
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Demonstration of the DB-MAIN methodological engine

Roland, Didier

Publication date:
2002

Link to publication
Citation for pulished version (HARVARD):
Roland, D 2002, Demonstration of the DB-MAIN methodological engine..

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/publications/9397e895-c2e7-4042-970e-5aef3f8f9cfe

DB-Main Manual Series

The University of Namur - LIBD

DEMONSTRATION OF THE DB-MAIN
METHODOLOGICAL ENGINE

WITH DB-MAIN 6.5 - MARCH 2002

DIDIER ROLAND

2 1. Introduction

1. Introduction
This paper is a “learning by example” demonstration of how to perform the design of a simple database.
This design will be carried out step by step. This method, shown in appendix A, is defined by a method
engineer, using the MDL language [ROLAND,02].

The small case study concerns a library. It contains books that can be borrowed. The database is aimed
at registering all books of the library, all the borrowers and their borrowings. Its complete definition is
given in appendix B, its conceptual schema in appendix C. During the demonstration, we will transform
this schema in a relational schema and generate an SQL DDL script.

2. How to read this paper
• Bold characters are used to show menu entries to select, or static text in dialogue boxes.

• Italics is used to show what has to be typed by the user.

• [...] shows a button to push.

• “ ... ” shows a graphical object (process type, process, product) that can be found in a window, or a
file name.

• In the drawings, four colour schemes are used to draw rectangles for representing their state. These
schemes can be changed in DB-MAIN through the menu entry File/Configuration... and the
"Method" category, as shown in Figure 2.1. The four schemes are:

• grey border and white background for unused process types

• black border and white background for used process types

• green border and white background in DB-MAIN, changed to ligth gray border and background
in this paper, for allowed process types

• red border and white background, changed to dark gray border and background in this paper, for
executing process types.

Figure 2.1 - The DB-MAIN configuration dialogue box for changing the colours used to draw the method.

3. Demonstration 3

3. Demonstration
The DB-MAIN CASE tool is started, its workspace is blank. We will create a new project.

Menu File/New project
 Name: Library
 Short name: lib
 Methodology: forward.lum (content in appendix A) (also selectable by pushing [Browse])
 [OK]

The project is created, the project window is opened, and, on top of it, another window containing the
method that we will follow (see first figure in appendix A.2). The method is displayed in a graphical
way. Rectangles are process types, i.e. the definition of the processes to perform. Ellipses are product
types, i.e. the definition of the products to generate: all the schemas at every step and the SQL-DDL
script. Bold arrows show the control flow, and the thin arrows show the data flow.

Execute “New” (in the method window, click on the “New” process type (allowed colour) with the
mouse right button; a contextual menu appears, select Execute).
 Select the file “library.txt” (content in appendix B).
 Change version number to “IR”
 [OK]

In the project window (see figure 3.1), we can see that the “New text” process has been created, as well
as the “library.txt” text have been added to the history. An arrow shows that the text is the output of the
process.

Figure 3.1 - The analyst can choose between two process types

In the method window, the “New” process type is still allowed, and a second one, “Conceptual analy-
sis”, is allowed too. It means that the analyst can choose either to add as many interview reports as he or
she wants to the project or proceed with the conceptual analysis of these reports. It is to be noticed that,
during the execution of the “New text” process, the “New” process type was in the executing colour to
show that a process of that type is in progress.

4 3. Demonstration

In our example, we will do with our single text and go on with its analysis.

Execute “Conceptual analysis”.
 [OK]

The content of the method window is changed. It shows the strategy of the “Conceptual analysis” pro-
cess type (figure 3.2). The project window has changed in the same way: a “Conceptual analysis” engi-
neering process has been created, and the window shows it. By opening the process hierarchy window
(menu Window/Process hierarchy), we can see that “Conceptual analysis” is a sub-process of Library.
We can use the hierarchy window to browse through the history

.

Figure 3.2 - Beginning the conceptual analysis

We can now perform the conceptual analysis by first creating a new schema that will be used as the
drawing board.

