
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Computer-Aided Database Engineering

Hainaut, Jean-Luc

Publication date:
2002

Link to publication
Citation for pulished version (HARVARD):
Hainaut, J-L 2002, Computer-Aided Database Engineering: Database Models..

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/publications/06c3678c-14f7-4cc8-8783-878fb8e2826a

DB-MAIN Manual Series

 Computer-Aided Database
Engineering

Volume 1: Database Models

Fourth Edition - 1999

The University of Namur - Institut d’Informatique

1-2

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Credits

To be written

Contacts

Professor Jean-Luc Hainaut
University of Namur - Institut d’Informatique

rue Grandgagnage, 21 λ B-5000 Namur (Belgium)

 jlhainaut@info.fundp.ac.be - http://www.info.fundp.ac.be/~dbm

1-3

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

INTRODUCTION

to be written

1-4

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Volume 1: Database Models

Table of contents

1. Building our first database

1.1 Introduction 2
1.2 Starting DB-MAIN 3
1.3 Opening a new project 3
1.4 Defining a new schema 5
1.5 Defining entity types COMPANY and PRODUCT 7
1.6 Entering entity type attributes 8
1.7 Entering relationship type MANUFACTURES 10
1.8 Defining entity type identifiers 12
1.9 Documenting the schema 13
1.10 Producing a SQL database 14
1.11 Saving the project 16
1.12 Quitting DB-MAIN 16

2. A closer look at schemas

2.1 Starting Lesson 2 2
2.2 On including database schemas into a document 2
2.3 Graphical views of a schema 3
2.4 Textual views of a schema 6
2.5 Application: far jumps through a graphical schema 10

3. An even closer look at schemas

3.1 Starting Lesson 3 2
3.2 Securing our work 2
3.3 Manipulating the graphical components of a schema 3

3.3.1 Moving objects 3
3.3.2 Aligning objects 4
3.3.3 Zooming in and out 6
3.3.4 Fonts 7
3.3.5 Grids 7

1-5

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

3.3.6 The Reduce function 7
3.3.7 Colors 7
3.3.8 Marking objects 8
3.3.9 Auto-draw 9
3.3.10 Using a larger schema 10
3.3.11 Last observations 10

3.4 Navigation through textual views 10
3.5 Reordering attributes and roles 12
3.6 Generating reports 12
3.7 Copying objects 15
3.8 Inspecting objects 16
3.9 External links 17
3.10 Quitting the lesson 18

4. Multi-product projects

4.1 Starting Lesson 4 2
4.2 Conceptual and logical schemas 2
4.3 SQL code generation 6
4.4 Generating reports 8
4.5 Multi-product project 8
4.6 Deleting objects 10
4.7 Export/import of schema components 10
4.8 Why to export schemas? 12

5. The basics of conceptual modeling

5.1 Starting Lesson 5 2
5.2 Updating an object 2
5.3 What is a conceptual schema? 2
5.4 Cardinality of an attribute 3
5.5 Atomic and compound attributes 5
5.6 Multiple identifiers 7
5.7 Hybrid identifiers 8
5.8 On defining identifiers 10
5.9 N-ary relationship types 11
5.10 Relationship types with attributes 12

1-6

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

5.11 Relationship types with identifier(s) 12
5.12 Cyclic relationship types 15
5.13 The complete schema 18
5.14 On the cardinalities of rel-types 20

5.14.1 Binary rel-types 20
5.14.2 N-ary rel-types 22

5.15 Minimal identifiers 22
5.16 What next? 23

6. The basics of logical and physical modeling

6.1 Introduction 2
6.2 What is a logical schema? 2
6.3 Transformation into a logical schema 3
6.4 Reference attributes (foreign keys) 6
6.5 Access keys 11
6.6 On the conceptual → relational translation rules 13
6.7 Defining entity collections 17
6.8 Name processing 18
6.9 SQL code generation 22

6.9.1 About the coding rules 25
6.9.2 On SQL generation styles 26
6.9.3 The Voyager 2 meta-development environment 26

6.10 About the DB-MAIN graphical representation 27
6.11 Logical vs physical schemas 28
6.12 Closing the lesson 29

7. Names

7.1 Introduction 2
7.2 Uniqueness rules 2
7.3 Ambiguous names (the | symbol) 3
7.4 How to choose names 4
7.5 Name processing 8
7.6 Changing the prefix of names 11
7.7 Lexicons 11

1-7

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

8. More about entity types

8.1 Starting Lesson 8 2
8.2 Classification hierarchies (IS-A relations) 2
8.3 Properties of the subtypes of an Entity type 5
8.4 Supertype/Subtype inheritance 8
8.5 Multilevel IS-A hierarchy 11
8.6 Multiple inheritance 13
8.7 Processing units of a schema 18
8.8 Quitting DB-MAIN 19

9. More about attributes

9.1 Introduction 2
9.2 Built-in domains 2
9.3 User-defined domains 4
9.4 Stable and non-recyclable attributes 7
9.5 Attribute identifiers 9
9.6 Non-set multivalued attributes 12

9.6.1 Sets 14
9.6.2 Bags 14
9.6.3 Unique lists 15
9.6.4 Lists 15
9.6.5 Arrays 16
9.6.6 Unique arrays 17
9.6.7 Summary 17
9.6.8 Set expression of non-set multivalued attributes 18

9.7 Multivalued identifiers 21
9.8 More on access keys 23
9.9 Multivalued reference attributes 24
9.10 Non-standard reference attributes 26

9.10.1 Hierarchical foreign key to a multivalued attribute 27
9.10.2 Overlapping foreign keys 27

9.11 Object attributes 28

10. More about constraints

10.1 Introduction 2

1-8

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

10.2 Existence constraints 2
10.3 Coexistent components of an entity type 2
10.4 Exclusive components of an entity type 5
10.5 Groups with at least one, or exactly one, existing component 8
10.6 Existence constraints rules 9
10.7 Existence constraints and IS-A relations 12
10.8 Other existence constraints 15
10.9 Generic constraints 16

10.9.1 Generic group constraints 16
10.9.2 Generic inter-group constraints 18

10.10 Schema transformation: another look 19

11. More about relationship types

11.1 Introduction 2
11.2 Multi-ET roles 2
11.3 Generic rel-types 4

11.3.1 Aggregation 5
11.3.2 Topological relationships 7

12. View schemas

12.1 Introduction 2
12.1.1 When to use views? 2
12.1.2 Principles 3

12.2 Specifying the objects of the view 3
12.3 Defining the view 5
12.4 Displaying a latent view 5
12.5 Materializing a view as a view schema 6
12.6 Modifying a view schema 8
12.7 What if I change my mind about the view? 9
12.8 Modifying the source schema 10
12.9 Propagating the modification of the source schema to view schemas 11
12.10 Warning 12
12.11 Other operations 14
12.12 Technical information 14
12.13 The View Menu 15

1-9

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

12.14 There are views and views! 15

13. Text Processing

13.1 Introduction 2
13.2 Text file manipulation 2

13.2.1 Selecting and marking text lines? 3
13.2.2 Line annotation 6
13.2.3 Reports from text files 7

13.3 Text structure and text analysis 8
13.4 Natural language analysis 8
13.5 DDL physical schema extraction 8
13.6 Patterns 10
13.7 Dependency graphs 11
13.8 Program slice 12

14. Conceptual Models (to be completed)

14.1 Introduction
14.2 Entity-relationship models
14.3 Object-role models
14.4 Object-oriented models
14.5 The UML class model (conceptual)

15. Logical Models (to be completed)

15.1 Introduction
15.2 Relational models
15.3 Object-oriented models
15.4 The UML class model (logical/physical)
15.5 Object-relational models
15.6 CODASYL DBTG models
15.7 Hierarchical models
15.8 Shallow models
15.9 Standard file models

1-10

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

16. Miscellaneous

16.1 Introduction 2
16.2 Generic properties 2

16.2.1 Semi-formal properties 3
16.2.2 Dynamic properties 5

16.3 Configuration settings 9

Appendix A: The Generic DB-MAIN Model

A.1 The specification model in short
A.2 Project
A.3 Base schema
A.4 View schema
A.5 Text file
A.6 Inter-product relationship
A.7 Entity type (or object class)
A.8 Relationship type (rel-type)
A.9 Collection
A.10 Attribute
A.11 Object-attribute
A.12 Non-set multivalued attribute
A.13 Group
A.16 Inter-group constraint
A.15 Processing units
A.16 Common characteristics
A.17 Names
A.18 Structure of a text file

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

Lesson 1

Buildin g our first database

Objective

In this first lesson, the reader will learn how to start and quit the
DB-MAIN CASE tool, how to introduce a simple Entity-Rela-
tionship conceptual schema, and how to translate it into table and
column structures expressed into the SQL language. S/he will
also save her/his work for further use.
Above all, the reader will get an insight into what Database De-
sign is all about.

1-2 Lesson 1: Building our first database

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

Preliminary checking
For this lesson, be sure that the DB_MAIN directory includes the
DB_MAIN.EXE program (the CASE tool) as well as all the run-time libraries
(*.dll). See the README.TXT file for further detail.

This lesson assumes that you use DB-MAIN Version 5, but is valid for version
4 as well.

1.1 Introduction

We will develop a very simple database intended to describe companies that
manufacture products. Through this process we will familiarize ourselves
with some important concepts in database engineering.

For instance, we will learn that besides the data structures that are built in the
computer, and in which we will store the data about these companies which
manufacture these products, there exists another, more abstract and more in-
tuitive way to describe these concepts, namely the conceptual schema. While
data are stored into tables or into files, a conceptual schema describes the con-
cepts in terms of entity types (classes of similar objects), attributes (entity pro-
perties) and relationship types (associations holding among entities).

The most straightforward conceptual schema comprises the entity type COM-
PANY, which describes the class of companies, and the entity type PRODUCT,
representing the class of products. The fact that companies manufacture pro-
ducts is represented by a many-to-one relationship type called manufactu-
res connecting their entity types. We will give these entity types some
attributes that describe the properties of the companies (such as their company
identifier, their name and their revenue) and of the products.

1.2 Starting DB-MAIN

Through the Explorer (or File Manager), we go into the DB_MAIN directory,
and we start the DB_MAIN program by double-clicking on the
DB_MAIN.EXE name or on the DB-MAIN icon. We acknowledge the presen-
tation box by clicking on the OK button, or by pressing the Enter key. The
main DB-MAIN window appears, showing, among others, the Menu bar (with
two items only: File and Help), the Tool bar (with a few buttons, among which

Lesson 1: Building our first database 1-3

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

are build a new project and open an existing project), the Workspace, in which
the project window will be displayed (currently empty), and the Status bar.

Figure 1.1 - The main window of DB-MAIN.

1.3 Creating a new project

We are ready to open a new project through the command File / New project.
This command opens a Project Property box (or Project box for short), which
asks us some information about the new project. Our project will be called
MANU-1 and will be given the short name M1. We validate the operation by
clicking on button OK.

Figure 1.2 - The properties of the new project.

Menu bar

Tool bar

Workspace

Status bar

1-4 Lesson 1: Building our first database

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

Note 1. There is a simpler way to open a new project, namely by pressing the New
project button in the Tool bar.ν

Now, a new window, namely the Project window, appears in the DB-MAIN
workspace. Currently, it includes a small rectangle, which is the iconic repre-
sentation of the project itself (any DB-MAIN object has a graphical represen-
tation). To examine its properties, try File / Project Properties1. Later on,
this window will also show all the products of the project, such as the various
schemas and texts, together with their relationships2.

Figure 1.3 - The project window in which all the documents of the project will
appear.

The Menu bar and the Tool bar have changed too, offering more functions that
will be used later on. Make sure that the Standard tools bar is available. Othe-
rwise use Windows / Standard tools to make it visible.

Figure 1.4 - The complete Menu bar and the full Tool bar.

1. Double-clicking does not work here, for reasons that will be explained later.
2. This window can also show all the activities that have been carried out to build these pro-

ducts. In other words, the Project window can show, if requested to, the history of the pro-
ject. We will ignore this feature in the following lessons.

Lesson 1: Building our first database 1-5

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

1.4 Defining a new schema

We create a new schema in which we will draw the conceptual structures of
the database. Through the command Product / New schema the Schema box
appears and asks us the name (Manufacturing), the short name (Manu)
and the version of the schema. This schema will include the conceptual des-
cription of our database in project, so that Conceptual should be a clear ver-
sion name that suggests the objective of the schema.

Figure 1.5 - Creating a new schema.

We ignore the other properties and we validate the operation by clicking on the
OK button.

Two things happen. First, a new icon with the name Manufacturing/
Conceptual appears in the Project window, indicating that the project com-
prises a new document, or product, which is a schema. Later on, double-clic-
king on such an icon will open its Schema window.

1-6 Lesson 1: Building our first database

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

Figure 1.6 - The project window includes the new schema3.

Secondly, a Schema window is opened, showing the same icon, but nothing el-
se.

Figure 1.7 - The schema window is empty, except for the icon of the schema
itself. This window is like a blank page on which we will draw the conceptual
schema of the future database.

This icon represents the schema. Double-clicking on it opens its Schema (pro-
perty) box. So far, this schema is empty. We will work in this window, so
that it is a good idea to enlarge it.

3. In some rare situations (for instance, if you work on a DB-MAIN version already used by a
professional who configured it differently) a small rectangle with the label New schema
also appears in the Project windows. To get rid of it, check that the Project window display
mode is Graphical Dependency (through View / Graph. Dependency). The other modes
are quite nice as well, but probably a bit disturbing for an introductory lesson!

Lesson 1: Building our first database 1-7

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

From now on, in order to simplify the illustrations used in this lesson, we will
hide the schema object, except when needed.

Note. To free the workspace, especially when it is crammed with many windows, it
is best to iconize (minimize) the Project window.ν

1.5 Defining entity types COMPANY and PRODUCT

To enter the create entity type mode, we click on the button. That changes
the cursor that now looks like a little rectangular box. We choose a point in
the schema window, we put the cursor on it and we double-click. This lays an
entity type at that point and opens the Entity type box that allows us to define
a new entity type (Figure 1.8).

Figure 1.8 - The first entity type is defined.

1-8 Lesson 1: Building our first database

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

We enter the name COMPANY and short name COM. We validate the operation
by clicking on the OK button.

In the same way, we double-click at another point to define entity type PRO-
DUCT with short name PRO. To quit the entry mode, we click on the New En-
tity type button again, or we press the Escape key.

Now, the schema window shows the newly defined entity types as two boxes.
We move the boxes (by dragging them with the mouse) in the window in order
to give the schema a nice layout (Figure 1.9)

Figure 1.9 - So far, the current schema is made up of two entity types.

1.6 Entering entity type attributes

To specify that some specific information items are associated with the entities
of each type, we will define the attributes of these entity types. We open the
property box of entity type COMPANY by double-clicking on its name in the
schema window, then we click on the New att. button. The Attribute box
invites us to define the first attribute (Figure 1.10). We give it the name Com-
ID , the type char (acter) and the length 15 . This attribute represents the com-
pany identifier, and is considered as a string of 15 characters. For now, we can
ignore the other properties.

There are other attributes that we want to associate with COMPANY. Therefore,
we click on button Next att (ribute), which validates the current definition,
and which calls the Attribute box again (since this button is the active one, just
pressing the Enter key will do it). We define successively attributes Com-
Name (char 25), Com-Address (char 50) and Com-Revenue (numeric 12).
The last attribute will be validated by clicking on the Ok button instead to stop
the entry process.

Lesson 1: Building our first database 1-9

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

Figure 1.10 - The first attribute of COMPANY is defined. The next attributes
will be defined by pressing the Next att. button, or more simply by pres-
sing the Enter key.

In the same way, we define attributes Pro-ID (char 8) and Pro-Name (char
25) of entity type PRODUCT.

The schema window now looks like Figure 1.11.

Figure 1.11 - The entity types have been given specific attributes.

1-10 Lesson 1: Building our first database

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

1.7 Entering relationship type MANUFACTURES

Now we want to represent the fact that companies manufacture products. This
can be done by drawing a relationship type (or rel-type for short) between the-
se entity types.

We enter the New rel-type mode by clicking on the button in the Tool
bar4. The cursor takes a cross-hair shape, so that we can draw a line from
COMPANY to PRODUCT in the schema window (Figure 1.12).

Figure 1.12 - A line is drawn between the boxes of the entity type we want to
connect.

A link appears between both rectangles with a hexagon on it. Normally, the
default name R is selected (white on black). If it is not, we click on it. We press
the Enter key to open the Rel-type box (or we double-click on name R) We
enter the correct name manufactures , then we validate through the Ok but-
ton (Figure 1.13).

We quit the entry mode just like we did for the entity types by pressing the
Escape key or by clicking on the button again (or on any another entry
button).

Each end of the rel-type is called a role. Each role is taken by an entity type
and is given a cardinality constraint, that appears as a pair of symbols, such as
0-N and 1-1.

The 0-N cardinality specifies that any COMPANY entity will appear in at least
0 and at most N (standing for infinity) manufactures relationships.

4. or button in Version 3.

Lesson 1: Building our first database 1-11

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

Figure 1.13 - A relationship type links the entity types. It will be given the
name manufactures.

Figure 1.14 - Now the schema explicitly tells that companies manufacture pro-
ducts.

We will study later the concept of cardinality in greater detail. For now, we
understand the 0-N cardinality as "a company manufactures an arbitrary
number (i.e,. from 0 to N) of products". Similarly, the schema shows that a
PRODUCT entity will appear in exactly one (i.e., from 1 to 1) manufactu-
res relationship.

1-12 Lesson 1: Building our first database

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

The cardinality can be changed by double-clicking on the role, i.e., on its car-
dinality symbol. This will be examined in detail in another lesson.

1.8 Defining entity type identifiers

Normally, the entities of the same class, for instance all the companies, have a
special property that allows us to designate each of them. This property is cal-
led an identifier of the entity type. Usually, it is a name, a code, a reference or
anything else that makes the entities unique in their class.

For instance, we want to tell that Com-ID is the unique code of companies.
We select this attribute by clicking on its name (which appears white on black)
than we click on the Identifier button on the Tool bar.

In the same way, we define PRO-ID as the identifier of entity type PRODUCT.
The schema can now be considered as complete (Figure 1.15).

Figure 1.15 - An identifier has been associated with each entity type.

Note that the identifier is graphically mentioned twice (assuming the novice
analyst has not noticed the fact!): first through the id clause that appears at the
bottom of the entity type box, and secondly by the underlining of the compo-
nent attribute. This latter way will be used when the identifier comprises at-
tributes only.

1.9 Documenting the schema

You have probably observed that most boxes that define the properties of an
object have a special button named Sem. Clicking on the Sem button opens a

Lesson 1: Building our first database 1-13

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

small text window in which we are allowed to enter a free text that describes
the meaning of the current object, i.e., its semantics.

Let us double-click on the COMPANY entity type (another way: select COMPA-
NY, then press the Enter key). We get the Entity type property box of COM-
PANY. We click on the Sem button, and we enter a text that defines what a
company is (Figure 1.16).

Figure 1.16 - The Semantic description text window of an object.

The text can be as long as needed (with a 64 Kb limit however). It can be cut,
copied and pasted from/to any other program in the usual way (ctrl-X, ctrl-C,
ctrl-V).

In the same way, we can enter a description for PRODUCT and manufactu-
res , for each of the attributes, for each role, for each identifier and even for
the schema and the project themselves.

Note. There is a similar button on the Standard tools bar which has the same ef-
fect: select any object in the current schema, then click on this button to open the Se-
mantic description window of the object.ν

1-14 Lesson 1: Building our first database

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

1.10 Producing a SQL 5 database

There are several ways in which this conceptual schema can be translated into
table and column structures. For now, we have no special requirements as far
as performance, or any other consideration, are concerned. We will be happy
with an unsophisticated translation of this schema into SQL commands.

This translation can be done in a straightforward way through the command
Transform / Quick SQL . DB-MAIN simply asks you, with the standard file
dialog box, in which file you want the SQL program to be stored. By default,
the file will be named manu-1.ddl , following the name of the project (Fi-
gure 1.17).

Figure 1.17 - The SQL program that is being generated from the conceptual
schema will be saved as manu-1.DDL file.

Now, we go back to the Project window. We observe that a new product has
been made available. The slightly different icon shape indicates that this new
document is a text file called manu-1.ddl . Obviously, this is the SQL pro-
gram we just generated in the last step.

We can examine the contents of this text file by double-clicking on its icon. A
new text window opens, showing the SQL code implementing the conceptual
schema. It should read like in Figure 1.19.

5. SQL must be read SEQUEL.

Lesson 1: Building our first database 1-15

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

Figure 1.18 - Now, the project window includes two products, namely the con-
ceptual schema and the SQL program that derives from it.

Figure 1.19 - The contents of the manu-1.ddl text file can be examined by
double-clicking on its icon in the project window.

create database Manufacturing;

create table COMPANY (
 Com-ID char(15) not null,
 Com-Name char(25) not null,
 Com-Address char(50) not null,
 Com-Revenue numeric(12) not null,
 primary key (Com-ID));

create table PRODUCT (
 Pro-ID char(8) not null,
 Pro-Name char(25) not null,
 Com-ID char(15) not null,
 primary key (Pro-ID));

alter table PRODUCT add constraint FKmanufactures
 foreign key (Com-ID) references COMPANY;

create unique index IDCOMPANY on COMPANY (Com-ID);
create unique index IDPRODUCT on PRODUCT (Pro-ID);
create index FKmanufactures on PRODUCT (Com-ID);

1-16 Lesson 1: Building our first database

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

To be quite precise, this SQL program will not necessarily be executable on
all machines, and would probably need some syntactic adjustements. For ins-
tance, dashes ("-") are not allowed by most SQL DBMS, and should be repla-
ced by, say, underscores ("_"). We will see later how this kind of problem can
be addressed in a systematic way.

In addition, the set of indexes may not be the most efficient one, and would
need some refinement. Such decisions relate to physical design, an activity
that obviously is far beyond the scope of this first lesson!

1.11 Saving the project

As is natural after working such a long time, we carefully save our work throu-
gh command File / Save project (or button) or command File / Save pro-
ject as (or button) in order to make it available for further use.

Figure 1.20 - The whole project is saved on disk.

By default, the project is saved as file manu-1.lun . We validate the opera-
tion through the button OK.

The *.lun extension is typical to the saved DB-MAIN projects, so do not use
them for other files.

Lesson 1: Building our first database 1-17

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

1.12 Quitting DB-MAIN

It is now time to exit from the DB-MAIN tool by command File / Exit.

We have built our first SQL database, and we are now able to build other sim-
ple SQL databases just by applying the basics that have been presented in this
lesson.

1-18 Lesson 1: Building our first database

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

Key ideas of Lesson 1

1. A CASE (Computer-Aided Software Engineering) tool is a software that
allows a developer to draw the conceptual schema of an application domain,
then to generate the SQL tables that represent this application domain.

2. The application domain is that part of the real world about which we want to
collect, maintain and process information. This information will be represen-
ted by data stored in the database of the application domain.

3. A database is a collection of data that codes facts about the application
domain. At the present time, most databases are organized into relational
tables. A table is made up of columns; some of which can be declared its pri-
mary key. Indexes can be associated with each table.

4. A conceptual schema is the computer-independent description of the facts
that make up an application domain. It comprises entity types, attributes,
relationship types (or rel-types) and identifiers. An entity type describes a
class of significant concrete or abstract objects of the application domain. An
attribute represents a property common to the entities of a given type. A rel-
type represents a class of associations between entities.

5. The CASE tools can turn a conceptual schema into a database schema. It sto-
res both schemas so that they can be used again later on.

Lesson 1: Building our first database 1-19

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

Summary of Lesson 1

• In this first lesson, we have studied some important concepts:

- the concept of CASE tools

- projects and schemas

- entity types, relationship types, attributes and identifiers

- conceptual schemas

- SQL expression of a conceptual schema

• We have also learned to:

- run the DB-MAIN CASE tool

- create a new project: File / New project

- create a new schema: Product / New schema

- define an entity type: New / Entity type

- define an attribute: New / Attribute

- define a relationship type: New / Rel-type

- define an identifier: New / Group

- add a semantic description:

- save the current project: File / Save as

- save the current project: File / Save

- produce SQL code: Quick DB / SQL

or Transform / Quick SQL

- exit from DB-MAIN: File / Exit

• We have produced two types of files:

- saved projects (*.lun)

- executable code such as SQL (*.ddl).

1-20 Lesson 1: Building our first database

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

Exercises for Lesson 1

Define a project, a conceptual schema and generate an SQL database creation
program for each of the situations described below.

1.1 The small database we developed in this lesson was based on the hypo-
thesis that a product is manufactured by one company only (cardinality
1-1). Now, consider that a product can be produced by any number of
companies (i.e., by 0, 1, 2, or more companies). Change the schema ac-
cordingly. Don’t save this project.

1.2 Customers buy products in such a way that each customer can buy any
number of products and each product can be bought by an arbitrary
number of customers. Imagine some natural attributes for the entity ty-
pes. Call this project SALES1 and save it.

1.3 Students belong to classes: each student belongs to exactly one class (no
less, no more), while a class comprises any number of students. Each
student can be registered in any number of courses while any number of
students can be registered for a given course. Imagine some natural at-
tributes for the entity types. Call this project STUDENT1 and save it.

1.4 Complete the MANU-1 project by considering countries to which pro-
ducts are exported.

Don't save the modified project (we will make use of the original ver-
sion in further lessons), unless you give it another name.

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

Lesson 2

A closer look at schemas

Objective

This is an easy and relaxing lesson (just playing with existing
schemas!). It presents some useful schema display formats and
the way to use them.

2-2 Lesson 2: A closer look at schemas

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

Preliminary checking
In this lesson, we will use the project MANU-1 (file manu-1.lun) that has
been created in Lesson 1, and the LIBRARY project (or its French equivalent
BIBLIO) that comes with the DB-MAIN software.

2.1 Starting Lesson 2

Let us start DB-MAIN and open the MANU-1 project through the command
Project / Open project or by clicking on the button . When the project is
opened, we double-click on the icon of the Manufacturing/Concep-
tual schema to display its contents.

For this lesson, we will need some new functions that are offered by the menu,
but that are available on a new tool palette as well. We display this new palette
through Windows / Graphical tools (Figure 2.1). These tools can be placed
anywhere on the screen, for instance under the Standard tool bar.

Figure 2.1 - The graphical tool bar. It can be resized according to your taste.

2.2 On including database schemas into a document

In the first lesson, several figures include a schema, showing the step-by-step
construction of the conceptual description of our database. As everybody
should have observed, these schemas have been obtained from screen copies.
This technique provides nice looking results, but is rather painful (the screen
shots have to be processed with an image processing software) and yields huge
documents.

The DB-MAIN tool includes a function that copies selected schema objects
onto the clipboard in a more concise format (as vector-based objects). So, se-
lect all the objects of the schema, then call the Edit / Copy graphic menu item
or click on the button in the Graphical tools bar. Then, open a Word or

Lesson 2: A closer look at schemas 2-3

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

Powerpoint document, and paste the clipboard contents (use Paste or Paste
Special according to the software).

The schema objects appear in the text document as in Figure 2.2 (bottom). The
result can be modified as any vector-based graphical object1. From now on,
we will use this technique to include schema fragments in this lesson and in
the next ones.

Figure 2.2 - Bitmap (top) and vector-based (bottom) schemas as they appear
in a text document.

2.3 Graphical views of a schema

In Lesson 1, the schema was represented in a Schema window through graphi-
cal objects. There are several other ways to display this schema. They can be
classified into graphical views and textual views. This section is devoted to
graphical views.

1. In some products, such as MS-Word or FrameMaker, the labels may appear to be too long
or too short for the rectangles in which they are enclosed after the schema has been redi-
mensioned. This is due to the way Windows redimensions a graphical object: continuously
for geometrical components and point by point for texts. In this case, just expand or stretch
the schema frame horizontally until the texts correctly fit in their boxes.

1-10-N manufactures

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID

2-4 Lesson 2: A closer look at schemas

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

Let us first examine a new way of presenting large schemas, namely the com-
pact view. It can be obtained through the View / Graph. compact command.
The attributes and identifiers are hidden in such a way that only the schema
skeleton appears (Figure 2.3).

Figure 2.3 - The compact graphical view of the MANU-1/Conceptual schema.

Now, we go back to the standard graphical view through View / Graph. stan-
dard, to get the view we have used so far (Figure 2.4). Since this view is the
most useful, it has been given a special button on the Standard tools bar: .

Figure 2.4 - The standard graphical view of the MANU-1/Conceptual schema.

Starting from this standard view, we can derive some simplified forms by
using the graphical settings panel (View / Graphical settings) (Figure 2.5).

The buttons of the Show Objects block of this panel can be unchecked, which
hides the attributes, or the identifiers (called groups in the panel), or both (Fi-
gure 2.6). You can also show the attribute types if needed.

Graphical variants exist to represent entity types and rel-types. For instance,
we can choose to draw entity type and/or rel-type boxes with round corners
instead of square ones by selected rounded shape in the Graphical settings pa-
nel (Figure 2.7). These settings are valid for the current schema. They can be
useful to distinguish different levels of schemas.

1-10-N manufactures PRODUCTCOMPANY

1-10-N manufactures

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID

Lesson 2: A closer look at schemas 2-5

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

Figure 2.5 - The graphical settings panel.

Figure 2.6 - The Standard view without Attributes (top) and without Groups
(i.e., without identifiers) but with attribute types (bottom).

1-10-N manufactures
PRODUCT

Pro-ID: char (8)
Pro-Name: char (25)

COMPANY
Com-ID: char (15)
Com-Name: char (25)
Com-Address: char (50)
Com-Revenue: num (12)

1-10-N manufactures
PRODUCT

id: Pro-ID

COMPANY

id: Com-ID

2-6 Lesson 2: A closer look at schemas

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

Figure 2.7 - Round-corner shape and shaded boxes as alternate graphical re-
presentations.

A last trick before leaving the graphical views of a schema: how to retrieve a
selected object in a schema. Let us suppose that the (small) schema window
shows a fragment of a (large) schema. Let us also suppose that an object is
selected, somewhere in the schema, but not shown in the window. How to
move the window in such a way that the selected object is at the center of this
window? Nothing can be simpler: just press the tab key.

What if there is more than one selected object? The tab key brings the next
selected object to the window.

2.4 Textual views of a schema

The contents of a schema can be presented as a pure text as well. In this mode,
four formats are available.

The simplest one is the compact view. It shows a mere list of the names of the
entity types followed by that of the relationship types (Figure 2.8).

1-10-N manufactures

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID

1-10-N manufactures

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID

Lesson 2: A closer look at schemas 2-7

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

Figure 2.8 - The Text compact view of a schema

This list is a sort of dictionary. It can be obtained through the command View
/ Text Compact.

The compact view does not display the detail of a schema and can be used as
a quick index to locate an object in a large schema.

For a more detailed textual view, try the Standard view. It can be obtained
through the command View / Text Standard, and presents the current schema
as in Figure 2.9. Since it is frequently used, it can also be obtained through a
specific button on the Standard tools bar: .

Figure 2.9 - The Text standard view of a schema

Schema Manufacturing/Conceptual

COMPANY
PRODUCT

manufactures

Schema Manufacturing/Conceptual

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

manufactures(
[1-1] : PRODUCT
[0-N] : COMPANY)

2-8 Lesson 2: A closer look at schemas

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

The extended view is an even more complete presentation. In addition to the
information of the standard view, the extended view shows, among others, the
short names, the type and length of the attributes and the roles in which each
entity type appears. The symbol [S] indicates that a semantic description has
been associated to the object.

This view is obtained through the command View / Text extended, and ap-
pears as in Figure 2.10.

Figure 2.10 - The Text extended view of a schema. The directed arcs show
the possible jumps through the hyperlinks activated by a right-button click.

Note that the role lines that appear both in the entity type and rel-type paragra-
phs makes it possible to navigate through the whole schema by jumping from
an entity type to the relationship types in which it appears, and conversely:

- to jump from an entity type to one of its relationship types: click on the line
of the role in the entity type paragraph with the right button of the mouse.

- to jump from a relationship type to one of its entity types: click on the line
of the role in the rel-type paragraph with the right button of the mouse.

Schema Manufacturing/Connceptual / Manu [S]

COMPANY / COM [S]
Com-ID char (15) [S]
Com-Name char (25) [S]
Com-Address char (50) [S]
Com-Revenue numeric (12) [S]
id: Com-ID
role: [0-N] in manufactures

PRODUCT / PRO [S]
Pro-ID char (8) [S]
Pro-Name char (25) [S]
id: Pro-ID
role: [1-1] in manufactures

namufactures [S] (
[1-1] : PRODUCT
[0-N] : COMPANY)

Lesson 2: A closer look at schemas 2-9

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

These hyperlink functions are very handy for large schemas. More on schema
navigation later on in Lesson 3.

The last format is the sorted view, which presents an unstructured sorted list of
all the names that appear in the schema, together with their type and origin.
This view is particularly important for large and complex schemas, specially
in reverse engineering activities2. It can be used too when checking names in
conceptual analysis. In addition, it is the easiest way to retrieve an object when
only its name is known.

The sorted view can be obtained through the command View / Text sorted,
and appears as in Figure 2.11.

Figure 2.11 - The Text sorted view of a schema

Two important properties

- Objects that are selected (in white on black) in a view still are selected in
any other view in which they appear. For instance, an attribute with a par-
ticular name can be retrieved in a schema by using the text sorted view.
Now, choosing the standard graphical view allows us to examine this attri-
bute in its context.

2. Reverse engineering can briefly be described as the converse of what we did in the first
lesson, that is recovering the conceptual schema of an existing database. It involves com-
plex techniques and tools that are described in other documents but that will be ignored in
this tutorial.

Schema Manufacturing/Conceptual

Com-Address Att. of COMPANY
Com-ID Att. of COMPANY
Com-Name Att. of COMPANY
Com-Revenue Att. of COMPANY
COMPANY Entity type
manufactures Rel-type
Pro-ID Att. of PRODUCT
Pro-Name Att. of PRODUCT
PRODUCT Entity type

2-10 Lesson 2: A closer look at schemas

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

- Building a schema, or examining, deleting and modifying its components,
can be performed whatever the view in which this schema is displayed. For
instance, double-clicking on the line of an object in a text view opens the
same property box as in a graphical view.

2.5 Application: far jumps through a graphical schema

Navigating through a large schema can be fairly tricky. Let us examine the
simple following problem: considering entity type COMPANY, show the entity
type that plays the other role in rel-type manufactures .

In the schema of Figure 2.4, the problem is solved simply by positioning the
schema window on entity type COMPANY, then in selecting the other end of
rel-type manufactures .

Now, let us consider that these objects are parts of a large schema, in such a
way that both entity types are more than one meter apart (Figure 2.12). Re-
trieving rel-type manufactures , then entity type PRODUCT gets much
more difficult. We have to activate the scroll bars in several directions, fol-
lowing very carefully the arcs that make the rel-types. It is easy to confuse two
crossing arcs, and to follow the wrong direction.

Figure 2.12 - How to retrieve the other entity type of manufactures ?

Lesson 2: A closer look at schemas 2-11

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

The solution is to use the right view(s) in the right way:

1. in the Graphical standard view, we select entity type COMPANY (Figure
2.12);

2. we switch to the Text extended view and we click with the right button on
the role line "role: [0-N] in manufactures", which sends us to rel-type ma-
nufactures (Figure 2.13);

3. in the list of roles of manufactures , we identify the opposite role ([1-1]:
PRODUCT) and we click on it with the right button;

4. this sends us to entity type PRODUCT (Figure 2.14);

5. we switch to a graphical view, which shows the selected object3 (Figure
2.15), and voilà!

Figure 2.13 - We reach rel-type manufactures by right-clicking on the role
of COMPANY.

3. When selected objects are outside the current window, just press the Tab key to move the
window to the next selected object.

2-12 Lesson 2: A closer look at schemas

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

Figure 2.14 - The opposite entity type has been found ...

Figure 2.15 - ... and presented in a graphical view.

Lesson 2: A closer look at schemas 2-13

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

 Key ideas of Lesson 2

1. A CASE tool can memorize the products (schemas and generated texts) of a
project on secondary memory. They can be opened later on.

2. A fragment of a schema can be incorporated into a text document either as a
bitmap image (through PrintScreen key) or, better, as a vector-based drawing.

3. A schema can be displayed under various formats, either graphical or textual.
Each of them shows some or all aspects of the schema objects.

4. The graphical formats are more intuitive, and show the direct environment of
an object.

5. The textual formats are more concise, and can show syntactic patterns of the
object names.

6. Some textual formats make it possible to jump to distant linked objects.

7. Switching between different formats allows us to quickly navigate through
rel-types in very large schemas.

2-14 Lesson 2: A closer look at schemas

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

Summary of Lesson 2

• In this first lesson, we have studied some important concepts:

- graphical views of a schema: compact, standard

- text views of a schema: compact, standard, extended, sorted

- navigation through the objects of a schema

• We have also learned:

- to open an existing project:

Project / Open project

- to open an existing schema

- to include fragments of a schema into a text:

Edit / Copy graphic

- to select a schema presentation format:

View / Text compact

View / Text standard

View / Text extended

View / Text sorted

View / Graph. compact

View / Graph. standard

- to give graphical objects rounded corners and shades:

View / Graphical settings

- in a text view, to navigate from entity type to rel-type and from rel-type to
entity type: right button on the role line

- in a graphical view, to get the next selected object in the center of the sche-
ma window: tab key

Lesson 2: A closer look at schemas 2-15

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

 Exercises for Lesson 2

Finding interesting exercises for such a lesson is quite a challenge! If you in-
sist, try these; otherwise start the next lesson.

Open the LIBRARY project (or its French equivalent BIBLIO) and its con-
ceptual schema Library/Conceptual .

2.1 Examine the semantic description of the objects in the schema. Change
and complete some of them.

2.2 Change the position of some attributes and roles in text views. Examine
the graphical view and change the position of some objects.

2.3 Find the other side of a rel-type from an entity type.

2-16 Lesson 2: A closer look at schemas

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

Lesson 3

An even closer look at schemas

Objective

In this sequel to Lesson 2, we study how to manipulate graphical
and textual objects, how to change their apparent or actual size,
how to navigate through a schema and to generate reports. We
also examine various techniques to inspect the objects of a sche-
ma.

3-2 Lesson 3: An even closer look at schemas

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

Preliminary checking
Make sure that the project MANU-1 (file manu-1.lun) created in Lesson 1,
and LIBRARY (or its French equivalent BIBLIO) that comes with the DB-
MAIN software, are available.

3.1 Starting Lesson 3

We start DB-MAIN, we open the project MANU-1 , then the schema Manu-
facturing/Conceptual .

3.2 Securing our work

This lesson, as well as the next ones, will lead us to perform various manipu-
lations on the current schema, and therefore to spoil its initial shape and con-
tents. Of course, when this happens we could restore the original version that
has been saved on disk by File / Open project, but this is rather tedious, espe-
cially for large projects.

The save point/rollback technique is much quicker:

- Edit / Save point saves the state of the current schema (or button),

- Edit / Rollback cancels the modifications carried out on the current schema
since its last save point; in other words, it restores the state of the schema
when the last save point was issued.

Three important rules:

1. There is only one active save point for the schema, but each schema of the
project can have its own independent save point.

2. A save point cannot restore a schema that has been deleted (use File / Save
as instead).

3. When a project is closed, all its save points are lost.

Lesson 3: An even closer look at schemas 3-3

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

3.3 Manipulating the graphical components of a schema

The position of the objects of a schema can be changed by selecting and drag-
ging them in the usual way. Several objects can be selected (or deselected) by
pressing the shift key when selecting, or by drawing a selection rectangle
with the mouse, and moved simultaneously.

Moving objects
Moving objects in their window obeys the general Windows rules:

- selected objects are moved by dragging them in the window space;

- selected objects are moved by pressing the cursor keys (← ↑ → ↓);

- small-step moves are obtained by pressing the cursor keys while pressing
the Ctrl key;

- using the scroll bars moves the window in the four directions.

The Move mode designates the way DB-MAIN reacts when an object is mo-
ved on the screen: does it move the object only (independent mode), or does it
reposition the connected objects as well (dependent mode)? This mode can be
set either in the Graphical settings panel (Independent button) or through
the INDEP. button on the Graphical tools bar: .

In the Dependent mode, the graph is adjusted as follows (Figure 3.1 left):

- when an entity type is moved, its relationships types and their roles are
moved proportionally and redrawn;

- when a relationship type is moved, its roles are moved too,

- when a role is moved, nothing else is redrawn.

In the Independent mode, the graph is adjusted as follows (Figure 3.1 right):

- when an object (entity type, relationship type, role) is moved, nothing
else is redrawn, except the arcs that link it to the other objects.

3-4 Lesson 3: An even closer look at schemas

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

Figure 3.1 - Moving rel-type manufactures in the dependent mode (left)
and in the independent mode (right).

Aligning objects

After a while, a schema may look like spaghetti, and we might want to put
some order among its components. A first nice feature is the rel-type Align
action which allows us to align a role or a relationship type according to its
connected objects. We can get this effect by clicking on the object (role or rel-
type) with the right button of the mouse (Figure 3.2).

To align a larger set of objects, we will make use of the View / Alignment
command, that provides us with eight operators, four for vertically aligning the
objects and four for horizontal alignment. They are also available on the Gra-
phical tools bar (Figure 3.3).

In the horizontal dimension, we can align objects on their left side, on their
right side, we can center them and we can distribute them horizontally at equal
distance.

In the vertical dimension, we can align objects on their top side, on their bot-
tom side, we can center them and we can distribute them vertically at equal
distances.

0-N

1-1

manufactures

1-1

0-N

manufactures

PRODUCT

Pro-ID
Pro-Name
id: Pro-ID

PRODUCT

Pro-ID
Pro-Name
id: Pro-ID

COMPANY

Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID

COMPANY

Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID

Lesson 3: An even closer look at schemas 3-5

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

Figure 3.2 - Aligning roles (center) and relationship types (right) by clicking
with the right button of the mouse.

Figure 3.3 - The eight object alignment operators.

Horizontal object moves

: align to left

: align to right

: center horizontally between left and right

: distribute evenly between left and right

Vertical object moves

: align to top

: align to bottom

: center between top and bottom

: distribute evenly between top and bottom

1-1

0-N

manufactures
0-N

1-1

manufactures

1-1

0-N

manufactures

PRODUCT

Pro-ID
Pro-Name
id: Pro-ID

PRODUCT

Pro-ID
Pro-Name
id: Pro-ID

PRODUCT

Pro-ID
Pro-Name
id: Pro-ID

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID

COMPANY

Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID

COMPANY

Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID

3-6 Lesson 3: An even closer look at schemas

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

Two comments:

1. Horizontal means that the objects are moved horizontally to reach their fi-
nal position (the same for the vertical direction).

Figure 3.4 - The four arc alignment operators.

Figure 3.5 - How to draw a source rel-type (top) with staircase style with just
a mouse click.

Arc alignment

: horizontal staircase

: vertical staircase

: top corner

: bottom corner

1-1

0-N

R

B

A

1-10-N R

B

A

1-1

0-N

R

B

A

1-1

0-N R

B

A

1-1

0-N

R B

A

Lesson 3: An even closer look at schemas 3-7

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

2. When the objects are distributed evenly, the distance is evaluated between
the edges of the objects, not between their centers. This provides a natural
positionning of roles and rel-types between their entity types.

The last four alignment operators (Figure 3.4) are dedicated to users who are
found of staircase rel-types. Since an image is worth one thousand words, we
suggest you had a look at Figure 3.5.

The best way to get acquainted with these operations is to play with a disali-
gned schema such as that of Figure 3.6, which is available in project Manu-
3.lun , schema Alignment .

Figure 3.6 - This schema obviously suffers from a severe disalignment di-
sease. Cure it.

Zooming in and out

For large schemas, a zooming function is available to help fit a larger or a
smaller portion of the schema in the Schema window (zoom out), or to exami-
ne tiny details (zoom in). This function is available in the Graphical settings
panel (Figure 2.5) and in the Graphical tools bar (Figure 2.1) through the fol-
lowing buttons:

 expands the schema representation by 10%;

 shrinks the schema representation by 10%;

1-1

0-Nrel-BC

1-1

0-N

rel-BD

1-1

0-N

rel-AC

1-1

0-N rel-AB

D

B

C

A

3-8 Lesson 3: An even closer look at schemas

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

 sets the zoom factor by specifying its exact value; the fit value
adjusts the zoom factor so that the schema fits in the schema win-
dow.

Fonts

The font, font size and style of the object names can be changed through the
command Edit / Change font. You can get a more compact view by de-
creasing the character size.

