modules. The first one allows administrators to

graphically define and update the hierarchical structure of the organization and

the standard roles (owner, main user, responsible, security, validation, etc.).

The second module introduces the roles and the organizational units in a target
project. The third module provides easy procedures to assign units to informa-

tion types according to definite roles and generate various reports. Each role

appears as a dynamic property created by the second module. Its predefined
values are the names of the organizational units. All the modules have been
developed i'Voyager 2

16.3 Configuration settings

The configuration comprises the current values of the parameters of the DB-
MAIN environment. These parameters represent your preferences as far as the
behavior of the tool is concerned. They are independent of the projects.

TheConfiguration Management panislopened by the commakhde / Con-
figuration (Figure 16.9). The settings are saved in the dilsvin-
dows\db_main.ini . Since the number and the nature of the parameters
quickly evolve, your version will probably includes parameters different from
those described below. At the present time, it allows users to define custom
settings for the following parameters:

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

16-10 Lesson 16: Miscellaneous

DBMAN Configwation |
Pattern Ouo default directany
SOL extractor Pattern default directon
The generators iLun default directary
[Dependency graph Extraction default directan
Schema analyziz Generation default directons
[Global tranzformations

Diefault directany
Techhical identifier

Id:\-iIh-\du:uc:ument'\tuh:urial'xtuh:ur-‘l.v2 Browse |
Ehangel Cloze | Help |

Figure 16.9 -The Configuration Management panel.

Text patterns. Concerns th&ext pattern matchingngine Assist/ Text ana-
lysis/ Search. Specifies the names of the default main and secondary pat-
tern libraries.

SQL extractor. Concerns th8QL extractoi(File / Extract / SQL). Defines
some settings such ase the columns NULL by defatiBhould extracted
views be stored in the same schema as the base t#tites?

Code generators Concerns thBDL generatorgFile / Generatg. Specifies
the name of specific generators such as COBOL and CODASYL DBTG.
These generators av®yager 2programs.

Dependency graphConcerns thBependency grapprocessorAssist/ Text
analysis/ Dependency. Specifies for instance whether isolated variables
(participating in no relations) can be queried or not. If they can, selecting
such a variable colors all its instances in the program (see the correspon-
ding volume).

Schema analysisConcerns th&chema analysisndAdvanced global trans-
formationassistants (in thessistmenu). Specifies the name of the default
library of rules (file*.anl).

Global transformations. Concerns thédvanced global transformaticas-
sistants (in thé\ssistmenu). Specifies the name of the default library of
transformations (file&.tfl).

Default directories. Specifies the default directory for the main file types of
DB-MAIN: Voyager Zorogramsi.oxo), text pattern libraries pat),

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 16: Miscellaneous 16-11

projects f.lun), program files to be processed by extractors, DDL text
generated by the generators, etc. (Figure 16.9)

Technical identifier. Defines the default type and length of technical identi-
fiers. Used in the transformatidmansform / Entity type/Add Tech.id)

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

16-12

Lesson 16: Miscellaneous

Key ideas of Lesson 16

1. Each object class, which any project is made up of, has static (built-in)

properties such asame short nametype length and semantic annota-
tion. CASE tools must provide users with means to add new properties.
The DB-MAIN model offers two kinds of additional properties, namely
semi-formal and dynamic properties.

. A semi-formal property is defined as an expression in an annotation. This

definition specifies the name and the value of the property. Such proper-
ties can be processed Ygyager 2procedures only.

. A dynamic property is a declared property that is part of the repository. It

must be defined before being used, and is structurally attached to an object
class. Such a property can be processed by the global transformation and
schema analysis assistants, as well agdywager 2procedures.

. A CASE tool can be customized through a series of parameters that define

its default behavior.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Lesson 16: Miscellaneous 16-13

Summary of Lesson 16

« In this lesson, we have studied some important concepts:
- the concept of semi-formal property
- the concept of dynamic property

* We have also learned to:
define a new semi-formal property (in textual annotations)
define a dynamic property: Product / Meta / Property
examine and use a dynamic property:
buttonsProp andPROP
Windows / Property box
change the configuration parameters:
File / Configuration

* We have learned about a new file:
- the DB-MAIN configuration filedb_main.ini

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

16-14 Lesson 16: Miscellaneous

Exercises for Lesson 16

16.1 Define a set of dynamic properties that allows developers to describe
the level of confidence of the entity types of a schema.