Execute “New”.
 Name: Library
 Short name: lib
 Version: Conceptual
 [OK]

On this drawing board, we will now introduce the conceptual schema of our library management sys-
tem during the analysis process.

Execute “Analysis”.
 [OK]

“Analysis” is a primitive process that must be performed by the analyst using a toolbox. By double clic-
king on the “Analysis” process type in the method window, we can see which tools are available in this
toolbox (figure 3.3). They allow the analyst to create and edit entity types, relationship types, attributes,
roles and groups in the schema. So, now, the analyst will have to open the blank schema and fill it by
creating the conceptual schema of the database by its own. When he or she finishes the job, he or she
will signal it to the methodological engine

3. Demonstration 5

.

Figure 3.3 - The analysis toolbox

Open the “Library/conceptual” schema.
Enter the conceptual schema shown in appendix 3.
Close the schema.
In the project window, select the “Analysis” process.
Menu Engineering/End use of primitives.
Terminate “Analysis” (in the method window, click on the “Analysis” process type (in executing
colour) with the mouse right button; a contextual menu appears, select Terminate).

The first conceptual schema being introduced, it can be normalised. To know what it means, just double
click on the “Conceptual normalisation” process type in the method window and read its description.

Execute “Conceptual normalisation”.
 [OK]
Open the “Library/Conceptual” schema.
We can see that this simple schema is already normalised, so we can immediately close the window.
Select “Conceptual normalisation” in the project window.
Menu Engineering/End use of primitives.
Terminate “Conceptual normalisation”

The conceptual analysis is finished (see figure 3.4). The CASE tool automatically terminates it: the
CASE tool automatically performs the same action as the user could perform by selecting the menu
entry Engineering/End current process with nothing selected in the project window. A dialogue box
appears to allow the user to select output products, as shown in figure 3.5. Since the process type speci-
fies there should be conceptual schema(s) in output, and since we have only one schema in our project,
this schema is proposed in output. We accept this choice and we terminate the use of conceptual analy-
sis process type::

 [OK]
Terminate “Conceptual analysis”.

Both the project and the method windows are back to their first view, the one before we began the
“Conceptual analysis” process. In the method window, only the “Logical design” process type is now in
the state allowed (figure 3.6).

6 3. Demonstration

Figure 3.4 - The conceptual analysis is finished

Figure 3.5 - The output product selection dialogue box.

Execute “Logical design”.
 [OK]
Execute “Copy”.
 Version: First logical
 [OK]
Execute “Relational design”.
 [OK]

3. Demonstration 7

Figure 3.6 - Ready for logical design

The following process types are primitive process types. The “New” and “Copy” process types we
already met are also primitive process types, but built-in process types: the CASE tool knows by itself
what to do. The “Analysis” process type met during the conceptual analysis was an analyst-driven pri-
mitive process type. The following ones are of a third kind: they are method-driven primitive process
types. By double-clicking on them in the method window, one can see a script of transformations that
were specified by the method engineer and that will be executed automatically by the CASE tool.

Execute “Is-a relations”.
 [OK]
Execute “Non-functional rel-types”.
 [OK]
Execute “Attributes”.
 [OK]
Execute “Identifiers”.
 [OK]
Execute “References”
 [OK]

Relational design is over (figure 3.7) and the Engineering/End current process function is executed.

 [OK]
Terminate “Relational design”.

We can go on with the logical design by keeping a copy of the current state of the schema and transfor-
ming all the names in order for them to be compliant with the SQL standard.

8 3. Demonstration

Figure 3.7 - End of relational design

Execute “Copy”.
 Version: Logical
 [OK]
Execute “Name conversion”.
 [OK]
Open “Library/logical”.
Menu Transform/Name processing. (see figure 3.8)
 "-" -> "_"
 [lower -> uppercase]
 [OK]
Close the schema
Select “Name conversion” in the project window
Menu Engineering/End use of primitives.
Terminate “Name conversion”.

The logical design is over (figure 3.9) and the CASE tool automatically terminates it: the schema
“Library/Logical” is proposed in output, and the schema “Library/First logical” is put in the
“candidates” list, that is to say it is not proposed in output, but the user can decide to use it in output
anyway. We simply accept the proposed solution.