Grids

Organizing large schemas may require the use of the Grid function , which
draws lines that decompose the graphical space into equal size pages (see the
Grid format block in the Graphical settings panel, Figure 2.5). The page size
can be standard (A3, A4, Letter), with portrait or landscape orientation, com-
pliant with the current printer, or customized.

The Reduce function
This is a way to change (shrink or expand) the actual size and position of each
object of the current schema by a certain factor. It seems similar to the Zoom
function, but the latter only defines how close you are from the schema, while
leaving the objects themselves unchanged. The following table should make
the differences betwen Reducing and Zooming more explicit.

Colors

Normally, all the objects in a schema are drawn, and their names are written,
in black. You can change this by selecting objects, then giving them another
color. Use command Edit / Color selected or click on the button in the
Standard tools bar to give them the current color. This color can be changed
by the command Edit / Change color.

objects object appearance grid grid appearance

zoom out by 50% unchanged reduced by 50% unchanged reduced by 50%

reduce by 50% reduced by 50% reduced by 50% unchanged unchanged

Lesson 3: An even closer look at schemas 3-9

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

Marking objects

This is a very simple and powerful means to define persistent subsets of ob-
jects in a schema. Marking objects is obtained by first selecting the objects,
then asking Edit / Mark selected or clicking on the button in the Standard
tools bar. To unnmark objects, just mark them again. Marked objects are
drawn with specific attributes (Figure 3.7):

- a marked entity type is shaded (unless it was already shaded, in which case
it is unshaded) and its name is written in boldface;

- a marked rel-type is shaded (unless it was already shaded, in which case it
is unshaded) and its name is written in boldface;

- a marked attribute is written in boldface;

- a marked identifier (or group) is written in boldface;

- a marked role is written in boldface.

The main difference between selecting and marking objects is that marking is
a permanent state while a selection is volatile. Closing a schema and saving it
on disk keep all the marks until we change them explicitly.

Figure 3.7 - Entity type PRODUCT, rel-type manufactures , attributes
Com-Address and Com-Revenue , role PRODUCT of manufactures
and identifier Pro-ID are marked.

Retrieving all the marked objects in a schema cannot be simpler: just select
them by Edit / Select marked. To unmark all the marked objects of a schema,
select them as above, then mark them again.

In fact, it is possible to define up to 5 different sets of marked objects. Such a
set corresponds to a marking plane. All the marking operations are carried
out in the current marking plane. Changing the current plane is done through
a special button in the Standard tools bar:

1-10-N manufactures

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID

3-10 Lesson 3: An even closer look at schemas

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

When a combination of marked and unmarked objects are set to marked, the
result is that they are all marked. This makes it possible to combine the objects
marked in two planes into a third one:

1. transfer from plane 1 to plane 3: choose the first plane, select the marked
objects, choose the third plane and mark the selected objects,

2. transfer from plane 2 to plane 3: choose the second plane, select the mar-
ked objects, choose the third plane and mark the selected objects.

If no objects are marked eventually, this means that planes 1 and 2 were iden-
tical. In this case, just do step 1 again.

There are numerous applications of marking planes:

- in a large schema which is still in a validation phase, objects which are
already checked are marked; the schema is completed when all objects are
marked;

- objects which have been given a semantic description are marked; the sche-
ma is completely documented when all the objects are marked;

- in a schema that comprises objects from different sources, each source is
marked in a different marking plane; an object can be marked in more than
one plane1;

- marked objects can be manipulated by DB-MAIN processors (as we will
see later on)

- some DB-MAIN processors can return marked objects (as we will see later
on).

Auto-draw
If the layout of a schema does not fit your taste, you can ask DB-MAIN to sug-
gest a better spatial arrangement through the command View / Auto-draw .
This function is particularly useful for large schemas that have not been ente-
red graphically (through the reverse engineering extractors for instance)2. If
Auto-Drawing a schema does not produce a satisfying result, try auto-drawing
again. Generally, you will need to fine-tune the layout manually.

1. For this aim, a view schema is a much better means to define an arbitrary number of sub-
sets of objects. They will be studied in Lesson 12.

2. This function is at its best for large and complex schemas. It does not provide satisfying
results with small schemas. Before using it, it can be wise to save the schema state through
the Edit / Save point function, then to restore this state by Edit / Rollback if the result is
not satisfying.

Lesson 3: An even closer look at schemas 3-11

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

Using a larger schema

To get a better feeling of the usefulness of the various views, we switch to ano-
ther project. We close the current one (command File / Close project), and
we open the LIBRARY project (command File / Open project) and its con-
ceptual schema. Now we experiment with each view, and try to figure out the
meaning of the components of this schema, which obviously describes the ma-
nagement of a scientific library. Its contents include many more modeling
characteristics that will be discussed later.

Last observations
We observe that:

- switching from a view to another one is immediate, and can be asked for at
any time;

- the operations of the tool are independent of the view through which they
are executed;

- an object that is selected (highlighted) in a view still is selected when we
switch to another view;

- if several schemas of a project are opened (more on this later on), they can
be displayed in different views.

3.4 Navigation through textual views

When a schema is small, it spans one or two screens only. Retrieving an object
in such a schema needs no special skill nor any special tool. The problem is
less trivial when the schema is larger, and is several dozens of screens large
(large schemas can include thousands of entity types and rel-types): browsing
through such a schema can be time consuming and does not garantee that the
objects we are looking for will be found quickly, if ever.

Retrieving a specific object can often be made easier by working first on the
Text compact and Text sorted views, using them as some kind of dictiona-
ries, then switching to the standard graphical or text views when the object of
interest has been found.

Another useful tool for object retrieval in context is the navigation feature of
DB-MAIN. To illustrate them, we need a larger schema, such as LIBRARY.

3-12 Lesson 3: An even closer look at schemas

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

We display it in the Text extended view, and we reduce the Schema window
a little bit to simulate a large schema in a too small window.

Let us experiment the navigation capabilities of DB-MAIN. Unless told othe-
rwise, the following manipulations are valid for the Text standard and Text
extended views.

- We select the COPY entity type by clicking on its name; we observe that
each line in which the name COPY appears (i.e., each instance of COPY) is
tagged with symbols ">>"; such is the case for each role in which COPY
appears;

- If we press the TAB key; the next tagged instance of COPY appears in the
center line of the Schema window; this allows the cursor to jump to each of
the relationship types in which COPY takes part;

- We click with the right button on a line describing a role in which COPY
appears, in a rel-type paragraph; the COPY entity type is then selected; the
right button acts as a go home button;

- In the Text extended view, we click with the right button of the mouse on
a role in which COPY appears, in its entity type paragraph, then click; the
relationship type of the role is then selected

In Figure 3.8, the navigation rules are shown on the small project Manu-1 .

3.5 Reordering attributes and roles

Though the order in which attributes (and roles) appear in the textual and gra-
phical views does not matter in most situations, you may want to change this
order.

To change the position of an attribute (graphical and text views), select it,
then

- press the Alt + ↑ keys3 to move it one position up,

- press the Alt + ↓ keys to move it one position down (Figure 3.9).

To change the position of a role (text views), select it, then

- press the Alt + ↑ keys to move it one position up,

- press the Alt + ↓ keys to move it one position down.

3. The keys must be pressed simultaneously, not sequentially.

Lesson 3: An even closer look at schemas 3-13

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

Figure 3.8 - Navigating in the Text extended view of a schema of project
Manu-1 with the right button of the mouse.

There are other ways to reorganize the attributes of an entity type, but they re-
quire more sophisticated functions (namely schema transformations) that will
be studied later.

Figure 3.9 - Changing the order of the attributes with Alt + ↓↑.

Schema Manufacturing/Conceptual / Manu [S]

COMPANY / COM [S]
Com-ID char (15) [S]
Com-Name char (25) [S]
Com-Address char (50) [S]
Com-Revenue numeric (12) [S]
id: Com-ID
role: [0-N] in manufactures

PRODUCT / PRO [S]
Pro-ID char (8) [S]
Pro-Name char (25) [S]
id: Pro-ID
role: [1-1] in manufactures

namufactures [S] (
[1-1] : PRODUCT
[0-N] : COMPANY)

COMPANY
Com-Name
Com-ID
Com-Revenue
Com-Address
id: Com-ID

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID

3-14 Lesson 3: An even closer look at schemas

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

3.6 Generating reports

A decent CASE tool must produce external documents that can be printed on
paper. This one does it too. Several kind of reports can be of interest, ranging
from simple object lists to sophisticated documents including a table of con-
tents, an index and footnotes. Though DB-MAIN can produce such docu-
ments, we will show how to generate simple outputs. Three formats are
available from the menus through the command File / Report.

Figure 3.10 - Generating a simple text report.

1. Textual view: the schema must be displyed in a text view (for instance with
button). Its representation is sent to a file with some format options that
are set through the Print dictionary panel (Figure 3.10). This function pro-
duces a *.dic plain ASCII file.

This panel allows us to specify

- the output file,

- whether we want the semantic description to be included,

- what character string will be included just before each semantic descrip-
tion (a tab control can be used to clearly separate it from the object des-
cription4),

4. According to the Windows conventions, a tab control is entered as Ctrl + Tab.

Lesson 3: An even closer look at schemas 3-15

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

- how the lines of marked objects are tagged.

We will ignore the other parameters for now5.

Formatting the output text with a text/document processor can provide re-
ports such as that of Figure 3.11.

2. RTF: the schema is saved as a formatted RTF document. Various options
are available6.

3. Custom: the schema is processed through a customized Voyager 2 pro-
gram7.

For immediate needs, you can directly send the current schema to the printer,
be it in graphical or textual view, through command File / Print . The printer
can be chosen and configured through File / Printer setup as usual.

There are other ways to produce reports. Let us remember one of them: the
Copy graphic function, that allows us to include fragments of schemas into
standard texts (Section 2.2).

3.7 Copying objects

When building a schema, it can happen that several entity types have to be gi-
ven similar attributes, or that the schema includes parts that are almost the sa-
me. Instead of entering the similar objects manually, it could be more
convenient to copy the original fragment, then to modify the copy.

The procedure is as expected:

1. select the components to copy and put them on the clipboard (ctrl+C or
Edit / Copy);

2. paste them in the schema (ctrl+V or Edit / Paste);

5. For those who do want to know: Include dynamic peoperties values means that user-defi-
ned object properties are to be included in the report (see Lesson 16) and Show report
generation means that we want the report and its generation process to appear in the project
windows (in fact in the process history). In this lesson, the effect of checking this button
will be to show the report as a product in the project window.

6. Check that the DB-MAIN directory includes the files XXXXX and XXXXX . You can
define their paths through File / Configuration .

7. We will tell some words about these programs later on. For now, it suffices to know that
Voyager 2 is the programming language of DB-MAIN allowing its users to develop their
own functions.

3-16 Lesson 3: An even closer look at schemas

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

Figure 3.11 - A simple text report.

3. if the the pasted objects are attributes, first select an entity type, a rel-type
or an attribute; the pasted objects will be inserted after this insertion point
(Figure 3.12).

If needed, DB-MAIN makes the names of the pasted objects unique through
the addition of a small suffix.

__

 Dictionary report

 Project MANU-1
__

Schema Manufacturing/Conceptual
A simple example of conceptual database
schema used in the first lessons of the
DB-MAIN tutorial. This schema has been
created on December 15, 1998.

* COMPANY A registered business organization with
which we have had commercial contacts for
less than 5 years.

 Com-ID Internally assigned company Id.
 Com-Name Official name of the company.
 Com-Address Main address of the company.
 Com-Revenue The total net income of company for the

last fiscal year.
 id: Com-ID
* PRODUCT A product of interest for our company.
 Pro-ID Internally assigned product Id.
 Pro-Name The conventional name of the product.
 id: Pro-ID

* manufactures (Specifies which products are manufactu-
red by each company.

 [0-N] : COMPANY
 [1-1] : PRODUCT)

Lesson 3: An even closer look at schemas 3-17

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

Note. Copying attributes to define near similar objects can be an evidence of a more
complex situation, where entity types appear to be subtypes of each other, or to have
a common supertype. These structures will be studied in Section 8.2. ν

Figure 3.12 - It appears that SALESMAN must be given attributes similar to
Name and Address of CUSTOMER (left). Select the latter, type ctrl+C, select
EmpID of SALESMAN then type ctrl+V (right).

3.8 Inspecting objects

Examining the properties of the objects in a schema, or even the schema or the
project themselves, is quite easy. We double-click on the object (in any text
or graphical view) and its property box opens. To read its semantic descrip-
tion, we click on the Sem. button, which opens the semantic description win-
dow.

If we have to examine a large number of objects, this procedure may appear
tedious, and even painful. There exist two quicker ways to inspect the proper-
ties of the objects.

First, opening the semantic description window can be done by selecting the
object and clicking on the SEM button in the Standard tools bar .

The second way is much more powerful, and uses a new DB-MAIN feature
called the Property box. It is opened through command Window / Property
box, and appears as in Figure 3.13.

This box is permanent until it is explicitly closed. It shows in real time all the
properties of the current object, i.e., the object which is currently selected.
Simply select another object, and the box shows the properties of this object.

SALESMAN
EmpID
id: EmpID

CUSTOMER
CustID
Name
Address

Number
Street
City

id: CustID

SALESMAN
EmpID
Name
Address

Number
Street
City

id: EmpID

CUSTOMER
CustID
Name
Address

Number
Street
City

id: CustID

3-18 Lesson 3: An even closer look at schemas

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

Figure 3.13 - The contents of the Property box when attribute Com-Revenue
is selected.

The Property box has three panels. The second one shows the semantic des-
cription of the selected object (Figure 3.14). Now, reading the semantic des-
cription of a series of objects can be done by merely selecting each of these
objects.

Figure 3.14 - Examining the Semantic description of an object through the
Property box.

Lesson 3: An even closer look at schemas 3-19

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

Note. The Property box is read-only, and cannot be used to update the properties of
an object. To do so, we must use its standard Object property box. ν

3.9 External links

In some cases, the documentation of an object (entity type, attribute, etc.) is
available in external documents that cannot be included in the project. So, all
we can do is to reference these external documents from the schema objects,
and ask the users to go and read these documents.

In any semantic description, typing the name (and correct path) of an external
document has an interesting side effect: this name is an external link to the ori-
ginal document. Therefore, double-clicking on this name opens the document
with its source processor (Figure 3.15). Provided your system knows the as-
sociations between the file extensions and the processors, just double-clicking
on a document name allows you to read a Word document, examine a PDF
text, view a video movie or get a web document.

Figure 3.15 - Automatic access to external documents.

runs your Internet browserruns Acrobat Reader runs MS Word

3-20 Lesson 3: An even closer look at schemas

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

3.10 Quitting the lesson

We will still use this project later on. Therefore, we save it with the name
manu-3.lun and we quit DB-MAIN.

Lesson 3: An even closer look at schemas 3-21

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

Key ideas of Lesson 3

1. A CASE tool must allow its users to cancel all the modifications since a
given reference point (save point).

2. One of the main functions of a CASE tool is to offer an easy-to-use graphic
editor that allows the developer to draw objects, to move objects, to align
objects, to enlarge or reduce the viewing angle (zoom), to change the size of
objects (reduce), to distribute objects into pages (grid), to color objects, to
reorder objects, to experiment with various schema layouts (auto-draw).

3. In a large schema, persistent and dynamic subsets of objects can be defined
and combined (mark, marking planes).

4. The various text views of a schema complement the graphical views. They
provide hyperlink capabilities to navigate through the objects of the schema.

5. External documents of any sort can be mentioned in a semantic description.
Their names form active hyperlinks to these documents

6. A CASE tool can produce printed and formatted documents or reports of
various kinds.

7. Objects have specific properties (name, type, semantic description, etc.) that
can be inspected easily (specific property boxes, the general Property box).

3-22 Lesson 3: An even closer look at schemas

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

Summary of Lesson 3

• In this lesson, we have studied the following concepts:

- save point of a schema

- graphical aspects of a schema (zoom and reduce)

- marking planes

- text navigation through role links

- reordering attributes and roles

- simple reports

- general property box

- active external documents.

• We have learned:

- to define a save point for a schema Edit / Save point (or button)

- to cancel schema modifications Edit / Rollback

- to move objects in the schema {← ↑ → ↓} and Ctrl + {← ↑ → ↓}
- to change the move mode of objectsView / Graphic. settings

- to align rel-types and roles right button of the mouse

- to align a set of objects View / Alignment

- to zoom on a schema in and out View / Graphic. settings

- to reduce or expand a schema View / Graphic. settings

- to change the font of a schema Edit / Change font

- to draw a grid in the schema space View / Graphic. settings

- to color schema objects Edit / Color selected

- to change the current color Edit / Change color

Lesson 3: An even closer look at schemas 3-23

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

- to mark/unmark objects and to play with marked objects

Edit / Mark selected

Edit / Select marked

- to select a marking plane

- to ask DB-MAIN for a new schema layoutView / Auto-draw

- to retrieve instances of an entity type in a text schema

tagged lines and tab key

- to navigate between entity types and rel-types in a text schema

right button of the mouse

- to change the order of attributes and roles in an entity type

alt + ↑ ↓
- to copy selected objects elsewhere in the schema or in another schema of

the project:

Edit / Copy (ctrl+C)

Edit / Paste (ctrl+V)

- to generate simple text reports File / Report / Textual view

- to generate sophisticated reports File / Report / RTF

- to generate custom text reports File / Report / Custom

- to print a schema on the printer File / Print

- to choose and configure the printer File / Printer setup

- to inspect objects quickly Window / Property box and

- to access an external document from the semantic description of objects:

double-click on the document name

• We have produced a new type of file:

- dictionary reports (*.dic).

3-24 Lesson 3: An even closer look at schemas

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

 Exercises for Lesson 3

3.1 Open project Library (or its French equivalent BIBLIO) and schema
Library/Conceptual . Generate and print a report based on each
of the text views. Try to find specific uses for each of them.

3.2 Open a Text standard report with a text processor. Include after each
entity type title the graphical representation of the entity type (through
the Copy graphic command).

3.3 Aligning objects. I’m not quite sure that you have completed the exer-
cise suggested in Figure 3.6! Now it’s time to do it.

3.4 Zooming and reducing. Open project Library and schema Libra-
ry /Conceptual .

Define a grid based on the A4/Landscape or Letter/Landsca-
pe paper format.

Choose a zoom factor such that the current page fits in its schema win-
dow.

Choose the maximum reduce factor such that the schema still fits into
the current page. Print it to check.

3.5 Marking and coloring objects. Use plane 1 to mark the entity types,
plane 2 to mark rel-types and roles, plane 3 to mark the attributes and
plane 4 to mark the identifiers.

Transfer the marks of planes 1, 2, 3 and 4 to plane 5.

Color each plane in a different color.

Unmark all the planes and color all the objects in black.

3.6 Examine the semantic description of all the objects of schema Libra-
ry/Conceptual in less than 1 minute.

3.7 Type the name of a document in the semantic description of an entity
type. Open this document from DB-MAIN.

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

Lesson 4

Multi-product projects

Objective

This lesson introduces the concept of multi-product projects by
considering the example of a design in which we distinguish the
conceptual schema and the logical schema of a database as well
as two text files. Some characteristics of relational logical sche-
mas are examined. Additional functions related to schema and
object management are described as well. Transfer of compo-
nents between projects is described through export/import func-
tions.

4-2 Lesson 4: Multi-product projects

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

4.1 Starting Lesson 4

We start DB-MAIN, we open the project MANU-3, then the schema Manu-
facturing/Conceptual .

4.2 Conceptual and logical schemas

The way we worked in Lesson 1 to produce an SQL database structure was a
bit simplistic: we designed a conceptual schema, then we generated the equi-
valent SQL code to be executed by an RDBMS1. This procedure is fine for
small databases, but is not realistic for large projects. Of course, it is much too
early to tackle the problems induced by managing complex projects, but we
can already introduce the concept of multi-schema projects, i.e., projects that
include more than one schema, through a more sophisticated procedure than
that suggested in Lesson 1.

Let us suppose that we want to keep in the project not only the description of
the conceptual schema (i.e., the current schema Manufacturing/Con-
ceptual), but also the description of the logical schema. In traditional da-
tabase design methododologies, the logical schema is intended to describe the
same real-world situation as the conceptual schema does, but in technical
terms of tables, columns, primary keys, foreign keys and indexes instead2.
The logical schema is made up of the database structures that are encoded into
a SQL program.

To develop these concepts, we need to go back to the project Manu-3 that is
currently opened.

To give us the opportunity to go through this lesson again later on, we work
on a new project called, say, Manu-4 , which has the same contents as Manu-
3, at least initially.

To do so, we call the Project property box through the command File / Project
properties, we modify the name into Manu-4, and save the current project (Fi-
le / Save project as) as Manu-4.lun . From now on, we have two projects,

1. Relational Database Management System. Sybase, Informix, Oracle, SQL Server and
Access are some examples of RDBMS.

2. See the lessons of Volume 2, or reference textbooks such as [Teorey,1998], [Batini,1992]
or [Blaha,1998].

Lesson 4: Multi-product projects 4-3

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

namely Manu-3 , which is closed and Manu-4 , the current project on which
we will work. So far, these projects have the same contents.

Building a relational logical schema is fairly easy, though we may have no
idea on how to translate a conceptual schema into relational structures, i.e.,
into tables, columns, keys and the like. Indeed, DB-MAIN proposes a func-
tion which carries out this translation automatically by replacing a schema by
its SQL logical equivalent version. Since we want to keep both schemas in the
project, we proceed as follows:

1. Cleaning and modifying the Manu-4 project.

We can get rid of the schema Alignment , that is no longer useful. In the
same way, we delete the SQL program generated in Lesson 1.

Deleting objects is quite simple and intuitive: we select the objects, then we
press the Del key. Another way is through the command Edit / Delete.

Now, the project looks like Figure 4.1.

Figure 4.1 - The Manu-4 project in its beginning state.

Our conceptual schema is a bit simplistic, and we could find it interesting to
enhance it a little. We open the schema, and we state that a product can be
manufactured by an arbitrary number of companies. Accordingly, we change
the cardinality of the role manufactures.PRODUCT 3 from [1-1] to [0-
N] 4. To do so, we double-click on the role and we change the cardinality va-
lue, either by typing it or by selecting it in the listbox. The new version should
appear as in Figure 4.2.

3. A role can be designated by the name of the rel-type followed by the name of the entity
type. Another way to denote roles will be seen later.

4. As will be observed, the foreign key of Lesson 1 will be replaced with a connection table.

Manufacturing/Conceptual

MANU-4

4-4 Lesson 4: Multi-product projects

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

Figure 4.2 - The new Manufacturing conceptual schema.

2. Making a copy of the first schema.

Let us make a copy of the conceptual schema:

- we select the source schema in the Project window, or we open it (it is the
current case);

- we execute the command Product / Copy product;

- the Schema property box opens and proposes default characteristics for the
new schema: the name is that of the source schema, "Manufacturing ",
while the version proposed is "Conceptual-1 ". We change the version
into "Relational " and we click on the button OK.

The project window shows the new schema as well as its relationship with the
source conceptual schema (Figure 4.3).

We open the so-called Relational schema. Not so surprisingly, it includes the
same objects as the conceptual schema, which is fairly common with copies!

3. Translating this copy into relational structures.

Now we will transform this schema into relational structures. We execute the
command Transform / Relational model. The contents of the windows are
replaced by SQL structures. To improve the readability, we shade the "entity
types" (through Views / Graphical settings), now to be interpreted as tables.

If things have gone right so far, the schema Manufacturing/Relatio-
nal should now read as in Figure 4.4.

0-N0-N manufactures

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID

Manufacturing/Conceptual

Lesson 4: Multi-product projects 4-5

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

Figure 4.3 - The new Relational schema deriving from the Conceptual sche-
ma.

Figure 4.4 - The Relational schema.

This schema is no longer a conceptual schema since it represents data structu-
res of a specific DBMS: each entity type represents a table, each attribute re-
presents a column and each identifier represents a primary key. This kind of
schema is called a relational logical schema.

The main modification of the schema is the translation of relationship type
manufactures into entity type manufactures .

Manufacturing/Relational

Manufacturing/Conceptual

MANU-4

PRODUCT

Pro-ID
Pro-Name
id: Pro-ID

acc

manufactures

Com-ID
Pro-ID
id: Pro-ID

Com-ID
acc

ref: Pro-ID
acc

ref: Com-ID
acc

COMPANY

Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID

acc

Manufacturing/Relational

4-6 Lesson 4: Multi-product projects

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

We observe that the table manufactures is made up of the column Com-
ID which acts as a reference, i.e., a foreign key (ref), to the table COMPANY,
and of the column Pro-ID which references the table PRODUCT. Both refe-
rence columns form the identifier (i.e., the primary key) of the table. In addi-
tion, an index (access key or acc in the graphical view) is defined on each
identifier and on each reference column to give these structures reasonable
performance. Later on, we will examine in greater detail the way identifiers,
foreign keys and indexes are built and represented.

Figure 4.5 - Generating a SQL program from the Relational schema.

4.3 SQL code generation

Currently, we have two schemas in our project, but still no SQL program to
build the corresponding database in the target computer. Therefore we need a
final operation to generate this SQL code. We could use the command Trans-

Lesson 4: Multi-product projects 4-7

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

form / Quick SQL as in Lesson 1, but we will explore a more professional
way.

We execute command File / Generate, then we select the Standard SQL
(check) style (Figure 4.6). There are other more sophisticated ways to produ-
ce SQL code, but for the purpose of this lesson, this style is quite sufficient.

Figure 4.6 - The SQL program. The comment lines have been removed to
shorten the figure.

create database Manufacturing;

create table COMPANY (
 Com-ID char(15) not null,
 Com-Name char(25) not null,
 Com-Address char(50) not null,
 Com-Revenue numeric(12) not null,
 primary key (Com-ID));

create table manufactures (
 Com-ID char(15) not null,
 Pro-ID char(8) not null,
 primary key (Pro-ID,Com-ID));

create table PRODUCT (
 Pro-ID char(8) not null,
 Pro-Name char(25) not null,
 primary key (Pro-ID));
alter table manufactures add constraint FKman_PRO
 foreign key (Pro-ID)
 references PRODUCT;

alter table manufactures add constraint FKman_COM
 foreign key (Com-ID)
 references COMPANY;

create unique index IDCOMPANY
 on COMPANY (Com-ID);

create unique index IDmanufactures
 on manufactures (Pro-ID,Com-ID);

create index FKman_PRO
 on manufactures (Pro-ID);

create index FKman_COM
 on manufactures (Com-ID);

create unique index IDPRODUCT
 on PRODUCT (Pro-ID);

4-8 Lesson 4: Multi-product projects

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

This SQL code may not work as such on some DBMS. Indeed, some proces-
sing should have been done before generating this text. We will discuss these
problems in further lessons.

4.4 Generating reports

To complete the project, we generate a report from the conceptual schema.
When executing the command File / Print dictionary on a text view of the
schema, we check the button "Show report generation" (Figure 3.10) to inclu-
de the icon of the report in the Project window (Figure 4.7). Since any derived
product is placed under its source, we sometimes have to move it to a better
position.

Figure 4.7 - A report has been generated from the conceptual schema.

4.5 Multi-product project

So far, our project comprises four documents or products, namely two sche-
mas and two text files. A large project can include hundreds of products.

It is sometimes useful to examine two products in parallel. The best way to
proceed is as follows:

Manu-4.dic/1

manu-4.ddl/1

Manufacturing/Relational

Manufacturing/Conceptual

Lesson 4: Multi-product projects 4-9

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

- open both products,

- minimize the Project window (click on the leftmost of the three buttons at
the top right corner on the window),

- organize the windows by Window / Tile.

Figure 4.8 shows the conceptual and logical schemas while Figure 4.9 presents
the logical schema and its SQL equivalent side by side.

Figure 4.8 - Comparing the conceptual and logical schemas.

If we want to make the schema disappear from the screen, we can close it by
closing its Schema window, i.e., by clicking on the close button of that window
(the X button at the top right corner). Opening it again can be done by double-
clicking on its icon in the Project window (Figure 4.7).

4-10 Lesson 4: Multi-product projects

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

Figure 4.9 - Comparing the logical schema with its SQL text.

4.6 Deleting objects

Deleting components of a project is the simplest thing on earth: we select the
objects, then we press the Del key on the keyboard. This applies to entity ty-
pes, relationship types, roles, attributes, groups (e.g., identifiers), constraints
and even schemas. An alternate way consists in executing the command Edit
/ Delete.

There is no way to delete a project but by deleting its *.lun file from Win-
dows.

4.7 Export/import of schema components

Let us consider that we want to develop a new project that is fairly similar to
another existing project. Quite naturally, we want to reuse some part of the
specifications of the latter. Let us say that these projects share large sections
of their conceptual schemas.

One way to proceed could be to take a copy of the *.lun file of the source
project, then to modify the copy according to the current needs: we change the
project name, we delete the unwanted products and we prune the conceptual

Lesson 4: Multi-product projects 4-11

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

schema to delete the entity types, rel-types and attributes that are non relevant
in the current application domain. This is a brute force approach of which we
should not be particularly proud!5 So, we will proceed in a more refined way.

Export/import is such a better technique. Grossly speaking, it consists in
identifying and selecting the relevant components of the source schema, then
in transfering them to the new project.

The first step consists in exporting the desired specifications from the source
schema:

1. Open the project library.lun .

2. Select the conceptual schema LIBRARY/Conceptual and the logical
schema LIBRARY/Logical Rel (don’t open them).

3. Execute the command File / Export . Accept the name suggested, namely
Library.isl .

This procedure generates a file called Library.isl that includes the speci-
fications of the exported schemas.

The second step consists in importing these schemas into another project:

4. Create a new project or open an existing one (that which was used in this
lesson for instance).

5. Execute the command File / Import ; choose the file Library.isl .

6. Select the schemas you want to include in the current project (Figure
4.10).

The current schema includes a copy of the imported schemas. If a schema to
be imported has the same name as an existing one, the name of the former is
changed in order to make it unique in the project.

This procedure is adequate when we want to import whole schemas. But what
if we only need some objects to be imported from a source schema? In this
case, the export phase is slightly different:

1. Open the project library.lun

2. Open the source schema (e.g., the conceptual schema LIBRARY/Con-
ceptual) and select the specific objects you want to export.

3. Execute the command File / Export . Accept the name suggested, namely
Library.isl .

5. Many text processing mistakes come from such brutal copy/paste techniques.

4-12 Lesson 4: Multi-product projects

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

Now, the file Library.isl includes only one schema, comprising the se-
lected objects. Importing these objects in the target schema is as described
above.

Figure 4.10 - Choosing the schema(s) to import into the current project.

Why to import schemas?

We have based the discussion on a specific goal, that is, to reuse specifications
already developed in another project.

This is not the only reason why we could want to import schemas. Specifica-
tion integration is another activity which requires importing schemas. We can
sketch the problem as follows.

Let us assume that a large application domain has been decomposed into ho-
mogeneous subsystems, each of them being taken in charge by a developer (or
by a team of developers). So, each subsystem is analyzed independently by a
developer, who, eventually, produces a conceptual subschema6. As we can
expect, any two subschemas, though they comprise different objects, will pro-
bably include some objects that model the same application concepts. For ins-

6. The term subschema is used to suggest that this schema describes a part only of the target
application domain. Technically, a subschema is just a schema.

Lesson 4: Multi-product projects 4-13

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

tance, the concept of Product will be represented in the Production
subschema, but also in the Warehouse subschema. So, merging these subsche-
mas will produce a global conceptual schema that includes one representation
of each application domain concept, and therefore that encompasses the con-
cepts of all the subschemas. This merging is a complex process called schema
integration that will be discussed in another volume.

A pragmatic scenario to build the global conceptual schema could be as fol-
lows:

1. First, we build a project for each subsystem. Each project comprises,
among others, a conceptual subschema.

2. Then, we create a new project, in which we import all the conceptual subs-
chemas.

3. Finally, we integrate all the imported subschemas into the global concep-
tual schema. For this, we will use the schema integration assistant7 that
will be described in a further volume.

Figure 4.11 - Integration of four imported subschemas into a global concep-
tual schema.

This scenario is illustrated by Figure 4.11: subschemas PERSONNEL, FI-
NANCE, WAREHOUSE and PRODUCTION have been developed independent-
ly, then have been imported into a new project. They have been integrated into
the global conceptual schema ENTERPRISE.

Note about *.isl files

The ISL8 format is mainly intended to exchange specifications between CASE
tools. Hence its use in Export and Import functions. However, it has a broader

7. Called by the command Assist / Integration .
8. Standing for Information System specification Language.

ENTERPRISE/Concept.

PRODUCTION/Concept.WAREHOUSE/Concept.FINANCE/Concept.PERSONNEL/Concep.

4-14 Lesson 4: Multi-product projects

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

scope, and can replace standard repository format in some circumstances, e.g.,
when transfering specifications to an older version of DB-MAIN (*.lun files
are upward compatible only). The main difference with *.lun projects is that
*.isl projects do not include the history of the activities, and, as a conse-
quence, they do not record the inter-product relationships.

In particular:
• A *.isl file can be opened like any *.lun project. You just have to

specify in the Open project box that you want to open a *.isl file type
instead of the standard *.lun .

• When you close a project, you can save it as a *.isl file.

Lesson 4: Multi-product projects 4-15

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

Key ideas of Lesson 4

1. So far, a project appears as a collection of products (or documents) together
with the relations between them. In its simplest form, a project is comprised
of the following products: a conceptual schema, a logical schema, a SQL pro-
gram and some reports.

2. A conceptual schema describes the concepts of an application domain, their
properties and their relationships. This description is independent of any
implementation technology. It is made up of entity types, attributes, rela-
tionship types and identifiers (and of more sophisticated constructs, as we
will see later on).

3. A logical schema is the description of data structures implemented according
to the model of a DBMS. A relational logical schema is mainly made up of
tables, columns, primary keys, foreign keys and indexes.

4. The SQL program is the SQL expression of the data structures of the logical
schema.

5. Each report describes some aspects of a schema of the project.

6. Schemas from a project can be exported to another project. Similarly, selec-
ted components of a schema can be exported as well. This technique will be
used when integrating several schemas into a global schema.

4-16 Lesson 4: Multi-product projects

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

Summary of Lesson 4

• Ιn this lesson, we have studied the following concepts:

- conceptual and logical schemas

- products, which are either schemas or text files,

- multi-product projects

• We have also learned:

- to create and use a multi-product project

- to make a copy of a product: Product / Copy product

- to transform a schema Transform / Relational model

- to generate SQL code File / Generate

- to delete an object Edit / Delete or Del key

- to arrange the schema windows: Window / Tile

- to export (components of) schemas:File / Export

- to import schemas: File / Import

• We have also generated and used a new kind of file:

- import/export specifications (*.isl)

Lesson 4: Multi-product projects 4-17

DB-MAIN Tutorial -  J-L Hainaut 2000 21/03/2002

Exercises for Lesson 4

4.1 Open the project SALES1 you built as a solution to Exercise 1.2. Com-
plete this project by building a relational logical schema, and by gene-
rating a SQL program. Examine the schemas side by side, and compare
them.

Can you understand some of the rules that have been applied during the
schema transformation? If you don't, never mind, we will study them
in detail later on.

4.2 Same exercise on project STUDENT1 of Exercise 1.3.

4.3 Same exercise on project LIBRARY (or its French version BIBLIO).
Make sure you don't save the result inadvertently, except through a Save
as command.

4.4 Import in a new project that part of the schema Library/Concep-
tual which concerns books, authors and copies.

4.5 Open an *.isl file with a text processor. Can you understand its con-
tents (or at least its main statements)? Can you say the same of a *.lun
file?

4-18 Lesson 4: Multi-product projects

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 2000

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Lesson 5

The basics of conceptual modelin g

Objective

This lesson introduces the reader to the main constructs of the
DB-MAIN conceptual model. In particular, s/he will learn what
are optional/mandatory attributes, atomic/compound attributes,
single-valued/multivalued attributes, multiple identifiers, hybrid
identifiers, N-ary relationship types, relationship types with at-
tributes, others with identifiers, and cyclic relationship types.

5-2 Lesson 5: The basics of conceptual modeling

21/3/02 DB-MAIN Tutorial -  J-L Hainaut 1999

Preliminary checking
In this lesson, we will use the project MANU-4 (file manu-4.lun) that has
been created in Lesson 4.

5.1 Starting Lesson 5

We start DB-MAIN and we open the MANU-4 project. We only keep the con-
ceptual schema, deleting all the other products.

To prevent from possible accidents, we change the name of this project into
MANU-5 and we save it under the name MANU-5.lun .

5.2 Updating an object

We have seen in lesson 3 how to update the properties of a schema (namely its
Version). This technique also applies for any object of a project:

- either double-click on the object name in its Schema window, or select the
object (by clicking on its name) and press the RETURN key; either of these
actions opens the object property box;

- change the concerned properties of the object;

- either validate the operation by clicking on the OK button, or discard the
modifications by clicking on the Cancel button.

This works fine for schemas, entity types, relationship types, attributes and
groups. The only exception is the project itself. To modify its properties, use
the command File / Project properties instead.

5.3 What is a conceptual schema?

Despite its limited scope, Lesson 1 has introduced some important notions
about conceptual schemas. First, it showed that such schemas are technology-
independent in that they comprise abstract objects that denote application do-
main concepts independently of their representation through DBMS cons-
tructs. The schema of Figure 5.1 has been developed by the analysis of the
facts the application domain is made up of. The way these facts will be repre-
sented in terms of tables, columns and foreign keys is irrelevant at this stage.

Lesson 5: The basics of conceptual modeling 5-3

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure 5.1 - The conceptual schema we built in Lesson 1.

This first experiment has taught us that a conceptual schema comprises entity
types (COMPANY, PRODUCT), relationship types (manufactures), attribu-
tes (Com-ID , Pro-Name) and identifiers ({Com-ID }, { Pro-ID }).

An entity type represents a class of similar objects, or entities, that are percei-
ved as significant when we talk about the application domain. Such objects
are modeled through an entity type when we want to record information about
them, when they are associated with other entities and when they obey to spe-
cific behaviour rules.

A relationship type (rel-type) models similar associations between the enti-
ties of two entity types. A relationship is a pair of entities, each of them be-
longing to one of the participating entity types. Each participating entity type
plays a definite role in the rel-type. this role is characterized by a cardinality
constraint expressed as a pair of symbols such as [1-1] or [0-N].

An attribute denotes a property of an entity type. It has a type (numeric, cha-
racter, date, etc.), a length and a cardinality.

An identifier is a group of attributes that uniquely qualifies the entities of a
type. At any time, two entities of this type must have distinct values for the
attributes of the identifier.

In this lesson, we will discuss variants of these concepts as well as new con-
cepts that will be useful to build more expressive conceptual schemas.

5.4 Cardinality of an attribute

Until now, we have implicitly understood that each attribute of an entity type
had one and only one value for each entity: each COMPANY entity has one va-
lue of Com-ID , one value of Com-Name, one value of Com-Address and
one value of Com-Revenue . No more, no less.

1-10-N manufactures

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID

5-4 Lesson 5: The basics of conceptual modeling

21/3/02 DB-MAIN Tutorial -  J-L Hainaut 1999

We now consider that this is not true for the latter attribute: some companies
have revenues while others may have none. Therefore, some COMPANY enti-
ties have one value of Com-Revenue , while others have none. In general,
we can say that any COMPANY entity has from 0 to 1 Com-Revenue value
and from 1 to 1, i.e., exactly one, Com-Name value.

An interval such as 0-1 and 1-1 is called the cardinality of the attribute.
Any couple of non-negative values is valid, provided the first one is not greater
than the second one. The default value is 1-1 , and is not displayed in the
Schema windows.

To illustrate this concept, we double-click on Com-Revenue to open its At-
tribute property box, and we change its cardinality from 1-1 to 0-1 , either by
typing the new value or by selecting it in the listbox.

Then, we define a new attribute, named Phone-Number , that is given cardi-
nality 1-4 , stating that any company has from 1 to 4 phone numbers (Figure
5.2).

Figure 5.2 - Optional and multivalued attributes.

An attribute whose cardinality has a lower bound of 0 is called optional. Con-
versely, an attribute whose cardinality has a non-zero lower bound is called
mandatory. For instance,

- Com-Name is mandatory,

- Com-Revenue is optional,

- Phone-Number is mandatory.

An attribute whose cardinality has an upper bound greater than 1 is called mul-
tivalued, while those with cardinality 0-1 or 1-1 , are said to be single-va-
lued. For instance,

- Phone-Number is multivalued,

COMPANY COM
 Com-ID: char (15)
 Com-Name: char (25)
 Com-Address: char (50)
 Com-Revenue: [0-1] num (12)
 Phone-Number: [1-4] char (14)
 id: COM-ID

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue[0-1]
Phone-Number[1-4]
id: Com-ID

Lesson 5: The basics of conceptual modeling 5-5

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

- Com-Name and Com-Revenue are single-valued.

5.5 Atomic and compound attributes

Some attributes can be broken down into fragments that still are significant.
For instance, any value of Com-Address can be seen as composed of a value
of Number + a value of Street + a value of City .

Attribute Com-Address is called compound. Attributes Number, Street
and City are its components. Note that a component can itself be compound;
it is the case for City , which consists of Zip-Code and City-Name .

An attribute that is not compound is called atomic (i.e. unbreakable). For ins-
tance, Com-Name, Com-Address.Number and Com-Address.Ci-
ty.City-Name are atomic attributes.

Both single-valued (Com-Address) and multivalued (Phone-Number) at-
tributes can be compound.

Changing Com-Address from atomic to compound is made by defining its
components:

- We open its Attribute property box, then click on button First att., to add its
first component, Number; after that, clicking on Next Att. or pressing the
Enter key opens the next Attribute property box. Stop the series by clicking
on the OK or Cancel button.

- Or we select attribute Com-Address in the Schema box and execute the
command New / Attribute / First , or, equivalently, we click on the button

 in the Standard tools bar. We introduce the other attributes as descri-
bed above.

Later on, we can insert the next attributes by selecting the insertion point, then:

- either we open its property box and enter the next attributes;

- or we execute the command New / Attribute / Next;

- or we click on the button in the Standard tools bar.

To insert an attribute in the first position, we select the entity type or the rel-
type as the insertion point, then we proceed as above.

We modify the COMPANY structure as shown in Figure 5.3.

5-6 Lesson 5: The basics of conceptual modeling

21/3/02 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 5.3 - Compound attributes.

... or, more precisely, in the Text extended view of Figure 5.4.

Figure 5.4 - Compound attributes in the Text extended view.

Note that a compound attribute has a length too, as shown in its Property box.
However, this length is calculated, and cannot be changed through the Attri-
bute box itself.

 COMPANY / COM [S]
 Com-ID: char (15) [S]
 Com-Name: char (25) [S]
 Com-Address: compound (50) [S]
 Number: num (5)
 Street: char (20)
 City: compound (25)
 Zip-Code: num (7)
 City-Name: char (18)
 Com-Revenue[0-1]: num (12) [S]
 Phone-Number[1-4]: compound (14)
 Country: num (3)
 Area: num (3)
 Local: num (8)
 id: Com-ID

COMPANY
Com-ID
Com-Name
Com-Address

Number
Street
City

Zip-Code
City-Name

Com-Revenue[0-1]
Phone-Number[1-4]

Country
Area
Local

id: Com-ID

Lesson 5: The basics of conceptual modeling 5-7

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

You probably have observed that entity types, relationship types and even
groups (e.g., identifiers) have been assigned a length field as well1. Its value
is the sum of the lengths of their attributes or components, if any.

5.6 Multiple identifiers

An entity type can have more than one identifier. Let us consider the entity
type COMPANY. It is identified by its attribute Com-ID , which means that, in
the database described by the schema, no two COMPANY entities will be al-
lowed to share the same value of Com-ID .

In addition, we assume that there are no two companies with the same name
and the same address. Therefore, we will specify a second identifier, compri-
sing Com-Name and Com-Address : we select these attributes simulta-
neously (use the Shift key) and we click on the ID button in the Standard tools
bar as shown in Lesson 1 (Figure 5.5).

Figure 5.5 - An entity type with two identifiers. The first one {Com-ID } is pri-
mary while the second one {Com-Name,Com-Address } is secondary.

1. The length is followed by a "+" sign when the object includes role components whose
length cannot be evaluated.

COMPANY
Com-ID
Com-Name
Com-Address

Number
Street
City

Zip-Code
City-Name

Com-Revenue[0-1]
Phone-Number[1-4]

Country
Area
Local

id: Com-ID
id': Com-Name

Com-Address

5-8 Lesson 5: The basics of conceptual modeling

21/3/02 DB-MAIN Tutorial -  J-L Hainaut 1999

If an entity type has identifier(s), one of them generally is declared primary
(notation id), while the others, if any, are declared secondary, and are noted
id' instead.