16.2 Define a set of dynamic properties that allows developers to define the
implementation mode of access keys (B-tree, hashing, etc.), as well as
the page size and buffer size of each collection.

16.3 Change the default project directory.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Appendix A

The Generic DB-MAIN Model

Objective

The DB-MAIN tool allows analysts and developers to represent
and specify information structures, data structures and processing
units that make up an information system.

These specifications must comply with the so-called DB-MAIN
specification model which defines the valid objects and their re-
lationships. This appendix describes the main components and
features of this model.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

A-2 Appendix A: The DB-MAIN Generic Model

A.1 The specification model in short

The model includes a very small number of concgpitgects products(sche-
mas, views and text filegntity typesrelationship typesattributes domainsg
groups inter-group constraintscollectionsandprocessing units

However, due to their generality, these concepts can be used to describe in a
precise way information systems at different levels of abstraction (conceptual,
logical, physical) and according to various abstract or concrete paradigms: En-
tity-relationship, Object-role, Object-oriented, standard files, CODASYL DB-
TG, IMS, TOTAL/IMAGE, relational, object-relational, etc.

Its ability to specify constructs at different level of abstraction and paradigms
gives users a great level of flexibility that will prove useful for large projects
in which several DBMS are used. It will also be most necessary in reverse en-
gineering activities, where unfinished schemas frequently include physical, lo-
gical and conceptual constructs.

Specifications comprise two kinds of information, namely products and histo-
ries. We will describe the concepts of which products are made up, leaving
the discussion of histories to another docuntent.

A.2 Project

The highest level object is the project. It comprises all the specifications rela-
ted to an engineerinojectas well as the history of all the activities that were
carried out to produce these specifications.

LIBRARY

Figure A.1 - Iconic representation of a project. Appears in the Project win-
dow.

A project is made of one or several products - or documents - which fall into
two classesschemasandtext files. Each repository describes a project. Itis

1. Be sure that the DB-MAIN tool is in théew / Graph. dependencymode to hide the his-
tories. To avoid recording these histories, Treece item of menuLog must be unchecked
as well.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Appendix A: The DB-MAIN Generic Model A-3

A.3

stored in a *.LUN file. A project can be entered manually by the user or can
be imported from an *.ISL ASCII text file. Though it is easy to transfer spe-

cifications between projects (through the export-import functions), there is no
explicit relation between two projects.

Base Schema

A schemas a complete or partial description of data structures and application
processes (such as those found in files, in programs or in databases). A base
schema can be built from scratch, can derive from another schema (e.g., throu-
gh import, copy, integration or transformation) called its origin or can derive
from an external text file, e.g., an SQL or CODASYL source file. A schema
mainly consists oéntity types (or object classésrelationship types (rel-ty-
pesfrom now on) andollections A schema can haygocessing units

LIBRARY/Conceptua)

Figure A.2 -Iconic representation of a base schema. Appears in the Project
and Schema windows.

A.4 View Schema

A viewschemdgor simplyview) is a schema that derives from another schema

S, called its source, and that includes a subset of the constructs of S. The cons-
tructs of a view can be renamed, transformed and moved in the graphical spa-
ce, but no objects can be added or deleted.

LIBRARY/Generg

LIBRARY/Loans

Figure A.3 -Iconic representation of a view schema and of its source schema.
Appears in the Project and Schema windows.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

A-4

A5

A.6

A7

Appendix A: The DB-MAIN Generic Model

Any update in the source schema S can be propagated down to the views that
have been derived from it. A view can be derived from another view.

A view must first be defined aslatent view which is a named subset of the
source schema. A view schema materializes a latent view, from which it is ge-
nerated.

Text file

A text fileis an external text that generally, either derives from a schema (e.qg.,
a generated SQL script file), or from which a schema has been (or will be) de-
rived (e.g., a COBOL source text or an interview report). Text files are known,
and can be processed by the tool, but their contents are not stored in the repo-

sitory.
library.sql/Oracle 8

Figure A.4 - Iconic representation of a text file. Appears in the Project win-
dow.