 [OK]
Terminate “Logical design”.

The same way, we can perform the physical design of our database.

Execute “Physical design”.
 [OK]
Execute “Copy”.
 Version: Physical
 [OK]

3. Demonstration 9

Figure 3.8 - Name processing

Figure 3.9 - End of logical design

A method engineer-driven primitive process will create indexes automatically where they are probably
the most useful.

Execute “Setting indexes”.
 [OK]

10 3. Demonstration

A user-driven primitive process allows the database engineer to manually specify the database files to
create and to distribute the tables among those files.

Execute “Storage allocation”.
 [OK]
Open schema “Library/Physical”.
Create two collections and fill them:
- LIBRARY (AUTHOR,BOOK,COPY,KEYWORD,REFERENCE,WRITTEN)
- BORROWING(BORROWER,BORROWING,CLOSED_BORROWING,PHONE,PROJECT)
Close the schema.
Select “Storage allocation” in the project window.
Menu Engineering/End use of primitives.
Terminate “Storage allocation”.

The physical design is over (see figure 3.10) and terminated automatically by the CASE tool with
“Library/Physical” as proposed output product.

Figure 3.10 - End of physical design

 [OK]
Terminate “Physical design”.

And finally the coding step will generate the SQL-DDL script.

Execute “Coding”.
 [OK]
Execute “Copy”.
 Version: Implemented
 [OK]
Execute “Setting coding parameters”.
 [OK]
Open the schema.

3. Demonstration 11

The technical descriptions can be modified by introducing some coding parameters. They will be inter-
preted by the SQL generator. For instance, the technical description could specify, for each access key,
if it must be implemented with a b-tree, or with hashing.

We will not bother with these optimisations in this small case study.

Close the schema.
Select “Setting coding parameters” in the project window.
Menu Engineering/End use of primitives.
Terminate “Setting coding parameters”.

Finally, the SQL generator can be invoked.

Execute “Generate”.
 File Name: LIBRARY.DDL
 [Save]

The CASE tool automatically terminates the “Coding” process with “library.dll/1” as the proposed out-
put product.

 [OK]
Terminate “Coding”.

Both the coding (figure 3.11) and the project (figure 3.12) are terminated.

Figure 3.11 - End of coding

12 4. Bibliography

Figure 3.12 - End of the project

4. Bibliography
[ROLAND,02] D. Roland, MDL Programmer’s Guide, technical report, FUNDP, Institut
d’informatique, http://www.db-main.be 2002.

Appendix A. The method 13

Appendix A. The method

A.1 The MDL listing
% Product models definitions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

text-model TEXT_FILE
 title "Text file"
 description
 A text file contains some free text. In this method, we will use them
 to store reports written in natural language.
 end-description
 extensions "TXT"
end-model

text-model SQL_FILE
 title "SQL file"
 description
 An SQL script containing SQL instructions for the creation of
 a database including create database, create table, create index,
 alter table with checks, create trigger,...
 end-description
 extensions "SQL", "DDL"
end-model

schema-model PHYS_SQL_SCHEMA
 title "SQL schema model"
 description
 The SQL schema model maps the generic entity/object-relationship (GER) model
 of DB-MAIN to an SQL relational model, including physical characteristics
 such as the setting of indexes and the definition of dataspaces.
 This is the schema model from which database creation scripts can be derived.
 This is the schema can be used as a reference for the database administrator
 to fine tune the database.
 end-description
 concepts
 collection "table space"
 schema "view"
 entity_type "table"
 atomic_attribute "column"
 user_constraint "constraint"
 identifier "unique constraint"
 primary_identifier "primary key"
 access_key "index"
 constraints
 ET_per_SCHEMA (1 N) % At list one table required
 diagnosis "Schema &NAME should have a table"
 RT_per_SCHEMA (0 0) % No rel-type allowed
 diagnosis "Rel-type &NAME should not exist"
 ATT_per_ET (1 N) % At least one column per table
 diagnosis "Table &NAME should have at least one column"
 PID_per_ET (0 1) % At most one primary key per table
 diagnosis "Table &NAME has too much primary keys"
 SUB_TYPES_per_ISA (0 0) % Is-a relations are not allowed
 diagnosis "Is-a relations are not allowed and &NAME has a sub-type"
 ID_NOT_KEY_per_ET (0 0) % Every unique constraint is an index
 diagnosis "Unique constraint &NAME should be an index"
 OPT_ATT_per_EPID (0 0) % Optional columns not allowed in primary keys.
 diagnosis "There should be no optional column in primary key &NAME."
 DEPTH_of_ATT (1 1) and MAX_CARD_of_ATT (1 1)
 % Columns are atomic and single-valued