Note that an entity type can have secondary identifiers only. However, it can
have only one primary id. It is a good practice to define the most natural iden-
tifier as primary. The problem of choosing identifiers can be a bit more com-
plex, and will be discussed later on.

Note: An entity type need not have identifiers. An entity type without any ex-
plicit identifier is an infrequent, but quite valid situation.ν

5.7 Hybrid identifiers

Until now, an identifier consisted of one or several attributes of the entity type.
In some situations however, an identifier can be more complex.

To illustrate this point, we need a more sophisticated schema. We suppose that
a company comprises branches, and that products are manufactured by bran-
ches, not by companies. Therefore:

- We create entity type BRANCH, with attributes Name (identifier) and
Country .

- We create rel-type belongs between BRANCH and COMPANY by drawing
a line (use the button) from COMPANY to BRANCH.

- In manufactures , we replace COMPANY with BRANCH as follows: we
delete the role COMPANY and we draw a line (with the button) between
manufactures and BRANCH.

In addition, let us suppose that all the branches of the same company are loca-
ted in distinct countries, but that two branches of different companies may be
installed in the same country.

Such a situation can be described by stating that a BRANCH entity is identified
by the COMPANY it belongs to + its COUNTRY. This identifier, made of at-
tributes and of roles, is called hybrid .

A hybrid identifier is defined in the same way as all-attribute identifiers: we
select the attribute Name and the role manufactures.COMPANY , then we
click on the ID button (Figure 5.6).

Lesson 5: The basics of conceptual modeling 5-9

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure 5.6 - Entity type BRANCH has a hybrid identifier comprising a remote
role and a local attribute. The components of compound attributes have been
hidden for simplicity.

The identifier of an entity type can be made up of one of the following combi-
nations:

- one or more local attributes;

- two or more remote roles (hybrid);

- one or more local attributes + one or more remote roles (hybrid).

It is interesting to further analyze the position of rel-types in constructing iden-
tifiers. For instance, why have we discarded identifiers made of one role only?

Let us examine the examples of Figure 5.7. While a customer can place any
number of orders, each order has been placed by one customer only. So, we
can say that each order identifies a customer. Similarly, each vehicle can be
used by one salesman only, so that vehicles identify salesmen.

We could be tempted to declare these identifiers explicitly:

- for CUSTOMER: id: places.ORDER

- for SALESMAN: id: uses.VEHICLE

0-N0-N manufactures

1-1

0-N

belongs

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue[0-1]
Phone-Number[1-4]
id: Com-ID
id': Com-Name

Com-Address

BRANCH
Country
Name
id: belongs.COMPANY

Country

5-10 Lesson 5: The basics of conceptual modeling

21/3/02 DB-MAIN Tutorial -  J-L Hainaut 1999

However, it would be useless to declare them since they can be inferred from
the cardinality of the rel-types. Indeed, ORDER is an identifier for CUSTOMER
thanks to its cardinality [1-1] in places , and VEHICLE is an identifier for
SALESMAN due to cardinality [0-1] in uses .

These identifiers are called implicit , and must not be declared. Anyway, DB-
MAIN will not allow us to define them (try it to check!).

Figure 5.7 - Implicit entity type identifiers.

The concept of identifier can be richer than it appears in this lesson. It will be
discussed further later on.

5.8 On defining identifiers

The way we defined identifiers is very intuitive: selecting a group of compo-
nents, then telling (through the button ID) that they form an identifier.

This is just a short-hand for a more general technique that will be necessary
later on. So, it is useful to describe it now.

The idea is to select the entity type, then to create a new identifier for it. To
experiment with it, first delete the secondary id of COMPANY: select the group
labelled id’, then press the Del key. Now we will define it again in another
way.

We select entity type COMPANY and we execute the command New / Group.
A new property box opens. It allows us to define a group of attributes and/or
roles that plays some outstanding functions with respect to their entity type.
Once the Property box is opened, we proceed as follows:

0-1

0-1

uses

1-1

0-N

places

ORDER

SALESMAN

VEHICLE

CUSTOMER

Lesson 5: The basics of conceptual modeling 5-11

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

- we specify what are the components of the group by selecting Com-Name
and Com-Address in the right list and adding them to the left list thanks
to the buttons Add First and Add Next;

- we tell that this group of components forms a secondary identifier by chec-
king the Secondary ID button (Figure 5.8);

- we confirm this choice by clicking on button OK.

Figure 5.8 - A secondary identifier of COMPANY is being defined.

As will be discussed later on, this box will be used to define many other so-
phisticated constraints.

5.9 N-ary relationship types

The relationship types we have defined so far are made of two roles, and the-
refore are called binary. It is possible to define relationship types with three
(or more) roles. They are called N-ary rel-types, where N is the number of
roles, also called the degree of the rel-type.

5-12 Lesson 5: The basics of conceptual modeling

21/3/02 DB-MAIN Tutorial -  J-L Hainaut 1999

In the following schema, we have defined a new entity type, namely MARKET,
that represents the different markets on which products can be distributed. In
addition, we have considered that a branch manufactures products for some
markets only. Therefore, each manufactures relationship links one
BRANCH entity (say B), one PRODUCT entity (P) and one MARKET entity (M).
Such a relationship expresses the fact that:

branch B manufactures product P for market M.

We can change relationship type manufactures from binary (2 roles) to
ternary (3 roles) in a simple way: we draw a line (button) from manu-
factures to MARKET (Figure 5.9). We improve the layout of the schema
by right-clicking on the rel-type.

Figure 5.9 - A rel-type linking 3 entity types. Now, branches manufacture pro-
ducts for markets.

5.10 Relationship types with attributes

Attributes can be associated with relationship types as well. Let us suppose
that the manufacturing of a product P by a branch B for a given market M is
measured by a ratio that states what part of the production of product P goes
to market M from branch B.

0-N

0-N0-N

manufactures1-1

0-N

belongs

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

MARKET
Name
Size
id: Name

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue[0-1]
Phone-Number[1-4]
id: Com-ID
id': Com-Name

Com-Address

BRANCH
Country
Name
id: belongs.COMPANY

Country

Lesson 5: The basics of conceptual modeling 5-13

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

The attribute describing this ratio is created in the same way as for entity types.
For instance:

- we open the property box of manufactures ;

- we click on the New Att. button and we define the attribute.

The schema should look like in Figure 5.10.

Figure 5.10 - A rel-type can be given attributes as well.

5.11 Relationship types with identifier(s)

Relationship types can have identifiers too. For instance, we could imagine a
new rule of the application domain stating that,

when a branch manufactures a product, it does it for one market only.

Considering PRODUCT entity P and BRANCH entity B, the database could not
include more than one manufactures relationship in which both P and B
appear. Therefore there is at most one MARKET entity associated with any cou-
ple of entities <P,B>. This property can be expressed by an identifier of ma-
nufactures comprising PRODUCT and BRANCH.

Such an identifier cannot be defined by simply clicking on the ID button, as for
entity types, due to the ambiguities that may arise in some situations2. Instead,
we will use the general technique described in Section 5.8:

2. There is no ambiguity when the identifier comprises a local attribute. In this case, the ID
button is active, and can be used as for entity types.

0-N

0-N0-N

manufactures
Ratio

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

MARKET
Name
Size
id: Name

BRANCH
Country
Name
id: belongs.COMPANY

Country

5-14 Lesson 5: The basics of conceptual modeling

21/3/02 DB-MAIN Tutorial -  J-L Hainaut 1999

- we select manufactures by clicking on its name;

- we execute the command New / Group to open the Group property box;

- we select the roles manufactures.PRODUCT and manufactures.
BRANCH3 and we move them in the left list;

- we check the button Primary ID and we confirm the operation (Figure 5.11).

Figure 5.11 - A rel-type can have explicit identifiers.

In fact, unlike entity types, every relationship type has (at least) one identifier,
but most of them should not be declared explicitly as illustrated here above.
An intuitive principle could be that there cannot exist two relationships of a
given type between the same entities. We can tell that branch B belongs to
company C, but it is unnecessary to say it twice!

DB-MAIN will consider as an implicit identifier of relationship type R,

- each role of R with cardinality 0-1 or 1-1,

- all the roles of R when R has no such 0-1 or 1-1 roles, and when no explicit
identifiers have been declared.

For instance, the (implicit) identifier of relationship type belongs is
BRANCH, and the (implicit) identifier of manufactures in MANU-4 was
(COMPANY,PRODUCT). Therefore, such identifiers need not be declared,
DB-MAIN being able to cope with them adequately.

3. Note that the roles are prefixed with r: in the Property box to distinguish them from attri-
butes.

0-N

0-N0-N

manufactures
Ratio
id: PRODUCT

MARKET PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

MARKET
Name
Size
id: Name

BRANCH
Country
Name
id: belongs.COMPANY

Country

Lesson 5: The basics of conceptual modeling 5-15

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

In short, an explicit identifier of a rel-type can be made up of one of the fol-
lowing combinations:

- two or more local roles;

- one or more local attributes + one or more local roles;

- one or more local attributes (infrequent but valid).

5.12 Cyclic relationship types

Each role of a relationship type is defined as the participation of an entity type.
A relationship type in which the same entity type participates more than once
is perfectly valid.

Let us consider that a product can be replaced, when unavailable, with another
product, called its substitute. This fact can be represented easily by rela-
tionships between some PRODUCT entities and other PRODUCT entities. Such
relationships form a cyclic relationship type.

To represent this, we define a new relationship type, with name replaces ,
and with two roles, both defined on PRODUCT, with cardinality 0-1 and 0-N
respectively (Figure 5.12).

Here, we have a problem: DB-MAIN does not let us draw a line between an
entity type and itself! So, we have to work in a slightly different way:

- we define the rel-type through the button (or command New / Rel-ty-
pe),

- then we define the roles with the button (or command New / Role).

To distinguish the function of each of these roles, we will give them distinct
names. The role corresponding to the product that is replaced will be called
replaced , while the role corresponding to the product that replaces the for-
mer will be called substitute .

5-16 Lesson 5: The basics of conceptual modeling

21/3/02 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 5.12 - A cyclic rel-type. Both roles have been explicitly named.

Cyclicity is not limited to binary rel-types. Indeed, rel-types of any degree can
be partially or fully cyclic. Figure 5.13 shows an example of a rel-type, two
roles of which have been defined on the same entity type. Its meaning is that,

at some date, a vehicle has been used to transfer a piece of equipment
from a site to another one.

Figure 5.13 - A quaternary (4-ary) partially cyclic rel-type.

About role names

Until now, we have ignored the roles names except in cyclic rel-types In fact,
a role can be given an explicit name, be it part of a cyclic rel-type or not. In
the schema of Figure 5.14, we have given roles explicit role names to stress
the specific role each member plays in the rel-type. When we give a role no
name, DB-MAIN gives it, as default name, that of the participating entity type.

0-1
replaced

0-N
substitute

replaces

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

0-N 0-N

0-N
to

0-N
from

transfer
Date

VEHICLE

SITE

EQUIPMENT

Lesson 5: The basics of conceptual modeling 5-17

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

For instance, the relationship type belongs in Figure 5.9 has two roles with
default names COMPANY and BRANCH, though we gave them no explicit na-
mes.

Figure 5.14 - A rel-type with explicit role names.

This being said, we can state a property each relationship type must satisfy:

the roles of a rel-type have distinct names, be they explicit or default.

Applying this property to cyclic relationship types means that all their roles (or
all of them but one) must receive explicit distinct names.

Since the same role name may appear in several relationship types, its name
alone cannot identify it in its schema. Therefore, the full name of a role inclu-
des also that of its relationship type. For instance, the roles of belongs have
full names belongs.BRANCH and belongs.COMPANY , and those of re-
places have names replaces.replaced and replaces.substi-
tute . Accordingly, these full names appear in the listboxes of the Group
property boxes and in the specification of the groups in the schemas.

Cyclic, unary, recursive and reflexive rel-types

It must be noted that the term cyclic is not standardized, and that other names
will be used in the literature.

Some authors consider that degree N is not the number of roles, but rather the
number of distinct participating entity types. Hence the concept of unary rel-
type, that will be called in this model cyclic binary rel-type instead, to comply
with the mathematical definition of relations.

Other authors call cyclic rel-types recursive. This term rather qualifies algo-
rithms that use such rel-types as well as other structures which includes cir-
cuits of rel-types.

The term reflexive is also sometimes used to designate cyclic rel-types. We
will avoid this term, since it has a well defined mathematical definition that4

does not stand in arbitrary cyclic rel-types.

1-1
employee

0-N
employer works-in PERSONCOMPANY

5-18 Lesson 5: The basics of conceptual modeling

21/3/02 DB-MAIN Tutorial -  J-L Hainaut 1999

Finally, the term acyclic itself can be disputed. Indeed, the qualifier acyclic is
used to designate a (directed) relation in which no cycles are allowed (such as
parent, defined from persons to persons). Therefore a cyclic rel-type could be
misleadingly interpreted as defined by a relation in which cycles are allowed.

5.13 The complete schema

If all the extensions described above have been included, the schema should
appear as in Figure 5.15 or Figure 5.16.

Figure 5.15 - The Graphical standard view of the final schema.

4. A relation R(A,A) is reflexive if, for any element a of A, <a,a> ∈ R.

0-1
replaced

0-N
substitute

replaces0-N

0-N0-N

manufactures
Ratio
id: PRODUCT

MARKET

1-1

0-N

belongs

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

MARKET
Name
Size
id: Name

COMPANY
Com-ID
Com-Name
Com-Address

Number
Street
City

Zip-Code
City-Name

Com-Revenue[0-1]
Phone-Number[1-4]

Country
Area
Local

id: Com-ID
id': Com-Name

Com-Address

BRANCH
Country
Name
id: belongs.COMPANY

Country

Lesson 5: The basics of conceptual modeling 5-19

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure 5.16 - The Text standard view of the final schema.

 Schema Manufacturing/Conceptual-Final

 BRANCH
 Country
 Name
 id: belongs.COMPANY,Country

 PRODUCT
 Pro-ID
 Pro-Name
 id: Pro-ID

 COMPANY
 Com-ID
 Com-Name
 Com-Address
 Number
 Street
 City
 Zip-Code
 City-Name
 Com-Revenue[0-1]
 Phone-Number[1-4]
 Country
 Area
 Local
 id: Com-ID
 id': Com-Name,Com-Address

 MARKET
 Name
 Size
 id: Name

 manufactures (
 [0-N]: BRANCH
 [0-N]: PRODUCT
 [0-N]: MARKET
 Ratio)
 id: PRODUCT,MARKET

 belongs (
 [0-N]: COMPANY
 [1-1]: BRANCH)

 replaces (
 substitute [0-N]: PRODUCT
 replaced [0-1]: PRODUCT)

5-20 Lesson 5: The basics of conceptual modeling

21/3/02 DB-MAIN Tutorial -  J-L Hainaut 1999

5.14 On the cardinalities of rel-types

Let us first recall the meaning of the cardinality of a role. Considering rel-type
RT with roles ra and rb defined as follows (Text standard):

role "ra[ia-ja]: A" states that

any A entity appears in role ra in at least ia and in at most ja RT re-
lationships.

The way of understanding the concept cardinality can be called the participa-
tion interpretation, because it measures the number of participations of each
entity. According to it, cardinality [ia-ja] is a constraint on entity type A5.

Binary rel-types

It is common practice to give some configurations specific names as follows:

In addition role ra will be called:

RT(
 ra[ia-ja]: A
 rb[ib-jb]: B)

5. Some models such as OMT and UML use another interpretation of cardinalities. Both will
be discussed in another lesson.

R is called ... if ...

one-to-one

one-to-many from A to B

many-to-one from A to B

many-to-many

ja = jb = 1

ja > 1 and jb = 1

ja = 1 and jb > 1

ja > 1 and jb > 1

ra is called ... if ...

optional for A

mandatory for A

ia = 0

ia > 0

Lesson 5: The basics of conceptual modeling 5-21

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

The schema of Figure 5.17 shows some examples of this classification:

- owns is one-to-many for CUSTOMER,

- owns is many-to-one for VEHICLE,

- involved is many-to-many,

- covered by is one-to-one,

- covered by is mandatory for VEHICLE,

- covered by is optional for INSURANCE.

Figure 5.17 - A potpourri of rel-types.

Inasmuch as one-to-many, many-to-one and one-to-one rel-types materialize
mathematical functions, they also are called functional rel-types.

As a last definition, we will call binary schema any schema in which all rel-
types are binary and have no attributes.

0-N

0-N

involved

1-1 0-1covered by

1-1

0-N

signs

1-1

0-N

owns

VEHICLE
V-Number
Make
Model
Date
id: V-Number

ACCIDENT
Acc-Code
Date
Type
id: Acc-Code

INSURANCE
Contract-Number
Date
Type
id: signs.CUSTOMER

Contract-Number

CUSTOMER
Cust-Number
Name
Address
id: Cust-Number

5-22 Lesson 5: The basics of conceptual modeling

21/3/02 DB-MAIN Tutorial -  J-L Hainaut 1999

N-ary rel-types

The classification from one-to-one to many-to-many generally is not applica-
ble when N > 2. However, some authors generalize it by using terms such as
many-to-many-to-many (e.g., manufactures in Figure 5.9) or one-to-
many-to-many.

Hence the term many role to designate a role with j > 1 and one role to desi-
gnate a role with j = 1. A one-to-many rel-type has 1 many role and 1 one
role.

5.15 Minimal identifiers

Let us go back to the schema of Figure 5.9. It tells us that there cannot exist
two companies sharing the same Com-ID value. But what about two compa-
nies with the same values of Com-ID and Com-Name? Of course, there can-
not be more than one either.

The same reasoning can be held for any value set of combination {be-
longs.COMPANY,Name,Country }, which obviously designates at most
one BRANCH entity.

We can conclude that,

- { Com-ID, Com-Name} is an identifier of COMPANY,

- { belongs.COMPANY,Name, Country } is an identifier of BRANCH.

Of course, we feel that these are not good identifiers. We shall say that they
are not minimal. A minimal identifier is a group of attributes and/or roles
such that any strict subset is no longer an identifier.

Needless to say, we will avoid declaring non-minimal identifiers, and that we
can keep the schema of Figure 5.9 as is. Practically speaking,

- we will discard any identifier a subset of which is an implicit or declared
identifier6,

- we will carefully examine each multi-component identifier to make sure
that none of its components can be discarded.

6. As we will see later on, the Schema Analysis assistant of DB-MAIN can detect these situa-
tions.

Lesson 5: The basics of conceptual modeling 5-23

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

5.16 What next?

There are many other useful conceptual constructs to be discussed. However,
those we described in this lesson are quite sufficient to build complex databa-
ses. Therefore, before learning about advanced conceptual structures, we will
get a deeper insight into logical structures such as those we caught a glimpse
of in Lesson 4.

5-24 Lesson 5: The basics of conceptual modeling

21/3/02 DB-MAIN Tutorial -  J-L Hainaut 1999

Key ideas of Lesson 5

1. Entity types

An entity type represents a class of concrete or abstract real-world entities,
such as customers, orders, books, cars and accidents.

An entity type can comprise attributes, can play roles in rel-types, and can be
given identifiers.

2. Relationship types (rel-types)

A relationship type represents a class of associations between entities. It con-
sists of entity types, each playing a specific role. A rel-type with 2 roles is cal-
led binary, while a rel-type with more than 2 roles is called N-ary. A rel-type
with at least 2 roles taken by the same entity type is called cyclic.

Each role is characterized by its cardinality [i-j] , a constraint stating that
any entity of this type must appear, in this role, in i to j associations or rela-
tionships. Generally i is 0 or 1, while j is 1 or N (= many or infinity). Howe-
ver, any pair of integers can be used, provided that i ≤ j , 0 ≤ i and 0 < j .

A binary rel-type between A and B with cardinality [ia-ja] for A, [ib-
jb] for B is called:

- one-to-one if ja = jb = 1

- one-to-many from A to B if ja > 1 and jb = 1

- many-to-one from A to B if ja = 1 and jb > 1

- many-to-many if ja > 1 and jb > 1

- optional for A if ia = 0

- mandatory for A if ia > 0 .

A one role has cardinality [i-1] , while a many role has cardinality [i-j]
with j>1 . A binary rel-type with at least one one role is called functional. A
binary schema includes only binary rel-types without attributes.

A role can be given a name. When no explicit name is assigned, an implicit
default name is assumed, namely the name of the participating entity type. The
roles of a rel-type have distinct names, be they explicit or implicit. For instan-
ce, in a cyclic rel-type, at least one role must have an explicit name.

A rel-type can have attributes, and can be given identifiers.

Lesson 5: The basics of conceptual modeling 5-25

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

This model follows the participation interpretation of cardinalities. Accor-
ding to it, the cardinality of a role measures the number of relationships in
which any entity appears in this role.

3. Attributes

An attribute represents a common property of all the entities (or relationships)
of a given type. Simple attributes have a value domain defined by a data type
(number, character, boolean, date, ...) and a length (1, 2, ..., 200, ..., N [stan-
ding for infinity]). These attributes are called atomic.

An attribute can also consist of other component attributes, in which case it is
called compound. The parent of an attribute is the entity type, the relationship
type or the compound attribute to which it is directly attached. An attribute
whose parent is an entity type or a rel-type is said to be at level 1. The compo-
nents of a level-i attribute are said to be at level i+1.

Each attribute is characterized by its cardinality [i-j], a constraint stating that
each parent has from i to j values of this attribute. Generally i is 0 or 1, while
j is from 1 to N (= infinity). However, any pair of integers can be used, pro-
vided that i ≤ j , 0 ≤ i and 0 < j . The default cardinality is [1-1] , and is not
represented graphically. An attribute with cardinality [i-j] is called:

- single-valued if j = 1

- multivalued if j > 1

- optional if i = 0

- mandatory if i > 0 .

4. Groups

A group is made of components, which are attributes, roles and/or other
groups. A group represents a construct attached to a parent object, i.e. to an en-
tity type or a rel-type. It is used to represent, among others, identifiers:

- primary identifier: the components of the group make up the main identifier
of the parent object; it appears with symbol id ; if it comprises attributes on-
ly, the latter are underlined in the graphical view; a parent object can have
at most one primary id; all its components are mandatory.

- secondary identifier: the components of the group make up a secondary
identifier of the parent object; it appears with symbol id' ; a parent object
can have any number of secondary id.

A minimal identifier is a group such that there is no strict subset that still is an
identifier.

5-26 Lesson 5: The basics of conceptual modeling

21/3/02 DB-MAIN Tutorial -  J-L Hainaut 1999

Summary of Lesson 5

• In this first lesson, we have studied the following concepts:

- the cardinality of an attribute

- single-valued / multivalued attributes

- mandatory / optional attributes

- atomic / compound attributes

- multiple identifiers

- hybrid identifiers

- implicit identifiers

- identifiers as a special kind of group

- binary and N-ary relationship types

- attributes of relationship types

- identifiers of relationship types

- cyclic relationship types

- role names

- one-to-many, many-to-one, one-to-one, many-to-many rel-types

- functional rel-types

- minimal identifiers.

• We have also learned:

- to update the properties of an object

double-click on the object description

File / Project properties

- to define the cardinality of an attribute

- to define a compound attribute

New / Attribute / First

from the Attribute box , button First att.

Lesson 5: The basics of conceptual modeling 5-27

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

- to define a rel-type

New / Rel-type; New / Role and/or

- to add a role to a relationship type

New / Role

- to add attributes to a relationship type

same as for entity type attributes

- to define an identifier for a relationship type

New / Group or, if local attribute:

- to give a role a name.

5-28 Lesson 5: The basics of conceptual modeling

21/3/02 DB-MAIN Tutorial -  J-L Hainaut 1999

Exercises for Lesson 5

5.1 Build a schema describing a population of persons who have each a per-
son id, a name, 1 to 3 christian names, possibly a maiden name, and an
arbitrary number of addresses.

5.2 These persons may have children, who are persons too.

5.3 They can be married. They can even have been married several times,
but only once at any given time.

5.4 Consider the following schema. Complete it to take into account the
fact that,

an order cannot reference an item more than once.

5.5 The following schema tells that authors write books, and that each
author appears in a given position in the author list for each of his/her
book (1st author, 2nd author, etc.). Complete the schema to express the
following facts:

- an author cannot appear more than once in a book;

- the authors of a book appear in distinct positions.

1-1

0-N

ref

1-1

1-N

of

1-10-N places

ITEM
Item-Code
Description
QtyOnHand
Unit-Price
id: Item-Code

REFERENCE
Qty

ORDER
Ord-ID
Ord-Date
id: Ord-ID

CUSTOMER

Cust-ID
Name
Address
id: Cust-ID

0-N0-N
writes

Position
AUTHORBOOK

Lesson 5: The basics of conceptual modeling 5-29

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

5.6 What are the implicit identifiers of the following rel-types?

A.

B.

C.

D.

E.

F.

G.

H.

1-10-N R B A

1-1 0-NR B A

0-11-1 R B A

0-N0-N R B A

0-N

0-1 0-NR

 C

 B A

0-N

0-1 0-1R

 C

 B A

0-1

0-1 0-1R

 C

 B A

0-N

0-N 0-NR

 C

 B A

5-30 Lesson 5: The basics of conceptual modeling

21/3/02 DB-MAIN Tutorial -  J-L Hainaut 1999

5.7 Build a schema that represents customers, products and suppliers (with
some natural properties such as name, address, quantity on hand, etc).
Represent the fact that suppliers supply products to customers, and that
they do so in a given supplied quantity and at a given date. Think very
carefully about the fact that,

customer C can be supplied product P by supplier S more than
once, but at different dates.

5.8 What do you think of the following schema?

1-10-1 of

PATIENT
Pat-Nbr
Name
Address
id: Pat-Nbr

MEDICAL-FILE
File-ID
Date
Contents
id: of.PATIENT

File-ID

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Lesson 6

The basics of lo gical and physical
modelin g

Objective

The 6th lesson discusses some concepts of the DB-MAIN model
dedicated to the representation of logical and physical constructs,
i.e., components that appear in DBMS schemas as opposed to
those that make up computer-independent conceptual schemas.
We will describe and manipulate additional integrity constraints
(e.g., referential constraints), access keys (representing indexes
for instance) and entity collections (representing record files).
We will also examine how to make the names of a schema com-
ply with the syntactic rules of DBMS languages.

6-2 Lesson 6: The basics of logical modeling

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Preliminary checking
In this lesson, we will use project MANU-5 (file manu-5.lun) that has been
created in Lesson 5.

6.1 Introduction

We start DB-MAIN and we open project MANU-5. We will work on this pro-
ject, so we will first make a copy we call MANU-6:

- through File / Project properties we change its name into MANU-6,

- we save this version (File / Save project as or button) under the name
manu-6.lun .

6.2 What is a logical schema?

Lesson 4 explained how a conceptual schema can be translated into a relatio-
nal schema. Both schema represent the same information, but the latter ex-
presses it through the constructs of a DBMS1, while the former is claimed to
be DBMS-independent. A relational schema is considered to be logical. The
same conceptual schema can be transformed into several relational logical
schemas, according to the design criteria we have in mind: readability, simpli-
city, ease of evolution, response time, space occupied on disk, etc. In addition,
considering other target DBMSs will lead to, for example, object-relational,
object-oriented, standard file, IMS or CODASYL logical schemas.

To keep things simple, we will mainly concentrate on relational schemas, i.e.,
on logical schemas that comply with the relational model. Other model will
be discussed in further lessons.

A relational logical schema comprises tables made up of columns, primary (or
candidate) keys and foreign key. Figure 6.1 shows the logical schema we built
in Lesson 4. It includes three tables, eight columns, three primary keys (id),
two foreign keys (ref). In addition, it includes indexes (acc, for access keys),
which have been defined on each key.

1. In other words, the conceptual structures are expressed into the model of a DBMS, or,
more precisely, into the model of a family of DBMSs.

Lesson 6: The basics of logical modeling 6-3

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

In this lesson, we will discuss in greater detail the concepts of which all rela-
tional logical schemas are made up.

Figure 6.1 - The logical schema built in Lesson 4.

6.3 Transformation into a logical schema

Let us produce a relational logical schema for the conceptual schema we de-
veloped in Lesson 5. We proceed as suggested in Lesson 4:

- we make a copy of the schema (we select schema Manufacturing/
Conceptual then execute Product / Copy schema) and we change its
version value to "Logical ";

- in this new schema, we execute Transform / Relational model to produce
the relational structures;

- we change the graphical representation by adding shade to the entity types
(View / Graphical settings), to make them look like tables2 (with a little
imagination!).

Schema Manufacturing/Logical is transformed into relational data
structures (Figure 6.3 and Figure 6.4).

From now on, we should use the terms table instead of entity type, column ins-
tead of attribute, etc. However, the logical model is independent of specific
technologies, and in particular of relational DBMS. Figure 6.2 gives the trans-
lation rules for RDBMS. Similar tables can be built for other data manage-
ment systems. We will keep using the standard terms of entity types and
attributes, except when mentioned otherwise.

2. The idea is that shading gives the objects a 3D look, which makes them more concrete.

PRODUCT

Pro-ID
Pro-Name
id: Pro-ID

acc

manufactures

Com-ID
Pro-ID
id: Pro-ID

Com-ID
acc

ref: Pro-ID
acc

ref: Com-ID
acc

COMPANY

Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID

acc

6-4 Lesson 6: The basics of logical modeling

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 6.2 - Translation table of DB-MAIN names into relational names.

Figure 6.3 - First version of the logical schema.

DB-MAIN concepts Relational terms (SQL)

entity type

attribute

primary identifier

secondary identifier

reference group

access key

entity collection

table

column

primary key

candidate key (not pure SQL)

foreign key

index

(table-/db-)space (not standard)

PRODUCT
Pro-ID
Pro-Name
Substitute[0-1]
id: Pro-ID

acc
ref: Substitute

acc

Phone-Number
Com-ID
Local
Area
Country
id: Com-ID

Local
Area
Country
acc

equ: Com-ID
acc

MARKET
Name
Size
id: Name

acc

manufactures
Name
Pro-ID
Ratio
Com-ID
Country
id: Pro-ID

Name
acc

ref: Name
acc

ref: Pro-ID
acc

ref: Com-ID
Country
acc

COMPANY
Com-ID
Com-Name
Com_Number
Com_Street
Com_Zip-Code
Com_City-Name
Com-Revenue[0-1]
id: Com-ID

acc
id': Com-Name

Com_Number
Com_Street
Com_Zip-Code
Com_City-Name
acc

BRANCH
Com-ID
Country
Name
id: Com-ID

Country
acc

ref: Com-ID
acc

Lesson 6: The basics of logical modeling 6-5

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

 Schema Manufacturing/Logical

BRANCH
 Com-ID
 Country
 Name
 id: Com-ID,Country
 access key
 ref: Com-ID -> COMPANY.Com-ID
 access key

COMPANY
 Com-ID
 Com-Name
 Com_Number
 Com_Street
 Com_Zip-Code
 Com_City-Name
 Com-Revenue[0-1]
 id: Com-ID
 access key
 id': Com-Name,Com_Number,Com_Street,Com_Zip-Code,Com_City-Name
 access key

manufactures
 Name
 Pro-ID
 Ratio
 Com-ID
 Country
 id: Pro-ID,Name
 access key
 ref: Name -> MARKET.Name
 access key
 ref: Pro-ID -> PRODUCT.Pro-ID
 access key
 ref: Com-ID,Country -> BRANCH.(Com-ID,Country)
 access key

MARKET
 Name
 Size
 id: Name
 access key

6-6 Lesson 6: The basics of logical modeling

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 6.4 - First version of the logical schema - Text standard view.

This schema is inevitably more complicated and less readable than its concep-
tual counterpart (otherwise it would have been preferable to reason from the
beginning in the relational model!). Though the objective of this lesson is not
to describe in detail how and why the transformation was carried out, we will
try to understand, at least intuitively, the main translation rules that have been
used (Section 6.6). Now, we will discuss in greater detail some important
constructs that we already encountered in lesson 4, and that appear again in
this schema, namely the reference attributes and the access keys.

6.4 Reference attributes (foreign keys)

A reference attribute is an attribute whose values act as references to other
entities. For instance, attribute Com-ID in entity type BRANCH is aimed at de-
signating a COMPANY entity. Since each entity type represents a table in this
logical SQL schema, Com-ID is what is called a foreign key in the RDBMS
language. In general, since a foreign key can comprise more than one attribu-
te, we will talk about reference groups.

Phone-Number
 Com-ID
 Local
 Area
 Country
 id: Com-ID,Local,Area,Country
 access key
 equ: Com-ID = COMPANY.Com-ID
 access key

PRODUCT
 Pro-ID
 Pro-Name
 Substitute[0-1]
 id: Pro-ID
 access key
 ref: Substitute -> PRODUCT.Pro-ID
 access key

Lesson 6: The basics of logical modeling 6-7

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure 6.5 - Reference group, aka foreign key.

The way this attribute is denoted in DB-MAIN views expresses that each value
of Com-ID in any BRANCH entity must be a Com-ID value in some COMPA-
NY entity. We observe that the attribute mentioned in the target entity type
(here COMPANY) is its primary identifier. In some situations, the target attri-
bute can be a secondary identifier as well.

Figure 6.6 - Multicomponent reference group.

COMPANY
Com-ID
Com-Name
Com_Number
Com_Street
Com_Zip-Code
Com_City-Name
Com-Revenue[0-1]
id: Com-ID

acc
id': Com-Name

Com_Number
Com_Street
Com_Zip-Code
Com_City-Name
acc

BRANCH
Com-ID
Country
Name
id: Com-ID

Country
acc

ref: Com-ID
acc

manufactures
Name
Pro-ID
Ratio
Com-ID
Country
id: Pro-ID

Name
acc

ref: Name
acc

ref: Pro-ID
acc

ref: Com-ID
Country
acc

BRANCH
Com-ID
Country
Name
id: Com-ID

Country
acc

ref: Com-ID
acc

6-8 Lesson 6: The basics of logical modeling

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

If the identifier of the target entity type is made of several attributes, then the
reference must be supported by several reference attributes, as in manufac-
tures entity type, where the values of attributes (Com-ID , Country) desi-
gnate a BRANCH entity (Figure 6.6).

There is a more sophisticated form of reference attributes that can be found in
entity type (i.e. table) Phone-Number . Let us first observe that each entity
of this type represents a phone number of a company, and that all the phone
numbers of company X are represented by the Phone-Number entities with
Com-ID = X . Therefore, Com-ID is a reference attribute (or foreign key)
to COMPANY.

However, the conceptual schema tells us that each company must have at least
one phone number (cardinality [1-4]). This property translates, in the cur-
rent logical schema, into a constraint stating that each COMPANY entity must
have at least one corresponding Phone-Number entity. More precisely, the
value of Com-ID of each COMPANY entity must match the Com-ID value of
at least one Phone-Number entity.

Since the COMPANY.Com-ID values form a subset of the PHONE-NUM-
BER.Com-ID values and the PHONE-NUMBER.Com-ID values form a sub-
set of the COMPANY.Com-ID values, we can conclude that,

the set of COMPANY.Com-ID values is equal to the set of PHONE-
NUMBER.Com-ID values.

To represent this constraint, DB-MAIN uses the term equ , that expresses that
the value sets of Com-ID in both entity types are equal (Figure 6.7).

Figure 6.7 - Equality reference group.

Phone-Number
Com-ID
Local
Area
Country
id: Com-ID

Local
Area
Country
acc

equ: Com-ID
acc

COMPANY
Com-ID
Com-Name
Com_Number
Com_Street
Com_Zip-Code
Com_City-Name
Com-Revenue[0-1]
id: Com-ID

acc
id': Com-Name

Com_Number
Com_Street
Com_Zip-Code
Com_City-Name
acc

Lesson 6: The basics of logical modeling 6-9

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

So far, referential attributes are automatically defined as the representation of
relationship types. Later on we could find it useful to define referential cons-
traints manually, for instance to document an existing SQL database.

To practice defining referential attributes, we delete the last constraint of enti-
ty type manufactures by clicking on the "ref: Com-ID,Country "
line, and pressing the Del key. The line disappears.

To build it again, we define for entity type (table) manufactures , a group
of attributes comprising COM-ID and Country :

- we select both attributes, and we click on the button in the Standard
tools bar (Figure 6.8);

- we open the Property box of this group (press the Enter key or double-click)
(Figure 6.9).

Figure 6.8 - A group comprising {Com-ID,Country } has been defined

Now we have to tell DB-MAIN that this group is a reference to table BRANCH.
We click on the Constraint button (for inter-group constraint). The Constraint
box opens. We have two properties to specify:

- what kind of constraint do we want? Let us click on the Ref button;

- what is the target entity type, and what is the target identifier? DB-MAIN
will help us considerably by suggesting candidate entity types, and for each
of them suggesting candidate identifiers. These suggestions are based on

manufactures
Name
Pro-ID
Ratio
Com-ID
Country
id: Pro-ID

Name
acc

ref: Name
acc

ref: Pro-ID
acc

gr: Com-ID
Country

6-10 Lesson 6: The basics of logical modeling

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

the structure of the source group we have built, i.e., its composition, the type
and the length of its components. In this case, there is not much choice: only
the BRANCH entity type has an identifier composed of two attributes whose
types and lengths match those of the current group. Therefore, DB-MAIN
proposes this target entity type and this identifier only.

To make this schema equivalent to its former version, don't forget to click on
the Access key button as well (more on this below).

DB-MAIN includes specific tools for finding foreign keys, such as DDL ex-
tractors and the Foreign key Assistant. They will be studied in other lessons
devoted to Reverse Engineering.

Figure 6.9 - The properties of the newly defined group.

Note

In this section, we have described foreign keys made of single-valued attribu-
tes. In Lesson 7, we will consider more complex forms of foreign keys that
can be found in non-relational3 or in post-relational4 databases.

3. Such as in COBOL files.
4. Such as in Object-oriented and SQL-3 databases.

Lesson 6: The basics of logical modeling 6-11

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure 6.10 - Choosing the target of the reference group.

6.5 Access keys

The transformation has generated access keys. This term designates technical
data structures that provide efficient selective access to data records. An ac-
cess key will generally be implemented as an index or a hash table in relational
DBMS. However, the term access key has been chosen instead of index since
each DBMS generally proposes its own names to denote these techniques5.

Let us consider entity type MARKET (Figure 6.11). Its attribute Name is de-
clared both identifier (id) and access key (acc or access key). Indeed,
RDBMS generally require that each identifier be an index as well. This means
that Name is an identifier, and, in addition, an access key. Therefore, asking
for the MARKET whose Name is known will lead to a quick answer from the
database.

5. Let us cite record keys in COBOL files and calculated keys in CODASYL databases.

6-12 Lesson 6: The basics of logical modeling

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 6.11 - Identifiers often are supported by access keys.

In addition, all the reference groups (foreign keys) have been made access
keys as well (Figure 6.12). It is not mandatory, but DB-MAIN has found it
handy to propose this in its transformation process. Indeed, such attributes im-
plement relationship types, and therefore will most probably be used as selec-
tion criteria in the programs (in join-based queries for instance).

Figure 6.12 - Reference groups (foreign keys) are supported by access keys.

So far, an access key is just an additional property of another construct (iden-
tifier or referential group). We can also decide to declare other access keys if
we think they can boost the performance of queries.

For instance, we can consider that asking for a product of which only the name
is known, is a frequent query. To accelerate the processing of this query, we
decide to build an access key on Pro-Name of PRODUCT.

An access key is just a special kind of a group. To illustrate it, we add a new
group to PRODUCT:

- we select attribute the Pro-Name , and we click on the button ;

MARKET
 Name
 Size
 id: Name
 access key

BRANCH
Com-ID
Country
Name
id: Com-ID, Country
 access key
ref: Com-ID -> COMPANY.Com-ID
 access key

MARKET
Name
Size
id: Name

acc

BRANCH
Com-ID
Country
Name
id: Com-ID

Country
acc

ref: Com-ID
acc

Lesson 6: The basics of logical modeling 6-13

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

- we open the Property box of this group (press the Enter key or double-click)
(Figure 6.9);

- we click on the button Access key and we confirm the operation.

The entity type PRODUCT now reads as in Figure 6.13.

Figure 6.13 - An additional access key.

6.6 On the conceptual → relational translation rules

By comparing the conceptual schema with the logical schema of Figure 6.3,
we can guess the main translation rules that have been used to produce the lat-
ter schema from the former one.

First, it is clear that each entity type is represented by a table, and that each
atomic, single-valued attribute is represented by a column (Figure 6.14).

A compound attribute is translated in as many columns as it has atomic com-
ponents, and this, recursively (Figure 6.15).

A multivalued attribute is represented by a new table, that includes the colu-
mn(s) of the attribute + a foreign key that references the source entity type (Fi-
gure 6.16).

Figure 6.14 - Translation of a conceptual entity type into a table.

PRODUCT
Pro-ID
Pro-Name
Substitute [0-1]
id: Pro-ID
 access key
ref: Substitute -> PRODUCT.Pro-ID
 access key

access key: Pro-Name

PRODUCT
Pro-ID
Pro-Name
Substitute[0-1]
id: Pro-ID

acc
ref: Substitute

acc
acc: Pro-Name

MARKET
Name
Size
id: Name

MARKET
Name
Size
id: Name

acc

6-14 Lesson 6: The basics of logical modeling

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 6.15 - Translation of compound attributes into a series of columns.

Figure 6.16 - Translation of a multivalued attribute into a secondary table.

There are two kinds of rel-types, namely functional rel-types (one-to-one or
one-to-many) and non-functional rel-types (many-to-many or N-ary or with
attributes), also called complex.

A functional rel-type is represented by a foreign key from the one side to the
many side, if any (Figure 6.17). In case of a cyclic rel-type, the foreign key
references its own table.

COMPANY
Com-ID
Com-Name
Com-Address

Number
Street
City

Zip-Code
City-Name

Com-Revenue[0-1]
id: Com-ID

COMPANY
Com-ID
Com-Name
Com_Number
Com_Street
Com_Zip-Code
Com_City-Name
Com-Revenue[0-1]
id: Com-ID

acc

COMPANY
Com-ID
Com-Name
Com-Revenue[0-1]
Phone-Number[1-4]

Country
Area
Local

id: Com-ID

Phone-Number
Com-ID
Local
Area
Country
id: Com-ID

Local
Area
Country
acc

equ: Com-ID
acc

COMPANY
Com-ID
Com-Name
Com-Revenue[0-1]
id: Com-ID

acc
id': Com-Name

acc

Lesson 6: The basics of logical modeling 6-15

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure 6.17 - Translation of a functional rel-type into a foreign key.

A complex rel-type is translated into a new table, which materializes the re-
lationships, hence the name relationship table. Each role of the rel-type beco-
mes a foreign key of the relationship table toward the table of the entity type
playing this role. The rel-type attributes translate into columns of the rela-
tionship table. Identifiers are made explicit (Figure 6.18).

As discussed in Section 6.5, each identifier and each foreign key has been
made an access key. Due to the lack of information on performance require-
ments, there is no possibility to generate other access keys, and none have been
defined!

We can guess that these are not the only possible translation rules, and things
can get more complex for larger and more sophisticated schemas. In addition,
taking into account additional requirements such as response time, update time
or disk space reduction can require more refined translation rules. They will
be addressed later on6.

1-1

0-N

belongs

COMPANY
Com-ID
Com-Name
Com-Revenue[0-1]
id: Com-ID

BRANCH
Name
Country
id: belongs.COMPANY

Country

COMPANY
Com-ID
Com-Name
Com-Revenue[0-1]
id: Com-ID

acc
id': Com-Name

acc

BRANCH
Com-ID
Country
Name
id: Com-ID

Country
acc

ref: Com-ID
acc

6-16 Lesson 6: The basics of logical modeling

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 6.18 - Translation of a complex rel-type into a relationship table.

6. We want to mention just a simple rule that could improve the schema obtained so far:
under certain conditions, when an index has been defined on columns <A,B,C >, any
index defined on a prefix subset such as <A,B > or <A> can be discarded without perfor-
mance penalty. In this way, 3 indexes can be removed from the logical schema. This rule
will be discussed in Volume 2 of this tutorial.

0-N

0-N0-N

manufactures
Ratio
id: PRODUCT

MARKET PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

MARKET
Name
Size
id: Name

BRANCH
Name
Country
id: belongs.COMPANY

Country

PRODUCT
Pro-ID
Pro-Name
Substitute[0-1]
id: Pro-ID

acc

MARKET
Name
Size
id: Name

acc

manufactures
Name
Pro-ID
Ratio
Com-ID
Country
id: Pro-ID

Name
acc

ref: Name
acc

ref: Pro-ID
acc

ref: Com-ID
Country
acc

BRANCH
Com-ID
Country
Name
id: Com-ID

Country
acc

Lesson 6: The basics of logical modeling 6-17

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

6.7 Defining entity collections

In a real database, that is, one which is implemented in an actual computer, ta-
ble rows and records are stored in a large secondary memory, such as on a ma-
gnetic disk. More specifically, they are stored in storage units called,
depending on the data management system, files, data files, datasets, areas,
realms, DBspaces or tablespaces.