Inter-product relationship

The products of a project, i.e., its schemas and its text files, can be linked by
derivation relationships that express the way products are developed from
other products (Figure A.5). These derivation relationships can be explicitly

described through a hierarchy of processes (ignored in this appendix).

Entity type (or object class)

An entity type represents a class of concrete or abstract real-world entities,
such as customers, orders, books, cars and accidents. It can also be used to mo-
del more computer-oriented constructs such as record types, tables, segments,
and the like. This interpretation depends on the abstraction level of the schema
and on the modeling paradigm in use. For instance, in an object-oriented mo-
del, we will use the terrabject classnstead. Object classes generally are gi-

ven methods and appear in IS-A hierarchies.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Appendix A: The DB-MAIN Generic Model A-5

Figure A.5 - The network of products of a project. Includes base schemas,
view schemas, input text files and output text files?.

An entity type can be a subtype of one or several other entity types, called its
supertypes. If F is a subtype of E, then each F entity is an E entity as well.

The collection of the subtypes of an entity type E is declatatl(symbolT)

if each E entity belongs to at least one subtype; otherwise, it is said to be par-
tial.

This collection is declaredisjoint (symbolD) if an entity of a subtype cannot
belong to another subtype of E; otherwise, it is said to overlap. If this collec-
tion is both total and disjoint, it formspartition (symbolP).

2. This display is obtained through tdependency viewof the history Yiew / Graph.
dependency.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

A-6 Appendix A: The DB-MAIN Generic Model

An entity type can comprisatributes, can play roles irel-types, can be col-
lected intocollections can be givertonstraints (throughgroups) and can
haveprocessing units

Since a supertype/subtype relation is interprete@ah'F entity is a E enti-

ty", it is called ariS-A relation. IS-A relations form what is called #8-A
hierarchy. Indeed, an entity type cannot be, directly or not, a subtype of itself.
An entity type can have more than one supertype. Such a situation is called
multiple 1S-A hierarchy, or more commonly (though improperly) multiple in-
heritance.

PERSON CUSTOMER

[

EMPLOYEE | INDIVIDUAL CUSTOMER ‘COMPANY‘

Figure A.6 - A hierarchy of entity types. PERSON and CUSTOMER are su-
pertypes, EMPLOYEE, INDIVIDUAL CUSTOMER and COMPANY are subty-

pes.

The four supertype/subtype patterns are summarised in the table below, where
B1 and B2 are two subtypes of A:

Total (T) Partial (= T)

Overlapping
(-D) P

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Appendix A: The DB-MAIN Generic Model A-7

Overlapping T
(=D)

A.8 Relationship type (rel-type)

A relationshiptyperepresents a class of associations between entities. It con-
sists of entity types, each playing a specidie. A rel-type with 2 roles is cal-
ledbinary, while a rel-type with more than 2 roles is generally caleaty,
whereN is thedegree of the rel-type.A rel-type with at least 2 roles taken by
the same entity type is callegiclic.

Normally, a role is played by one entity type only. However, it can be played
by more than one entity type. In this case, it is calledi&i-ET role. In any
relationship, this role is taken by an entity of one of these types.

Each role is characterized by dardinality [i-]] , a constraint stating that
any entity of this type must appear, in this rold, itoj associations or rela-
tionships. Generallyi isO or1, whilej is1 or N (= manyorinfinity). Howe-

ver, any pair of integers can be used, provideditijt, i =0 andj >0.

Let us consider a binary rel-typebetweenA andB with cardinality[ia-

ja] for A, [ib-jb] for B.

3. The reader must be aware that other interpretations of role cardinalities exist. In [Teo-
rey,1998], [Elmastri,1994] and [Rumbaugh,1991], for instance, the cardinality of a role sta-
tes how many relationships can/must exist for any combination of instances of the other
roles. This interpretation is convenient for binary rel-types, but poses several problems for
N-ary rel-types (see UML for instance). The current model is compliant with the interpre-
tation of [Batini,1992], [Bodart,1994], [Nanci,1996] and [Coad, 1995].

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

A-8

Appendix A: The DB-MAIN Generic Model

R is called:
one-to-one ifja=jb=1
one-to-many from A to B ifja>1 andjpb=1
many-to-one from A to B ifja=1 andjb>1
many-to-many ifja>1 andjb>1
optionalfor A ifia=0
mandatoryfor A ifia>0 .