14 Appendix A. The method

 diagnosis "Column &NAME should be atomic and single-valued."
 ALL_CHARS_in_LIST_NAMES (ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
 0123456789$_)
 and NONE_in_LIST_NAMES (_$,$$)
 and LENGTH_of_NAMES (0 31)
 diagnosis "The name &NAME is invalid"
end-model

schema-model LOG_SQL_SCHEMA
 title "Logical relational schema"
 description
 The logical relational schema model maps the generic entity/object-relationship
 (GER) model of DB-MAIN to a generic relational model, without any specific RDBMS
 in mind. Schemas compliant with this model are the one to give as a reference to
 people who need to write queries on the database.
 end-description
 concepts
 schema "view"
 entity_type "table"
 atomic_attribute "column"
 user_constraint "constraint"
 identifier "unique constraint"
 primary_identifier "primary key"
 constraints
 ET_per_SCHEMA (1 N) % At list one table required
 diagnosis "Schema &NAME should have a table"
 RT_per_SCHEMA (0 0) % No rel-type allowed
 diagnosis "Rel-type &NAME should not exist"
 COLL_per_SCHEMA (0 0) % No collection/table space allowed
 diagnosis "The schema should have no table space"
 ATT_per_ET (1 N) % At least one column per table
 diagnosis "Table &NAME should have at least one column"
 PID_per_ET (0 1) % At most one primary key per ET
 diagnosis "Table &NAME has too many primary keys"
 KEY_per_ET (0 0) % No access keys/indexes
 diagnosis "Table &NAME should not have an index"
 SUB_TYPES_per_ISA (0 0) % Is-a relations are not allowed
 diagnosis "Is-a relations are not allowed and &NAME has a sub-type"
 OPT_ATT_per_EPID (0 0) % Optional columns not allowed in primary keys.
 diagnosis "There should be no optional column in primary key &NAME."
 DEPTH_of_ATT (1 1) and MAX_CARD_of_ATT (1 1)
 % Columns are atomic and single-valued
 diagnosis "Column &NAME should be atomic and single-valued."
end-model

schema-model CONCEPT_SCHEMA
 title "Conceptual schema model"
 description
 The conceptual schema model allows an analyst to draw a representation of the
 real world. A schema compliant with that model shows precisely, in a readable
 way, the semantics of the database. It cannot be directly implemented. Its main
 purpose is to be a basis for documenting the database, to be a support for
 dialogue.
 end-description
 concepts
 schema "schema"
 entity_type "entity type"
 rel_type "relationship type"
 atomic_attribute "attribute"
 compound_attribute "compound attribute"
 role "role"
 group "group"
 user_constraint "constraint"
 constraints