DB-MAIN proposes a concept to represent such storage units, namely the en-
tity collection, or, more simply, the collection.

Let us suppose that the six tables of the relational database have to be stored
into two distinct files, one, called PR_STORE, which can accomodate the rows
of PRODUCT, MARKET and manufactures , and the other, called
CY_STORE, in which the rows of COMPANY, BRANCH and Phone-Number
will be stored.

Figure 6.19 - Defining the entity collection CY_STORE.

A collection is created through the button and specified through the Col-
lection property box, called up by pressing the Enter key or by double-clicking

6-18 Lesson 6: The basics of logical modeling

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

on the name of the collection (Figure 6.19). It allows us to specify the name,
short name, semantic and technical (see below) descriptions, and the list of the
entity types (or tables) whose entities (rows) are to be stored in the collection.

Any number of entity types can be stored in a collection, and an entity type can
be stored in any number of collections. However, some DBMS can impose
more limited configuration. For instance, many relational DBMS force the
rows of each table to be stored in one table space only, though the latter can
receive rows from several tables.

These collections appear in all schema views (Figure 6.20 and Figure 6.21).

Figure 6.20 - Entity collections: storage units to store table rows in.

6.8 Name processing

Now we could believe that we are ready to generate the SQL schema that cor-
responds to the final version of our relational database.

However, a quick look at this schema will show a little but potentially an-
noying problem: some names include the character "-" (dash), which is invalid
in SQL data names. A standard remedy consists in replacing each character
"-" by, say, the character "_" (underscore). For instance, Com-ID should be
replaced by Com_ID, and so on.

PR-STORE

PRODUCT
MARKET
manufactures

CY-STORE

COMPANY
BRANCH
Phone-Number

Lesson 6: The basics of logical modeling 6-19

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure 6.21 - Entity collections, according to the Text extended view.

DB-MAIN has a specific processor for that task. It is called up through Trans-
form / Name processing, which opens the Name Processing panel (Figure
6.22). We will examine this processor in detail in a further lesson, but we can
already use it to solve our problem.

 Schema Manufacturing/Logical / Manu

collection CY-STORE
 COMPANY
 BRANCH
 Phone-Number
collection PR-STORE
 PRODUCT
 MARKET
 manufactures

BRANCH
 in CY-STORE
 Com-ID: char (15) [S]
 Name: char (1)
 ...$

COMPANY / COM [S]
 in CY-STORE
 Com-ID: char (15) [S]
 Com-Name: char (25) [S]
 ...

manufactures [S]
 in PR-STORE
 Name: char (24)
 Pro-ID: char (8) [S]
 ...

6-20 Lesson 6: The basics of logical modeling

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 6.22 - Processing the names of the schema.

We proceed as follows:

- we set the scope to Global (i.e., processing the whole schema);

- we want to process both the Names and the Short names ...

- ... of the Entity types, Attributes and Collections;

- first, we tell the processor that we want all the names to be converted into
uppercase characters (button lower -> uppercase)

- then we define the translation pattern:

- we click on button Add, therefore opening the New pattern box (Fi-
gure 6.23):

- the character - is typed in the Search for field,

- the character _ is typed in the Replace by field,

- and we confirm by clicking on the button OK;

Lesson 6: The basics of logical modeling 6-21

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure 6.23 - Defining a substitution pattern.

- the translation pattern "-" -> "_" now appears in the Patterns
field (Figure 6.22);

- we leave the button Confirm unchecked to avoid being asked for confirma-
tion before each substitution;

- we validate by clicking on the button OK.

All the "-" characters have been replaced with the character "_", just as we
wanted them to be and all the names are now in uppercase (Figure 6.24).

The same procedure will also be used to remove space characters or to replace
the reserved words it may comprise: no user name can belong to a list that in-
cludes such words as create, table, integer, char, date, index, references, uni-
que, check, etc.

6-22 Lesson 6: The basics of logical modeling

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 6.24 - The final schema.

6.9 SQL code generation

Now we can ask for the SQL translation function as proposed in lesson 4
through the command File / Generate / Standard SQL(check).

-- ***
-- * Standard SQL generation *
-- *---*
-- * Generator date: Dec 8 1998 *
-- * Generation date: Mon Jan 04 21:50:31 1999 *
-- ***

PRODUCT
PRO_ID
PRO_NAME
SUBSTITUTE[0-1]
id: PRO_ID

acc
ref: SUBSTITUTE

acc

PHONE_NUMBER
COM_ID
LOCAL
AREA
COUNTRY
id: COM_ID

LOCAL
AREA
COUNTRY
acc

equ: COM_ID
acc

MARKET
NAME
SIZE
id: NAME

acc

MANUFACTURES
NAME
PRO_ID
RATIO
COM_ID
COUNTRY
id: PRO_ID

NAME
acc

ref: NAME
acc

ref: PRO_ID
acc

ref: COM_ID
COUNTRY
acc

COMPANY
COM_ID
COM_NAME
COM_NUMBER
COM_STREET
COM_ZIP_CODE
COM_CITY_NAME
COM_REVENUE[0-1]
id: COM_ID

acc
id': COM_NAME

COM_NUMBER
COM_STREET
COM_ZIP_CODE
COM_CITY_NAME
acc

BRANCH
COM_ID
COUNTRY
NAME
id: COM_ID

COUNTRY
acc

ref: COM_ID
acc

PR_STORE

MANUFACTURES
MARKET
PRODUCT

CY_STORE

PHONE_NUMBER
BRANCH
COMPANY

Lesson 6: The basics of logical modeling 6-23

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

-- Database Section --

create database Manufacturing;

-- DBSpace Section --

create dbspace CY_STORE;
create dbspace PR_STORE;

-- Table Section --

create table BRANCH (
 COM_ID char(15) not null,
 NAME char(20) not null,
 COUNTRY numeric(3) not null,
 primary key (COM_ID,COUNTRY))
 in CY_STORE;

create table COMPANY (
 COM_ID char(15) not null,
 COM_NAME char(25) not null,
 COM_NUMBER numeric(5) not null,
 COM_STREET char(20) not null,
 COM_ZIP_CODE numeric(7) not null,
 COM_CITY_NAME char(18) not null,
 COM_REVENUE numeric(12),
 primary key (COM_ID),
 unique (COM_NAME,COM_NUMBER,COM_STREET,COM_ZIP_CODE,
 COM_CITY_NAME))
 in CY_STORE;

create table MANUFACTURES (
 PRO_ID char(8) not null,
 NAME char(24) not null,
 RATIO numeric(4,4) not null,
 COM_ID char(15) not null,
 COUNTRY numeric(3) not null,
 primary key (PRO_ID, NAME))
 in PR_STORE;

create table MARKET (
 NAME char(24) not null,
 SIZE numeric(6) not null,
 primary key (NAME))
 in PR_STORE;

6-24 Lesson 6: The basics of logical modeling

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

create table PHONE_NUMBER (
 COM_ID char(15) not null,
 LOCAL numeric(8) not null,
 AREA numeric(3) not null,
 COUNTRY numeric(3) not null,
 primary key (COM_ID, LOCAL, AREA, COUNTRY))
 in CY_STORE;

create table PRODUCT (
 PRO_ID char(8) not null,
 PRO_NAME char(25) not null,
 SUBSTITUTE char(8),
 primary key (PRO_ID))
 in PR_STORE;

-- Constraints Section
-- ___________________

alter table BRANCH add constraint FKBELONGS
 foreign key (COM_ID) references COMPANY;

alter table COMPANY add constraint
 check(exists(select * from PHONE_NUMBER
 where PHONE_NUMBER.COM_ID = COM_ID));

alter table MANUFACTURES add constraint FKMAN_MAR
 foreign key (NAME) references MARKET;

alter table MANUFACTURES add constraint FKMAN_PRO
 foreign key (PRO_ID) references PRODUCT;

alter table MANUFACTURES add constraint FKMAN_BRA
 foreign key (COM_ID,COUNTRY) references BRANCH;

alter table PHONE_NUMBER add constraint FKCOM_PHO
 foreign key (COM_ID) references COMPANY;

alter table PRODUCT add constraint FKREPLACES
 foreign key (SUBSTITUTE) references PRODUCT;

-- Index Section --

create unique index IDBRANCH on BRANCH (COM_ID,COUNTRY);
create index FKBELONGS on BRANCH (COM_ID);

Lesson 6: The basics of logical modeling 6-25

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure 6.25 - The SQL program creating the database.

About the coding rules

The rules used to transcript relational structures into SQL statements are rather
straightforward. Two comments are worth making:

- Foreign keys have been created in a specific section that follows the table
creation statements. The reason is that most SQL compilers do not accept
forward references, i.e., declaring foreign keys whose target table has not
been declared yet.

- The second constraint declaration certainly will have drawn your attention.
Remember that the equ constraint between PHONE_NUMBER.COM_ID
and COMPANY.COM_ID is made of two independent constraints, namely a
foreign key from PHONE_NUMBER and an inclusion constraint from COM-
PANY.COM_ID and PHONE_NUMBER. This declaration defines the predi-
cate that expresses the second part of the equ constraint.

In fact, this translation may not work for two reasons. First, many DBMS
do not accept check predicates referencing more than one row. Secondly,
the translation of the two parts of the equ constraint form a kind of dea-
dlock. Indeed, they imply that (1) a PHONE_NUMBER row cannot be inser-
ted before its parent COMPANY row has been inserted, and (2) a COMPANY
row cannot be inserted before the first of its children PHONE_NUMBER rows
has been inserted! The solution lies in specific transaction structures based
on deferred constraints. These techniques go well beyond the scope of this
tutorial.

create unique index IDCOMPANY on COMPANY (COM_ID);
create unique index IDCOMPANY on COMPANY (COM_NAME,COM_NUMBER,
 COM_STREET,COM_ZIP_CODE,COM_CITY_NAME);
create unique index MANUFACTURES on MANUFACTURES (PRO_ID,NAME);
create index FKMAN_MAR on MANUFACTURES (NAME);
create index FKMAN_PRO on MANUFACTURES (PRO_ID);
create index FKMAN_BRA on MANUFACTURES (COM_ID,COUNTRY);
create unique index IDMARKET on MARKET (NAME);
create unique index IDPHONE_NUMBER on PHONE_NUMBER (COM_ID,LOCAL,
 AREA,COUNTRY);
create index FKCOM_PHO on PHONE_NUMBER (COM_ID);
create unique index IDPRODUCT on PRODUCT (PRO_ID);
create index FKREPLACES on PRODUCT (SUBSTITUTE);

6-26 Lesson 6: The basics of logical modeling

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

On SQL generation styles

Despite what this section may suggest, there are many ways to code a logical/
physical schema into a SQL program. Actually, coding all aspects of a logical
schema can prove a complex task7. DB-MAIN proposes several styles from
which you can choose.

- Built-in generators. The File / Generate command proposes 6 simple SQL
generators. Explore them to evaluate their characteristics. In particular,
what do you think of the Academic style?

- External generators. They are available as *.oxo programs through the
File / Execute Voyager command or the button . Program SQL.oxo
is similar to built-in generator Standard SQL (check). The source code of
this generator is available as file SQL.V2 , and can be modified.

- Component SQL-GEN of Application Library #1. This collection of 9 ge-
nerators proposes different ways to code basic constructs such as identifiers
and foreign keys.

- A more comprehensive and parametrized generator is available, but its use
requires concepts that go beyond the scope of this tutorial.

In this section, we have mentioned a key feature of DB-MAIN, namely the
Voyager extensions. Though this part of the tool is too complex to be dis-
cussed in this volume, we will say some words on its characteristics.

The Voyager 2 meta-development environment

DB-MAIN offers a complete programming language, Voyager 2, that allows
analysts to develop their own components to include in the CASE tool. So-
phisticated code and report generators, but also analyzers, transformers, eva-
luators, etc., can be developed without resorting to the C++ native language of
DB-MAIN. Programs written in Voyager 2 (*.V2) are compiled into *.oxo
binary code, that is executed by the Voyager virtual machine of DB-MAIN.

SQL.OXO and the components of the Application Libraries8 are some exam-
ples of public-domain extensions.

The Voyager development environment is described in specific manuals.

7. In fact, there are currently no good commercial SQL generators, i.e., generators that pro-
duce a correct and efficient code for all the constructs of logical schemas. In addition, the
current generators are rigid code builders that allow for practically no customization.

Lesson 6: The basics of logical modeling 6-27

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

6.10 About the DB-MAIN graphical representation

One could be surprised by the graphical conventions used to represent identi-
fiers and reference groups. Indeed, such software packages as Microsoft Ac-
cess also represent relational schemas in a graphical way through simpler
techniques (Figure 6.26). Primary keys are highlighted and references are
shown through directed field-to-field connections.

The reason lies in the greater generality of CASE tools, and particularly of DB-
MAIN. Such tools must cope with much more complex situations, not only in
developing new databases according to relational and non-relational technolo-
gies, but also in describing the recovery of ancient databases that exhibit non-
standard structures. For instance, consider how simple graphical drawing con-
ventions as those used in Figure 6.26 could cope with the following situations:

- a table can have an arbitrary number of identifiers;

- two identifiers can share common columns (without one of them being non-
minimal);

- a foreign key can reference secondary identifiers;

- an identifier can be a foreign key as well;

- two foreign keys can share common columns;

- a foreign key can reference more than one table;

- self-referencing tables (a foreign key of table T references T);

- the components of an identifier or of a foreign key can be submitted to ad-
ditional constraints, such as coexistence (will be seen later);

- two foreign keys submitted to constraints such as coexistence or exclusivity
(will be seen later);

- an identifier (or a foreign key) can have specific properties that make it an
object on its own: semantic description, usage statistics, physical parame-
ters, implementation technology, etc.

These constructs, and others, can only be described by making identifiers, fo-
reign keys, and in general any group, specific objects, with their own graphical
representation.

8. An Application Library is a collection of useful Voyager/Delphi applications that can be
used by analysts. The first volume includes executable and source versions of two RTF
report generators, a natural language paraphraser, a schema metrics evaluator, a perfor-
mance evaluator for relational and COBOL databases, and an organizational units manage-
ment system for data administration.

6-28 Lesson 6: The basics of logical modeling

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 6.26 - A (seemingly) more intuitive way to represent primary and forei-
gn keys (Relation window of Microsoft Access).

6.11 Logical vs physical schemas

Now it is time to give some explanation of the title of this lesson. Actually,
what is exactly a logical schema and what is a physical schema?

The answer is not simple since it depends on the nature of the DBMS.

- For most authors, a logical schema is a non-technical description of the da-
tabase according to the model of a family of DBMS. A schema that includes
the description of tables, columns, primary keys and foreign keys is a rela-
tional logical schema. In the same way, a schema describing files, record
types, fields and record keys can be called a COBOL logical schema.

We will add another property: a logical schema is the necessary and suffi-
cient information a programmer or a user must be supplied with in order to
write queries and programs that use the database. This means that any cons-
truct whose knowledge is not required to write programs does not belong to
the logical schema of the database. For instance, indexes (access keys) and
storage spaces (collections) are not part of relational logical schemas. On
the contrary, these constructs are integral parts of COBOL logical schemas,
since the programmer must explicitly mention them in his/her programs.

- The physical schema of a database includes constructs and properties that
govern the placement of data in the secondary memory, as well as the way
they are accessed and updated. These specifications are strongly perfor-
mance-oriented and require from the database engineer a deep knowledge
of the technical aspects of the H/S environment and of the DBMS. They can

Lesson 6: The basics of logical modeling 6-29

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

be ignored by the programmers. It is clear that indexes and storage spaces,
as well as page size and buffer management are components of the relatio-
nal physical schema.

Now let us return to the lesson title. To simplify the discussion, we have not
distinguished between logical and physical components of relational schemas.
Therefore, all the schemas of this lesson are mixed logical/physical, since they
include both logical and physical constructs. In Volume 2, devoted to Infor-
mation analysis and database design, we will carefully separate these schemas
as well as the reasonings and techniques that relate to them.

6.12 Closing the lesson

We can now quit DB-MAIN. The modified project can be saved as suggested
by DB-MAIN.

6-30 Lesson 6: The basics of logical modeling

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Key ideas of Lesson 6

1. Reminder. A conceptual schema describes the abstract concepts that are (or
will be) represented in a database. It is made of entity types, attributes, rel-
types, identifiers and various other constructs.

2. A logical schema is the description of the database according to the model of
a family of DBMS. A relational logical schema mainly describes tables,
columns, primary keys, candidate keys and foreign keys. Users and program-
mers need to consult the logical schema to write queries and programs run-
ning on the database. A logical schema is obtained by applying
representation rules to the conceptual constructs. For instance, an entity type
can be represented by a table, an attribute by a column, a functional rel-type
by a foreign key and a complex rel-type by a relationship table. Names must
often be translated as well. More complex rules can be designed to meet
advanced criteria.

3. A physical schema includes the data structures of the logical schema, enri-
ched with technical constructs defining the implementation and exploitation
modes of the physical database. Physical schemas are strongly dependent on
the specific DBMS with which the database is implemented. Its design is
mainly performance-oriented. A typical relational physical schema includes,
among others, the specification of storage spaces and indexes.

4. A coded schema is a program expressed into the Data Description Language
of a DBMS (such as SQL-DDL). Coding rules are straighforward for the
main constructs of the physical schema. However, some constraints can lead
to complex and tricky code that make the coding process a far from trivial
task.

5. A reference group (generally called foreign key in relational DBMS) is a
group of attributes (columns) whose values are used to designate rows in ano-
ther (or in the same) table.

6. An access key (generally called index in relational DBMS) is a group of attri-
butes (columns) which an access mechanism is associated with, that provides
fast access to records (rows) matching the values of this group.

7. An entity collection is a named storage area in which records or table rows
can be stored. It corresponds to files or table spaces in most DBMS.

Lesson 6: The basics of logical modeling 6-31

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Summary of Lesson 6

• In this lesson, we have studied new notions:

- ref reference group (or foreign key)

- equ reference group

- access key (e.g., index)

- entity collections

• We have also discussed in further detail the concepts of logical schema,
physical schema and coded schema, as opposed to conceptual schemas.

• We have learned about Voyager external programs.

• We have learned,

- to define a group New / Group

- to define a reference group

 the Constraint button in the Group Property box

- to define an access key

the Access key button in the Group property box

- to define a collection

New / Collection

- to replace substrings in names

Transform / Name processing

- to execute an external Voyager program

File / Execute Voyager

6-32 Lesson 6: The basics of logical modeling

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Exercises for Lesson 6

6.1 Enter manually9 a relational logical schema describing the database that
was built by the following SQL program:

9. Frustratingly (for you!), DB-MAIN includes a powerful tool that can build logical schemas
from SQL code. However, using it would make you miss the objective of the exercise.

create database RESULTS;

create table STD (
STD_ID char(15) not null,
STD_NM char(25) not null,
STD_PHONE char(10),
primary key (STD-ID));

create table LCT (
LCT_CD char(5) not null,
LCT_NM char(25) not null,
primary key (LCT_CD));

create table CRS (
CRS_NM char(25) not null,
LCT_CD char(5) not null,
HOURS decimal(3) not null,
primary key (CRS_NM,LCT_CD),
foreign key (LCT_CD) references LCT));

create table RES (
STUD_ID char(15) not null,
CRS_NM char(25) not null,
LCT_CD char(5) not null,
GRADE decimal(5,1),
primary key (STUD_ID,CRS_NM,LCT_CD),
foreign key (STUD_ID) reference STUD,
foreign key (CRS_NM,LCT_CD) references CRS)

);

Lesson 6: The basics of logical modeling 6-33

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

6.2 This schema is particularly obscure, due to the choice of (too) short na-
mes. In fact, the names can be changed to make them more informative.
Applying the following substitution leads to a much more readable
schema:

STD → STUDENT
LCT → LECTURE
CRS → COURSE
RES → RESULT
NM → NAME
CD → CODE

Use the Name processing function to carry out these replacements.
Note that you can add several patterns in the Patterns field, so that
all the transformations can be executed in one operation.

6.3 Define the access keys (applying Transform / Relational model will
do the job), then generate a new SQL creation program. Though struc-
turally equivalent to the first one, it enjoys a highly desirable quality:
readability.

6.4 Try to guess which conceptual schema this logical schema could have
come from10.

6.5 Consider Project MANU-6 again. Rework the schema hierarchy and
some schema constructs in order to propose a neater organization:

- the hierarchy shows the conceptual, logical, physical and coded sche-
mas;

- the physical schema does not include prefix access keys.

10. Note that this kind of problem resorts to the Database Reverse Engineering domain, which
will be addressed later on..

6-34 Lesson 6: The basics of logical modeling

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Lesson 7

Names

Objective

This lesson stresses the importance of names. It discusses con-
straints on names in a schema and compares different approaches
to assign names to objects. It also describes three name proces-
sors: one that can translate, transform and convert names (Name
processing), a second one that changes the prefix of a series of
names (Change prefix) and a final one that manages consistent
sets of synonyms (Lexicons).

7-2 Lesson 7: Names

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

7.1 Introduction

Names are the main links between the abstract and formal objects of a schema
and the application domain objects. So, the quality of a schema strongly de-
pends on the way names have been assigned to objects. In addition, object na-
mes can change from a schema to another one. For instance, conceptual names
are not convenient to generate SQL programs. Hence the need for changing
names. All this is the topic of this lesson.

7.2 Uniqueness rules

When entering and modifying schemas in former lessons, you certainly have
observed that you cannot give objects arbitrary names. Obviously, some rules
must be followed, such as the entity types of a schema have distinct names. In-
deed, the DB-MAIN model includes naming constraints that make it possible
to denote objects through their name. Here are the main rules:
• Two names composed of the same characters, be they in uppercase or in

lowercase, in the same order, are considered identical; so, Customer and
CUSTOMER are the same names; the accents are taken into account, so
that Elève and Elevé are distinct names;

• all the printable characters, including spaces, /, [, {, (, punctuation sym-
bols and diacritical characters, can be used to form names; however sym-
bols " and | are prohibited;

• the schemas of a project are identified by the combination <name>/<ver-
sion>, or merely <name> if <version> is empty;

• each entity type of a schema is identified by its name;
• each rel-type of a schema is identified by its name;
• a collection of a schema is identified by its name;
• direct attributes of a definite parent (an entity type, a rel-type or a com-

pound attribute) have distinct names;
• a group of a definite parent (idem) is identified by its name.
• each processing unit of a definite parent (an entity type, a rel-type or a

schema) is identified by its name.

We can enforce stricter rules through the Schema analysis assistant that will
be discussed later on. For example, we can stipulates that attribute names are
distinct throughout the schema.

Lesson 7: Names 7-3

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

7.3 Ambiguous names (the | symbol)

The standard uniqueness rules described above may appear too strong in some
situations, particularly for rel-types. For instance, the analyst who builds a
tree-like schema (Figure 7.1) may find it useless to name rel-types.

Figure 7.1 - A hierarchical schema (IMS-like1) in which rel-types are left un-
named, without loss of readability.

There exist other variants of Entity-relationship conceptual models, such as
NIAM or ORM (Object-Role)2, that insist on role names but ignore rel-type
names. Moreover, many schemas include a large number of rel-types defining
generic relations such as "part of ", "in ", "of ", "cross ", "overlap ", etc.
In these situations the analyst would want to give these rel-types either the
same name (Figure 7.3), or no name at all (Figure 7.6). The syntax of DB-
MAIN names includes the special symbol "|", which is a valid character, but
which has a special effect when displayed in a schema view: this character as
well as all the characters that follow it are not displayed.

Figure 7.2 shows a schema in which three entity types are being given the
same name. The full name of the current entity type includes a visible part

1. In hierarchical databases records are organized into tree structures: a record either is a root
record (no parent) or is a child record that has one parent record. IMS from IBM is the
main DBMS of this category. The term hierarchical is standard, but a bit misleading, since
hierarchically organized records can have an arbitrary number of parents.

2. These models are at the core of specific approaches of information system design based on
a linguistic analysis. They will be discussed later on.

1-1

0-N

1-1

0-N

1-1

0-N

SALESMAN

ORDER INVOICE

CUSTOMER

7-4 Lesson 7: Names

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

"PERSON" and a hidden part "| version 3 ". No other entity types can
bear the name "PERSON| version 3 ". However, several entity types can
be assigned the same visible part, as shown in the right list box.

Figure 7.2 - The full name of the current entity type includes a visible part
"PERSON" and a hidden part "| version 3 ".

7.4 How to choose names

Models, methodologies and CASE tools generally offer the analysts (almost)
full freedom to give names to objects in a schema. However, giving objects
quite arbitrary names would lead to a poor schema, which will be difficult to
read, to interpret and to use.

Lesson 7: Names 7-5

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure 7.3 - It would be worthless to give these rel-types distinct names such
as "has wheels ", "has body ", etc. In fact, they have been given distinct
names "has|wheels ", "has|body ", etc.

So, the question of how to assign names to objects in a consistent way is quite
relevant.

In most cases, entity types represent major concepts of the application do-
main, so that it is natural to name each of them with the noun of the concept:
CUSTOMER, ACCIDENT or BRANCH. Whether it is better to use singular or
plural forms is a matter of taste. In this book, we use the singular form to de-
note the concept more than its population: the archetypal customer instead of
the set of customers.

Attributes denote local properties, and are given names that suggest these
properties. Generally, attribute names are nouns, such as Date , Amount ,
Address . In some cases, the name can take a more complex form, such as
an assertion: HasChildren , IsValid, IsComingFrom . Many of these
attributes have a boolean domain.

Naming rel-types and roles can be more complex. Let us first observe that
they do not always require names, as illustrated in Figure 7.1. In many cases,
a rel-type represents an action between two concrete or abstract concepts: a
customer signs a contract, a company rents cars, an order has details, an acci-
dent involves vehicles, etc. Therefore, many rel-types are given names which
derive from verbs, such as the verb itself (Figure 7.4) or an abbreviated form
of it (from instead coming from in Figure 7.5). According to this ap-
proach, roles are given names that denote the subset of the entity type that
plays this role.

1-11-1 has

1-13-5 has

1-11-1 has

1-14-4 has WHEEL

ENGINE

DOOR

BODY
CAR

7-6 Lesson 7: Names

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Rel-type rents involves two participants, namely the rented car, which is a
car, and the renter, which is a company. Hence role names rented car and
renter (Figure 7.4). Roles generally are given no names (in which case the
name of the entity type is use instead), or names which are nouns. Though it
is quite neutral as far as naming conventions are concerned, the DB-MAIN
model slightly favors these rules as can be observed in the composition of
groups: a group comprises components that are best denoted by nouns
(sender and SerNumber in Figure 7.5).

Figure 7.4 - Conventional naming conventions. Generally, roles are given no
names, except to solve ambiguities in cyclic rel-types.

Figure 7.5 - Use of role names in groups.

0-1
rented car

0-N
renter

rents

1-1
maintained car

0-N
maintenance company

maintains

0-1
sold car

0-N
buyer

buys

COMPANY
CompanyName
Address
id: CompanyName

CAR
CarNumber
Make
Model
id: CarNumber

1-1
0-N

sender from

ORDER
SerNumber
Date
id: from.sender

SerNumber

CUSTOMER

Lesson 7: Names 7-7

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

This convention for naming rel-types has a drawback though. Since the name
of the rel-type is the verb extracted from the assertion that defines its seman-
tics, the verb can have two forms, namely active or passive. For instance, the
semantics of rel-type rents of Figure 7.4 can be expressed as a company
rents cars, or, equivalently, as cars are rented by companies, hence two pos-
sible names for this rel-type: rents and rented by . To avoid this prob-
lem, some authors use the infinitive form of the verb, i.e., to rent in our
case. By choosing the correct form of the verb, the rel-type can then be read
either way.

Figure 7.6 - Rel-type and role naming conventions that use roles to name the
relationships between entity types. Such conventions will be found in ORM
models, but can be used in Entity-relationship schemas as well.

As mentioned above, some approaches are based on roles more than on rel-ty-
pes. Such is the case for ORM3, in which each role is given a name that allows
users who read a schema to form natural sentences.

For instance, the schema of Figure 7.6 can be read as follows:
• a car is rented by a company

3. The Object Role Model, first developed by G. Njissen in the eighties, has since been exten-
ded by several authors. See [Halpin,1996] for instance.

0-N
maintains

1-1
maintained by

0-N
buys

0-1
bought by

0-N
rents

0-1
rented by

COMPANY
CompanyName
Address
id: CompanyName

CAR
CarNumber
Make
Model
id: CarNumber

7-8 Lesson 7: Names

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

• a company rents cars
• a car is maintained by a company
• a company maintains cars
• etc.

Tentative conclusion

There is no unique naming approach that brings all benefits but no problems
in all situations. The important point is that the naming conventions you adopt
must be consistent throughout your schemas.

7.5 Name processing

For different reasons, it can be useful or even necessary to modify the names
in a schema. For example, names must be in uppercase, or must not be more
than N character long, or cannot include some substrings. Processing each
name individually can be realistic for small schemas, but coping with thou-
sands of names cannot be performed without tools. The Name processing tool
of DB-MAIN has been developed with this objective. This tool is not quite
new for us. Indeed, we already used it in Lesson 6 to replace characters "- "
with "_" in physical schemas.

The main control panel is shown in Figure 7.7. It includes the following sec-
tions:

1. Scope. Defines the objects to which the transformations will be applied.

- Where: Global: in the whole schema; Selected: among the selected
objects; Marked: among the marked objects.

- Which names: Names and/or Short names.

- For which object types: Collections, Entity types, Rel-types, etc.

2. Substitution patterns. List of substitution patterns in the following for-
mat:

- "search string" → "new string"

3. Character transformations.

- change case, capitalize, remove accents and shorten names

Lesson 7: Names 7-9

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure 7.7 - This panel has been programmed to normalize the names of the
attributes of the current schema. The accents are removed, names are capi-
talized (first character in uppercase, the others in lowercase), and long object
names are replaced with short names. In addition, the resulting names are
trimmed to 24 characters.

4. Load/Save control parameters.

- loads/saves the contents of the panel, including the substitution pat-
terns. Saved in a *.pat file.

The principles of pattern substitution are simple. Consider the form as it ap-
pears in the pattern field of the panel (note that quotation marks are not part of
the strings and must not be typed):

"search string" → "new string"

1. Each instance of search string found in the defined scope is replaced with
the string new string.

2. It is possible to tell that search string are the first characters (with symbol
^) or the last characters (with symbol $) of the searched names.

3. "old string" can include wildcard characters * and ?. ? matches any single
character while * matches any empty or non-empty string.

7-10 Lesson 7: Names

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

4. If new string is empty, then the instances of search string are deleted.

To illustrate the use of substitution patterns, let us consider the pattern

search → "XXX"

where search is the search argument that will be discussed. Let "ele-
phant " be the name to process. Considering various substitution patterns,
the results will be as shown in Figure 7.8.

Figure 7.8 - Applying substitution patterns to the name elephant .

The list of substitution patterns can be as long as you want. For instance, you
can define a translation dictionary to convert the names of a schema into ano-
ther language. However, do not expect a high quality translation when com-
posed names are frequent!

When more than one transformation is asked for, they are performed in the fol-
lowing order:

1. pattern matching

2. removal of accents

3. case conversion

4. shortening

substitution patterns resulting name

"leph" → "XXX"
"e" → "XXX"
"e?" → "XXX"
"*p" → "XXX"
"l*h" → "XXX"
"p*" → "XXX"
"e*" → "XXX"
"*" → "XXX"
"^e" → "XXX"
"t$" → "XXX"
"e$" → "XXX"
"^e*p?a*t$" → "XXX"

eXXXant
XXXlXXXphant
XXXXXXhant
XXXhant
eXXXant
eleXXX
XXX
XXX
XXXlephant
elephanXXX
elephant
XXX

Lesson 7: Names 7-11

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

7.6 Changing the prefix of names

A nice little tool allows you to change the prefix of a series of attribute names.
These attributes are all the direct attributes of a parent object which can be an
entity type, a compound attribute or a rel-type. Proceed as follows (Figure
7.9).

1. Select the parent object (here PRODUCT).

2. Execute function Transform / Change prefix .

3. The prefix processor computes the largest prefix of the attributes of the
parent objects and displays it in the Prefix field (PRO-). This prefix can
be empty.

4. Change this value in the Prefix field (type P_). If you want to suppress
this prefix, empty the Prefix field.

5. Click on OK.

Figure 7.9 - The largest prefix ("PRO-") of the names of direct attributes of en-
tity type PRODUCT have been replaced with the new prefix "P_".

7.7 Lexicons

Each object in a schema, including the schema itself, receives a name. To be
more precise, it received only one name4. Very often, one wants to give an
object several names, generally called synonyms. However, giving some ob-
jects two names, while giving another one three or four names quickly leads

4. The short name that appears in the property box of several objects and in the Text extended
view cannot be considered as a name in its own right. It is mainly used as an aid for buil-
ding names automatically in some processes, such as transformations and generators.

⇒

7-12 Lesson 7: Names

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

to an unmanageable situation. The DB-MAIN tool proposes a disciplined way
to assign synonyms to objects through the concept of Lexicon.

A Lexicon is a consistent set of names, each one being assigned to one object
of the schema. Figure 7.10 shows the same schema to which two lexicons
have been applied. The first one gives objects English names (left), while the
second one gives them French names (right).

Creating the English Lexicon is straighforward:

1. We assign each object an English name;

2. We create a new Lexicon with the name "English ".

To create another Lexicon, we proceed in the same way:

1. We update each object to give it a French name;

2. We create a new Lexicon with the name "French ".

Similarly, we can define Dutch, German, Italian or Arabic Lexicons. Lexi-
cons can be used to give objects natural names, normalized names, technical
names. They can be used to assign COBOL, Java or RPG names to objects.

To give objects the names from a definite Lexicon, display the Lexicon. An
existing Lexicon can be updated and deleted.

Figure 7.10 - The same schema displayed according to two distinct Lexicons,
respectively called English and French .

0-N

0-N

implies

0-11-1 covers

1-1

0-N

signs

1-1

0-N

owns

ACCIDENT
AccNumber
Date
Location

CONTRACT
ContractNumber
Date
Type

VEHICLE
VehicleNumber
Make
Year

CUSTOMER
CustNumber
Name
Address

0-N

1-1

signe

0-N

1-1

possède

0-N

0-Nimplique

1-1 0-1couvre

VEHICULE
NumVéhicle
Marque
Année

CLIENT
NumClient
Nom
Adresse

CONTRAT
NumContrat
Date
Type

ACCIDENT
NumAccident
Date
Localisation

Lesson 7: Names 7-13

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

The Lexicons are managed by a small Voyager 2 application5 called Lexi-
con.oxo . It can be run as follows:

1. click on the red button in the Standard tools bar (or use command File

/ Execute Voyager)

2. double-click program file Lexicon.oxo .

The Lexicon processor proposes four functions:
1. Create a Lexicon: asks you a Lexicon name and stores all the cur-

rent names in it;
2. Update a lexicon: shows all the known Lexicons, lets you choose

one and stores all the current names in the selected Lexicon;
3. Display a Lexicon: shows all the known Lexicons, lets you choose

one and replaces the current names with the contents of the selec-
ted Lexicon;

4. Delete a Lexicon: shows all the known Lexicons, lets you choose
one and deletes it.

Type the number of the selected function into the bottom field, click on OK
and follow the instructions.

Note

If you want to run the Lexicon program again, you do not need to proceed
according the above procedure. Indeed, this program still is in the memory of
the Voyager abstract machine. All you need to do to run it is to click on the
button (or to execute command File / Rerun Voyager).

5. We already met Voyager applications in Lesson 6, where we mentioned that DB-MAIN can
be enriched by additional components developed in the meta-language Voyager 2.

7-14 Lesson 7: Names

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Key ideas of Lesson 7

1. Names are essential components of schemas. Carefully choosing them is
an important task that will make schemas easy to use by both users and
developers, therefore maximizing the reliability of the specifications.

2. A name is used to designate an object among all the objects of the same
kind, in a definite scope, such as all the entity types of the schema or all
the direct attributes of an entity type.

3. Generally, a name is made of a non-empty character string. However,
giving empty names to rel-types and roles can be useful.

4. In many cases, the following naming conventions yield schemas that are
easy to read: name an entity type with the noun with which the domain
concept is referred to; name an attribute with the noun with which the
domain property is referred to; name a rel-type with the verb with which
the domain relationship is referred to. Give roles the name of the subset
of the entity type that play this role. Other consistent rules can be chosen
to name objects in a schema.

5. In several engineering processes, it can be useful to modify the names of
the objects of a schema to improve their consistency or their readability, or
to make them compliant with the syntax of a DBMS. The Name proces-
sing tool and the Change prefix function of DB-MAIN can help changing
names in a large and complex schema.

6. Assigning several names to an object is an important requirement in some
environments. The DB-MAIN Lexicon manager can be used to create sets
of synonyms for the objects of a schema.

Lesson 7: Names 7-15

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Summary of Lesson 7

• In this lesson, we have studied new concepts:

- ambiguous names; visible and hidden parts of names

- Lexicons as sets of consistent synonyms for the objects of a schema

• We have also learned:

- to choose names for objects in a schema

- to define ambiguous names: symbol |

- to use rel-type and role names to describe relationships between application
concepts

- to change the names in a schema:

Name processing tool

Change prefix tool

- to define and use Lexicons:

Lexicon.oxo Voyager processor

- to rerun loaded Voyager processors:

File / Rerun Voyager

• We have produced a new type of file:

- Name processing parameters (*.pat).

7-16 Lesson 7: Names

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Exercises for Lesson 7

7.1 Open the schema of Figure 5.15 you built in Lesson 5. Define a set of
substitution patterns that give other names to all the objects of this sche-
ma. For instance, change City into Town, Size into Volume and
manufactures into produces . Check it on a copy of the schema.

7.2 Define Name processing parameters that translate the names in the
schema of Figure 5.15 in such a way that the derived relational schema
will meet the following requirements:

- names are SQL-compliant (no "-", no SQL reserved words);

- names are in uppercase;

- names have at most 10 characters.

7.3 Considering the origin names in Figure 5.15 and the sets of names defi-
ned above, build three Lexicons.

7.4 In the play The Bald Soprano (La cantatrice chauve) playwright Eugene
Ionesco imagines a scene in which two characters talk about their rela-
tives (parents, neighbors, doctors and even dogs), who all happen to be
named Bobby Watson!

Build a schema in which all the objects (entity types, rel-types, attribu-
tes) are named Bobby Watson .

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Lesson 8

More about entity types

Objective

This lesson discusses the concepts of supertype/subtype relation
(also called IS-A relation), of total/partial and exclusive/overlap-
ping subtypes, and of inheritance. These constructs define a clas-
sification scheme according to which an entity type can belong to
more than one type by declaring it a subtype of another one, thus
inheriting some of its properties from the latter. Procedures can
be associated with entity types, rel-types and schemas. Such pro-
cedures (or methods) can be used to define object classes in ob-
ject-oriented schemas.

8-2 Lesson 8: More about entity types

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

8.1 Starting Lesson 8

We start DB-MAIN and we create a new project called, say, Lesson08 .

8.2 Classification hierarchies (IS-A relations)

We create a new schema with name ISA and version 1.

Let us suppose that we are describing the activities of factories which are in
relation to their suppliers and their customers, which all are companies.

In other words, factories, suppliers and customers are companies. In addition,
each factory can have customers and can have suppliers. From now on howe-
ver, we will ignore the latter facts.

If we represent factories, suppliers, customers and companies by entity types
FACTORY, SUPPLIER, CUSTOMER and COMPANY respectively, we get the
schema of Figure 8.1.

Figure 8.1 - Four unrelated entity types (so far!).

We then have to express some additional facts:

- a factory is a company as well;

- similarly, each supplier is a company;

- and each customer is a company.

Another way to describe these facts is to say that a factory (as well as a supplier
and a customer) is a special kind of company. This translates in the Entity-re-
lationship model as follows:

- FACTORY is declared a subtype of COMPANY;

- SUPPLIER is a subtype of COMPANY;

- CUSTOMER is a subtype of COMPANY.

SUPPLIER FACTORY CUSTOMER

COMPANY

Lesson 8: More about entity types 8-3

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Conversely, we can say that COMPANY is a supertype of FACTORY, SUP-
PLIER and CUSTOMER.

To define this subtype/supertype relation, we open the Entity box of FACTORY
(double-click as usual), and we move the name COMPANY from the right list
to the Supertypes list on the left (Figure 8.2).

Figure 8.2 - FACTORY is being declared a subtype of COMPANY.

Defining similarly that SUPPLIER and CUSTOMER both have COMPANY as
their supertype leads to the schema of Figure 8.3.

It is common to talk about IS-A relation between the supertype and its subty-
pes. The origin of this name lies in the natural language interpretation of the
facts modeled in this way:

each supplier is a company, each factory is a company, etc.

The standard view is shown in Figure 8.4 and the extended view in Figure 8.5.

8-4 Lesson 8: More about entity types

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 8.3 - SUPPLIER, FACTORY and CUSTOMER are subtypes of COM-
PANY

Figure 8.4 - The Text standard view of IS-A relations.

Figure 8.5 - The Text extended view of IS-A relations.

COMPANY

CUSTOMER
is-a COMPANY

FACTORY
is-a COMPANY

etc.

COMPANY / CY
sub-types: SUPPLIER, CUSTOMER, FACTORY

CUSTOMER / CUS
is-a COMPANY

FACTORY / FAC
is-a COMPANY

etc .

SUPPLIER FACTORY CUSTOMER

COMPANY

Lesson 8: More about entity types 8-5

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

As we can guess by playing with the Entity box, it is possible to declare that
an entity type has more than one supertype. However, such situations, often
called multiple inheritance, are a bit more complicated. They will be dis-
cussed specifically later in this lesson.

8.3 Properties of the subtypes of an Entity type

So far, we have defined the relation between each subtype and its supertype:
each entity of the subtype is an entity of the supertype. So we know that each
customer is also a company, and so forth for factories and suppliers.

Now, what about a customer being a supplier as well? ... and about a company
which is neither a customer, a factory, nor a supplier?

These questions address two main properties that concern the entity types in-
volved into a supertype/subtype relation. The questions can be stated more
formally:

- are any two subtypes disjoint, or can they overlap1? If the subtypes are pai-
rwise disjoint, then any supertype entity belong to at most one of its subty-
pes; otherwise it can belong to several subtypes. To assert this property, we
will say that the subtypes of entity type COMPANY are Disjoint . Since this
property concerns all the subtypes of COMPANY, it is considered to be a pro-
perty of the supertype.

- must each entity of the supertype belong to a subtype, or can it be in none
of them? If each supertype entity must belong to at least one subtype, we
will say that the subtypes of entity type COMPANY are Total. This too is a
property of the supertype.

When the collection of the subtypes of E is both disjoint and total, this collec-
tion forms a Partition . In a partition, each E entity belongs to exactly one sub-
type.

To allow us to declare these properties, the Entity box of the supertype includes
two buttons, named Disjoint and Total (Figure 8.6). Each can be checked and
unchecked independently. When both are checked, the subtypes form a Parti-
tion, that is, each COMPANY entity is of exactly one subtype.

1. To be more precise, this question concerns the set of entities of each type.

8-6 Lesson 8: More about entity types

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 8.6 - The subtypes of COMPANY total ly cover the entity set of COM-
PANY.

To practice these concepts, we define the subtypes of COMPANY as being to-
tal:

- we open the Entity box of COMPANY (by double-clicking on its name);

- we click on Total;

- we click on OK.

The schema appears as in Figure 8.7 and Figure 8.8.

Lesson 8: More about entity types 8-7

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure 8.7 - Each COMPANY entity also is a SUPPLIER, a FACTORY or a
CUSTOMER entity (or several of them).

Figure 8.8 - The Text extended view of the IS-A relations of Figure 8.7.

The triangle symbol represents a collection of subtypes. This symbol can in-
clude an additional character: T for Total, D for Disjoint and P for Partition.
The absence of character means both non-disjoint and non-total, i.e., an over-
lapping and partial collection of subtypes.

This point being very important in modeling, we will synthesize the different
situations in Figure 8.9. It shows a simple IS-A hierarchy made up of super-
type A and subtypes B1 and B2. Each pattern is defined as follows.

COMPANY / CY
sub-types (T): SUPPLIER, CUSTOMER, FACTORY

CUSTOMER / CUS
is-a COMPANY

etc.

Partition: each A entity is either a B1 entity or a
B2 entity but not both.

Total: each A entity is either a B1 entity or a B2
entity or both.