A role can be given a name. When no explicit nansssignedan implicit
default name is assumed, namely the name of the participating entity type. The
roles of a rel-type have distinct names, be they explicit or implicit. For instan-
ce, in a cyclic rel-type, at least one role must be given an explicit name. A mul-
ti-ET role must have an explicit name as well.

A rel-type can haveattributes, and can be giveronstraints (through
groups) andprocessing units

targeorigin
ORDER o o
BOOK
0

1-2

0-N
(et
oK 0N SERVICE

11
‘ PRODUCT‘ ‘ SUPPLIER ‘ COPY o-1g§’N
EMPLOYEE

Figure A.7 -Relationship types. Rel-types references, copy-of and borrowed
are binary, while assigned is 3-ary. Rel-type references is cyclic. Role bor-
rowed.by is multi-ET. Copy-of and borrowed are functional. references is
many-to-many.

The termmanyrole designates a role wifh> 1 andonerole designates a role
withj = 1. A one-to-many rel-type hasmany roleand 1lone role

A rel-type which has attributes, or which is N-ary, will be callesbaplex
rel-type. A one-to-one or one-to-many rel-type without attributes will be cal-

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Appendix A: The DB-MAIN Generic Model A-9

led functional, since it materialises a functional relation, in the mathematical
sense.

A.9 Collection

A collectionis an abstract or concrete repository for entities. A collection can
comprise entities from different entity types, and the entities of a given type
can be stored in several collections. Though this concept can be given different
interpretations at different level of abstraction, it will most often be used in lo-
gical and physical schemas to represent files, data stores, table spaces, etc.

DSK:CFILE.DAT

EMPLOYEE
COPY
BOOK

Figure A.8 -DSK:CFILE.DAT is a collection in which EMPLOYEE, COPY and
BOOK entities can be stored.

A.10Attribute

An attribute represents a common property of all the entities (or relationships)
of a given type. Simple attributes haveadue domain defined as a built-in

data type (number, character, boolean, date, ...) and a length (1, 2, ..., 200, ...,
N [standing forinfinity]). These attributes are callatbmic. The built-in do-

mains have the following characteristics.

1. Boolean(n) Set {true,false }, or any set of 2 elements.
Char(n} The set oh-character strings.

Varchar(n) The set of strings with length from Oro
Date(n) Set of dates or timestamps.

Numeric(n[,d]} Set of numerical values of decimal digits, includingl
decimals.

6. Float(n): Set of floating point numerical values with a representatian of
bytes.

ok wn

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

A-10

Appendix A: The DB-MAIN Generic Model

7. Index(n) Numerical values that designate the elements of parent attribute
A[l-J], which is a multivalued attribute of tyeray. If A has actual car-
dinality k, the index attribute instances takesnevalues from 1 to k.

8. Sequence(nNumerical values that designate the elements of parent attri-
bute A, which is a multivalued attribute of tylis. If A has actual cardi-
nality k, the index attribute instances takéighe values from 1 to k.

In these definitionsn stands for the lengtiBfolean, Char, Date, Numeric,
Float, Index, Sequenyeor the max lengthMarchar), of the domain values.

For each type, the tool proposes a default length. ExceptafierandBoo-

lean it is an unusual value that should, in most cases, be replaced. The rules
for n are summarized in the following table.

Type range of n default particular rule

Boolean 1-99 1

Char 1-99999 1

Varchar 1-99999; N 1 N stands famlimited length

Date 1-99 10

Numeric 1-99; 0-99 1 1st figure = total length
2nd figure = decimals

Float 1-99 1

Index 1-9 1 not shorter than length of max card of
the array (e.g., 3 for max card. = 500)

Sequence 1-9 1 not shorter than length of max card of

the list

An attribute can also consist of other component attributes, in which case it is
calledcompound Theparentof an attribute is the entity type, the relationship
type or the compound attribute to which it is directly attached. An attribute
whose parent is an entity type or a rel-type is said to be at level 1. The compo-
nents of a level-i attribute are said to be at level i+1.