Appendix A. The method 15

 ET_per_SCHEMA (1 N) % At list one ET required
 diagnosis "Schema &NAME should have an entity type"
 COLL_per_SCHEMA (0 0) % No collection allowed
 diagnosis "The schema should have no collection"
 ATT_per_ET (1 N) % At least one attribute per ET
 diagnosis "Entity type &NAME should have at least one attribute"
 KEY_per_ET (0 0) % No access keys
 diagnosis "Entity type &NAME should not have an access key"
 REF_per_ET (0 0) % No foreign key
 diagnosis "Entity type &NAME should not have a foreign key"
 ID_per_ET (1 N) % If there are identifiers, one of them is primary
 and PID_per_ET (1 1)
 or ID_per_ET (0 0)
 diagnosis "One of the identifiers of entity type &NAME should be primary"
 EMBEDDED_ID_per_ET (0 0) % Embedded identifiers are not allowed"
 diagnosis "Embedded identifiers should be removed in entity type &NAME"
 ID_DIFF_in_ET (components) % All identifiers must have different components
 diagnosis "Identifiers made of the same components should be avoided in &NAME"
 TOTAL_in_ISA (no) % Total is-a relations should concern at least
 or TOTAL_in_ISA (yes) % two subtypes
 and SUB_TYPES_per_ISA (2 N)
 diagnosis "Total is-a relations are not allowed with only one sub-type"
 DISJOINT_in_ISA (no) % Disjoint is-a relations should concern at least
 or TOTAL_in_ISA (yes) % two subtypes
 and SUB_TYPES_per_ISA (2 N)
 diagnosis "Disjoint is-a relations are not allowed with only one sub-type"
 ROLE_per_RT (2 2) % 2 <= degree of a rel-type <= 4
 or ROLE_per_RT (3 4) % if 3 or 4, the rel-type cannot have a one role
 and ATT_per_RT (1 N) % or it must also have attributes
 or ROLE_per_RT (3 4)
 and ATT_per_RT (0 0)
 and ONE_ROLE_per_RT (0 0)
 diagnosis "Rel-type &NAME has too many roles, or too few attributes"
 ID_per_RT (1 N) % If RT have some identifiers, one of them is primary
 and PID_per_RT (1 1)
 or ID_per_RT (0 0)
 diagnosis "One of the identifiers of rel-type &NAME should be primary"
 EMBEDDED_ID_per_RT (0 0) % Embedded identifiers are not allowed"
 diagnosis "Embedded identifiers should be removed in rel-type &NAME"
 ID_DIFF_in_RT (components) % All identifiers must have different components
 diagnosis "Identifiers made of the same components should be avoided in &NAME"
 not SUB_ATT_per_ATT (1 1) % Compound attribute must have at least two components
 diagnosis "Compound attribute &NAME has too few sub-attributes"
 ID_per_ATT (0 0) % A compound attribute cannot have an identifier
 diagnosis "Multi-valued compound attribute &NAME should not have an identifier"
 COMP_per_GROUP (1 N) % Every group must have at least one component
 diagnosis "Group &NAME should have components"
 ROLE_per_EID (0 0) % An ET identifier cannot be made of a single role
 and COMP_per_EID (1 N)
 or ROLE_per_EID (1 N)
 and COMP_per_EID (2 N)
 diagnosis "ET Identifier &NAME should have another component"
 MULT_ATT_per_EID (1 1) % If an ET identifier contains a multi-valued attribute
 and COMP_per_EID (1 1) % it must be the only component.
 or MULT_ATT_per_EID (0 0)
 diagnosis "ET id. &NAME should have no multi-valued att. or no other component"
 ONE_ROLE_per_EID (0 0) % An entity type identifier should not have a one-role
 diagnosis "One-roles should be removed from entity type identifier &NAME"
 OPT_ATT_per_EPID (0 0) % Optional columns not allowed in primary ids.
 diagnosis "There should be no optional column in primary id &NAME."
 COMP_per_RID (1 1) % If a rel-type identifier has only one component,
 and ROLE_per_RID (0 0) % it must be an attribute
 or COMP_per_RID (2 N)
 diagnosis "Rel-type identifier &NAME should have more components"

16 Appendix A. The method

 MULT_ATT_per_RID (1 1) % If a RT identifier contains a multi-valued attribute
 and COMP_per_RID (1 1) % it must be the only component.
 or MULT_ATT_per_RID (0 0)
 diagnosis "RT id. &NAME should have no multi-valued att. or no other component"
 ONE_ROLE_per_RID (0 0) % A rel-type identifier should not have a one-role
 diagnosis "One-roles should be removed from rel-type identifier &NAME"
 OPT_ATT_per_RPID (0 0) % No optional attribute in a rel-type identifier
 diagnosis "Optional attributes should be removed from rel-type id. &NAME"
end-model