Disjoint: an A entity can be a B1 entity or a B2 en-
tity but not both. Some A entities are neither B1
nor B2 entities.

T

CUSTOMERFACTORYSUPPLIER

COMPANY

8-8 Lesson 8: More about entity types

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 8.9 - Synthesis of subtype properties.

8.4 Supertype/Subtype inheritance

The Supertype/subtype IS-A relation is not as simple as it appears at first glan-
ce. One of its most dramatic consequences is the so-called inheritance me-
chanism. To describe it, we need first to enrich our schema a little bit by
giving entity types some attributes. Let us record the following facts:

- each company has a name (identifier) and an address;

- each supplier has an account number;

- each factory has a production type;

- each customer has a customer number (identifier), a status and an amount
due.

The current schema can be completed easily (Figure 8.10).

Though it is quite correct, this schema does not show explicitly all its contents.
For instance, each customer, being a company, has also a name (which identi-
fies it) and an address.

Free: an A entity can be a B1 entity or a B2 entity
or both. Some A entities are neither B1 nor B2
entities.

Total (T) Partial (¬T)

Disjoint
(D)

Overlapping
(¬D)

B1 B2

 A

P

B1 B2

 A

D

B1 B2

 A

T

B1 B2

 A

Lesson 8: More about entity types 8-9

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure 8.10 - An IS-A hierarchy with attributes.

Thus, the whole list of attributes of entity type CUSTOMER is in fact made of:
CustNbr , Name, Address , Status and AmountDue . Among them,
CustNbr , Status and AmountDue are called the proper attributes, whi-
le Name and Address are the inherited attributes . In addition, CUSTOMER
has two identifiers, namely CustNbr (a proper identifier) and Name (an in-
herited identifier).

Should the schema show all the attributes and all the identifiers of each entity
type, it would appear as in Figure 8.11.

The first version is more concise, while the latter is more informative and in-
cludes redundant specifications2. However, both views have the same infor-
mation contents. The only difference is how we have to interpret them.

The concept of inheritance also applies to all the structural properties of the
entity types, and is not restricted to attributes and identifiers as discussed so
far. More specifically, the subtypes also inherit all the roles and the integrity
constraints of their supertype.

For instance, if COMPANY is linked to entity type REGION, then CUSTOMER,
FACTORY and SUPPLIER are linked to REGION as well (Figure 8.12). Its
explicit semantic contents are shown in Figure 8.13.

2. For instance, it tells us twice that a customer has a name: once through an inherited attri-
bute and once as a proper attribute of the supertype.

T

CUSTOMER
CustNbr
Status
AmountDue
id: CustNbr

FACTORY
ProductType

SUPPLIER
AccountNbr

COMPANY
Name
Address
id: Name

8-10 Lesson 8: More about entity types

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 8.11 - Attribute and identifier inheritance explicitly shown. The inheri-
ted components are marked for readability.

Figure 8.12 - The supertype plays a role in a rel-type.

By comparing both views, the gain of conciseness induced by the supertype/
subtype relation is obvious, specially in large schemas. There are other advan-
tages as well. For instance, inherited components are described only once at
the supertype level. Therefore, changing the definition of an attribute (or a ro-
le), adding an attribute or deleting an existing attribute, must be done only on-

T

CUSTOMER
CustNbr
Name
Address
Status
AmountDue
id: CustNbr
id': Name

FACTORY
Name
Address
ProductType
id: Name

SUPPLIER
Name
Address
AccountNbr
id: Name

COMPANY
Name
Address
id: Name

0-1 0-Nin

T

REGION
Name
Population
id: Name

CUSTOMER
CustNbr
Status
AmountDue
id: CustNbr

FACTORY
ProductType

SUPPLIER
AccountNbr

COMPANY
Name
Address
id: Name

Lesson 8: More about entity types 8-11

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

ce. All these changes are automatically applicable to all the subtypes of the
supertype.

Figure 8.13 - Attribute, identifier and role inheritance shown explicitly.

The drawback of IS-A constructs is that the schema can be less readable. In-
deed, the actual attributes (and other components) comprise the proper attribu-
tes + the inherited ones.

8.5 Multilevel IS-A hierarchy

The example developed in this lesson includes one level of subtypes only, for-
ming a 2-level hierarchy. Some problems require deeper hierarchies, as illus-
trated in Figure 8.14. This schema classifies the documents available in a
corporate library. The rules discussed above still are valid for more than 2 le-
vels. For instance, a scientific book is a book, which in turn is a document.
Therefore, any scientific book is a document as well, and thus inherits from
both books and documents.

0-N

0-N

s_in

0-N

0-N

f_in

0-N

0-N

c_in

0-N 0-Nin

T

SUPPLIER
Name
Address
AccountNbr
id: Name

REGION
Name
Population
id: Name

FACTORY
Name
Address
ProductType
id: Name

CUSTOMER
CustNbr
Name
Address
Status
AmountDue
id: CustNbr
id': Name

COMPANY
Name
Address
id: Name

8-12 Lesson 8: More about entity types

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 8.14 - A 3-level IS-A hierarchy.

Figure 8.15 - The IS-A hierarchy with all the proper attributes and identifiers
shown.

Let us assign some plausible attributes to each of these entity types (Figure
8.15). According to the inheritance rules, each subtype is assigned the attribu-

D

D

TECHNICAL-BOOK SCIENTIFIC-BOOK

REPORT

PROJECT-REPORTINTERNAL-REPORT

DOCUMENT

BOOK

D

D

TECHNICAL-BOOK
Domain
System

SCIENTIFIC-BOOK
Theme
Level

REPORT
ReportID
Department
id: ReportID

PROJECT-REPORT
ProjectID
ProjectStatus
DateWritten

INTERNAL-REPORT
SecurityLevel

DOCUMENT
DocID
Title
Author[0-5]
id: DocID

BOOK
ISBN
Publisher
DatePublished
id: ISBN

Lesson 8: More about entity types 8-13

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

tes (and constraints and roles) of all its direct or indirect supertypes (Figure
8.16).

Figure 8.16 - The IS-A hierarchy with all the proper and inherited attributes
and identifiers shown.

8.6 Multiple inheritance

So far, any entity type has at most one supertype from which it inherits a part
of its properties. Situations may occur that require a subtype to inherit from
more than one supertype. Considering the schema of Figure 8.15, we can ima-
gine some reports, for instance project reports, being published as scientific
books. So, these published reports are both project reports and scientific
books. As a consequence, a published report has report ID and a project status

D

D

TECHNICAL-BOOK
DocID
Title
Author[0-5]
ISBN
Publisher
DatePublished
Domain
System
id: ISBN
id': DocID

SCIENTIFIC-BOOK
DocID
Title
Author[0-5]
ISBN
Publisher
DatePublished
Theme
Level
id: ISBN
id': DocID

REPORT
DocID
Title
Author[0-5]
ReportID
Department
id: ReportID
id': DocID

PROJECT-REPORT
DocID
Title
Author[0-5]
ReportID
Department
ProjectID
ProjectStatus
DateWritten
id: ReportID
id': DocID

INTERNAL-REPORT
DocID
Title
Author[0-5]
ReportID
Department
SecurityLevel
id: ReportID
id': DocID

DOCUMENT
DocID
Title
Author[0-5]
id: DocID

BOOK
DocID
Title
Author[0-5]
ISBN
Publisher
DatePublished
id: ISBN
id': DocID

8-14 Lesson 8: More about entity types

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

(as project report) as well as an ISBN and a theme (as scientific book). Such a
structure, illustrated in Figure 8.17, generally is called multiple inheritance.
The term is a bit improper, since inheritance is just a consequence of the IS-A
relation. A better name would be multiple IS-A hierarchy .

Figure 8.17 - Example of multiple inheritance: PUBLISHED-REPORT is both
a SCIENTIFIC-BOOK and a PROJECT-REPORT.

This example raises interesting questions.

1. Let us first observe that PUBLISHED-REPORT has a single ancestor,
namely DOCUMENT, which can be found by navigating upwards through
the left branch (SCIENTIFIC-BOOK → BOOK → DOCUMENT) or
through the right branch (PROJECT-REPORT → REPORT → DOCU-
MENT).

2. Now, let us consider the subtypes of DOCUMENT. They have been decla-
red overlapping (no D nor P symbols), so that some documents can be

D

D

TECHNICAL-BOOK
Domain
System

SCIENTIFIC-BOOK
Theme
Level

REPORT
ReportID
Department
id: ReportID

PUBLISHED-REPORT
Sponsor

PROJECT-REPORT
ProjectID
ProjectStatus
DateWritten

INTERNAL-REPORT
SecurityLevel

DOCUMENT
DocID
Title
Author[0-5]
id: DocID

BOOK
ISBN
Publisher
DatePublished
id: ISBN

Lesson 8: More about entity types 8-15

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

both books and reports. It is fortunate, because a published report being
both a book and a report, this overlapping property makes it possible to
have published reports. Think of what would have happened regarding
PUBLISHED-REPORT if the subtypes of DOCUMENT were declared dis-
joint3!

3. Note that PUBLISHED-REPORT is not the intersection of SCIENTI-
FIC-BOOK and PROJECT-REPORT4, but more generally is a subset of
this intersection.

Figure 8.18 - The supertype and the subtype have an attribute with the same
name. If they represent the same meaning, one of them only must be kept.

Let us now discuss the inherited attributes. Three conflicting problems may
arise and must be addressed.

1. What if a subtype has a proper attribute with the same name as some attri-
bute of the supertype (Figure 8.18)? If these attributes are the same and
describe the same real world property, one of them must be removed.
Otherwise they have different meanings and the name of one of them must
be changed. Indeed, the attributes of the supertype are attributes of the
subtype, and in any entity type, the attributes of the same level must have

distinct names5.

3. This would be an interesting example of inconsistent structure, i.e., a structure no data
will ever satisfy. Indeed PUBLISHED-REPORT would always be empty!

4. As already mentioned, we identify an entity type and its population at any given time. Not
quite correct but very handy to simplify the discussion.

⇒

SCIENTIFIC-BOOK

Title
Domain

BOOK
ISBN
Title
Authors[1-5]

SCIENTIFIC-BOOK
Domain

BOOK
ISBN
Title
Authors[1-5]

8-16 Lesson 8: More about entity types

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 8.19 - A market product is a product that is offered to consumers. The-
refore, it has an internal product name and an offering name, that can be dif-
ferent. When considering these names from the MARKET-PRODUCT
viewpoint, it is good practice, to solve the naming conflict, to think of them as
being prefixed with the name of their source entity type.

2. Two independent entity types can each have an attribute with the same
name. What if they share a common subtype? The latter inherits two dif-
ferent attributes with the same name. A good practice can be to prefix the
inherited attributes with the name (or unique short name) of their source
entity type (Figure 8.19).

3. In a multiple IS-A hierarchy, an entity type inherits from one or several
common ancestors through more than one branch. Therefore, the ances-
tor’s attributes are inherited more than once! Of course, for each of them,
only one must be considered (Figure 8.20).

Now, considering the schema of Figure 8.17, we can state exactly what the at-
tributes and identifiers of entity type PUBLISHED-REPORT are (Figure
8.21).

5. In some models, the designer is allowed to change the definition of an inherited attribute.
For instance, its domain of values can be restricted to a subset of that of the origin attribute.
To simplify the discussion, we will ignore this possibility.

⇒

MARKET-PRODUCT
Price

OFFERING
Name
Market

PRODUCT
ProdID
Name

PRODUCT
ProdID
Name

OFFERING
Name
Market

MARKET-PRODUCT

ProdID
PRODUCT.Name
OFFERING.Name
Market
Price

Lesson 8: More about entity types 8-17

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure 8.20 - INTERNAL-CLIENT inherits from PERSON twice. However, the
attributes of the ancestor are inherited only once.

Figure 8.21 - The proper and inherited attributes and identifiers of entity type
PUBLISHED-REPORT from Figure 8.17.

⇒

INTERNAL-CLIENT
Rebate

CLIENT
CustID
Account

EMPLOYEE
EmpID
Department

PERSON
Name
Address

INTERNAL-CLIENT
Name
Address
EmpID
Department
CustID
Account
Rebate

PUBLISHED-REPORT
DocID
Title
Author[0-5]
ISBN
Publisher
DatePublished
Theme
Level
ReportID
Department
ProjectID
ProjectStatus
DateWritten
Sponsor
id: ISBN
id': DocID
id': ReportID

8-18 Lesson 8: More about entity types

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

8.7 Processing units of a schema

An entity type represents the existence and the properties (attributes and cons-
traints) of a class of outstanding objects of the application domain. Besides this
static view, we could want to describe the behaviour of these objects. The
standard way is through operations or methods, as proposed in object-orien-
ted approaches.

A method is a service associated with an entity type. Each entity6 of this type
can respond to any call for this service (this call is generally called a message).

Figure 8.22 shows some methods associated with entity types CUSTOMER and
ORDER in the form of processing units.

Figure 8.22 - Each entity type has been given processing units, or methods .

6. The OO approach distinguishes class methods, which the entity type is responsible for,
from instance methods, that can be taken in charge by the entities. For instance,
register_customer is a class method that must be asked to entity type CUSTO-
MER while remove_customer is an instance method.

1-1

0-N
ref

1-1

1-N
of

1-1

0-N

places

DETAIL
QtyOrd
id: ref.PRODUCT

of.ORDER
enter_detail()
detail_cost

ORDER
OrdNumber
OrdDate
id: OrdNumber
enter_order()
make_invoice()
remove_order

PRODUCT
ProdCode
Name
Price
QtyOnHand
id: ProdCode
new_product()
cancel_product
change_price()
get_quantity()

CUSTOMER
CustNumber
Name
Address
id: CustNumber
register_customer()
remove_customer
update_address()

Lesson 8: More about entity types 8-19

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

A processing unit is defined by selecting the entity type and by executing the
command New / Processing unit (Figure 8.23).

Figure 8.23 - Defining a processing unit for entity type PRODUCT.

Processing units can be associated with rel-types and schemas (Figure 8.24) as
well. In the latter case, they represent global functions of the system, such as
organizational functions in a conceptual schema or application programs in a
logical schema.

Figure 8.24 - Global procedures associated with a schema.

Processing units can be inherited too. However, special mechanisms will be
used, such as overloading. More on this later on.

Company/Conceptual

Personnel
Invoicing
Order_Management
Marketing
Manufacturing

8-20 Lesson 8: More about entity types

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Key ideas of Lesson 8

1. Supertypes and subtypes

An entity type can be a subtype of one or several other entity types, called its
supertypes. If B is a subtype of A, then each B entity is an A entity as well. The
collection of the subtypes of entity type A is declared total (symbol T) if each
A entity belongs to at least one of its subtypes; otherwise, it is said to be partial.
This collection is declared disjoint (symbol D) if an entity of a subtype cannot
belong to another subtype of B; otherwise, it is said to overlap. If this collec-
tion is both total and disjoint, it forms a partition (symbol P).

Since a supertype/subtype relation is interpreted as each B entity is an A entity,
it is called an IS-A relation. IS-A relations form what is called an IS-A hierar-
chy.

An entity type can have more than one supertype. Such a situation is called
multiple IS-A hierarchy, or more commonly (but improperly) multiple inheri-
tance.

2. Inheritance

Since all B entities are A entities as well, entity type B inherits all the proper-
ties of entity type A. In particular, all the attributes of A are attributes of B as
well. This is true too for the identifiers and other constraints, as well as for all
the rel-types in which A participates.

In a multiple IS-A hierarchy, some rules must be satisfied in order to make the
inheritance mechanism conflict-free.

3. Processing units

Procedures can be associated with entity types, rel-types and schemas, to re-
present the behaviour of the system described by the schema. Processing units
of entity types can be used to define methods in object-oriented schemas.

Lesson 8: More about entity types 8-21

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Summary of Lesson 8

• In this lesson, we have studied the following notions:

- supertypes, subtypes, supertype/subtype relation or IS-A relation

- total, disjoint and partition properties of the collection of the subtypes

- inheritance of attributes, constraints and rel-types

- processing units associated with entity types, rel-types and schemas

• We have also learned

- to specify the supertype(s) of an entity type:

in the Entity type box of the subtype, include the na-
me(s) of the supertype(s) in the Supertype list box

- to define the total, disjoint properties:

in the Entity type box of the supertype: click on the
buttons Total, Disjoint.

- to define a processing unit:

New / Processing unit .

8-22 Lesson 8: More about entity types

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Exercises for Lesson 8

8.1 In the begining of this lesson, we wrote: ... factories, suppliers and cus-
tomers are companies. In addition, each factory can have customers
and can have suppliers. ...

Complete the corresponding schema in order to include these specifica-
tions.

8.2 In the same schema, describe the fact that each company can be a sub-
sidiary of another company (Hint: use a cyclic relationship type). Show
how this fact must be interpreted through the IS-A relation. In other
words, make explicit the inherited relationship type. On the basis of this
small example, what do you think of the conciseness of IS-A relations?

8.3 Build a schema (called PERSONNEL) representing the following ap-
plication domain.

The company has employees. Each of them is identified by an employee
id, and has a name and an address. An employee can have a personal
file. This file has an identifying code, a date and a content. Among the
employees, there are clerks and workers. Workers are characterized by
a salary, and must be affiliated to a trade union. A clerk has a level and
a function. A trade union has a name and an address.

Consider four different hypotheses:

- each employee is either a clerk or a worker, but not both (version 1);

- an employee can be a clerk or a worker, but not both (version 2);

- each employee is either a clerk or a worker, or both (version 3);

- an employee can be a clerk or a worker, or both (version 4).

8.4 Derive from one of these schemas another schema which makes all the
properties of each entity type explicit by showing the effect of the inhe-
ritance mechanism.

8.5 An application domain concerns vehicles. Some are cars while others
are trucks. There are special vehicles that are both cars and trucks. Ima-
gine two or three different kinds of cars and two kinds of trucks. Draw
the Entity-relationship schema of this application domain and define
proper attributes for each of these entity types.

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Lesson 9

More about attributes

Objective

Attributes form the building blocks of every schema. In this les-
son, we examine new forms and new features of attributes. We
learn more on domains (particular user-defined domains), multi-
valued attributes, stable and non-recyclable attributes, attribute
identifiers, multivalued identifiers, reference attributes and ac-
cess keys and object attributes.
Some of these concepts are specific to conceptual schemas, while
others will be used in logical schemas.

9-2 Lesson 9: More about attributes

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

9.1 Introduction

If entity types are the building block of schemas, attributes are those of entity
types. Hence the need for a rich set of features to define the many kinds of
attributes that appear in all the data models in which databases can be speci-
fied.

9.2 Built-in domains

Built-in domains are very general, meaningless, data types that are proposed
by most programming languages, DBMSs and CASE tools. Character
strings, numeric and date data types are some of the most common built-in do-
mains. The DB-MAIN CASE tool proposes eight of them through the Type
list-box of the Attribute property box (Figure 9.1).

Figure 9.1 - Atomic attributes can be based on built-in domains: boolean,
Char(acter), Date, Float, Index, Numeric, Sequence and Varchar(acter). An
attribute is Compound if it is given component attributes.

Lesson 9: More about attributes 9-3

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

1. Boolean(n): Set {true,false }, or any set of 2 elements.

2. Char(n): The set of n-character strings.

3. Varchar(n): The set of strings with length from 0 to n.

4. Date(n): Set of dates or timestamps.

5. Numeric(n[,d]): Set of numerical values of n decimal digits, including d
decimals.

6. Float(n): Set of floating point numerical values with a representation of n
bytes.

7. Index(n): Numerical values that designate the elements of parent attribute
A[I-J], which is a multivalued attribute of type array. If A has actual car-
dinality k, the index attribute instances takes some values from 1 to k.
More on this in Section 9.6.

8. Sequence(n): Numerical values that designate the elements of parent attri-
bute A, which is a multivalued attribute of type list. If A has actual cardi-
nality k, the index attribute instances takes all the values from 1 to k. More
on this in Section 9.6.

In these definitions, n stands for the length (Boolean, Char, Date, Numeric,
Float, Index, Sequence), or the max length (Varchar), of the domain values.
For each type, the tool proposes a default length. Except for Date and Boo-
lean, it is an unusual value that should, in most cases, be replaced. Indeed,
most Char(1) values must be considered as a length that the analyst forgot
to set. The Schema analysis assistant1 can easily detect this pattern.

The table of Figure 9.3 describes the rules for n. Figure 9.2 shows some exam-
ples of usage of built-in domains.

Figure 9.2 - Some attributes based on built-in domains.

1. Will be described later on.

PRODUCT
 ProdNum: num (8)
 Name: char (28)
 Description: varchar (N)
 Price: num (8,2)
 Available: boolean
 id: ProdNum

9-4 Lesson 9: More about attributes

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 9.3 - Rules for length n of each built-in domain: range, default length
and some particular rules.

9.3 User-defined domains

Built-in domains convey almost no semantics: just numbers, character strings
and the like. What a pity for such essential elements! What about defining our
own, semantics-bearing, domains? That’s the goal of user-defined or applica-
tion-specific domains.

A user-defined domain is like an attribute, except that it has no parent, and can
be used as a domain for true attributes. Let us consider an application domain
in which several attributes are some variants of personal ID, addresses, phone
numbers and VAT numbers. It would be most convenient if we could use spe-
cial domains called PID , Address , PhoneNumber and VATnumber ins-
tead of meaningless built-in domains numeric and character strings.

Using user-defined domains has several advantages:

- incremental modeling: discovering the main information types of the appli-
cation domain is the first step in several information system design metho-
dologies; in any methodologies, user-defined domains can be considered as
a first level of reuseable components;

Type range of n default particular rule

 Boolean 1-99 1

 Char 1-99999 1

 Varchar 1-99999; N 1 N stands for unlimited length

 Date 1-99 10

 Numeric 1-99; 0-99 1 1st figure = total length
2nd figure = decimals

 Float 1-99 1

 Index 1-9 1 not shorter than length of max card. of
the array (e.g., 3 for max card. = 500)

Sequence

1-9 1 not shorter than length of max card. of
the list

Lesson 9: More about attributes 9-5

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

- readability: the semantics of attribute can be made more explicit, making
the schema much more informative;

- maintainability and ease of evolutionthe name or the definition of a domain
can be changed at one place, then propagated to all the attributes that use it;
for instance, modifying the structure of phone numbers in all the schemas
of a project can be made in a centralized way;

- consistency: attributes that denote similar properties and concepts can be
based on the same domain, therefore increasing the simplicity and coheren-
ce of the specifications;

- code generation: an increasing number of DBMSs include domain declara-
tion statements (create domain of SQL) or even abstract data types.

Needless to say that finding the optimal set of user-defined domains is an im-
portant asset when building successful and maintainable information systems.

Now, let us go in for practical aspects of user-defined domains.

Figure 9.4 - The Management box of User-defined domains shows four do-
mains that have been defined already, two of which being compound.

9-6 Lesson 9: More about attributes

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

We call the User-defined domain management box through command Pro-
duct / User domains (Figure 9.4). This box shows the domains already defi-
ned, and allows us to create new domains, to modify and to remove existing
domains.

Defining a domain is just like defining a single-valued, mandatory attribute
(cardinality [1-1]), and is done through the same Property box. A domain can
be atomic or compound. A user-defined domain, or a component of it, can be
based on built-in domains or on other user-defined domains. Take the neces-
sary time to write a precise semantic description of each domain you define.
As you can expect, recursive domains, i.e., domains defined directly or indi-
rectly on themselves, are not allowed!

When defining an attribute, we can select a user-defined domain by choosing
User-defined in the Type list box (Figure 9.1). Then, a new field appears
(User-def.), showing all the available user-defined domains (Figure 9.5). Just
select one of them. Do practice this concept by defining the domains of Figure
9.4 and by entering the schema of Figure 9.6.

Figure 9.5 - Any attribute can be defined on a User-defined domain.

Lesson 9: More about attributes 9-7

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure 9.6 - PersonID has been defined on user-defined domain PID , while
PersonalAddress and ProfessionalAddress have been defined
on domain Address .

9.4 Stable and non-recyclable attributes

Standard attributes have values that represent definite states of the application
domain at a given time: the address of an employee, the account level of a cus-
tomer or the description of a product. As a consequence, attribute values of an
entity evolve according to the changes of state of this entity: employees move,
account levels go up and down and a product can get another description.

However, we can want some properties of an entity type to be stable during the
life of each entity. Therefore, allowing users to change the values of the cor-
responding attributes can be considered undesirable.

Attributes can be given two special properties (Figure 9.7):

- stability : once an entity has received a value for this attribute, this value can
never be changed in the life of the entity;

- non-recyclability: once an entity has received a value for this attribute, this
value can never be reused for another entity, even long after the first entity
was deleted2.

Of course, most attributes are unstable and have recyclable domains.

These properties are closely linked with the identifiability of entities, and
mainly concerns primary identifiers. The best application of the concept su-
rely is history representation and management. Let us consider that we want
to record all the successive states of persons initially described as in Figure
9.6.

PERSON
 PersonID: PID
 Name: char (24)
 PersonalAddress: Address
 ProfessionalAddress: Address
 id: PersonID

2. In fact, the recyclability property is a characteristic of the domain of the attribute.

PERSON

PersonID
Name
PersonalAddress
ProfessionalAddress
id: PersonID

9-8 Lesson 9: More about attributes

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 9.7 - PersonID is stable , that is, once assigned to an entity, its value
cannot be changed, and non recyclable , so that no assigned values can ever
be reused, even when the entities have been deleted.

Now each state of each person is represented by a HIST_PERSON entity (Fi-
gure 9.8), in which Begin and End are timestamp values that define the pe-
riod during which the person was in this state. When any property (name,
address, etc.) of a person changes, the current state is closed and a new current
state is created. A state is identified by the PID of the person and the Begin
time of the state. The complete history of the person with PID = X is repre-
sented by the sequence of all HIST_PERSON entities that have PID = X.

What would happen if attribute PID value were allowed to change during the
life of a person? Clearly, it would be impossible to rebuild the history of this
person, because we would have lost the only common property of the states,
that is the unique PID value. Conclusion: PID must be declared stable.

Now, we suppose that we keep the histories of all the entities that have been
deleted (deletion is the ultimate state change). It is quite obvious too that once
a PID value has been assigned to an entity, be it currently alive or deleted, it
can never be assigned to another entity, otherwise the concept of history would
become ambiguous. Indeed, all the histories with the same PID value, though

Lesson 9: More about attributes 9-9

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

they come from different persons, would coalesce into a single history. The-
refore, PID must be declared, not only stable, but also non recyclable.

Figure 9.8 - Representing histories of persons.

9.5 Attribute identifiers

So far, entity types and rel-types can be given identifiers. On the other hand,
each value of a multivalued attribute is a set of values, i.e., a collection of dis-
tinct values. In the schema of Figure 9.9, all Sales values are unique, that is,
no two Sales values are made up of the same Region value and the same
Year value and the same Volume value.

Figure 9.9 - Each SALESMAN entity has a set of distinct Sales values.

However, we feel that the Volume component is useless to state the unique-
ness property of the Sales values. Clearly, the values of Region and Year
should suffice to identify one Sales value among all those of a given SA-
LESMAN entity. One way to assert this property is to say that the values of
Sales , for any given SALESMAN, are identified by {Region ,Year }. In

HIST_PERSON
PersonID
Begin
End
Name
PersonalAddress
ProfessionalAddress
id: PersonID

Begin

SALESMAN
PID
Name
Address
Sales[0-20]

Region
Year
Volume

id: PID

9-10 Lesson 9: More about attributes

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

other words, {Region ,Year } is the identifier of multivalued attribute Sa-
les of SALESMAN.

We define such an identifier as follows.

1. We select parent attribute Sales .

2. We execute command New / Group. This opens the Group property box
for Sales .

3. We move components Region and Year in the Component field.

4. We click on the Primary ID button, then on OK.

The resulting schema should look like that of Figure 9.10. Note that more than
one identifier can be declared for an attribute.

Figure 9.10 - For any particular salesman, we record yearly sales for each re-
gion. Therefore, the Sales values of each SALESMAN entity have distinct
Region and Year values. {Region ,Year } is declared the primary identi-
fier of attribute Sales .

To make the concept more understandable, it can be useful to give an equiva-
lent form of this schema. Let us suppose that Sales are represented as SA-
LES entities instead. Rel-type for links SALESMAN with SALES. What
about the identifier of SALES? Since a salesman cannot make two sales in the
same region, the same year, the identifier must comprise {for.SALESMAN ,
Region , Year } as shown in Figure 9.11. So, the schemas of Figure 9.10 and
Figure 9.11 convey exactly the same semantics.

There is a nice trick to show this, namely a schema transformation. First open
the schema of Figure 9.10, then proceed as follows.

SALESMAN
PID
Name
Address
Sales[0-20]

Region
Year
Volume

id: PID
id(Sales):

Region
Year

Lesson 9: More about attributes 9-11

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure 9.11 - The right side schema is another equivalent way to represent
the same situation.

1. We select attribute Sales .

2. We execute command Transform / Attribute / -> Entity type. A small
box opens (Figure 9.12), which we validate.

3. We choose the name of the new entity type (SALES) and of the new rel-
type (for).

Surprise! We get the schema of Figure 9.11. If you are not fully convinced,
try the inverse transformation: select entity type SALES, then execute Trans-
form / Entity type / -> Attribute .

Figure 9.12 - This box asks us what kind of attribute-to-entity-type transforma-
tion we want. So far, we have not the slightest idea of what this could mean!
Nevertheless, considering the limited list of possible techniques, it should not
be too difficult to choose.

1-10-20 for

SALESMAN
PID
Name
Address
id: PID

SALES
Region
Year
Volume
id: for.SALESMAN

Region
Year

9-12 Lesson 9: More about attributes

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

9.6 Non-set multivalued attributes

Several conceptual models (ERA, Merise, NIAM, etc.) include the concept of
multivalued attribute, allowing analysts to model associations of sets of values
with entities, while other models, such as OMT and UML, do not propose it as
standard. Though this construct is simple and (generally) well defined, it
shows its weakness when more complex situations are to be modeled. Ordered
sets, collections of non-distinct elements and arrays are among the most fre-
quent non-set structures that appear to be difficult to specify and to understand.
First, we will try understand why non-set collections of values can be useful.
Then, we will propose an overview of these set and non-set structures, descri-
bing the main aspects of multivalued attributes and their conversion into pure
set-oriented constructs.

As a first example, let us consider the phone numbers of a population of per-
sons. We observe that each person can have from 0 to 5 phone numbers, which
we translate in the schema of Figure 9.13.

Figure 9.13 - Persons have from 0 to 5 phone numbers.

However, things are a bit more complex. Indeed, the phone numbers of a per-
son are not of equal importance. The first number is the the main one to try,
then, when it fails, we try the second one, and so forth to the last one. In other
words, phone numbers form an ordered list of 0 to 5 distinct values. This is
easy to specify, as shown in Figure 9.14. The result appears in Figure 9.15,
where u-list stands for Unique list.

PERSON
PersonID
Name
PersonalAddress
ProfessionalAddress
Phone[0-5]
id: PersonID

Lesson 9: More about attributes 9-13

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure 9.14 - Multivalued attributes can define mere sets. However, they can
alternately form bags, lists, lists of unique values, arrays or arrays of distinct
values.

Figure 9.15 - Multivalued attribute Phone is declared a Unique list: for each
entity, its value form a sequence of unique values.

Now, it is time to examine all the collection types provided by the DB-MAIN
model. For each of them, we propose an intuitive definition based on a prac-
tical example. Afterwards, we will show how non-set constructs can ex-
pressed as pure set equivalent expression. The presentation is a bit tedious, but
it is worth being carefully followed.

PERSON
PersonID
Name
PersonalAddress
ProfessionalAddress
Phone[0-5] u-list
id: PersonID

9-14 Lesson 9: More about attributes

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Sets

An attribute A depending on parent object P is called multivalued if a collec-
tion of more than one value of A can be associated with each instance of P.
Otherwise, the attribute is called single-valued. The cardinality of the attribu-
tes states of how many values this collection can be made up. The schema of
Figure 9.16 (left) partly models an application domain in which each customer
can be given from 1 to 5 phone numbers.

Figure 9.16 - Phone is a set multivalued attribute of its parent CUSTOMER.

In the most simple situations, this value collection is just a pure set, which
means that the values are distinct, and that no ordering (or whatever else) re-
lation holds among the values. For instance, if a customer happens to have 4
phone numbers, its entity will be given a collection of four distinct Phone va-
lues in which no number can be considered as the first or the last one. Venn
diagrams are commonly used to graphically represent such collections of va-
lues (Figure 9.16 - right). Except when specified otherwise, multivalued attri-
butes are sets.

Bags

This is nice for phone numbers (and for some other interesting situations), but
what about the following problem: our customer, besides having phone num-
bers, usually has cars too, for which we only want to record the make of each
of them. Since people tend to buy cars of the same make, we must accept to
record the same make name more than once. Therefore, we will associate,
with each CUSTOMER entity, a collection of make names in which certain
names can appear more than once. This particular form of collection in which
different elements can be identical is called a bag3 of values. Figure 9.17
shows entity type CUSTOMER as well as the graphical representation of a bag

3. ... or multiset.

CNum
Name
Phone[1-5]

CUSTOMER
1723

6627
8341

9045

Lesson 9: More about attributes 9-15

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

of Car values. In this example (right), the customer has one Ford car, one
Toyota and two VWs.

Figure 9.17 - Car is a bag multivalued attribute.

Unique lists

For some particular kinds of information, the order of the values in each col-
lection is meaningful. It is the case for the christian names of persons, among
which there a first one, usually used to call this person to mow the lawn on sa-
turday morning. Then there is a second one, generally reduced to its initial.
Most often there is a third one, and some persons can have a fourth one. So
the christian names of a person are distinct, but they are ordered. Such a col-
lection will be called a unique list. Figure 9.18 illustrates this situation and a
sample collection of christian names.

Figure 9.18 - ChristianName is a unique list multivalued attribute.

Lists

Of course, we could ask for the same privilege as we did for sets: being al-
lowed to built a list in which the same value can appear several times. Such a
collection simply is a list. There are many situations where lists are a useful
modeling construct. Let us consider second-hand cars sold by a company, and
for which advertisements have been published in newspapers. Potential
buyers call for appointment to examine one of the cars. The calls are recorded
by an answering machine, then, later on, the callers are contacted in the calling
order. It is not uncommon that the same person call more than once. This pro-
tocol can be modeled by Figure 9.19. The car for which the phone calls are

Ford

VW
VW

Toyota
CNum
Name
Car[0-10] bag

CUSTOMER

John Andrew MathiewCNum
Name
ChristianName[1-4] u-list

CUSTOMER

9-16 Lesson 9: More about attributes

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

illustrated have been (or will be) examined by potential buyer with number
75.83.12, then by the one with number 22.67.40, and finally by the first one
again, exactly in this order.

Figure 9.19 - BuyerPhone is a list multivalued attribute.

Arrays

Normally, we should have to close the discussion on multivalued attributes
with the List construct. Unfortunately, we cannot. The problem is simple to
state, though it is a bit more complicated to solve.

When examining what standard technologies propose to implement collec-
tions of values, we quickly learn that most of them offer one construct only,
i.e., the array of elements. This is a universal structure, through which one
can easily represent sets, bags and all sorts of lists, but which also makes it
possible to implement other sorts of data structures, such as chains, hash ta-
bles, sparse tables, vectors, matrices, etc. Most decent 3GL languages such as
COBOL, PL/1, ADA, BASIC, Pascal and C include some variant of the array
construct4.

An array is not a data structure as we have discussed them so far. It is a me-
mory organization, made of an indexed collection of cells. Each cell is desi-
gnated through its position (generally an integer number starting from 1). A
cell is empty until a value is explicitly stored in it. Two cells can contain the
same value.

Considering the contents of these cells only, an array appears as a list of non-
unique values that can include some null-values. The problem is that the po-
sition of a cell can be an implicit information. Figure 9.20 represents the mo-
del of a department for which we record the expenses according to 4 different

4. Some languages offers the list construct (LISP, PROLOG) while OO-DBMS often propose
bag and set constructs.

75.83.12 22.67.40 75.83.12
Number
Make
Model
Year
BuyerPhone[0-20] list

CAR

Lesson 9: More about attributes 9-17

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

categories, numbered from 1 to 4. In the sample data, there is an amount for
categories 1, 2 and 4 only.

Figure 9.20 - Expense is an array multivalued attribute.

Unique arrays

Arrays being pure storing structures, there generally is no uniqueness cons-
traints on the cell contents. Hence the concept of unique array. The schema
of Figure 9.21 represents teams of persons in charge of projects. Each team
comprises from two to four persons, each of them taking a specific role (num-
bered from 1 to 4) in the team.

Figure 9.21 - Role is a unique array multivalued attribute.

Summary

The table below shows the classification of multivalued constructs according
to two dimensions: structure and uniqueness.

Generally (but there can be exceptions), sets, bags, lists and unique lists will
be used in conceptual specifications while arrays will rather be used in logical
and physical schemas.

unstructured ordered indexed array of cells

unique set u-list u-array

non unique bag list array

Name
Location
Expense[0-4] array

DEPARTMENT

1,250 825 1,250

J. Barrie Dodgson MilneCode
Skill
Role[2-4] u-array

TEAM

9-18 Lesson 9: More about attributes

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Set expression of non-set multivalued attributes

It can be shown that any non-set collection of elements can be expressed into
an equivalent structure, generally more complex, but that includes set cons-
tructs only. Let us first examine how the examples of bag, list and array shown
above can be transformed into set expressions.

Bags. A bag is transformed into a set of pairs <m;v >, where v is a unique va-
lue and m is the number of instances of v in the bag.

Lists. A list is transformed into a set of pairs <s;v >, where s is the position
of the element in the list and v its value. Note that the values of s form a con-
tinuous sequence, since each element of the list consists of a value (as opposed
to arrays).

Arrays . An array is transformed into a set of pairs <i;v >, where i is the in-
dex of a non-empty cell and v is its contents. Note that the values of i do not
form a continuous sequence, since empty cells are not represented.

Now, we can propose precise translation rules for all the non set constructs.
For each of them, the following table shows an example of each non set attri-
bute, its set equivalent and a short description.

<1;Ford>

<2;VW>

<1;Toyota>Ford

VW
VW

Toyota

⇒

John Andrew Mathiew <3;Mathiew>

<2;Andrew>

<1;John>

⇒

<4;1,250>

<2;825>

<1;1,250>

1,250 825 1,250 ⇒

Lesson 9: More about attributes 9-19

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

⇔

The bag of cars is replaced with a set
of distinct car values. To recover the
fact that each car Value can appear
more than once, a Multiplicity
attribute states how many times this
value appears.

⇔

The list is transformed into a set of
couples made up of a christian name
value (Value) and a Sequence
number that states the position of the
value. The attribute identifiers are
necessary to tell that, for each CUS-
TOMER entity, the ChrName values
are unique according to Sequence
and according to Value .

⇔

The list is transformed into a set of
pairs made up of a BuyerPhone
value (Value) and a Sequence
number that states the position of the
value. The attribute identifier tells
that, for each CAR entity, the
BPhone values are unique accor-
ding to Sequence .

⇔
Each non-empty cell of the array is
expressed as an Expense value,
that comprises the Index value of
the cell and the Value stored in it.
The attribute identifier tells that, for
each DEPARTMENT entity, the
Expense values are unique accor-
ding to Index .

CUSTOMER
CNum
Name
Car[0-10] bag

CUSTOMER
CNum
Name
Car[0-10]

Multiplicity
Value

id(Car):
Value

CUSTOMER
CNum
Name
ChrName[1-4] u-list

CUSTOMER
CNum
Name
ChrName[1-4]

Sequence
Value

id(ChrName):
Sequence

id'(ChrName):
Value

CAR
Number
Make
Model
Year
BPhone[0-20] list

CAR
Number
Make
Model
Year
BPhone[0-20]

Sequence
Value

id(BPhone):
Sequence

DEPARTMENT
Name
Location
Expense[0-4] array

DEPARTMENT
Name
Location
Expense[0-4]

Index
Value

id(Expense):
Index

9-20 Lesson 9: More about attributes

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Big question: do we have to know all these rules? Not at all, DB-MAIN know
them much better than we could ever. For instance, select attribute ChrName
of entity type CUSTOMER and execute command Transform / Attribute /
Multi Conversion. We get a fairly complex control panel (Figure 9.22) which
asks us into what kind of collection type we want attribute ChrName to be
converted. There seems to be a lot of possible target structures, but few con-
versions are labelled no loss , stating that we will loose no information if we
select them.

To understand this panel we must examine some outstanding properties of mu-
tivalued attributes. Three of them are of particular importance, namely uni-
queness, order and possible gaps.

1. Uniqueness. Three constructs enforce uniqueness on their elements,
namely sets, unique lists and unique arrays. The other three accept multi-
ple instances of the same value.

2. Order. Two constructs form unordered collections of values, namely sets
and bags. The other four induce an order on the collection of their ele-
ments.

3. Gaps. A cell of an array (be it unique or not) can be empty, leaving a gap
between its adjacent cells. This gap can have a specific meaning (absent
value for instance). Sets, bags and lists ignore this concepts.

When converting a collection type into another one, each of these properties
can be preserved (denoted by a green =), lost (denoted by a red -) or introdu-
ced (denoted by a red +). A conversion produces a equivalent construct if it
preserves all three properties (presence or absence), i.e., if it is characterized
by three green = in the control panel. For a unique list, only the second con-
version preserves all its properties (Figure 9.22).

⇔

Same as for array. An additional
attribute identifier states that Role
values are unique according to
Value .

TEAM
Code
Skill
Role[2-4] u-array

 TEAM
Code
Skill
Role[2-4]

Index
Value

id(Role):
Index

id'(Role):
Value

Lesson 9: More about attributes 9-21

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

The best way to understand all this is to play with the different kinds of mul-
tivalued attributes and to apply all the possible conversions.

Figure 9.22 - Converting non-set multivalued attribute ChrName of CUSTO-
MER into another collection type (including set).

9.7 Multivalued identifiers

Identifiers comprise attributes and/or roles. However all the examples used so
far were based on single-valued attributes. Nothing prevents us from defining
an identifier with a multivalued attribute, such as in the schema of Figure 9.23
(left), which states that customers have from 0 to 10 account numbers. Not
only each customer has unique account numbers (which is quite natural since
we defined them as a set of values), but each account number is unique among
all customers. In other words, an account number belongs to one and only one
customer.

9-22 Lesson 9: More about attributes

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

This property is simply declared through the secondary identifier {Ac-
count[*] }. Note that the bracket part of expression Account[*] tells
that each value of Account is, in its own right, an identifier.

To better grasp the essence of this construct, let us transform attribute Ac-
count into an entity type (Figure 9.23, right):

1. we select attribute Account ,

2. we call command Transform / Attribute / -> Entity type,

3. we validate all the propositions (except for the rel-type name which will
feel better when renamed as "of "!).

Now look very carefully at both schemas, and try to convince yourself that
they convey exactly the same semantics.

Figure 9.23 - In the left side schema, attribute Account has been declared
an identifier of CUSTOMER to represent the fact that an account belongs to
one customer only. Another equivalent way to represent the situation is pro-
posed in the right side schema.

Now, if we accept multivalued attributes as components of identifiers, we
could define very complex and quite obscure (and sometimes quite wrong
too!) structures. So that we would be wise to limit the valid arrangements to
meaningful combinations, or at least to those that can make sense for most of
us. Therefore, we propose to define identifiers that comply with the valid
forms described in Figure 9.24.

Some additional rules for identifiers of entity type E:

1-1

0-10

of

CUSTOMER
CustID
Name
Address
id: CustID

ACCOUNT
Account
id: Account

CUSTOMER
CustID
Name
Address
Account[0-10]
id: CustID
id': Account[*]

Lesson 9: More about attributes 9-23

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

• The attribute components of any identifier of E are attributes of E, of any
level.

• Each role component r belongs to binary rel-type R such that (1) r is
played by F, (2) the other role s is played by E, (3) R.s has cardinality
[I-1] , where I=1 for primary identifiers, (4) R.r has cardinality [K-
L] , with L>1 .

Figure 9.24 - Valid formats for entity type identifiers.

9.8 More on access keys

The identifier of Figure 9.23 (left) can be declared an access key as well (do
it!), yielding a multivalued foreign key. Of course, such complex access keys
cannot be translated in a straightforward way into relational indexes5. But all
this is another story that will be told later on.

Access keys form a particular species, whose habits are described in Figure
9.25.