If the value domain has some specific characteristics, it can be defined expli-
citly as auser-defineddomain, and can be associated with several attributes
of the project. A user-defined domain is atomic or compound.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Appendix A: The DB-MAIN Generic Model

Each attribute is characterized bydtxdinality [i-j]

provided that <j,i 20and > 0. The default cardinality i-1]

not represented graphically.
An attribute with cardinalityi-j] is called:
single-valued ifj=1

A-11

, @ constraint stating
that each parent has frantoj values of this attribute. GenerallyisO or1,
whilej is from1 to N (= infinity). However, any pair of integers can be used,

multivalued ifj>1
optional ifi=0
mandatory ifi>0
BORROWER
PID
Name
FirstName[0-1] B kCI:I(D)PY
Address Tie
Company —0-N DateBorrow 0-N— AlutT10r[0-5]
Street DateBack[0-1] KevWordio-N
ZipCode[0-1] Keyword[O-N]
City id: BooklD
Phone[1-5]
id: PID

,and is

Figure A.9 - Examples of attributes. Name is mandatory [1-1] while FirstNa-
me is optional [0-1]. Address is compound while Name and ZipCode are ato-

mic. Phone, Author and KeyWord are multivalued.

KeyWord is unlimited [0-N].

A.11 Object-attribute

The cardinality of

Any entity type (or object class) can be used as a valid domain for attributes.
Such attributes will be callesbject-attributes. They mainly appear in ob-

ject-oriented schemas.

DB-MAIN Tutorial -[J J-L Hainaut 1999

21/03/2002

A-12

Appendix A: The DB-MAIN Generic Model

CUSTOMER ORDER PRODUCT
CID OrdID PCode
CName Date PName
CAddress Owner: *CUSTOMER Price
Orders[0-N]: *ORDER Details[1-10]
Item: *PRODUCT
Qty

Figure A.10 -Owner is a single-valued object-attribute. For each ORDER en-
tity, the value of Owner is a CUSTOMER entity. Orders is a multivalued ob-
ject-attribute of CUSTOMER. This construct can be used in OO database
schemas to express relationship types.

A.12Non-set multivalued attribute

A plain multivalued attribute represents sets of values, i.e., unstructured col-
lections of distincts values. In fact, there exist six categories of collections of
values.

Set unstructured collection of distinct elements (default).
Ali-]] represents a collection bftoj unique values.
Bag: unstructured collection of (not necessarily distinct) elements.

Ali-j] bag represents a collection oftoj elements, some of which
may be identical.

Unique list sequenced collection of distinct elements.

Ali-j] ulist represents a sequence aoj unique elements.
List: sequenced collection of (not necessarily distinct) elements.
Al[i-j] list represents a sequence afoj elements, some of which

may be identical.

Unique array. indexed collection of cells that can each contain an ele-
ment. The elements are distinct. Some cells can be empty.

Ali-j] uarray represents a collection of j cells, of whichoj can
contain a value. These values are unique.

Array: indexed collection of cells that can each contain an element. Some
cells can be empty.

Ali-j] array represents a collection of j cells, of whickoj can con-

tain a value. Some of these values may be identical.

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Appendix A: The DB-MAIN Generic Model A-13

These categories can be classified according to two dimensions: uniqueness
and structure.

Unstructured Sequenced Array

Unique (set) ulist uarray

Not unique bag list array

STUDENT
RegNbr
Name
Phone[0-2]
Expenses[0-100] bag
ChristName[0-4] ulist
MonthlyScore[0-12] array
id: RegNbr

Figure A.11 - Some non-set multivalued attributes. While Phone defines a
pure set of 0 to 2 values, Expenses represents a bag of 0 to 100 values,
Christ(ian-)Name a list of 0 to 4 ordered distinct values and MonthlyScore an
array of 12 cells, of which from 0 to 12 can be filled.

A.13Group

A group is made up otomponentswhich are attributes, roles and/or other
groups. A group represents a construct attached to a parent object, i.e., to an
entity type, a rel-type or a multivalued compound attribute. It is used to repre-
sent concepts such as identifiers, foreign keys, indexes, sets of exclusive or
coexistent attributes.

It can be assigned one or sevéualctions among the following:

primary identifier the components of the group make uprtaén identifierof
the parent object; it appears with symizhlif it comprises attributes
only, the later are underlined in the graphical view; a parent object can
have at most one primary id; all its components are mandatory.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

A-14 Appendix A: The DB-MAIN Generic Model

secondary identifiethe components of the group make geeondary iden-
tifier of the parent object; it appears with symilb] a parent object can
have any number of secondary id. Some components can be optional.