% Toolbox definitions
%%%%%%%%%%%%%%%%%%%%%

toolbox TB_ANALYSIS
 title "Analysis"
 description
 This toolbox allows you to draw a conceptual schema. You can create and edit
 entity types, relationship types, attributes, roles and integrity constraints.
 end-description
 add create-entity-type
 add create-rel-type
 add create-attribute
 add create-group
 add create-role
 add modify-entity-type
 add modify-rel-type
 add modify-attribute
 add modify-group
 add modify-role
 add delete-entity-type
 add delete-rel-type
 add delete-attribute
 add delete-group
 add delete-role
end-toolbox

toolbox TB_CONCEPTUAL_NORMALISATION
 title "Conceptual normalisation"
 description
 This toolbox allows you to enhance the readability of your conceptual schema
 without modifying its semantics. You can do it by applying some transformations
 on entity types, relationship types and attributes.
 You should be aware of some entity types that look like relationship types (the
 roles they play are all 1-1 and they are identified by all the roles they play),
 of some entity types that look like attributes (small, just a few attributes, and
 they play a single role in a single relationship type), of some entity types
 that are linked by a one to one relationship type and that have the same
 semantics, and of large entity types that do not have a clear semantics.
 end-description
 add tf-ET-into-att
 add tf-att-into-ET
 add tf-RT-into-ET
 add tf-ET-into-RT
 add tf-split-merge
 add modify-entity-type
 add modify-rel-type
 add modify-attribute
 add modify-group
 add modify-role
end-toolbox

toolbox TB_NAME_CONVERSION
 title "Name conversion"

Appendix A. The method 17

 description
 The names of all objects of the schema should be transformed by removing
 white spaces, accents and other special symbols.
 end-description
 add name-processing
end-toolbox

toolbox TB_SETTING_PARAMETERS
 title "Setting coding parameters"
 description
 Allows you to update technical descriptions in order to specify a few
 database engine dependent parameters.
 end-description
 add modify-tech-desc
end-toolbox

toolbox TB_STORAGE_ALLOCATION
 title "Storage allocation"
 description
 Allows you to define what files to create and which table goes in which file.
 end-description
 add create-collection
 add modify-collection
 add delete-collection
end-toolbox

% Process types definitions
%%%%%%%%%%%%%%%%%%%%%%%%%%%

process CONCEPTUAL_ANALYSIS
 title "Conceptual analysis"
 description
 On the basis of interview reports with the future users of the system that will
 be build, a conceptual schema of the database is drawn. It has to reflect the real
 world system.
 end-description
 input Interview_report[1-N] "Interview report" : TEXT_FILE
 output Conceptual_schema "Conceptual schema" : CONCEPT_SCHEMA
 strategy
 new(Conceptual_schema);
 toolbox TB_ANALYSIS [log off] (Conceptual_schema,Interview_report);
 toolbox TB_CONCEPTUAL_NORMALISATION [log replay] (Conceptual_schema);
end-process

process RELATIONAL_TRANSLATION
 title "Relational design"
 description
 Transformation of a binary schema into a relational (SQL-compliant) schema.
 end-description
 update Logical_schema "Relational logical schema" : LOG_SQL_SCHEMA
 strategy
 % Transform is-a relations
 glbtrsf "Is-a relations" (Logical_schema,ISA_into_RT);
 % Transform all non-functional rel-types
 glbtrsf "Non-functional rel-types" (Logical_schema,
 RT_into_ET(ROLE_per_RT(3 N) or ATT_per_RT(1 N)),
 SPLIT_MULTIET_ROLE,
 RT_into_ET(N_ROLE_per_RT(2 2)));
 % Transform all compound and/or multi-valued attributes
 glbtrsf "Attributes"(Logical_schema,
 LOOP,
 ATT_into_ET_INST(MAX_CARD_of_ATT(2 N)),
 DISAGGREGATE,
 ENDLOOP);