Figure 9.25 - Valid formats for access keys.

single-valued attribute multivalued attribute role

format 1 1 or more 0 0

format 2 1 or more 0 1

format 3 0, 1 or more 0 2 or more

format 4 0 1 0

5. Anyway, some (rare) DBMSs can manage multivalued indexes. ADABAS from Software
AG is one of them.

single-valued attribute multivalued attribute role

format 1 1 or more 0 0

format 2 1 or more 0 1 or more

format 3 0 0 1 or more

format 4 0 1 0

9-24 Lesson 9: More about attributes

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Additional rules for access keys of entity type E:
• The attribute components of any identifier of E are attributes of E, of any

level.
• Each role component r belongs to binary rel-type R such that (1) r is

played by F, (2) the other role s is played by E.

The schema of Figure 9.26 shows some examples of non-standard access keys.
They state that one can get fast access to PERSON entities (or records) (1)
from any CarID value, (2) or from any ZipCode value, (3) or from Ac-
countNumber value of any Account value, (4) or from any REGION enti-
ty (or record) via lives_in .

Figure 9.26 - A handful of non-standard access keys.

9.9 Multivalued reference attributes

If identifiers and access keys can be multivalued, why couldn’t foreign keys
be multivalued as well? They can, indeed. Figure 9.27 shows that the link
between CUSTOMER and ORDER can be defined by multivalued foreign key
CUSTOMER.Passes from CUSTOMER to ORDER, instead of the more tradi-
tional single-valued foreign key from ORDER to CUSTOMER.

1-1

0-Nlives _in

PERSON
PersID
Name
CarID[0-5]
City

ZipCode
CityName

Account[0-N]
AccountNbr
Amount

id: PersID
acc: CarID[*]
acc: City.ZipCode
acc: Account[*].AccountNbr
acc: lives _in.REGION

REGION
RegionName
Population
id: RegionName

Lesson 9: More about attributes 9-25

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure 9.27 - A multivalued foreign key. Note that the id’ constraint states that
an ORDER entity cannot be referenced by more than one CUSTOMER entity
and the equ constraint states that each ORDER entity must be referenced by
one CUSTOMER entity.

The schema of Figure 9.28 is a more sophisticated illustration of the concept.
The multivalued foreign key implements a many-to-many rel-type between
UNIT and PRODUCT.

Multivalued foreign keys will be found either in standard files, where record
types can include multivalued fields acting as implicit, i.e., undeclared, foreign
keys, or in modern RDBMSs (SQL-3 or SQL:1999), that provide some way to
define multivalued columns. However, it can be demonstrated that any data
structure, even apparently purely relational, can include implicit multivalued
foreign keys. Indeed, a single-valued field can result from the concatenation
of the values of a multivalued field, and therefore represent potential multiva-
lued foreign key. Such complex structures are studied in the theory of reverse
engineering and are beyond the scope of this tutorial. However they are worth
being mentioned.

Figure 9.28 - A multivalued foreign key that implements a many-to-many link
between two entity types: a production unit can produce several products whi-
le a product can be produced by several units.

ORDER
OrdNum
Date
id: OrdNum

CUSTOMER
CustID
Name
Address
Places[0-N]
id: CustID
id': Places[*]

equ

PRODUCT
ProdID
Name
Description
id: ProdID

UNIT
UnitID
Name
Address
Produces[0-N]
id: UnitID
ref: Produces[*]

9-26 Lesson 9: More about attributes

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

9.10 Non-standard reference attributes

In the previous section, we already shook the apparent simplicity of the con-
cept of foreign key by suggesting that they could be made up of a multivalued
attribute. Not surprisingly, they can comprise compound or sub-attributes as
well. In addition, we will mention some other curious forms of foreign keys.
Some of them will appear naturally in standard database analysis and design
while others will found in legacy databases.

- Optional FK . All the components of the foreign key are optional; if the lat-
ter comprises more than one component, the foreign key should form a
coexistence group as well (why?).

- Total FK . A foreign key is called total if each value of the target identifier
must be referenced by at least one source entity. Such a foreign key has
been described in Section 6.4, and is represented by symbol equ.

- Cyclic FK. A cyclic foreign key references its own table instead of another
table, so that it is a bit less foreign than the standard FK.

- Identifier FK . The foreign key is an identifier as well.

- Secondary FK. The foreign key references a secondary identifier instead of
a primary identifier.

- Conditional FK . The components can be interpreted as a foreign key only
under a definite condition.

- Multi-target FK . The foreign key references more than one table. Each va-
lue designates a row in each of the target tables.

- Alternate FK . The foreign key references more than one table. Each value
designates a row in one of the target tables only.

However, some even stranger kinds of foreign keys can be encountered in the
database jungle. We will examine two of them, that must be interpreted at the
logical level6, so that we will talk about record types (these structures are not
relational) instead of entity types and about fields instead of attributes. Five
more examples are proposed in the Exercise section.

6. About 25 non-standard foreign key patterns are discussed in J-L Hainaut, J-M. Hick, J.
Henrard, V. Englebert, D. Roland, The Concept of Foreign key in Reverse Engineering - A
Pragmatic Interpretative Taxonomy, DB-MAIN Research Report, March 1997, FUNDP.

Lesson 9: More about attributes 9-27

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Hierarchical foreign key to a multivalued attribute

Record types, as they appear in standard files, often compensate the lack of in-
ter-record explicit relationships by complex intra-record hierarchical field
structures. In particular, multivalued compound fields, possibly at several le-
vels, are popular structures to implement a hierarchy of entity types. In such
a structure, some dependant entities can be represented by instances of multi-
valued fields, instead of by records. Referencing these entities from within
other records consists in designating these values. Hence the concept of forei-
gn keys referencing field values instead of records.

In the schema of Figure 9.29, an ORDER record represents a customer order
that includes from 0 to 20 details. Each of these details mention a different
item in a definite quantity. This structure is represented by the ORDER record
type which includes multivalued field Detail . This field has distinct Item-
Code values (this property is declared by an attribute identifier). To identify
a unique Detail value, the programmer must supply a values of OrdID and
a value of ItemCode . For each detail, some shipments can be sent to the cus-
tomer. Therefore, each shipment is associated with a detail. Each SHIP-
MENT record designates its parent Detail value through the hierarchical
foreign key {OrdID,ItemCode }.

Figure 9.29 - The foreign key references a value of a multivalued attribute,
instead of an entity.

Overlapping foreign keys

Two multi-component foreign keys overlap if they share one or several colu-
mns and if none is a subset of the other. The schema of Figure 9.30 describes
lines of invoice, each of which belongs to an invoice and references a line of
order. Both invoice and line of order reference their unique origin order, hence
common component OrderNumber .

OrdID
Date
Detail[0-20]

ItemCode
Qty

id:OrdID
id(Detail):

ItemCode

ORDER

ShipNumber
Date
OrdID
ItemCode
Qty
id: ShipNumber
ref:OrdID

ItemCode

SHIPMENT

9-28 Lesson 9: More about attributes

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 9.30 - The overlapping foreign keys share common field OrderNum-
ber

9.11 Object attributes

As has been accepted until now, the domain of an attribute is a set of values.
Some domains are made up of atomic values (numbers, character strings, dates
and the like) while others comprise more complex structures such as com-
pound domains as illustrated in Section 9.3.

Considering that a domain is just a set of things, why can’t these things be en-
tities? Figure 9.31 is an example of this idea. Attribute Sender has been gi-
ven a domain that is entity type CUSTOMER instead of any set of elementary
values.

Figure 9.31 - The value of attribute Sender is not a CustID value, as we
could expect, but a CUSTOMER entity!

OrderNumber
ItemCode
Qty
id: OrderNumber

ItemCode

LINE-of-ORDER
OrderNumber
InvoiceNumber
Date
Amount
id: OrderNumber

InvoiceNumber

INVOICE
OrderNumber
InvoiceNumber
LineNumber
ItemCode
Qty
Amount
id: OrderNumber

InvoiceNumber
LineNumber

ref: OrderNumber
InvoiceNumber

ref: OrderNumber
ItemCode

LINE-of-INVOICE

CUSTOMER
CustID
Name
Address
id: CustID

ORDER
OrdNum
Date
Sender: *CUSTOMER
id: OrdNum

Lesson 9: More about attributes 9-29

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

In other words, each value of this attribute really is an entity, not a printable
value such as CustID , as would have been the case should we declare Sen-
der a foreign key to CUSTOMER. For instance, we can talk about sub-attri-
butes Sender.Name and Sender.Address of ORDER, as if Sender
were a compound attribute.

The schema of Figure 9.32 pushes the idea even further. The value of attribute
OrderPlaced of entity type CUSTOMER is a set of ORDER entities. As abo-
ve, the value of Sender is a CUSTOMER entity. Note that OrderPlaced is
an identifier of ORDER, translating the fact that an order is placed by one cus-
tomer only, and therefore identifies it. Each Detail value includes a value
of attribute Product , which is a PRODUCT entity.

Figure 9.32 - This schema describes customers that place orders, the details
of which reference products. Object attributes is an alternative to rel-types and
foreign keys.

This schema includes a new feature, namely redundant structures. Indeed, tel-
ling who is the sender of each order gives the same information as designating
all the orders of each customer. Therefore, object attributes OrderPlaced
and Sender convey exactly the same information. Moreover, they can be
considered as the inverse of each other. When customer C places order O, we
must add entity O to attribute OrderPlaced of entity C and attribute Sen-
der of O must be set to C. Declaring that Sender and OrderPlaced are
inverse object attributes can be made as in Figure 9.34. To state this cons-
traint, we proceed as follows.

1. Each attribute must form a group. That is already done for OrderPla-
ced , so that we just select Sender and we click on button GR in the
Standard tools bar.

2. We open the Property box of any of both groups (say, Sender) and we
click on button Constraint to call the Inter-group constraint panel.

ORDER
OrdNum
Date
Sender: *CUSTOMER
Detail[1-10]

Product: *PRODUCT
Qty

id: OrdNum

PRODUCT
ProdNum
Name
Description
Price
id: ProdNum

CUSTOMER
CustID
Name
Address
OrderPlaced[0-N]: *ORDER
id: CustID
id': OrderPlaced[*]

9-30 Lesson 9: More about attributes

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 9.33 - Choosing an inverse object attribute.

Figure 9.34 - Object attribute OrderPlaced has been declared the inverse
of Sender of ORDER to express the fact that the sender of an order placed
by customer C is C him/herself.

3. Button Inverse is already checked (DB-MAIN understands what we are
doing). All the candidate inverse object attributes are shown in fields Tar-

get entity types and Object type attributes7. We select one of them and we
validate the choice.

The schema appears as in Figure 9.34.

ORDER
OrdNum
Date
Sender: *CUSTOMER
Detail[1-10]

Product: *PRODUCT
Qty

id: OrdNum
inv: Sender

CUSTOMER
CustID
Name
Address
OrderPlaced[0-N]: *ORDER
id: CustID
id': OrderPlaced[*]

inv

Lesson 9: More about attributes 9-31

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

For what reason could we want to represent inter-entity relationships through
object attributes instead of pure rel-types? Because it is the preferred (and on-
ly) way to link object classes in object-oriented DBMSs or OO-DBMSs
(where entity types are interpreted as object classes). In object-relational
DBMSs, or ORDBMS, we can use either foreign keys or table-based columns,
i.e., object attributes.

The concept of inverse object attribute will be useful in OO-DBMSs, where
object attributes are often used to navigate between object classes: to get the
sender of an order and the orders placed by a customer. On the contrary, OR-
DBMSs do not require such doubled representations. To close the discussion,
we give in Figure 9.35 a pure Entity-relationship schema that is equivalent to
that of Figure 9.32.

Figure 9.35 - An Entity-relationship schema equivalent to that of Figure 9.32.

7. If the inverse attribute you have in mind is not displayed, that means that it cannot be
declared the inverse of the current attribute. For instance, OrderPlaced appears in the
candidate list because its domain is ORDER and it has been declared an identifier of
CUSTOMER. If one of these conditions is not met, DB-MAIN does not propose this
attribute.

1-1

0-N

ref

1-1
OrderPlaced

0-N
Sender

places

1-11-10 of

PRODUCT
ProdNum
Name
Description
Price
id: ProdNum

ORDER
OrdNum
Date
id: OrdNum

DETAIL
Qty

CUSTOMER
CustID
Name
Address
id: CustID

9-32 Lesson 9: More about attributes

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Key ideas of Lesson 9

1. Built-in and user-defined domains

Built-in domains are the basic data types which atomic attributes can be based
on in DB-MAIN. They correspond to the data types available in most DBMSs
and programming languages. Additional, application-specific, domains can
be defined as a named combination of basic data types. They offer a nice way
to built a collection of reusable components on which the schemas can be built.

2. Stable and non-recyclable attributes

The value of a stable attribute can be set, but cannot be changed afterwards. If
an attribute is non-recyclable, then any value that was once given to the attri-
bute of an entity cannot be assigned to another entity, even when the former
has disappeared.

3. Attribute identifiers

Considering multivalued, compound, attribute A depending on parent P (enti-
ty type, rel-type or compound attribute), a subset of the components of A can
be declared an identifier for A. For each parent instance, the values of A are
unique on this subset of values.

4. Non-set multivalued attributes

In many situations, the value of a multivalued attribute is a set of values, that
is, an unordered collection of distinct values. Sometimes, we need more so-
phisticated kinds of value collections. A bag is an unordered collection of va-
lues that are not necessary distinct. A unique list is an ordered collection of
distinct values, while these values can be nonunique in a simple list. An array
is an indexed set of cells in which values can be stored. In a unique array, the-
se values are unique. Note that some cells can be left empty.

Each non-set collection type can be transformed into an equivalent standard,
set-oriented, multivalued attribute.

Lesson 9: More about attributes 9-33

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

5. Multivalued identifiers

An entity type identifier can comprise attributes and/or roles. They can also
be made up of a multivalued attribute

6. Access keys

Complex access keys, defined on non-relational schemas can include multiva-
lued attributes, component attributes and even remote roles. Such access keys
will be used in optimized logical schema design.

7. Non-standard reference attributes

Besides classical relational foreign keys, made up of one or several atomic,
single-valued column, and referencing the primary id of one table, many other
kinds of referential structures can be encountered in actual databases. Interpre-
ting these structures is a problem that pertain to the reverse engineering do-
main.

8. Object attributes

An object attribute is an attribute whose domain is an entity type. Two object
attributes can be declared inverse of each other. An object attribute can be
used to represent a relationship type.

Such structures will be found in OO databases, in which entity types are called
object classes instead. They can be used in plain entity-relationship schemas
to define domains that are more complex than user-defined domains.

9-34 Lesson 9: More about attributes

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Summary of Lesson 9

• In this first lesson, we have studied the following concepts:

- Built-in domains

- User-defined domains

- Stable and non-recyclable attributes

- Attribute identifiers

- Non-set multivalued attributes

- Multivalued identifiers

- Complex access keys

- Multivalued reference attributes

- Non-standard reference attributes

- Object attributes

• We have also learned

- to define and to use user-defined domains

Product / User domains

- to define an attribute identifier

select the attribute, then New / Group

- to transform an attribute into an entity type

Transform / Attribute / -> Entity type

- to transform an entity type into an attribute

Transform / Entity type / -> Attribute

- to convert non-set multivalued attributes into set attributes

Transform / Attribute / Multi Conversion

Lesson 9: More about attributes 9-35

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Exercises for Lesson 9

9.1 Define a dozen attribute that are specific to an accounting system. Same
exercise for an application domain that talks about students, teachers,
lectures and exams.

9.2 Transform the following structure into a schema that does not include
multivalued attributes.

9.3 Transform each example of non-set attribute proposed in this lesson into
a pure relational schema.

Hint: first transform it into a set multivalued attribute, then transform
the latter into relational structures through command Transform / Re-
lational model.

Compare the result with the source schema.

9.4 Embedded foreign key

In a social security system, each child depends on a parent (which is a
person), and is associated with an account. A developer has coded this
situation as follows.

CUSTOMER
CustID
Name
Purchase[0-100]

Date
Item
Qty
Shipment[0-5]

Date
Sty

id: CustID
id(Purchase):

Item
Date

id(Purchase.Shipment):
Date

9-36 Lesson 9: More about attributes

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

What do you think of this schema? Can you restructure it to make its
actual semantics explicit?

9.5 Partly optional foreign key

A collection of memoir subjects are proposed to last year students. A
memoir is identified by its title and the year it is being proposed. Stu-
dents are characterized by their name, the option they are registered in,
and the year they have to choose a memoir subject. When they have
made this choice, they are given the title of their memoir. Technically
speaking, when attribute Title of a STUDENT entity is null, then this
entity references no MEMOIR entity, while when Title is not null,
then {Title,Year } references a MEMOIR entity.

This structure cannot be declared a foreign key in every RDBMS. Pro-
pose another equivalent structure that can be fully coded in SQL.

PID
Name
Parent
Account
id: PID
ref: Parent
ref: Parent

Account

CHILD

RegistrNumber
AccountNum
Date
id: RegistrNumber

AccountNum

ACCOUNT

PID
Name
Address
Employer
id: PID

PERSON

STUDENT
StudID
Name
Option
Title[0-1]
Year
id: StudID
ref: Title

Year

MEMOIR
Title
Year
Advisor
id: Title

Year

Lesson 9: More about attributes 9-37

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

By the way, could you give a correct Entity-relationship schema of this
implementation?

9.6 Partially reciprocal foreign keys

A fluid distribution network is made up of nodes and pipes linking no-
des in a directed tree structure. The fluid flows from the root node to
the leaf nodes. In a pipe, it flows from the source node to the sink node.
The pipes attached to a common source node are uniquely numbered.
Among the outgoing pipes of each source node, one is considered its
main pipe. A developer proposes the following relational schema, that
comprises a non-standard foreign key pattern, called partially recipro-
qual FK. What could be the conceptual schema it is an implementation
of?

9.7 Design a relational schema that describes the following application do-
main: Towns are situated in countries (or states). Towns in the same
country have distinct names. In each country, one town is known as its
capital.

Give an equivalent conceptual schema of this logical schema.

9.8 Non-minimal FK

Many text books about relational theory base their introduction to Boy-
ce-Codd normal form on the following example:

registration(Student,Subject,Lecturer)
Lecturer – → Subject
Student,Subject – → Lecturer

There are several ways to transform this schema. One of them could be
as follows:

NodeID
MainPipe
Position
id: NodeID
ref: NodeID

MainPipe

NODE NodeFrom
Number
NodeTo[0-1]
Length
id: NodeFrom

Number
id': NodeTo

ref
equ: NodeFrom

PIPE

9-38 Lesson 9: More about attributes

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

A LECTURE entity represents the fact that a lecturer teaches a given
subject. A lecturer is allowed to teach one subject only. This fact is no-
tified by the secondary identifier {Lecturer }. A (non-minimal) pri-
mary identifier comprising {Suject,Lecturer } has been defined
for technical reasons that have to be discovered. A REGISTRATION
entity states that a student is entitled to be taught a subject by a lecturer.
The identifier of REGISTRATION enforces the following constraint: a
student can be taught a subject by one lecturer only.

Can you explain the rationale of unusual identifier {Subject,Lec-
turer } and foreign key {Subject,Lecturer }?

9.9 Reflexive foreign key8

What do you think of the following schema? Can it be simplified?

8. This pattern was really found in an Oracle database (probably generated by a CASE tool).
We are still trying to guess what it was intended for!

Subject
Lecturer
id: Subject

Lecturer
id': Lecturer

LECTURE

Student
Subject
Lecturer
id: Student

Subject
ref: Subject

Lecturer

REGISTRATION

A1
A2
id:A1

ref

A

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Lesson 10

More about constraints

Objective

This lesson describes new constraints to better express the com-
plexity of application domains, namely existence constraints.
These constraints dictates, among others, which attributes of an
entity type must have a value while others cannot. We will show
that these constructs are strongly related to IS-A relations. More
general forms of constraints can be declared, namely the generic
constraints.
In addition, this lesson will introduce to the powerful concept of
schema transformation.

10-2 Lesson 10: More about constraints

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

10.1 Introduction

This lesson will discuss new forms of constraints that can be used to better cap-
ture the semantic structures of complex application domains. We start DB-
MAIN and we create a new project called Lesson10 .

10.2 Existence constraints

When you observe, in the application domain, that
• an employee can be the manager of a department or the head of a project

but not both,
• when an employee works in a department, then the date s/he was hired is

known,
• a car must belong to a customer or allocated to a service

you can translate these observations into existence constraints.

These constraints are properties that hold among groups of optional attributes
and/or roles related to an entity type. They tell which of these attributes (and
roles) must have a value and which ones must have, or can have, no values.
We will describe in detail four of them: coexistence, exclusive, at-least-one
and exactly-one.

10.3 Coexistent components of an entity type

We create a new schema, called Coexistence , in which we will describe
persons who may work in companies and who may be married (a fairly com-
mon combination). More precisely, each person is described by its personal
number, its name, the name of his/her spouse, the date s/he was married, the
company s/he works for, and the date s/he was hired by this company.

However, not all the persons are married and/or work in a company. Therefo-
re, attributes SpouseName, DateMarried and DateHired are optional
and role works-in.PERSON is optional too. The corresponding schema
looks like Figure 10.1.

Lesson 10: More about constraints 10-3

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure 10.1 - A schema describing persons working in companies.

However, things are not so simple. For instance, all married persons have
both valid date married and valid spouse name properties, while non-married
persons have neither of them.

Similarly, working persons have a date hired property and a company they
work in, while non-working persons have neither.

We can say that attributes DateMarried and SpouseName are coexistent,
i.e., some entities have a value for these attributes, while all the others have no
values for them.

DB-MAIN provides us with a specific feature to declare this coexistence cons-
traint: the coexistence group. It works as follows:

- we create a group1 comprising attributes SpouseName and DateMar-
ried , and we give it the coexistence characteristics by clicking on the
Coexistence button in the Group box (Figure 10.2);

- similarly, we define works-in.COMPANY and DateHired as another
coexistence group.

The completed schema is shown in Figure 10.3 and in Figure 10.4.

1. Proceed as usual: select all the components then click on button GR in the Standard tools
bar. To open a selected group, just press the Enter key.

0-1

0-N works-in

PERSON
PersID
Name
SpouseName[0-1]
DateMarried[0-1]
DateHired[0-1]
id: PersID

COMPANY
CompNumber
CompName
id: CompNumber

10-4 Lesson 10: More about constraints

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 10.2 - Defining a coexistence group.

Figure 10.3 - Any person who works in a company must have a date hired,
and conversely. All married persons, and only they, have a spouse name and
a date of marriage.

0-1

0-N works-in

PERSON
PersID
Name
SpouseName[0-1]
DateMarried[0-1]
DateHired[0-1]
id: PersID
coex: works-in.COMPANY

DateHired
coex: SpouseName

DateMarried

COMPANY
CompNumber
CompName
id: CompNumber

Lesson 10: More about constraints 10-5

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure 10.4 - Text view of coexistence constraints.

Note

1. All the components of a coexistence group must be optional. This condi-
tion is easy to check for attributes: their cardinality must be [0-j]. For the
role components (e.g., works-in.COMPANY), the rule is a bit different:
the role specifies a relationship type whose other role must be optional, i.e.
it has cardinality [0-1]. This rule can be explained by the following inter-
pretation: a PERSON optionally (i.e., [0-1]) works-in a COMPANY.

2. A coexistence group can also be defined among the attributes of a rela-
tionship type.

10.4 Exclusive components of an entity type

This concept is quite similar to the coexistence of components.

Let us record in the current schema information about the wages of the per-
sons. Considering that some persons are paid on an hourly basis, while the
others are paid at the end of each month, we can define two attributes, namely
HourlyWages and MonthlyWages .

 COMPANY
 CompNumber
 CompName
 id: CompNumber
 PERSON
 PersID
 Name
 SpouseName[0-1]
 DateMarried[0-1]
 DateHired[0-1]
 id: PersID
 coexist: works-in.COMPANY, DateHired
 coexist: SpouseName, DateMarried

 works-in (
 [0-N]: COMPANY
 [0-1]: PERSON)

10-6 Lesson 10: More about constraints

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

However, no PERSON entity can have a value for both attributes. We consider
these attributes as exclusive.

It is fairly easy to define an exclusive constraint in DB-MAIN through an ex-
clusive group:

1. we create a new group2 comprising attributes HourlyWages and
MonthlyWages ,

2. we give it the exclusive characteristic by clicking on the Exclusive button
in the Group box.

The schema appears as in Figure 10.5.

Let us now consider an additional rule, stating that companies do not hire mar-
ried persons3. In other words, a person is married, or works in a company, (or
none), but not both.

Figure 10.5 - A person paid monthly cannot be paid per hour, and conversely.

The information concerning the marriage is gathered into a coexistence group
{ SpouseName, DateMarried } while the information related to the pro-

2. Provided no such group already exists. In such a case, just double-click on it and proceed
as told in step 2.

3. Non-equal-opportunity companies must be modeled as well. Whether describing politi-
cally incorrect situations is politically correct or not is beyond the scope of this introduc-
tion.

PERSON
PersID
Name
SpouseName[0-1]
DateMarried[0-1]
DateHired[0-1]
MonthlyWages[0-1]
HourlyWages[0-1]
id: PersID
coex: works-in.COMPANY

DateHired
coex: SpouseName

DateMarried
excl: MonthlyWages

HourlyWages

Lesson 10: More about constraints 10-7

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

fessional activity of the person is represented by the coexistence group
{ works-in.COMPANY , DateHired }.

The exclusive constraint is defined by an exclusive group as follows:

1. we declare a new group comprising group {works-in.COMPANY ,

DateHired } and group {SpouseName, DateMarried } 4,

2. we give it the exclusive characteristic by clicking on the Exclusive button
in the Group box.

We get the schema of Figure 10.6.

Notes

1. All the components of an exclusive group must be optional.

2. An exclusive group can also be defined among the attributes of a rela-
tionship type.

3. A simpler expression will be proposed in the following (Figure 10.10).

Figure 10.6 - Married persons cannot work in a company, and conversely. A
simplified expression will be discussed in the following.

4. Same procedure as for attributes: select the groups then click on button GR in the Stan-
dard tools bar.

PERSON
PersID
Name
SpouseName[0-1]
DateMarried[0-1]
DateHired[0-1]
MonthlyWages[0-1]
HourlyWages[0-1]
id: PersID
coex: works-in.COMPANY

DateHired
coex: SpouseName

DateMarried
excl: MonthlyWages

HourlyWages
excl: {works-in.COMPANY

DateHired}
{SpouseName
DateMarried}

10-8 Lesson 10: More about constraints

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

10.5 Groups with at least one , or exactly one , existing com-
ponent

Let us consider again the last schema. For the purpose of the demonstration,
we delete exclusive group {MonthlyWages , HourlyWages }.

Now we consider that all the persons are paid, in a way or in another. In our
schema, this rule translates as follows: at least one of the attributes Hour-
lyWages and MonthlyWages must have a value.

This property is called the at-least-one constraint, and can be specified throu-
gh an at-least-one group as follows:

1. we declare a new group {Monthly-Wages,Hourly-Wages },

2. we click on button At-least-one in the Group box.

Without surprise, we get the schema of Figure 10.7.

Figure 10.7 - Every person must be paid, in whatever way(s)!

Very often, such a group will also be given the exclusive property, to declare
that one and only one component must have a value. To state this, we open the
group again and we click on the Exclusive button, so that both Exclusive and
At-least-1 buttons are checked.

This condition is defined by the Exactly-one property (symbolized with
exact-1 in the schema) as shown in Figure 10.8.

PERSON
PersID
Name
SpouseName[0-1]
DateMarried[0-1]
DateHired[0-1]
MonthlyWages[0-1]
HourlyWages[0-1]
id: PersID
at-lst-1: MonthlyWages

HourlyWages

Lesson 10: More about constraints 10-9

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure 10.8 - Every person must be paid, but in one way only.

Notes

1. All the components of an At-least-one group must be optional.

2. A group cannot have both Coexistence and At-least-one properties.

3. An At-least-one group can also be defined among the attributes of a rela-
tionship type.

10.6 Existence constraints rules

There are some logical rules that are useful to know when one defines several
existence rules. Most of them are quite intuitive, but it could be useful to shed
some light on them.

Let us first consider two examples.

1. It is sometimes possible to simplify a set of coexistence groups. In Figure
10.9/left, two coexistence constraints hold among the attributes of entity
type PERSON. One attribute appears in both constraints, which makes
it valid to merge the groups.

PERSON
PersID
Name
SpouseName[0-1]
DateMarried[0-1]
DateHired[0-1]
MonthlyWages[0-1]
HourlyWages[0-1]
id: PersID
exact-1: MonthlyWages

HourlyWages

10-10 Lesson 10: More about constraints

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 10.9 - Two coexistence constraints that share common components
must be merged.

2. Figure 10.6 has shown that an exclusive constraint can be defined on other
groups. If these groups define a coexistence constraint, then the exclusive
group can be reduced (Figure 10.10).

Figure 10.10 - An exclusive constraint between two coexistent groups can be
simplified by replacing each group with one of its components.

⇒

⇒

PERSON
PersID
Name
SpouseName[0-1]
DateMarried[0-1]
SpouseBirthDate[0-1]
coex: SpouseName

DateMarried
coex: SpouseName

SpouseBirthDate

PERSON
PersID
Name
SpouseName[0-1]
DateMarried[0-1]
SpouseBirthDate[0-1]
coex: SpouseName

DateMarried
SpouseBirthDate

PERSON
PersID
Name
SpouseName[0-1]
DateMarried[0-1]
DateHired[0-1]
MonthlyWages[0-1]
HourlyWages[0-1]
id: PersID
coex: works-in.COMPANY

DateHired
coex: SpouseName

DateMarried
excl: MonthlyWages

HourlyWages
excl: {works-in.COMPANY

DateHired}
{SpouseName
DateMarried}

PERSON
PersID
Name
SpouseName[0-1]
DateMarried[0-1]
DateHired[0-1]
MonthlyWages[0-1]
HourlyWages[0-1]
id: PersID
coex: works-in.COMPANY

DateHired
coex: SpouseName

DateMarried
excl: MonthlyWages

HourlyWages
excl: works-in.COMPANY

SpouseName

Lesson 10: More about constraints 10-11

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

It would be boring to precisely describe and illustrate all the rules that hold
among any arbitrary set of existence constraints. Figure 10.11 gives some of
them in an abstract way. You should easily find practical examples of each of
them without too much toil. Note that some rules define inference, while
others express equivalence or inconsistencies:

- C1 ⇒ C2 Inference: tells that whenever constraints C1 are sa-
tisfied, then constraints C2 are automatically satis-
fied; therefore, expressing C2 is useless.

- C1 ⇔ C2 Equivalence: tells that constraints C1 are equivalent
to constraints C2: whenever one set is satisfied, the
other one is satisfied as well; therefore, we can defi-
ne C1 or C2.

- C1 ⇒ C2 is false Inconsistencies: tells that if constraints C1 are satis-
fied, then constraints C2 cannot be satisfied; there-
fore, expressing C1 and C2 leads to an inconsistent
schema.

inference rules

 coex: A,B,C ⇒ coex: A,B

 excl: A,B,C ⇒ excl: A,B

 excl: A,B
 excl: A,C

⇒ coex: B,C

 excl: A,B
 coex: B,C

⇒ excl: A,C

 coex: A,B
 at-least-1: A,B,C

⇒ at-least-1: B,C

 excl: A,B,C
 at-least-1: A,B

⇒ excl: A,B

 E
ID
A[0-1]
B[0-1]
C[0-1]
D[0-1]
E[0-1]
F[0-1]
G[0-1]

10-12 Lesson 10: More about constraints

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 10.11 - Some rules to simplify and to find inconsistencies among exis-
tence constraints. This table is kindly intended for those who have problems
falling asleep at night.

10.7 Existence constraints and IS-A relations

You probably found this section about existence constraints a bit complicated.
You may even have asked yourself (from now on, you should ask us!) why
precisely these constraints and not all the others that we can imagine. Quite
right, other constraints of this kind can be defined, but these are particularly
meaningful when related with the different kinds of IS-A relations. It is a bit
too early to develop this point in detail, but we can get an idea on why these
constraints have been privileged.

Let us consider the small IS-A hierarchy of Figure 10.12.

equivalence rules

 excl: A,B
 excl: A,C

⇔ excl: A,B
coex: B,C

 coex: A,B
 coex: A,C

⇔ coex: A,B,C

 coex: A,B,..
 coex: E,F,..
 excl: {A,B,..},
 {E,F,..}

⇔ coex: A,B,..
coex: E,F,..
excl: A,E

 excl: A,B,C
 at-least-1: A,B

⇔ exact-1: A,B
C is always null, can be removed

inconsistency rules

 excl: A,B
 excl: A,C

⇒ excl: B,C is false

 excl: A,B,C ⇒ coex: B,C is false

 coex: A,B,C ⇒ excl: B,C is false

 at-least-1: A,B,C ⇒ at-least-1: B,C is false

 at-least-1: A,B,C ⇒ coex: A,B,C is false

Lesson 10: More about constraints 10-13

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure 10.12 - A source schema including an IS-A hierarchy.

Now let us imagine that we want to translate this schema into relational struc-
tures. Obviously, the rules we used in Section 6.6 are useless, since they cope
with simple conceptual schemas only. Though we will discuss advanced
translation rules in another volume, we already can build an ad hoc relational
implementation of this schema as follows (Figure 10.13).

1. We move the attributes of EXECUTIVE to EMPLOYEE. They become
optional, since not all employees are executives.

2. We do the same for the attributes of ENGINEER.

Figure 10.13 - A relational logical schema implementing the conceptual sche-
ma of Figure 10.12.

EXECUTIVE
Function
Level

ENGINEER
Skill
Experience

EMPLOYEE
EmpID
Name
Address
id: EmpID

EMPLOYEE
EmpID
Name
Address
Function[0-1]
Level[0-1]
Skill[0-1]
Experience[0-1]
id: EmpID
coex: Function

Level
coex: Skill

Experience

10-14 Lesson 10: More about constraints

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

3. When an EMPLOYEE is an EXECUTIVE, s/he has values for Function
and Level . Otherwise s/he has no values for them. Same reasoning for
ENGINEER. Hence the coexistence constraints shown in Figure 10.13.

In Figure 10.12, no constraints held among the subtypes. No, we consider that
no executive can be an engineer, a property that can be expressed through the
D (disjoint) property of the subtypes. The implementation of Figure 10.13 can
be kept, provided the additional property is explicitly expressed. It is not too
complicated: if attributes {Function , Level } have a value, then attributes
{ Skill,Experience } must be null, and conversely. In short, these
groups of attributes must be declared exclusive (Figure 10.14).

Figure 10.14 - Relational implementation of a disjunction

It is getting clear now that all the subtype properties can be completely trans-
lated into existence constraints:

Disjoint ⇔ exclusive

Total ⇔ at-least-one

Partition ⇔ exactly-one.

In conclusion, though existence constraints are useful in themselves, they also
are necessary and sufficient to express all the subtype properties of the IS-A
constructs. This stresses their importance in building correct relational logical
schemas that fully translate IS-A relations, as we will see in the next volume.

⇔
D

EXECUTIVE
Function
Level

ENGINEER
Skill
Experience

EMPLOYEE
EmpID
Name
Address
id: EmpID

EMPLOYEE
EmpID
Name
Address
Function[0-1]
Level[0-1]
Skill[0-1]
Experience[0-1]
id: EmpID
coex: Function

Level
coex: Skill

Experience
excl: Function

Skill

Lesson 10: More about constraints 10-15

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

10.8 Other existence constraints

The constraints described so far are the most important among existence cons-
traints. However, many more can be imagined that cannot be explicitly inclu-
ded neither in formal models (such as the Entity-relationship model) or in
CASE tools. The implication constraint is one of them.

In its simplest form, the implication constraint states that the value of some at-
tributes B1, B2, ... can exist only when the values of other attributes A1, A2,
... exist as well. In other words, the existence of attributes B1, B2, .. implies
the existence of attributes A1, A2, ...

Hence the implication expression:

{B1,B2,.. } ⇒ {A1,A2,.. }

Let us consider the schema of Figure 10.15, in which the following constraints
hold:
• the name of the spouse of an employee is valid only when this employee is

married, i.e., when s/he has a DateMarried ;
• the birthdate of the spouse of the employee is valid only when this

employee is married, i.e., when s/he has a DateMarried ;

Figure 10.15 - An entity type in which two implication constraints hold.

These constraints can be expressed as follows:

• SpouseName ⇒ DateMarried

• SpouseBirthDate ⇒ DateMarried

Unfortunately, there is no specific construct to declare such constraints, so that
we are forced to imagine an equivalent structure. What about the schema of
Figure 10.16? Can you prove that this schema translate both implication cons-
traints correctly?

PERSON
PersID
Name
SpouseName[0-1]
DateMarried[0-1]
SpouseBirthDate[0-1]

10-16 Lesson 10: More about constraints

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 10.16 - This schema is intended to express implication constraints: no
SpouseName without DateMarried and no SpouseBirthDate wi-
thout DateMarried . Is it correct?

10.9 Generic constraints

The lessons studied so far have described a fairly large variety of constraints:
identifiers, attribute domains, attribute cardinality, rel-type cardinality, exis-
tence, subtype properties, etc. However, it is impossible to enumerate all the
constraints that are, or that may be, useful to describe some application do-
mains. Let us consider, for example, a constraint such as the following: no em-
ployee can receive a salary greater than that of his/her manager or orders can
have a non-zero rebate only if they have at least 3 details. Hence the need for
a more general means to declare arbitrary kinds of constraints. DB-MAIN of-
fers two generic constructs that can be used to define new constraints, namely
the generic group constraint and the generic inter-group constraint.

Generic group constraints

Les us consider a specific constraint that tells that among the mentioned nume-
ric attributes, at least one must be positive. It is a kind of at-least-one cons-
traint, but this one checks the actual values, not only their presence or absence.

We will illustrate this constraint on the schema of Figure 10.18, where at least
one of the three account levels must be greater than zero. The constraint will
be named at-lst-1>0 , to be interpreted as at-least-one-greater-than-zero.

Practically, we proceed as follows:

1. We define a group comprising the three attributes: we select these attribu-
tes and we click on the button GR.

2. We open the property box of this group: we press the Enter key.

PERSON
PersID
Name
Marriage[0-1]

DateMarried
SpouseName[0-1]
SpouseBirthDate[0-1]

Lesson 10: More about constraints 10-17

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

3. We click on the button User const., we type at-lst-1>0 in the cons-
traint field (Figure 10.17). We close the Property box by clicking on OK.

Figure 10.17 - A new form of constraint is being defined.

The constraint appears as in Figure 10.18. Once this constraint has been defi-
ned, it can be used anywhere in any project without being redefined5.

Figure 10.18 - A new form of constraint tells that at least one of the attributes
must have a positive value.

5. In fact, its definition has been stored in the DB-MAIN.ini file.

CUSTOMER
CustID
Name
IntAccount
ExtAccount
SaveAccount
id: CustID
at-lst-1>0: IntAccount

ExtAccount
SaveAccount

10-18 Lesson 10: More about constraints

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Generic inter-group constraints

Several constraints are defined among groups or from a group to another one.
Constraints Ref, Equ and Inverse are some of them. The DB-MAIN model al-
lows us to define our own inter-goup constraints. Figure 10.19 shows a schema
that describes suppliers that supply items, and orders whose products are as-
signed to suppliers. One obvious constraint is that one cannot assign a pro-
duct of an order to a supplier if this supplier does not supply this product. In
other words, all the couples {SUPPLIER,ITEM} of relationships assigned
must be a subset of supplies relationship set. Such a constraint belongs to
the general family of inclusion constraints, of which the referential constraint
is just a special case.

An inter-group constraint is built as follows.

1. We define group {SUPPLIER,ITEM} of supplies and group {SUP-
PLIER ,ITEM} of assigned;

2. The latter is opened and defined as a generic group constraint with the
name incl .

3. We call the constraint panel (by clicking on button Constraint), we select
the target object RT:supplies and the target group {SUP-
PLIER ,ITEM}. We click on the button Generic and close all the panels.

Figure 10.19 - A new inter-group constraint that tells that each couple of
{SUPPLIER,ITEM} that appears in an assigned relationship must be a
supplies relationship as well.

0-N0-N
supplies

gr: SUPPLIER
ITEM

0-N

0-N

0-N

assigned

incl: SUPPLIER
ITEM

ORDER

ITEMSUPPLIER

Lesson 10: More about constraints 10-19

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Note

Generic constraints can be considered as passive constraints, since the tool
does not understand their semantics. They can be processed through ad hoc
Voyager procedures.

10.10 Schema transformation: another look

To help understand the concept of coexistence constraint, we will propose an
equivalent structure which may be more illustrative of the very nature of this
constraint. To do so, we will use again the transformation toolkit of DB-
MAIN. This component will be studied in greater detail in future lessons, but
the current situation is a good opportunity to experiment with one of its sim-
plest tools: attribute aggregation.

We consider the schema of Figure 10.3, and we proceed as follows:

- we select, by clicking on it, the group that comprises SpouseName and
DateMarried ;

- we execute command Transform / Group / Aggregation (Figure 10.20);

- a new attribute is created; we give it the name Marriage (or any other na-
me);

Figure 10.20 - Asking for the aggregation of the components of the selected
group into a compound attribute.

10-20 Lesson 10: More about constraints

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

As illustrated in Figure 10.21, the set of attributes of PERSON has been res-
tructured as follows:

- now, SpouseName and DateMarried are the components of the new
compound attribute Marriage ;

- these attributes are mandatory for their parent attribute;

- Marriage is optional;

- the coexistence constraint has been removed.

It is important to be convinced that the schemas of Figure 10.3 and Figure
10.21 convey exactly the same semantics, i.e., they describe the same portion
of the application domain. Indeed, Figure 10.21 tells that a PERSON entity can
have a Marriage value. In this case, it has a value for each of its compo-
nents, namely SpouseName and DateMarried . If it has no Marriage
value, then, quite naturally, it has no values for the components of this attribu-
te. This is exactly what the coexistence constraint is intended to express.

Figure 10.21 - Coexistent group {SpouseName,DateMarriage } has been
transformed into optional compound attribute Marriage .

To push the experiment a bit further, we select the attribute Marriage , and
we execute the command Transform / Attribute / Disaggregate.

(Not really) surprisingly, we get the origin schema! We can draw from this
two essential conclusions that will be discussed later on:

1. each transformation is the inverse of the other one: each one erases the
effect of the other one; they are called inverse transformations;

2. both schemas are equivalent, i.e., they represent exactly the same reality,
though through different structures. The choice of one of them will be
guided by criteria which are beyond the scope of this lesson. A transfor-
mation which replaces a schema with an equivalent one is called reversi-

PERSON
PersID
Name
Marriage[0-1]

SpouseName
DateMarried

DateHired[0-1]
id: PersID

Lesson 10: More about constraints 10-21

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

ble, or semantics-preserving.

As we will see later on, such a transformation can be summarized as in Figure
10.22.

Figure 10.22 - A couple of reversible transformations: Group/Aggregate (left
to right) and Attribute/Disaggregate (right to left).

DB-MAIN offers a fairly large number of schema restructuring techniques, or
schema transformations. These are among the most simple, but not the least
useful, as will be illustrated in further lessons.

Note

The other coexistence group can be processed in a similar way. However,
it would need a more sophisticated transformation since it includes attribu-
tes and roles. Thus, we will leave it to a further lesson.

⇔
PERSON

PersID
Name
SpouseName[0-1]
DateMarried[0-1]
DateHired[0-1]
id: PersID
coex: SpouseName

DateMarried

PERSON
PersID
Name
Marriage[0-1]

SpouseName
DateMarried

DateHired[0-1]
id: PersID

10-22 Lesson 10: More about constraints

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Key ideas of Lesson 10

1. Existence constraints

These constraints are properties that hold among groups of optional attributes
and/or roles related to an entity type. They tell which of these attributes (and
roles) must have a value and which ones must have, or can have, no values.

We considered four of them:
• coexistence: the components of the group must be simultaneously present

or absent for any entity; the group appears with the symbol coex;
• exclusive: among the components of the group at most one must be pre-

sent for any entity; the group appears with the symbol excl;
• at-least-1: among the components of the group, at least one must be pre-

sent for any entity; the group appears with the symbol at-lst-1; all its com-
ponents are optional;

• exactly-1: among the components of the group, one and only one must be
present for any entity (= exclusive + at-least-1); symbol exact-1.

Existence constraints can also hold among the attributes of a rel-type. Existen-
ce constraints can translate in relational logical schemas the subtype properties
(D, T) of IS-A relations.

2. Generic constraints

A generic group constraint is a user-defined property holding among the com-
ponents of a group. It defines a new integrity constraint which is given a user-
defined name. A generic inter-group constraint is a user-defined directed link
drawn from one group to another group. The meaning of generic constraints
is user-defined.

3. Schema transformation

A schema transformation is an operator that replaces constructs in a schema
with other constructs. Each transformation has an inverse that can undo its ef-
fect. A transformation that changes the form of the schema without affecting
its semantic contents is called semantics-preserving. Replacing a coexistent
group of attributes with a compound attribute (attribute group aggregation) is
a semantics-preserving transformation. Its inverse is compound attribute di-
saggregation.