BOOK COPY
BookID SerialNbr
Title DateAcquired
Publisher Location
DatePublished Store
KeyWord[0-10] Shelf
Abstract[0-1] Row
?d: BgokID 0-N1-1— NbrOfVolumes
id": Title State[0-1]
Publisher StateComment[0-1]
id: of. BOOK
SerialNbr
acc
coex: State
StateComment
acc: Location

Figure A.12 -Some constraints. BookID is a primary identifier and {Title, Pu-
blisher} a secondary identifier of BOOK. SerialNbr identifies each COPY wi-
thin a definite BOOK. In addition, this identifier is an access key. Optional
attributes State and StateComment both are valued or void (coexistence).

coexistencethe components of the group mustdiraultaneously present or
absentfor any instance of the parent object; the group appears with
symbolcoex all its components are optional.

exclusiveamong the components of the graipnost one must be preséot
any instance of the parent object; the group appears with syxdipl
all its components are optional.

at-least-1 among the components of the groapleast one must be present
for any instance of the parent object; the group appears with satabol
Ist-1; all its components are optional.

exactly-1 among the components of the groope and only one must be pre-
sentfor any instance of the parent objectefkclusivet at-least-3; the
group appears with symbekact-1; all its components are optional.

access keythe components of the group formaatess mechanisto the ins-
tances of the parent object (generally an entity type, to be interpreted as

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Appendix A: The DB-MAIN Generic Model A-15

atable, arecord type or a segment type); the access key is an abstraction
of such constructs as indexes, hash organization, B-trees, access paths,
and the like; it appears with symtaaic or access key

user-defined constrainany function that does not appear in this list can be de-
fined by the user by giving it a name; some examplemost-2 (no
more than two components can be valu#ty;fd (left-hand-side of a
functional dependencyjess-than (the value of the first component
must be less than that of the second one), etc.

An identifier can be made up of a multivalued attribute, in which case it is cal-
led amultivalued identifier. In this case, no two parent instances can share
the same value of this attribute.

A multivalued, compound, attribute A, with parent P (entity type, relationship
type or compound attribute) can be given identifiers as well. Suattrdou-

te identifier 1, made of a subset of the subattributes of A, states that, for each
instance of P, no two instances of A can share the same value of I.

CUSTOMER ORDER PRODUCT
CID OrdID PCode
CName Date PName
CAddress Owner: *CUSTOMER Price
Orders[0-N]: *ORDER Details[1-10] id: PCode
id: CID Iltem: *PRODUCT
id": Orders[*] Qty

id: OrdID
id(Detalils):
Iltem

Figure A.13 -Multivalued identifiers and Attribute identifiers. Object-attribute
Orders is declared an identifier, stating that any two CUSTOMER entities must
have distinct Orders values (an order is issued by one customer only). All the
Details values of each ORDER entity have distinct Item values (a product can-
not be referenced more than once in an order)

An identifier of entity type E is made up of either:

» one or several single-valued attributes of E,

* one multivalued attribute of E,

* two or more remote roles of E,

* one or more remote roles of E + one or more single-valued attributes of E

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

A-16

Appendix A: The DB-MAIN Generic Model

An identifier of relationship type R is made up of either:
* one or several attributes of R,

* two or more roles of R,

* one or more roles of R + one or more attributes of R
An identifier of attribute A is made up of:

* one or several single-valued subattributes of A.

A technical identifier (technical id) of entity type E is a semantic-less, gene-
rally short, attribute that is used to denote entities without reference to appli-
cation domain properties. It is generally used as a substitute for long, complex
and information-bearing identifiers. Object-id (oid) of OO models can be con-
sidered as system-controlled technical identifiers. The default type and length
of technical ids are user-defined.

A.l4Inter-group constraint

Independently of their function(s), two groups with compatible components
can be related through a relation that expresses an interigtegpty cons-
traint .