18 Appendix A. The method

 % Add technical identifiers where needed in order to be able to transform all
 % rel-types into referential constraints
 glbtrsf "Identifiers" (Logical_schema,SMART_ADD_TECH_ID);
 % Transform all rel-types into referential constraints
 glbtrsf "References" (Logical_schema,
 LOOP,
 RT_into_REF,
 ENDLOOP)
end-process

process LOGICAL_DESIGN
 title "Logical design"
 description
 Logical design is the process of transforming a conceptual schema into
 a data model compliant schema, a relational model compliant schema in this case.
 In a first time, the conceptual schema will be simplified (transformed into a
 binary schema). It will be possible, in a second time, to optimise this
 simplified schema. In a third time, this optimised schema will be transformed
 into a relational schema. Finally, a few relational model specific optimisations
 can be performed.
 end-description
 input Conceptual_schema "Conceptual schema" : CONCEPT_SCHEMA
 output Logical_schema "Logical schema" : LOG_SQL_SCHEMA
 intern Raw_logical_schema "Raw logical schema" : weak LOG_SQL_SCHEMA
 strategy
 copy(Conceptual_schema,Raw_logical_schema);
 do RELATIONAL_TRANSLATION(Raw_logical_schema);
 copy(Raw_logical_schema,Logical_schema);
 toolbox TB_NAME_CONVERSION [log all] (Logical_schema);
end-process

process PHYSICAL_DESIGN
 title "Physical design"
 description
 Physical design is the process of updating a logical schema into a DBMS specific
 schema by adjunction of a series of specific structures like files, access
keys,...
 end-description
 input Logical_schema "Logical schema" : LOG_SQL_SCHEMA
 output Physical_schema "Physical schema" : PHYS_SQL_SCHEMA
 strategy
 copy(Logical_schema,Physical_schema);
 % setting indexes
 glbtrsf "Setting indexes" (Physical_schema,
 RENAME_GROUP,
 GROUP_into_KEY(ID_in_GROUP(YES) or REF_in_GROUP(YES)),
 REMOVE_PREFIX_KEY);
 toolbox TB_STORAGE_ALLOCATION(Physical_schema);
end-process

process CODING
 title "Coding"
 description
 Coding consites in setting a few database dependent parameters and generating
 an SQL DDL file.
 end-description
 input Physical_schema "Physical schema" : PHYS_SQL_SCHEMA
 intern Completed_physical_schema "Physical schema" : PHYS_SQL_SCHEMA
 output SQL_script "SQL database definition script" : SQL_FILE
 strategy
 copy(Physical_schema,Completed_physical_schema);
 toolbox TB_SETTING_PARAMETERS [log replay] (Completed_physical_schema);
 generate STD_SQL(Completed_physical_schema,SQL_script)
end-process

Appendix A. The method 19

process FORWARD_ENGINEERING
 title "Forward engineering"
 description
 Forward engineering is the process of building a database from a conceptual
schema.
 In this context, you will have to design an SQL database.
 end-description
 intern Interview_report "Interview report" : TEXT_FILE,
 Conceptual_schema "Conceptual schema" : CONCEPT_SCHEMA,
 Logical_schema "Logical schema" : LOG_SQL_SCHEMA,
 Physical_schema "Physical schema" : PHYS_SQL_SCHEMA,
 SQL_script "SQL database definition script" : SQL_FILE
 strategy
 repeat
 new(Interview_report);
 end-repeat;
 do CONCEPTUAL_ANALYSIS(Interview_report,Conceptual_schema);
 do LOGICAL_DESIGN(Conceptual_schema,Logical_schema);
 do PHYSICAL_DESIGN(Logical_schema,Physical_schema);
 do CODING(Physical_schema,SQL_script)
end-process

% Method definition
%%%%%%%%%%%%%%%%%%%

method
 title "Forward engineering"
 version "1.0"
 author "Didier ROLAND"
 date "28-10-1998"
 perform FORWARD_ENGINEERING
end-method

20 Appendix A. The method

A.2 The graphical representation
The main process type

This is the backbone of the method to follow. It is a sequence that allows an analyst to collect a series of
interview reports and to design the whole database on their basis. The four main process types (concep-
tual analysis, logical design, physical design and coding) can be decomposed, as can be seen in the fol-
lowing pages.