Lesson 10: More about constraints 10-23

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Summary of Lesson 10

• In this lesson, we have studied the following notions:

- coexistence constraint

- exclusive constraint

- at-least-one constraint

- exactly-one constraint

- generic, or user-defined, constraints

- schema transformation, inverse transformation, reversible transformation

• We have also learned how

- to define coexistent, exclusive, at-least-one, exactly-one groups:

in the Group box, click on the Coexistent, Exclusive,
At-least-one button

- to define a generic group constraint:

in the Group box, fill the User constraint field

- to define a generic inter-group constraint:

in the Group box, click on the Constraint button

- to define a compound attribute from its components:

if needed, make a group with the components; then
Transform / Group / Aggregate

- to disaggregate a compound attribute:

Transform / Attribute / Disaggregate

10-24 Lesson 10: More about constraints

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Exercises for Lesson 10

10.1 Let us consider the four schemas PERSONNEL that have been built in
Exercise 9.3. For each of them, derive another schema in which the IS-
A relation has been eliminated. Proceed as follows:

- replace the supertype/subtype relation by a one-to-one relationship
type drawn between the supertype (cardinality [0-1]) and each subty-
pe (cardinality [1-1]).

Take special care with all the derived existence constraints that express
the subtype properties.

10.2 Let us consider the four schemas PERSONNEL that have been built in
Exercise 9.3. For each of them, derive another schema in which the IS-
A relation has been eliminated. Proceed as follows:

- propagate (by inheritance) all the components of the supertype (attri-
butes, roles, constraints) to each of its subtype;

- remove the supertype.

Pay special attention to all the derived existence constraints. Be aware
that employees who are neither clerks nor workers must be represented
anyway.

10.3 Let us consider the four schemas PERSONNEL that have been built in
Exercise 9.3. For each of them, derive another schema in which the IS-
A relation has been eliminated. Proceed as follows:

- move all the properties of the subtypes to their supertype; for instan-
ce, the fact that all clerks have a function can be represented by an
optional attribute of EMPLOYEE (see Figure 10.13);

- when all the properties have been pushed up to the supertype, remove
the subtypes.

Take special care with all the derived integrity constraints. The role of
an employee (clerk, worker, both or none) can be represented through,
for example, new attribute EmployeeType .

10.4 Can you formulate an opinion concerning these three techniques to eli-
minate super-type/subtype relations? Some criteria: readability, sim-

Lesson 10: More about constraints 10-25

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

plicity, conciseness, complexity of the additional integrity constraints,
ease of translation into a relational database.

Do you think that some of these techniques are more fitted in some si-
tuations (think of subtype properties for instance)?

Note.

The problem of IS-A relation translation is complex, particularly when
the database is to be implemented into a standard DBMS (e.g., a relatio-
nal DBMS). It will be dealt with in a future lesson. Nevertheless, the
techniques described in the questions above represent the three standard
families of IS-A relation representations.

10.5 A relational database includes two tables, A and B, built by the fol-
lowing SQL program (column domains are ignored for simplicity):

create table A (A1 not null, A2 not null, A3, A4,
 primary key (A1,A2))

create table B (B1 not null, B2, B3, B4,
 primary key (B1),
 foreign key (B3,B4) references A))

Represent these structures by a logical schema.

Observe that the foreign key is optional. Ideally, two cases only are va-
lid: either columns B3 and B4 both are null, or both have a value, in
which case these values must match an A row. Represent this constraint
in the logical schema.

Propose an equivalent conceptual schema.

10.6 Build entity type PERSON with, among others, optional attributes
Country , Area , Local . Express the fact that these attributes are si-
multaneously null or valued. Make a compound attribute from them
and call it Telephone .

10.7 Add to entity type PERSON mandatory attribute Address , made of
(Number, Street and City); City is in turn a compound attribute
comprising ZipCode and CityName .

- Disaggregate these attributes.

- Make Address optional then apply the same manipulations.

- Starting from these resulting flat structures, try to go back to the nes-
ted structures.

10-26 Lesson 10: More about constraints

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

10.8 Consider once again the entity type PERSON. Add two entity types, na-
mely COMPANY and ADMINISTRATION. A person can work in a
company (where s/he receives a salary), in an administration (where s/
he has a level) or is unemployed (in which case s/he receives an unem-
ployment allowance). Add the necessary attributes and/or relationship
types to represent these facts. Without resorting to IS-A relations,
add the group constraints expressing the following situations:

- a person must either be in a company, or in an administration or
unemployed, but only in one of these situations;

- a person can either be in a company, or in an administration or unem-
ployed, or nothing at all, but only in one of these situations;

- a person must be in a company, or in an administration or unem-
ployed, or in more than one of these situations;

- a person can be in a company, or in an administration or unemployed,
in more than one of these situations, or in none of them.

Now, try to express these application domains through IS-A relations.

Compare both expressions.

10.9 Design a schema that expresses the same idea as in Figure 10.21, but in
which attribute Marriage is replaced by the entity type MARRIAGE.

10.10 Define a generic inter-group constraint that declares implication cons-
traints.

10.11 Define a generic group constraint that states that the roles of a group
must be played by different entities.

10.12 Define a generic inter-group constraint that allows designers to declare
functional dependencies.

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Lesson 11

More about relationship types

Objective

This lesson describes advanced constructs related with relation-
ship types, namely multi-ET roles and generic relationship types.
A multi-ET role can be played by an entity taken from one of sev-
eral entity types. Instances of a generic rel-type are rel-types that
can appear at different places of a schema with the same name
and the same meaning.

11-2 Lesson 11: More about relationship types

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

11.1 Introduction

We will describe multi-ET roles that can be used to simplify some schemas, to
make them more concise and more readable. Generic rel-types, i.e., rel-types
with the same semantics that appear in the same schema, will be found in some
specific application domains. We will examine two of them: aggregation and
topological rel-types.

We start DB-MAIN and we create a new project called Lesson11 .

11.2 Multi-ET roles

Each role of a rel-type is played by one entity that comes from one entity type.
Sometimes, we would like to express the fact that the entity that plays this role
can be of type A or of type B, depending on the situation. As an example, we
consider a company in which pieces of equipment can be borrowed. The bor-
rower can be either an individual or a service. We can model these facts by
drawing a binary rel-types from EQUIPMENT to ... both EMPLOYEE and
SERVICE (Figure 11.1).

Figure 11.1 - The borrower of a piece of equipment is either a service or an
employee.

0-N
borrower

0-1

borrowed_by

SERVICE

EQUIPMENT

EMPLOYE

Lesson 11: More about relationship types 11-3

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Defining such a construct is easy:

1. draw borrowed_by rel-type from SERVICE and EQUIPMENT (with

the button); adjust the cardinalities if necessary;

2. draw a line from role borrowed_by.SERVICE and EMPLOYE (with

the button); rename this role if necessary.

So, the role borrower is played by two entity types, hence its qualification:
multi-ET role. Note that this does not mean that, in one particular instance of
rel-type borrowed_by , this role can be played by several entities. Indeed,
each instance comprises exactly two entities, one of type EQUIPMENT and
one of type SERVICE or EMPLOYEE, just like in standard binary rel-types.

Now, would it have been possible to describe this part of the world in another
way? As usual in database modeling, the answer is yes.

Let us first examine a tempting, but quite erroneous way to do it. It consists in
defining a 3-ary rel-type involving entity types SERVICE, EMPLOYEE and
EQUIPMENT (Figure 11.2). What is wrong with this schema? It tells us that
a piece of equipment is borrowed simultaneously by a service and an em-
ployee, which obviously describes a quite different borrowing rule.

Figure 11.2 - This schema expresses a quite different situation from that of
Figure 11.1!

On the contrary, Figure 11.3 tries (and succeeds!) to express the same meaning
as Figure 11.1. In this schema, supertype UNIT generalizes all the organiza-
tional actors of the company, including services and employees, that can be
responsible for borrowing pieces of equipment, and probably for other actions

0-N

0-1

0-N

borrowed_by

SERVICE

EQUIPMENT

EMPLOYE

11-4 Lesson 11: More about relationship types

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

as well. Therefore, a borrower is just a unit, which in turn is either a service
or an employee.

Figure 11.3 - Another way to describe the problem of Figure 11.1. The bor-
rower of a piece of equipment is an organizational unit , which in turn is either
a service or an employee.

The existence constraints studied in Lesson 10 give us still another way to mo-
del this situation. We can see things as follows:

The sentence

a piece of equipment is borrowed either by a service or by an employee;

can be rewritten without alteration of its meaning as

a piece of equipment either can be borrowed by a service or can be bor-
rowed by an employee.

Hence the schema of Figure 11.4, which surely is far less elegant than the
others (it includes two rel-types with the same semantics + a complex cons-
traint), but which is quite correct too.

11.3 Generic rel-types

The rel-types defined in the schemas developed in the previous lessons repre-
sent specific associations between pairs (or tuples) of entities. Figure 5.15 and
Figure 5.17 are typical examples of such rel-types. Defining other rel-types
with the same name and the same semantics is fairly unlikely. However, some
application domains may require similar rel-types to be defined in different

0-1

0-N
borrower

borrowed_by
P

UNIT

SERVICE

EQUIPMENT

EMPLOYE

Lesson 11: More about relationship types 11-5

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

parts of the schema. We will discuss some examples and examine how to re-
present them.

Figure 11.4 - Still another way to express multi-ET role of Figure 11.1.

Aggregation

Aggregation rel-types describe the composition of compound objects such as
mechanical assemblies or chemical products. The schema of Figure 7.3 is the
first example of such rel-types. It tells us that a car is perceived as the aggre-
gation of 4 wheels, 1 body, 3 to 5 doors and 1 engine. Aggregation rel-types
generally are called part-of , to tell that each component is a part of the
compound object. The DB-MAIN model does not include a specific construct
to represent aggregation rel-types, but such constructs can be represented in
several ways, among which you can choose. We will use an example proposed
in [Blaha, 1998] to illustrate these representations. The first schema makes use
of specific rel-types that have distinct names (Figure 11.5). Such a schema of-
fers poor readability because nothing suggests aggregation structures.

A much better representation mode consists in using generic part-of rel-ty-
pes. All the rel-types in Figure 11.6 have a two-part name, consisting of the
visible part part-of and the invisible part |front-matter , |title-
page , |toc , etc. By dedicating the name part-of to aggregation structu-
res, we can represent in a standard and readable way simple and complex ag-
gregation structures. This technique produces a precise description of
cardinality constraints: each book has one front matter, one or more chapters
and, optionally, one back matter.

0-N

0-1

borrowed_by_empl

0-N

0-1

borrowed_by_serv

SERVICE

EQUIPMENT

excl: borrowed_by_serv.SERVICE
borrowed_by_empl.EMPLOYE

EMPLOYE

11-6 Lesson 11: More about relationship types

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 11.5 - Representing aggregation structures through standard rel-ty-
pes.

If all the components of an assembly have the same cardinality, then an even
simpler representation can be proposed through multi-ET roles (Figure 11.7,
where the multi-ET role name has been set to "|" to make it invisible).

Figure 11.6 - Using the ambiguous name part-of to represent aggregation
structures.

1-1

0-1

has-toc

1-1

1-1

has-title

1-1

0-1

has-pref

1-1

0-1

has-ndx

1-1

1-1

has-fm

1-1

1-N

has-chap

1-1

0-1

has-bm

1-1

0-N

has-app

TOCTITLE_PAGE PREFACE INDEX

FRONT_MATTER CHAPTER

BOOK

BACK_MATTER

APPENDIX

1-1

1-1

part-of

1-1

0-1

part-of

1-1

0-1

part-of

1-1

0-1

part-of

1-1

1-1

part-of

1-1

1-N

part-of

1-1

0-1

part-of

1-1

0-N

part-of

TOCTITLE_PAGE PREFACE INDEX

FRONT_MATTER CHAPTER

BOOK

BACK_MATTER

APPENDIX

Lesson 11: More about relationship types 11-7

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure 11.7 - The relation between a compound object and all its components
is represented by one rel-type with ambiguous name and a multi-ET role.

Topological relationships

Spatial databases, such as those that underlie geographic information systems
(GIS), record information about entities that have spatial properties, such as a
form, a size and a position. Very often, users of spatial databases want to de-
fine topological relationships between objects such as touch, cross, don’t-
cross, disjoined. These relationships can have two roles. Firstly, that can be
used as integrity constraints: roads don’t cross buildings, land parcels and la-
kes are disjoined, rivers cannot cross rivers. Secondly, they can express inte-
resting synthetic relations between entities: buildings can touch roads, a river
can touch another river, a road can cross roads, roads can cross rivers, buil-
dings can touch buildings. Of course, these relationships can be expressed as
relations between the coordinates of the concerned spatial entities. However,
such expressions are much less intuitive and expensive to compute (synthetic
relations). The schema of Figure 11.8 describes a small geographical database
in which generic relationship types express topological relationships.

1-1

0-N

part-of

1-1

0-N

part-of

1-1

1-N

part-of

TOCTITLE_PAGE PREFACE INDEX

FRONT_MATTER CHAPTER

BOOK

BACK_MATTER

APPENDIX

11-8 Lesson 11: More about relationship types

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 11.8 - Instances of two synthetic topological relations expressed as ge-
neric rel-types.

0-N
sec

0-N
main

touch

0-N
sec

0-N
main

touch

0-N
sec

0-N
main touch

0-N
main

0-N
sec

cross

0-N
sec

0-N
main

cross

ROAD
RoadCode
Name
Form: *PolyLine
id: RoadCode

RIVER
Name
Form: *PolyLine
id: Name

BUILDING
BuildCode
Address
Form: *Polygon
id: BuildCode

Lesson 11: More about relationship types 11-9

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Key ideas of Lesson 11

1. Multi-ET roles

When a role is declared multi-ET, the entities that play this role can be of one
of several types. This construct can also be expressed through a supertype or
by duplicating the rel-type for each entity type that plays this role.

2. Generic rel-types

Some application domains require a given relationship type to appear in diffe-
rent places of schemas. Instead of defining as many standard rel-types, with
different names, it can be better to use generic rel-types, that have the same
name and the same meaning. Engineering and spatial databases intensively
use generic rel-types.

11-10 Lesson 11: More about relationship types

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Summary of Lesson 11

• In this lesson, we have studied the following notions:

- multi-ET role

- generic rel-type.

• We have also learned

- to define a multi-ET role:

draw a single-ET role, then draw another line from
this role to another ET.

- to define a generic rel-type (reminder):

define a first instance of the rel-type, add the symbol
"|" at the end of its name; create additional rel-types
with the same name, followed with a distinct suffix
(copy + paste works fine).

Lesson 11: More about relationship types 11-11

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Exercises for Lesson 11

11.1 Propose a schema that describes the following situation with one rel-ty-
pe:

services and employees can borrow computers and printers.

11.2 We consider the following application domain:

A meal comprises a first course, a main course and a dessert. A first
course can be a cold dish, a warm dish or a soup. A main course can
be a fish or a meat dish. A dessert can be pastry, ice cream or fruit.

Model this application domain by three equivalent schemas based on
multi-ET roles, standard rel-types and IS-A relations.

11.3 Model with generic rel-types the structure of cars, seen as mechanical
and electrical assemblies.

11.4 Schemas comprise entity types and rel-types. A rel-type comprises ro-
les, defined on entity types. Entity types and rel-types comprise attribu-
tes; the same can be said of compound attributes. Atomic attributes are
defined on domains. Some domains comprise sub-domains.

Model this application domain by using generic rel-types.

Note. The resulting schema describes schemas (including itself) and can
be called a meta-schema. Each CASE tool includes a database in which
the descriptions of schemas are recorded. Such a meta-database, whose
schema is a meta-schema, is generally called encyclopedia or reposito-
ry. The repositories of DB-MAIN are stored in *.lun files.

11-12 Lesson 11: More about relationship types

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Lesson 12

View schemas

Objective

This lesson introduces a powerful feature of CASE tools, namely
the concept of view. A view, or view schema, is a schema that in-
cludes a subset of a source schema. A view can be defined, gen-
erated and updated. The source objects themselves can be
modified. These modifications can be propagated down to the
view schemas.

12-2 Lesson 12: View schemas

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Preliminary checking
We will use a new project, called Views . It includes the schema of Figure
12.1.

Figure 12.1 - The reference source schema.

12.1 Introduction

A DB-MAIN view is a particular presentation of a subset of a source schema.
In its simplest form (called latent view), a view is a just a named collection of
objects belonging to the source schema. It can also be materialized as an ex-
plicit schema, called a view schema. A view schema includes all the objects
of its corresponding latent view. You cannot add, modify or delete objects
from a view schema. However, you can remame them, transform them or
move them in the graphical space.

When to use views?

A view can be used to specify and display the part of a schema that describes
a specific subset or a particular aspect of the application domain. Views are
useful to decompose a large and complex schema into manageable subsche-

0-N

1-1

place 1-1

0-N

offer

0-N0-N
detail

OrdQty

SUPPLIER
SupCode
Name
Address
id: SupCode

ORDER
OrdNumber
OrdDate
id: OrdNumber

ITEM
ItNumber
Description
Price
QtyOnHand
id: ItNumber

CUSTOMER
CNumber
Name
Address

Street
ZipCode
City

Phone[1-5]
Account
id: CNumber

Lesson 12: View schemas 12-3

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

mas, making it more readable. A view will also be used to specify objects on
which further operations have to be applied (such as checking, generating, re-
porting, etc).

Principles

In short, views work as follows:

1. The objects of a view are marked in the source schema.

2. Then, a view including the marked objects is defined by giving it a name.
So far, the view is latent.

3. A latent view can also be materialized through the generation of a view
schema that includes a copy of all the objects of the view. If an attribute is
included, then its parent object (entity type, rel-type or compound attri-
bute) is included as well. If an entity type, rel-type or compound attribute
is marked, you can ask for their attributes and processing units to be inclu-
ded as well.

4. When modifications are applied on source schema objects, you can ask for
refreshing the view schemas in order to propagate these modifications.

5. A view schema can be reworked: moving objects, renaming and transfor-
ming them. These modifications are preserved when you refresh the view
schema.

12.2 Specifying the objects of the view

Open the only schema of the project. Choose a free marking plane; unmark
the objects if needed (Edit / Select marked, then press the button , or Edit
/ Select all, then press the button twice).

Select the desired objects and mark them (Figure 12.2):

- if you mark an entity type, a rel-type or a compound attribute, their attribu-
tes and groups can be asked to be automatically selected when generating
the view schema;

- if you mark a rel-type, the roles whose entity types are selected are included
in the view as well;

- if you mark an attribute, its parent will be implicitly included in the view;

- a group is implicitly selected if all its components are selected;

12-4 Lesson 12: View schemas

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

- if you mark a collection, only the marked entity types will appear;

- an IS-A relation is implicitly selected if the supertype and at least one sub-
type are selected;

- if you mark an entity type, a rel-type or a schema, their processing units can
be asked to be inserted in the view schema.

In the example of Figure 12.2, all the marked objects will belong to the view,
together with entity types CUSTOMER and ITEM, and attribute Address , sin-
ce they are parents of selected objects. Figure 12.3 shows all the components
that are explicitly and implicitly inserted in the view.

Figure 12.2 - The components to insert in the view are marked.

0-N

1-1

place 1-1

0-N

offer

0-N0-N
detail

OrdQty

SUPPLIER
SupCode
Name
Address
id: SupCode

ORDER
OrdNumber
OrdDate
id: OrdNumber

ITEM
ItNumber
Description
Price
QtyOnHand
id: ItNumber

CUSTOMER
CNumber
Name
Address

Street
ZipCode
Town

Phone[1-5]
Account
id: CNumber

Lesson 12: View schemas 12-5

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure 12.3 - The components that actually are included in the view, thanks
to the propagation rules.

12.3 Defining the view

Now, we define a view comprising the marked objects. We execute tyhe com-
mand Product / View / Define view. We call the view Customers&Or-
ders (Figure 12.4).

12.4 Displaying a latent view

Later on, we can retrieve all the objects that make a latent view by the com-
mand Product / View / Mark view. The objects of the selected view appear
to be marked. Note that this operation first cleans the current marking plane,
and that former markings are lost.

0-N

1-1

place 1-1

0-N

offer

0-N0-N
detail

OrdQty

SUPPLIER
SupCode
Name
Address
id: SupCode

ORDER
OrdNumber
OrdDate
id: OrdNumber

ITEM
ItNumber
Description
Price
QtyOnHand
id: ItNumber

CUSTOMER
CNumber
Name
Address

Street
ZipCode
City

Phone[1-5]
Account
id: CNumber

ORDER/Conceptual

12-6 Lesson 12: View schemas

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 12.4 - Defining a view with the name Customers&Orders .

Figure 12.5 - Selecting a latent view to materialize it as a view schema.

12.5 Materializing a view as a view schema

Now, let’s go for more interesting things. We want to create a new schema
that comprises the objects of a latent view. We can call this materializing or
generating the latent view. The new schema is a bit special, as we will see.

Lesson 12: View schemas 12-7

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

We execute command Product / View / Generate view (Figure 12.5). We se-
lect a view name (not much choice so far!). All the marked objects, as well as
their parents, will be copied into the new schema.

However, we can tell DB-MAIN to include the components of marked objects
by clicking on the include attributes button (do it!). In this case, all the attribu-
tes and groups of the selected entity types, rel-types and compound attributes
are copied as well. Otherwise, only selected objects, together with their pa-
rents, are copied.

Figure 12.6 - A standard schema and a materialized view schema.

Figure 12.7 - The contents of view schema ORDER/Customers&Orders .

ORDER/Customers&Orders

ORDER/Conceptual

0-N

1-1

place

0-N0-N
detail

OrdQty

ORDER
OrdNumber
OrdDate
id: OrdNumber

ITEM
ItNumber
Description
id: ItNumber

CUSTOMER
CNumber
Name
Address

ZipCode
City

id: CNumber

ORDER/Customers&Orders

12-8 Lesson 12: View schemas

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

A new product is added to the project: view schema ORDER/Custo-
mers&Orders (Figure 12.6). Opening this view shows the contents of the
materialized view (Figure 12.7).

12.6 Modifying a view schema

Things can get more challenging when, as time goes on, we want to modify
the view schema or its source schema. Let us first consider the first problem.

Normally, a view is just a subset of its source schema. Consequently, adding
or deleting entity types, rel-types, attributes, groups, or any other objects, in a
view schema should be prohibited. However, some lighter, cosmetic, opera-
tions could be useful, and therefore allowed, provided they do not change the
semantics of the objects.

For instance, the objects of the view schema, while quite comfortable in their
natural environment (the source schema) can get an awkward and distorted
look when they appear in the view schema. Therefore, moving and aligning
the objects should be allowed. In addition, transforming objects changes their
appearence, but not their meaning. So, transformations should be allowed
either. Finally, just changing the name of an object does not change its very
meaning, while improving its readability for given classes of users.

In summary, the objects of a view schema can be changed as follows:

- objects can be renamed;

- objects can be transformed;

- objects can be moved.

Other direct operations which may change the semantics of the view (add, de-
lete, modify objects and their properties) are prohibited.

Figure 12.8 illustrates some possible changes that can be performed on our
view schema:

- the entity type ITEM has been renamed PRODUCT;

- the rel-type detail has been transformed into the entity type REFEREN-
CE;

- various objects have been moved.

Though their visual presentations are different, the schemas of Figure 12.7 and
Figure 12.8 convey the same semantics, i.e., they represent the same portion
of the application domain.

Lesson 12: View schemas 12-9

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure 12.8 - View schema of Figure 12.7 manually updated.

12.7 What if I change my mind about the view?

Let us suppose that we want to add objects to the view and to remove ob-
jects. We just have to modify its definition, and to regenerate the new version.

Changing the latent view

- we open the source schema, and we select a free marking plane (needless to
clean it);

- we display the latent view: Product / View / Mark view;

- we mark the new objects to insert and we unmark those to remove; for ins-
tance, we remove (unmark) CUSTOMER.Address.ZipCode and we
add (mark) CUSTOMER.Address.Street and PRODUCT.Price ;

- we redefine the view: Product / View / Define view in which we select
view name Customers&Orders .

(Re)generating the view schema

- we just call Product / View / Generate view and select view name Cus-
tomers&Orders .

1-1

0-N

ref

0-N

1-1place

1-1

0-N

from
REFERENCE

OrdQty
id: ref.PRODUCT

from.ORDER

ORDER
OrdNumber
OrdDate
id: OrdNumber

PRODUCT
ItNumber
Description
id: ItNumber

CUSTOMER
CNumber
Name
Address

ZipCode
City

id: CNumber

ORDER/Customers&Orders

12-10 Lesson 12: View schemas

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 12.9 - The new version of view Customers&Orders .

Now, the new objects appear in the view schema while those discarded have
been removed. In addition, all the modifications made in the view schema
have been applied (Figure 12.9).

12.8 Modifying the source schema

So far, so good. But what if we want to modify the source schema itself?
Schema changes are frequent, following the evolution of the application do-
main. If the view schema has been kept in its generation state, the situation is
easy to master:

- we modify the source schema, adding, deleting and modifying objects;

- if needed, we modify the definition of the latent view,

- we redefine the view

- and we regenerate it.

The problem can be more complex if we have reworked the view schema, as in
the case of Customers&Orders .

1-1

0-N

ref

0-N

1-1place

1-1

0-N

from
REFERENCE

OrdQty
id: ref.PRODUCT

from.ORDER

ORDER
OrdNumber
OrdDate
id: OrdNumber

PRODUCT
ItNumber
Description
Price
id: ItNumber

CUSTOMER
CNumber
Name
Address

Street
City

id: CNumber

ORDER/Customers&Orders

Lesson 12: View schemas 12-11

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

As an example of this situation, let us consider that we modify the source sche-
ma as follows (Figure 12.10).

- attribute City is renamed as Town

- new attribute DelivDate is added to ORDER

- cardinality [O-N] of detail.ORDER changed into [1-20]

Now the big question: what about the views of this schema? Obviously, they
are obsolete and should be updated.

The first step clearly is to update the latent view by redefining it: Product /
View / Define view.

Figure 12.10 - The source schema has been modified. What about the
views?

12.9 Propagating the modification of the source schema to
view schemas

To propagate these modifications to the view schema, we have to rebuild it ex-
plicitly. We just have to generate the view again through Product / View / Ge-
nerate view. The resulting view schema includes both the modifications of the

0-N

1-1

place
1-1

0-N

offer

0-N1-20
detail

OrdQty

SUPPLIER

SupCode
Name
Address
id: SupCode

ORDER
OrdNumber
OrdDate
DelivDate
id: OrdNumber

ITEM
ItNumber
Description
Price
QtyOnHand
id: ItNumber

CUSTOMER

CNumber
Name
Address

Street
ZipCode
Town

Phone[1-5]
Account
id: CNumber

ORDER/Conceptual

12-12 Lesson 12: View schemas

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

source schema and the reworking it was submitted to since its first materiali-
zation (Figure 12.11).

Note. The source of a view schema can be a view schema itself. However, in
this case, the derived schema will be lost when refreshing the source view
schema. This structure is adequate for static hierarchies of views.

Figure 12.11 - The updated view schema including the new versions of the
modified objects of the source schema.

12.10 Warning

Not all source schema modifications can be propagated to the view schema.
Indeed, an object is known by its name. If a source object is renamed or re-
moved after it has been modified in the view schema, DB-MAIN is unable
to process it when refreshing the view schema. In case of renaming, the ob-
ject in the view schema keeps its former state.

For example, if we change the name of rel-type detail into sub-order
(Figure 12.12), DB-MAIN will be unable to cope with this rel-type (Figure
12.13), and all the view updating operations related to detail will be igno-
red (Figure 12.14).

1-1

0-N

ref

0-N

1-1place

1-1

1-20

from
REFERENCE

OrdQty
id: ref.PRODUCT

from.ORDER

ORDER
OrdNumber
OrdDate
DelivDate
id: OrdNumber

PRODUCT
ItNumber
Description
Price
id: ItNumber

CUSTOMER
CNumber
Name
Address

Street
Town

id: CNumber

ORDER/Customers&Orders

Lesson 12: View schemas 12-13

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure 12.12 - Rel-type detail has been renamed as sub-order .

Figure 12.13 - DB-MAIN is unable to apply the view modifications on de-
tail .

0-N

1-1

place
1-1

0-N

offer

0-N1-20
sub-order
OrdQty

SUPPLIER

SupCode
Name
Address
id: SupCode

ORDER
OrdNumber
OrdDate
DelivDate
id: OrdNumber

ITEM
ItNumber
Description
Price
QtyOnHand
id: ItNumber

CUSTOMER

CNumber
Name
Address

Street
ZipCode
Town

Phone[1-5]
Account
id: CNumber

ORDER/Conceptual

12-14 Lesson 12: View schemas

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 12.14 - The incompletely generated view schema.

12.11 Other operations

Other operations are proposed:

- Remove view: removes a latent view and its view schema, if any.

- Copy view: defines a new latent view, with a specified name, that includes
the same objects as an existing view. No view schema is generated.

- Rename view: changes the name of a latent view and of the corresponding
view schema, if any.

12.12 Technical information

In DB-MAIN versions 3 and 4, views are implemented through system dyna-
mic properties:

- schema: property list_view specifies the list of views it is the source of; pro-
perty IsView indicates whether this schema is a view or not;

- objects: property view specifies the list of views of which this object is a
component.

0-N1-20
sub-order
OrdQty

0-N

1-1place

ORDER
OrdNumber
OrdDate
DelivDate
id: OrdNumber

PRODUCT
ItNumber
Description
Price
id: ItNumber

CUSTOMER
CNumber
Name
Address

Street
Town

id: CNumber

ORDER/Customers&Orders

Lesson 12: View schemas 12-15

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

For each view schema, a history journal is automatically opened. This jour-
nal logs all the operations performed on the view schema. When refreshing a
view, the tool automatically replays this journal. If a source object is renamed,
the journal will ignore it when replayed since it knows it by its former name
only. Similarly, if the name of an object is given to another object, indetermi-
nacy problems may arise.

Note. Let us mention that there exists a cheat tool that allows us to change a
view schema into a plain schema and conversely. Not recommended of course!

12.13 The View Menu

A short synthesis on how views can be managed:

12.14 There are views and views !

It goes without saying that the views we have discussed in this lesson have no-
thing to do with the various views (or display formats) of a schema we descri-
bed in Lesson 2!

We could say, for instance, that each view schema of a source schema can be
examined according to each text or graphical view!

♦ (Re)define a view comprising the
marked objects.

♦ Generate (or refresh) a view schema
from the latent view.

♦ Mark the objects of the source sche-
ma that belongs to a latent view.

♦ Delete an existing latent view, to-
gether with its view schema, if any.

♦ Define a new latent view with the
same contents as an existing view.

♦ Give an existing view (latent and/or
schema) a new name.

12-16 Lesson 12: View schemas

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Key ideas of Lesson 12

1. A view of a source schema is a schema whose semantics are a subset of
that of the source schema.

2. Views of a large schema are a privileged way to define homogeneous parts
corresponding to subsystems of the application domains.

3. A view can be latent or materialized. A latent view consists of a collec-
tion of marked objects in the source schema. A materialized view is a
new product of the project, called a view schema, that includes the objects
of a latent view + related objects defined by propagation rules.

4. A view schema can be modified through a limited set of operators:
moving, transforming and renaming objects.

5. Modifications of source objects that are included in a view can be propa-
gated to the view schemas (though with some restrictions).

Lesson 12: View schemas 12-17

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Summary of Lesson 12

• In this lesson, we have studied:

- the concept of view, and more precisely that of,

- latent view

- and materialized view, in the form of a view schema.

• We have also learned:

- to define a latent view, through object marking, then,

Product / View / Define view

- to generate a view schema

Product / View / Generate view

- to mark the objects of a latent view

Product / View / Mark view

- to remove a view from a source schema

Product / View / Remove view

- to build a new latent view as a copy of an existing latent view

Product / View / Copy view

- to rename a latent view and its view schema

Product / View / Rename view

• We have produced a new type of schema:

- the view schemas.

12-18 Lesson 12: View schemas

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Exercises for Lesson 12

12.1 Open the project Library . We consider three services of the library,
namely,

- Catalography, concerned with books and their description;

- Loan management, concerned with borrowers to whom copies of
books are loaned;

- Borrower registration, concerned with borrowers and the projects
they borrow books for.

Define a view for each service. Materialize these rules into view sche-
mas. Rearrange and transform the latter to give them a customized
layout.

Change the source schema to practice the modification propagation ru-
les.

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Lesson 13

Text Processin g

Objective

Texts have been largely overlooked so far. It is time to show that
they can prove as important in database engineering activities as
database schemas themselves.
We will first learn how to manipulate texts of any nature. Then,
we will discuss the specific properties of computer-oriented texts,
and briefly describe some processors that can extract essential in-
formation from them. In particular, we will examine a natural
language extractor, DDL extractors, a text pattern analyzer, a de-
pendency graph processor and a program slicer.

13-2 Lesson 13: Text Processing

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

13.1 Introduction

A database project comprises schemas and text files. Though texts appear so
far as mere output documents such as reports and SQL texts, they can prove a
very rich information source for major engineering processes ranging from
conceptual schema design to reverse engineering. We will first examine how
to manipulate text files, then we will say some words about the structures that
underlie text files.

13.2 Text file manipulation

In all the lessons of this tutorial, we have concentrated on database schemas.
However, a project generally includes not only schemas, but also text files.
We have somewhat overlooked these project components. There is not much
to say about output text files such as the SQL programs or reports we produced
in our small projects. They just have to be submitted to their favorite proces-
sor: a database engine for SQL files and a word processor for report files.

However, some projects may comprise input files in which important informa-
tion can be extracted. We will mention three such file categories.

1. Application domain documents. When trying to model the concepts of a
part of an application domain, we generally use various kind of informa-
tion sources, the main of which are plain documents. Indeed, legal docu-
ments, accounting listing, sales reports, marketing brochures, interview
transcripts, all include important information that can contribute to a better
understanding of the application domain structure and behaviour.

2. DDL files. Very often, databases already exist, that implement a part of the
application domain. Recovering the conceptual schema of existing databa-
ses (often called legacy databases), whatever their quality, is a major goal
of the reverse engineering process. The first step is to build the physical or
logical schema of these databases, an activity that is best carried out by
analyzing their DDL text.

3. Program files. In the same context, analyzing old programs can bring us
essential information on the structure, the properties and the management
rules related to the files and databases of legacy applications.

Needless to say that these documents can be huge and complex, and that trying
to analyze them by mere visual inspection can prove boring and highly unre-
liable. For instance, considering a large relational database of 500 tables1,

Lesson 13: Text Processing 13-3

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

6,000 columns, 1,000 indexes, 2,000 foreign keys, 800 triggers, and some ad-
ditional technical adornments, the SQL script that encodes its structures can be
more than 1,000 page long. Analyzing such a text will be particularly painful.
Understanding a 30,000 line-of-code COBOL or PL/1 module which was writ-
ten in the late seventies is not an easy task either2.

Hence the need for specific text presentation and manipulation functions simi-
lar to those available for data structures in schemas.

To make the discussion more concrete, we create a new project and we include
some text files in its workspace (if needed, we close the current project):

1. Creating a new project. We click on the New project button (or exe-
cute the command File / New project).

2. Including an external text file. We search the DB-MAIN directory for a
file named library.txt . We drag it from the Explorer window and
drop it in the project window. Another way to include this file: execute
the command Product / Add text.

3. Including another external text file. With the same procedure, we include
a file named library.ddl .

4. Including a third external text file. ... and still another text called
order.cob .

The project window looks like Figure 13.1.

We double-click on each of these products to examine their contents. The first
one appears to be an interview report, the second one is a SQL script while the
third one is a COBOL source text. Discussing specific processors for each of
these text categories is beyond the scope of this volume. However, we will
examine some of the main properties common to all texts files.

Selecting and marking text lines

We open the file library.ddl. We can make two interesting observations:
• Each line has a line number; however, this number is not part of the text,

as we can observe by examining this text with a text processor3. Line
numbers are used to reference specific parts of the text;

1. Databases of more than 1,000 tables are not uncommon.
2. Particularly if this module is just one component of a 3,000,000 LOC program.
3. If you have none available, you can use a standard text editor through the command File /

Edit text file.

13-4 Lesson 13: Text Processing

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 13.1 - Three text files have been included into the current project.

• The text cannot be modified: lines cannot be deleted, updated or inserted.
Of course, the text can be changed through another text processor; howe-
ver, this would not be a good idea, since then line numbers would no lon-
ger reference their target line.

Rule : do not add or delete lines in a text which curently is included in a
project. Modifying an existing line can be harmless unless DB-MAIN has
already analyzed the contents of this line. A text can be changed without
problems, provided it has not yet been, or is no longer, included in a pro-
ject.

Line selection. Clicking on a line selects it. Several lines can be simulta-
neously selected by using the shift and ctrl keys like in any Windows compliant
application (Figure 13.2).

Line marking . Selected lines can be marked just like objects in a schema (Fi-
gure 13.3). Lines are marked in a definite marking plane through the button
Mark. Up to five planes can be used, so that five different subsets of lines can
be permanently maintained for each text file.

Line copy/paste. Selected lines can be copied on the clipboard (Edit / Copy
or Ctrl+C), then pasted in a text of the project (SEM or TECH annotation for
instance) or in any external text document. Line numbers can be included in
the copy if requested: execute the command Assist / Text analysis / Settings,
then check the button Copy line number.

Lesson 13: Text Processing 13-5

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure 13.2 - Selected lines in a text file.

Figure 13.3 - Marked lines in a text file.

13-6 Lesson 13: Text Processing

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Changing font, size and style. The font, as well as the character size and style,
can be set through the command Edit / Change font.

Line annotation

By double-clicking on a text line, we open a text windows in which we can
write comments, remarks or any kind of textual information (Figure 13.4).

Figure 13.4 - Annotation associated with a text line.

Figure 13.5 - Report definition box.

Lesson 13: Text Processing 13-7

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Reports from text files

A report can be produced from any text file (command File / Print dictiona-
ry). It is made up of all the lines of the source text, together with a marking
symbol which specifies marked lines, and, if requested, with the text annota-
tion associated with each line.

In the report defined in Figure 13.5, marked lines will be prefixed with symbol
"*", and annotation will appear between a tab control + "[" and "]".

A fragment of the resulting report appears in Figure 13.6. The formatting rule
has been set in the text processor in such a way that the annotations appear ni-
cely outlined.

Figure 13.6 - The resulting report with marking symbol and annotations.

13.3 Text structures and text analysis

So far, a text is just a string of characters, or at best, a sequence of lines.

...
* create table AUTHOR ([Any author who participated in

the writing of a book recorded in
the library.]

* ID_AUT char(10) not null,
 NAME char(30) not null,
 FIRST_NAME char(30),
 ORIGIN char(30),
* primary key (ID_AUT))
 in BOOKS.DATA;

* create table BOOK ([A book is any written piece of

work in the literary, scientific
or technical domain.]

* BOOK_ID numeric(6) not null,
 TITLE char(30) not null,
 PUBLISHER char(40) not null,
 DATE_PUBLISHED date not null,
 ABSTRACT char(80),
* primary key (BOOK_ID))
 in BOOKS.DATA;
...

13-8 Lesson 13: Text Processing

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

In fact, many texts have a significant structure. Such is the case for DDL texts,
which describe physical database schemas, and program source texts which
define programming objects such as data types, variables and algorithms.
Even plain texts in natural language can be considered as structured, provided
they obey some definite grammar. Once the structure of a text can be recogni-
zed, useful abstractions can be extracted. For instance, a tool that knows the
COBOL grammar can draw the paragraph calling tree and build the variable/
statement cross-reference table from any COBOL program.

DB-MAIN includes a collection of tools devoted to text analysis and object
extraction. We will briefly mention some of them. They will be detailed in
another volume.

13.4 Natural language analysis

DB-MAIN includes a set of tools with which one can extract a conceptual
schema from a simple text written in English4. The first component analyzes
the text to check its grammatical correctness and to detect unknown verbs.
The latter are classified, then introduced in a dictionary. The second compo-
nent extracts the concepts and their relationships from the text to produced a
first-cut conceptual schema. The third component normalizes the schema.

As an illustration, the English text of Figure 13.7 (top) has been analyzed and
transformed into the schema of Figure 13.7 (bottom).

13.5 DDL physical schema extraction

DDL extractors are kinds of compilers that parse DDL texts in order to build
the physical schema the text describes. To get an idea on what this means, try
the following manipulations.

4. These tools are distributed in the DB-MAIN Application Library #2.

Lesson 13: Text Processing 13-9

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure 13.7 - The conceptual schema automatically extracted from the En-
glish text above.

A book can be a literary-document, a scientific-document or a technical-document.
A book is identified by a number. Each book is characterized by its title, the first-
published-date, keywords, an abstract and its bibliographic-references. A book can
have at most 6 keywords. A book is characterized by its physical-state. A techni-
cal-document must have a comment.
A book can be written by several authors. An author can have a first-name, a birth-
date, and an origin. Each author has a surname. An author must write at least 1
book.
A book can be represented by several copies. The copies are identified by their ser-
number. Each copy is characterized by its date and its location.
A copy can be borrowed by 1 borrower. Borrowers are identified by a personal-
id. Borrowers are characterized by their name. Borrowers can have at most 5 pho-
ne-numbers. A borrower can borrow at most 5 books.

1-N

0-N

writing

1-1

0-N

representation

0-5

0-1

borrowing

TECHNICAL-DOCUMENT
Comment

SCIENTIFIC-DOCUMENT

LITERARY-DOCUMENT

COPY
Ser-number
Location
Date
id: Ser-number

BORROWER
Personal-id
Name
Phone-number[0-5]
id: Personal-id

BOOK
Number
Title
Keyword[0-6]
First-published-date
Bibliographic-reference
Physical-state
Abstract
id: Number

AUTHOR
Surname
First-name[0-1]
Origin[0-1]
Birth-date[0-1]

13-10 Lesson 13: Text Processing

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

• In the Project window, select text file library.ddl/1 , then execute
File / Extract / SQL. Examine the extraction report and the resulting
schema.

• Now select text file ORDER.COB/1 and execute File / Extract /
COBOL . In the same way, examine the resulting schema.

This process is one of the first step of database reverse engineering. In most
cases, more information must be extracted from various sources, such as
views, application programs, screen and report layout, as well as from data.
Furthermore, the completed logical schema must be interpreted or conceptua-
lized that is, entity types, attributes, rel-types and various constraints must be
built from these logical constructs. Though the SQL physical schema is fairly
complete, and should be transformed into a conceptual schema without much
problem, the COBOL schema is far too incomplete to lead to a decent concep-
tual schema. Further analysis of the procedural code of the program is needed
to get additional knowledge on the record structures. More on this in another
volume.

Note. If you are too eager to wait for another lesson, and you want to try recovering
the conceptual schema, do as follows:
• execute the command Assist / Global transformation;
• click on the button Predefined, then select the script Relational rev. eng.
• click on the button OK.

So, you get a tentative conceptual schema. Unfortunately, things can be much more
complex in actual systems. For instance, applying the same procedure on the COBOL
physical schema is useless!ν

13.6 Patterns

Texts which have a meaningful structure, such as any kind of programs, often
include patterns. A text pattern is a formally defined text structure that can
appear in several places in the text, and that is defined by a set of syntactic ru-
les. Any section of text that satisfies these rules is a instance of this pattern.

For instance, a COBOL text file will include simple assignment statements
which all look like:

MOVE <variable name> TO <variable name>

Lesson 13: Text Processing 13-11

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Text sections such as: "MOVE VAT-RATE TO A-FIELD " or "MOVE NAME
OF RECA TO B " are two instances of this pattern.

Text patterns are defined as regular expressions expressed into a specific pat-
tern definition language (PDL). The exact definition of the pattern above is
as follows (see the Text Analysis Assistant):

cobol_name ::= /g"[a-zA-Z][-a-zA-Z0-9]*";
cobol_var ::= cobol_name [- "OF" - cobol_name];
move ::= "MOVE" - cobol_var - "TO" - cobol_var ;

The first rule describes how COBOL variable names are formed (simplified):
one letter possibly followed by a string made of dashes, letters and digits; let-
ters can be in upper or lower case. The second rule defines two forms of va-
riable designation: independent and component. The third rule expresses the
basic form of the COBOL assignment statement.

Pattern analysis can be carried out through the Text analysis assistant.