The following built-in constraints are available:

referencethe first group is a foreign key and the second group is the referen-
ced (primary or secondary) identifier; the foreign key appears with sym-
bol ref;

ref equal the first group is a foreign key and the second group is the referenced
(primary or secondary) identifier; in addition, an inclusion constraint is
defined from the second group to the first one; both constraints form an
equalityconstraint; the foreign key appears with syrespl;

inclusion each instance of the first group must be an instance of the second
group; since the second group need not be an identifier, the inclusion
constraint is a generalization of the referential constraint (to be imple-
mented);

incl equal an inclusion constraint in each direction: each instance of each
group is an instance of the other group (to be implemented);

copy. (to be defined)
copy equal(to be defined)

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Appendix A: The DB-MAIN Generic Model

COPY BOOK
BookID BookID
SerialNbr Title
DateAcquired Abstract[0-1]
id: BookID id: BookID

SerialNbr /
ref: BooklD

A-17

Figure A.14 -Attribute BookID of COPY form a reference group (foreign key)
to BOOK

An inverseconstraint can be asserted between two object-attributes, expres-
sing that each is the inverse of the other.

CUSTOMER ORDER
CID OrdID
CName Date
CAddress Owner: *CUSTOMER
Details[1-10]

Orders[0-N]: *ORDER

id: CID

Item: *PRODUCT

id":Orders[*] Qty
inv id: OrdID
X inv: Owner
id(Details):
Item

Figure A.15 -Orders of CUSTOMER and Owner of ORDER are declared in-
verse object-attributes. If c denotes the Owner of ORDER entity o, then ¢ must
belong to the Orders value set of CUSTOMER c.

A generic inter-group constrairdan be drawn from any group to any other
group of the schema.

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

A-18 Appendix A: The DB-MAIN Generic Model

— IDORDER CUSTOMER

rder

OrdDate —ﬁ:rs;gmerlD

CustomerName

CustomerAddress 71_10_N7 ﬁgg{)ﬁ?ﬁ

id: O.rderID id: CustomerID

copy: place. CUSTOMER source: Name
CustomerName .Address
CustomerAddress

Figure A.16 - A redundancy constraint is expressed between two user-defi-
ned group types, namely copy and source, through a generic inter-group cons-
traint. This structure states that CustomerName and CustomerAddress are
copies of Name and Address of CUSTOMER through rel-type place.

Order Management/OO versi

Order_processing
Invoice_processing
Customer_processing

ORDER CUSTOMER
OrderID CustID
OrdDate CustName
Sender: *CUSTOMER CustAddress
id: OrderID Orders[0-N]: *ORDER
record_order() id: CustID
make_invoice() register_customer()
validate_order remove_customer
cancel_order get_properties()
get_properties() get_customer
get_order get_orders
get_sender) select_customer()

Figure A.17 -This schema includes two object classes with their methods. In
addition, three global processes have been defined at the database level (at-
tached to the schema).

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

Appendix A: The DB-MAIN Generic Model A-19

A.15Processing units

A processing units any dynamic or logical component of the described sys-
tem that can be associated with a schema, an entity type or a relationship type
(Figure A.17). For instance paocessastored procedureaprogram atrig-

ger, abusiness rul®r amethodcan each be represented by a processing unit.

A.16 Common characteristics

Some characteristics are common to several objects. Schemas, text files, entity
types, rel-types, attributes, user-defined domains, collections, groups and pro-
cessing units each havéName and can have &hort-namga Semantic des-
cription (SEM), and & echnical descriptiofTECH). They can also be given
semi-formalanddynamic properties Finally, they can benarkedandcolo-

red.

Semantic description The semantic description is a free text annotation ex-
plaining the meaning of the object.

Technical description The technical description is a text giving information
on the technical aspects of the object. Some functions of the CASE tool
write statements in this description, especially in reverse engineering
processes.

Semi-formal properties. The semantic and technical descriptions can inclu-
de semi-formal properties. Such a property is declared through the sta-
tement

#<property-name> = <property-value>

where<property-name> is the name of the property argro-
perty-value> its value. Semi-formal properties are user-defined
and are not managed by the tool, but can be used by specific processors
developed in Voyager-2. Defining a dynamic property is a more for-
mal, but less flexible, way to augment the modeling power of the tool.