The main phases of the method

The following process types are the decomposition of the main process types from the previous page.
The logical design contains itself an engineering process type (relational design) that is shown here too.

Forward engineering

Interview report

NEW

Interview report

Conceptual schema

Conceptual analysis

Conceptual schema

Logical schema

Logical design

Logical schema

Physical schema

Physical design

Physical schema

SQL database definition script

Coding

Appendix A. The method 21

Conceptual analysis
Interview report

Conceptual schema

Conceptual schema

NEW

Conceptual schema

Interview report

Analysis

Conceptual schema

Conceptual normalisation

Logical design
Conceptual schema

Logical schema

Conceptual schema

Raw logical schema

COPY

Raw logical schema

Relational design

Raw logical schema

Logical schema

COPY

Logical schema

Name conversion

22 Appendix A. The method

Relational design Relational logical schema

Relational logical schema

Is-a relations

Relational logical schema

Non-functional rel-types

Relational logical schema

Attributes

Relational logical schema

Identifiers

Relational logical schema

References

Physical design
Logical schema

Physical schema

Logical schema

Physical schema

COPY

Physical schema

Setting indexes

Physical schema

Storage allocation

Appendix A. The method 23

Coding
Physical schema

SQL database definition script

Physical schema

Physical schema

COPY

Physical schema

Setting coding parameters

Physical schema

SQL database definition script

GENERATE

24 Appendix B. The “library.txt” text

Appendix B. The “library.txt” text

Report of the interviews

A book is considered as a piece of literary, scientific or technical writing. Every book has an identifying
number, a title, a publisher, a first published date, keywords, and an abstract (the abstracts are being
encoded), the names of its authors, and its bibliographic references (i.e. the books it references).

For each book, the library has acquired a certain number (0, 1 or more) of copies. The copies of a given
book have distinct serial numbers. For each copy, the date it was acquired is known, as well as its loca-
tion in the library (i.e. the store, the shelf and the row in which it is normally stored), its borrower (if
any), and the number of volumes it comprises. It appears that one cannot borrow any individual
volume, but that one must borrow all the volumes of a copy. In addition, the copies of a given book may
have different numbers of volumes. A book is also characterised by its physical state (new, used, worn,
torn, damaged, etc), specified by a one-character code, and by an optional comment on this state.

The author of a book has a name, a first name, a birth date, and an origin (i.e. the organisation which
(s)he came from when the book was written). For some authors, only the name is known. The
employees admit that two authors may have the same name (and first name), but such a situation does
not seem to raise any problem. Only the authors of books known by the library are recorded.

A copy can be borrowed, at a given date, by a borrower. Borrowers are identified by a personal id. The
library records the name, the first name, the address (name of the company, street, zip-code and city
name), as well as the phone numbers of each borrower. In addition, when (s)he is absent, another bor-
rower (who is responsible for the former) can be contacted instead. When a copy is brought back, it is
put in a basket from which it is extracted at the end of the day to be stored in its location, so that it is
available again from the following day on. A copy is borrowed on behalf of a project (identified by its
name, but also by its internal code). When a copy is brought back to the desk, the employee records the
following information on this copy: borrowing date, current date, borrower and project.

Appendix C. The conceptual schema 25

Appendix C. The conceptual schema

0-N 1-Nwritten

0-N
responsible

0-1

responsible-for

0-N
reference

0-N
origin

reference

1-1

0-N

of

0-N

0-N

0-N

closed-borrowing
Borrow-Date
End-Date
id: COPY

Borrow-Date

0-N

0-N

0-1
borrowing

Borrow-Date

PROJECT
Pcode
Title
id: Pcode
id': Title

COPY
Copy-No
Date-Acquired
Location

Store
Shelf
Row

Nbr-of-Volumes
State
Comment[0-1]
id: of.BOOK

Copy-No

BORROWER
Pid
Name
First-Name
Address

Company
Street
Zip-code
City

Phone[1-5]
id: Pid

BOOK
Book-id
Title
Publisher
Date-Published
Keyword[0-10]
Abstract[0-1]
id: Book-id

AUTHOR
Name
First-Name[0-1]
Origin[0-1]

Library/Conceptual