13.7 Dependency graph

Useful abstract structures can be extracted from program files, such as depen-
dency graphs. Program variable B is said to depend on variable A if the
program includes an assignment statement such as "MOVE A TO B" or
"B = A + C " or "LET B = SQRT(A) ". The graph that describes all the
variables together with the inter-dependencies is called the dependency graph
of the program. As a general rule, the nature of the dependencies we are inte-
rested in are defined by the text patterns of the statements that generate them.
DB-MAIN can build the dependency graph of a program, based on the defini-
tion of the patterns that define the dependencies. The user can then query the
dependency graph by clicking on any variable in the source program.

Dependency graph building and querying can be done through the Text analy-
sis assistant.

13.8 Program slice

When we consider a specific point (statement) S of a program P, we can be in-
terested in collecting all the statements that will be executed just before the

13-12 Lesson 13: Text Processing

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

program execution comes to this point. More precisely, we could ask to res-
trict these statements to only those which contribute to the state of a definite
variable V used by S. This (hopefully small) sub-program P' is called the bac-
kward slice of P with respect to criterion (S;V).

Let us be more concrete, and consider statement 12,455 of the 30,000-line pro-
gram P. This statement reads:

12455 WRITE COM INVALID KEY GOTO ERROR.

We want to understand which data have been stored into record COM before it
is written on disk. All we want to know is in P', the slice of P according to
(12455;COM). P' is the minimum subset of the statements of P whose execu-
tion would give COM the same state as will give the execution of P in the same
environment.

The goal of program slicing is obvious: trying to understand the properties of
record COM is easier when examining a 200-line fragment than struggling with
the complete 30,000-line program!

Text patterns, dependency graphs and program slices are very important con-
cepts in program understanding activities, and therefore in database reverse
engineering, which strongly relies on them. They all are available in the Text
analysis assistant.

Lesson 13: Text Processing 13-13

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Key ideas of Lesson 13

1. A project includes schemas and texts. Input texts can include essential
information to build new databases or to modify existing ones. Among
the input texts we recognize three important classes, namely application
domain texts, DDL texts that encode physical schemas and source pro-
grams.

2. Most text files are structured as a sequence of lines. Lines can be selected
and marked in chosen marking planes. Each line can be given an annota-
tion that includes various formal and informal information items such as
comments.

3. Some application domain text files can be analyzed to find conceptual
constructs.

4. DDL texts can be analyzed by language-specific extractors that build the
physical schema that is encoded by this DDL file. Such a schema can then
be conceptualized into its underlying conceptual schema.

5. Program files can be searched for specific text patterns. The dependency
graph that defines the dependency relationships between variables can be
built and queried. Excerpts of a program (program slices) can be derived
by collecting the statements that contribute to the state of a variable at a
given point of the program.

6. The program analysis techiques mentioned in this lesson will be develo-
ped in detail in another volume.

13-14 Lesson 13: Text Processing

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Summary of Lesson 13

• In this lesson, we have studied the following concepts:

- text files, and more particularly input text files

- projects and schemas

• We have mentioned (but not developed) sophisticated concepts and techni-
ques that we will study later on:

- DDL analysis

- text patterns

- dependency graphs

- program slice

• We have also learned to:

- include a text file in a project Product / Add text (or drag&drop)

- select, mark, copy and paste text lines

- change the font, the size or the style of a text file

Edit / Change font

- associate an annotation with a text line:

double-click on the line

- print a report from a text file: File / Print dictionary

- extract a physical schema from a DDL file:

File / Extract / <DDL brand>

- conceptualize a physical schema:Assist / Global transformation

then Predefined

Lesson 13: Text Processing 13-15

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Exercises for Lesson 13

13.1 Open the SQL text file Library.ddl . Mark all the table definition
headers in plane 1, all column definitions in plane 2, primary key defi-
nitions in plane 3, foreign key definitions in plane 4 and index defini-
tions in plane 5.

Create a new text in which you copy the header definitions only.

13.2 Take a copy of the file Library.txt . Split each line in such a way
that each fragment (a bit modified and enriched if needed) now is repre-
sented by one object of the conceptual schema of the project Library .
For example, the source sentences:
• Every book has an identifying number, a title, a publisher, a first

published
• date, key words, and an abstract (the abstracts are being encoded),

the names
• of its authors, and its bibliographic references (i.e., the books it

references).

could be restructured into:
• Every book has an identifying number
• Every book has a title
• Every book has a publisher
• Every book has a first published date
• Every book has key words
• Some book has an abstract (the abstracts are being encoded)
• Every book has the names of its authors
• Every book has its bibliographic references (i.e., the books it refe-

rences).

Now, copy each sentence in the semantic description (SEM) of the cor-
responding object.

13.3 Build a new project in which you include the SQL file Manu-6.ddl
we generated in Lesson 6. Extract its physical schema. Conceptualize
this schema with the script we used in Section 13.5. Compare the result
with the source conceptual schema we developed in Lesson 5.

13-16 Lesson 13: Text Processing

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Lesson 16

Miscellaneous

Objective

This lesson discusses some additional functions of the DB-MAIN
model and CASE tool that have not found their place in the other
sections. First, two ways to extend the specification model are
described and compared, namely semi-formal properties and dy-
namic properties. Both allow us to enrich the standard object
classes (entity type, rel-type, attribute, etc.) with new, user-de-
fined, properties.
Several parameters that govern the default behaviour of the tool
are described. They allow users to customize their working envi-
ronment.

16-2 Lesson 16: Miscellaneous

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

16.1 Introduction

We will examine some features of the DB-MAIN model and tool that could
make the developer’s life easier, particularly in complex projects.

16.2 Generic properties

Object types (entity type, rel-type, attribute, etc.) have their own set of built-
in (or static) properties. For instance, each attribute has a name, a short name,
a cardinality, a collection type (optional), a type, stability and recyclability indi-
cators, a length, a number of decimals (optional), a semantic annotation (but-
ton Sem) and a technical annotation (button Tech) (Figure 16.1). There is also
a Prop(erty) button that will be described below.

Figure 16.1 - The built-in properties of attributes.

For some kinds of application domains, this set of properties could be consi-
dered as too poor to describe this domain adequately. On the other hand, it
would be unrealistic to expect a general purpose CASE tool offering all the po-
sible properties we could ever want. Therefore, a CASE tool should provide

Lesson 16: Miscellaneous 16-3

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

a means to add new user defined object properties dynamically, what we can
call generic properties.

DB-MAIN offers two kinds of generic properties, namely semi-formal proper-
ties and dynamic properties.

Though they are adequately managed by the tool (especially the dynamic pro-
perties), the latter is unaware of their meaning. Therefore, it cannot be asked
to process them according to the intended semantics. Specific processing of
generic properties must be developed as Voyager 2 programs and procedures.
This being a rather sophisticated point, it will be ignored in this tutorial. See
the Voyager 2 manual instead.

Semi-formal properties

Semantic and technical annotations are intended to associate free text descrip-
tions with any specification object. For example, the semantic annotation of
entity type PRODUCT will include a natural language definition of what we
mean by "a product" in the application domain. In the technical annotation,
we will rather specify some computer-oriented properties of the object, such
as implementation mode or performance constraints.

However, it is possible to insert textual specifications in a more precise format
in these annotations, namely the semi-formal properties. A semi-formal pro-
perty is a new characteristics of the current object which is specified through
the following statement:

#<property-name> = <property-value>

where <property-name > is the name of the property,
<property-value > is its value; the end mark of the value is either
the end of the annotation or an end-of-line followed by the # charac-
ter (these symbols being excluded).

In the example of Figure 16.2, the entity type PRODUCT has been given a se-
mantic annotation which first gives a natural language specification of what is
a product, then specifies five semi-formal properties

The qualifier "semi-formal" tells that (1) a precise syntax makes it possible to
process (read, create, delete and update) such properties through specific
Voyager 2 procedures, but (2) there is no control on the consistency and the
correctness of these specifications. Any typing mistake makes the sentence
useless.

16-4 Lesson 16: Miscellaneous

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 16.2 - Five semi-formal properties have been defined for the entity type
PRODUCT. The last one, Description , has a multi-line value.

This technique is very flexible since it does not require changing the structure
of the repository. However, it can prove unreliable for complex extensions. It
will be particularly useful to build simple functional extensions of the tool.

Application . The natural language paraphrazer1 of DB-MAIN is a nice appli-
cation of this technique. This processor generates a plain text description of a
conceptual schema (in French in the current version; an English version is in
preparation). Since the names of the objects may be unnatural, (e.g., QtyOn-
Hand, ProID , ComAddress), and their gender as well as their plural form
may be non standard, the user is asked to specify this information whenever
standard rules do not apply. For instance, the (French) attribute name Qte-
Disponible cannot be used as a correct noun in a text. We must tell the
paraphrazer that:
• the natural name is quantité disponible ,
• the gender is feminine ,
• the plural is quantités disponibles .

Hence the following semi-formal properties associated with this attribute:

#n=quantité disponible

1. Included in the Application Library #1.

Lesson 16: Miscellaneous 16-5

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

#g=f
#p=quantités disponibles

Defining a dynamic property surely is less flexible, but is a more structured
and secure way to augment the modeling power of the tool.

 Dynamic properties

A dynamic property is a characteristics associated with an object class of the
repository in an explicit way. Adding such a characteristics must follow a
strict procedure. First, it must be defined precisely (name, type, updatability,
etc.), then only can it be used.

To help us grasp the concept, let us assume that we want to indicate, for each
entity type, which departments own the data it describes. For instance, we
would like to tell that the Personnel and Finance departments are the owners
of the PRODUCT data. Obviously, such a property is unknown by the CASE
tool. So we add it as follows.

Defining a dynamic property

We execute the command Product / Meta / Properties, which opens the dy-
namic property Management panel (Figure 16.3).

Figure 16.3 - The Dynamic property management panel.

16-6 Lesson 16: Miscellaneous

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

We choose the object class to which we want the new property to be associa-
ted. In this case, we select the item Entity type. Then we click on the Create
button.

The dynamic property definition box opens (Figure 16.4). We specify the
name (Owner) and the type (string) of the dynamic property. We indicate that
its values can be given and updated by the users (Updatable), that these values
must be drawn from a predefined set (Predefined values) and that more than
one value can be assigned (Multivalued).

Figure 16.4 - Defining new dynamic property Owner as a list of character
strings chosen from a predefined list.

It is good practice to associate a short description with a dynamic property, so
that future users can understand its meaning. We click on the button Sem to
open the desired box. We introduce this description, as well as the list of pre-
defined values. For this, we follow the format of semi-formal properties (Fi-
gure 16.5). Finally, we confirm the operation (button OK).

Now, the dynamic property is defined and can be used to specify the owners
of each entity type. Later on, we can update this definition, for instance by mo-
difying the predefined value list.

Lesson 16: Miscellaneous 16-7

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure 16.5 - Specifying the predefined values of the dynamic property
Owner.

Setting and viewing dynamic property values

Now, we are ready to assign values to dynamic properties of each object. The-
se properties are available from the property box of the object: we double-click
on the entity type PRODUCT, then we click on the button Prop. An alternate
way consists in merely selecting PRODUCT, then clicking on the PROP button
in the Standard tools bar (Figure 16.6).

Figure 16.6 - How to get the Dynamic property box of an object: click on the
Prop. button in the Property box of the object or on the PROP button in the
Standard tools bar.

16-8 Lesson 16: Miscellaneous

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

We get the dynamic property box of PRODUCT (Figure 16.7). In the left side
list, we select the property Owner. Then, we select the values in the right side
list, and we click on the button <<Add first. We confirm this choice (button
OK). That’s all.

Figure 16.7 - Declaring that the departments Personnel and Finance are the
owners of entity type PRODUCT.

If we only want to consult the properties of a series of objects, the simplest pro-
cedure is to open the general Property box through the command Windows /
Property box (Figure 16.8).

So, what to do with dynamic properties? The answer is the same as for the
semi-formal properties. They can be used to record more precise specifica-
tions. However, they show all their power when associated with specific pro-
cedures written in Voyager 2. It is important to note that some assistants can
use dynamic properties as well, namely the Schema analysis and Advanced
global transformation assistants. More on this in another volume.

Application . An add-on has been developed to allow data administrators to
manage not only the corporate information, but also the organizational units,
and their roles in information management2.

2. This package, called ORGA, is included in Application Library #1. An example of the
organizational unit map is shown in the Function overview.

Lesson 16: Miscellaneous 16-9

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure 16.8 - The property box of an object shows all the properties, be they
built-in or dynamic.

The system comprises three modules. The first one allows administrators to
graphically define and update the hierarchical structure of the organization and
the standard roles (owner, main user, responsible, security, validation, etc.).
The second module introduces the roles and the organizational units in a target
project. The third module provides easy procedures to assign units to informa-
tion types according to definite roles and generate various reports. Each role
appears as a dynamic property created by the second module. Its predefined
values are the names of the organizational units. All the modules have been
developed in Voyager 2.

16.3 Configuration settings

The configuration comprises the current values of the parameters of the DB-
MAIN environment. These parameters represent your preferences as far as the
behavior of the tool is concerned. They are independent of the projects.

The Configuration Management panel is opened by the command File / Con-
figuration (Figure 16.9). The settings are saved in the file c:\win-
dows\db_main.ini . Since the number and the nature of the parameters
quickly evolve, your version will probably includes parameters different from
those described below. At the present time, it allows users to define custom
settings for the following parameters:

16-10 Lesson 16: Miscellaneous

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure 16.9 - The Configuration Management panel.

Text patterns. Concerns the Text pattern matching engine (Assist / Text ana-
lysis / Search). Specifies the names of the default main and secondary pat-
tern libraries.

SQL extractor. Concerns the SQL extractor (File / Extract / SQL). Defines
some settings such as: Are the columns NULL by default? Should extracted
views be stored in the same schema as the base tables? Etc.

Code generators. Concerns the DDL generators (File / Generate). Specifies
the name of specific generators such as COBOL and CODASYL DBTG.
These generators are Voyager 2 programs.

Dependency graph. Concerns the Dependency graph processor (Assist / Text
analysis / Dependency). Specifies for instance whether isolated variables
(participating in no relations) can be queried or not. If they can, selecting
such a variable colors all its instances in the program (see the correspon-
ding volume).

Schema analysis. Concerns the Schema analysis and Advanced global trans-
formation assistants (in the Assist menu). Specifies the name of the default
library of rules (file *.anl).

Global transformations. Concerns the Advanced global transformation as-
sistants (in the Assist menu). Specifies the name of the default library of
transformations (file *.tfl).

Default directories. Specifies the default directory for the main file types of
DB-MAIN: Voyager 2 programs (*.oxo), text pattern libraries (*.pat),

Lesson 16: Miscellaneous 16-11

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

projects (*.lun), program files to be processed by extractors, DDL text
generated by the generators, etc. (Figure 16.9)

Technical identifier. Defines the default type and length of technical identi-
fiers. Used in the transformation Transform / Entity type / Add Tech. id)

16-12 Lesson 16: Miscellaneous

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Key ideas of Lesson 16

1. Each object class, which any project is made up of, has static (built-in)
properties such as name, short name, type, length and semantic annota-
tion. CASE tools must provide users with means to add new properties.
The DB-MAIN model offers two kinds of additional properties, namely
semi-formal and dynamic properties.

2. A semi-formal property is defined as an expression in an annotation. This
definition specifies the name and the value of the property. Such proper-
ties can be processed by Voyager 2 procedures only.

3. A dynamic property is a declared property that is part of the repository. It
must be defined before being used, and is structurally attached to an object
class. Such a property can be processed by the global transformation and
schema analysis assistants, as well as by Voyager 2 procedures.

4. A CASE tool can be customized through a series of parameters that define
its default behavior.

Lesson 16: Miscellaneous 16-13

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Summary of Lesson 16

• In this lesson, we have studied some important concepts:

- the concept of semi-formal property

- the concept of dynamic property

• We have also learned to:

- define a new semi-formal property (in textual annotations)

- define a dynamic property: Product / Meta / Property

- examine and use a dynamic property:

buttons Prop and PROP

Windows / Property box

- change the configuration parameters:

File / Configuration

• We have learned about a new file:

- the DB-MAIN configuration file db_main.ini

16-14 Lesson 16: Miscellaneous

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Exercises for Lesson 16

16.1 Define a set of dynamic properties that allows developers to describe
the level of confidence of the entity types of a schema.

16.2 Define a set of dynamic properties that allows developers to define the
implementation mode of access keys (B-tree, hashing, etc.), as well as
the page size and buffer size of each collection.

16.3 Change the default project directory.

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Appendix A

The Generic DB-MAIN Model

Objective

The DB-MAIN tool allows analysts and developers to represent
and specify information structures, data structures and processing
units that make up an information system.
These specifications must comply with the so-called DB-MAIN
specification model which defines the valid objects and their re-
lationships. This appendix describes the main components and
features of this model.

A-2 Appendix A: The DB-MAIN Generic Model

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

A.1 The specification model in short

The model includes a very small number of concepts: projects, products (sche-
mas, views and text files), entity types, relationship types, attributes, domains,
groups, inter-group constraints, collections and processing units.

However, due to their generality, these concepts can be used to describe in a
precise way information systems at different levels of abstraction (conceptual,
logical, physical) and according to various abstract or concrete paradigms: En-
tity-relationship, Object-role, Object-oriented, standard files, CODASYL DB-
TG, IMS, TOTAL/IMAGE, relational, object-relational, etc.

Its ability to specify constructs at different level of abstraction and paradigms
gives users a great level of flexibility that will prove useful for large projects
in which several DBMS are used. It will also be most necessary in reverse en-
gineering activities, where unfinished schemas frequently include physical, lo-
gical and conceptual constructs.

Specifications comprise two kinds of information, namely products and histo-
ries. We will describe the concepts of which products are made up, leaving
the discussion of histories to another document.1

A.2 Project

The highest level object is the project. It comprises all the specifications rela-
ted to an engineering project as well as the history of all the activities that were
carried out to produce these specifications.

Figure A.1 - Iconic representation of a project. Appears in the Project win-
dow.

A project is made of one or several products - or documents - which fall into
two classes: schemas and text files. Each repository describes a project. It is

1. Be sure that the DB-MAIN tool is in the View / Graph. dependency mode to hide the his-
tories. To avoid recording these histories, the Trace item of menu Log must be unchecked
as well.

LIBRARY

Appendix A: The DB-MAIN Generic Model A-3

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

stored in a *.LUN file. A project can be entered manually by the user or can
be imported from an *.ISL ASCII text file. Though it is easy to transfer spe-
cifications between projects (through the export-import functions), there is no
explicit relation between two projects.

A.3 Base Schema

A schema is a complete or partial description of data structures and application
processes (such as those found in files, in programs or in databases). A base
schema can be built from scratch, can derive from another schema (e.g., throu-
gh import, copy, integration or transformation) called its origin or can derive
from an external text file, e.g., an SQL or CODASYL source file. A schema
mainly consists of entity types (or object classes), relationship types (rel-ty-
pes from now on) and collections. A schema can have processing units.

Figure A.2 - Iconic representation of a base schema. Appears in the Project
and Schema windows.

A.4 View Schema

A view schema (or simply view) is a schema that derives from another schema
S, called its source, and that includes a subset of the constructs of S. The cons-
tructs of a view can be renamed, transformed and moved in the graphical spa-
ce, but no objects can be added or deleted.

Figure A.3 - Iconic representation of a view schema and of its source schema.
Appears in the Project and Schema windows.

LIBRARY/Conceptual

LIBRARY/Loans

LIBRARY/General

A-4 Appendix A: The DB-MAIN Generic Model

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Any update in the source schema S can be propagated down to the views that
have been derived from it. A view can be derived from another view.

A view must first be defined as a latent view, which is a named subset of the
source schema. A view schema materializes a latent view, from which it is ge-
nerated.

A.5 Text file

A text file is an external text that generally, either derives from a schema (e.g.,
a generated SQL script file), or from which a schema has been (or will be) de-
rived (e.g., a COBOL source text or an interview report). Text files are known,
and can be processed by the tool, but their contents are not stored in the repo-
sitory.

Figure A.4 - Iconic representation of a text file. Appears in the Project win-
dow.

A.6 Inter-product relationship

The products of a project, i.e., its schemas and its text files, can be linked by
derivation relationships that express the way products are developed from
other products (Figure A.5). These derivation relationships can be explicitly
described through a hierarchy of processes (ignored in this appendix).

A.7 Entity type (or object class)

An entity type represents a class of concrete or abstract real-world entities,
such as customers, orders, books, cars and accidents. It can also be used to mo-
del more computer-oriented constructs such as record types, tables, segments,
and the like. This interpretation depends on the abstraction level of the schema
and on the modeling paradigm in use. For instance, in an object-oriented mo-
del, we will use the term object class instead. Object classes generally are gi-
ven methods and appear in IS-A hierarchies.

library.sql/Oracle 8

Appendix A: The DB-MAIN Generic Model A-5

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure A.5 - The network of products of a project. Includes base schemas,
view schemas, input text files and output text files2.

An entity type can be a subtype of one or several other entity types, called its
supertypes. If F is a subtype of E, then each F entity is an E entity as well.

The collection of the subtypes of an entity type E is declared total (symbol T)
if each E entity belongs to at least one subtype; otherwise, it is said to be par-
tial.

This collection is declared disjoint (symbol D) if an entity of a subtype cannot
belong to another subtype of E; otherwise, it is said to overlap. If this collec-
tion is both total and disjoint, it forms a partition (symbol P).

2. This display is obtained through the dependency view of the history (View / Graph.
dependency).

Corporat/sql Supplier/sqlOrder/sql

Requ-1.txt/1

CORPORATE/Conceptual

ORDER/Conceptual

ORDER/Refined

SUPPLIER/Conceptual

ORDER/1st-cut

order.cob/2

order.cob/merged

order.cob/1

CORP/Order CORP/Supplier

A-6 Appendix A: The DB-MAIN Generic Model

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

An entity type can comprise attributes, can play roles in rel-types, can be col-
lected into collections, can be given constraints (through groups) and can
have processing units.

Since a supertype/subtype relation is interpreted as "each F entity is a E enti-
ty", it is called an IS-A relation . IS-A relations form what is called an IS-A
hierarchy. Indeed, an entity type cannot be, directly or not, a subtype of itself.

An entity type can have more than one supertype. Such a situation is called
multiple IS-A hierarchy, or more commonly (though improperly) multiple in-
heritance.

Figure A.6 - A hierarchy of entity types. PERSON and CUSTOMER are su-
pertypes, EMPLOYEE, INDIVIDUAL CUSTOMER and COMPANY are subty-
pes.

The four supertype/subtype patterns are summarised in the table below, where
B1 and B2 are two subtypes of A:

Total (T) Partial (¬T)

Overlapping
(¬D)

T P

PERSON

INDIVIDUAL CUSTOMER EMPLOYEE

CUSTOMER

COMPANY

B1 B2

 A

P

B1 B2

 A

D

Appendix A: The DB-MAIN Generic Model A-7

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

A.8 Relationship type (rel-type)

A relationship type represents a class of associations between entities. It con-
sists of entity types, each playing a specific role. A rel-type with 2 roles is cal-
led binary , while a rel-type with more than 2 roles is generally called N-ary,
where N is the degree of the rel-type. A rel-type with at least 2 roles taken by
the same entity type is called cyclic.

Normally, a role is played by one entity type only. However, it can be played
by more than one entity type. In this case, it is called a multi-ET role. In any
relationship, this role is taken by an entity of one of these types.

Each role is characterized by its cardinality [i-j] , a constraint stating that
any entity of this type must appear, in this role, in i to j associations or rela-
tionships3. Generally i is 0 or 1, while j is 1 or N (= many or infinity). Howe-
ver, any pair of integers can be used, provided that i ≤ j , i ≥ 0 and j > 0.

Let us consider a binary rel-type R between A and B with cardinality [ia-
ja] for A , [ib-jb] for B.

Overlapping
(¬D)

3. The reader must be aware that other interpretations of role cardinalities exist. In [Teo-
rey,1998], [Elmasri,1994] and [Rumbaugh,1991], for instance, the cardinality of a role sta-
tes how many relationships can/must exist for any combination of instances of the other
roles. This interpretation is convenient for binary rel-types, but poses several problems for
N-ary rel-types (see UML for instance). The current model is compliant with the interpre-
tation of [Batini,1992], [Bodart,1994], [Nanci,1996] and [Coad, 1995].

B1 B2

 A

T

B1 B2

 A

ib-jbia-ja R B A

A-8 Appendix A: The DB-MAIN Generic Model

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

R is called:

one-to-one if ja = jb = 1

one-to-many from A to B if ja > 1 and jb = 1

many-to-one from A to B if ja = 1 and jb > 1

many-to-many if ja > 1 and jb > 1

optional for A if ia = 0

mandatory for A if ia > 0 .

A role can be given a name. When no explicit name is assigned, an implicit
default name is assumed, namely the name of the participating entity type. The
roles of a rel-type have distinct names, be they explicit or implicit. For instan-
ce, in a cyclic rel-type, at least one role must be given an explicit name. A mul-
ti-ET role must have an explicit name as well.

A rel-type can have attributes, and can be given constraints (through
groups) and processing units.

Figure A.7 - Relationship types. Rel-types references, copy-of and borrowed
are binary, while assigned is 3-ary. Rel-type references is cyclic. Role bor-
rowed.by is multi-ET. Copy-of and borrowed are functional. references is
many-to-many.

The term many role designates a role with j > 1 and one role designates a role
with j = 1. A one-to-many rel-type has 1 many role and 1 one role.

A rel-type which has attributes, or which is N-ary, will be called a complex
rel-type. A one-to-one or one-to-many rel-type without attributes will be cal-

0-1
origin

0-N
target

references

1-1

0-N

copy-of

0-N
by

0-1 borrowed

0-N

1-20

0-N

assigned

SUPPLIER

SERVICE

PRODUCT

ORDER

EMPLOYEE

COPY

BOOK

Appendix A: The DB-MAIN Generic Model A-9

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

led functional, since it materialises a functional relation, in the mathematical
sense.

A.9 Collection

A collection is an abstract or concrete repository for entities. A collection can
comprise entities from different entity types, and the entities of a given type
can be stored in several collections. Though this concept can be given different
interpretations at different level of abstraction, it will most often be used in lo-
gical and physical schemas to represent files, data stores, table spaces, etc.

Figure A.8 - DSK:CFILE.DAT is a collection in which EMPLOYEE, COPY and
BOOK entities can be stored.

A.10Attribute

An attribute represents a common property of all the entities (or relationships)
of a given type. Simple attributes have a value domain defined as a built-in
data type (number, character, boolean, date, ...) and a length (1, 2, ..., 200, ...,
N [standing for infinity]). These attributes are called atomic. The built-in do-
mains have the following characteristics.

1. Boolean(n): Set {true,false }, or any set of 2 elements.

2. Char(n): The set of n-character strings.

3. Varchar(n): The set of strings with length from 0 to n.

4. Date(n): Set of dates or timestamps.

5. Numeric(n[,d]): Set of numerical values of n decimal digits, including d
decimals.

6. Float(n): Set of floating point numerical values with a representation of n
bytes.

DSK:CFILE.DAT

EMPLOYEE
COPY
BOOK

A-10 Appendix A: The DB-MAIN Generic Model

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

7. Index(n): Numerical values that designate the elements of parent attribute
A[I-J], which is a multivalued attribute of type array. If A has actual car-
dinality k, the index attribute instances takes some values from 1 to k.

8. Sequence(n): Numerical values that designate the elements of parent attri-
bute A, which is a multivalued attribute of type list. If A has actual cardi-
nality k, the index attribute instances takes all the values from 1 to k.

In these definitions, n stands for the length (Boolean, Char, Date, Numeric,
Float, Index, Sequence), or the max length (Varchar), of the domain values.
For each type, the tool proposes a default length. Except for Date and Boo-
lean, it is an unusual value that should, in most cases, be replaced. The rules
for n are summarized in the following table.

An attribute can also consist of other component attributes, in which case it is
called compound. The parent of an attribute is the entity type, the relationship
type or the compound attribute to which it is directly attached. An attribute
whose parent is an entity type or a rel-type is said to be at level 1. The compo-
nents of a level-i attribute are said to be at level i+1.

If the value domain has some specific characteristics, it can be defined expli-
citly as a user-defined domain, and can be associated with several attributes
of the project. A user-defined domain is atomic or compound.

Type range of n default particular rule

 Boolean 1-99 1

 Char 1-99999 1

 Varchar 1-99999; N 1 N stands for unlimited length

 Date 1-99 10

 Numeric 1-99; 0-99 1 1st figure = total length
2nd figure = decimals

 Float 1-99 1

 Index 1-9 1 not shorter than length of max card. of
the array (e.g., 3 for max card. = 500)

Sequence 1-9 1 not shorter than length of max card. of
the list

Appendix A: The DB-MAIN Generic Model A-11

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Each attribute is characterized by its cardinality [i-j] , a constraint stating
that each parent has from i to j values of this attribute. Generally i is 0 or 1,
while j is from 1 to N (= infinity). However, any pair of integers can be used,
provided that i ≤ j , i ≥ 0 and j > 0. The default cardinality is [1-1] , and is
not represented graphically.

An attribute with cardinality [i-j] is called:

single-valued if j = 1

multivalued if j > 1

optional if i = 0

mandatory if i > 0 .

Figure A.9 - Examples of attributes. Name is mandatory [1-1] while FirstNa-
me is optional [0-1]. Address is compound while Name and ZipCode are ato-
mic. Phone, Author and KeyWord are multivalued. The cardinality of
KeyWord is unlimited [0-N].

A.11Object-attribute

Any entity type (or object class) can be used as a valid domain for attributes.
Such attributes will be called object-attributes. They mainly appear in ob-
ject-oriented schemas.

0-N0-N
borrows

DateBorrow
DateBack[0-1]

COPY
BookID
Title
Author[0-5]
KeyWord[0-N]
id: BookID

BORROWER
PID
Name
FirstName[0-1]
Address

Company
Street
ZipCode[0-1]
City

Phone[1-5]
id: PID

A-12 Appendix A: The DB-MAIN Generic Model

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure A.10 - Owner is a single-valued object-attribute. For each ORDER en-
tity, the value of Owner is a CUSTOMER entity. Orders is a multivalued ob-
ject-attribute of CUSTOMER. This construct can be used in OO database
schemas to express relationship types.

A.12Non-set multivalued attribute

A plain multivalued attribute represents sets of values, i.e., unstructured col-
lections of distincts values. In fact, there exist six categories of collections of
values.
• Set: unstructured collection of distinct elements (default).

A[i-j] represents a collection of i to j unique values.
• Bag: unstructured collection of (not necessarily distinct) elements.

A[i-j] bag represents a collection of i to j elements, some of which
may be identical.

• Unique list: sequenced collection of distinct elements.

A[i-j] ulist represents a sequence of i to j unique elements.
• List: sequenced collection of (not necessarily distinct) elements.

A[i-j] list represents a sequence of i to j elements, some of which
may be identical.

• Unique array: indexed collection of cells that can each contain an ele-
ment. The elements are distinct. Some cells can be empty.

A[i-j] uarray represents a collection of j cells, of which i to j can
contain a value. These values are unique.

• Array: indexed collection of cells that can each contain an element. Some
cells can be empty.

A[i-j] array represents a collection of j cells, of which i to j can con-
tain a value. Some of these values may be identical.

PRODUCT

PCode
PName
Price

ORDER

OrdID
Date
Owner: *CUSTOMER
Details[1-10]

Item: *PRODUCT
Qty

CUSTOMER

CID
CName
CAddress
Orders[0-N]: *ORDER

Appendix A: The DB-MAIN Generic Model A-13

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

These categories can be classified according to two dimensions: uniqueness
and structure.

Figure A.11 - Some non-set multivalued attributes. While Phone defines a
pure set of 0 to 2 values, Expenses represents a bag of 0 to 100 values,
Christ(ian-)Name a list of 0 to 4 ordered distinct values and MonthlyScore an
array of 12 cells, of which from 0 to 12 can be filled.

A.13Group

A group is made up of components, which are attributes, roles and/or other
groups. A group represents a construct attached to a parent object, i.e., to an
entity type, a rel-type or a multivalued compound attribute. It is used to repre-
sent concepts such as identifiers, foreign keys, indexes, sets of exclusive or
coexistent attributes.

It can be assigned one or several functions among the following:

primary identifier: the components of the group make up the main identifier of
the parent object; it appears with symbol id; if it comprises attributes
only, the later are underlined in the graphical view; a parent object can
have at most one primary id; all its components are mandatory.

Unstructured Sequenced Array

Unique (set) ulist uarray

Not unique bag list array

STUDENT
RegNbr
Name
Phone[0-2]
Expenses[0-100] bag
ChristName[0-4] ulist
MonthlyScore[0-12] array
id: RegNbr

A-14 Appendix A: The DB-MAIN Generic Model

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

secondary identifier: the components of the group make up a secondary iden-
tifier of the parent object; it appears with symbol id' ; a parent object can
have any number of secondary id. Some components can be optional.

Figure A.12 - Some constraints. BookID is a primary identifier and {Title, Pu-
blisher} a secondary identifier of BOOK. SerialNbr identifies each COPY wi-
thin a definite BOOK. In addition, this identifier is an access key. Optional
attributes State and StateComment both are valued or void (coexistence).

coexistence: the components of the group must be simultaneously present or
absent for any instance of the parent object; the group appears with
symbol coex; all its components are optional.

exclusive: among the components of the group at most one must be present for
any instance of the parent object; the group appears with symbol excl;
all its components are optional.

at-least-1: among the components of the group, at least one must be present
for any instance of the parent object; the group appears with symbol at-
lst-1; all its components are optional.

exactly-1: among the components of the group, one and only one must be pre-
sent for any instance of the parent object (= exclusive + at-least-1); the
group appears with symbol exact-1; all its components are optional.

access key: the components of the group form an access mechanism to the ins-
tances of the parent object (generally an entity type, to be interpreted as

1-10-N of

COPY
SerialNbr
DateAcquired
Location

Store
Shelf
Row

NbrOfVolumes
State[0-1]
StateComment[0-1]
id: of.BOOK

SerialNbr
acc

coex: State
StateComment

acc: Location

BOOK
BookID
Title
Publisher
DatePublished
KeyWord[0-10]
Abstract[0-1]
id: BookID
id': Title

Publisher

Appendix A: The DB-MAIN Generic Model A-15

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

a table, a record type or a segment type); the access key is an abstraction
of such constructs as indexes, hash organization, B-trees, access paths,
and the like; it appears with symbol acc or access key.

user-defined constraint: any function that does not appear in this list can be de-
fined by the user by giving it a name; some examples: at-most-2 (no
more than two components can be valued), lhs-fd (left-hand-side of a
functional dependency), less-than (the value of the first component
must be less than that of the second one), etc.

An identifier can be made up of a multivalued attribute, in which case it is cal-
led a multivalued identifier . In this case, no two parent instances can share
the same value of this attribute.

A multivalued, compound, attribute A, with parent P (entity type, relationship
type or compound attribute) can be given identifiers as well. Such an attribu-
te identifier I, made of a subset of the subattributes of A, states that, for each
instance of P, no two instances of A can share the same value of I.

Figure A.13 - Multivalued identifiers and Attribute identifiers. Object-attribute
Orders is declared an identifier, stating that any two CUSTOMER entities must
have distinct Orders values (an order is issued by one customer only). All the
Details values of each ORDER entity have distinct Item values (a product can-
not be referenced more than once in an order)

An identifier of entity type E is made up of either:
• one or several single-valued attributes of E,
• one multivalued attribute of E,
• two or more remote roles of E,
• one or more remote roles of E + one or more single-valued attributes of E.

PRODUCT
PCode
PName
Price
id: PCode

ORDER
OrdID
Date
Owner: *CUSTOMER
Details[1-10]

Item: *PRODUCT
Qty

id: OrdID
id(Details):

Item

CUSTOMER
CID
CName
CAddress
Orders[0-N]: *ORDER
id: CID
id': Orders[*]

A-16 Appendix A: The DB-MAIN Generic Model

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

An identifier of relationship type R is made up of either:
• one or several attributes of R,
• two or more roles of R,
• one or more roles of R + one or more attributes of R.

An identifier of attribute A is made up of:
• one or several single-valued subattributes of A.

A technical identifier (technical id) of entity type E is a semantic-less, gene-
rally short, attribute that is used to denote entities without reference to appli-
cation domain properties. It is generally used as a substitute for long, complex
and information-bearing identifiers. Object-id (oid) of OO models can be con-
sidered as system-controlled technical identifiers. The default type and length
of technical ids are user-defined.

A.14Inter-group constraint

Independently of their function(s), two groups with compatible components
can be related through a relation that expresses an inter-group integrity cons-
traint .

The following built-in constraints are available:

reference: the first group is a foreign key and the second group is the referen-
ced (primary or secondary) identifier; the foreign key appears with sym-
bol ref;

ref equal: the first group is a foreign key and the second group is the referenced
(primary or secondary) identifier; in addition, an inclusion constraint is
defined from the second group to the first one; both constraints form an
equality constraint; the foreign key appears with symbol equ;

inclusion: each instance of the first group must be an instance of the second
group; since the second group need not be an identifier, the inclusion
constraint is a generalization of the referential constraint (to be imple-
mented);

incl equal: an inclusion constraint in each direction: each instance of each
group is an instance of the other group (to be implemented);

copy: (to be defined)

copy equal: (to be defined)

Appendix A: The DB-MAIN Generic Model A-17

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

Figure A.14 - Attribute BookID of COPY form a reference group (foreign key)
to BOOK

An inverse constraint can be asserted between two object-attributes, expres-
sing that each is the inverse of the other.

Figure A.15 - Orders of CUSTOMER and Owner of ORDER are declared in-
verse object-attributes. If c denotes the Owner of ORDER entity o, then c must
belong to the Orders value set of CUSTOMER c.

A generic inter-group constraint can be drawn from any group to any other
group of the schema.

COPY
BookID
SerialNbr
DateAcquired
id: BookID

SerialNbr
ref: BookID

BOOK
BookID
Title
Abstract[0-1]
id: BookID

ORDER
OrdID
Date
Owner: *CUSTOMER
Details[1-10]

Item: *PRODUCT
Qty

id: OrdID
inv: Owner
id(Details):

Item

CUSTOMER
CID
CName
CAddress
Orders[0-N]: *ORDER
id: CID
id': Orders[*]

inv

A-18 Appendix A: The DB-MAIN Generic Model

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

Figure A.16 - A redundancy constraint is expressed between two user-defi-
ned group types, namely copy and source, through a generic inter-group cons-
traint. This structure states that CustomerName and CustomerAddress are
copies of Name and Address of CUSTOMER through rel-type place.

Figure A.17 - This schema includes two object classes with their methods. In
addition, three global processes have been defined at the database level (at-
tached to the schema).

1-1 0-Nplace

ORDER
OrderID
OrdDate
CustomerName
CustomerAddress
id: OrderID
copy: place.CUSTOMER

CustomerName
CustomerAddress

CUSTOMER
CustomerID
Name
Address
Account
id: CustomerID
source: Name

Address

ORDER
OrderID
OrdDate
Sender: *CUSTOMER
id: OrderID
record_order()
make_invoice()
validate_order
cancel_order
get_properties()
get_order
get_sender

CUSTOMER
CustID
CustName
CustAddress
Orders[0-N]: *ORDER
id: CustID
register_customer()
remove_customer
get_properties()
get_customer
get_orders
select_customer()

Order Management/OO version

Order_processing
Invoice_processing
Customer_processing

Appendix A: The DB-MAIN Generic Model A-19

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

A.15Processing units

A processing unit is any dynamic or logical component of the described sys-
tem that can be associated with a schema, an entity type or a relationship type
(Figure A.17). For instance, a process, a stored procedure, a program, a trig-
ger, a business rule or a method can each be represented by a processing unit.

A.16Common characteristics

Some characteristics are common to several objects. Schemas, text files, entity
types, rel-types, attributes, user-defined domains, collections, groups and pro-
cessing units each have a Name, and can have a Short-name, a Semantic des-
cription (SEM), and a Technical description (TECH). They can also be given
semi-formal and dynamic properties. Finally, they can be marked and colo-
red.

Semantic description. The semantic description is a free text annotation ex-
plaining the meaning of the object.

Technical description. The technical description is a text giving information
on the technical aspects of the object. Some functions of the CASE tool
write statements in this description, especially in reverse engineering
processes.

Semi-formal properties. The semantic and technical descriptions can inclu-
de semi-formal properties. Such a property is declared through the sta-
tement

#<property-name> = <property-value>

where <property-name> is the name of the property and <pro-
perty-value> its value. Semi-formal properties are user-defined
and are not managed by the tool, but can be used by specific processors
developed in Voyager-2. Defining a dynamic property is a more for-
mal, but less flexible, way to augment the modeling power of the tool.

Dynamic properties. In addition to the built-in static properties, such as na-
me, short-name, cardinality, type and length, that appear in the property
box of the objects, each object type can be dynamically given additional
properties, called dynamic properties. They are defined by the analyst
at the meta-object level (schema, entity type, rel-type, attribute, etc.), in

A-20 Appendix A: The DB-MAIN Generic Model

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

such a way that they can be given a value for each instance of the meta-
object (each schema, each entity type, each rel-type, each attribute,
etc.). For instance, attributes can be associated with such dynamic pro-
perties as owners , synonyms , definition , French name,
password , physical format , screen layout , etc. DB-MAIN
itself maintains some internal dynamic properties. They are visible but
have a read-only status.

A dynamic property has a name (Name), a type (Type), and a textual
description (Sem). It can be updatable by the users or not (Updata-
ble). It can be single-valued or multivalued (Multivalued). It is
possible to declare the list of possible values (Predefined values).

Marking . Each product and each process in a project, each object in a schema
and each line in a text file can be given a special status, called marked.
Marking is a way to permanently select objects, either to identify them
(e.g., validated objects are marked, while those still to be examined are
unmarked), or to apply global operations on them through the assistant
(e.g., transform all marked rel-types into entity types or export specifi-
cations) or as the result of the execution of some assistants or to define
schema views.

In fact, there are several marking planes, numbered 1 to 5, of which one
is the current, or visible, plane. A plane is a set of simultaneous marks
associated with the objects of a schema. All the operations are applied
in the current plane. The concept of plane makes it possible to define
up to 5 independent sets of marks on the same schema, e.g., one to de-
note validated objects, one for import/export and one for temporary
operations. It is possible to combine the marks of several planes.

Color. Selected objects of a schema can be drawn in a definite color. Several
colors can be used in the same schema.

A.17Names

The model includes naming constraints that make it possible to denote objects
through their name. Here are the main rules:
• two names composed of the same characters, be they in uppercase or in

lowercase, are considered identical; so, "Customer" and "CUSTOMER"
are the same names; the accents are taken into account;

• all the printable characters, including spaces, /, [, {, (, punctuation sym-

Appendix A: The DB-MAIN Generic Model A-21

DB-MAIN Tutorial -  J-L Hainaut 1999 21/03/2002

bols and diacritic characters, can be used to form names; however the
symbols " is prohibited;

• the schemas of a project are identified by the combination <name>/<ver-
sion>;

• each entity type of a schema is identified by its name;
• each rel-type of a schema is identified by its name;
• a collection of a schema is identified by its name;
• each direct attribute of a definite parent (an entity type, a rel-type or a

compound attribute) is identified by its name;
• a group of a definite parent (idem) is identified by its name.
• each processing unit of a definite parent (an entity type, a rel-type or a

schema) is identified by its name;

The syntax of names includes the special symbol "|", which is a valid charac-
ter, but which has a special effect when displayed: this character as well as all
the characters that follow are not displayed.

Figure A.18 - Use of ambiguous names. The rel-types have been assigned
the names "of|1", "of|2", "of|3" in the left-side schema and "|1", "|2", "|3" in the
right-side schema

1-1

of

1-N

1-1

of

1-1

0-N

of

ORDER PRODUCT

id: of.ORDER
of.PRODUCT

DETAIL

CUSTOMER

0-N

1-1

1-N

1-1

1-1

0-N

ORDER PRODUCT

id: .ORDER
.PRODUCT

DETAIL

CUSTOMER

0-N

A-22 Appendix A: The DB-MAIN Generic Model

21/03/2002 DB-MAIN Tutorial -  J-L Hainaut 1999

A.18Structure of a text file

At the lowest level of understanding, a text file is a system object containing a
string of characters. Most files comprise text lines, that are logical units of
text. One or several (not necessarily contiguous) lines can be marked in each
of the five marking planes, in order to maintain up to five permanent sets of
lines. An annotation can be associated with each line. In some circunstances,
words and lines can be colored.

Texts which have a meaningful structure, such as any kind of programs, often
include patterns. A text pattern is a formally defined text structure that can
appear in several places in the text, and that is defined by a set of syntactic ru-
les. Any section of text that satisfies these rules is a instance of this pattern.

Useful structures can be extracted from program files, such dependency dia-
grams and program slices. They will be studied in other lessons devoted to
program understanding and reverse engineering.