Dynamic properties. In addition to the built-istatic propertiessuch as na-
me, short-name, cardinality, type and length, that appear in the property
box of the objects, each object type can be dynamically given additional
properties, calledlynamic propertiesThey are defined by the analyst
at the meta-object level (schema, entity type, rel-type, attribute, etc.), in

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

A-20

Appendix A: The DB-MAIN Generic Model

such a way that they can be given a value for each instance of the meta-
object (each schema, each entity type, each rel-type, each attribute,
etc.). For instance, attributes can be associated with such dynamic pro-
perties asowners , synonyms, definition , French name,
password , physical format ,screen layout ,etc. DB-MAIN

itself maintains some internal dynamic properties. They are visible but
have a read-only status.

A dynamic property has a nanidagme, a type Type), and a textual
description $em. It can be updatable by the users or ugdata-
ble). It can be single-valued or multivaluddytivalued). Itis
possible to declare the list of possible valleflefined values).

Marking . Each product and each process in a project, each object in a schema

and each line in a text file can be given a special status, cadided
Marking is a way to permanently select objects, either to identify them
(e.g., validated objects are marked, while those still to be examined are
unmarked), or to apply global operations on them through the assistant
(e.g., transform alinarked rel-typento entity types or export specifi-
cations) or as the result of the execution of some assistants or to define
schema views.

In fact, there are sevemalarking planesnumbered 1 to 5, of which one

is the current, or visible, plane. A plane is a set of simultaneous marks
associated with the objects of a schema. All the operations are applied
in the current plane. The concept of plane makes it possible to define
up to 5 independent sets of marks on the same schema, e.g., one to de-
note validated objects, one for import/export and one for temporary
operations. It is possible to combine the marks of several planes.

Color. Selected objects of a schema can be drawn in a definite color. Several

colors can be used in the same schema.

A.17Names

The model includes naming constraints that make it possible to denote objects
through their name. Here are the main rules:

21/03/2002

two names composed of the same characters, be they in uppercase or in
lowercase, are considered identical; so, "Customer" and "CUSTOMER"
are the same names; the accents are taken into account;

all the printable characters, including spaces, /, [, {, (, punctuation sym-

DB-MAIN Tutorial E] J-L Hainaut 1999

Appendix A: The DB-MAIN Generic Model A-21

bols and diacritic characters, can be used to form names; however the
symbols " is prohibited;

» theschema®f a project are identified by the combination <name>/<ver-
sion>;

» eachentity typeof a schema is identified by its name;

» eachrel-typeof a schema is identified by its name;

» acollectionof a schema is identified by its name;

» each direcittribute of a definite parent (an entity type, a rel-type or a
compound attribute) is identified by its name;

» agroupof a definite parent (idem) is identified by its name.
» eachprocessing unibf a definite parent (an entity type, a rel-type or a
schema) is identified by its name;

The syntax of names includes the special symbol "|", which is a valid charac-
ter, but which has a special effect when displayed: this character as well as all
the characters that follow are not displayed.

CUSTOMER CUSTOMER

O-N 0-N
11 11
ORDER PRODUCT ORDER PRODUC
1N 0-N 1N 0-N
11 11 11 11
DETAIL DETAIL
id: of ORDER id: ORDER
of. PRODUCT ‘PRODUCT

Figure A.18 - Use of ambiguous names. The rel-types have been assigned
the names "of|1", "of|2", "of|3" in the left-side schema and "|1", "|2", "|3" in the
right-side schema

DB-MAIN Tutorial -[J J-L Hainaut 1999 21/03/2002

A-22 Appendix A: The DB-MAIN Generic Model

A.18 Structure of a text file

At the lowest level of understanding, a text file is a system object containing a
string of characters Most files compriséext lines that are logical units of
text. One or several (not necessarily contiguous) lines carableedin each

of the five marking planes, in order to maintain up to five permanent sets of
lines. Anannotationcan be associated with each line. In some circunstances,
words and lines can be colored.

Texts which have a meaningful structure, such as any kind of programs, often
include patterns. Aext patternis a formally defined text structure that can
appear in several places in the text, and that is defined by a set of syntactic ru-
les. Any section of text that satisfies these rulesnstanceof this pattern.

Useful structures can be extracted from program files, such dependency dia-
grams and program slices. They will be studied in other lessons devoted to
program understandingndreverse engineering

21/03/2002 DB-MAIN Tutorial £l J-L Hainaut 1999

